Traffic Impact Study

View High Sports Complex

Lee's Summit, Missouri

Prepared For: Engineering Solutions

Date: December 2024

Kimley » Horn

Traffic Impact Study

View High Sports Complex

Lee's Summit, Missouri

Prepared for: Engineering Solutions 50 SE 30th Street, Lee's Summit, Missouri 64082

Prepared by: Kimley-Horn and Associates, Inc. 805 Pennsylvania Avenue, Suite 150 Kansas City, Missouri 64105

This document, together with the concepts and designs presented herein, as an instrument of service, is intended only for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization and adaptation by Kimley-Horn and Associates, Inc. shall be without liability to Kimley-Horn and Associates, Inc.

CONTENTS

1.0 INTRODUCTION1
1.1 REPORT PURPOSE AND OBJECTIVES1
2.0 PREVIOUS STUDIES
3.0 EXISTING CONDITIONS
3.1 STUDY AREA
3.2 STREET NETWORK
3.3 TRAFFIC DATA COLLECTION
4.0 PROPOSED DEVELOPMENT
4.1 SITE DESCRIPTION
4.2 SITE CIRCULATION
4.3 TRIP GENERATION
4.4 PROJECT TRIP DISTRIBUTION AND ASSIGNMENT6
5.0 ACCESS MANAGEMENT7
5.1 ACCESS SPACING7
5.2 AUXILIARY TURN LANES
5.3 CIRCULATION IMPROVEMENTS7
6.0 INTERSECTION CAPACITY ANALYSIS
6.1 LEVEL OF SERVICE OVERVIEW
6.2 EXISTING CONDITIONS ANALYSIS
6.3 EXISTING PLUS DEVELOPMENT CONDITIONS ANALYSIS
7.0 CONCLUSIONS AND RECOMMENDATIONS11
APPENDIX12

TABLES

TABLE 1: TRIP GENERATION	5
TABLE 2: TRIP DISTRIBUTION	6
TABLE 3: LEVEL OF SERVICE	8
TABLE 4: EXISTING PEAK HOUR CONDITIONS	9
TABLE 5: EXISTING PLUS DEVELOPMENT PEAK HOUR CONDITIONS	10

EXHIBITS (SEE APPENDIX A)

- EXHIBIT 1: PROJECT SITE LOCATION AND STUDY AREA
- EXHIBIT 2: EXISTING PEAK HOUR TRAFFIC VOLUMES
- EXHIBIT 3: EXISTING GEOMETRY AND INTERSECTION CONTROL
- EXHIBIT 4: SITE TRIP DISTRIBUTION
- EXHIBIT 5: TOTAL PROJECT TRAFFIC
- EXHIBIT 6: EXISTING PLUS DEVELOPMENT PEAK HOUR TRAFFIC VOLUMES
- EXHIBIT 7: EXISTING PLUS DEVELOPMENT GEOMETRY AND INTERSECTION CONTROL

1.0 INTRODUCTION

This report serves as the traffic impact study for the View High Sports Complex development, generally located in the northeast and southeast corners of the View High Drive & Ashurst Drive intersection in Lee's Summit, Missouri, adjacent to the city limits. The location of the development is shown on **Exhibit 1** in **Appendix A**.

1.1 REPORT PURPOSE AND OBJECTIVES

The purpose of this study is to address traffic and transportation impacts of the proposed development on surrounding streets and intersections. This traffic impact study was prepared based on criteria set forth by the City of Lee's Summit *Access Management Code*. The following information is provided.

- A description and map of the existing and proposed street network to be affected by the proposed development. This information includes existing and proposed roadway characteristics and existing traffic volumes.
- Trip generation calculations based on the *Institute of Traffic Engineers (ITE) Trip Generation Manual, 11th Edition*, for the proposed development. In addition, projected trip distributions onto the street network are provided.
- Analysis of impacts of the traffic generated by the proposed development on the street network, including analysis of peak period levels of service (LOS), delay times, and queuing at study area intersections.
- Evaluation of conformance with access management guidelines.
- Discussion of potential improvements and traffic management measures identified to mitigate operational concerns.

In summary, the study is to determine the trip generation of the View High Sports Complex development, assign new development trips to the street network, analyze various scenarios to determine the impacts of proposed site traffic, and identify potential mitigation measures needed to achieve acceptable operations at the study intersections.

2.0 PREVIOUS STUDIES

Several previous traffic studies have been completed for development near the site. The Summit Church development is a 43-acre site that includes a 67,000 square-foot church building with a 1,500-seat worship venue, which was built in two phases. The north site drive, referred to as Drive B in this study, is located approximately 430 feet east of the View High Drive and Chipman Road intersection. The south site drive (Ashurst Drive) is located approximately 900 feet south of Chipman Road and 635 feet north of the 109th Street and View High Drive intersection. A 6-acre portion of the site along the west edge of the site between View High Drive and Drive B was planned to be developed as a commercial site. The site also includes 15 acres of undeveloped land located south of Ashurst Drive, and no land uses were planned for that area.

The original traffic impact study for this development was completed in August of 2015 and was titled The Summit Church Traffic Impact Study. The traffic study for the approved development included a discussion of development phasing and timing of the improvements identified. The study stated that the north and south site drives were to be constructed with the initial phases of the development. The initial phase was to include approximately half of the church building and worship venue spaces. The second phase included the remaining church and worship venue spaces and the commercial site.

Turn lane improvements were identified at the View High Drive and Ashurst Drive intersection with the second phase of the development. These improvements include constructing a median break and southbound left-turn lane with a minimum of 200 feet of storage plus an appropriate taper. A northbound right-turn lane with a minimum of 150 feet of storage plus an appropriate taper was also recommended at the View High Drive and Ashurst Drive. These improvements have not been constructed at the time of this study.

An update to the original traffic impact study was prepared in April of 2020. The updated study evaluated both phases of the church without any commercial development. For the updated study, a traffic signal was assumed at the intersection of View High Drive and Chipman Road as part of the City of Lee's Summit's Chipman Road improvements project. The updated study found that the improvements identified in the original traffic study for the View High Drive and Ashurst Drive intersection were not necessary without the commercial development.

3.0 EXISTING CONDITIONS

3.1 STUDY AREA

At the time of this study, both phases of the Summit Church have been constructed. Drive B separating the church and commercial site has been partially constructed, extending south from Chipman Road approximately 250 feet and providing access to the church's parking area before terminating. Drive B is not continuous to Ashurst Drive. Ashurst Drive has been constructed and provides right-in, right-out access at View High Drive before extending east to connect to a single-family neighborhood. The commercial area to the west of the church has not been developed.

Through discussion with City staff, the following intersections were included within the study area for the traffic analysis. The list provides the existing intersection control for each of the study intersections.

- View High Drive & Ashurst Drive (Side Street Stop)
- View High Drive & Chipman Road (Side Street Stop)
- Chipman Road & Drive B (Side Street Stop)

3.2 STREET NETWORK

The existing street network within the study area includes View High Drive, Chipman Road, and Ashurst Drive. The following provides a summary of the existing street network within the study area:

View High Drive is a two-lane divided primary arterial roadway with a wide raised median located to the west of the proposed development site. View High Drive previously had two through lanes in both directions. However, View High Drive has been restriped to accommodate buffered bike lanes, resulting in one through lane in each direction. There is a sidewalk along the east side of View High Drive and a shared-use path along the west side through the study area. The posted speed limit is 45 miles per hour (mph). Approximately one-half mile north of the site there is a diamond interchange at View High Drive and I-470. The city limits run along the east side of View High Drive, and the roadway is located within Kansas City, Missouri.

Chipman Road is a two-lane undivided minor arterial roadway that is located north of the proposed development site. Chipman Road was under construction as part of the City's Chipman Road improvements project at the time of this study. The improvements include widening Chipman Road to three lanes with a center two-way left-turn lane, curb and gutter, sidewalk, and a shared-use path. The posted speed limit along Chipman Road is 35 mph.

Ashurst Drive is a two-lane local roadway that runs east-west through the proposed development site. Ashurst Drive provides right-in, right-out access at View High Drive and extends east to connect to a single-family neighborhood. There are no sidewalk facilities along Ashurst Drive.

3.3 TRAFFIC DATA COLLECTION

Turning movement counts were collected at the View High Drive & Ashurst Drive intersection on Thursday, November 21, 2024, and Saturday, November 23, 2024. The turning movement count data collected is included in **Appendix B**. The PM peak hour occurred between 4:45 PM and 5:45 PM, and the Saturday peak hour occurred between 12:15 PM and 1:15 PM. Traffic counts were not collected at the Chipman Road study intersections because Chipman Road was closed for construction at the time of this study.

The PM peak hour turning movement counts from the 2015 traffic impact study were compared to the counts collected for this study. The through volumes on View High Drive were very similar in the 2015 and 2024 counts. To account for the current closure of Chipman Road, the turning movements from the 2015

counts at the View High Drive & Chipman Road intersection were added to the 2024 PM peak hour count volumes and distributed through the study intersections.

For the Saturday peak hour counts, the PM peak hour turning movements from the 2015 counts at the View High Drive & Chipman Road intersection were factored based on the ratio of the Saturday peak hour to the PM peak hour. It was found that the Saturday peak hour volumes collected at View High Drive & Ashurst Drive are approximately 62% of the PM peak hour volumes. The factored turning movement volumes were added to the 2024 Saturday peak hour count volumes and distributed through the study intersections.

The Existing Conditions peak hour turning movement volumes are shown on **Exhibit 2**. The existing geometry with lane configurations and intersection control at the study intersections is shown on **Exhibit 3**. The lane configurations and intersection controls reflect conditions when the Chipman Road improvements project is completed.

4.0 PROPOSED DEVELOPMENT

4.1 SITE DESCRIPTION

The proposed development includes a large building south of Ashurst Drive that contains a playing surface that can be divided into three small soccer fields, six basketball courts, and an office area. Four outdoor pickleball courts are proposed to be located directly east of the building. A drive aisle separates the pickleball courts from a full-size soccer field located in the eastern portion of the site. The proposed development plan also includes a commercial pad site in the northeast corner of the View High Drive and Ashurst Drive intersection.

4.2 SITE CIRCULATION

The sports complex portion of the proposed development site will be accessed from three new driveways along Ashurst Drive. A large surface parking area is located in the southwestern portion of the proposed development site, with additional parking provided along the drive aisle that runs parallel to the south side of Ashurst Drive. The drive aisle in the western parking area will extend to the south property line, to allow for a future street connection to the south. The commercial site will be accessed by a new driveway along Drive B.

4.3 TRIP GENERATION

Trip generation estimates were prepared using the *ITE Trip Generation Manual*, 11th Edition. **Table 1** shows the expected trips to be generated by the proposed development. The total trip generation is anticipated to be 5,117 daily trips, 469 trips during the PM peak hour (226 entering and 243 exiting), and 250 trips during the Saturday peak hour (132 entering and 118 exiting).

Land Use Description	ITE	Intensity (Unite	Daily	PM	Peak H	lour	SAT Peak Hour			
Land Use Description	Code	Intensity / Units	Daily	In	Out	Total	In	Out	Total	
Soccer Complex	488	1 Field	71	11	5	16	18	19	37	
Recreational Community Center	495	157,181 Square Feet	4,525	184	206	390	91	77	168	
Retail (<40k)	822	6,900 Square Feet	521	30	30	60	23	22	45	
Total Develop	5,117	226	243	469	132	118	250			

TABLE 1: TRIP GENERATION

Appendix D provides the data from the *ITE Trip Generation Manual* that were used to determine the trip generation of the proposed site. The Saturday peak hour trips for the community center are significantly less than the PM peak hour trips. However, it is likely that the proposed development will be heavily utilized on weekends. To provide a conservative analysis, the PM peak hour trip generation was used for both the weekday PM peak hour and Saturday peak hour analysis scenarios.

4.4 PROJECT TRIP DISTRIBUTION AND ASSIGNMENT

The estimated trips generated by the proposed development were assigned to the street network based on the trip distributions summarized in **Table 2**. This distribution is based on existing traffic patterns, the surrounding street network, area demographics, and engineering judgement.

Direction To/From	Percentage
North on View High Drive	75%
South on View High Drive	20%
East on Chipman Road	5%
Total	100%

TABLE 2: TRIP DISTRIBUTION

A large portion of the traffic generated by the development is expected to travel to/from the north on View High Drive to access I-470 and the regional highway network. The detailed distribution patterns through the study intersections are shown on **Exhibit 4**. **Exhibit 5** shows the resulting development trip assignment.

The proposed development trip assignments were added to the Existing Conditions traffic volumes. **Exhibit 6** illustrates the Existing plus Development Conditions peak hour traffic volumes.

5.0 ACCESS MANAGEMENT

The City of Lee's Summit *Access Management Code* provides guidance for the design of driveways, access spacing, and the need for turn lanes at intersections. These items are discussed in the following paragraphs.

5.1 ACCESS SPACING

The Access Management Code does not include minimum spacing requirements for driveways along local streets such as Ashurst Drive. The driveway serving both the sports complex and commercial development is located approximately 275 feet east of the View High Drive & Ashurst Drive intersection and 150 feet west of the Summit Church driveway. The middle driveway serving the sports complex is located approximately 175 feet east of the Summit Church driveway. The proposed driveway on the east side of the development site is located approximately 275 feet east of the Summit Church driveway.

5.2 AUXILIARY TURN LANES

The site is accessed from View High Drive at Ashurst Drive. Currently this intersection allows right-in/rightout access only. Through discussions with Kansas City staff, it was determined that a full-access median break is not desirable because it would be within the upstream functional area of the 109th Street & View High Drive intersection, should it be signalized in the future. The Ashurst Drive intersection is not within the downstream functional area, therefore the southbound left-turn movement could be allowed at View High Drive & Ashurst Drive.

The Access Management Code also provides standards for left- and right-turn lanes based on traffic volumes and street classification. According to the Access Management Code, left-turn lanes are required at all median openings on roadways with medians. Therefore, a southbound left-turn lane will be required at the View High Drive & Ashurst Drive intersection. The Access Management Code states that the minimum length of a left-turn lane is 200 feet plus an appropriate taper at the intersection of an arterial street with a street that is not an arterial street.

The Access Management Code requires right-turn lanes on arterial streets at each intersecting street or driveway where the right-turn volume on the major arterial street is projected to be at least 30 vehicles in any hour. The northbound right-turn volume at the View High Drive & Ashurst Drive intersection is expected to exceed 30 vehicles during the PM and Saturday peak hours. Thus, a northbound right-turn lane is warranted at the View High Drive & Ashurst Drive intersection. According to the Access Management Code, right-turn lanes are required to have a minimum storage length of 150 feet plus an appropriate taper at the intersection of an arterial street with a street that is not an arterial street.

5.3 CIRCULATION IMPROVEMENTS

Since the westbound left-turn movement will not be allowed at the View High Drive & Ashurst Drive intersection, other circulation improvements are necessary to allow site traffic to exit and travel south on View High Drive. Drive B should be constructed to connect from Ashurst Drive to the stub street where the north site drive ends 250 feet south of Chipman Road. This will provide a connection to Chipman Road to provide a circulation route to the signalized View High Drive & Chipman Road intersection.

Exhibit 7 illustrates the Existing plus Development lane configurations and intersections controls.

6.0 INTERSECTION CAPACITY ANALYSIS

6.1 LEVEL OF SERVICE OVERVIEW

Intersection capacity analysis was performed at the study intersections for the following scenarios:

- Existing Conditions
- Existing plus Development Conditions

The capacity analysis was performed for the weekday PM and Saturday peak hours using Synchro traffic modeling software to determine intersection delay and level of service (LOS). Calculations were performed based on the methodologies outlined in the *Highway Capacity Manual* (HCM), 7th Edition, which is published by the Transportation Research Board.

LOS is a qualitative measure used by traffic engineers to describe the operations of an intersection. It ranges from A to F, with A being the best and F being the worst level of operation. LOS A conditions are characterized by minimal vehicle delay and free-flow conditions, while LOS F is characterized by long vehicle delay – usually when demand exceeds available roadway capacity. **Table 3** shows the definition of LOS for unsignalized and signalized intersections.

	Average Control Dela	y (seconds/vehicle) at:
Level of Service	Unsignalized Intersections	Signalized Intersections
А	0 – 10	0 – 10
В	> 10 – 15	> 10 - 20
С	> 15 – 25	> 20 - 35
D	> 25 – 35	> 35 – 55
E	> 35 – 50	> 55 - 80
F	> 50	> 80

TABLE 3: LEVEL OF SERVICE

Levels of service are evaluated based on the movement groupings which are required to yield to other traffic. Typically, these are left turns off the major street and the side street approaches for two-way stop-controlled intersections. For signalized intersections each movement grouping is evaluated, and LOS is evaluated for the intersection as a whole.

The City of Lee's Summit has adopted LOS C as the minimum desirable LOS. However, LOS D and E may be considered acceptable for low to moderate traffic volumes, the availability of alternate routes, and the duration of activity resulting in lower LOS.

The volume-to-capacity (v/c) ratio is a secondary measure of intersection performance. The v/c ratio represents the sufficiency of an intersection to accommodate the vehicular demand. A v/c ratio less than 0.85 generally indicates that adequate capacity is available, and vehicles are not expected to experience significant queues and delays. As the v/c ratio approaches 1.0, traffic flow may become unstable, and delay and queuing conditions may occur. Once the demand exceeds the capacity (a v/c ratio greater than 1.0), traffic flow is unstable and excessive delay and queuing is expected.

Traffic queues were also evaluated as part of the analyses. Long traffic queues which extend beyond the amount of storage available, either between intersections or within turn lanes, can have significant impacts

on operations. The 95th percentile vehicular queues were analyzed to ensure the analyses are reflective of the physical constraints of the study intersections and to identify if additional storage is needed for turn lanes. The 95th percentile queue represents the queue length that has only a 5% chance of being exceeded during the analysis period.

6.2 EXISTING CONDITIONS ANALYSIS

Capacity analysis was conducted for Existing Conditions at the study intersections to determine baseline conditions for the existing analysis year and to calibrate the models. The analysis was performed for weekday PM and Saturday peak hours and is based on the traffic volumes, lane configurations, and traffic controls shown on **Exhibits 2** and **3**. The Synchro reports are provided in **Appendix E**.

Table 4 provides a summary of the capacity analysis at the study intersections.

					Operatio	onal A	nalysis Res	ults				
luste use stills a	Control		PN	N Peak	k Hour		SAT Peak Hour					
Intersection Control Movem		Movement	Delay (sec/veh)	LOS	OS 95% Queue v/c		Delay (sec/veh)	LOS	95% Queue	v/c		
View High Drive & Ashurst Drive	Side Street Stop	WBR	13.2	В	< 50′	0.02	11.1	В	< 50′	0.02		
		WBL	20.1	С	73′	0.47	14.5	В	< 50′	0.33		
		WBR	19.1	В	< 50′	0.34	13.9	В	< 50′	0.24		
View High Drive	Cianalizad	NBT/R	10.5	В	332′	0.78	8.9	А	173′	0.67		
& Chipman Road	Signalized	SBL	7.0	А	< 50′	0.33	4.8	А	< 50′	0.17		
Road		SBT/R	3.7	А	206′	0.58	2.9	А	72′	0.35		
		Overall	7.9	А			6.6	А				
Chinman Dood	Side	WBL	7.8	А	< 50′	0.01	7.6	А	< 50′	0.01		
Chipman Road & Drive B	Street	NBL	11.2	А	< 50′	0.01	9.9	А	< 50′	0.01		
	Stop	NBR	9.8	А	< 50′	0.01	9.1	А	< 50′	0.01		

TABLE 4: EXISTING PEAK HOUR CONDITIONS

Based on the analysis, the study intersections operate at acceptable levels of service when a traffic signal is installed at the View High Drive & Chipman Road intersection. Some queuing is expected in the northbound and southbound through lanes of View High Drive when the Chipman Road intersection is signalized. The queues are expected to clear with each cycle of the signal, which is indicated by the LOS A and B conditions.

6.3 EXISTING PLUS DEVELOPMENT CONDITIONS ANALYSIS

Capacity analysis was conducted for Existing plus Development Conditions at the study intersections to determine the impacts of the proposed site traffic. The analysis was performed for weekday PM and Saturday peak hours and is based on the traffic volumes, lane configurations, and traffic controls shown on **Exhibits 6** and **7**. The Synchro reports are provided in **Appendix E**.

Table 5 provides a summary of the capacity analysis at the study intersections.

					Operatio	onal A	nalysis Res	ults			
	Control		PN	∕l Peak	k Hour		SAT Peak Hour				
Intersection Control Movemen	Movement	Delay (sec/veh)	LOS	95% Queue	V/C	Delay (sec/veh)	LOS	95% Queue	V/C		
View High Drive	Side Street	WBR	18.3	С	< 50′	0.41	13.5	В	< 50′	0.30	
& Ashurst Drive	Stop	SBL	10.1	В	< 50′	0.19	9.0	А	< 50′	0.15	
	WBL	27.6	С	151′	0.67	19.0	В	83′	0.53		
View High Drive		WBR	24.8	С	< 50′	0.43	17.4	В	< 50′	0.33	
View High Drive & Chipman	Signalized	NBT/R	12.1	В	577′	0.84	10.3	В	302′	0.76	
Road	Signalizeu	SBL	11.2	В	79′	0.47	6.3	Α	< 50′	0.25	
Road		SBT/R	4.7	А	384′	0.68	3.4	Α	139′	0.45	
		Overall	10.2	В			8.2	Α			
Chimmen Deed	Side	WBL	7.9	А	< 50′	0.01	7.7	А	< 50′	0.01	
Chipman Road & Drive B	Street	NBL	12.7	В	< 50′	0.16	10.9	В	< 50′	0.12	
	Stop	NBR	10.0	А	< 50′	0.03	9.3	А	< 50′	0.02	

TABLE 5: EXISTING PLUS DEVELOPMENT PEAK HOUR CONDITIONS

The results in **Table 5** indicate that the study intersections are projected to operate acceptably with the addition of site generated trips from the proposed development and the improvements identified. Some longer queues are projected in the northbound and southbound through lanes of View High Drive. However, the northbound queue does not extend to the intersection with Ashurst Drive. The signalized intersection was analyzed with at 120-second cycle length. A shorter cycle length would reduce queues and improve operations at the intersection.

7.0 CONCLUSIONS AND RECOMMENDATIONS

A traffic impact study for the View High Sports Complex development has been prepared by Kimley-Horn. The development is generally located in the northeast and southeast corners of the View High Drive & Ashurst Drive intersection in Lee's Summit, Missouri, adjacent to the city limits. The purpose of this study was to assess the impact of the proposed development on the surrounding transportation system. The following provides a summary of the analysis.

Intersection capacity analysis was performed at the study intersections for the following scenarios:

- Existing Conditions
- Existing plus Development Conditions

The study intersections are projected to operate at acceptable levels of service when a traffic signal is installed at the View High Drive & Chipman Road intersection following completion of the Chipman Road improvements project.

The proposed development is projected to generate 5,117 daily trips, 469 trips during the PM peak hour (226 entering and 243 exiting), and 250 trips during the Saturday peak hour (132 entering and 118 exiting). The Saturday peak hour trips for the community center are significantly less than the PM peak hour trips. However, it is likely that the proposed development will be heavily utilized on weekends. The PM peak hour trips were used to evaluate the Saturday peak hour scenario.

The sports complex portion of the proposed development site will be accessed from three new driveways spaced 350 to 400 feet apart along Ashurst Drive. The commercial site will be accessed by a new driveway along Drive B.

Several improvements are needed at the intersection of View High Drive & Ashurst Drive per the City of Lee's Summit *Access Management* Code to accommodate development traffic. A summary of the improvements at the intersection are listed below:

View High Drive & Ashurst Drive

- Construct a median break and a southbound left-turn lane with a minimum storage length of 200 feet plus an appropriate taper.
- Construct a northbound right-turn lane with a minimum storage length of 150 feet plus an appropriate taper.

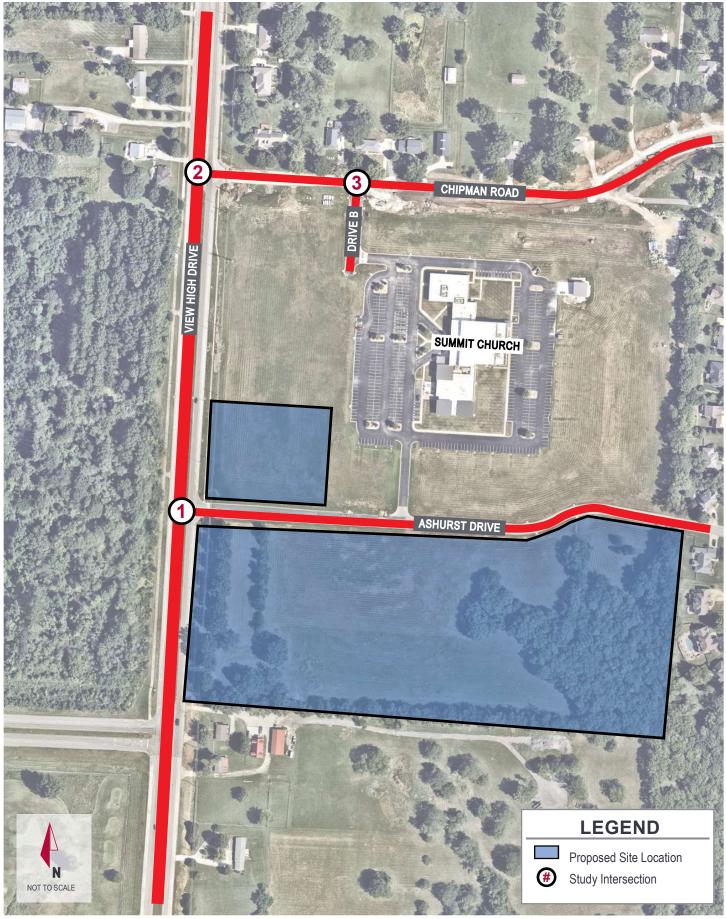
<u>Drive B</u>

• Construct the north/south roadway from Ashurst Drive to connect to the existing stub street 250 feet south of Chipman Road.

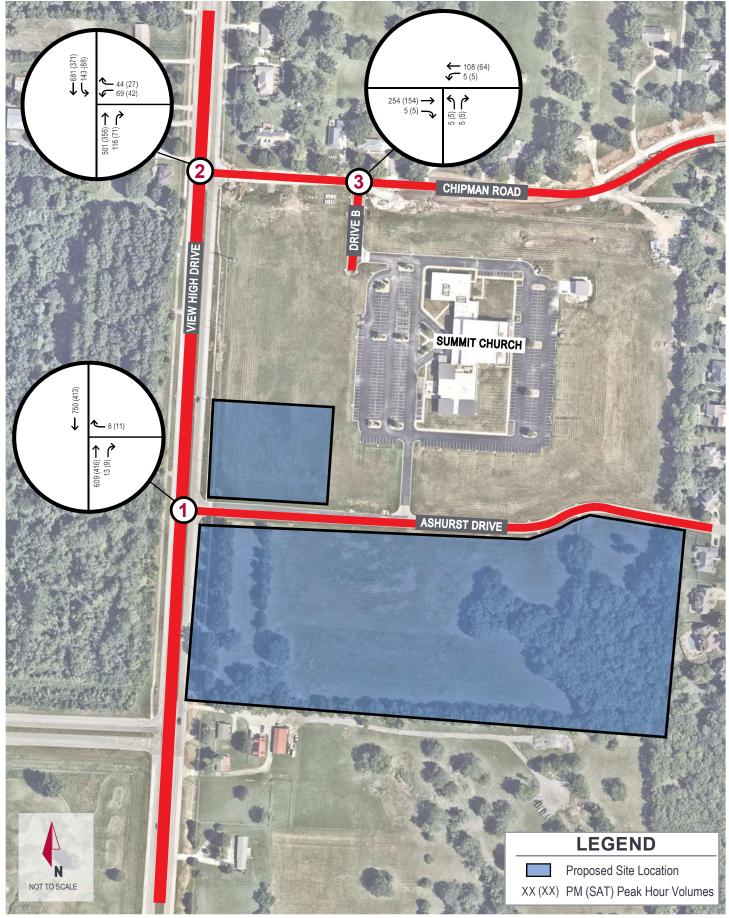
The study intersections are projected to operate acceptably with the aforementioned improvements. Some longer queues are projected in the northbound and southbound through lanes of View High Drive. However, the northbound queue does not extend to the intersection with Ashurst Drive.

APPENDIX

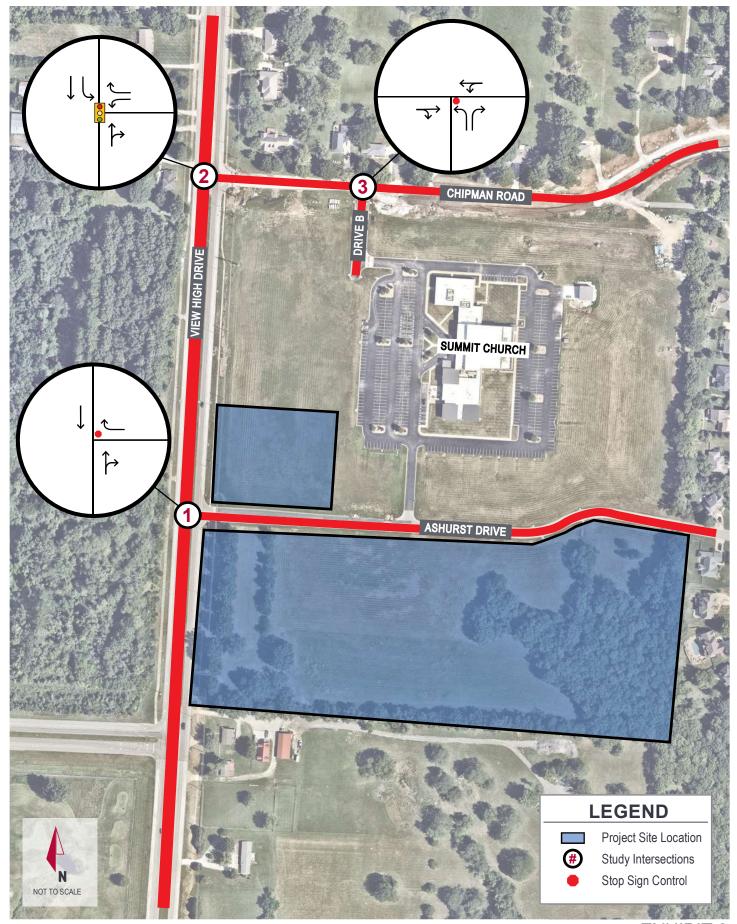
Appendix A: EXHIBITS


Appendix B: TURNING MOVEMENT COUNTS

Appendix C: SITE PLAN


Appendix D: ITE TRIP GENERATION MANUAL SHEETS

Appendix E: SYNCHRO REPORTS


Appendix A: Exhibits

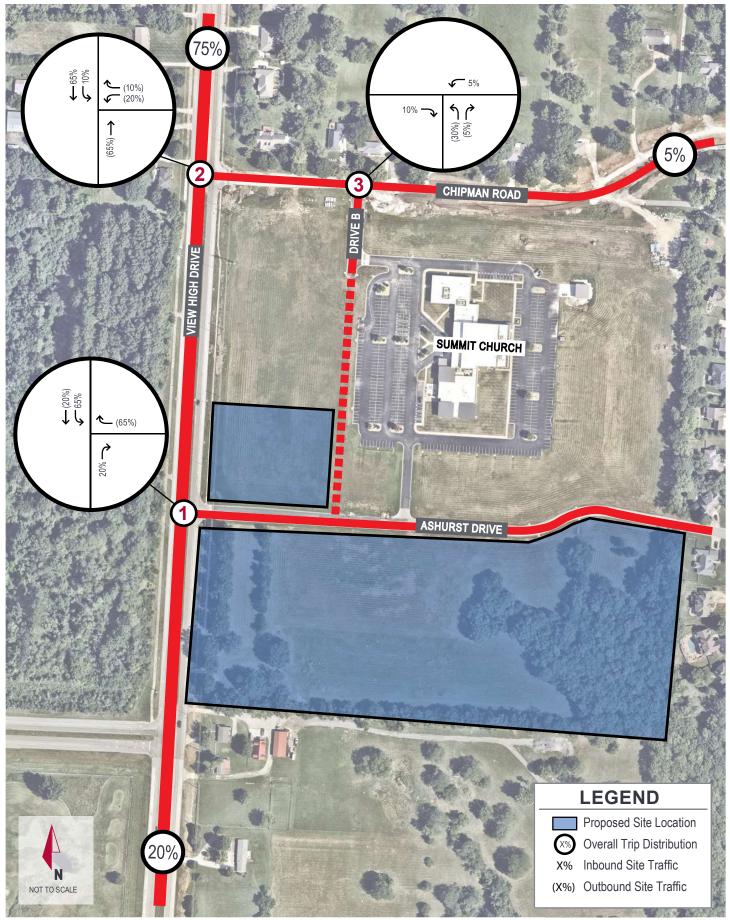

EXHIBIT 1 SITE LOCATION AND STUDY AREA

EXHIBIT 2 EXISTING CONDITIONS PEAK HOUR TRAFFIC VOLUMES

EXHIBIT 3 EXISTING GEOMETRY AND INTERSECTION CONTROL

EXHIBIT 4 SITE TRIP DISTRIBUTION

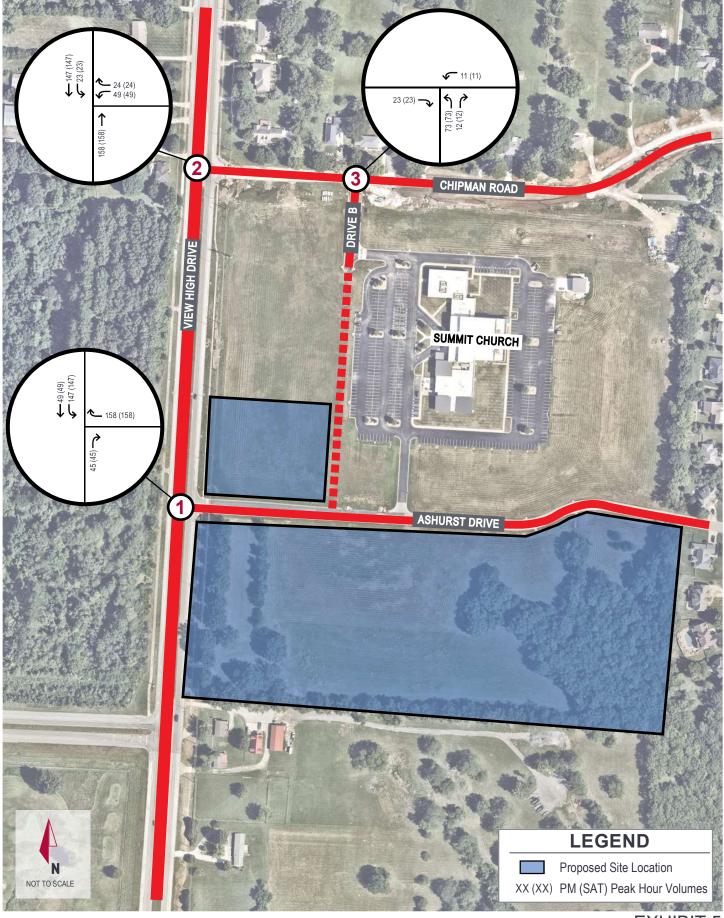
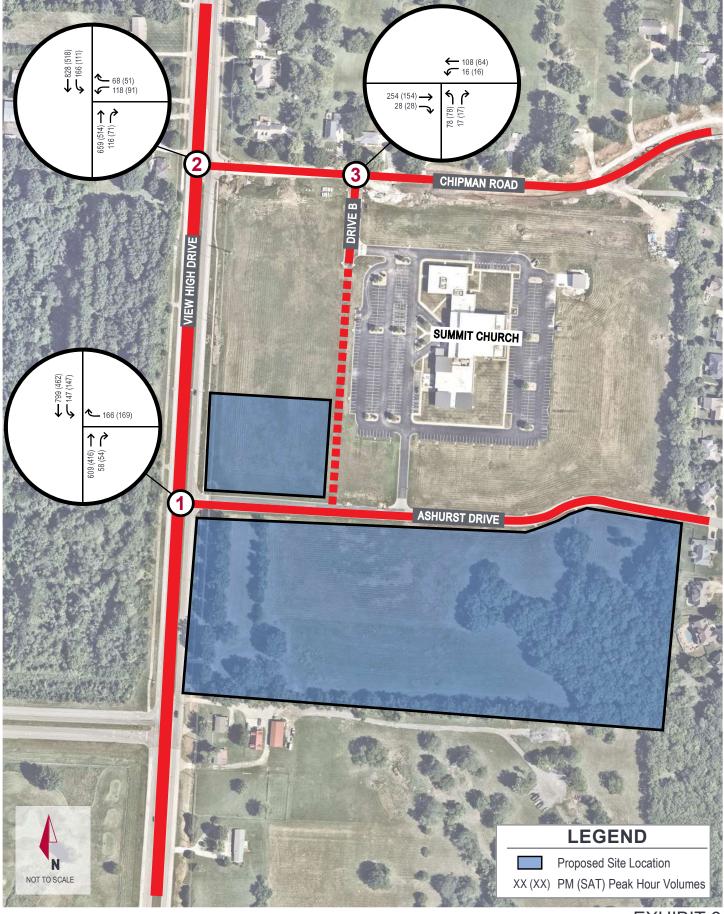
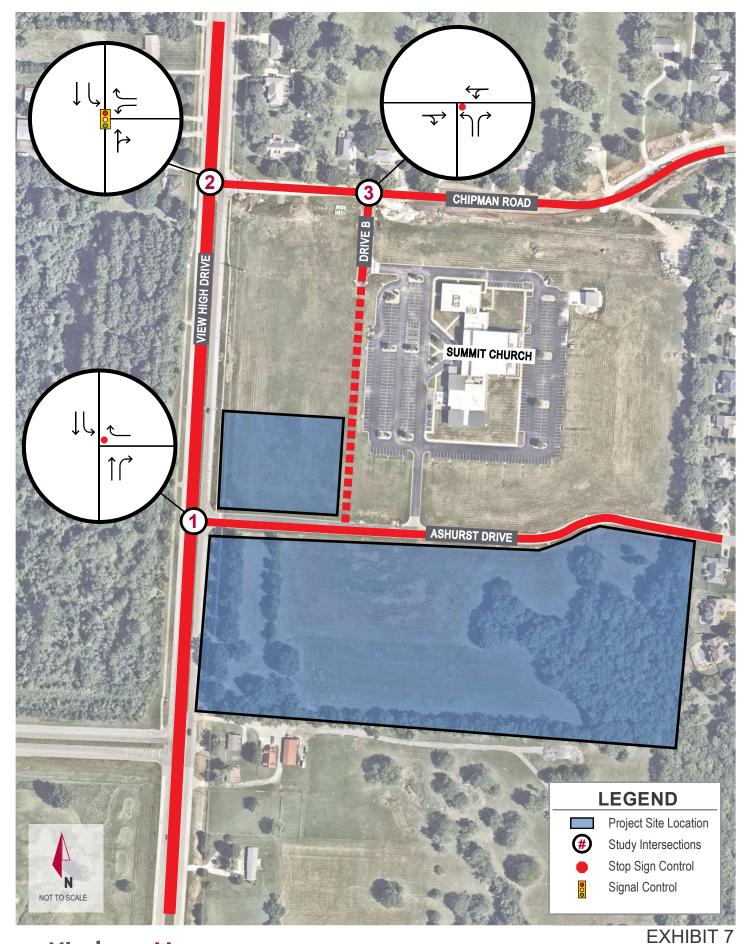




EXHIBIT 5 PROJECT TRAFFIC

EXHIBIT 6 EXISTING PLUS DEVELOPMENT PEAK HOUR TRAFFIC VOLUMES

EXISTING PLUS DEVELOPMENT GEOMETRY AND INTERSECTION CONTROL

Appendix B: Turning Movement Counts

Thu Nov 21, 2024

Full Length (4 PM-6 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)

All Movements

ID: 1250051, Location: 38.925565, -94.449988

625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Leg	Ashurs				View High I	Dr			View H	0			
Direction	Westbo				Northbound				Southbo				
Time	L	R	U	Арр	Т	R	U	Арр	L	Т	U	Арр	Int
2024-11-21 4:00PI	1 0	4	0	4	93	2	0	95	0	119	0	119	218
4:15PI	1 0	4	0	4	106	2	0	108	0	139	0	139	251
4:30PI	1 0	5	0	5	127	4	0	131	0	124	0	124	260
4:45PI	1 0	3	0	3	111	3	0	114	0	165	0	165	282
Hourly Tota	ıl 0	16	0	16	437	11	0	448	0	547	0	547	1011
5:00PI	1 0	1	0	1	147	5	0	152	0	180	0	180	333
5:15PI	1 0	2	0	2	126	3	0	129	0	171	0	171	302
5:30PI	1 0	2	0	2	109	2	0	111	0	165	0	165	278
5:45PI	1 0	4	0	4	66	4	0	70	0	170	0	170	244
Hourly Tota	ıl 0	9	0	9	448	14	0	462	0	686	0	686	1157
Tota	i 0	25	0	25	885	25	0	910	0	1233	0	1233	2168
% Арргоас	h 0%	100%	0%	-	97.3%	2.7%	0%	-	0%	100%	0%	-	-
% Tota	l 0%	1.2%	0%	1.2%	40.8%	1.2%	0%	42.0%	0%	56.9%	0%	56.9%	-
Light	s 0	25	0	25	870	25	0	895	0	1226	0	1226	2146
% Light	s 0%	100%	0%	100%	98.3%	100%	0%	98.4%	0%	99.4%	0%	99.4%	99.0%
Articulated Truck	s 0	0	0	0	1	0	0	1	0	2	0	2	3
% Articulated Truck	s 0%	0%	0%	0%	0.1%	0%	0%	0.1%	0%	0.2%	0%	0.2%	0.1%
Buses and Single-Unit Truck	s 0	0	0	0	14	0	0	14	0	5	0	5	19
% Buses and Single-Unit Truck	s 0%	0%	0%	0%	1.6%	0%	0%	1.5%	0%	0.4%	0%	0.4%	0.9%

^{*}L: Left, R: Right, T: Thru, U: U-Turn

Thu Nov 21, 2024

Full Length (4 PM-6 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)

All Movements

ID: 1250051, Location: 38.925565, -94.449988

625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Thu Nov 21, 2024

PM Peak (4:45 PM - 5:45 PM) - Overall Peak Hour

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks) All Movements

All Movements

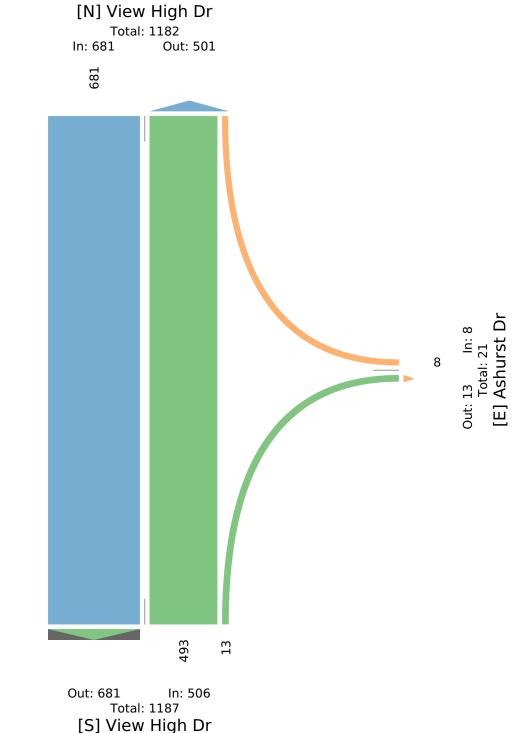
ID: 1250051, Location: 38.925565, -94.449988

625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Leg	Ashurst	Dr			View High I	Dr			View H	igh Dr			
Direction	Westbou	ınd			Northbound				Southbo	ound			
Time	L	R	U	Арр	Т	R	U	Арр	L	Т	U	Арр	Int
2024-11-21 4:45PM	0	3	0	3	111	3	0	114	0	165	0	165	282
5:00PM	0	1	0	1	147	5	0	152	0	180	0	180	333
5:15PM	0	2	0	2	126	3	0	129	0	171	0	171	302
5:30PM	0	2	0	2	109	2	0	111	0	165	0	165	278
Total	0	8	0	8	493	13	0	506	0	681	0	681	1195
% Approach	0%	100%	0%	-	97.4%	2.6%	0%	-	0%	100%	0%	-	-
% Total	0%	0.7%	0%	0.7%	41.3%	1.1%	0%	42.3%	0%	57.0%	0%	57.0%	-
PHF	-	0.667	-	0.667	0.838	0.650	-	0.832	-	0.946	-	0.946	0.897
Lights	0	8	0	8	482	13	0	495	0	677	0	677	1180
% Lights	0%	100%	0%	100%	97.8%	100%	0%	97.8%	0%	99.4%	0%	99.4%	98.7%
Articulated Trucks	0	0	0	0	1	0	0	1	0	1	0	1	2
% Articulated Trucks	0%	0%	0%	0%	0.2%	0%	0%	0.2%	0%	0.1%	0%	0.1%	0.2%
Buses and Single-Unit Trucks	0	0	0	0	10	0	0	10	0	3	0	3	13
% Buses and Single-Unit Trucks	0%	0%	0%	0%	2.0%	0%	0%	2.0%	0%	0.4%	0%	0.4%	1.1%

^{*}L: Left, R: Right, T: Thru, U: U-Turn

Thu Nov 21, 2024 PM Peak (4:45 PM - 5:45 PM) - Overall Peak Hour


All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)

All Movements

ID: 1250051, Location: 38.925565, -94.449988

625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Sat Nov 23, 2024

Full Length (12 PM-2 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)

All Movements

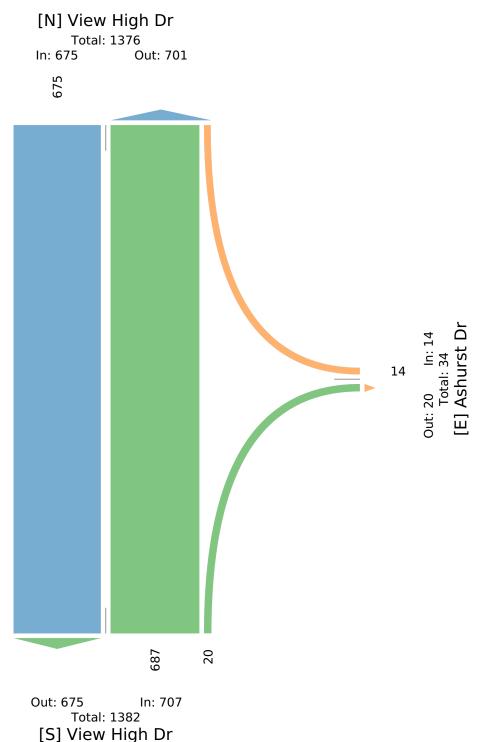
ID: 1250050, Location: 38.925565, -94.449988

625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Leg Direction	Ashurst Westbo				View High I	Dr			View H Southbo	0			
			TT	A	Northbound T	D	TT	A			TT	A	Lat
Time	L	R	U	Арр	-	R	U	Арр	L	Т	U	Арр	
2024-11-23 12:00PM		2	0	2	83	1	0	84	0	85	0	85	171
12:15PM	1 0	3	0	3	74	2	0	76	0	108	0	108	187
12:30PM	0	5	0	5	100	3	0	103	0	76	0	76	184
12:45PM	0	1	0	1	81	2	0	83	0	97	0	97	181
Hourly Tota	0	11	0	11	338	8	0	346	0	366	0	366	723
1:00PM	0	2	0	2	90	2	0	92	0	90	0	90	184
1:15PM	0	1	0	1	104	3	0	107	0	66	0	66	174
1:30PM	0	0	0	0	78	3	0	81	0	70	0	70	151
1:45PM	0	0	0	0	77	4	0	81	0	83	0	83	164
Hourly Tota	0	3	0	3	349	12	0	361	0	309	0	309	673
Tota	0	14	0	14	687	20	0	707	0	675	0	675	1396
% Approach	0%	100%	0%	-	97.2%	2.8%	0%	-	0%	100%	0%	-	-
% Tota	0%	1.0%	0%	1.0%	49.2%	1.4%	0%	50.6%	0%	48.4%	0%	48.4%	-
Lights	0	14	0	14	685	20	0	705	0	674	0	674	1393
% Lights	0%	100%	0%	100%	99.7%	100%	0%	99.7%	0%	99.9%	0%	99.9%	99.8%
Articulated Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0
% Articulated Trucks	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Buses and Single-Unit Trucks	0	0	0	0	2	0	0	2	0	1	0	1	3
% Buses and Single-Unit Trucks	0%	0%	0%	0%	0.3%	0%	0%	0.3%	0%	0.1%	0%	0.1%	0.2%

*L: Left, R: Right, T: Thru, U: U-Turn

Sat Nov 23, 2024 Full Length (12 PM-2 PM)


All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)

All Movements

ID: 1250050, Location: 38.925565, -94.449988

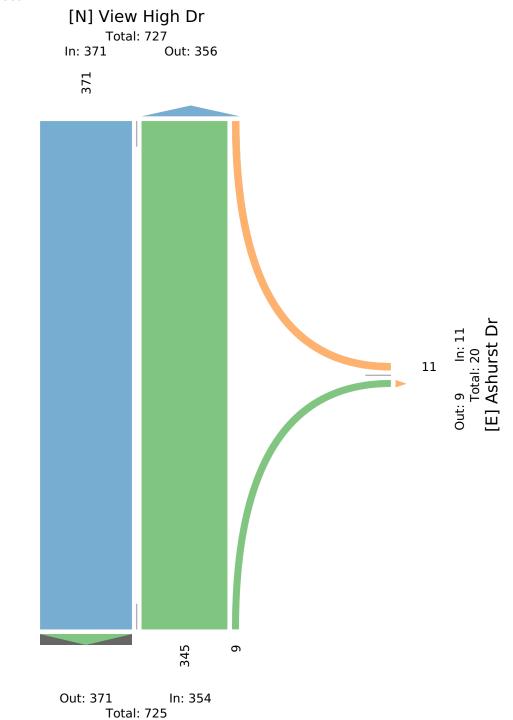
625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Sat Nov 23, 2024 Midday Peak (WKND) (12:15 PM - 1:15 PM) - Overall Peak Hour All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks) All Movements ID: 1250050, Location: 38.925565, -94.449988

625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Leg	Ashurst	Dr			View High I	Dr			View H	ligh Dr			
Direction	Westbo	und			Northbound				Southbo	ound			
Time	L	R	U	Арр	Т	R	U	Арр	L	Т	U	Арр	Int
2024-11-23 12:15PM	0	3	0	3	74	2	0	76	0	108	0	108	187
12:30PM	0	5	0	5	100	3	0	103	0	76	0	76	184
12:45PM	0	1	0	1	81	2	0	83	0	97	0	97	181
1:00PM	0	2	0	2	90	2	0	92	0	90	0	90	184
Total	0	11	0	11	345	9	0	354	0	371	0	371	736
% Approach	0%	100%	0%	-	97.5%	2.5%	0%	-	0%	100%	0%	-	-
% Total	0%	1.5%	0%	1.5%	46.9%	1.2%	0%	48.1%	0%	50.4%	0%	50.4%	-
PHF	-	0.550	-	0.550	0.863	0.750	-	0.859	-	0.859	-	0.859	0.984
Lights	0	11	0	11	345	9	0	354	0	370	0	370	735
% Lights	0%	100%	0%	100%	100%	100%	0%	100%	0%	99.7%	0%	99.7%	99.9%
Articulated Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0
% Articulated Trucks	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Buses and Single-Unit Trucks	0	0	0	0	0	0	0	0	0	1	0	1	1
% Buses and Single-Unit Trucks	0%	0%	0%	0%	0%	0%	0%	0%	0%	0.3%	0%	0.3%	0.1%

^{*}L: Left, R: Right, T: Thru, U: U-Turn


Sat Nov 23, 2024

Midday Peak (WKND) (12:15 PM - 1:15 PM) - Overall Peak Hour All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks) All Movements

ID: 1250050, Location: 38.925565, -94.449988

625 Forest Edge Drive, Vernon Hills, IL, 60061, US

[S] View High Dr

Sat Nov 23, 2024

PM Peak (WKND) (1 PM - 2 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)

All Movements

ID: 1250050, Location: 38.925565, -94.449988

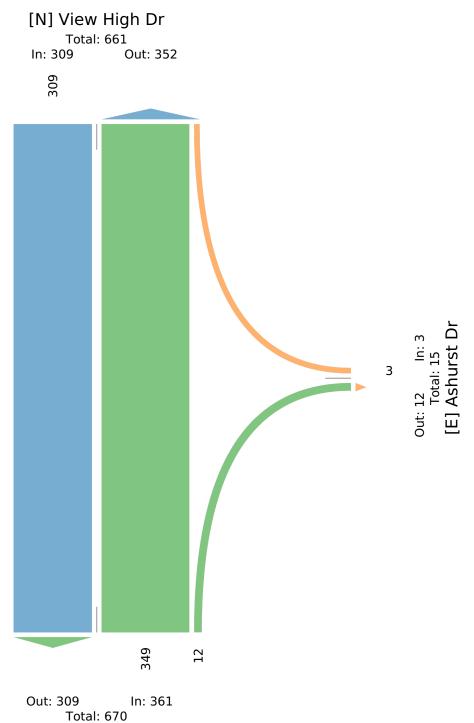
625 Forest Edge Drive, Vernon Hills, IL, 60061, US

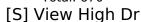
Leg	Ashurst	Dr			View High I	Dr			View H	ligh Dr			
Direction	Westbou	ınd			Northbound				Southbo	ound			
Time	L	R	U	Арр	Т	R	U	Арр	L	Т	U	Арр	Ínt
2024-11-23 1:00PM	0	2	0	2	90	2	0	92	0	90	0	90	184
1:15PM	0	1	0	1	104	3	0	107	0	66	0	66	174
1:30PM	0	0	0	0	78	3	0	81	0	70	0	70	151
1:45PM	0	0	0	0	77	4	0	81	0	83	0	83	164
Total	0	3	0	3	349	12	0	361	0	309	0	309	673
% Approach	0%	100%	0%	-	96.7%	3.3%	0%	-	0%	100%	0%	-	-
% Total	0%	0.4%	0%	0.4%	51.9%	1.8%	0%	53.6%	0%	45.9%	0%	45.9%	-
PHF	-	0.375	-	0.375	0.839	0.750	-	0.843	-	0.858	-	0.858	0.914
Lights	0	3	0	3	347	12	0	359	0	309	0	309	671
% Lights	0%	100%	0%	100%	99.4%	100%	0%	99.4%	0%	100%	0%	100%	99.7%
Articulated Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0
% Articulated Trucks	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Buses and Single-Unit Trucks	0	0	0	0	2	0	0	2	0	0	0	0	2
% Buses and Single-Unit Trucks	0%	0%	0%	0%	0.6%	0%	0%	0.6%	0%	0%	0%	0%	0.3%

*L: Left, R: Right, T: Thru, U: U-Turn

Sat Nov 23, 2024

PM Peak (WKND) (1 PM - 2 PM)


All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)


All Movements

ID: 1250050, Location: 38.925565, -94.449988

625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Appendix C: Site Plan

PROPERTY DESCRIPTION

ALL PAVING ON THE PARKING LOT WILL COMPLY WITH THE UNIFIED DEVELOPMENT ORDINANCE ARTICLE 8 IN TERMS OF PAVING THICKNESS AND BASE

OIL - GAS WELLS

ACCORDING TO EDWARD ALTON MAY JR'S ENVIRONMENTAL IMPACT STUDY OF ABANDONED OIL AND GAS WELLS IN LEE'S SUMMIT. MISSOURI IN 1995. THERE ARE NOT OIL AND GAS WELLS WITHIN 185 FEET OF THE PROPERTY AS SURVEYED HEREON.

SURVEY AND PLAT NOTES:

THE SUBJECT PROPERTY SURVEYED LIES WITHIN A FLOOD ZONE DESIGNATED ZONE (X), AREAS LOCATED OUTSIDE THE 100 YEAR FLOOD PLAIN, PER F.E.M.A. MAP, COMMUNITY PANEL NO. 29095C0412G EFFECTIVE DATE: JANUARY 20, 2017.

UTILITY COMPANIES:

THE FOLLOWING LIST OF UTILITY COMPANIES IS PROVIDED FOR INFORMATION ONLY. WE DO NOT OFFER ANY GUARANTEE OR WARRANTY THAT THIS LIST IS COMPLETE OR ACCURATE. THE CONTRACTOR SHALL BE RESPONSIBLE FOR CONTACTING ALL UTILITY COMPANIES THAT MAY BE AFFECTED BY THE PROPOSED CONSTRUCTION AND VERIFYING THE ACTUAL LOCATION OF EACH UTILITY LINE. THE CONTRACTOR SHALL NOTIFY ENGINEERING SOLUTIONS AT 816.623.9888 OF ANY CONFLICT WITH PROPOSED IMPROVEMENTS.

EVERGY ~ 298-1196 MISSOURI GAS ENERGY ~ 756-5261

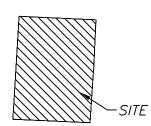
SOUTHWESTERN BELL TELEPHONE ~ 761-5011 COMCAST CABLE ~ 795-1100

WILLIAMS PIPELINE ~ 422-6300

CITY OF LEE'S SUMMIT PUBLIC WORKS ~ 969-1800

CITY OF LEE'S SUMMIT PUBLIC WORKS INSPECTIONS ~ 969-1800

CITY OF LEE'S SUMMIT WATER UTILITIES ~ 969-1900 MISSOURI ONE CALL (DIG RITE) ~ 1-800-344-7483


GENERAL NOTES:

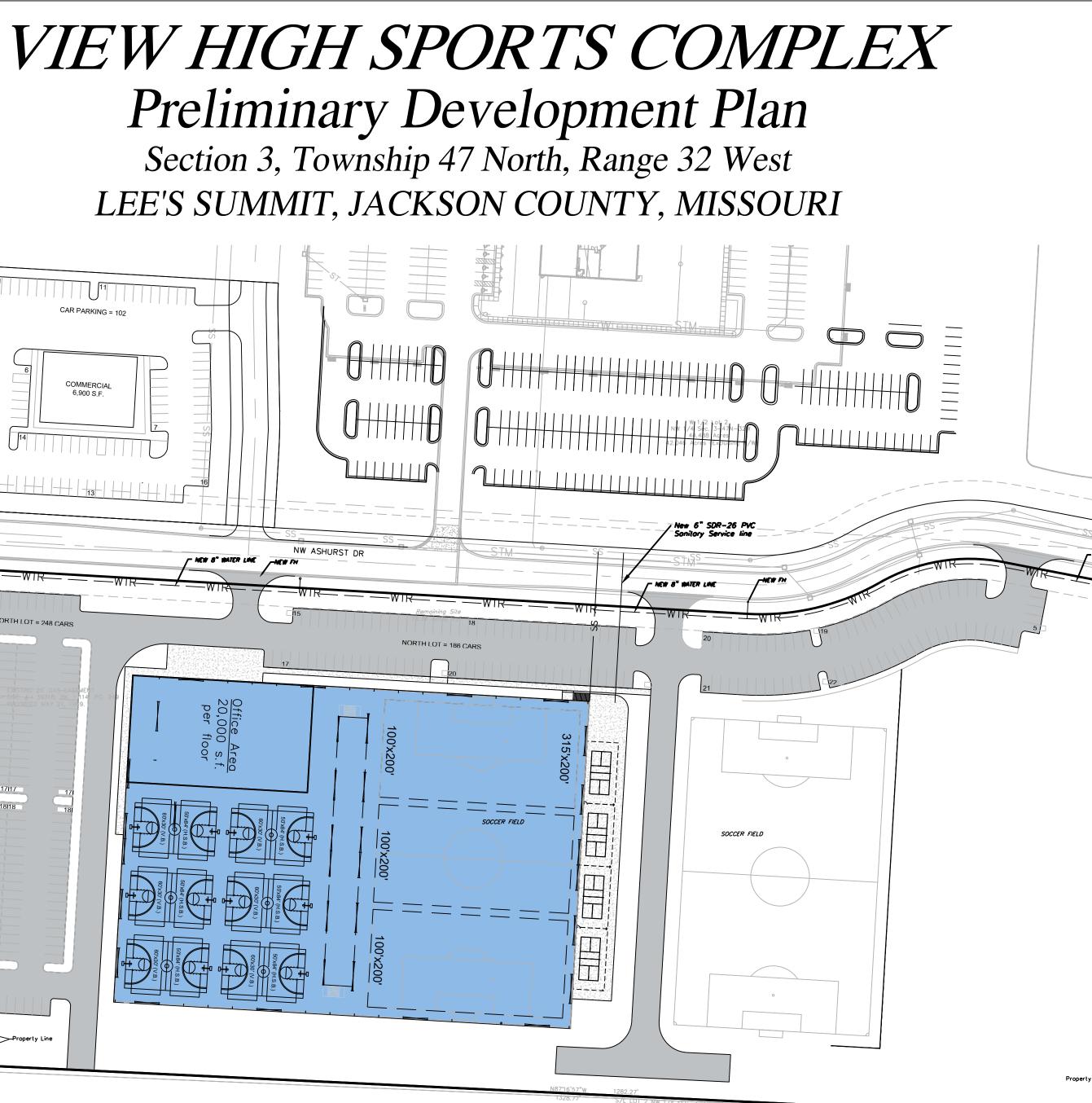
1 ~ ALL CONSTRUCTION SHALL CONFORM TO THE CITY OF LEE'S SUMMIT DESIGN AND CONSTRUCTION MANUAL AS ADOPTED BY ORDINANCE 5813.

2 ~ ALL REQUIRED EASEMENTS WITHIN THE BOUNDARY OF THIS PROJECT SHALL BE PROVIDED BY SEPARATE DOCUMENT 3 ~ ANY REQUIRED EASEMENT LOCATED OUTSIDE OF THE BOUNDARY OF THIS PROJECT SHALL BE PROVIDED FOR BY SEPARATE INSTRUMENT PRIOR TO ISSUANCE OF CONSTRUCTION PERMITS. 4 ~ THE CONTRACTOR SHALL CONTACT THE CITY'S DEVELOPMENT SERVICES ENGINEERING INSPECTORS 48 HOURS PRIOR TO ANY LAND DISTURBANCE WORK AT (816) 969-1200.

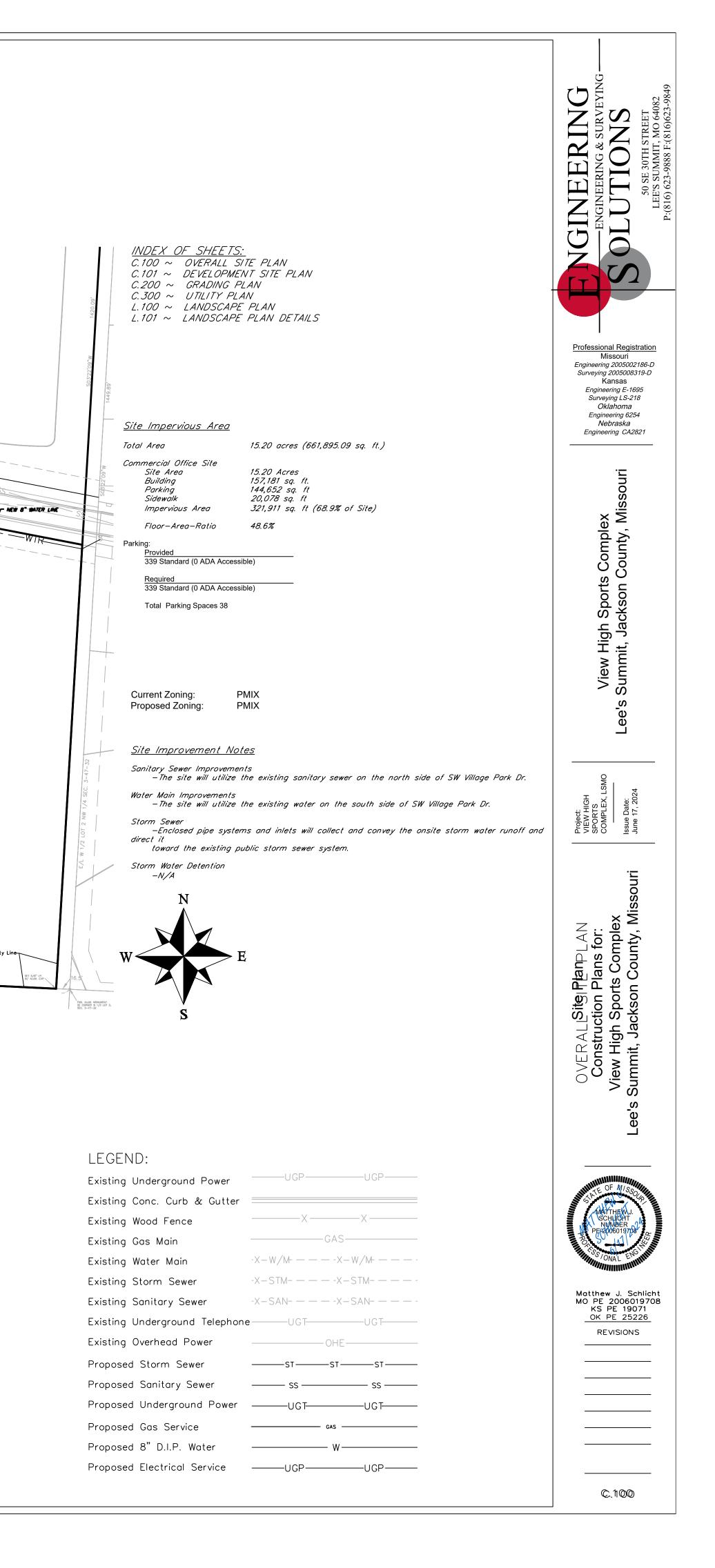
5 ~ THE CONTRACTOR SHALL NOTIFY ENGINEERING SOLUTIONS AT 816.623.9888 OF ANY CONFLICT WITH THE IMPROVEMENTS PROPOSED BY THESE PLANS AND SITE CONDITIONS. 6 ~ THE CONTRACTOR SHALL NOTIFY THE CITY ENGINEER AND OBTAIN THE APPROPRIATE BLASTING PERMITS FOR A REQUIRED

BLASTING. IF BLASTING IS ALLOWED, ALL BLASTING SHALL CONFORM TO STATE REGULATIONS AND LOCAL ORDINANCES.

...\..\VICINITY MAP.png


CAR PARKING = 102

> COMMERCIAL 6,900 S.F.


NORTH LOT = 248 CARS

17/17

18|18

SITE LOCATION MAP SCALE" 1"=50'

Appendix D: ITE Trip Generation Manual Data

Land Use: 488 Soccer Complex

Description

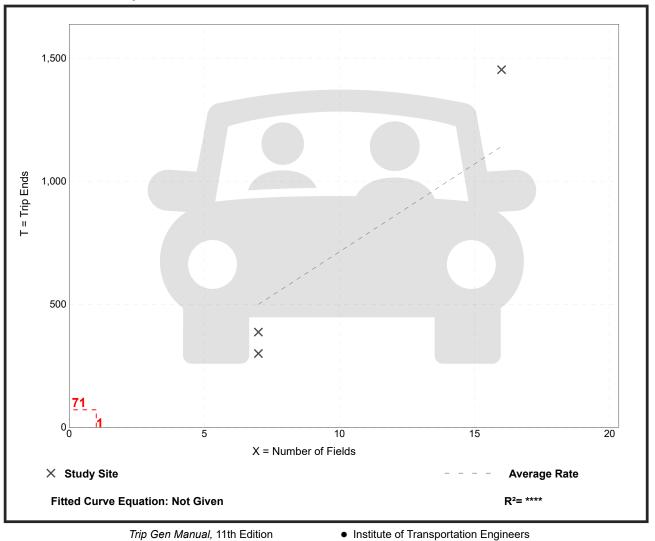
A soccer complex is an outdoor facility that is used for non-professional soccer games. It may consist of multiple fields. The size of each field within the land use may vary to accommodate games for different age groups. On-site amenities may include stadium seating, a fitness trail, an activities shelter, aquatic center, picnic grounds, basketball and tennis courts, and a playground. Public park (Land Use 411) is a related use.

Additional Data

Caution should be used when applying these data. Peaking at soccer complexes typically occurred in time periods shorter than 1 hour. These peaking periods may have durations of 10 to 15 minutes. To assist in the future analysis of this land use, it is important to collect driveway counts in 10-minute intervals.

The technical appendices provide supporting information on time-of-day distributions for this land use. The appendices can be accessed through either the ITETripGen web app or the trip generation resource page on the ITE website (https://www.ite.org/technical-resources/topics/trip-and-parking-generation/).

The sites were surveyed in the 1990s and the 2010s in California, Colorado, Hawaii, Indiana, New Jersey, and Washington.

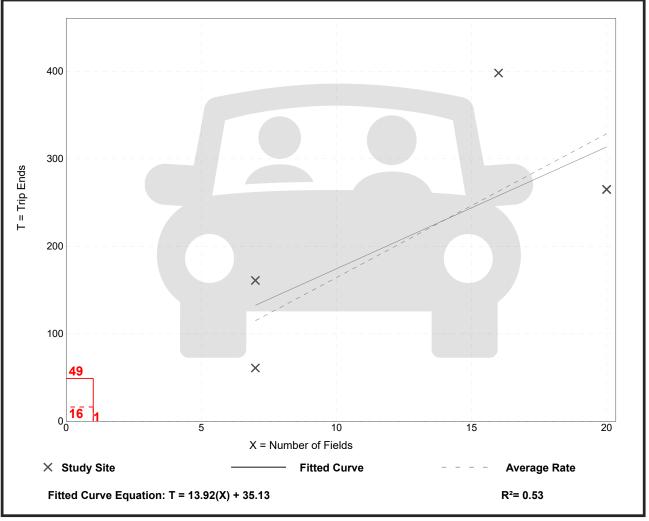

Source Numbers

377, 519, 565, 722, 856, 908, 952, 956, 1004

Soccer Complex (488)				
Vehicle Trip Ends vs: Fields On a: Weekday				
	Setting/Location: Number of Studies: Avg. Num. of Fields: Directional Distribution:	10		
Vehicle Trip Generation per Field				
Average Rate 71.33	Range o 42.86 - 9		Standard Deviation 26.03	

Data Plot and Equation

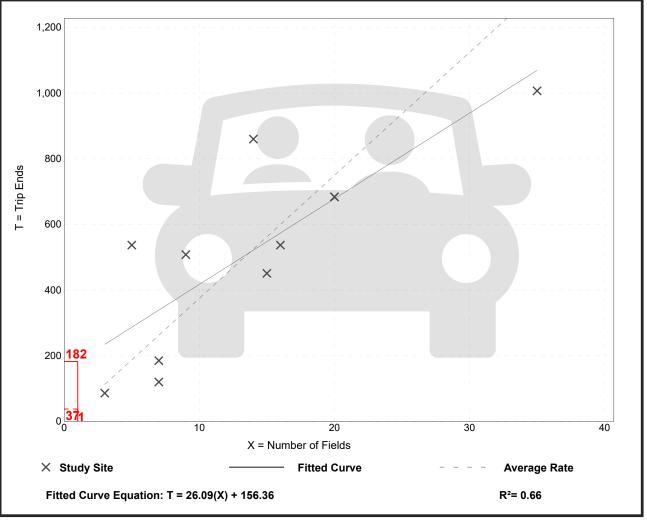
Caution – Small Sample Size


Soccer Complex (488)		
Vehicle Trip Ends vs:	Fields	
On a:	Weekday,	
	Peak Hour of Adjacent Street Traffic,	
	One Hour Between 4 and 6 p.m.	
Setting/Location:	General Urban/Suburban	
Number of Studies:	5	
Avg. Num. of Fields:	14	
Directional Distribution:	66% entering, 34% exiting	

Vehicle Trip Generation per Field

Average Rate	Range of Rates	Standard Deviation
16.43	8.71 - 24.88	6.36

Data Plot and Equation


Caution – Small Sample Size

Trip Gen Manual, 11th Edition

Soccer Complex (488)			
	Vehicle Trip Ends vs: On a:		k Hour of Generator
	Setting/Location:	General Urban	/Suburban
	Number of Studies:	11	
	Avg. Num. of Fields:	14	
	Directional Distribution:	48% entering, 5	52% exiting
ehicle Trip Gener	ation per Field		
Average Rate	Range o	f Rates	Standard Deviation
37.48	17.14 - 1	07.40	17.87

Data Plot and Equation

Trip Gen Manual, 11th Edition

Land Use: 495 Recreational Community Center

Description

A recreational community center is a stand-alone public facility similar to and including YMCAs. These facilities often include classes and clubs for adults and children, a day care or nursery school, meeting rooms and other social facilities, swimming pools and whirlpools, saunas, tennis, racquetball, handball, pickle ball, basketball and volleyball courts; outdoor athletic fields/courts, exercise classes, weightlifting and gymnastics equipment, locker rooms, and a restaurant or snack bar. Public access is typically allowed and a membership fee may be charged. Racquet/ tennis club (Land Use 491), health/fitness club (Land Use 492), and athletic club (Land Use 493) are related land uses.

Additional Data

The technical appendices provide supporting information on time-of-day distributions for this land use. The appendices can be accessed through either the ITETripGen web app or the trip generation resource page on the ITE website (https://www.ite.org/technical-resources/topics/trip-and-parking-generation/).

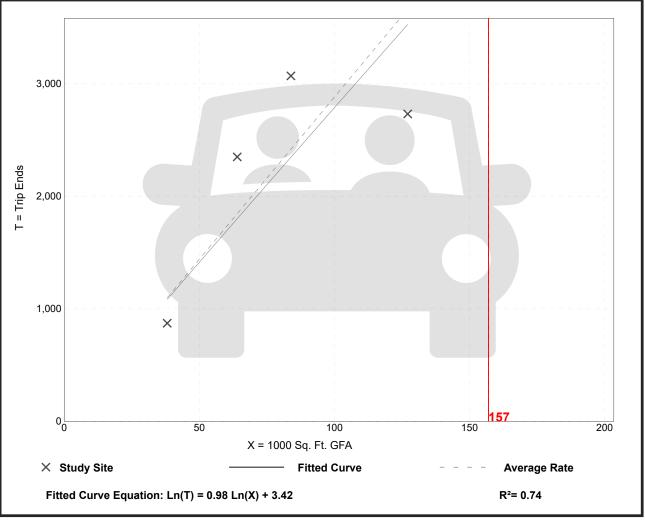
The sites were surveyed in the 1980s, the 1990s, the 2000s, the 2010s, and the 2020s in Alberta (CAN), Arizona, Indiana, Minnesota, New Hampshire, New York, Oregon, Pennsylvania, Tennessee, and Utah.

Source Numbers

281, 410, 443, 571, 618, 705, 719, 850, 866, 971, 1055

Recreational Community Center (495)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA On a: Weekday

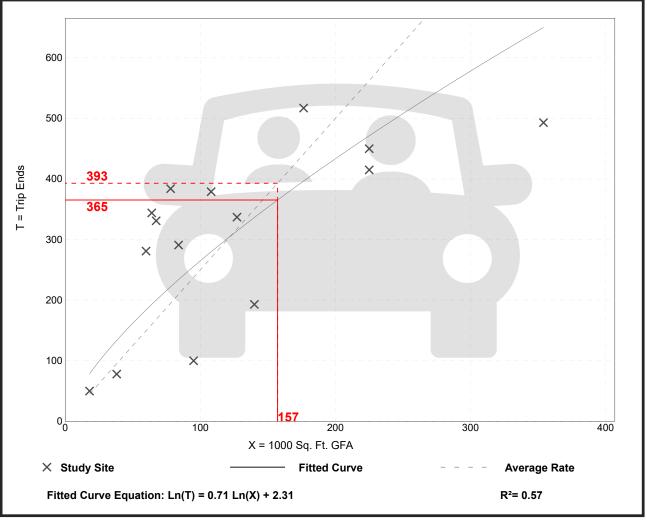

Number of Studies:	4
Avg. 1000 Sq. Ft. GFA:	78
Directional Distribution:	50% entering, 50% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
28.82	21.49 - 36.71	8.56

Data Plot and Equation

Caution – Small Sample Size


Trip Gen Manual, 11th Edition

Recreational Community Center (495)		
Vehicle Trip Ends vs: On a:	1000 Sq. Ft. GFA Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.	
Setting/Location:	General Urban/Suburban	
Number of Studies:	15	
Avg. 1000 Sq. Ft. GFA:	124	
Directional Distribution:	47% entering, 53% exiting	

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
2.50	1.05 - 5.37	1.28

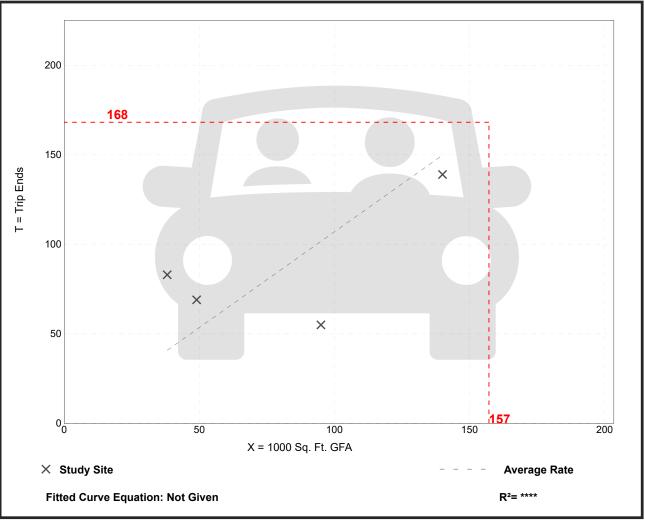
Data Plot and Equation

Trip Gen Manual, 11th Edition

Recreational Community Center (495)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA On a: Saturday, Peak Hour of Generator

Setting/Location:	General Urban/Suburban
Number of Ctudies	4


Number of Studies:	4
Avg. 1000 Sq. Ft. GFA:	
Directional Distribution:	54% entering, 46% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
1.07	0.58 - 2.18	0.56

Data Plot and Equation

Caution – Small Sample Size

Trip Gen Manual, 11th Edition

Land Use: 822 Strip Retail Plaza (<40k)

Description

A strip retail plaza is an integrated group of commercial establishments that is planned, developed, owned, and managed as a unit. Each study site in this land use has less than 40,000 square feet of gross leasable area (GLA). Because a strip retail plaza is open-air, the GLA is the same as the gross floor area of the building.

The 40,000 square feet GFA threshold between strip retail plaza and shopping plaza (Land Use 821) was selected based on an examination of the overall shopping center/plaza database. No shopping plaza with a supermarket as its anchor is smaller than 40,000 square feet GLA.

Shopping center (>150k) (Land use 820), shopping plaza (40-150k) (Land Use 821), and factory outlet center (Land Use 823) are related uses.

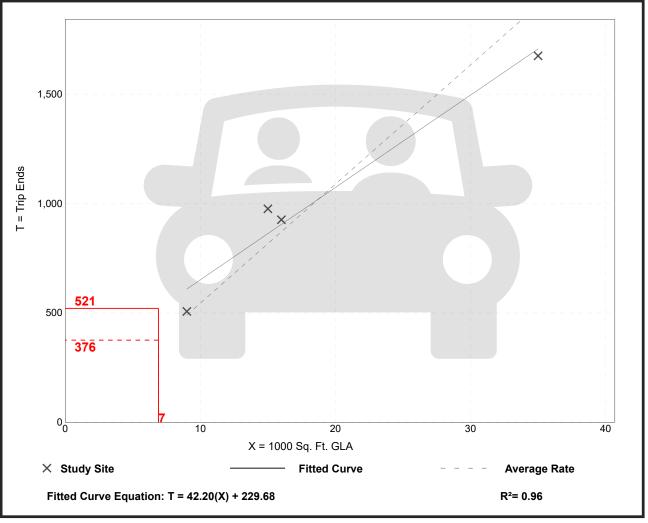
Additional Data

The technical appendices provide supporting information on time-of-day distributions for this land use. The appendices can be accessed through either the ITETripGen web app or the trip generation resource page on the ITE website (https://www.ite.org/technical-resources/topics/trip-and-parking-generation/).

The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in Alberta (CAN), California, Delaware, Florida, New Jersey, Ontario (CAN), South Dakota, Vermont, Washington, and Wisconsin.

Source Numbers

304, 358, 423, 428, 437, 507, 715, 728, 936, 960, 961, 974, 1009

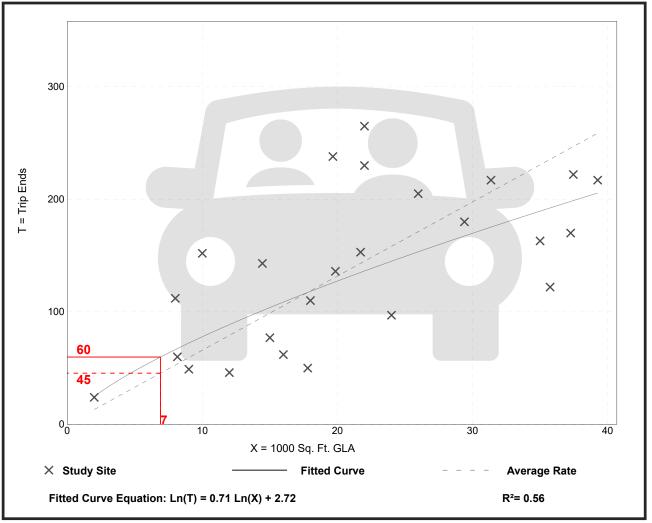


		Plaza (<40k) 22)	
	Vehicle Trip Ends vs: On a:	1000 Sq. Ft. GLA Weekday	
	Setting/Location:	General Urban/Suburba	an
	Number of Studies:	4	
	Avg. 1000 Sq. Ft. GLA:	19	
	Directional Distribution:	50% entering, 50% exitin	Ig
ehicle Trip Gener	ation per 1000 Sq. Ft.	GLA	
Average Rate	Range o	f Rates	Standard Deviation

Average Rale	Range of Rates	Standard Deviation
54.45	47.86 - 65.07	7.81

Data Plot and Equation

Caution – Small Sample Size

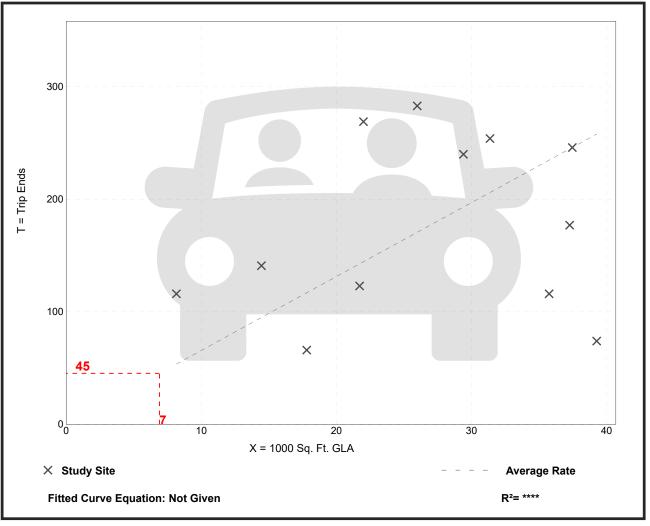

Trip Gen Manual, 11th Edition

•	Plaza (<40k) 22)
Vehicle Trip Ends vs:	•
On a:	Weekday,
	Peak Hour of Adjacent Street Traffic,
	One Hour Between 4 and 6 p.m.
Setting/Location:	General Urban/Suburban
Number of Studies:	25
Avg. 1000 Sq. Ft. GLA:	21
	50% entering, 50% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GLA

Average Rate	Range of Rates	Standard Deviation
6.59	2.81 - 15.20	2.94

Data Plot and Equation



Trip Gen Manual, 11th Edition

Vehicle Trip Ends vs:	1000 Sq. Ft. GLA
On a:	Saturday, Peak Hour of Generator
Setting/Location:	General Urban/Suburban
Number of Studies:	12
Avg. 1000 Sq. Ft. GLA:	27
Directional Distribution:	51% entering, 49% exiting

Average Rate	Range of Rates	Standard Deviation
6.57	1.88 - 14.23	3.45

Data Plot and Equation

Trip Gen Manual, 11th Edition

Appendix E: Synchro Reports

Int Delay, s/veh	0.1						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	-
Lane Configurations		1	4			1	
Traffic Vol, veh/h	0	8	609	13	0	750)
Future Vol, veh/h	0	8	609	13	0	750)
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Stop	Stop	Free	Free	Free	Free	÷
RT Channelized	-	None	-	None	-	None	ŕ
Storage Length	-	0	-	-	-	-	-
Veh in Median Storage	,# 0	-	0	-	-	0)
Grade, %	0	-	0	-	-	0)
Peak Hour Factor	90	90	90	90	90	90)
Heavy Vehicles, %	2	2	2	2	2	2)
Mvmt Flow	0	9	677	14	0	833	;

Major/Minor	Minor1	N	lajor1	Ma	ajor2	
Conflicting Flow All	-	684	0	0	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.22	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.318	-	-	-	-
Pot Cap-1 Maneuver	0	449	-	-	0	-
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver		449	-	-	-	-
Mov Cap-2 Maneuver	r -	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-

Approach	WB	NB	SB	
HCM Control Delay,	s/v13.19	0	0	
HCM LOS	В			

Minor Lane/Major Mvmt	NBT	NBRW	'BLn1	SBT
Capacity (veh/h)	-	-	449	-
HCM Lane V/C Ratio	-	-	0.02	-
HCM Control Delay (s/veh)	-	-	13.2	-
HCM Lane LOS	-	-	В	-
HCM 95th %tile Q(veh)	-	-	0.1	-

	4	٩	t	1	ţ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	77	49	686	159	757
v/c Ratio	0.30	0.18	0.70	0.34	0.53
Control Delay (s/veh)	28.9	11.0	15.9	5.0	5.8
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay (s/veh)	28.9	11.0	15.9	5.0	5.8
Queue Length 50th (ft)	23	0	170	13	99
Queue Length 95th (ft)	73	29	332	33	206
Internal Link Dist (ft)	354		846		728
Turn Bay Length (ft)	150			175	
Base Capacity (vph)	655	617	1798	577	1863
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.12	0.08	0.38	0.28	0.41
Intersection Summary					

	•	٩	t	1	\$	ŧ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	3	*	f,		3	•	
Traffic Volume (veh/h)	69	44	501	116	143	681	
Future Volume (veh/h)	69	44	501	116	143	681	
Initial Q (Qb), veh	0	0	0	0	0	0	
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	77	49	557	129	159	757	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	164	146	712	165	480	1296	
Arrive On Green	0.09	0.09	0.48	0.48	0.10	0.69	
Sat Flow, veh/h	1781	1585	1469	340	1781	1870	
Grp Volume(v), veh/h	77	49	0	686	159	757	
Grp Sat Flow(s), veh/h/ln	1781	1585	0	1809	1781	1870	
Ω Serve(g_s), s	1.7	1.2	0.0	13.2	1.5	8.7	
Cycle Q Clear(g_c), s	1.7	1.2	0.0	13.2	1.5	8.7	
Prop In Lane	1.00	1.00	0.0	0.19	1.00	0.7	
Lane Grp Cap(c), veh/h	164	146	0	876	480	1296	
V/C Ratio(X)	0.47	0.34	0.00	0.78	0.33	0.58	
Avail Cap(c_a), veh/h	873	777	0	3224	790	4049	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Jpstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00	
Jniform Delay (d), s/veh	18.0	17.8	0.0	8.9	6.6	3.3	
Incr Delay (d2), s/veh	2.1	1.3	0.0	1.6	0.4	0.4	
nitial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	0.7	0.5	0.0	3.1	0.2	0.2	
Jnsig. Movement Delay, s/veh		0.0	5.0	5.1	5.2	5.2	
nGrp Delay(d), s/veh	20.1	19.1	0.0	10.5	7.0	3.7	
InGrp LOS	C	В	5.0	B	A	A	
pproach Vol, veh/h	126	-	686			916	
Approach Delay, s/veh	19.7		10.5			4.3	
Approach LOS	B		10.5 B			4.5 A	
	_	2	5				0
Timer - Assigned Phs	1	2				<u>6</u>	8
Phs Duration (G+Y+Rc), s	8.7	24.8				33.5	8.3
Change Period (Y+Rc), s	4.5	4.5				4.5	4.5
Max Green Setting (Gmax), s	11.5	74.5				90.5	20.5
Vax Q Clear Time (g_c+l1), s	3.5	15.2				10.7	3.7
Green Ext Time (p_c), s	0.2	5.1				5.8	0.3
ntersection Summary							
CM 7th Control Delay, s/veh			7.9				
HCM 7th LOS			А				

Int Delay, s/veh	0.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	f,			ŧ	1	7
Traffic Vol, veh/h	254	5	5	108	5	5
Future Vol, veh/h	254	5	5	108	5	5
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	0
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	282	6	6	120	6	6

Major/Minor M	ajor1	N	lajor2		Minor1	
Conflicting Flow All	0	0	288	0	416	285
Stage 1	-	-	-	-	285	-
Stage 2	-	-	-	-	131	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	- 2	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1274	-	593	754
Stage 1	-	-	-	-	763	-
Stage 2	-	-	-	-	895	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1274	-	590	754
Mov Cap-2 Maneuver	-	-	-	-	590	-
Stage 1	-	-	-	-	763	-
Stage 2	-	-	-	-	891	-
Approach	EB		WB		NB	
HCM Control Delay, s/v	0		0.35		10.48	

J ·		
HCM LOS	В	

Minor Lane/Major Mvmt	NBLn1	NBLn2	EBT	EBR	WBL	WBT
Capacity (veh/h)	590	754	-	-	80	-
HCM Lane V/C Ratio	0.009	0.007	-	-	0.004	-
HCM Control Delay (s/veh)	11.2	9.8	-	-	7.8	0
HCM Lane LOS	В	А	-	-	А	А
HCM 95th %tile Q(veh)	0	0	-	-	0	-

Int Delay, s/veh	0.1						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations		7	f,			1	
Traffic Vol, veh/h	0	11	416	9	0	413	5
Future Vol, veh/h	0	11	416	9	0	413	5
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Stop	Stop	Free	Free	Free	Free	;
RT Channelized	-	None	-	None	-	None	<u>,</u>
Storage Length	-	0	-	-	-	-	
Veh in Median Storage	,# 0	-	0	-	-	0)
Grade, %	0	-	0	-	-	0)
Peak Hour Factor	92	92	92	92	92	92	2
Heavy Vehicles, %	2	2	2	2	2	2)
Mvmt Flow	0	12	452	10	0	449)

Major/Minor	Minor1	N	lajor1	Ma	ajor2	
Conflicting Flow All	-	457	0	0	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.22	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.318	-	-	-	-
Pot Cap-1 Maneuver	0	604	-	-	0	-
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver		604	-	-	-	-
Mov Cap-2 Maneuver	r -	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
			ND		0.0	

Approach	WB	NB	SB	
HCM Control Delay	y, s/v11.08	0	0	
HCM LOS	В			

Minor Lane/Major Mvmt	NBT	NBRWI	BLn1	SBT
Capacity (veh/h)	-	-	604	-
HCM Lane V/C Ratio	-	-	0.02	-
HCM Control Delay (s/veh)	-	-	11.1	-
HCM Lane LOS	-	-	В	-
HCM 95th %tile Q(veh)	-	-	0.1	-

	4	٩	t	1	ŧ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	46	29	464	96	403
v/c Ratio	0.16	0.10	0.45	0.15	0.27
Control Delay (s/veh)	19.2	9.6	10.8	3.4	3.5
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay (s/veh)	19.2	9.6	10.8	3.4	3.5
Queue Length 50th (ft)	10	0	85	7	35
Queue Length 95th (ft)	36	18	173	19	72
Internal Link Dist (ft)	354		846		728
Turn Bay Length (ft)	150			175	
Base Capacity (vph)	991	898	1822	829	1863
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.05	0.03	0.25	0.12	0.22
Intersection Summary					

	•	٩	t	1	4	ŧ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	۲	1	f,		ň	1	
Traffic Volume (veh/h)	42	27	356	71	88	371	
Future Volume (veh/h)	42	27	356	71	88	371	
nitial Q (Qb), veh	0	0	0	0	0	0	
ane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Nork Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	46	29	387	77	96	403	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	2	2	2	2	2	2	
cap, veh/h	138	123	574	114	558	1162	
Arrive On Green	0.08	0.08	0.38	0.38	0.09	0.62	
Sat Flow, veh/h	1781	1585	1515	301	1781	1870	
Grp Volume(v), veh/h	46	29	0	464	96	403	
Grp Sat Flow(s), veh/h/ln	1781	1585	0	1816	1781	1870	
Ω Serve(g_s), s	0.7	0.5	0.0	6.4	0.8	3.1	
Cycle Q Clear(g_c), s	0.7	0.5	0.0	6.4	0.8	3.1	
Prop In Lane	1.00	1.00	0.0	0.17	1.00	0.1	
ane Grp Cap(c), veh/h	138	123	0	688	558	1162	
//C Ratio(X)	0.33	0.24	0.00	0.67	0.17	0.35	
vail Cap(c_a), veh/h	1341	1193	0	4344	1140	5538	
ICM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Jpstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00	
Jniform Delay (d), s/veh	13.1	13.0	0.0	7.7	4.7	2.7	
ncr Delay (d2), s/veh	1.4	1.0	0.0	1.2	0.1	0.2	
nitial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
6ile BackOfQ(50%),veh/ln	0.3	0.2	0.0	1.2	0.0	0.1	
Insig. Movement Delay, s/veh							
nGrp Delay(d), s/veh	14.5	13.9	0.0	8.9	4.8	2.9	
nGrp LOS	В	В		A	A	A	
pproach Vol, veh/h	75		464			499	
pproach Delay, s/veh	14.3		8.9			3.3	
pproach LOS	В		A			A	
Fimer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	7.2	15.8				23.1	6.8
Change Period (Y+Rc), s	4.5	4.5				4.5	4.5
lax Green Setting (Gmax), s	12.5	71.5				88.5	22.5
lax Q Clear Time (g_c+I1), s	2.8	8.4				5.1	2.7
Green Ext Time (p_c), s	0.1	3.0				2.4	0.2
tersection Summary							
CM 7th Control Delay, s/veh			6.6				
ICM 7th LOS			А				

167

5

5

70

5

Intersection Int Delay, s/veh 0.6 EBT Movement EBR WBL WBT NBL NBR **1** 5 Lane Configurations Þ 4 ۲ 154 5 Traffic Vol, veh/h 5 5 64 Future Vol, veh/h 154 5 5 64 5 5 Conflicting Peds, #/hr 0 0 0 0 0 0 Sign Control Free Stop Stop Free Free Free RT Channelized -None -None -None Storage Length 0 0 ----Veh in Median Storage, # 0 --0 0 -Grade, % 0 0 0 ---Peak Hour Factor 92 92 92 92 92 92 Heavy Vehicles, % 2 2 2 2 2 2

5

Major/Minor	Major1	Major2	Minor1	
Conflicting Flow All	0	0 173	0 251	170
Stage 1	-		- 170	
Stage 2	-		- 80	-
Critical Hdwy	-	- 4.12	- 6.42	6.22
Critical Hdwy Stg 1	-		- 5.42	-
Critical Hdwy Stg 2	-		- 5.42	-
Follow-up Hdwy	-	- 2.218	- 3.518	
Pot Cap-1 Maneuver	-	- 1404	- 738	874
Stage 1	-		- 860	
Stage 2	-		- 943	-
Platoon blocked, %	-	-	-	
Mov Cap-1 Maneuver	-	- 1404	- 735	874
Mov Cap-2 Maneuver	-		- 735	-
Stage 1	-		- 860	-
Stage 2	-		- 939	-
Approach	EB	WB	NB	
HCM Control Delay, s/		0.55	9.54	
HCM LOS	• •	0.00	A	
			7.	
Minor Lane/Major Mvn	nt N	IBLn1 NBLn2	EBT EBR	WBL

Minor Lane/Major Mvmt	NBLn1	NBLn2	EBT	EBR	WBL	WBT	
Capacity (veh/h)	735	874	-	-	130	-	
HCM Lane V/C Ratio	0.007	0.006	-	-	0.004	-	
HCM Control Delay (s/veh)	9.9	9.1	-	-	7.6	0	
HCM Lane LOS	А	А	-	-	А	А	
HCM 95th %tile Q(veh)	0	0	-	-	0	-	

Mvmt Flow

Int Delay, s/veh	2.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		1	1	1	1	1
Traffic Vol, veh/h	0	166	609	58	147	799
Future Vol, veh/h	0	166	609	58	147	799
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	150	200	-
Veh in Median Storage	, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	184	677	64	163	888

Major/Minor	Minor1	Ν	/lajor1	Ν	/lajor2	
Conflicting Flow All	-	677	0	0	741	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.22	-	-	4.12	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	0	453	-	-	866	-
Stage 1	0	-	-	-	-	-
Stage 2	0	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuve		453	-	-	866	-
Mov Cap-2 Maneuve	r -	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-

Approach	WB	NB	SB	
HCM Control Delay, s	/v 18.3	0	1.57	
HCM LOS	С			

Minor Lane/Major Mvmt	NBT	NBRWBL	n1 SBL	SBT
Capacity (veh/h)	-	- 4	53 866	-
HCM Lane V/C Ratio	-	- 0.4	07 0.189	-
HCM Control Delay (s/veh)	-	- 18	3.3 10.1	-
HCM Lane LOS	-	-	C B	-
HCM 95th %tile Q(veh)	-	- '	1.9 0.7	-

	•	٩	t	1	ŧ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	131	76	861	184	920
v/c Ratio	0.49	0.25	0.84	0.55	0.68
Control Delay (s/veh)	42.0	11.9	23.0	12.6	8.9
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay (s/veh)	42.0	11.9	23.0	12.6	8.9
Queue Length 50th (ft)	56	0	299	20	181
Queue Length 95th (ft)	151	42	577	79	384
Internal Link Dist (ft)	354		846		728
Turn Bay Length (ft)	150			175	
Base Capacity (vph)	448	457	1643	441	1791
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.29	0.17	0.52	0.42	0.51
Intersection Summary					

	•	٩	t	1	\$	ŧ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	3	1	4		3	•	
Traffic Volume (veh/h)	118	68	659	116	166	828	
Future Volume (veh/h)	118	68	659	116	166	828	
Initial Q (Qb), veh	0	0	0	0	0	0	
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	131	76	732	129	184	920	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	197	175	870	153	389	1361	
Arrive On Green	0.11	0.11	0.56	0.56	0.08	0.73	
Sat Flow, veh/h	1781	1585	1548	273	1781	1870	
Grp Volume(v), veh/h	131	76	0	861	184	920	
Grp Sat Flow(s), veh/h/ln	1781	1585	0	1821	1781	1870	
Q Serve(g_s), s	3.9	2.5	0.0	21.8	2.0	14.6	
Cycle Q Clear(g_c), s	3.9	2.5	0.0	21.8	2.0	14.6	
Prop In Lane	1.00	1.00	010	0.15	1.00		
Lane Grp Cap(c), veh/h	197	175	0	1023	389	1361	
V/C Ratio(X)	0.67	0.43	0.00	0.84	0.47	0.68	
Avail Cap(c_a), veh/h	594	528	0	2460	655	3116	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	23.7	23.1	0.0	10.1	10.3	4.1	
Incr Delay (d2), s/veh	3.8	1.7	0.0	2.0	0.9	0.6	
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	1.8	1.0	0.0	5.8	0.9	1.4	
Unsig. Movement Delay, s/veh		1.0	5.0	0.0	5.7		
LnGrp Delay(d), s/veh	27.6	24.8	0.0	12.1	11.2	4.7	
LnGrp LOS	C	C	5.0	B	B	A	
Approach Vol, veh/h	207	Ŭ	861	-		1104	
Approach Delay, s/veh	26.5		12.1			5.7	
Approach LOS	20.5 C		12.1 B			З.7 А	
Timer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	9.2	35.7				44.9	10.6
Change Period (Y+Rc), s	4.5	4.5				44.9	4.5
Max Green Setting (Gmax), s	13.0	75.0				92.5	18.5
Max Q Clear Time (q_c+I1), s	4.0	23.8				16.6	5.9
Green Ext Time (p_c), s	0.3	7.4				8.3	0.5
4 - 7	0.0	ד. ו				0.0	0.5
Intersection Summary			10.2				
HCM 7th Control Delay, s/veh			10.2 B				
HCM 7th LOS			В				

Intersection						
Int Delay, s/veh	2.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	f,			¢.	2	*
Traffic Vol, veh/h	254	28	16	108	78	17
Future Vol, veh/h	254	28	16	108	78	17
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	150
Veh in Median Storage	e,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	282	31	18	120	87	19

Major/Minor	Major1	Ν	/lajor2		Minor1	
Conflicting Flow All	0	0	313	0	453	298
Stage 1	-	-	-	-	298	-
Stage 2	-	-	-	-	100	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	0.12	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	· -	-	1247	-	564	742
Stage 1	-	-	-	-	753	-
Stage 2	-	-	-	-	873	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuve	er -	-	1247	-	556	742
Mov Cap-2 Maneuve	er -	-	-	-	556	-
Stage 1	-	-	-	-	753	-
Stage 2	-	-	-	-	859	-

Approach	EB	WB	NB
HCM Control Delay, s/v	0	1.02	12.19
HCM LOS			В

Minor Lane/Major Mvmt	NBLn1	NBLn2	EBT	EBR	WBL	WBT
Capacity (veh/h)	556	742	-	-	232	-
HCM Lane V/C Ratio	0.156	0.025	-	-	0.014	-
HCM Control Delay (s/veh)	12.7	10	-	-	7.9	0
HCM Lane LOS	В	А	-	-	А	А
HCM 95th %tile Q(veh)	0.5	0.1	-	-	0	-

Int Delay, s/veh	2.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	1	1	٦	1
Traffic Vol, veh/h	0	169	416	54	147	462
Future Vol, veh/h	0	169	416	54	147	462
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	150	200	-
Veh in Median Storage,	, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	184	452	59	160	502

Major/Minor	Minor1	Ν	Najor1	Μ	lajor2		
Conflicting Flow All	-	452	0	0	511	0	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Critical Hdwy	-	6.22	-	-	4.12	-	
Critical Hdwy Stg 1	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	
Follow-up Hdwy	-	3.318	-	- 2	2.218	-	
Pot Cap-1 Maneuver	0	607	-	-	1054	-	
Stage 1	0	-	-	-	-	-	
Stage 2	0	-	-	-	-	-	
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuver	-	607	-	-	1054	-	
Mov Cap-2 Maneuver	-	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	

Approach	WB	NB	SB
HCM Control Delay, s/v1	3.48	0	2.18
HCM LOS	В		

Minor Lane/Major Mvmt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)	-	-	607	1054	-
HCM Lane V/C Ratio	-	-	0.302	0.152	-
HCM Control Delay (s/veh)	-	-	13.5	9	-
HCM Lane LOS	-	-	В	А	-
HCM 95th %tile Q(veh)	-	-	1.3	0.5	-

	1	٩	t	1	ţ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	99	55	636	121	563
v/c Ratio	0.35	0.18	0.67	0.25	0.41
Control Delay (s/veh)	27.4	9.9	15.6	4.6	5.0
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay (s/veh)	27.4	9.9	15.6	4.6	5.0
Queue Length 50th (ft)	29	0	153	11	66
Queue Length 95th (ft)	83	29	302	28	139
Internal Link Dist (ft)	354		846		728
Turn Bay Length (ft)	150			175	
Base Capacity (vph)	727	682	1830	545	1863
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.14	0.08	0.35	0.22	0.30
Intersection Summary					

	•	٩	t	1	\$	ŧ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	3	1	f.		3	≜	
Traffic Volume (veh/h)	91	51	514	71	111	518	
Future Volume (veh/h)	91	51	514	71	111	518	
Initial Q (Qb), veh	0	0	0	0	0	0	
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	99	55	559	77	121	563	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	185	165	734	101	483	1244	
Arrive On Green	0.10	0.10	0.46	0.46	0.09	0.67	
Sat Flow, veh/h	1781	1585	1609	222	1781	1870	
Grp Volume(v), veh/h	99	55	0	636	121	563	
Grp Sat Flow(s), veh/h/ln	1781	1585	0	1830	1781	1870	
Q Serve(g_s), s	2.1	1.3	0.0	11.3	1.1	5.6	
Cycle Q Clear(g_c), s	2.1	1.3	0.0	11.3	1.1	5.6	
Prop In Lane	1.00	1.00	0.0	0.12	1.00	5.0	
Lane Grp Cap(c), veh/h	185	165	0	835	483	1244	
V/C Ratio(X)	0.53	0.33	0.00	0.76	0.25	0.45	
Avail Cap(c_a), veh/h	1028	915	0.00	3497	750	4245	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00	
Jniform Delay (d), s/veh	16.6	16.2	0.00	8.8	6.0	3.1	
ncr Delay (d2), s/veh	2.4	1.2	0.0	1.5	0.0	0.3	
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	0.0	0.0	0.0	2.6	0.0	0.0	
, <i>j</i>		0.5	0.0	2.0	U. I	0.2	
Unsig. Movement Delay, s/veh		17.4	0.0	10.3	6.3	3.4	
LnGrp Delay(d), s/veh LnGrp LOS	19.0 B	17.4 B	0.0	10.3 B	6.3 A	3.4 A	
		D	(2)	D	A		
Approach Vol, veh/h	154		636			684	
Approach Delay, s/veh	18.4		10.3			3.9	
Approach LOS	В		В			А	
Timer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	8.2	22.3				30.4	8.6
Change Period (Y+Rc), s	4.5	4.5				4.5	4.5
Max Green Setting (Gmax), s	9.5	74.5				88.5	22.5
Max Q Clear Time (g_c+I1), s	3.1	13.3				7.6	4.1
Green Ext Time (p_c), s	0.1	4.5				3.7	0.4
ntersection Summary							
HCM 7th Control Delay, s/veh			8.2				
ICM 7th LOS			A				
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				

Intersection						
Int Delay, s/veh	3.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	¢Î			¢.	2	
Traffic Vol, veh/h	154	28	16	64	78	17
Future Vol, veh/h	154	28	16	64	78	17
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	150
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	167	30	17	70	85	18

Major/Minor	Major1	Major2	Minor1		
Conflicting Flow All	0	0 198	0 287	183	
Stage 1	-		- 183	-	
Stage 2	-		- 104	-	
Critical Hdwy	-	- 4.12	- 6.42	6.22	
Critical Hdwy Stg 1	-		- 5.42	-	
Critical Hdwy Stg 2	-		- 5.42	-	
Follow-up Hdwy	-	- 2.218	- 3.518	3.318	
Pot Cap-1 Maneuver	-	- 1375	- 703	860	
Stage 1	-		- 849	-	
Stage 2	-		- 920	-	
Platoon blocked, %	-	-	-		
Mov Cap-1 Maneuver	· -	- 1375	- 694	860	
Mov Cap-2 Maneuver	· -		- 694	-	
Stage 1	-		- 849	-	
Stage 2	-		- 908	-	

Approach	EB WB	NB
HCM Control Delay, s/v	0 1.53	10.61
HCM LOS		В

Minor Lane/Major Mvmt	NBLn1	NBLn2	EBT	EBR	WBL	WBT
Capacity (veh/h)	694	860	-	-	360	-
HCM Lane V/C Ratio	0.122	0.021	-	-	0.013	-
HCM Control Delay (s/veh)	10.9	9.3	-	-	7.7	0
HCM Lane LOS	В	А	-	-	А	А
HCM 95th %tile Q(veh)	0.4	0.1	-	-	0	-