

Project Paragon Container Bar	Project No	24-385
, .	, , , , , , , , , , , , , , , , , , , ,	

Calc. By____NS_____ Checked By___TJ____ Date__11/6/2024____

STRUCTURAL CALCULATIONS FOR :

Paragon Container Bar Lee's Summit, MO

<u>Section</u>	Description	Page	
Α	Loads	9	
В	Overturn Check	2	
С	Anchorage Design	7	

RELEASED FOR CONSTRUCTION As Noted on Plan Review

> Development Services Department Lee's Summit, Missouri

> > 12/17/2024

PRCOM20246244

BSE Structural Engineers LLC 9911 Pflumm Road Lenexa, Kansas 66215 Phone 913.492.7400 www.BSEstructural.com

From: Travis Jennings - BSETo: Whom It May ConcernRE: Paragon Container Bar – Overturning Assessment

Date: 11/8/2024 Project No: 24-385

BSE was asked by Finkle + Williams to check the overturning potential of this new container structure against design lateral forces as determined based on the governing International Building Code (IBC) and the American Society of Civil Engineers Minimum Design Loads for Buildings and Other Structures (ASCE 7). We also provide our analysis and design of the container connection points to the existing paving slab design by others.

RELEASED FOR CONSTRUCTION As Noted on Plan Review

Development Services Department Lee's Summit, Missouri

DESIGN LOADS

RELEASED FOR CONSTRUCTION As Noted on Plan Review

> Development Services Department Lee's Summit, Missouri 12/17/2024

ASCE Hazards Report

Standard:ASCE/SEI 7-16Risk Category:IISoil Class:D - Stiff Soil

Latitude: 38.941479 Longitude: -94.441245 Elevation: 808.513497020725 ft (NAVD 88)

Wind

Results:

Wind Speed	> 109 Vmph
10-year MRI	76 Vorph
25-year MRI	83 Vmph
50-year MRI	88 Vmph
100-year MRI	94 Vmph

Data Source:	ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2
Date Accessed:	Fri Nov 08 2024

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

Development Services Department Lee's Summit, Missouri

12/17/2024

2

 $S_a^4(g)$ vs $T(s)^6$

Ó

8

10

12

14

Data Accessed:

2

 $S_a^4(g)$ vs $T(s)^6$

Ò

8

10

12

14

Fri Nov 08 2024

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

Project Paragon Container

Job Ref. 24-385-

z (ft) Kz (Table 26.10-1) qz (psf) 9.50 0.57 15.93

Peak velocity pressure for internal pressure

Peak velocity pressure – internal (as roof press.) qi = 15.93 psf

Pressures and forces

Net pressure	$p = q \times G_f \times C_{pe} - q_i \times GC_{pi}$
Net force	$F_w = p \times A_{ref}$

Roof load case 1 - Wind 0, GC_{pi} 0.18, - c_{pe}

Zone	Ref. height (ft)	Ext pressure coefficient cpe	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
A (-ve)	9.50	-1.22	15.93	-19.41	190.00	-3.69

Calc. by <u>TJ</u> Chk'd by ____ ____ Date<u>11/8/2024</u>

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
B (-ve)	9.50	-0.70	15.93	-12.35	130.00	-1.60
Total vertical ne	t force		F _{w,v} = -5.29	kips		

Total horizontal net force

F_{w,h} = **0.00** kips

Walls load case 1 - Wind 0, GCpi 0.18, -cpe

Zone	Ref. height (ft)	Ext pressure coefficient cpe	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
A	9.50	0.80	15.93	7.97	380.00	3.03
В	9.50	-0.50	15.93	-9.64	380.00	-3.66
С	9.50	-0.70	15.93	-12.35	76.00	-0.94
D	9.50	-0.70	15.93	-12.35	76.00	-0.94

Overall loading

Projected vertical plan area of wall Projected vertical area of roof Minimum overall horizontal loading Leeward net force Windward net force Overall horizontal loading

Avert_r_0 = 0.00 ft² Fw,total_min = pmin_w × Avert_w_0 + pmin_r × Avert_r_0 = 6.08 kips FI = Fw,wB = -3.7 kips

 $A_{vert_w_0} = b \times H = 380.00 \text{ ft}^2$

 $F_{w} = F_{w,wA} = 3.0$ kips

Fw,total = max(Fw - FI + Fw,h, Fw,total_min) = 6.7 kips

Roof load case 2 - Wind 0, GCpi -0.18, -1cpe

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)	
A (+ve)	9.50	-0.18	15.93	0.43	190.00	0.08	
B (+ve)	9.50	-0.18	15.93	0.43	130.00	0.06	
Total vertical ne	et force	•	F _{w,v} = 0.14 k	ips			
Total horizontal	net force		F _{w,h} = 0.00 k	ips	DESIGN COMB		

Total horizontal net force

F_{w,h} = **0.00** kips

Walls load case 2 - Wind 0, GCpi -0.18, -1cpe

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p	Area A _{ref} (ft²)	Net force F _w (kips)
A	9.50	0.80	15.93	13.70	380.00	5.21
В	9.50	-0.50	15.93	-3.90	380.00	-1.48
С	9.50	-0.70	15.93	0.61	76.00	-0.50
D	9.50	-0.70	15.93	-6.61	76.00	-0.50

Overall loading

Projected vertical plan area of wall

Projected vertical area of roof

Minimum overall horizontal loading

Leeward net force

Windward net force

Overall horizontal loading

Avert w 0 = $b \times H = 380.00 \text{ ft}^2$ $A_{vert_r_0} = 0.00 ft^2$ $F_{w,total_min} = p_{min_w} \times A_{vert_w_0} + p_{min_r} \times A_{vert_r_0} = 6.08 \text{ kips}$ F_I = F_{w,wB} = **-1.5** kips $F_{w} = F_{w,wA} = 5.2$ kips

 $F_{w,total} = max(F_w - F_l + F_{w,h}, F_{w,total_min}) = 6.7 kips$

RELEASED FOR CONSTRUCTION As Noted on Plan Review **Development Services Department** Lee's Summit, Missouri 12/17/2024

Project Paragon Container

_____ Job Ref. 24-385

Date<u>11/8/2024</u>

Roof load case 3 - Wind 90, GCpi 0.18, -cpe

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
A (-ve)	9.50	-0.90	15.93	-15.05	38.00	-0.57
B (-ve)	9.50	-0.90	15.93	-15.05	38.00	-0.57
C (-ve)	9.50	-0.50	15.93	-9.64	76.00	-0.73
D (-ve)	9.50	-0.30	15.93	-6.93	168.00	-1.16
Total vertical ne	t force	•	F _{w,v} = -3.04	kips		

Calc. by <u>TJ</u> Chk'd by ____

Total horizontal net force

F_{w,v} = -3.04 kips

F_{w,h} = **0.00** kips

Walls load case 3 - Wind 90, GC_{pi} 0.18, - c_{pe}

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
A	9.50	0.80	15.93	7.97	76.00	0.61
В	9.50	-0.20	15.93	-5.58	76.00	-0.42
С	9.50	-0.70	15.93	-12.35	380.00	-4.69
D	9.50	-0.70	15.93	-12.35	380.00	-4.69

 $A_{vert_w_{90}} = d \times H = 76.00 \text{ ft}^2$

Fw,total_min = pmin_w × Avert_w_90 + pmin_r × Avert_r_90 = 1.22 kips

 $F_{w,total} = max(F_w - F_l + F_{w,h}, F_{w,total_min}) = 1.2 kips$

Avert r 90 = 0.00 ft²

F₁ = F_{w,wB} = -0.4 kips

 $F_{w} = F_{w,wA} = 0.6$ kips

Overall loading

Projected vertical plan area of wall

Projected vertical area of roof

Minimum overall horizontal loading

Leeward net force

Windward net force

Overall horizontal loading

Roof load case 4 - Wind 90, GCpi -0.18, +cpe

Zone	Ref. height (ft)	Ext pressure coefficient cpe	Peak velocity pressure q _P (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
A (+ve)	9.50	-0.18	15.93	0.43	38.00	0.02
B (+ve)	9.50	-0.18	15.93	0.43	38.00	0.02
C (+ve)	9.50	-0.18	15.93	0.43	76.00	0.03
D (+ve)	9.50	-0.18	15.93	0.43	168.00	0.07

Total vertical net force Total horizontal net force

```
F<sub>w,v</sub> = 0.14 kips
F<sub>w,h</sub> = 0.00 kips
```

Walls load case 4 - Wind 90, GCpi -0.18, +cpe

Zone	Ref. height (ft)	Ext pressure coefficient cpe	Peak velocity pressure q _P (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
A	9.50	0.80	15.93	13.70	76.00	1.04
В	9.50	-0.20	15.93	0.16	76.00	0.01
С	9.50	-0.70	15.93	-6.61	380.00	-2.51
D	9.50	-0.70	15.93	-6.61	380.00	-2.51

Overall loading

Projected vertical plan area of wall

```
A_{vert_w_{90}} = d \times H = 76.00 \text{ ft}^2
```

Sht. No. 3 of 4

RELEASED FOR CONSTRUCTION

opment Services Departr Lee's Summit, Missouri

Project	Paragon Contain	ner Bar	Projec	ct No.	24-385	
Calc. By	TAJ	Checked By	TAJ	Date	11/8/2024	

Seismic Loads on Nonstructural Components: ASCE 7-10, Chapter 13

Horizontal Load:

S _{DS} =	0.1050 g	(Short period spectral response acceleration factor)
a _p =	1.0	(ASCE 7-10, Table 13.5-1 or 13.6-1)
R _p =	2.5	(ASCE 7-10, Table 13.5-1 or 13.6-1)
W _p =	8,300 lbs	(Component operating weight)
I _p =	1.5	(Component importance factor per ASCE 7-10, Section 13.1.3)
z =	9.5 ft.	(Height to point of attachment with respect to base, ASCE 7-10, Section 13.3.1)
h =	9.5 ft.	(Average roof height)
F _p =	627 lbs	(ASCE 7-10, EQ.13.3-1)
F _{p,max} =	2,092 lbs	(ASCE 7-10, EQ.13.3-2)
F _{p,min} =	392 lbs	(ASCE 7-10, EQ.13.3-3)
F _{ph} =	627 lbs	(Force is strength level and can be applied in any horizontal direction)

Vertical Load:

		(ASCE 7-10, Section 13.3.1)
F _{pv} =	174 lbs	(Force is strength level and can be upward or downward)

OVERTURNING CHECK

RELEASED FOR CONSTRUCTION As Noted on Plan Review

> Development Services Department Lee's Summit, Missouri

TBSE STRUCTURAL ENGINEERS

Project Paragon Container Project No. 24-385 Checked By_____ Date 11/8/24 Calc. By TAS

Sht. No._____ of _

ANCHORAGE CHECK

RELEASED FOR CONSTRUCTION As Noted on Plan Review

> Development Services Department Lee's Summit, Missouri

ASSUMED CONNECTION TO EACH ANCHOR POINT PER THE LAYOUT PROVIDED TO BSE

RELEASED FOR CONSTRUCTION As Noted on Plan Review

> Development Services Department Lee's Summit, Missouri

www.hilti.com			
Company: Address: Phone I Fax: Design: Fastening point:	 Concrete - Nov 6, 2024	Page: Specifier: E-Mail: Date:	1 11/6/2024
Specifier's comments:			
1 Input data Anchor type and diameter:	Kwik Bolt TZ2 - CS 3/4 (3 3	/4) hnom2	
Item number:	2210312 KB-TZ2 3/4x6 1/4		
Specification text:	Hilti KB-TZ2 stud anchor with embedment, 3/4 (3 3/4) hnor installation per ESR-4266	า 4.5 in n2, Carbon steel,	safe set
Effective embedment depth:	$h_{efact} = 3.750 \text{ in.}, h_{nom} = 4.50$	0 in.	
Material:	Carbon Steel		RELEASED FOR CONSTRUCTION As Noted on Plan Review
Evaluation Service Report:	ESR-4266		Development Services Department
Issued I Valid:	12/1/2023 12/1/2025		Lee's Summit, Missouri
Proof:	Design Method ACI 318-19 /	Mech	12/17/2024
Stand-off installation:	e _b = 0.000 in. (no stand-off);	t = 0.500 in.	
Anchor plate ^R :	l _x x l _y x t = 3.000 in. x 6.750 i	n. x 0.500 in.; (Recommended plate th	ickness: not calculated)
Profile:	no profile	mm	
Base material:	cracked concrete, 2500, f_c' =	2,500 psi; h = 6.000 in.	
Installation:	Hammer drilled hole, Insta	Hation condition: Bry	ssumption
Reinforcement:	tension: not present, shear: ı	not present; no supplemental splitting r	einforcement present
	edge reinforcement: none or	< No. 4 bar	

 $^{\rm R}$ - The anchor calculation is based on a rigid anchor plate assumption.

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com				
Company:		Page:		2
Address:		Specifier:		
Phone I Fax:		E-Mail:		
Design:	Concrete - Nov 6, 2024	Date:		11/6/2024
Fastening point:				
1.1 Design result	s			
Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	N = 3,000; $V_x = 0$; $V_y = 0$;	no	99

 $M_x = 0; M_y = 0; M_z = 0;$

2 Load case/Resulting anchor forces

Anchor reactio	ns [lb]	voion)		
rension lorce. (+ rension, -Compres	sion)		
Anchor	Tension force	Shear force	Shear force x	Shear force y
1	3,256	0	0	0
2	3,256	0	0	0
Max. concrete c	ompressive strain:		0.36 [‰]	

Max. concrete compressive strain. 1,587 [psi] Resulting tension force in (x/y)=(0.000/0.000): 6,512 [lb] Resulting compression force in (x/y)=(1.281/0.000): 3,512 [lb]

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load N _{ua} [lb]	Capacity 🍳 N _n [lb]	Utilization $\beta_N = N_{ua} / \Phi N_n$	Status	
Steel Strength*	3,256	19,009	18	OK	
Pullout Strength*	N/A	N/A	N/A	N/A	
Concrete Breakout Failure**	6,512	6,608	99	OK	

* highest loaded anchor **anchor group (anchors in tension)

2 Compression $(\bullet$ ►× 6 Tension

¥у

RELEASED FOR CONSTRUCTION As Noted on Plan Review

> **Development Services Department** Lee's Summit, Missouri 12/17/2024

www.hilti.com

Company:		Page:
Address:		Specifier:
Phone I Fax:		E-Mail:
Design:	Concrete - Nov 6, 2024	Date:
Fastening point:		

3.1 Steel Strength

N _{sa}	= ESR value	refer to ICC-ES ESR-4266
φ N _{sa}	$\geq N_{ua}$	ACI 318-19 Table 17.5.2

Variables

A _{se,N} [in. ²]	f _{uta} [psi]
0.24	105,904

Calculations

N_{sa} [lb] 25,345

Results

N _{sa} [lb]	∮ _{steel}	φ N _{sa} [lb]	N _{ua} [lb]
25,345	0.750	19,009	3,256

3.2 Concrete Breakout Failure

N _{cbg}	$= \left(\frac{A_{\rm Nc}}{A_{\rm Nc0}}\right) \Psi_{\rm ec,N} \Psi_{\rm ed,N} \Psi_{\rm c,N} \Psi_{\rm cp,N} N_{\rm b}$	ACI 318-19 Eq. (17.6.2.1b)
φ N _{cbg} A _{Nc}	₁ ≥ N _{ua} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b)	ACI 318-19 Table 17.5.2
A _{Nc0}	$= 9 h_{ef}^2$	ACI 318-19 Eq. (17.6.2.1.4)
$\psi_{\text{ec,N}}$	$= \left(\frac{1}{1 + \frac{2 e_{N}}{3 h_{ef}}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.3.1)
$\psi_{\text{ed},\text{N}}$	$= 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\psi_{\text{ cp},\text{N}}$	$= MAX \left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.6.1b)
N _b	$= k_c \lambda_a \sqrt{f_c} h_{ef}^{1.5}$	ACI 318-19 Eq. (17.6.2.2.1)

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	$\Psi_{c,N}$		
3.750	0.000	0.000	∞	1.000		
c _{ac} [in.]	k _c	λ _a	f _c [psi]			
10.000	21	1.000	2,500			
Calculations						
A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\Psi_{\text{ec1,N}}$	$\Psi_{ec2,N}$	$\psi_{\text{ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
168.75	126.56	1.000	1.000	1.000	1.000	7,625
Results						
N _{cbg} [lb]	ϕ_{concrete}	φ N _{cbg} [lb]	N _{ua} [lb]			
10,167	0.650	6,608	6,512			

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

3

11/6/2024

RELEASED FOR CONSTRUCTION As Noted on Plan Review

Development Services Department Lee's Summit, Missouri 12/17/2024

3

www.hilti.com

Company:		Page:	
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design: Fastening point:	Concrete - Nov 6, 2024	Date:	11/6/2024

4 Shear load

	Load V _{ua} [lb]	Capacity ∮ V _n [lb]	Utilization $\beta_v = V_{ua} / \Phi V_n$	Status
Steel Strength*	N/A	N/A	N/A	N/A
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength*	N/A	N/A	N/A	N/A
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

* highest loaded anchor **anchor group (relevant anchors)

When the input edge distance is set to "infinity", edge breakout verification is not performed in that direction

5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Refer to the manufacturer's product literature for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions (MPII). Reference ACI 318-19, Section 26.7.

Fastening meets the design criteria!

RELEASED FOR CONSTRUCTION As Noted on Plan Review

Development Services Department Lee's Summit, Missouri 12/17/2024

www.hilti.com					
Company: Address:		Page: Specifier:	5		
Phone I Fax:		E-Mail:			
Design: Fastening point:	Concrete - Nov 6, 2024	Date:	11/6/2024		
6 Installation da	ata				
		Anchor type and diameter: Kwik E hnom2	3olt TZ2 - CS 3/4 (3 3/4)		
Profile: no profile		Item number: 2210312 KB-TZ2 3	Item number: 2210312 KB-TZ2 3/4x6 1/4		
Hole diameter in the fixture: $d_f = 0.812$ in.		Maximum installation torque: 1,32	Maximum installation torque: 1,324 in.lb		
Plate thickness (input): 0.500 in.		Hole diameter in the base materia	Hole diameter in the base material: 0.750 in.		
Recommended plate thickness: not calculated		Hole depth in the base material: 4	Hole depth in the base material: 4.750 in.		
Drilling method: Hammer drilled Cleaning: Manual cleaning of the drilled hole according to instructions for use is required.		Minimum thickness of the base m for use is	Minimum thickness of the base material: 6.000 in.		

Hilti KB-TZ2 stud anchor with 4.5 in embedment, 3/4 (3 3/4) hnom2, Carbon steel, installation per ESR-4266

6.1 Recommended accessories

Drilling	Cleaning	Setting
Suitable Rotary HammerProperly sized drill bit	Manual blow-out pump	Torque controlled cordless impact toolTorque wrenchHammer
	-1.500 y 1.500 1.500	RELEASED FOR CONSTRUCTION As Noted on Plan Review
		Development Services Department Lee's Summit, Missouri
		12/17/2024
	3.37	
	<u>с 1920</u> Э. 220	
	1.500 1.500	
Coordinates Anchor [in.]	T T T	
Anchor x y c _{-x} c	+x C _{-y} C _{+y}	
1 0.000 -1.875 2 0.000 1.875	 	

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan