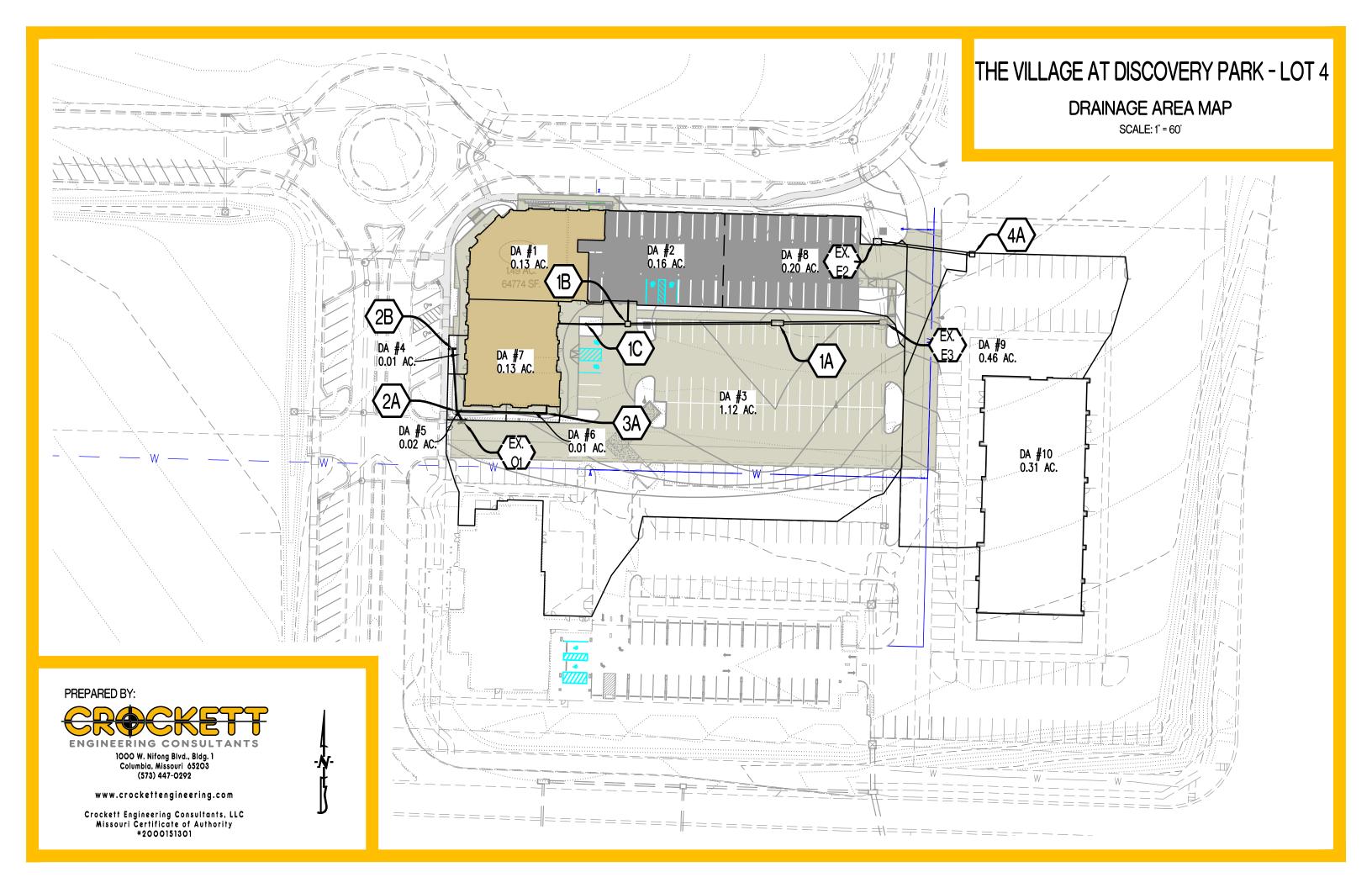


STORM WATER CALCULATIONS


FOR

The Village at Discovery Park Lot 4

PROJECT NO. 230286

July 26, 2024

PROJECT:	The Village at Discovery Park - Lot 4
----------	---------------------------------------

CALCULATED BY: NMD CHECKED BY: NTE

DATE: 07/26/24 PROJECT NO: 230286

	STORM HYDROLOGY / GUTTER / INLET CALCLULATIONS															
DESCRIPTION OVERLAND FLOW HYDROLOGY					GUTTER AND INLET HYDRAULICS							NOTES				
AREA NO.	STRUCTURE LABEL	INLET TYPE	TIME OF. CONCENTRATION	RUNOFF COEFFICIENI	AREA	ď	RAINFALL INTENSITY	RUNOFF	GUTTER FLOW	GUTTER SLOPE	WIDTH OF GUTTER. FLOW	DEPTH OF GUTTER FLOW	THEORETICAL INLET CAPACITY	DESIGN INLET CAPACITY	INLET BYPASS FLOW	
			min		acres	acres	in/hr	cfs	cfs	ft/ft	ft	ft	cfs	cfs	cfs	
1	1C	ROOF		0.99	0.13	0.13	10.3	1.33								INTERNAL ROOF DRAIN TO NYLOPLAST
2	1B	ROOF		0.99	0.16	0.16	10.3	1.63								INTERNAL ROOF DRAIN TO JUNCTION BOX
3	1A	Α		0.89	1.12	1.00	8.5	8.50					12.75	10.20		DOUBLE TYPE A IN SUMP - BYPASS TO EX. E4
4	2B	DB		0.99	0.01	0.01	10.3	0.10					0.98	0.78		10" END OF LINE DRAIN W/ 04' PONDING (DOMED GRATE)
5	2A	DB		0.99	0.02	0.02	10.3	0.20					0.92	0.74		12" NYLOPLAST DRAIN W/ 0.3' PONDING (PEDESTRIAN GRATE)
6	3B	DB		0.99	0.01	0.01	10.3	0.10					0.92	0.74		12" NYLOPLAST DRAIN W/ 0.3' PONDING (PEDESTRIAN GRATE)
7	3B	ROOF		0.99	0.20	0.20	10.3	2.04								ROOF DRAIN
8	EX. E2	CI		0.89	0.20	0.18	8.5	1.52								EX. 5' X 3' CURB OPENING INLET
	EX.E3	CI														EX. 5' X 3' CURB OPENING INLET
9	4A	Α		0.89	0.46	0.41	8.5	3.49					9.80	7.84		TYPE A IN SUMP
10		ROOF		0.99	0.31	0.31	10.3	3.17								FUTURE INTERNAL ROOF DRAIN TO 4A
						I								I		

PROJECT:	The Village at Discovery	Park - Lot 4

CALCULATED BY: ____ NMD ___ CHECKED BY: ____ NTE

DATE: 7/26/24 PROJECT NO: 230286

STORM DRAIN PIPE SIZE												
DESCRIPTION	STOF	RM DRAIN	N HYDRAU	JLICS				NOTES				
AREA NO.	UPSTREAM STRUCTURE LABEL	TIME OF CONCENTRATION	ADDED	СА СПМП.	BAINFALL INTENSITY	RUNOFF	STORM DRAIN SLOPE	STORM DRAIN DIAMETER	STORM DRAIN. H5 23 MATERIAL	CAPACITY FLOWING FULL	VELOCITY FLOWING FULL	
	ä	min	acres	acres	in/hr	cfs	ft/ft	in		cfs	fps	
								LINE 1				
1	1C	5		0.13	10.32	1.33	0.010	8	PVC	1.43	4.09	
2	1B	5	0.16	0.29	10.32	2.96	0.010	12	HDPE	3.86	4.91	
3	1A	5	1.00	1.28	8.53	10.95	0.025	18	HDPE	17.98	10.18	
								LINE 2				
4	2B	-5	0.00	0.01	10.32	0.10	0.010	6	PVC	0.66	3.38	
5 + LINE 3	2A	-5	0.23	0.24	10.32	2.45	0.010	10	PVC	2.59	4.75	EV DIDE
	EX. O1	. 5		0.24	10.32	2.45	0.020	18	HDPE	16.09	9.11	EX. PIPE
LINE 3												
7+6	3B	. 5		0.21	10.32	2.15	0.010	10	PVC	2.59	4.75	
LINEA												
LINE 4 9 + ROOF LOT 1												
9+ROOF LOT 1	4A	5		0.72	8.53	0.11	0.010	18	HUPE	11.37	6.44	

Nyloplast Inlet Capacity Table

DISCLAIMER: SAFETY FACTORS ARE NOT INCLUDED IN THESE CALCULATIONS. ACTUAL CALCULATIONS SHOULD BE CARRIED OUT AND VERIFIED BY THE DESIGN ENGINEER TAKING INTO ACCOUNT ALL LOCAL CONDITIONS. NYLOPLAST RECOMMENDS USING A MINIMUM SAFETY FACTOR OF 1.25 FOR PAVED AREAS AND 2.0 FOR TURF AREAS. ADS/NYLOPLAST IS NOT RESPONSIBLE FOR MISUSE OF THIS TOOL.

Input	
Type of Grate	10" Dome
Head (ft)	0.3
Properties	
Orifice Flow Area (in)	54.00
Orifice Flow Area (ft)	0.37
Weir Flow Perimeter (in)	32.30
Weir Flow Perimeter (ft)	2.69
Solution	
Capacity (cfs)	0.98
Capacity (gpm)	440.83

 $Q_{weir} = CLH^{3/2}$

C = 3.33 Weir Discharge Coefficient

L = Perimeter of Grate Opening (ft)

H = Flow Height of Water Surface Above Weir (ft)

 $Q_{orifice} = CA\sqrt{2gh}$

C = 0.60 Orifice Discharge Coefficient

 $A = Area of the Orifice (ft^2)$ $g = Gravitational Constant \left(32.2 \frac{ft}{s^2}\right)$

 $H = Depth \ of \ Water \ Above \ Center \ of \ Orifice \ (ft)$

Nyloplast Inlet Capacity Table

DISCLAIMER: SAFETY FACTORS ARE NOT INCLUDED IN THESE CALCULATIONS. ACTUAL CALCULATIONS SHOULD BE CARRIED OUT AND VERIFIED BY THE DESIGN ENGINEER TAKING INTO ACCOUNT ALL LOCAL CONDITIONS. NYLOPLAST RECOMMENDS USING A MINIMUM SAFETY FACTOR OF 1.25 FOR PAVED AREAS AND 2.0 FOR TURF AREAS. ADS/NYLOPLAST IS NOT RESPONSIBLE FOR MISUSE OF THIS TOOL.

Input	
Type of Grate	12" Pedestrian
Head (ft)	0.3
Properties	
Orifice Flow Area (in)	50.60
Orifice Flow Area (ft)	0.35
Weir Flow Perimeter (in)	43.25
Weir Flow Perimeter (ft)	3.60
Solution	
Capacity (cfs)	0.92
Capacity (gpm)	413.08

 $Q_{weir} = CLH^{3/2}$

C = 3.33 Weir Discharge Coefficient

L = Perimeter of Grate Opening (ft)

H = Flow Height of Water Surface Above Weir (ft)

$$Q_{orifice} = CA\sqrt{2gh}$$

C = 0.60 Orifice Discharge Coefficient

 $A = Area of the Orifice (ft^2)$ $g = Gravitational Constant \left(32.2 \frac{ft}{s^2}\right)$

 $H = Depth \ of \ Water \ Above \ Center \ of \ Orifice \ (ft)$