STORMWATER MANAGMENT SUMMARY

FOR

PROPOSED TAKE 5 OIL CHANGE

Missouri Hwy 291 Lee's Summit, Missouri

December 13, 2024

PREPARED FOR

DRIVEN ASSESTS, L.L.C. 1601 High Street

Boulder, CO 80302

DECEMBER 13, 2024

PREPARED BY:

HIGH TIDE CONSULTANTS LLC

409 W 21ST AVENUE – SUITE B COVINGTON, LA 70433 www.hightidela.com

Stormwater Management Summary

Introduction:

The purpose of this document is to provide a summary of the pre and post development drainage conditions for the +/- 0.49-acre site located along the west side of Highway 291, and just north of the Meineke Car Care, which is located at 320 NE 291 Hwy, Lee's Summit, MO 64086. The site is made up of a vacant grass lot which will be developed into a Take 5 Oil Change facility. This analysis will demonstrate that the proposed developments drainage system will meet the requirements set forth by the City of Lee's Summit.

Methodology:

The hydraulic calculations, for this site, were performed using the SCS Method (TR-55), in accordance with the City of Lee's Summit and APWA Sections 5602 and 5608 requirements. The proposed detention basin, and the associated water quality elements will be required to meet the standards of Comprehensive Control Strategy described in the City of Lee's Summit Design & Constuction Manual (i.e., KCAPWA Section 5600 and Lee's Summit Addendum). Hydraflow Hydrographs Extension for Autodesk Civil 3D was utilized for the detention calculations. Detention storage data can be found in the appendix of the report, under the Post Development Calculations. Points of Interest were used to determine the allowable release rate for the developed site. The site has been analyzed for the 2-year, 10-year and 100-year storm events.

Per the Kansas City Metropolitan Chapter American Public Works Association Standard Specifications & Design Criteria – Section 5600 Storm Drainage Systems & Facilities, the maximum release rate from any development under the runoff control strategies shall be as follows:

- 50% storm peak rate less than or equal to 0.5 CFS per site acre.
- 10% storm peak rate less than or equal to 2.0 CFS per site acre.
- 1% storm peak rate less than or equal to 3.0 CFS per site acre.

The site-specific allowable release rates are shown in the table below.

Rate (CFS): 0.49AC = 0.245		3.0 CFS/AC X 0.49AC = 1.47 CFS
----------------------------	--	--------------------------------------

Existing Conditions:

The proposed site is located along the west side of Highway 291, and just north of the Meineke Car Care, which is located at 320 NE 291 Hwy, Lee's Summit, MO 64086. The site is located on the northwest side of the intersection of SE Langsford Rd. & NE Hwy 291. The site is currently occupied by a vacant grass lot that sits on approximately 0.49 acres of pervious cover. There has not been any wetlands identified in the area where the proposed improvements will take place, and therefore, no mitigation is proposed.

The site is contained within an existing retaining wall, and it is bordered by overgrown vegetation to the north and west. There is an existing stream located to the west of the site and the approximate location of the stream buffer can be seen on the Stream Exhibit, which is included in Appendix A. Per an email from Mike Weisenborn, dated 9/12/22, "I spoke with the engineers and based on a rough estimate of the upstream drainage area the stream buffer is 100 feet on each side of the stream. This is measured from the normal high-water mark.

Stormwater ManagementStudy

They also indicated that the stream buffer would not apply to the area that already has a retaining wall in place." Therefore, since no disturbance shall take place beyond the retaining wall that is currently in place, it has been determined that the developed portion of the site, within the retaining wall, can encroach into the 100' stream buffer.

The site receives off-site run-on from the existing strip mall to the south. This area is +/-0.1 acres, with a CN of 86. The point at which most of the off-site impervious area enters the proposed site, through a concrete flume, has been labeled as point of interest "A".

The site has high points on the south property line and slopes northeast towards Highway 291 with a slope of approximately 5.0%. The site drains via sheet flow to an existing roadside ditch located on the eastern side of the property, along Hwy. 291. The point at which this flow exits the property is considered the point of interest "B" for the existing condition. The points of interest can be viewed on the Pre-Development Drainage Plan, which is included in Appendix A.

Per the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Panel Number 29095C0436G, which is dated 1/20/2017, the majority of the site is located in Flood Zone X (unshaded), while a portion bordering Hwy. 291 is located in Flood Zone x (shaded).

The time of concentration for the existing condition of the Take-5 site is 13.50 minutes and the SCS Curve Number (CN) value has been determined to be 74.

The time of concentration for the off-site area is 5 minutes and the SCS Curve Number (CN) value has been determined to be 86.

The total pre-development runoff values for the site are as follows:

Storm Event/Rainfall Return Period	50% / 2 YR	10% / 10 YR	1% / 100 YR
Off-Site Runoff (Pre DA 1) (CFS):	0.380 CFS	0.663 CFS	1.177 CFS
Take-5 Site Runoff (DA 2) (CFS):	0.836 CFS	1.799 CFS	3.719 CFS
Combined Runoff (CFS):	1.074 CFS	2.213 CFS	4.461 CFS
Allowable Release Rate (CFS):	0.5 CFS/AC X 0.49AC = 0.245 CFS	2.0 CFS/AC X 0.49AC = 0.98 CFS	3.0 CFS/AC X 0.49AC = 1.47 CFS

A pre-development drainage area exhibit has been provided in Appendix A.

Proposed Development:

For the purposes of this analysis, the proposed development will consist of a 1,415 SF Take 5 Oil Change Facility along with associated parking and access drives.

The redevelopment of the site will increase the impervious area which will require the excess runoff to be stored on site. Green space areas will be provided internally to the parking areas as well as around the entire perimeter of the site.

The Take 5 site receives off-site flow from the adjacent strip mall to the south and this will be rerouted so that it bypasses the Take 5 drainage system. Approximately 0.09 Acres, from the adjacent strip mall, flows through a flume or sheet flows onto the Take-5 site. A swale will pick up the off-site flow and route it through a trench drain which will be located under the driveway. This off-site flow will ultimately outfall into the existing roadside ditch. This will be considered point of interest "A" for the post-developed condition.

The post-developed site will be broken into two drainage areas. Drainage Area 2 is shown in green on the Post-Development Drainage Plan and is generally the west side of the site. The time of concentration for Drainage Area 2 is 7.4 minutes and the SCS Curve Number (CN) value has been determined to be 85. Drainage area 2 will be routed into an underground detention basin which is located to the east of the Take 5 building. The underground detention basin will then discharge into the roadside ditch. This will be considered point of interest "B" for the post developed condition.

Drainage Area 3 is shown in pink on the Post-Development Drainage Plan and is generally the east side of the site. The time of concentration for Drainage Area 3 is 5 minutes and the SCS Curve Number (CN) value has been determined to be 87. Drainage area 3 will be routed to a detention pond which is located on the east side of the site. The detention pond will then discharge into the roadside ditch. This will be considered point of interest "C" for the post developed condition.

The proposed detention pond will include an emergency spillway, as required by the City of Lee's Summit. The emergency spillway will be located on the eastern side of the pond, adjacent to Highway 291, and will be comprised of a rectangular weir, which will be 15' wide, and approximately 1.56' tall. The weir will be located as close as possible to the roadside concrete flume, that the site ultimately outfalls to. The 100-year water surface elevation in the pond is 983.92'. Therefore, the crest of the weir will be set at an elevation 6" above the 100-year WSE (983.92') at an elevation of 984.42. The water surface elevation of the 100% clogged/zero available storage -100-year storm, flowing through the weir, will be 984.58. The City of Lee's Summit requires 1' of freeboard between the 100-year water surface elevation flowing through the weir and the top of the dam. Therefore, the minimum required top dam elevation is 985.58'. The top of the pond is set at 986.00, which meets the freeboard requirement. Since the dam is less than 10' in height, it has been determined that the dam is not subject to TR-60.

The total post-development runoff values, into the pond/underground storage, are as follows:

Storm Event/Rainfall Return Period	50% / 2 YR	10% / 10 YR	1% / 100 YR
Off-Site Runoff (Pre DA 1) (CFS):	0.375 CFS	0.630 CFS	1.088 CFS
Take-5 Site Runoff (DA 2) (CFS):	0.903 CFS	1.603 CFS	2.855 CFS
Take-5 Site Runoff (DA 3) (CFS):	1.060 CFS	1.824 CFS	3.208 CFS
Combined Detained Runoff (CFS):	0.226 CFS	0.534 CFS	1.237 CFS
Allowable Release Rate (CFS):	0.5 CFS/AC X 0.49AC = 0.245 CFS	2.0 CFS/AC X 0.49AC = 0.98 CFS	3.0 CFS/AC X 0.49AC = 1.47 CFS

A post-development drainage area exhibit has been provided in Appendix B.

Stormwater Requirements:

Drainage calculations will conform to the requirements of the City of Lee's Summit Storm Drainage Design Criteria, as well as section 5600 of the *Kansas City Metropolitan Chapter American Public Works Association Standard Specifications & Design Criteria.*

Runoff for a portion of the site shall be routed to an on-site detention pond and an underground detention basin, which has been appropriately sized to reduce the post-developed runoff exiting the site. Discharge from the pond will be via an outlet structure utilizing a 2" orifice and a 6" orifice, which will both be set at different elevations, followed by a 12" discharge pipe which will outfall into the right-of-way. Discharge from the underground detention basin will be via an outlet structure utilizing a 2" orifice followed by a 12" discharge pipe.

Summary of On-Site Runoff Calculations:

Storm Event	Pre- Developed	Post- Developed	Allowable Release Rate	Calculated Pond Storage Volume	POND WSE	Calculated Underground Storage Volume	Underground Storage WSE
2-year	1.074 cfs	0.226 cfs	0.5CFS X 0.49AC = 0.245 CFS	878 cuft	982.40 ft	877 cuft	983.04 ft
10- year	2.213 cfs	0.534 cfs	2.0CFS X 0.49AC = 0.98 CFS	1,558 cuft	983.07 ft	1,755 cuft	983.61 ft
100- year	4.461 cfs	1.237 cfs	3.0CFS X 0.49AC = 1.47 CFS	2,623 cuft	983.92 ft	3,541 cuft	984.76 ft

Stormwater Quality:

A stormwater treatment facility has been designed for this site. Even though there are no "Hot Spots" located within the project area, there are large amounts of impervious area. Due to the large amounts of impervious area that could contaminate the stormwater, a treatment facility is necessary. An Extended Dry Detention basin was chosen and designed to treat on-site stormwater discharge. The Extended Dry Detention basin did not provide an acceptable level of service by itself, so catch basin inserts have been added to supplement the detention basin. These calculations can be found in Appendix B.

The 2012 MARC BMP manual has been consulted for the proposed BMP mitigation plan.

The total contributing area draining into the detention facility is 0.49 acres. A required water quality volume of 1,481.03 cuft was calculated. The total available pond volume is 5,282 cuft and the total available underground detention volume is 7,124 cuft, while the combined detention volume plus the water quality volume is 7,844.03 cuft. This leaves an excess volume of 4,561.97 cuft available within the detention facilities.

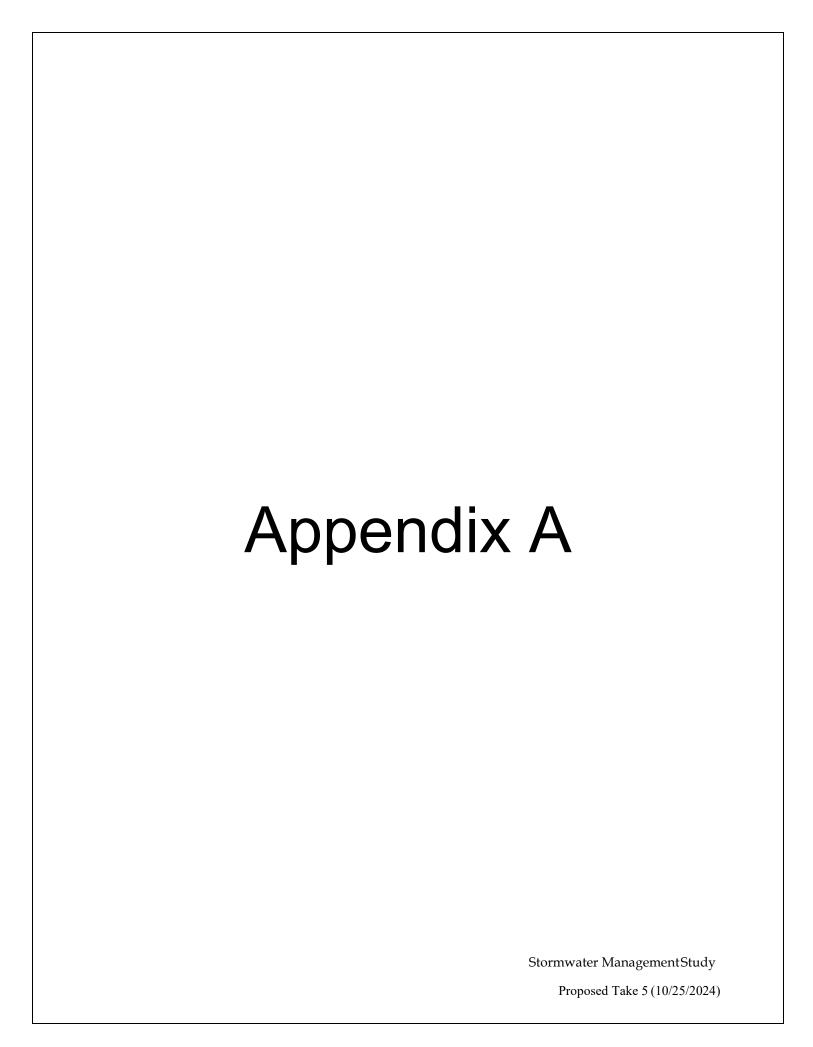
The Extended Dry Detention Basin, that has been provided for this Take 5, will be a privately maintained and operated facility. Maintenance and inspections shall follow the activities and frequencies listed in Appendix B.

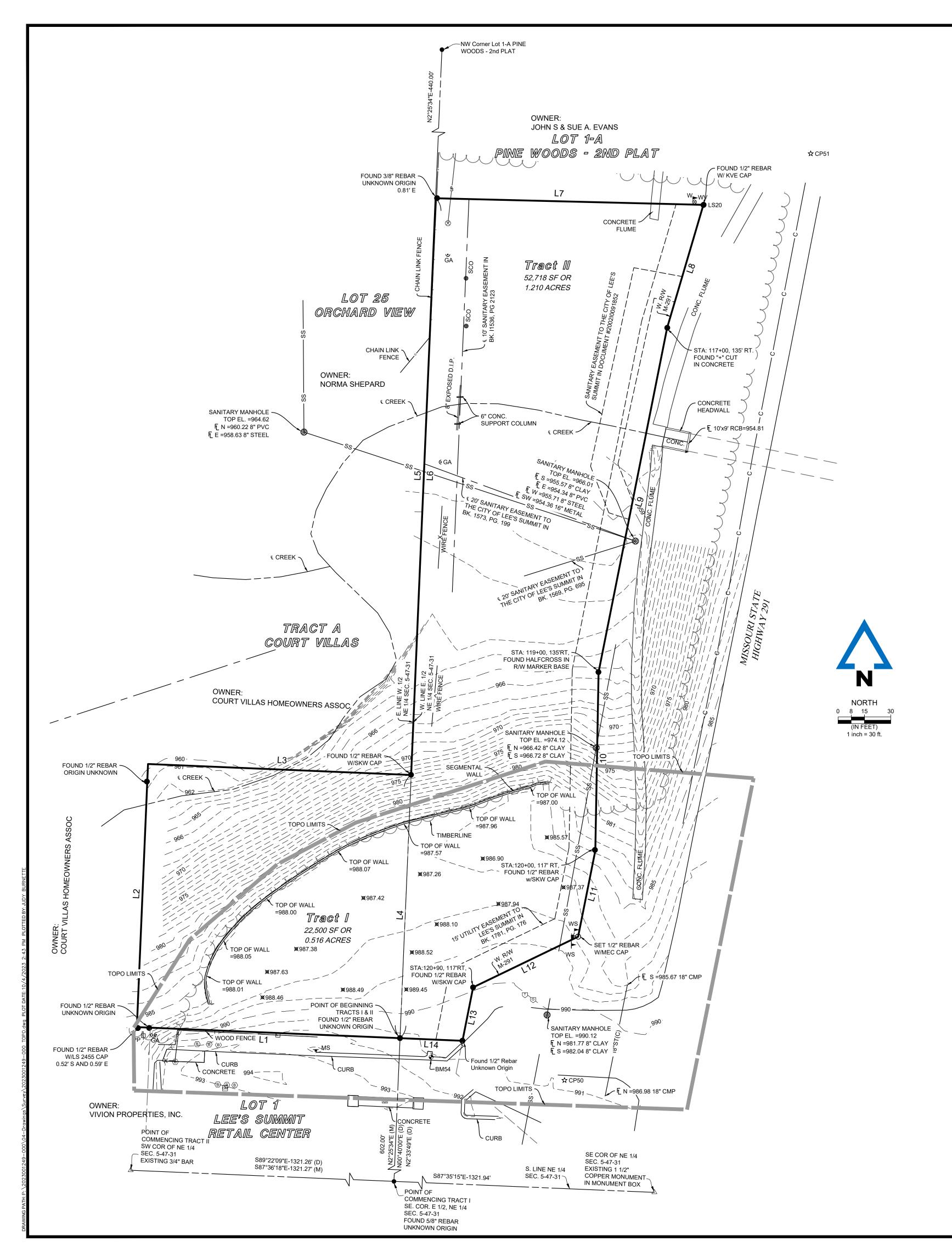
Storm Water Pollution Prevention Plan (SWPPP):

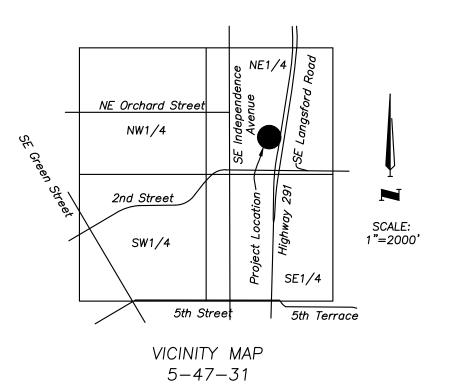
Since the total disturbed area is only +/-0.66 acres, and since it does not exceed 1 acre, a SWPPP will not be required. However, erosion control plans and details have been provided for the contractor to implement during construction.

Downstream Analysis:

Per the attached Watershed Report, which can be viewed in Appendix A, the size of the overall catchment area is 2.16km² (+/-533.74 acres). The area where improvements are being


Stormwater ManagementStudy


Proposed Take 5 (12/13/2024)


made is +/-0.49 acres (0.09% of the overall catchment area). Therefore, since our site is significantly less than 10% of the overall catchment area, our site will not increase the flooding potential downstream of the site where the runoff from our site meets the existing stream.

Conclusion:

All the referenced material and supporting documentation can be found below. The proposed detention basin, and the associated water quality elements meets the standards of Comprehensive Control Strategy described in the City of Lee's Summit Design & Construction Manual (i.e., KCAPWA Section 5600 and Lee's Summit Addendum).

LEGEND

= GUY ANCHOR = METAL SIGN ■ MS = POWER POLE

SSMH = SANITARY SEWER MANHOLE = SECTION CORNER = SEWER CLEAN OUT SCO

= GAS METER

= WATER MARKER = WATER VALVE ⊗ WV ► WS = WOOD SIGN = BOLLARD

= LIGHT POLE w/CONC. BASE

PROJECT CONTROL POINTS TABLE				
CP#	NORTHING	EASTING	ELEV.	DESCRIPTION
50	1002321.14'	2828279.79'	990.78'	CP 50
51	1002848.95'	2828419.99'	979.14'	CP 51
52	1001994.38'	2828211.00'	997.15'	CP 52
53	1002195.40'	2828248.41'	994.99'	BM 53
54	1002334.35'	2828203.90'	991.66'	BM 54

LINE TABLE				
LINE NO.	BEARING	DISTANCE		
L1	N87°36'18"W (M) N89°22'09"E (D)	150.00'		
L2	N2°25'34"E (M) N00°40'00"E (D)	150.00'		
L3	S89°22'09"E (D) S87°36'18"E (M)	150.00'		
L4	N00°40'00"E (D) N2°25'34"E (M)	150.00'		
L5	N2°33'49"E (D) N2°25'34"E (M)	328.79'		
L6	N2°33'49"E (D) N2°25'34"E (M)	478.79'		
L7	S88°27'48"E (D) S88°36'03"E (M)	152.53'		
L8	S16°24'21"W (M) S16°32'36"W (D)	73.03'		
L9	11°15'42"W (M) S11°23'57"W (D)	200.00'		
L10	S1°11'44"W (D) S1°03'29"W (M)	101.61'		
L11	S11°15'42"W (M) S11°23'57"W (D)	50.00'		
L12	S64°13'25"W (M) S64°21'40"W (D)	66.40'		
L13	S11°15'42"W (M) S11°23'57"W (D)	31.03'		
L14	N87°34'58"W (M) N87°26'43"W (D)	35.61'		

- 1/2" IRON BAR WITH SKW TRAVERSE CAP 1. NORTH 3.0 FEET TO THE SOUTH EDGE OF AN ASPHALT ENTRANCE. 2. SOUTHWEST 8.5 FEET TO THE WEST CURB RETURN.
- 1/2" IRON BAR WITH SKW CAP

3. SOUTH 36.8 FEET TO A FIRE HYDRANT.

1. EAST 10.50 FEET TO THE WEST EDGE OF HIGHWAY 291. 2. WEST 15.5 FEET TO THE EAST EDGE OF A CONCRETE FLUME.

3. SOUTHEAST 24.0 FEET TO THE SOUTH END OF AN 18"CMP.

MAG & SHINER IN THE TOP OF A CURB AT THE NORTH END OF YELLOW 1. WEST 28.0 FEET TO THE EAST END OF AN ISLAND. 2. EAST 41.8 FEET TO THE WEST EDGE OF HIGHWAY 291.

BENCHMARK 53 ELEV.: 994.99 SET + CUT THE NORTH BOLT TOP FLANGE OF A FIRE HYDRANT ±150'

SOUTHEAST OF THE SOUTHEAST CORNER OF THIS SURVEY.

ELEV.: 991.62 EXISTING SQUARE CUT ON BACK OF CURB 50'± EAST NORTHEAST OF THE NORTHEAST CORNER OF MEINEKE ON THE NORTH SIDE DRIVE AT

TOPOGRAPHIC SURVEY

SURVEY PREPARED FOR

DRIVEN ASSETS, LLC 2101 PEARL STREET BOULDER, CO. 80302 TODD MINIS, MANAGING PARNTER todd@drivenassets.com

- 1. INFORMATION AS SHOWN FOR UNDERGROUND UTILITIES HAS BEEN COMPILED FROM THE RECORDS OF VARIOUS UTILITY COMPANIES CONCERNED, AND AS MARKED IN THE FIELD BY THE MISSOURI ONE CALL SYSTEM, 1 (800) 344-7483. WHEN PRECISE LOCATIONS OF UNDERGROUND UTILITIES ARE NEEDED PRIOR TO EXCAVATION OR CONNECTIONS, THE VARIOUS UTILITY COMPANIES CONCERNED ARE TO FURNISH A CREW TO POINT OUT THE LOCATIONS AT THE JOB SITE. Missouri One Call Ticket #232351453.
- 3. CONTOURS SHOWN HEREON ARE 1 FOOT INTERVALS AND BASED NAVD88.
- 4. BASIS OF BEARINGS: MISSOURI STATE PLANE, WEST ZONE.
- 5. CLASS OF SURVEY: URBAN
- 6. WE HAVE REVIEWED THE "FLOOD INSURANCE RATE MAP", COMMUNITY PANEL NO. 29095C0436G HAVING AN EFFECTIVE JANUARY 20, 2017 AS PUBLISHED BY FEDERAL EMERGENCY MANAGEMENT AGENCY. OUR REVIEW OF THIS MAP INDICATES THAT THIS PARCEL OF LAND LIES WITHIN ZONE X OTHER FLOOD AREAS, WHICH IS "AREAS OF 0.2%; AREAS OF 1% ANNUAL CHANCE FLOOD WITH AVERAGE DEPTHS OF LESS THAN 1 FOOT OR WITH DRAINAGE AREAS LESS THAN 1 SQUARE MILE: AND AREAS PROTECTED BY LEVEES FORM 1% ANNUAL CHANCE

LEGAL DESCRIPTION PER TITLE COMMITMENT

TRACT I:

THE SOUTH 150 FEET OF THE EAST 150 FEET OF THE NORTH 300 FEET OF THE SOUTH 902 FEET OF THE EAST 880 FEET OF THE WEST ONE HALF OF THE NORTHEAST QUARTER OF SECTION 5, TOWNSHIP 47, RANGE 31, IN LEE'S SUMMIT, JACKSON COUNTY, MISSOURI, MORE PARTICULARLY DESCRIBED AS FOLLOWS: COMMENCING AT THE SOUTHWEST CORNER OF THE NORTHEAST QUARTER OF SAID SECTION 5, TOWNSHIP 47, RANGE 31; THENCE SOUTH 89 DEGREES, 22 MINUTES, 09 SECONDS EAST ALONG THE SOUTH LINE OF THE WEST ONE HALF OF SAID QUARTER SECTION, A DISTANCE OF 1321.26 FEET TO THE SOUTHEAST CORNER OF SAID WEST ONE HALF; THENCE NORTH 00 DEGREES, 40 MINUTES, 00 SECONDS EAST ALONG THE EAST LINE OF SAID WEST ONE HALF, A DISTANCE OF 602.00 FEET TO THE POINT OF BEGINNING; THENCE NORTH 89 DEGREES, 22 MINUTES, 09 SECONDS EAST, PARALLEL WITH THE SOUTH LINE OF SAID WEST ONE HALF, A DISTANCE OF 150.00 FEET; THENCE NORTH 00 DEGREES, 40 MINUTES, 00 SECONDS EAST, PARALLEL WITH THE EAST LINE OF SAID WEST ONE HALF, A DISTANCE OF 150.00 FEET; THENCE SOUTH 89 DEGREES, 22 MINUTES, 09 SECONDS EAST, PARALLEL WITH THE SOUTH LINE OF SAID WEST ONE HALF, A DISTANCE OF 150.00 FEET TO A POINT ON THE EAST LINE OF SAID WEST ONE HALF; THENCE SOUTH 00 DEGREES, 40 MINUTES, 00 SECONDS WEST ALONG SAID EAST LINE, A DISTANCE OF 150.00 FEET TO THE POINT OF BEGINNING.

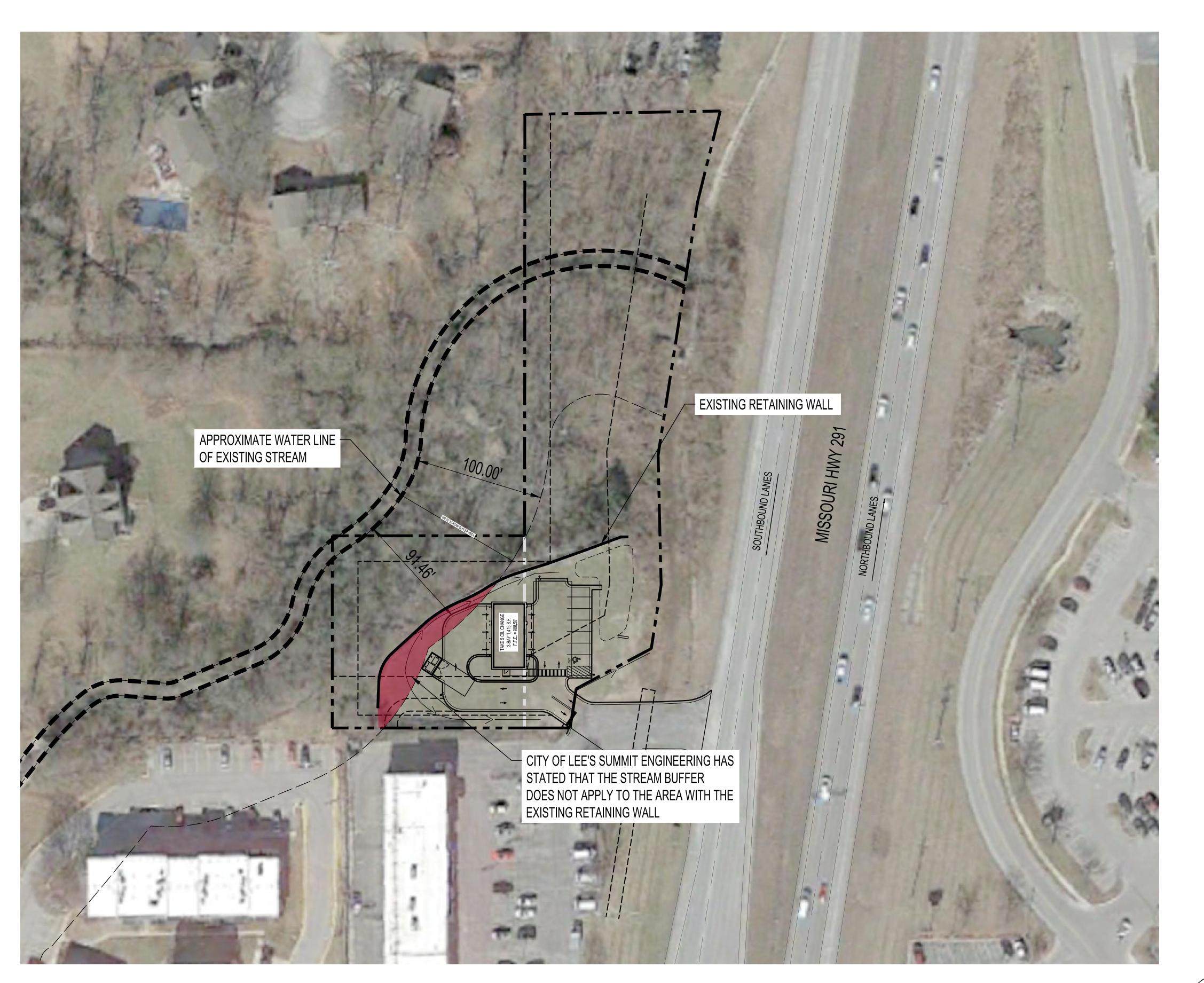
TRACT II:

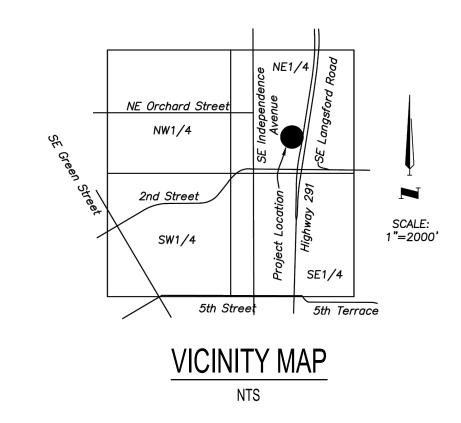
COMMENCING AT THE SOUTHWEST CORNER OF THE EAST 1/2 OF THE NORTHEAST 1/4 OF SECTION 5, TOWNSHIP 47, RANGE 31, LEE'S SUMMIT, JACKSON COUNTY, MISSOURI; THENCE ALONG THE WEST LINE OF SAID 1/2 OF 1/4 SECTION NORTH 2 DEGREES, 33 MINUTES, 49 SECONDS EAST 602 FEET TO THE TRUE POINT OF BEGINNING OF THIS TRACT; THENCE ALONG SAID WEST LINE NORTH 2 DEGREES, 33 MINUTES, 49 SECONDS EAST 478.79 FEET; THENCE SOUTH 88 DEGREES, 27 MINUTES, 48 SECONDS EAST 152.53 FEET TO A POINT ON THE WEST LINE OF THE RIGHT-OF-WAY OF M-291; THENCE ALONG SAID RIGHT-OF-WAY LINE AS FOLLOWS; SOUTH 16 DEGREES, 32 MINUTES, 36 SECONDS WEST 73.03 FEET TO A POINT 135 FEET OPPOSITE CENTER LINE STATION 117+00; THENCE SOUTH 11 DEGREES, 23 MINUTES, 57 SECONDS WEST 200 FEET TO A POINT 135 FEET OPPOSITE CENTER LINE STATION 119+00: THENCE SOUTH 1 DEGREE, 11 MINUTES, 44 SECONDS WEST 101.61 FEET TO A POINT 117 FEET OPPOSITE CENTER LINE STATION 120+00; THENCE PARALLEL TO SAID CENTER LINE SOUTH 11 DEGREES, 23 MINUTES, 57 SECONDS WEST 50 FEET; THENCE SOUTH 64 DEGREES, 21 MINUTES, 40 SECONDS WEST 66.40 FEET TO A POINT 170 FEET OPPOSITE CENTER LINE STATION 120+90; THENCE PARALLEL TO SAID CENTER LINE SOUTH 11 DEGREES, 23 MINUTES, 57 SECONDS WEST 31.03 FEET; THENCE LEAVING SAID RIGHT-OF-WAY NORTH 87 DEGREES, 26 MINUTES, 43 SECONDS WEST 35.61 FEET TO THE TRUE POINT OF BEGINNING

UTILITY WARNING

THE UTILITIES DEPICTED ON THIS DOCUMENT HAVE BEEN LOCATED FROM FIELD SURVEY INFORMATION AND/OR RECORDS OBTAINED. THE SURVEYOR MAKES NO GUARANTEE THAT THE UTILITIES OR SUBSURFACE FEATURES SHOWN COMPRISE ALL SUCH ITEMS IN THE AREA, EITHER IN SERVICE OR ABANDONED. THE SURVEYOR FURTHER DOES NOT WARRANT THAT THE UTILITIES OR SUBSURFACE FEATURES SHOWN ARE IN THE EXACT LOCATION INDICATED EXCEPT WHERE NOTED AS QUALITY LEVEL A.

TOPOGRAPHIC SURVEY


MISSOUIR

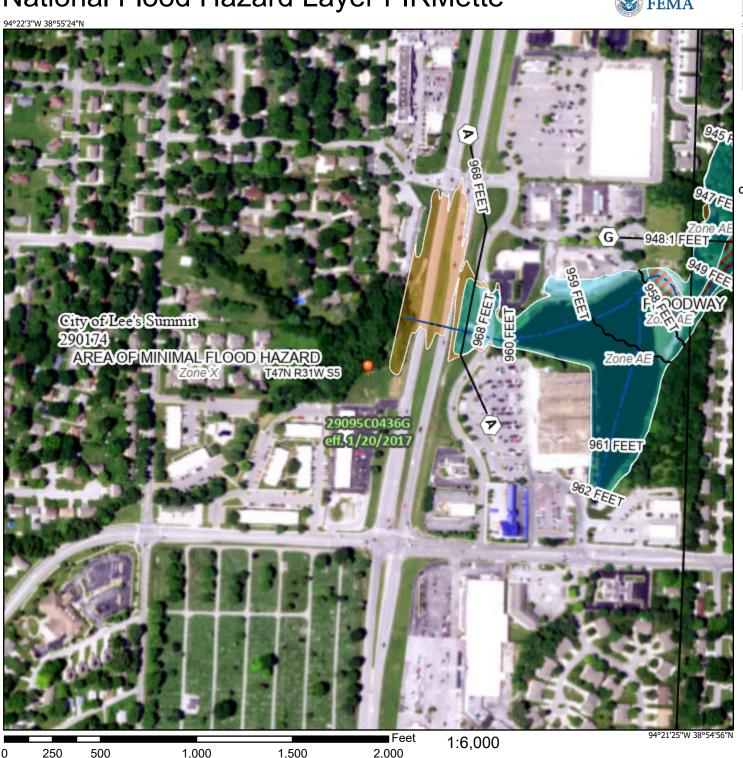

9/13/2023

REVISIONS LEE'S SUMMIT, JACKSON CO. J.BURNETTE SURVEYOR S.WHITAKER SEC. 5-T47-R31 2023001249-000

01/01

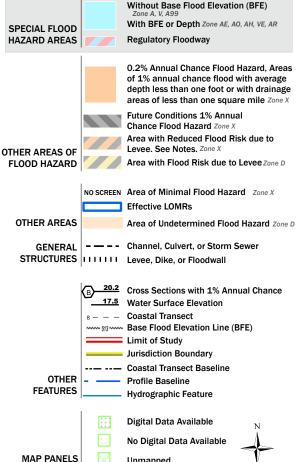
MCCLURE making lives better. 1700 Swift Street, STE 100 North Kansas City, Missouri 641 816-756-0444

REVISION


ISSUED FOR REVIEW PROJECT NO. 22-218 FILE 22-218 EX Stream Buffer Exhibit

Not For Construction STREAM EXHIBIT

National Flood Hazard Layer FIRMette



Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap

accuracy standards

Unmapped

an authoritative property location.

The pin displayed on the map is an approximate point selected by the user and does not represent

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 9/29/2022 at 11:09 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

Spoil Area

Stony Spot

Very Stony Spot

Wet Spot Other

Special Line Features

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Jackson County, Missouri Survey Area Data: Version 25, Aug 22, 2023

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Aug 30, 2022—Sep 8, 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
10082	Arisburg-Urban land complex, 1 to 5 percent slopes	0.2	9.8%
10180	Udarents-Urban land-Sampsel complex, 2 to 5 percent slopes	2.0	90.2%
Totals for Area of Interest		2.2	100.0%

Jackson County, Missouri

10082—Arisburg-Urban land complex, 1 to 5 percent slopes

Map Unit Setting

National map unit symbol: 2w7ld Elevation: 750 to 1,130 feet

Mean annual precipitation: 39 to 45 inches Mean annual air temperature: 50 to 55 degrees F

Frost-free period: 177 to 220 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Arisburg and similar soils: 61 percent

Urban land: 30 percent Minor components: 9 percent

Estimates are based on observations, descriptions, and transects of

the mapunit.

Description of Arisburg

Setting

Landform: Interfluves

Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex Parent material: Loess

Typical profile

Ap - 0 to 6 inches: silt loam A - 6 to 13 inches: silt loam

Bt - 13 to 19 inches: silty clay loam

Btg - 19 to 56 inches: silty clay loam

BCg - 56 to 79 inches: silty clay loam

Properties and qualities

Slope: 1 to 5 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Somewhat poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)

Depth to water table: About 18 to 30 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water supply, 0 to 60 inches: High (about 11.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C

Ecological site: R107XB007MO - Loess Upland Prairie

Hydric soil rating: No

Description of Urban Land

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8

Hydric soil rating: No

Minor Components

Sampsel

Percent of map unit: 3 percent

Landform: Hills

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Concave

Ecological site: R109XY010MO - Interbedded Sedimentary Upland

Savanna

Hydric soil rating: Yes

Greenton

Percent of map unit: 3 percent

Landform: Hillslopes

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Ecological site: R109XY002MO - Loess Upland Prairie

Hydric soil rating: No

Sharpsburg

Percent of map unit: 3 percent

Landform: Ridges

Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R109XY002MO - Loess Upland Prairie

Hydric soil rating: No

Data Source Information

Soil Survey Area: Jackson County, Missouri Survey Area Data: Version 25, Aug 22, 2023

Jackson County, Missouri

10180—Udarents-Urban land-Sampsel complex, 2 to 5 percent slopes

Map Unit Setting

National map unit symbol: 1n85h Elevation: 600 to 900 feet

Mean annual precipitation: 33 to 43 inches Mean annual air temperature: 50 to 57 degrees F

Frost-free period: 175 to 220 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Udarents and similar soils: 46 percent

Urban land: 39 percent

Sampsel and similar soils: 15 percent

Estimates are based on observations, descriptions, and transects of

the mapunit.

Description of Udarents

Setting

Landform position (two-dimensional): Summit Landform position (three-dimensional): Crest

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Mine spoil or earthy fill

Typical profile

C1 - 0 to 5 inches: silt loam C2 - 5 to 80 inches: silty clay loam

Properties and qualities

Slope: 2 to 5 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat poorly drained

Runoff class: Very high

Capacity of the most limiting layer to transmit water

(Ksat): Moderately low to moderately high (0.14 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water supply, 0 to 60 inches: Moderate (about 9.0

inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: C

Ecological site: R107XB002MO - Deep Loess Upland Prairie Other vegetative classification: Mixed/Transitional (Mixed Native

Vegetation)
Hydric soil rating: No

Description of Urban Land

Setting

Landform: Interfluves

Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Across-slope shape: Convex

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8

Hydric soil rating: No

Description of Sampsel

Setting

Landform: Hillslopes

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Convex

Parent material: Residuum weathered from shale

Typical profile

Ap - 0 to 13 inches: silty clay loam Bt - 13 to 80 inches: silty clay

Properties and qualities

Slope: 2 to 5 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat poorly drained

Runoff class: Very high

Capacity of the most limiting layer to transmit water

(Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 0 to 18 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water supply, 0 to 60 inches: Moderate (about 8.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C/D

Ecological site: R109XY010MO - Interbedded Sedimentary Upland

Savanna

Other vegetative classification: Grass/Prairie (Herbaceous Vegetation)

Hydric soil rating: No

Data Source Information

Soil Survey Area: Jackson County, Missouri Survey Area Data: Version 25, Aug 22, 2023

Watershed Report

The Watershed Report provides a variety of stream, catchment and watershed related information from the National Hydrography Dataset Plus (NHDPlus Version 2) and other sources including the extensive collection of StreamCat landscape layers. A catchment is the local area draining directly to the selected stream segment. A watershed is the drainage area extending from the downstream end of the stream segment (outlet) upstream to the headwaters. The map displays the stream segment and catchment.

For the stream segment	Value
Stream Name	Not Available
Stream Order	1
Stream Level Stream Level	6
Mean annual flow volume (estimate)	1.46 cfs
Mean annual flow velocity (estimate)	0.75 fps
Stream Length	1.68 km
Stream Time of Travel (estimate)	0.08 days

View catchment and watershed data from either the NHDPlus or StreamCat datasets by clicking on the appropriate tab below:

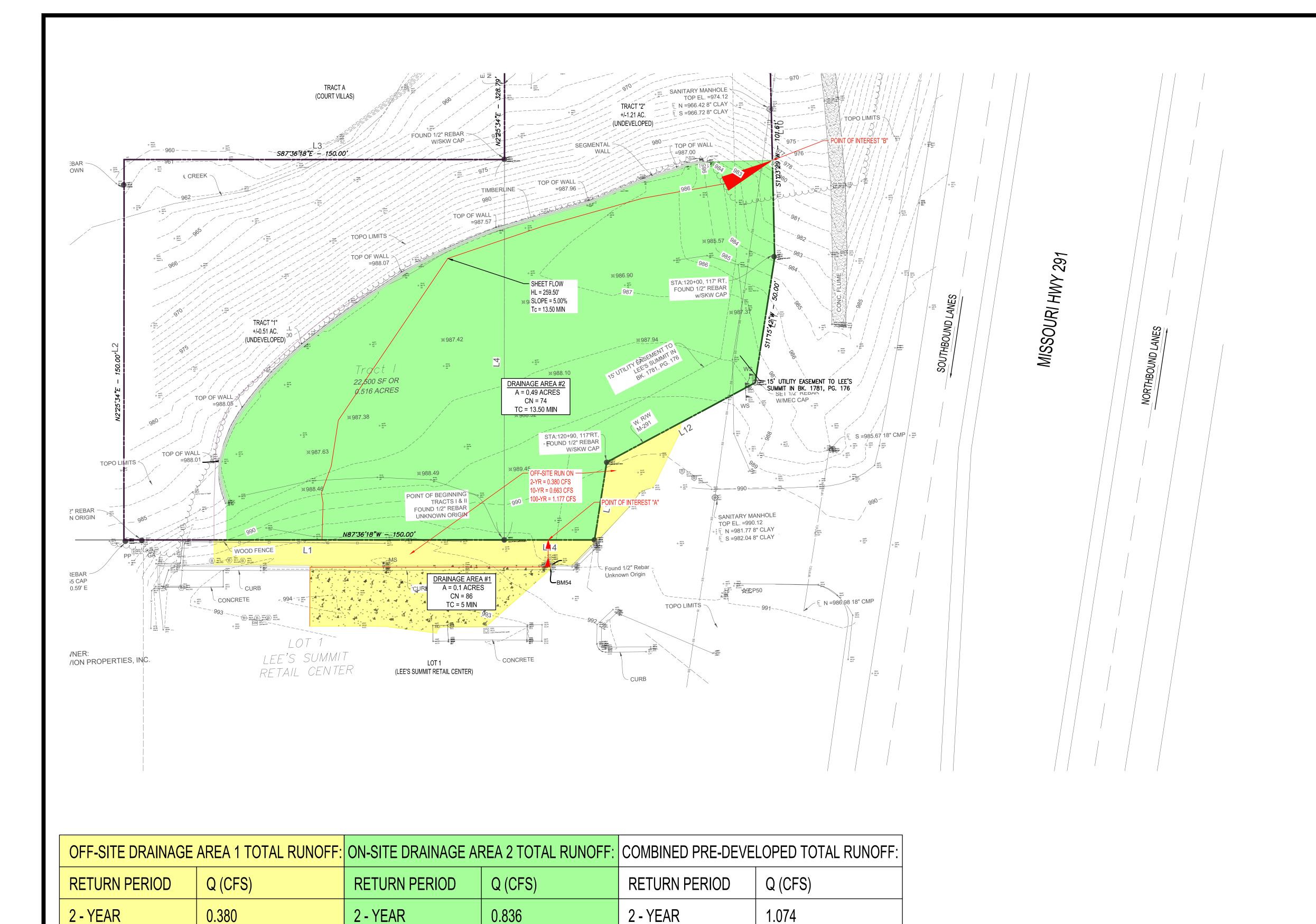
NHDPlus Catchment and Watershed Data

StreamCat Catchment and Watershed Data

For the catchment (local area draining directly to the selected stream segment)

Metrics	Catchment Total
Catchment area measurement	2.16 km ²
Mean annual temperature	12.38 °C
Mean annual precipitation	1,065.53 mm

2011 National Land Cover Dataset	Catchment Total
Open Water (11)	0.46%
Low Intensity Residential (21)	17.25%
Commercial (23)	19.66%
Deciduous Forest (41)	0%
Evergreen Forest (42)	0%
Mixed Forest (43)	0%
Other	62.64%


For the watershed (drainage area extending from the outlet upstream to the headwaters)

Since this is a headwater stream segment, its catchment and watershed are the same.

Download Full Report (.json)

NHDPlus data extracted as of March 2019. More information on the NHDPlus dataset.

LAST UPDATED ON FEBRUARY 15, 2017

10 - YEAR

100 - YEAR

2.213

4.461

1.799

3.719

10 - YEAR

100 - YEAR

0.663

1.177

10 - YEAR

100 - YEAR

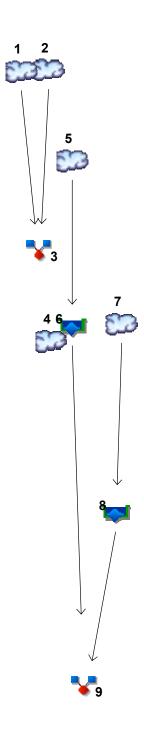
THE PROJECT SITE IS INCLUDED WITHIN THE WEST PRAIRIE LEE WATERSHED AREA AS SHOWN ON THE CITY OF LEE'S SUMMIT WATERSHED & OUTFALL MAP

DRAINAGE PLAN

ISSUED DATE 07/30/2024 ISSUED FOR PERMITTING PROJECT NO. 22-218 22-218 PRE PreDevelopment Plan SHEET PRE

REVISION

Not For Construction PRE-DEVELOPMENT


Hydraflow Table of Contents

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Monday, 12 / 16 / 2024

Watershed Model Schematic	1
Hydrograph Return Period Recap	2
2 - Year	
Summary Report	
Hydrograph No. 1, SOS Buneff, Dro Off Site Area (Dro DA 1)(Duneau Site)	
Hydrograph No. 1, SCS Runoff, Pre Off-Site Area (Pre DA 1)(Bypass Site)	
TR-55 Tc Worksheet	
Hydrograph No. 3, Combine, Combined Pre-Developed Flow	
10 - Year	
Summary Report	8
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Pre Off-Site Area (Pre DA 1)(Bypass Site)	
Hydrograph No. 2, SCS Runoff, Pre On-Site Area (DA 2)	
Hydrograph No. 3, Combine, Combined Pre-Developed Flow	11
100 - Year	40
Summary Report	
Hydrograph Reports	
Hydrograph No. 2, SCS Runoff, Pre On-Site Area (DA 2)	
Hydrograph No. 3, Combine, Combined Pre-Developed Flow	
IDF Report	16

Watershed Model Schematic

Legend

<u>Hyd.</u>	<u>Origin</u>	<u>Description</u>
1	SCS Runoff	Pre Off-Site Area (Pre DA 1)(Bypass Site)
2	SCS Runoff	Pre On-Site Area (DA 2)
3	Combine	Combined Pre-Developed Flow
4	SCS Runoff	Post Off-Site Area (Post DA 1)(Diverted)
5	SCS Runoff	Post On-Site Area (DA2)
6	Reservoir	Underground Detention
7	SCS Runoff	Post On-Site Area (DA 3)
8	Reservoir	Pond
9	Combine	Combined Post-Developed Flow

Project: Lees Summit Hydrographs_2024-12-09.gpw

Monday, 12 / 16 / 2024

Hydrograph Return Period Recap

	Hydrograph	Inflow hyd(s)				Hydrograph						
lo.	type (origin)		1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description	
1	SCS Runoff			0.380			0.663			1.177	Pre Off-Site Area (Pre DA 1)(Bypass	
2	SCS Runoff			0.836			1.799			3.719	Pre On-Site Area (DA 2)	
3	Combine	1, 2		1.074			2.213			4.461	Combined Pre-Developed Flow	
4	SCS Runoff			0.375			0.630			1.088	Post Off-Site Area (Post DA 1)(Divert	
5	SCS Runoff			0.903			1.603			2.885	Post On-Site Area (DA2)	
6	Reservoir	5		0.102			0.128			0.170	Underground Detention	
7	SCS Runoff			1.060			1.824			3.208	Post On-Site Area (DA 3)	
8	Reservoir	7		0.124			0.413			1.080	Pond	
9	Combine	6, 8		0.226			0.534			1.237	Combined Post-Developed Flow	

Proj. file: Lees Summit Hydrographs_2024-12-09.gpw

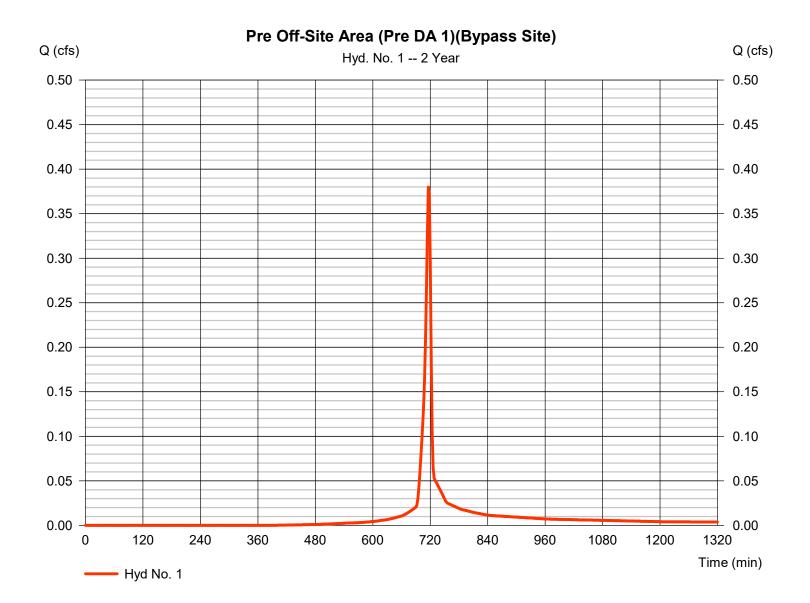
Monday, 12 / 16 / 2024

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.380	2	716	778				Pre Off-Site Area (Pre DA 1)(Bypass
2	SCS Runoff	0.836	2	722	2,405				Pre On-Site Area (DA 2)
3	Combine	1.074	2	720	3,183	1, 2			Combined Pre-Developed Flow
4	SCS Runoff	0.375	2	716	782				Post Off-Site Area (Post DA 1)(Divert
5	SCS Runoff	0.903	2	718	2,077				Post On-Site Area (DA2)
6	Reservoir	0.102	2	746	2,075	5	983.04	877	Underground Detention
7	SCS Runoff	1.060	2	716	2,180				Post On-Site Area (DA 3)
8	Reservoir	0.124	2	736	2,178	7	982.40	878	Pond
9	Combine	0.226	2	740	4,253	6, 8			Combined Post-Developed Flow
Lee	es Summit Hy	/drograph	s 2024-	12-09.gpv	v Return	Period: 2 Y	ear	Monday, 1	2 / 16 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Monday, 12 / 16 / 2024

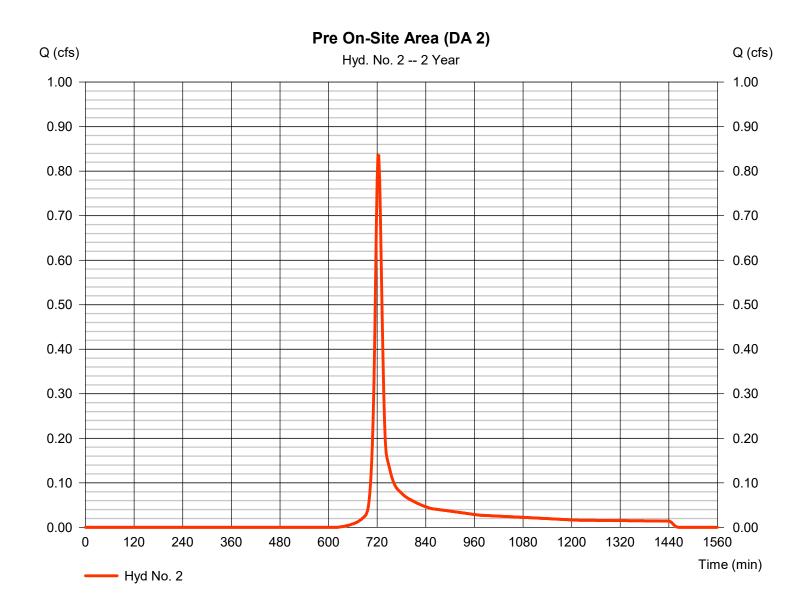
Hyd. No. 1

Pre Off-Site Area (Pre DA 1)(Bypass Site)

Hydrograph type = SCS Runoff Peak discharge = 0.380 cfsStorm frequency = 2 yrsTime to peak = 716 min Time interval = 2 min Hyd. volume = 778 cuft Curve number Drainage area = 0.100 ac= 86* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 5.00 min = User = 3.71 inTotal precip. Distribution = Type II Storm duration Shape factor = 484 = 24 hrs

^{*} Composite (Area/CN) = $[(0.050 \times 98) + (0.050 \times 74)] / 0.100$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Monday, 12 / 16 / 2024

Hyd. No. 2

Pre On-Site Area (DA 2)

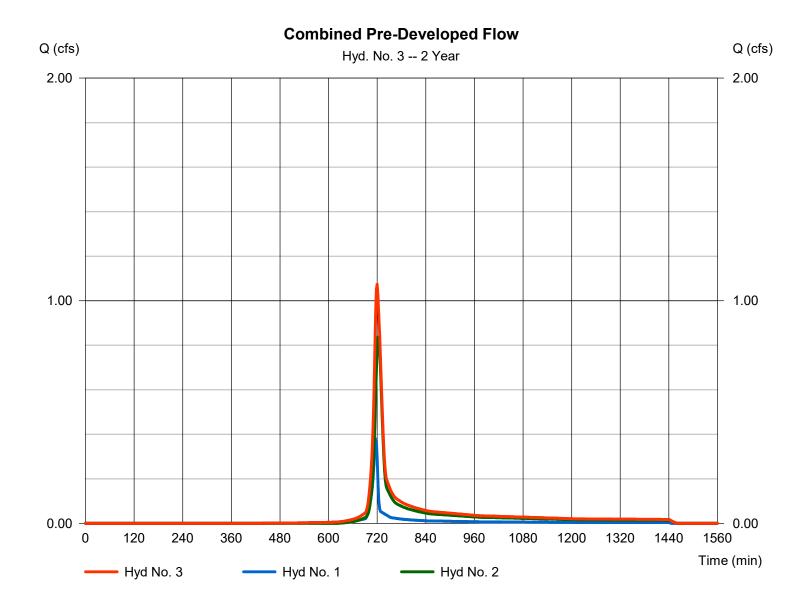
Hydrograph type = SCS Runoff Peak discharge = 0.836 cfsStorm frequency = 2 yrsTime to peak = 722 min Time interval = 2 min Hyd. volume = 2.405 cuftCurve number Drainage area = 0.490 ac= 74* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = TR55 $= 13.53 \, \text{min}$ Total precip. Distribution = Type II = 3.71 inStorm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(0.493 x 74)] / 0.490

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 2Pre On-Site Area (DA 2)

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%) Travel Time (min)	= 0.150 = 259.5 = 3.71 = 5.00 = 13.53	+	0.011 0.0 0.00 0.00	+	0.011 0.0 0.00 0.00	=	13.53
maver rime (min)	- 13.33	•	0.00	•	0.00	_	13.33
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 0.00 = 0.00 = Paved =0.00		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Travel Time (min) Channel Flow	= 0.00	+	0.00	+	0.00	=	0.00
, ,	= 0.00 = 0.00 = 0.00 = 0.015 =0.00	+	0.00 0.00 0.00 0.00 0.015	+	0.00 0.00 0.00 0.00 0.015	=	0.00
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value	= 0.00 = 0.00 = 0.00 = 0.015	+	0.00 0.00 0.00 0.015	+	0.00 0.00 0.00 0.015	=	0.00
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00	+	0.00 0.00 0.00 0.015 0.00	+	0.00 0.00 0.00 0.015	=	0.00


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Monday, 12 / 16 / 2024

Hyd. No. 3

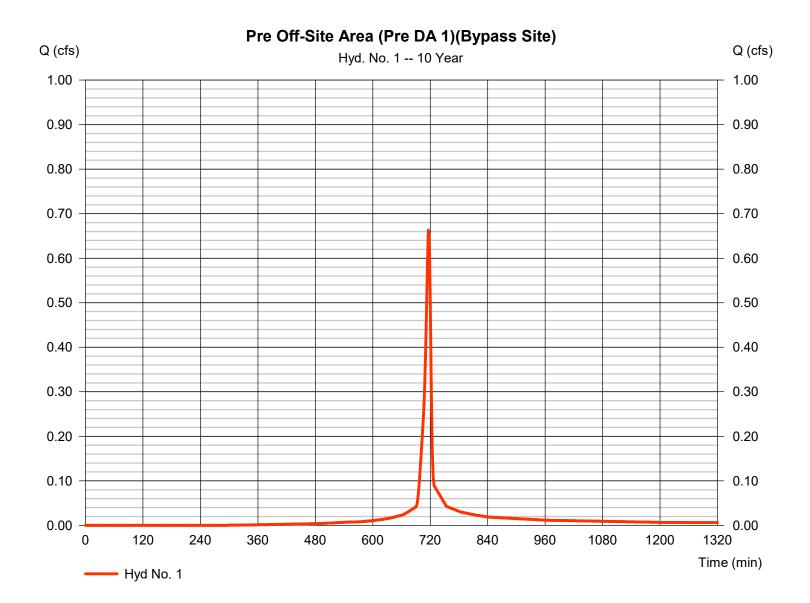
Combined Pre-Developed Flow

Hydrograph type = Combine Peak discharge = 1.074 cfsStorm frequency Time to peak = 2 yrs= 720 min Time interval = 2 min Hyd. volume = 3,183 cuft Inflow hyds. = 1, 2 Contrib. drain. area = 0.590 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Monday, 12 / 16 / 2024

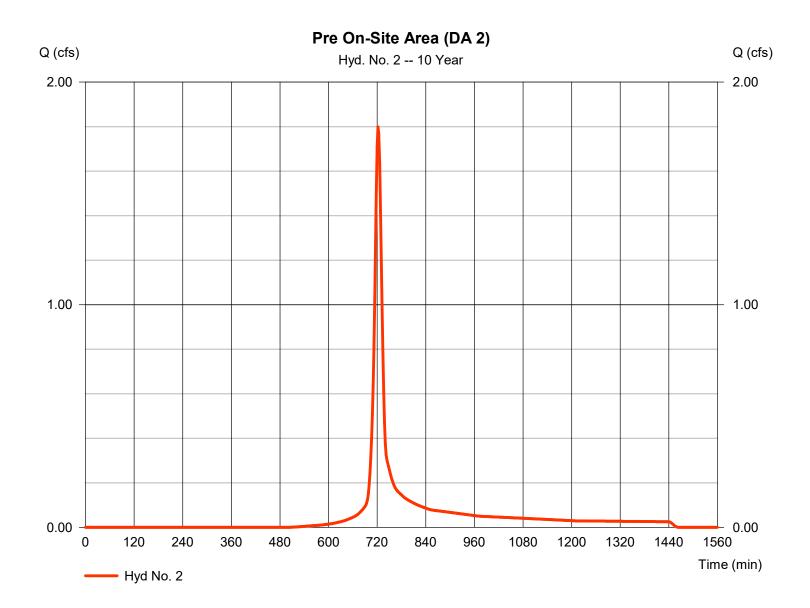
Hyd. No. 1

Pre Off-Site Area (Pre DA 1)(Bypass Site)

Hydrograph type = SCS Runoff Peak discharge = 0.663 cfsStorm frequency = 10 yrsTime to peak = 716 min Time interval = 2 min Hyd. volume = 1.394 cuft Curve number Drainage area = 0.100 ac= 86* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 5.00 min = User Total precip. Distribution = Type II = 5.67 inStorm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(0.050 \times 98) + (0.050 \times 74)] / 0.100$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

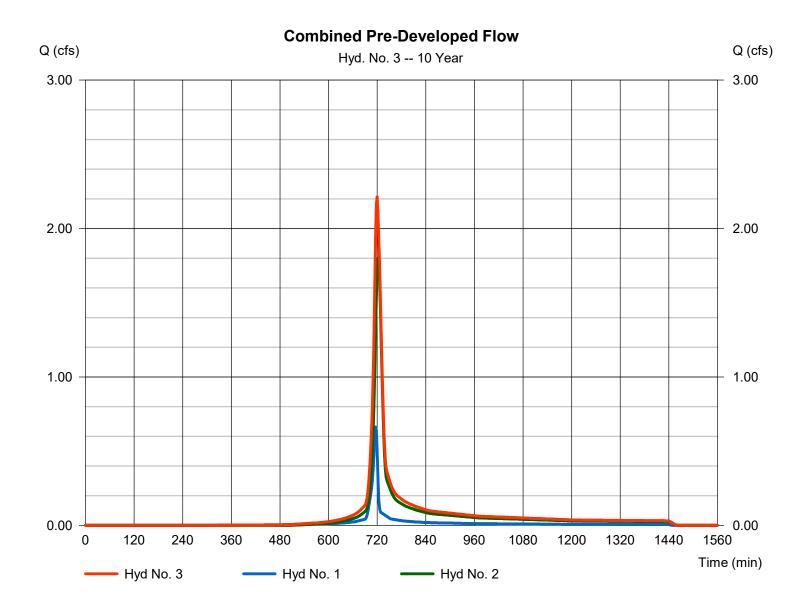

Monday, 12 / 16 / 2024

Hyd. No. 2

Pre On-Site Area (DA 2)

Hydrograph type = SCS Runoff Peak discharge = 1.799 cfsStorm frequency = 10 yrsTime to peak = 722 min Time interval = 2 min Hyd. volume = 5,046 cuft= 74* Curve number Drainage area = 0.490 acBasin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 13.53 min = TR55 Total precip. = 5.67 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = [(0.493 x 74)] / 0.490


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Monday, 12 / 16 / 2024

Hyd. No. 3

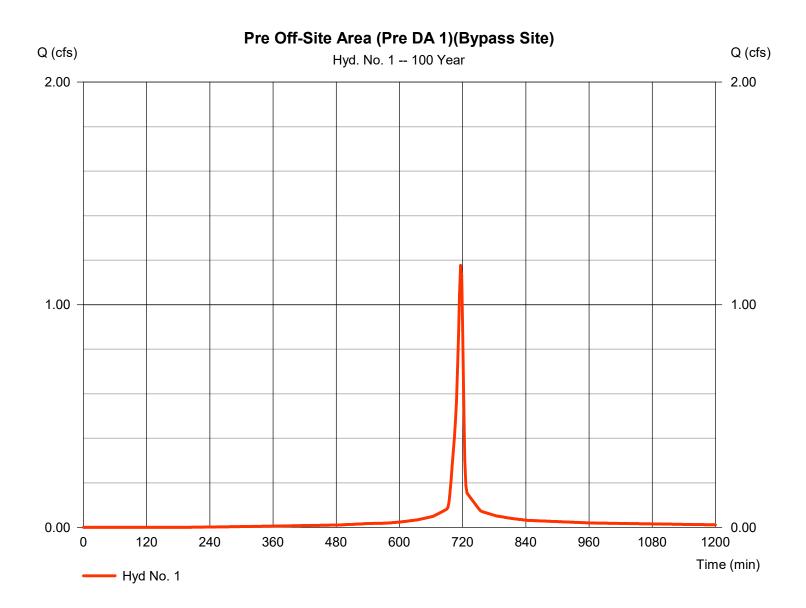
Combined Pre-Developed Flow

Hydrograph type = Combine Peak discharge = 2.213 cfsStorm frequency = 10 yrsTime to peak = 720 min Time interval = 2 min Hyd. volume = 6,440 cuftInflow hyds. = 1, 2 Contrib. drain. area = 0.590 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Monday, 12 / 16 / 2024

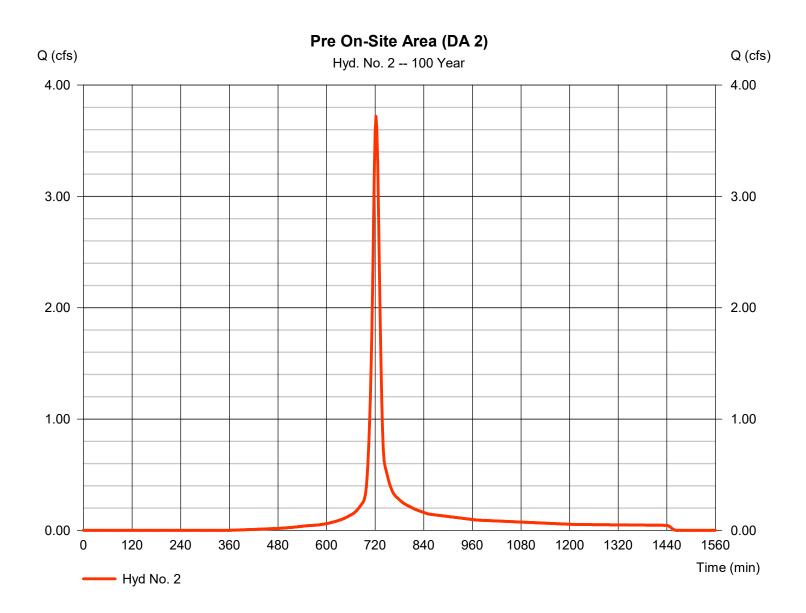
Hyd. No. 1

Pre Off-Site Area (Pre DA 1)(Bypass Site)

Hydrograph type = SCS Runoff Peak discharge = 1.177 cfsStorm frequency = 100 yrsTime to peak = 716 min Time interval = 2 min Hyd. volume = 2,572 cuftCurve number Drainage area = 0.100 ac= 86* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 5.00 min = User Total precip. = 9.26 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = $[(0.050 \times 98) + (0.050 \times 74)] / 0.100$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

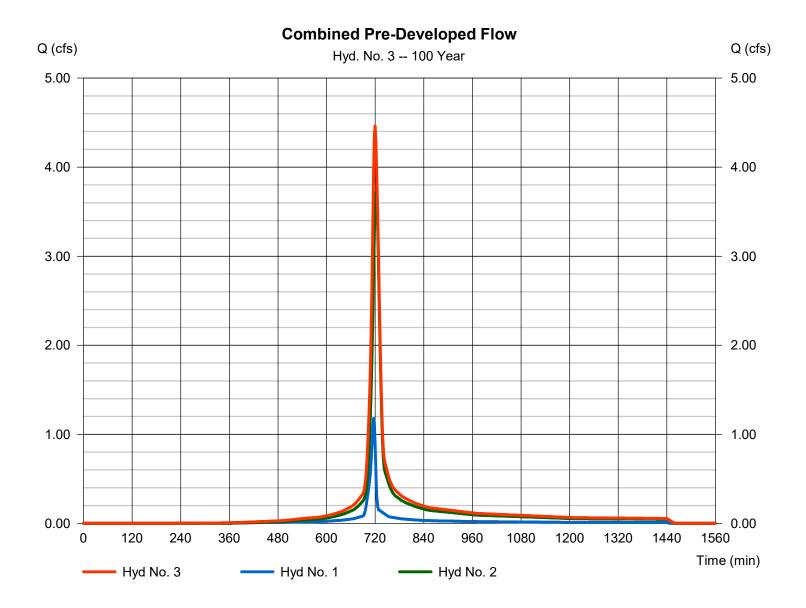

Monday, 12 / 16 / 2024

Hyd. No. 2

Pre On-Site Area (DA 2)

Hydrograph type = SCS Runoff Peak discharge = 3.719 cfsStorm frequency = 100 yrsTime to peak = 722 min Time interval = 2 min Hyd. volume = 10.521 cuft Curve number Drainage area = 0.490 ac= 74* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = TR55 $= 13.53 \, \text{min}$ Total precip. = 9.26 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = [(0.493 x 74)] / 0.490


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Monday, 12 / 16 / 2024

Hyd. No. 3

Combined Pre-Developed Flow

Hydrograph type = Combine Peak discharge = 4.461 cfsStorm frequency = 100 yrsTime to peak = 720 min Time interval = 2 min Hyd. volume = 13,093 cuft Inflow hyds. = 1, 2 Contrib. drain. area = 0.590 ac

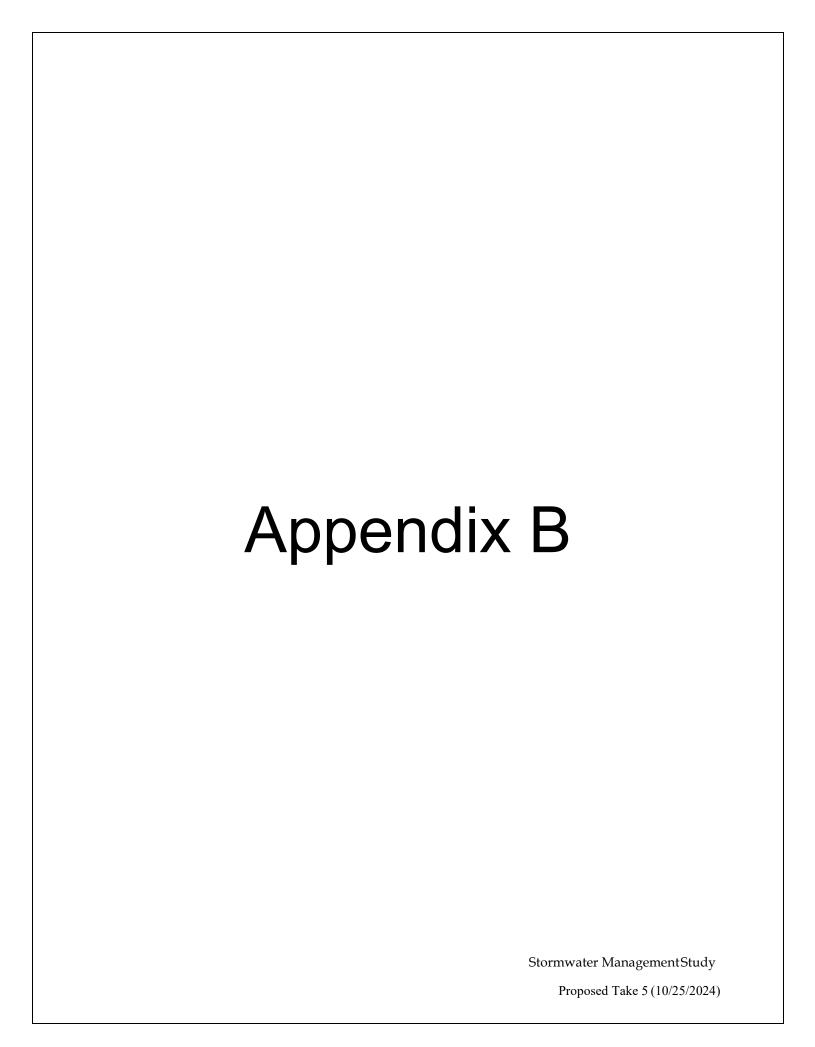
Hydraflow Rainfall Report

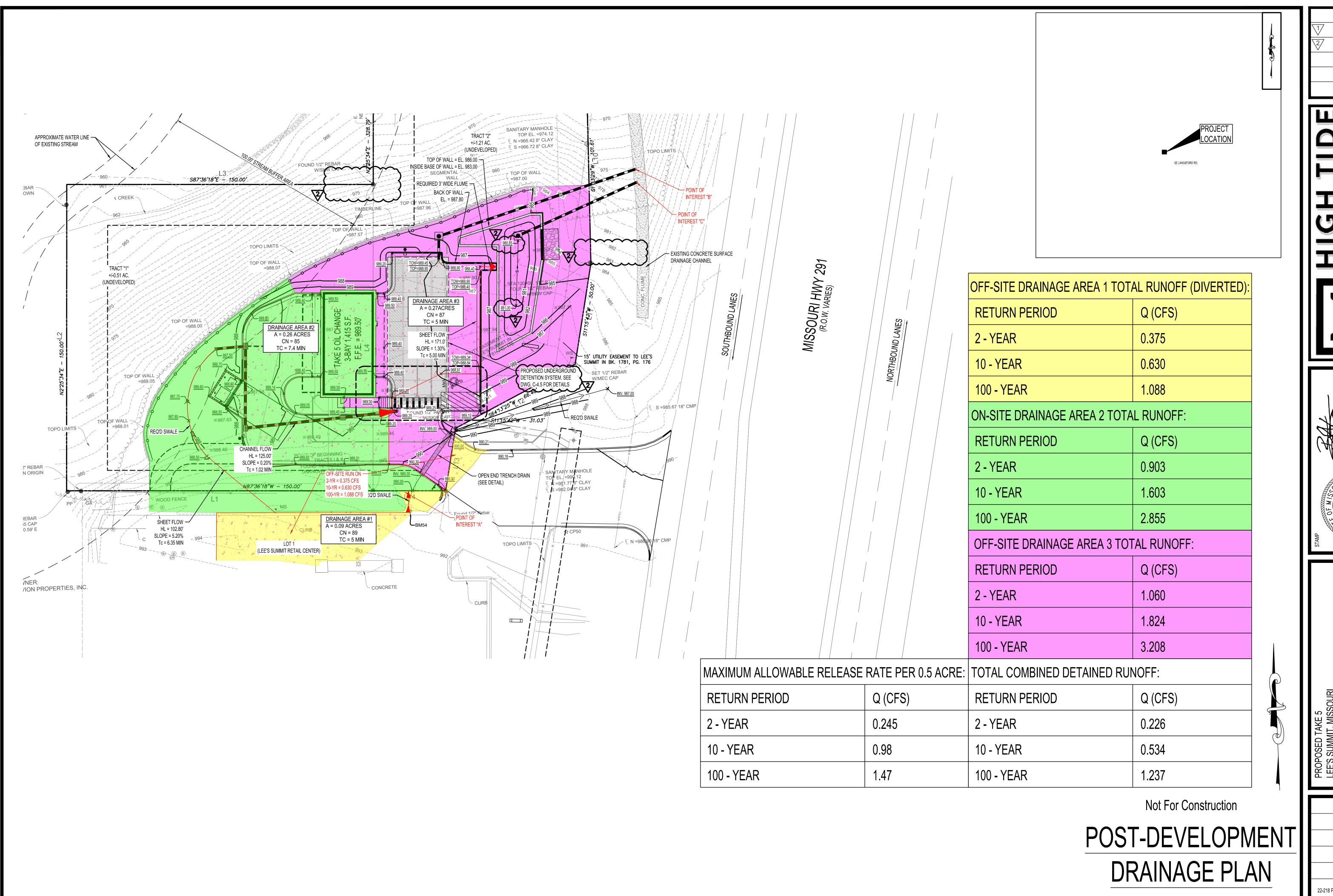
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Monday, 12 / 16 / 2024

Return Period	Intensity-Du	Intensity-Duration-Frequency Equation Coefficients (FHA)									
(Yrs)	В	D	E	(N/A)							
1	0.0000	0.0000	0.0000								
2	80.1702	15.0000	0.9000								
3	0.0000	0.0000	0.0000								
5	0.0000	0.0000	0.0000								
10	183.3473	19.2000	1.0096								
25	197.2999	18.6000	0.9937								
50	235.4014	19.9000	1.0020								
100	252.3450	19.7000	0.9969								

File name: IDF Curve APWA5600.IDF


Intensity = B / (Tc + D)^E


Return		Intensity Values (in/hr)												
Period (Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60		
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
2	5.41	4.42	3.76	3.27	2.90	2.61	2.37	2.18	2.01	1.87	1.75	1.65		
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
10	7.35	6.08	5.18	4.52	4.00	3.59	3.26	2.98	2.74	2.54	2.37	2.22		
25	8.53	7.05	6.00	5.23	4.63	4.16	3.77	3.45	3.18	2.95	2.75	2.58		
50	9.39	7.82	6.70	5.86	5.20	4.68	4.25	3.90	3.60	3.34	3.12	2.92		
100	10.32	8.59	7.35	6.43	5.71	5.14	4.67	4.28	3.95	3.67	3.42	3.21		

Tc = time in minutes. Values may exceed 60.

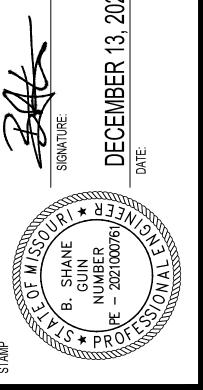
s\2022\22-218 Take 5 - Lee's Summit, MO - Todd Minnis\Design\Drainage\Lee's Summit Precipitation_2024-04-17.pcp

		Rainfall Precipitation Table (in)									
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr			
SCS 24-hour	0.00	3.71	0.00	0.00	5.67	0.00	0.00	9.26			
SCS 6-Hr	0.00	2.66	0.00	0.00	3.98	0.00	0.00	6.38			
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Custom	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			

REVISION BY

10/24/2024
REVISED PER CITY

12/13/2024
REVISED PER CITY


KRG

KRG

LTANTS LLC
MBIA ST, SUITE 200A
STON, LA 70433
ightidela.com

CONSULTANTS
434 N. COLUMBIA ST, SUI
COVINGTON, LA 704

ED TAKE 5 MMIT, MISSOURI	
EN ASSETS, LLC	
RL STREET	
. CO 80302	

LEE'S SUN	FOR DRIVI 2101 PEAF BOULDER						
DRAWN KRG							
CHECKED RCG							
ISSUED DATE 07/30/2024							
	ISSUED FOR PERMITTING						
	·						

CHECKED
RCG

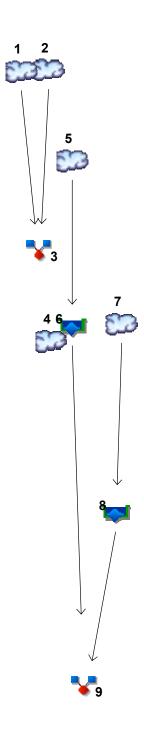
ISSUED DATE
07/30/2024

ISSUED FOR
PERMITTING

PROJECT NO.
22-218

FILE
22-218 Post-Developed Plan_2024-12-14

C-2


Hydraflow Table of Contents

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Monday, 12 / 16 / 2024

Watershed Model Schematic	1
Hydrograph Return Period Recap	2
2 - Year	
Summary Report	
Hydrograph Reports	
Hydrograph No. 4, SCS Runoff, Post Off-Site Area (Post DA 1)(Diverted)	4
Hydrograph No. 5, SCS Runoff, Post On-Site Area (DA2)	
TR-55 Tc Worksheet	
Hydrograph No. 6, Reservoir, Underground Detention	
Pond Report - Underground Detention	
Hydrograph No. 7, SCS Runoff, Post On-Site Area (DA 3)	
Hydrograph No. 8, Reservoir, Pond	
Pond Report - Pond	
Hydrograph No. 9, Combine, Combined Post-Developed Flow	14
10 - Year	
Summary Report	15
Hydrograph Reports	
Hydrograph No. 4, SCS Runoff, Post Off-Site Area (Post DA 1)(Diverted)	
Hydrograph No. 5, SCS Runoff, Post On-Site Area (DA2)	
Hydrograph No. 6, Reservoir, Underground Detention	
Hydrograph No. 7, SCS Runoff, Post On-Site Area (DA 3)	19
Hydrograph No. 8, Reservoir, Pond	
Hydrograph No. 9, Combine, Combined Post-Developed Flow	21
100 - Year	
Summary Report	22
Hydrograph Reports	
Hydrograph No. 4, SCS Runoff, Post Off-Site Area (Post DA 1)(Diverted)	
Hydrograph No. 5, SCS Runoff, Post On-Site Area (DA2)	24
Hydrograph No. 6, Reservoir, Underground Detention	
Hydrograph No. 7, SCS Runoff, Post On-Site Area (DA 3)	26
Hydrograph No. 8, Reservoir, Pond	
Hydrograph No. 9, Combine, Combined Post-Developed Flow	28
IDF Report	29

Watershed Model Schematic

Legend

<u>Hyd.</u>	<u>Origin</u>	<u>Description</u>
1	SCS Runoff	Pre Off-Site Area (Pre DA 1)(Bypass Site)
2	SCS Runoff	Pre On-Site Area (DA 2)
3	Combine	Combined Pre-Developed Flow
4	SCS Runoff	Post Off-Site Area (Post DA 1)(Diverted)
5	SCS Runoff	Post On-Site Area (DA2)
6	Reservoir	Underground Detention
7	SCS Runoff	Post On-Site Area (DA 3)
8	Reservoir	Pond
9	Combine	Combined Post-Developed Flow

Project: Lees Summit Hydrographs_2024-12-09.gpw

Monday, 12 / 16 / 2024

Hydrograph Return Period Recap

ScS Runoff 1.2 0.380 0.663 1.177 Pro Off-Site Area (Pa DA 1)(Bypass ScS Runoff 0.380 0.663 1.799 3.719 Pro On-Site Area (DA 2) 4.461 Combined Pro-Developed Flow 0.375 0.630 0.630 1.088 Post Off-Site Area (Pa DA 1)(Divert ScS Runoff 0.903 0.102 0.128 0.102 0.128 0.170 Underground Detention ScS Runoff 1.060 1.824 3.208 Post On-Site Area (DA 3) 2.885 Reservoir 7 0.124 0.413 1.820 Pond 2.885 Post On-Site Area (DA 3) 2.885 Post On-Site Area (DA 3) 2.885 .		Hydrograph	Inflow				Hydrograph							
2 SCS Runoff 0.836 1.799 3.719 Pre On-Site Area (DA 2) 3 Combine 1, 2 1.074 2.213 4.461 Combined Pre-Developed Flow 4 SCS Runoff 0.375 0.630 1.088 Post Off-Site Area (Post DA 1)(Divert 5 SCS Runoff 0.903 1.603 2.885 Post On-Site Area (DA2) 6 Reservoir 5 0.102 0.128 0.170 Underground Detention 7 SCS Runoff 1.060 1.824 3.208 Post On-Site Area (DA 3) 8 Reservoir 7	lo.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description		
3 Combine 1, 2 1.074 2.213 4.461 Combined Pre-Developed Flow 4 SCS Runoff 0.375 0.630 1.088 Post Off-Site Area (Post DA 1)(Divert 5 SCS Runoff 0.903 1.603 2.885 Post On-Site Area (DA2) 6 Reservoir 5 0.102 0.128 0.170 Underground Detention 7 SCS Runoff 1.060 1.824 3.208 Post On-Site Area (DA 3) 8 Reservoir 7 0.124	1	SCS Runoff			0.380			0.663			1.177	Pre Off-Site Area (Pre DA 1)(Bypass		
4 SCS Runoff 0.375 0.630 1.088 Post Off-Site Area (Post DA 1)(Divert 5 SCS Runoff 0.903 1.603 2.885 Post On-Site Area (DA2) 6 Reservoir 5 0.102 0.128 0.170 Underground Detention 7 SCS Runoff 1.060 1.824 3.208 Post On-Site Area (DA 3) 8 Reservoir 7 0.124 0.413 1.080 Pond	2	SCS Runoff			0.836			1.799			3.719	Pre On-Site Area (DA 2)		
5 SCS Runoff 0.903 1.603 2.885 Post On-Site Area (DA2) 6 Reservoir 5 0.102 0.128 0.170 Underground Detention 7 SCS Runoff 1.060 1.824 3.208 Post On-Site Area (DA 3) 8 Reservoir 7 0.124 0.413 1.080 Pond	3	Combine	1, 2		1.074			2.213			4.461	Combined Pre-Developed Flow		
6 Reservoir 5 0.102 0.128 0.170 Underground Detention 7 SCS Runoff 1.060 1.824 3.208 Post On-Site Area (DA 3) 8 Reservoir 7 0.124 0.413 1.080 Pond	4	SCS Runoff			0.375			0.630			1.088	Post Off-Site Area (Post DA 1)(Divert		
7 SCS Runoff 1.060 1.824 3.208 Post On-Site Area (DA 3) 8 Reservoir 7 0.124 0.413 1.080 Pond	5	SCS Runoff			0.903			1.603			2.885	Post On-Site Area (DA2)		
8 Reservoir 7 0.124 0.413 1.080 Pond	6	Reservoir	5		0.102			0.128			0.170	Underground Detention		
	7	SCS Runoff			1.060			1.824			3.208	Post On-Site Area (DA 3)		
9 Combine 6,8 0.226 0.534 1.237 Combined Post-Developed Flow	8	Reservoir	7		0.124			0.413			1.080	Pond		
	9	Combine	6, 8		0.226			0.534			1.237	Combined Post-Developed Flow		

Proj. file: Lees Summit Hydrographs_2024-12-09.gpw

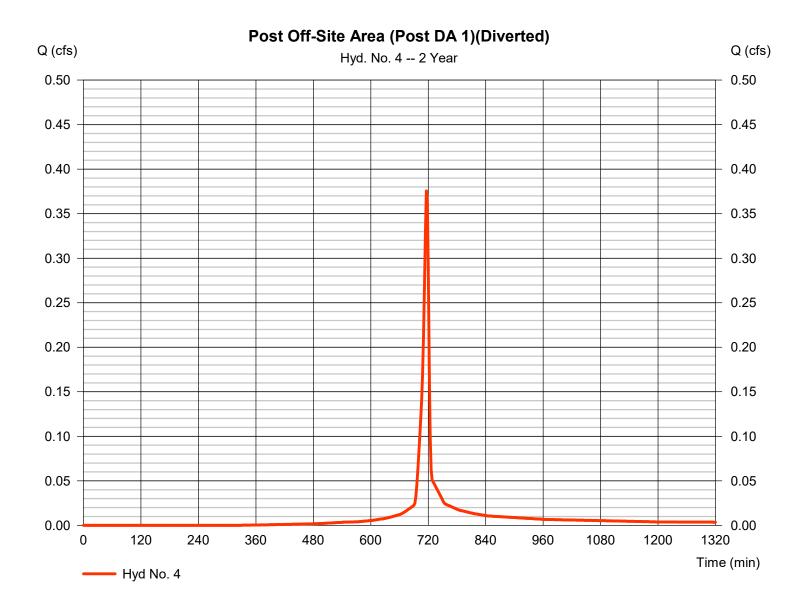
Monday, 12 / 16 / 2024

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.380	2	716	778				Pre Off-Site Area (Pre DA 1)(Bypass
2	SCS Runoff	0.836	2	722	2,405				Pre On-Site Area (DA 2)
3	Combine	1.074	2	720	3,183	1, 2			Combined Pre-Developed Flow
4	SCS Runoff	0.375	2	716	782				Post Off-Site Area (Post DA 1)(Divert
5	SCS Runoff	0.903	2	718	2,077				Post On-Site Area (DA2)
6	Reservoir	0.102	2	746	2,075	5	983.04	877	Underground Detention
7	SCS Runoff	1.060	2	716	2,180				Post On-Site Area (DA 3)
8	Reservoir	0.124	2	736	2,178	7	982.40	878	Pond
9	Combine	0.226	2	740	4,253	6, 8			Combined Post-Developed Flow
Lee	es Summit Hy	/drograph	s_2024-1	 12-09.gpv	v Return I	Period: 2 Y	ear	Monday, 1	2 / 16 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Monday, 12 / 16 / 2024

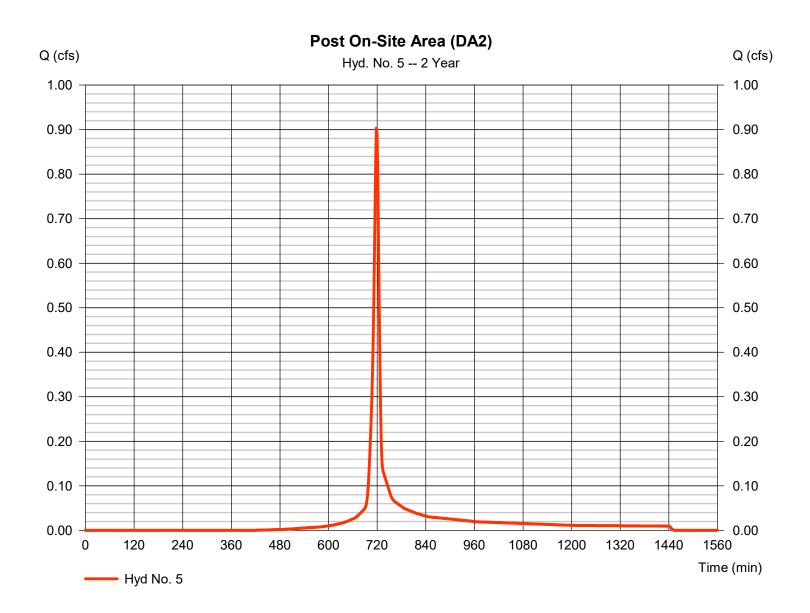
Hyd. No. 4

Post Off-Site Area (Post DA 1)(Diverted)

Hydrograph type = SCS Runoff Peak discharge = 0.375 cfsStorm frequency = 2 yrsTime to peak = 716 min Time interval = 2 min Hyd. volume = 782 cuft Curve number Drainage area = 0.090 ac= 89* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 5.00 min = User Total precip. = 3.71 inDistribution = Type II Storm duration Shape factor = 484 = 24 hrs

^{*} Composite (Area/CN) = $[(0.052 \times 98) + (0.033 \times 74)] / 0.090$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Monday, 12 / 16 / 2024

Hyd. No. 5

Post On-Site Area (DA2)

Hydrograph type = SCS Runoff Peak discharge = 0.903 cfsStorm frequency = 2 yrsTime to peak = 718 min Time interval = 2 min Hyd. volume = 2.077 cuftCurve number Drainage area = 0.260 ac= 85* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 7.37 \, \text{min}$ = TR55 Total precip. Distribution = 3.71 in= Type II Shape factor Storm duration = 24 hrs = 484

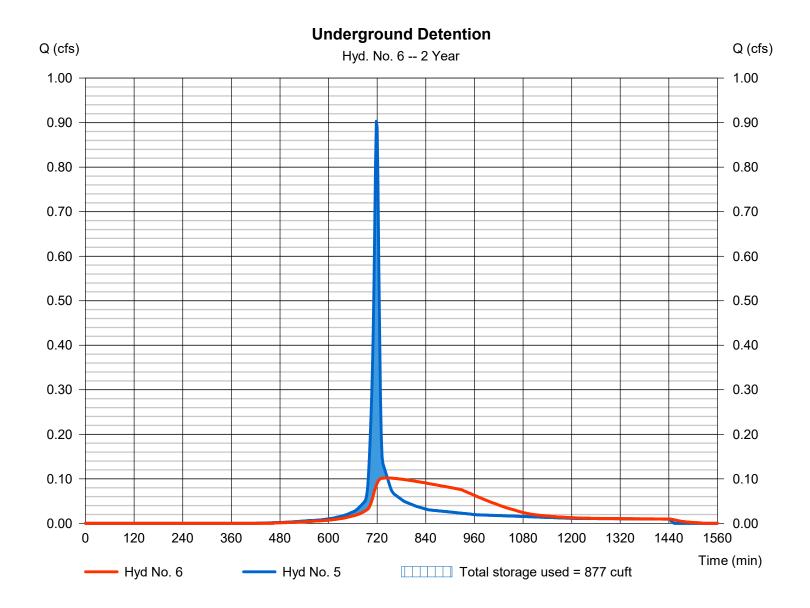
^{*} Composite (Area/CN) = [(0.120 x 98) + (0.140 x 74)] / 0.260

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 5Post On-Site Area (DA2)

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>				
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 102.8 = 3.71 = 5.20		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00						
Travel Time (min)	= 6.35	+	0.00	+	0.00	=	6.35				
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 0.00 = 0.00 = Paved =0.00		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00						
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00				
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 1.23 = 3.93 = 0.20 = 0.015 =2.04		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015						
Flow length (ft)	({0})125.0		0.0		0.0						
Travel Time (min)	= 1.02	+	0.00	+	0.00	=	1.02				
Total Travel Time, Tc											

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Monday, 12 / 16 / 2024

Hyd. No. 6

Underground Detention

Hydrograph type Peak discharge = 0.102 cfs= Reservoir Storm frequency = 2 yrsTime to peak = 746 min Time interval = 2 min Hyd. volume = 2,075 cuft= 5 - Post On-Site Area (DA2) Inflow hyd. No. Max. Elevation = 983.04 ft= Underground Detention Reservoir name Max. Storage = 877 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Monday, 12 / 16 / 2024

Pond No. 2 - Underground Detention

Pond Data

UG Chambers -Invert elev. = 982.80 ft, Rise x Span = 3.50 x 5.60 ft, Barrel Len = 7.12 ft, No. Barrels = 38, Slope = 0.00%, Headers = No **Encasement** -Invert elev. = 982.05 ft, Width = 7.17 ft, Height = 5.50 ft, Voids = 30.00%

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	982.05	n/a	0	0
0.55	982.60	n/a	320	320
1.10	983.15	n/a	691	1,011
1.65	983.70	n/a	894	1,905
2.20	984.25	n/a	869	2,774
2.75	984.80	n/a	827	3,600
3.30	985.35	n/a	762	4,363
3.85	985.90	n/a	662	5,024
4.40	986.45	n/a	453	5,477
4.95	987.00	n/a	320	5,797
5.50	987.55	n/a	320	6,118

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 12.00	2.00	0.00	0.00	Crest Len (ft)	Inactive	0.00	0.00	0.00
Span (in)	= 12.00	2.00	0.00	0.00	Crest El. (ft)	= 984.58	0.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 981.95	982.00	0.00	0.00	Weir Type	= Rect			
Length (ft)	= 124.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 5.63	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	CIv A cfs	Clv B cfs	CIv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	982.05	0.00	0.00			0.00						0.000
0.05	32	982.10	0.04 ic	0.02 ic			0.00						0.016
0.11	64	982.16	0.04 ic	0.03 ic			0.00						0.029
0.16	96	982.21	0.04 ic	0.04 ic			0.00						0.038
0.22	128	982.27	0.05 ic	0.05 ic			0.00						0.045
0.28	160	982.32	0.05 ic	0.05 ic			0.00						0.052
0.33	192	982.38	0.06 ic	0.06 ic			0.00						0.057
0.39	224	982.43	0.06 ic	0.06 ic			0.00						0.062
0.44	256	982.49	0.07 ic	0.07 ic			0.00						0.067
0.50	288	982.54	0.07 ic	0.07 ic			0.00						0.071
0.55	320	982.60	0.08 ic	0.08 ic			0.00						0.075
0.61	389	982.65	0.08 ic	0.08 ic			0.00						0.079
0.66	458	982.71	0.08 ic	0.08 ic			0.00						0.083
0.72	527	982.76	0.09 ic	0.09 ic			0.00						0.086
0.77	596	982.82	0.09 ic	0.09 ic			0.00						0.090
0.83	666	982.87	0.09 ic	0.09 ic			0.00						0.093
0.88	735	982.93	0.10 ic	0.10 ic			0.00						0.096
0.94	804	982.98	0.10 ic	0.10 ic			0.00						0.099
0.99	873	983.04	0.11 ic	0.10 ic			0.00						0.102
1.05	942	983.09	0.11 ic	0.10 ic			0.00						0.105
1.10	1,011	983.15	0.11 ic	0.11 ic			0.00						0.107
1.15	1,100	983.20	0.11 ic	0.11 ic			0.00						0.110
1.21	1,190	983.26	0.11 ic	0.11 ic			0.00						0.113
1.26	1,279	983.31	0.12 ic	0.12 ic			0.00						0.115
1.32	1,368	983.37	0.12 ic	0.12 ic			0.00						0.118
1.37	1,458	983.42	0.12 ic	0.12 ic			0.00						0.120
1.43	1,547	983.48	0.12 ic	0.12 ic			0.00						0.123
1.48	1,636	983.53	0.13 ic	0.12 ic			0.00						0.125
1.54	1,726	983.59	0.13 ic	0.13 ic			0.00						0.127
1.59	1,815	983.64	0.13 ic	0.13 ic			0.00						0.130
1.65	1,905	983.70	0.13 ic	0.13 ic			0.00						0.132
1.70	1,991	983.76	0.14 ic	0.13 ic			0.00						0.134

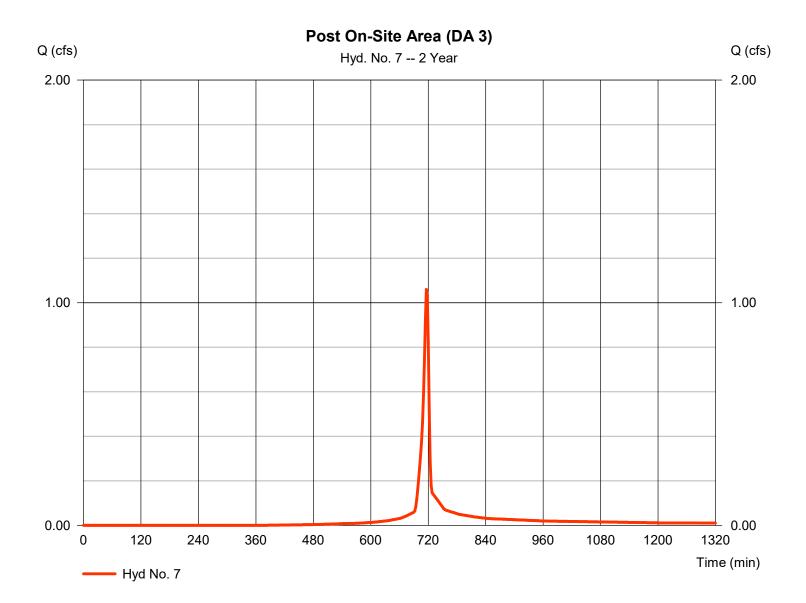
Continues on next page...

Underground Detention Stage / Storage / Discharge Table

Glage /	otorage /	Discharge	I able										
Stage ft	Storage cuft	Elevation ft	Clv A cfs	CIv B cfs	CIv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
1.76	2,078	983.81	0.14 ic	0.14 ic			0.00						0.136
1.82	2,165	983.86	0.14 ic	0.14 ic			0.00						0.139
1.87	2,252	983.92	0.14 ic	0.14 ic			0.00						0.141
1.93	2,339	983.97	0.15 ic	0.14 ic			0.00						0.143
1.98	2,426	984.03	0.15 ic	0.14 ic			0.00						0.145
2.04	2,513	984.08	0.15 ic	0.15 ic			0.00						0.147
2.09	2,600	984.14	0.15 ic	0.15 ic			0.00						0.149
2.15	2,687	984.19	0.16 ic	0.15 ic			0.00						0.151
2.20	2,774	984.25	0.16 ic	0.15 ic			0.00						0.153
2.26	2,856	984.30	0.16 ic	0.15 ic			0.00						0.155
2.31	2,939	984.36	0.16 ic	0.16 ic			0.00						0.157
2.37	3,022	984.41	0.16 ic	0.16 ic			0.00						0.158
2.42	3,104	984.47 984.52	0.17 ic 0.17 ic	0.16 ic 0.16 ic			0.00						0.160 0.162
2.48 2.53	3,187 3,270	984.52 984.58	0.17 ic 0.17 ic	0.16 ic			0.00 0.00						0.162
2.59	3,352	984.63	0.17 ic 0.17 ic	0.16 ic 0.17 ic			0.00						0.164
2.64	3,435	984.69	0.17 ic	0.17 ic			0.00						0.168
2.70	3,518	984.74	0.17 ic	0.17 ic			0.00						0.169
2.75	3,600	984.80	0.18 ic	0.17 ic			0.00						0.171
2.81	3,677	984.85	0.18 ic	0.17 ic			0.00						0.173
2.86	3,753	984.91	0.18 ic	0.17 ic			0.00						0.174
2.92	3,829	984.96	0.18 ic	0.18 ic			0.00						0.176
2.97	3,905	985.02	0.18 ic	0.18 ic			0.00						0.178
3.03	3,982	985.07	0.18 ic	0.18 ic			0.00						0.180
3.08	4,058	985.13	0.19 ic	0.18 ic			0.00						0.181
3.14	4,134	985.18	0.19 ic	0.18 ic			0.00						0.183
3.19	4,210	985.24	0.19 ic	0.18 ic			0.00						0.184
3.25	4,286	985.29	0.19 ic	0.19 ic			0.00						0.186
3.30	4,363	985.35	0.19 ic	0.19 ic			0.00						0.188
3.36	4,429	985.40	0.19 ic	0.19 ic			0.00						0.189
3.41 3.47	4,495 4,561	985.46 985.51	0.19 ic 0.20 ic	0.19 ic 0.19 ic			0.00						0.191 0.192
3.52	4,627	985.57	0.20 ic	0.19 ic			0.00						0.192
3.58	4,693	985.62	0.20 ic	0.19 ic			0.00						0.195
3.63	4,760	985.68	0.20 ic	0.20 ic			0.00						0.197
3.69	4,826	985.73	0.20 ic	0.20 ic			0.00						0.199
3.74	4,892	985.79	0.20 ic	0.20 ic			0.00						0.200
3.80	4,958	985.84	0.20 ic	0.20 ic			0.00						0.201
3.85	5,024	985.90	0.21 ic	0.20 ic			0.00						0.203
3.90	5,069	985.95	0.21 ic	0.20 ic			0.00						0.204
3.96	5,115	986.01	0.21 ic	0.21 ic			0.00						0.206
4.01	5,160	986.06	0.21 ic	0.21 ic			0.00						0.207
4.07	5,205	986.12	0.21 ic	0.21 ic			0.00						0.209
4.12 4.18	5,251 5,296	986.17 986.23	0.21 ic 0.21 ic	0.21 ic 0.21 ic			0.00						0.210 0.212
4.18	5,290	986.28	0.21 ic	0.21 ic			0.00						0.212
4.23	5,387	986.34	0.21 ic	0.21 ic			0.00						0.213
4.34	5,432	986.39	0.22 ic	0.22 ic			0.00						0.216
4.40	5,477	986.45	0.22 ic	0.22 ic			0.00						0.217
4.45	5,509	986.51	0.22 ic	0.22 ic			0.00						0.219
4.51	5,541	986.56	0.22 ic	0.22 ic			0.00						0.220
4.56	5,573	986.61	0.22 ic	0.22 ic			0.00						0.221
4.62	5,605	986.67	0.22 ic	0.22 ic			0.00						0.223
4.67	5,637	986.72	0.22 ic	0.22 ic			0.00						0.224
4.73	5,669	986.78	0.23 ic	0.23 ic			0.00						0.225
4.78	5,701	986.83	0.23 ic	0.23 ic			0.00						0.227
4.84	5,733	986.89	0.24 ic	0.23 ic			0.00						0.228
4.89 4.95	5,765 5,797	986.94 987.00	0.24 ic 0.24 ic	0.23 ic 0.23 ic			0.00						0.229 0.231
5.01	5,829	987.05	0.24 ic	0.23 ic			0.00						0.231
5.06	5,861	987.05 987.11	0.24 ic 0.24 ic	0.23 ic			0.00						0.232
5.11	5,893	987.16	0.24 ic	0.23 ic			0.00						0.234
5.17	5,925	987.22	0.24 ic	0.24 ic			0.00						0.236
5.22	5,957	987.27	0.24 ic	0.24 ic			0.00						0.237
5.28	5,989	987.33	0.24 ic	0.24 ic			0.00						0.238
5.33	6,022	987.38	0.25 ic	0.24 ic			0.00						0.239
5.39	6,054	987.44	0.25 ic	0.24 ic			0.00						0.241
5.44	6,086	987.49	0.25 ic	0.24 ic			0.00						0.242
5.50	6,118	987.55	0.25 ic	0.24 ic			0.00						0.243

...End

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Monday, 12 / 16 / 2024

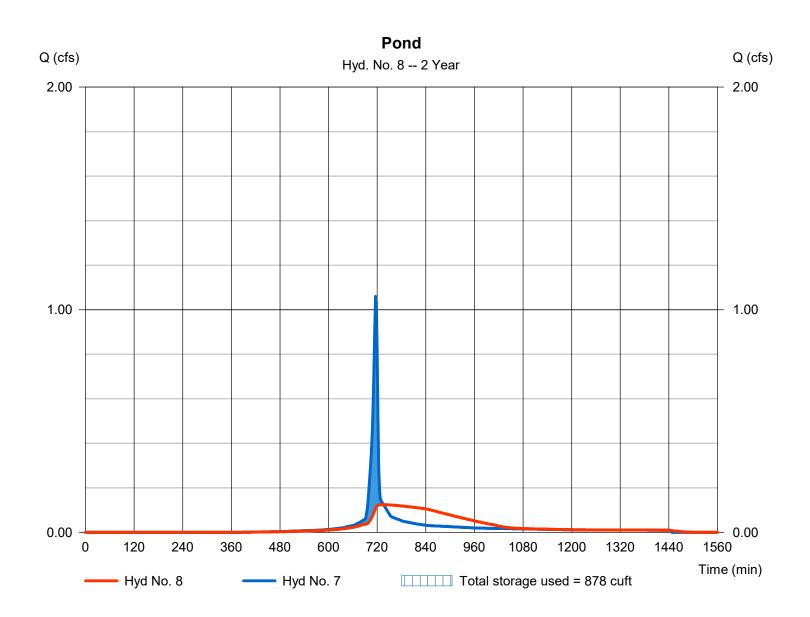
Hyd. No. 7

Post On-Site Area (DA 3)

Hydrograph type = SCS Runoff Peak discharge = 1.060 cfsStorm frequency = 2 yrsTime to peak = 716 min Time interval = 2 min Hyd. volume = 2,180 cuftCurve number Drainage area = 0.270 ac= 87* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 5.00 min = User Total precip. = 3.71 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(0.150 x 98) + (0.120 x 74)] / 0.270

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Monday, 12 / 16 / 2024

Hyd. No. 8

Pond

= Reservoir Hydrograph type Peak discharge = 0.124 cfsStorm frequency = 2 yrsTime to peak = 736 min Time interval = 2 min Hyd. volume = 2,178 cuftInflow hyd. No. Max. Elevation = 7 - Post On-Site Area (DA 3) = 982.40 ft= 878 cuft Reservoir name = Pond Max. Storage

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Monday, 12 / 16 / 2024

Pond No. 3 - Pond

Pond Data

Multi-Stage

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 981.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	981.00	286	0	0
1.00	982.00	694	490	490
2.00	983.00	1,261	978	1,468
3.00	984.00	1,261	1,261	2,729
4.00	985.00	1,261	1,261	3,990
5.00	986.00	1,261	1,261	5,251

Culvert / Orifice Structures Weir Structures [B] [C] [PrfRsr] [A] [B] [C] [D] [A] = 12.00 2.00 6.00 = 0.00 0.00 0.00 0.00 Rise (in) 0.00 Crest Len (ft) Span (in) = 12.00 2.00 6.00 0.00 Crest El. (ft) = 0.000.00 0.00 0.00 No. Barrels 0 Weir Coeff. = 3.333.33 3.33 3.33 = 1 1 Invert El. (ft) = 980.60 980.65 982.75 0.00 Weir Type = ---= 64.000.00 0.00 0.00 Multi-Stage No No Length (ft) = No No Slope (%) = 7.800.00 0.00 n/a N-Value = .013 .013 .013 n/a = 0.600.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Wet area) Orifice Coeff.

TW Elev. (ft)

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

= 0.00

Stage / Storage / Discharge Table

= n/a

Yes

Yes

No

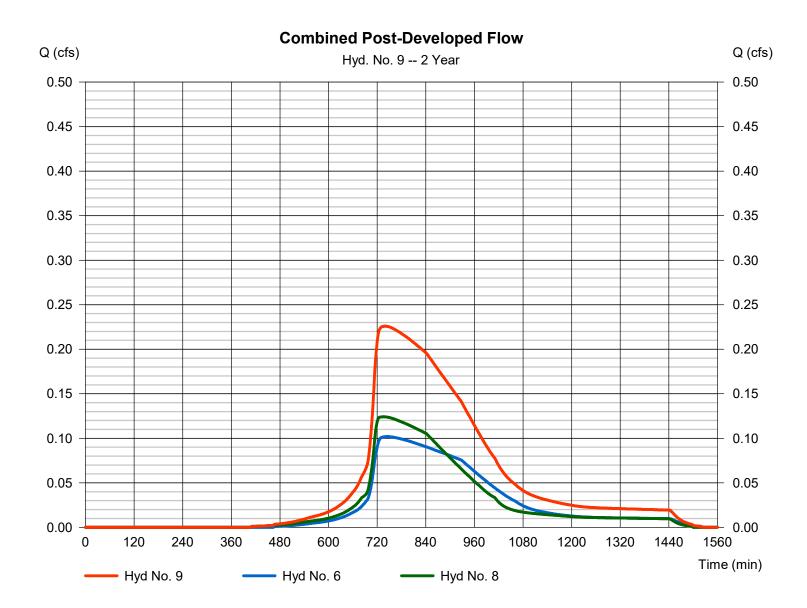
Stage ft	Storage cuft	Elevation ft	CIv A cfs	CIv B cfs	CIv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	981.00	0.00	0.00	0.00								0.000
0.10	49	981.10	0.65 ic	0.03 ic	0.00								0.033
0.20	98	981.20	0.65 ic	0.05 ic	0.00								0.047
0.30	147	981.30	0.65 ic	0.06 ic	0.00								0.058
0.40	196	981.40	0.65 ic	0.07 ic	0.00								0.066
0.50	245	981.50	0.65 ic	0.07 ic	0.00								0.074
0.60	294	981.60	0.65 ic	0.08 ic	0.00								0.081
0.70	343	981.70	0.65 ic	0.09 ic	0.00								0.088
0.80	392	981.80	0.65 ic	0.09 ic	0.00								0.094
0.90	441	981.90	0.65 ic	0.10 ic	0.00								0.100
1.00	490	982.00	0.65 ic	0.11 ic	0.00								0.105
1.10	588	982.10	0.65 ic	0.11 ic	0.00								0.110
1.20	686	982.20	0.65 ic	0.12 ic	0.00								0.115
1.30	783	982.30	0.65 ic	0.12 ic	0.00								0.120
1.40	881	982.40	0.65 ic	0.12 ic	0.00								0.124
1.50	979	982.50	0.65 ic	0.13 ic	0.00								0.129
1.60	1,077	982.60	0.65 ic	0.13 ic	0.00								0.133
1.70	1,174	982.70	0.65 ic	0.14 ic	0.00								0.137
1.80	1,272	982.80	0.65 ic	0.14 ic	0.01 ic								0.149
1.90	1,370	982.90	0.65 ic	0.14 ic	0.07 ic								0.210
2.00	1,468	983.00	0.65 ic	0.15 ic	0.17 ic								0.316
2.10	1,594	983.10	0.65 ic	0.15 ic	0.30 ic								0.451
2.20	1,720	983.20	0.65 ic	0.16 ic	0.43 ic								0.582
2.30	1,846	983.30	0.69 ic	0.16 ic	0.52 ic								0.677
2.40	1,972	983.40	0.76 ic	0.16 ic	0.60 ic								0.759
2.50	2,098	983.50	0.84 ic	0.16 ic	0.67 ic								0.832
2.60	2,224	983.60	0.91 ic	0.17 ic	0.73 ic								0.899
2.70	2,350	983.70	0.96 ic	0.17 ic	0.79 ic								0.960
2.80	2,476	983.80	1.02 ic	0.17 ic	0.85 ic								1.017
2.90	2,602	983.90	1.07 ic	0.17 ic	0.90 ic								1.071
3.00	2,729	984.00	1.13 ic	0.18 ic	0.95 ic								1.123
3.10	2,855	984.10	1.18 ic	0.18 ic	0.99 ic								1.171
3.20	2,981	984.20	1.22 ic	0.18 ic	1.04 ic								1.218
3.30	3,107	984.30	1.27 ic	0.19 ic	1.08 ic								1.263
3.40	3,233	984.40	1.32 ic	0.19 ic	1.12 ic								1.306
3.50	3,359	984.50	1.35 ic	0.19 ic	1.16 ic								1.348
3.60	3,485	984.60	1.41 ic	0.19 ic	1.20 ic								1.389
	,										C4:		

Continues on next page...

Pond Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	CIv A cfs	CIv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
3.70	3,611	984.70	1.44 ic	0.20 ic	1.23 ic								1.428
3.80	3,737	984.80	1.47 ic	0.20 ic	1.27 ic								1.466
3.90	3,863	984.90	1.52 ic	0.20 ic	1.30 ic								1.503
4.00	3,990	985.00	1.55 ic	0.20 ic	1.34 ic								1.540
4.10	4,116	985.10	1.58 ic	0.21 ic	1.37 ic								1.575
4.20	4,242	985.20	1.61 ic	0.21 ic	1.40 ic								1.610
4.30	4,368	985.30	1.66 ic	0.21 ic	1.43 ic								1.644
4.40	4,494	985.40	1.69 ic	0.21 ic	1.46 ic								1.677
4.50	4,620	985.50	1.71 ic	0.22 ic	1.49 ic								1.710
4.60	4,746	985.60	1.74 ic	0.22 ic	1.52 ic								1.742
4.70	4,872	985.70	1.77 ic	0.22 ic	1.55 ic								1.773
4.80	4,998	985.80	1.82 ic	0.22 ic	1.58 ic								1.804
4.90	5,124	985.90	1.85 ic	0.22 ic	1.61 ic								1.834
5.00	5,251	986.00	1.87 ic	0.23 ic	1.64 ic								1.864

...End


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Monday, 12 / 16 / 2024

Hyd. No. 9

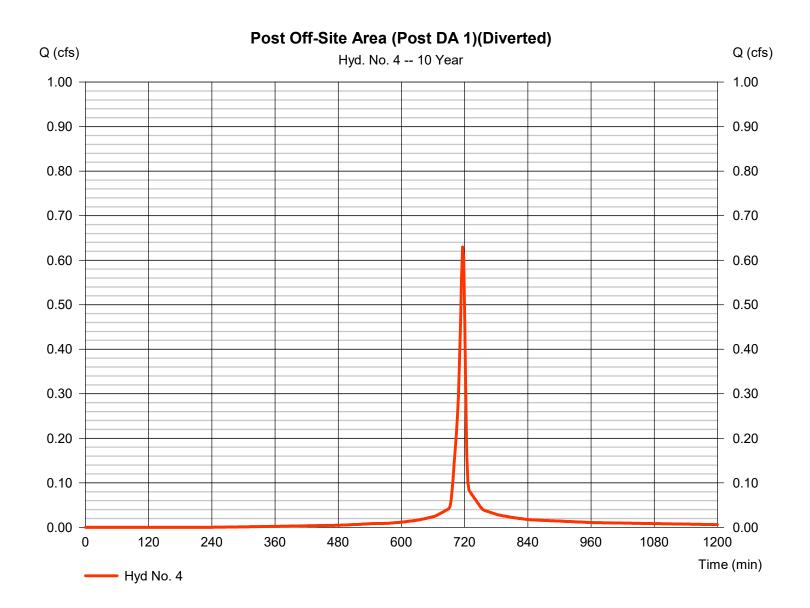
Combined Post-Developed Flow

Hydrograph type = Combine Peak discharge = 0.226 cfsStorm frequency Time to peak = 2 yrs= 740 min Time interval = 2 min Hyd. volume = 4,253 cuftInflow hyds. Contrib. drain. area = 0.000 ac= 6, 8

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Monday, 12 / 16 / 2024

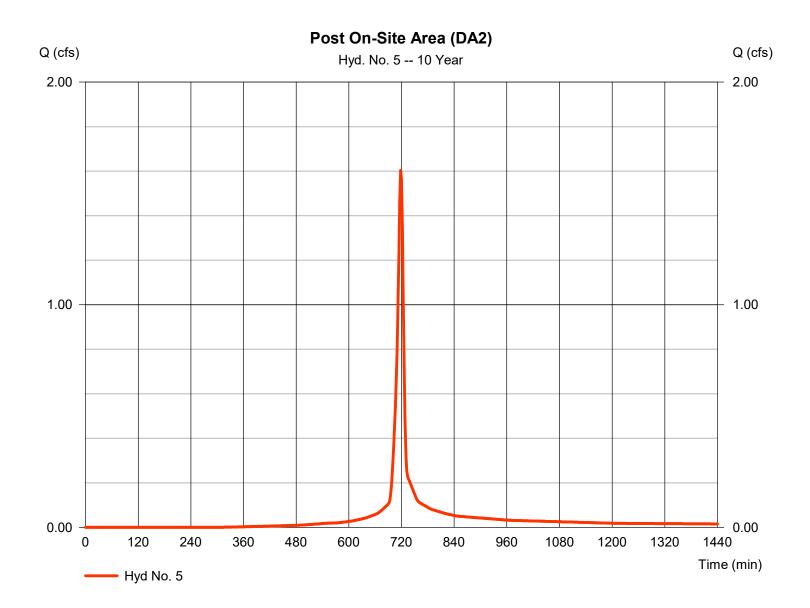
Hyd. No. 4

Post Off-Site Area (Post DA 1)(Diverted)

Hydrograph type = SCS Runoff Peak discharge = 0.630 cfsStorm frequency = 10 yrsTime to peak = 716 min Time interval = 2 min Hyd. volume = 1.353 cuft Curve number Drainage area = 0.090 ac= 89* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 5.00 min = User Total precip. Distribution = Type II = 5.67 inStorm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(0.052 \times 98) + (0.033 \times 74)] / 0.090$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Monday, 12 / 16 / 2024

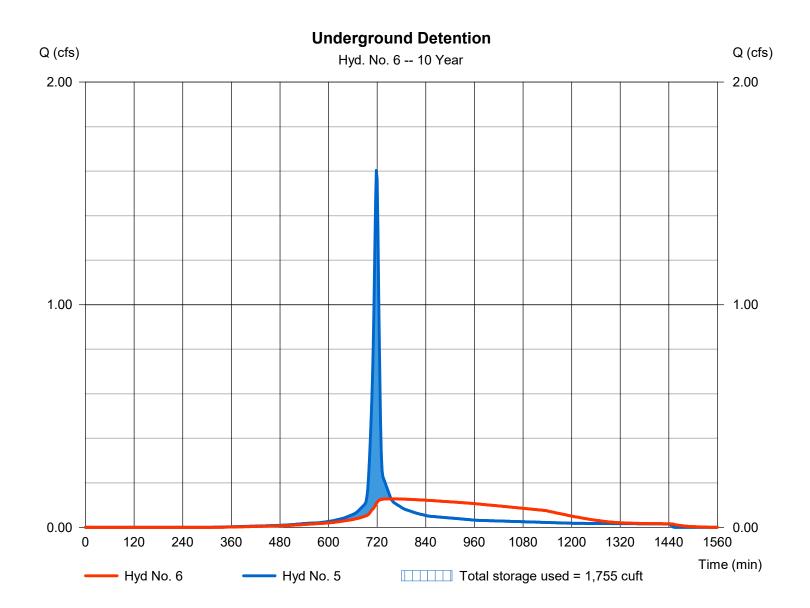
Hyd. No. 5

Post On-Site Area (DA2)

Hydrograph type = SCS Runoff Peak discharge = 1.603 cfsStorm frequency = 10 yrsTime to peak = 718 min Time interval = 2 min Hyd. volume = 3,768 cuftCurve number Drainage area = 0.260 ac= 85* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 7.37 \, \text{min}$ = TR55 Total precip. = 5.67 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = [(0.120 x 98) + (0.140 x 74)] / 0.260

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Monday, 12 / 16 / 2024

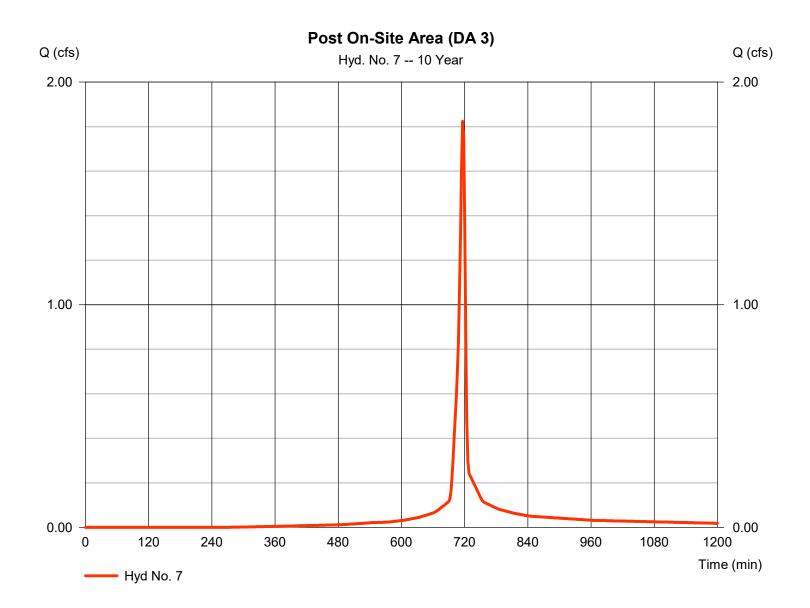
Hyd. No. 6

Underground Detention

Hydrograph type Peak discharge = 0.128 cfs= Reservoir Storm frequency = 10 yrsTime to peak = 754 min Time interval = 2 min Hyd. volume = 3,766 cuftMax. Elevation Inflow hyd. No. = 5 - Post On-Site Area (DA2) $= 983.61 \, \text{ft}$ = Underground Detention Reservoir name Max. Storage = 1,755 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Monday, 12 / 16 / 2024

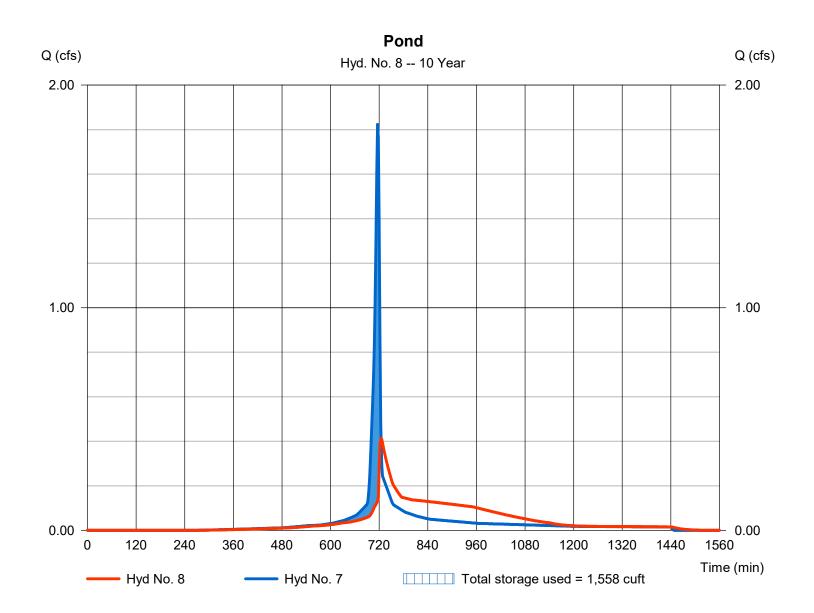
Hyd. No. 7

Post On-Site Area (DA 3)

Hydrograph type = SCS Runoff Peak discharge = 1.824 cfsStorm frequency = 10 yrsTime to peak = 716 min Time interval = 2 min Hyd. volume = 3.861 cuft Curve number Drainage area = 0.270 ac= 87* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 5.00 min = User Total precip. = 5.67 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = [(0.150 x 98) + (0.120 x 74)] / 0.270

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Monday, 12 / 16 / 2024

Hyd. No. 8

Pond

Hydrograph type = Reservoir Peak discharge = 0.413 cfsStorm frequency = 10 yrsTime to peak = 724 min Time interval = 2 min Hyd. volume = 3,860 cuftMax. Elevation Inflow hyd. No. = 7 - Post On-Site Area (DA 3) = 983.07 ftReservoir name = Pond Max. Storage = 1,558 cuft

Storage Indication method used.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Monday, 12 / 16 / 2024

Hyd. No. 9

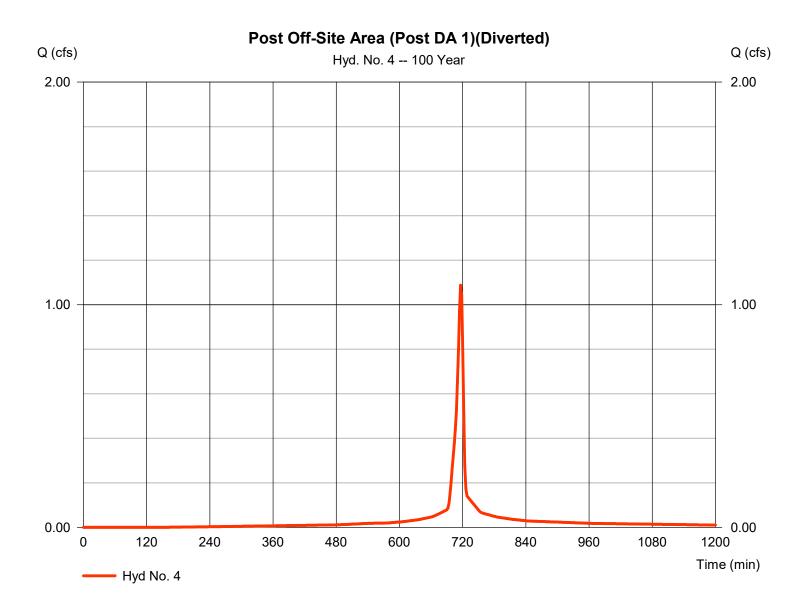
Combined Post-Developed Flow

Hydrograph type = Combine Peak discharge = 0.534 cfsStorm frequency Time to peak = 10 yrs= 724 min Time interval = 2 min Hyd. volume = 7,625 cuftInflow hyds. Contrib. drain. area = 0.000 ac= 6, 8

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Monday, 12 / 16 / 2024

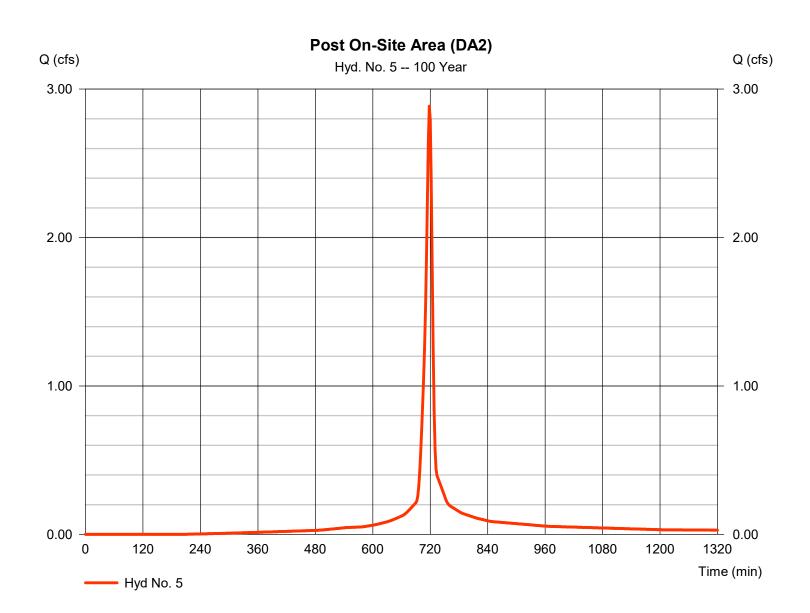
Hyd. No. 4

Post Off-Site Area (Post DA 1)(Diverted)

Hydrograph type = SCS Runoff Peak discharge = 1.088 cfsStorm frequency = 100 yrsTime to peak = 716 min Time interval = 2 min Hyd. volume = 2.428 cuft Curve number Drainage area = 0.090 ac= 89* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 5.00 min = User Total precip. = 9.26 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = $[(0.052 \times 98) + (0.033 \times 74)] / 0.090$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Monday, 12 / 16 / 2024

Hyd. No. 5

Post On-Site Area (DA2)

Hydrograph type = SCS Runoff Peak discharge = 2.885 cfsStorm frequency = 100 yrsTime to peak = 718 min Time interval = 2 min Hyd. volume = 7,016 cuftDrainage area = 0.260 acCurve number = 85* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 7.37 \, \text{min}$ = TR55 Total precip. = 9.26 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = [(0.120 x 98) + (0.140 x 74)] / 0.260

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Monday, 12 / 16 / 2024

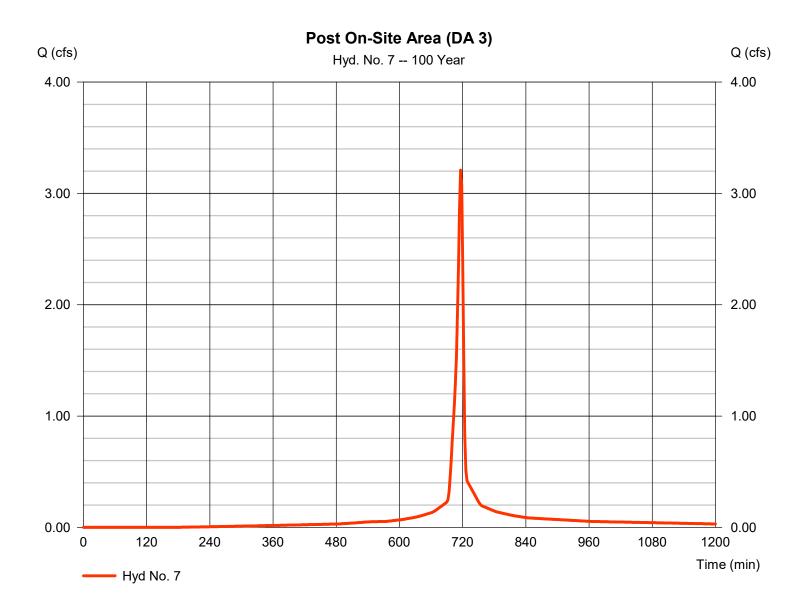
Hyd. No. 6

Underground Detention

Hydrograph type Peak discharge = 0.170 cfs= Reservoir Storm frequency = 100 yrsTime to peak = 772 min Time interval = 2 min Hyd. volume = 7,014 cuftMax. Elevation Inflow hyd. No. = 5 - Post On-Site Area (DA2) = 984.76 ftReservoir name = Underground Detention Max. Storage = 3,541 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Monday, 12 / 16 / 2024

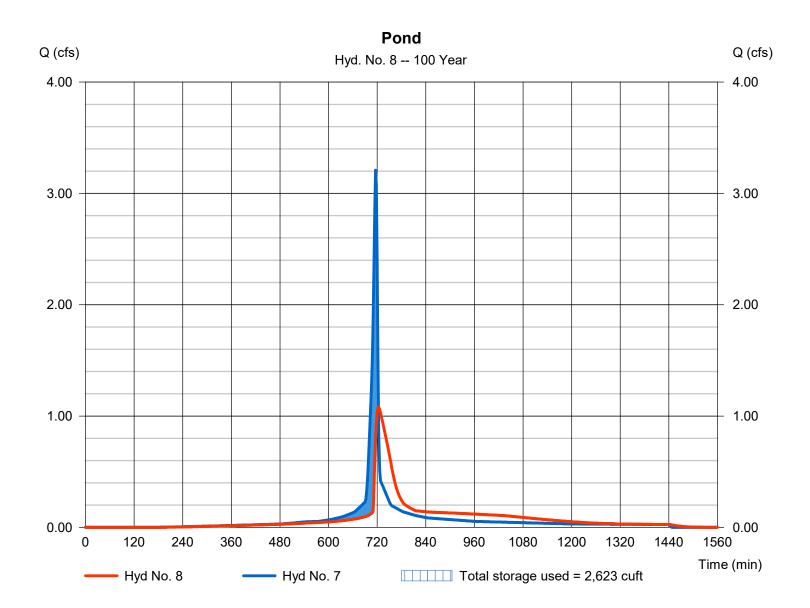
Hyd. No. 7

Post On-Site Area (DA 3)

Hydrograph type = SCS Runoff Peak discharge = 3.208 cfsStorm frequency = 100 yrsTime to peak = 716 min Time interval = 2 min Hyd. volume = 7.057 cuftCurve number Drainage area = 0.270 ac= 87* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 5.00 min = User Total precip. = 9.26 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = [(0.150 x 98) + (0.120 x 74)] / 0.270

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

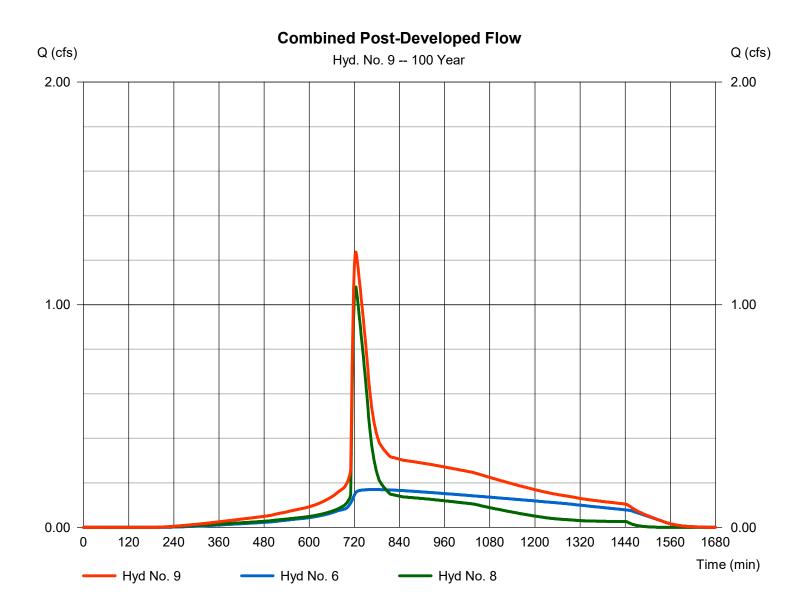

Monday, 12 / 16 / 2024

Hyd. No. 8

Pond

Hydrograph type = Reservoir Peak discharge = 1.080 cfsStorm frequency = 100 yrsTime to peak = 724 min Time interval = 2 min Hyd. volume = 7,056 cuftInflow hyd. No. Max. Elevation = 7 - Post On-Site Area (DA 3) = 983.92 ftReservoir name = Pond Max. Storage = 2,623 cuft

Storage Indication method used.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Monday, 12 / 16 / 2024

Hyd. No. 9

Combined Post-Developed Flow

= 1.237 cfsHydrograph type = Combine Peak discharge Storm frequency = 100 yrsTime to peak = 724 min Time interval = 2 min Hyd. volume = 14,070 cuftInflow hyds. = 6,8 Contrib. drain. area = 0.000 ac

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Monday, 12 / 16 / 2024

Return Period	Intensity-Duration-Frequency Equation Coefficients (FHA)									
(Yrs)	В	D	E	(N/A)						
1	0.0000	0.0000	0.0000							
2	80.1702	15.0000	0.9000							
3	0.0000	0.0000	0.0000							
5	0.0000	0.0000	0.0000							
10	183.3473	19.2000	1.0096							
25	197.2999	18.6000	0.9937							
50	235.4014	19.9000	1.0020							
100	252.3450	19.7000	0.9969							
	1									

File name: IDF Curve APWA5600.IDF

Intensity = B / (Tc + D)^E

Return	,											
Period (Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	5.41	4.42	3.76	3.27	2.90	2.61	2.37	2.18	2.01	1.87	1.75	1.65
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10	7.35	6.08	5.18	4.52	4.00	3.59	3.26	2.98	2.74	2.54	2.37	2.22
25	8.53	7.05	6.00	5.23	4.63	4.16	3.77	3.45	3.18	2.95	2.75	2.58
50	9.39	7.82	6.70	5.86	5.20	4.68	4.25	3.90	3.60	3.34	3.12	2.92
100	10.32	8.59	7.35	6.43	5.71	5.14	4.67	4.28	3.95	3.67	3.42	3.21

Tc = time in minutes. Values may exceed 60.

s\2022\22-218 Take 5 - Lee's Summit, MO - Todd Minnis\Design\Drainage\Lee's Summit Precipitation_2024-04-17.pcp

		F	Rainfall Precipitation Table (in)									
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr				
SCS 24-hour	0.00	3.71	0.00	0.00	5.67	0.00	0.00	9.26				
SCS 6-Hr	0.00	2.66	0.00	0.00	3.98	0.00	0.00	6.38				
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Custom	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				

Design Procedure Form: Extended Dry Detention Basin (EDDB) Main Worksheet		
Designer: Date:		
I. Basin Water Quality Storage Volume $WQV = P(AV)(A/12) \rightarrow RV = 0.05 \pm 0.069 (I) - 1.37[0.05 \pm 0.009(52.6)](0.49AC/12.76)$ Step 1) Tributary area to EDDB, A_T (ac) $= 1.37[0.05 \pm 0.009(52.6)](0.49AC/12.76)$ Step 2) Calculate WQv using methodology in Section 6 Step 3) Add 20 percent to account for silt and sediment deposition in the basir	$A_{T}(ac) = 0.49 Ac$	
Ila. Water Quality Outlet Type Step 1) Set water quality outlet type Type 1 = single orifice Type 2 = perforated riser or plate Type 3 = v-notch weir Step 2) Proceed to Step Ilb, Ilc, or Ild based on water quality outlet type slecter	Outlet Type =	
Ilb. Water Quality Outlet, Single Orifice Step 1) Depth of water quality volume at outlet, Z _{WO} (ft)	Zwo (A) = 2,94 ft	
Step 2) Average head of water quality volume over invert of orifice, h_{WQ} (ft) $H_{WQ} = 0.5 * Z_{WQ} \text{Hw}_Q = 0.5 (2.94f_t) = 7 \text{Hw}_Q = 1.47f_t$ Step 3) Average water quality outflow rate, C_{WQ} (cfs) $C_{WQ} = \frac{0.029 \text{ Av-ft}}{40(3.6 \text{ CV})} = 0.008$	$H_{WQ}(ft) = \frac{1.47ff}{0.008 CF}$ $Q_{WQ}(cfs) = 0.008 CF$	
Step 4) Set value of orifice discharge coefficient, C₀ C₀ = 0.66 when thickness of riser/weir plate is ≤ orifice diameter C₀ = 0.80 when thickness of riser/weir plate is > orifice diameter C₀ = 0.80 when thickness of riser/weir plate is > orifice diameter Step 5) Water quality otulet orifice diameter (minimum of 4 inches), D₀ (in) D₀ = 12(1) D₀ = 12 * 2 * (Q₀₀/(C₀ * π * (2 * g *H) ^{0.5})) ^{0.5} (if orifice diameter < 4 inches, us outlet type 2 or 3)	(1.47)]°,5]°,5 = 0.66	
D _o = 12 * 2 * (Q _{WD} /(C _o * π * (2 * g *H) ^{U.5})) ^{U.5} (if orifice diameter < 4 inches, us outlet type 2 or 3) Step 6) To size outlet orifice for EDDB with an irregular stage-volume relationship, use the Single Orifice Worksheel	D ₀ (in) =	
Step 1) Depth at outlet above lowest perforation, Z _{MO} (ft)	Z _{WQ} (ft) =	
Step 2) Recommended maximum outlet area per row, A_0 (in²) $A_0 = (WQv)/(0.013 * Z_{WQ}^2 + 0.22 * Z_{WQ}^- 0.10)$ Step 3) Circular perforation diameter per row assuming a single column, E_1 (in)	$A_o (in^2) = $	
Step 4) Number of columns, n_c Step 5) Design circular perforation diameter (should be between 1 and 2 inches), Γ_{perf} (in)	n _c = D _{perf} (in) =	
Step 6) Horizontal perforation column spacing when n _c > 1, center to center, S _c If D _{perf} ≥ 1.0 inch, S _c = 4 Step 7) Number of rows (4" vertical spacing between perforations, center to center), r _r	S_c (in) =	

Proj Loca	ect: ation:				By: Checked:	Date: Date:
1.	Runoff Curve Number					
A.	Predevelopment CN					
	Cover Description Pasture (Fair)	Soil HSG	CN from Table 1	Area (ac.)	Product of CN x Area	
			Totals:	0.49	38.7/	
	Area-Weighted CN = total product	/total area =			79	(Round to integer)
В.	Postdevelopment CN					
	Cover Description Imperious Open'space (Good)	Soil HSG ¹	CN from Table 1 98	Area (ac.) 0,26 0,23	Product of CN x Area 25,48	
			Totals:	0,49	42.50	
	Postdevelopment CN is one Halphabent documentation showing	SG higher for how postde	or all cove evelopme	r types exce nt soil struc	ept preserve ture will be p	d vegetation, reserved.
	Area-Weighted CN = total product	/total area =			87	(Round to integer)
C.	Level of Service (LS) Calculation	1		C	Change in CN	N LS
	Predevelopment CN: Postdevelopment CN:	79			17+ 7 to 16 4 to 6	8 7 6
	Difference:	8			1 to 3 0 -7 to -1	5 4
	LS Required (see scale at right):	7			-7 to -1 -8 to -17 -18 to -21 -22 -	3 2 1 0

WORKSHEET 1: REQUIRED LEVEL OF SERVICE - UNDEVELOPED SITE

WO	RKSHEET 2: DEVELOP MITIGAT	ION PACKA	GE(S) THA	T MEET THE R	EQUIRED LS			
Loc	iect: ation: eet of		1	By: Checked:	Date: Date:			
1,	Required LS (New Development	t, Wksht 1) o	r Total VR	(Redevelopme	nt, Wksht 1A):			
	Note: Various BMPs may alter CN	N of proposed	d developme	ent, and LS; rec	alculate both if applicable.			
2.	Proposed BMP Option Package	No						
	Cover/BMP Description Extended Dry Detection	Treatment Area	VR from Table 4.4 or 4.6 ¹	Product of VR x Area	}			
	Total ² : VR calculated for final BMP or Total treatment area cannot ex Blank in Redevelopment	nly in Treatme	rcent of the					
	Meets required LS (Yes/No)?	No	(If No, or if proceed be		s are being tested,			
3.	Proposed BMP Option Package Cover/BMP Description	No Treatment Area	VR from Table 4.4 or 4.6 ¹	Product of VR x Area				
	Gatch Basin Insert	0.49	5	2.45				
	Total ² : 0.49 Total: 2.45 *Weighted VR: 5 = total product/total a 1 VR calculated for final BMP only in Treatment Train. 2 Total treatment area cannot exceed 100 percent of the actual site area.							
	* Blank in Redevelopment							
	Meets required LS (Yes/No)? $4+5=9$	YES	(If No, or if a move to ne.		are being tested,			

TABLE 4.1
Common Cover Types and Curve Numbers

How To Use This Table:

This table presents the cover types that a site planner is most likely to encounter, but is not all-encompassing. See TR-55 for additional information.

Site planners may substitute curve numbers from APWA 5602.3 or other local regulations, if applicable, to be consistent with hydrology calculations. 7

"Undeveloped" cover types may be used on portions of developed sites where preexisting cover is preserved and protected from disturbance. € 4

Postdevelopment HSG is assumed to be one group higher in runoff than predevelopment, unless soil treatment plan is provided to document otherwise. See Appendix A for soil preservation guidance.

	IGND	UNDEVELOPED			DE	DEVELOPED		
Cover Type	Condition	CN by Hydrolog	Hydrologic Soil Group (HSG)	HSG)	Cover Type	CN by HSG	HSG	
			, O	D		В	ပ	Q
					Parking lots, roofs, streets			
Fallow, bare soil		98	91	94	with sewer, water, etc.	86	86	86
Fallow, crop residue	Poor	85	06	93	Commercial, business	92	94	95
Fallow, crop residue	Good	83	88	06	Streets: paved, open ditch	68	92	93
Straight row crops	Good	78	85	68	Industrial (or office park)	88	91	93
Contoured crops Contoured and	Good	75	82	98	Newly graded areas	98	91	94
terraced crops	Good	71	78	81	Streets: gravel	85	68	91
Pasture	Poor	62	98	68	Streets: dirt	82	87	68
Pasture	Fair	69	79	84	Residential, 1/8-acre	85	06	92
Pasture	Good	61	74	80	Residential, 1/4-acre	75	83	87
Woods-grass	Poor	19	77	83	Residential, 1/3-acre	72	81	98
Woods-grass	Fair	65	9/	82	Residential, 1/2-acre	70	80	85
Woods-grass	Good	55	70	77	Residential, 1-acre	89	79	84
Woods	Poor	99	77	83	Residential, 2-acre	65	77	82
Woods	Fair	09	73	79	Open space (turf), poor	79	98	68
Woods	Good	55	70	77	Open space (turf), fair	69	79	84
Meadow		58	71	78	Open space (turf), good	61	74	80
Brush-weeds-grass	Poor	<i>L9</i>	77	83	Native grass	58	71	78
					Native grass, shrubs and			
Brush-weeds-grass	Fair	99	70	77	forbs (formal plantings)	56	70	11
,					Native grass, shrubs and			
Brush-weeds-grass	Good	48	65	73	forbs (informal plantings)	48	65	73

Source: U.S. Department of Agriculture, Natural Resource Conservation Service Urban Hydrology for Small Watersheds, Technical Release 55 (TR-55, 1986)

Table 4.4 Best Management Practice Value Ratings

	Median Expected Effluent EMC TSS (mg/L) ^a	Value Ratings				
Cover Type or BMP		Water Quality Value	Volume Reduction	Temperature Reduction	Oils/ Floatables Reduction	
Vegetation	N/A	5.25	2	1.55	1	9.25
Native Vegetation preserved or established					11000000	
Rain Garden	< 10	4	2	1	2	9.0
A small residential depression planted with native vegetation	ion designed to capture	and infiltrate ru	noff			
Infiltration Practices	<10	4	2	1 1	2	9.0
Infiltration Basin						
Infiltration Trenches						
Bioretention	< 10	4	1.5	1	2	8.5
Small engineered and landscaped basins designed to filte	r runoff before release					
Pervious or Porous Pavement	10-20	3	1.5	1	2	7.5
Pervious Concrete						
Porous Asphalt						
Modular Concrete Block						
Extended Detention Wetland A land area that is permanently wet with hydric soils sized	to detain the WOv for a	4	2	0	1	7.0
	to detain the vvQv for a	minimum of 40	nours.			
Media Filtration Practices	< 10	4	0	0	2	6.0
Surface Sand Filter						
Underground Sand Filter						
Pocket Sand Filter			1			
Perimeter Sand Filter	40.00					
Extended Wet Detention A basin intended to have a permanent pool and sized to d	etain the WQv for a min	mum of 40 hou	lrs 2	-1	1	5.0
Vegetated Filter Strip	10 - 20	3	1	0	1	5.0
Buffer strip with native vegetation treating sheet flow	1 40 00					
Native Vegetation Swale Native grasses and forbes planted in a swale to reduce ve	10 - 20	3 note infiltration	1	0	0	4.0
Extended Dry Detention Basin A basin lined with native plant species designed to detain	the WQv for a minimum	of 40 hours wit	th no permanent in	npoundment of w	1 ater	4.0
Other Systems	10 - 100 (b)	1-3 (c)	0	0	2	3.0-5.0 ^(d)
Proprietary Media Filtration Devices						
Hydrodynamic Devices			-			
Baffle Boxes Catch Basin Inserts			-			
Signage	N/A	NI/A	AUA	3100	21/2	DUDVS
Olynage	IN/A	N/A	N/A	N/A	N/A	BMP VR +
Green Roofs – No VR, Credit for Post Concrstrcution CN Reduction, S	See Design Section					CN Credit See Design

mg/L

- Expected median event mean concentrations of TSS is based on analysis of studies in International BMP Database www.bmpdatabase.org Source: Analysis of Treatment System Performance, International Stormwater Best Management Practices (BMP) Database 1999-2005. Feb. 2006
- Jurisdiction will assign the score based on independent 3rd party field data showing expected event mean concentrations TSS in the effluent. However, if the proprietary BMP relies on sedimentation as the primary pollutant removal mechanism, then performance data over the range of particle size distributions must be submitted for the range of expected flow rates.
- Water Quality Value will vary based on the median concentration of TSS in the effluent (measured in mg/l).
- Overall Value Rating will vary based on the sum of the four Value Ratings. See Section 7.7 for additional guidance on signage.

Composite Value Ratings for Two BMPS in Series TABLE 4.6

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Manual Ma	A control of the cont	And the property of the proper	A Second Market
Definements of sucrors	(2) (2) (3) (3) (3) (4) (5) (5) (5) (5) (5) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 7 7 8 9 7 9 8 8 9 7 9 9 8 8 9 7 9 9 9 8 8 9 9 9 9	8.8.50
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(2) (2) (3) (3) (3) (4) (5) (5) (5) (5) (5) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8.8.50
	(2) (2) (3) (3) (3) (4) (5) (5) (5) (5) (5) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	(2) (2) (3) (3) (3) (4) (5) (5) (5) (5) (5) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	8 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8.8.00

9 0

Blank cells indicate BMP combinations that are either infeasible or highly unlikely.

Bold cells indicate feasible treatment train combinations that would not increase the overall VR. Additional BMPs may be added using the formula above, provided that the sum of the A and D values (Table 3) do not exceed their respective maximum values, and only the C value for the final BMP in series is used.

Calculate Composite Value Rating utilizing Other System Rating

σ

- Do not locate EDDBs on fill sites or on or near steep slopes if it is expected that much of the water will exit
 through the bottom of the facility, unless the bottom of the facility is modified to prevent excessive infiltration
 (Metropolitan Nashville Davidson County, 2000).
- Energy dissipation shall be included in the inlet design to reduce resuspension of accumulated sediment (California Stormwater Quality Association, 2003).
- Erosion protection shall be placed at the facility's outfall. Energy dissipation may be required to reduce flow velocities from the primary spillway to nonerosive values (California Stormwater Quality Association, 2003).
- A maintenance ramp and perimeter access shall be included in the design to facilitate access to the basin for maintenance activities (California Stormwater Quality Association, 2003).
- When desirable and feasible, EDDBs shall be incorporated within a larger flood control basin or as a part of
 a full-spectrum detention facility. See APWA 5600 for design specifications if flood control is to be
 incorporated into the design of the EDDB. Also, whenever possible, designers should try to accommodate
 within the basin other urban uses such as passive recreation and wildlife habitat (Urban Drainage and Flood
 Control District, Denver, Colorado, 2005).
- EDDBs that do not provide flood storage for the 1 percent storm shall be designed so that runoff flows from
 the 1 percent event safely pass through the facility. At a minimum, all facility embankments shall be
 protected from failure during the 1 percent event. An emergency spillway, which conveys large flood flows
 safely past earth embankments, must be provided for each dam unless the principal spillway is large
 enough to pass the peak flow expected from the 1 percent design storm without overtopping the dam
 (Natural Resources Conservation Service Maryland, 2000).
- The EDDB bottom should be 1 to 2 feet above the wet season groundwater table, as groundwater may surface within the basin or contribute baseflow to the basin (Urban Drainage and Flood Control District, Denver, Colorado, 2005). This also allows for some infiltration.
- Outflow structures shall be protected by well screen, trash racks, grates, stone filters, or other approved devices to ensure that the outlet works will remain functional (Kansas City Metropolitan Chapter of the American Public Works Administration, 2006). No single outlet orifice shall be less than 4 inches in diameter (smaller orifices are more susceptible to clogging). If the calculated orifice diameter necessary to achieve a 40-hour drawdown is less than 4 inches, a perforated riser, orifice plate, or v-notch weir shall be used instead of a single orifice outlet. Keep perforations larger than 1 inch when using orifice plates or perforated risers. Smaller orifice sizes may be used if the weir plate is placed in a riser manhole in a sump-like condition.
- Public safety shall be considered in EDDB design. Fences and landscaping can be used to impede access
 to the facility. The facility shall be contoured so as to eliminate any dropoffs or other hazards. The primary
 spillway opening must not permit access by small children. Outfall pipes above 48 inches in diameter shall
 be fenced (California Stormwater Quality Association, 2003).
- Facilities that receive stormwater from contributing areas that have potential for oil and grease contamination must include a baffle, skimmer, and grease trap to prevent these substances from being discharged from the facility (Metropolitan Nashville – Davidson County, 2000).

8.10.6 Maintenance and Inspections

Extended dry detention basins (EDDB) provide stormwater volume control and may integrate water quality treatment through the use of deep-rooted native plantings. Native vegetation installed at least to the water quality event (WQv) storage elevation provides optimal function for the basin. The use of native vegetation also greatly improves stormwater infiltration into the soil, removes nutrients and trash from the contributing drainage area, and does not require the fertilizer or herbicides of turf-type plantings. Native vegetation provides exceptional erosion control and stabilization for EDDBs, but also needs intensive initial establishment activities and routine long-term maintenance to

achieve optimal performance. Additionally, the flood control benefits of EDDBs are vulnerable to structural compromise by woody vegetation encroachment and animal burrowing that can cause leaks and dam failure.

Primary maintenance in EDDBs is related to maintaining dry conditions, repairing erosion, and managing vegetation. EDDB structures handle sporadic, intense runoff events, and are vulnerable to erosion on the side slopes and the flow line of the basin. Preserving design elevations through routine maintenance to forebays, swales, other pretreatment structures, and the contributing drainage area is critical to avoiding costly dredging. The side slopes shall conform as closely as possible to regraded or natural land contours, and shall not exceed 4:1 (H:V). Slopes showing excessive erosion may require erosion control and safety measures (Kansas City Metropolitan Chapter of the American Public Works Administration, 2006).

Routine inspection to ensure outlets are functioning properly prevents standing water issues. If a v-notch weir or orifice plate is used to control flow, weekly inspections may be required to ensure the opening is clear of vegetation, trash, or other debris. Blocked outlet structures create standing water that can kill desired vegetation, encourage undesirable weed growth, and damage trash racks or other outlet structures. Inspect for evidence of muskrats, beavers, and other animals that can severely degrade the function of the basin. Additionally, routine inspection of the outfall of the basin into a stream or subsequent stormwater facility to identify erosion and prevent any head-cutting will avoid degradation and costly repair to the basin.

Dense, well-established stands of desirable native vegetation in an EDDB can preclude weed infestation by occupying the root space and canopy sunlight. A combination of grasses and flowers reduces peak flows and provides year long visual interest, so maintenance activities must be targeted to foster continuity in this diversity over time. This can be established through regular flail-type mowing, removal of undesirable species, and spot treatment of noxious or woody vegetation. String trimming to prevent disturbance from mowing equipment on saturated soils is strongly recommended. Prescribed burning is an efficient and effective tool for managing native vegetation in EDDBs; however, if that option is not available, annual mowing may be followed up with tilling of small, select areas for overseeding with flowers, as grasses will come to dominate the seeding over time in the absence of prescribed burning. A diverse mix of native vegetation can provide valuable habitat for birds, and maintenance activities may be scheduled around primary nesting seasons.

APWA / MARC BMP Manual 8-110 October 2012

TABLE 8.12 Extended Dry Detention Basin Typical Maintenance Activities							
Activity Frequency							
Establishment (Establishment (1-3yrs)						
	Watering plants (seeded areas up to 8 weeks, plugs in drought)						
	Weed control (flail mow, string-trim, selective/preemerg herbicides)	Monthly					
	Remove litter and debris (trash, leaves, sand, mower discharge)	Monthly					
	Monitor & repair erosion (stabilize soil, replace plants, secure edging)	Monthly					
	Monthly						
	Add mulch (moisture & weed control with plugs/containers, 3" or less)	Annually					
	Inspect drainage area (parking lot sweeping, open dumpsters, etc)	Annually					
	Replace dead plants (use design species/size: overseed, install deep cell plugs)	Annually, as needed					
Maintenance (3+yrs, establishment activities may carry over, as needed)							
	Vegetation cleanup (spot treat, prescribed burn, prune)	Annually, spring or fall					
	Evaluate plant composition (woody invasion, grass/flower ratio, "right plant right place")	Annually					
	Sediment removal, erosion control (pretreatment structures: forebay, check dams)	Annually					
	Address animal damage (beaver dams, muskrat burrows, deer rubs)	Annually					
	Verify structural component function Annually (v-notch weir, check dams, outlet protection)						
Extended Dry Detention Basin							
	String trim vegetation to minimize disturbance	Annually					
	Inspect for erosion in flow lines and slopes	Annually					

Typical maintenance activities are outlined to provide a basis for scheduling and planning work but should not be considered wholly comprehensive or definitive. Activities and frequencies will vary depending on site conditions and expectations related to adjacent land use. Some activities shown may continue through the establishment and maintenance phases. It's important to use adaptive management based on the goals of the practice and to integrate evaluation and assessment into a long-term maintenance plan.

APWA / MARC BMP Manual 8-111 October 2012

8.10.6.1 Sediment Removal

Some sediment may contain contaminants of which the Kansas Department of Health and Environment (KDHE) or Missouri Department of Natural Resources (MDNR) requires special disposal procedures. If there is any uncertainty about what the sediment contains or it is known to contain contaminants, then KDHE or MDNR should be consulted and their disposal recommendations followed. Sampling and testing shall be performed on sediments accumulated in facilities serving industrial, manufacturing or heavy commercial sites, fueling centers or automotive maintenance areas, large parking areas, or other areas where pollutants (other than "clean" soil) are suspected to accumulate and be conveyed via stormwater runoff (Metropolitan Nashville – Davidson County, 2000).

Some sediment collected may be innocuous (free of pollutants other than "clean" soil) and can be used as fill material, cover, or land spreading. It is important that this material not be placed in a way that will promote or allow resuspension in stormwater runoff. The sediment shall not be placed within the high water level area of the EDDB, other BMP, creek, waterway, buffer, runoff conveyance device, or other infrastructure. Some demolition or sanitary landfill operators will allow the sediment to be disposed at their facility for use as cover. This generally requires that the sediment be tested to ensure that it is innocuous (Metropolitan Nashville – Davidson County, 2000).

- Remove sediment when accumulation reaches 6 inches, or if resuspension is observed or probable.
 Sediment may be permitted to accumulate deeper than 6 inches if there is a permanent marker indicating the depth where sediment needs to be removed and that mark has not been met (Metropolitan Nashville Davidson County, 2000).
- Remove sediments if they are within 18 inches of an orifice plate (Metropolitan Nashville Davidson County, 2000).