

STORM WATER NARRATIVE

FOR

The Village at Discovery Lot 4

PROJECT NO. 230286

June 14, 2024

1000 W. Nifong Blvd., Bldg. 1 Columbia, Missouri 65203 (573) 447-0292

TABLE OF CONTENTS

1. General information	
2. Methodology	2
3. Existing Conditions Analysis	
4. Proposed Conditions Analysis	
5. Conclusions and Recommendations	
APPENDICES	
A. Drainage Area Maps	5
A1. Existing Condition Drainage Area Map	6
A2. Proposed Condition Drainage Area Map	
B. Supporting Calculations from Olsson	
C. Exhibits	
C1. Soils Report	12

1. General Information

The site is located at 1921 NE Discovery Ave. in Lee's Summit, Missouri. This project consists of developing one lot as part of The Village at Discovery Park development. The proposed development will include one structures with a mixed use of commercial and apartments with adjacent parking. The proposed development will be constructed on Lot 4 of The Village at Discovery Park Plat recorded as Instrument Number 2023E0089550. Lot 4 of said Plat contains 1.49 acres. The proposed structures will have a total footprint of 24,285 sq. ft. and the total impervious area will be ±54,694 sq. ft. (1.26 ac.). The calculated runoff coefficient is determined by 0.3+0.6(% impervious), these lots have an overall runoff coefficient of 0.80.

The site is currently open grass area with a drainage ditch near the northern portion of the site along NE Alura Way. The stormwater currently sheet flows north and to the east. There is one side opening inlet in the drainage ditch. There are other side opening inlets on the same storm line intended to be used as parking drainage structures. The runoff is collected in these inlets and then conveyed through pipe network to a regional detention facility. This regional detention facility is part of the "MASS GRADING & EROSION AND SEDIMENT CONTROL PLANS" prepared by Olsson, approved and issued for construction on 10/25/2023.

The stormwater from the proposed development will be collected and conveyed with the use of on-site storm sewer. The on-site storm sewer will discharge into existing junction boxes/inlets and will then be conveyed to the regional detention facility. The water is treated and discharged through a 5´ x 6´ RCB to a tributary of Little Cedar Creek. This tributary is not regulated by USACE per the USGS National Water Information System Map.

Per the FEMA Flood Map Service Center no portion of the site is located in the 100 year flood plain per FIRM Map 29095C0409G, effective date of January 20, 2017. No floodplain permits are required.

The soil classifications per the USDA Nation Resources Conservation Service (NRCS) Web Soil Survey shows this site to consist of Greenton silty clay loam and Sharpsburg silt loam. See table below:

Soils Classifications Chart:

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	Slopes	Hydrologic Soil Group
30080	Greenton	1.50	100	5% to 9%	C/D
	silty clay loam				

^{*}Refer to Exhibit C1

2. Methodology

The parameters for determining the runoff calculations for this site are equal to the parameters in the stormwater calculations prepared by Olsson for the plans named "Private Site Development Plans for the Village at Discovery Park Zone 1". These calculations and associated storm sewer plans have been approved by Development Services Department of Lee's Summit, Missouri. This report only includes a summary of the approved calculations.

Rational Method:

- Return Frequencies: 2, 10, & 100 year
- Intensity-Duration-Frequency Curves for Kansas City, Missouri
- Rational method runoff coefficients
- Rational method for Time of Concentration
- Rainfall data is taken from the APWA 5600 "Storm Drainage Systems & Facilities", dated February 16, 2011.
- Rainfall intensity is calculated from Table 5602-5, taking the time of concentration to be 5 minutes.

- 2 year 5.41 inches
- 10 year 7.35 inches
- 100 year 10.32 inches

3. Existing Conditions Analysis

Existing conditions were modeled using the open space area as pasture in good condition. The stormwater currently sheet flows to multiple inlets positioned along the northern and eastern line. An existing storm pipe network conveys the water from the structures to an existing regional detention facility. The existing detention facility is designed to have capacity for this whole 1.49-acre site. This site has one existing drainage area. Area E1 captures 4.95 acres, this includes Lot 4, Lot 3, and approximately two-thirds of Lot 1. Please see sheet C402 for drainage areas on "PRIVATE SITE DEVELOPMENT PLANS" prepared by Olsson and approved for construction on 11/03/2023. See Section B of the Appendix for Olsson plans and calculations.

The table below summarizes the existing conditions analysis:

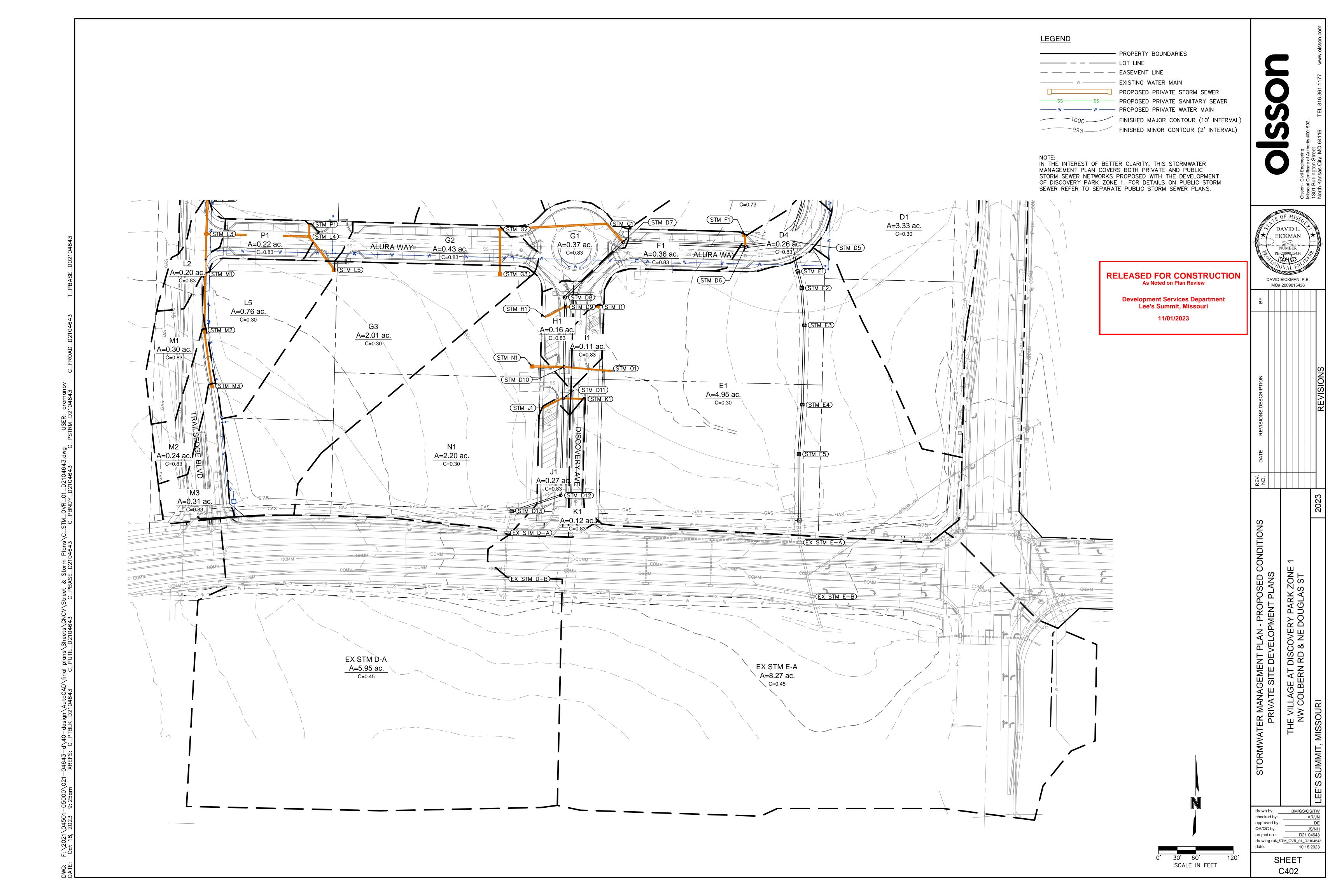
	Drainage			2-year	10-year	100-year
	Area	Runoff	Тс	Peak Flow	Peak Flow	Peak Flow
Subarea	(acres)	Coefficient	(minutes)	(cfs)	(cfs)	(cfs)
E1	4.95	0.3	5	8.03	10.91	19.16

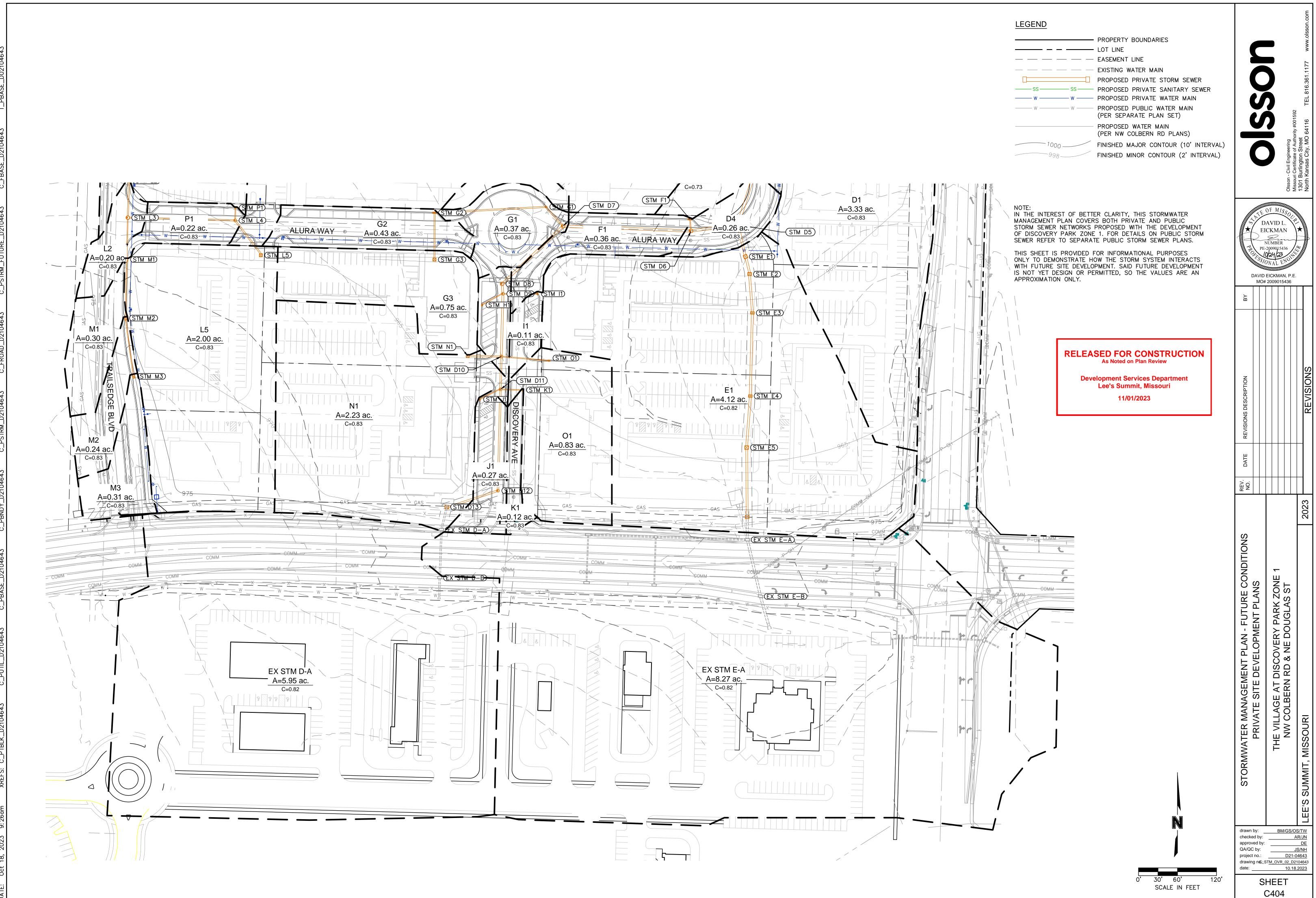
4. Proposed Conditions Analysis

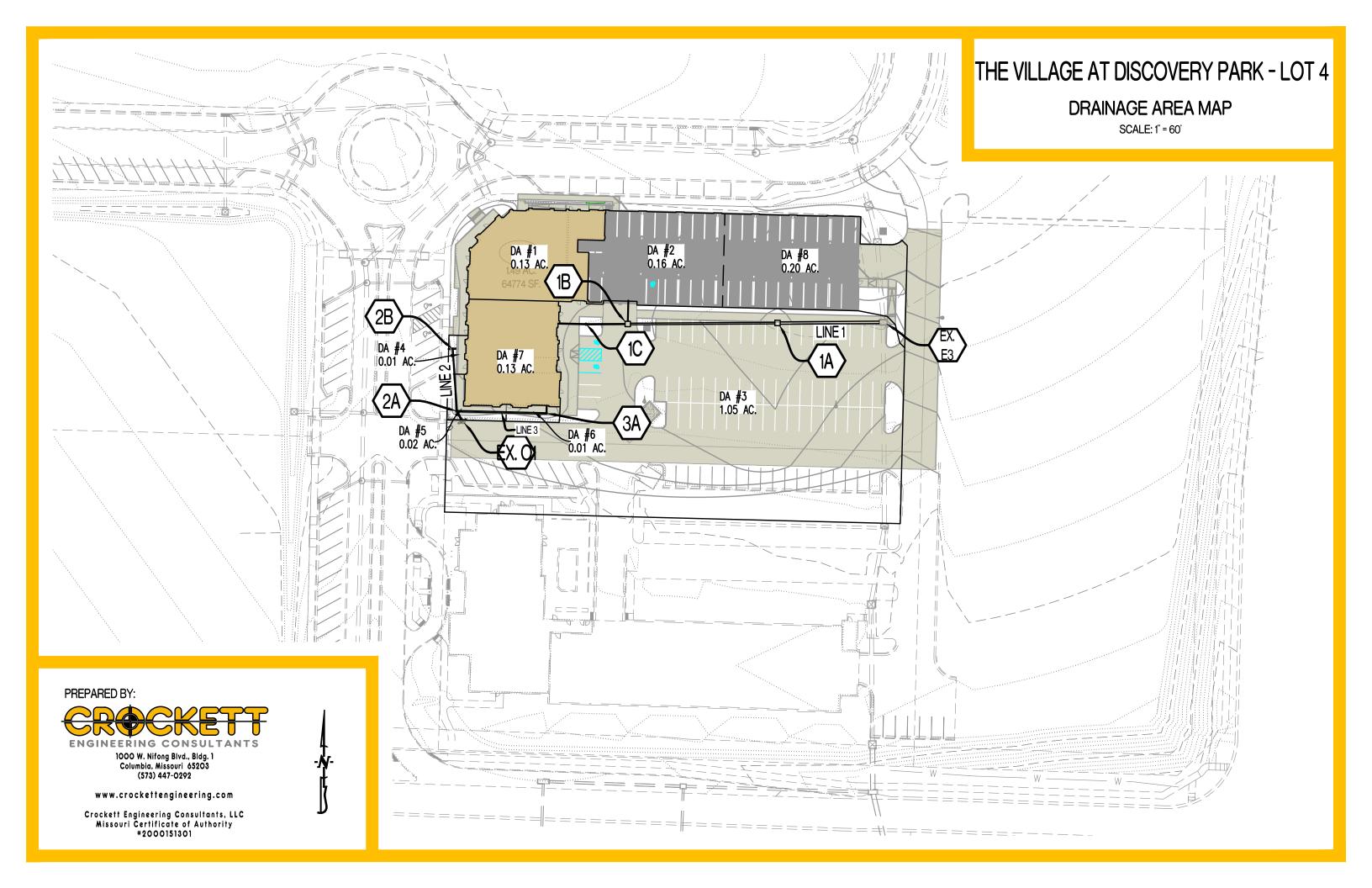
The stormwater from the proposed development will be collected and conveyed with the use of onsite storm sewer. The storm sewer will be routed to the existing storm network and then conveyed to a detention facility. Any runoff that is not collected by the on-site sewer system will be collected by curb inlets placed along Alura Way and Discovery Ave. and conveyed to the same regional detention facility.

The calculations prepared by Olsson used a post-development runoff coefficient of 0.82. The storm sewer that this development ties into is designed for this capacity. After final design of this site the calculated runoff coefficient is 0.80, meaning that less runoff will be generated and there will be ample capacity in both the existing storm sewer and detention facility. The design factor of 0.81 comes from APWA 5600 – Table 5602–3: Runoff Parameters, neighborhood areas of business. This is used for design because it is more conservative than using the actual coefficient of 0.73.

The table below summarizes the proposed conditions analysis:


	Drainage			2-year	10-year	100-year
	Area	Runoff	Тс	Peak Flow	Peak Flow	Peak Flow
Subarea	(Acres)	Coefficient	(Minutes)	(cfs)	(cfs)	(cfs)
DA 1	0.13	0.99	5	0.70	0.95	1.33
DA 2	0.16	0.99	5	0.86	1.16	1.63
DA 3	1.05	0.81	5	4.60	6.25	10.73
DA 4	0.01	0.81	5	0.04	0.06	0.10
DA 5	0.02	0.81	5	0.09	0.12	0.20
DA 6	0.01	0.81	5	0.04	0.06	0.10
DA 7	0.13	0.99	5	0.70	0.95	1.33
DA 8	0.20	0.99	5	1.07	1.46	2.04
TOTAL	1.71	-	-	8.10	11.01	17.46


5. Conclusions and Recommendations


The proposed development has been evaluated and this report shows that the post development stormwater runoff able to be handled by the existing storm network and regional detention facility.

Appendix A

A1 Existing Condition Drainage Area Map
A2 Proposed Condition Drainage Area Map

Appendix B
Supporting Calculations from Olsson

	a Design Table					
10	Year Return Fr	requency	T	1		1
	Drainage	_	_		.,	
Inlet ID	Area	С	Тс	i	K	Peak Flo
	(ac)		(min)	(in/hr)		(cfs)
A2	5.84	0.45	5.00	7.35	1.00	19.32
В2	1.78	0.30	5.00	7.35	1.00	3.93
C2	3.25	0.30	5.00	7.35	1.00	7.17
D1	3.33	0.30	10.47	5.98	1.00	5.97
D2	0.43	0.66	5.00	7.35	1.00	2.09
D3	0.73	0.66	5.00	7.35	1.00	3.54
D4	0.26	0.83	5.00	7.35	1.00	1.59
E1	4.95	0.30	10.67	5.94	1.00	8.82
F1	0.36	0.83	5.00	7.35	1.00	2.20
G1	0.37	0.83	5.00	7.35	1.00	2.26
G2	0.43	0.83	5.00	7.35	1.00	2.62
G3	2.01	0.30	5.00	7.35	1.00	4.43
H1	0.16	0.83	5.00	7.35	1.00	0.98
I1	0.11	0.83	5.00	7.35	1.00	0.67
J1	0.27	0.83	5.00	7.35	1.00	1.65
K1	0.12	0.83	5.00	7.35	1.00	0.73
L2	0.20	0.83	5.00	7.35	1.00	1.22
L5	0.76	0.30	5.00	7.35	1.00	1.68
M1	0.30	0.83	5.00	7.35	1.00	1.83
M2	0.24	0.83	5.00	7.35	1.00	1.46
M3	0.31	0.83	5.00	7.35	1.00	1.89
N1	2.20	0.30	5.00	7.35	1.00	4.85
P1	0.22	0.83	5.00	7.35	1.00	1.34
U1	0.12	0.83	5.00	7.35	1.00	0.73
U2	0.09	0.83	5.00	7.35	1.00	0.55
V1	1.20	0.30	5.00	7.35	1.00	2.65
W1	0.87	0.83	5.00	7.35	1.00	5.31

10	Year Return F	requency				
	Captured		Inlet		Gutter	Pondi
Inlet ID	Flow	Bypass Flow	Efficiency	Gutter Depth	Spread	Dept
			(Note 2)			
	(cfs)	(cfs)	(%)	(ft)	(ft)	(ft)
A2	19.54	0.00	100.00%			0.44
B2	3.93	0.00	100.00%			0.18
C2	7.17	0.00	100.00%			0.26
D1	5.97	0.00	100.00%			0.26
D2	2.28	0.05	97.66%	0.19	8.71	
D3	3.31	0.25	93.07%	0.22	10.21	
D4	1.57	0.01	99.14%	0.16	7.54	
E1	8.82	0.00	100.00%			0.41
F1	2.20	0.00	100.00%			
G1	2.26	0.00	100.00%			
G2	2.62	0.00	100.00%			
G3	4.43	0.00	100.00%			0.30
H1	0.98	0.00	100.00%			
11	0.67	0.00	100.00%			
J1	1.65	0.00	100.00%			
K1	0.73	0.00	99.99%	0.11	4.96	
L2	1.33	0.07	94.89%	0.12	5.55	
L5	1.68	0.00	100.00%			0.16
M1	1.76	0.18	90.83%	0.14	6.27	
M2	1.52	0.11	93.16%	0.13	5.88	
M3	1.73	0.17	91.21%	0.13	6.21	
N1	0.00	0.00	0.00%			0.32
P1	1.34	0.00	100.00%			
U1	0.73	0.00	99.99%	0.11	4.96	
U2	0.55	0.00	99.70%	0.10	4.45	
V1	2.65	0.00	100.00%			0.22
W1(L)		•••	•••	0.25	11.38	
W1(R)			•••	0.11	5.27	
W1	5.37	0.00	100.00%			

1. Inlet capacity at sag location has been reduced by a clogging factor of 0.80, reducing theoretical Both theoretical capacity and reduced capacity are shown.

2. Inlet efficiency shown in the tables is Captured Flow/Total Flow, denoting the actual percentage

RELEASED FOR CONSTRUCTION
As Noted on Plan Review

Development Services Department Lee's Summit, Missouri

-	a Design Table Year Return Fr	eaneuch				
	Drainage					
Inlet ID	Area	С	Тс	i	K	Peak
	700					
	(ac)		(min)	(in/hr)		(c
A2	5.84	0.45	5.00	10.32	1.25	33.
B2	1.78	0.30	5.00	10.32	1.25	6.
C2	3.25	0.30	5.00	10.32	1.25	12
D1	3.33	0.30	10.47	8.46	1.25	10
D2	0.43	0.66	5.00	10.32	1.25	3.
D3	0.73	0.66	5.00	10.32	1.25	6.:
D4	0.26	0.83	5.00	10.32	1.25	2.
E1	4.95	0.30	10.67	8.40	1.25	15
F1	0.36	0.83	5.00	10.32	1.25	3.
G1	0.37	0.83	5.00	10.32	1.25	3.
G2	0.43	0.83	5.00	10.32	1.25	4.4
G3	2.01	0.30	5.00	10.32	1.25	7.
H1	0.16	0.83	5.00	10.32	1.25	1.0
11	0.11	0.83	5.00	10.32	1.25	1.
J1	0.27	0.83	5.00	10.32	1.25	2.
K1	0.12	0.83	5.00	10.32	1.25	1.:
L2	0.20	0.83	5.00	10.32	1.25	2.0
L5	0.76	0.30	5.00	10.32	1.25	2.
M1	0.30	0.83	5.00	10.32	1.25	3.
M2	0.24	0.83	5.00	10.32	1.25	2.
M3	0.31	0.83	5.00	10.32	1.25	3.:
N1	2.20	0.30	5.00	10.32	1.25	8.
P1	0.22	0.83	5.00	10.32	1.25	2.:
U1	0.12	0.83	5.00	10.32	1.25	1.3
U2	0.09	0.83	5.00	10.32	1.25	0.9
V1	1.20	0.30	5.00	10.32	1.25	4.6
W1	0.87	0.83	5.00	10.32	1.25	8.9

100	Year Return F	requency				
	Captured		Inlet		Gutter	Ponding
Inlet ID	Flow	Bypass Flow	Efficiency	Gutter Depth	Spread	Depth
			(Note 2)		·	
	(cfs)	(cfs)	(%)	(ft)	(ft)	(ft)
A2	35.22	0.00	100.00%			0.53
В2	6.89	0.00	100.00%		•••	0.26
C2	12.58	0.00	100.00%			0.38
D1	10.56	0.00	100.00%		•••	0.37
D2	4.27	0.39	91.57%	0.24	11.29	
D3	5.33	1.00	84.25%	0.27	12.67	
D4	2.57	0.11	95.93%	0.20	9.18	
E1	15.68	0.00	100.00%			0.42
F1	3.72	0.00	100.00%			
G1	3.82	0.00	100.00%			
G2	4.44	0.00	100.00%		•••	
G3	7.78	0.00	100.00%		•••	0.44
H1	1.65	0.00	100.00%		•••	
11	1.14	0.00	100.00%		•••	
J1	2.79	0.00	100.00%		•••	
K1	1.21	0.03	97.86%	0.13	6.03	
L2	2.38	0.44	84.48%	0.16	7.22	
L5	2.94	0.00	100.00%	•••	•••	0.23
M1	2.86	0.76	79.11%	0.17	7.92	
M2	2.53	0.52	82.85%	0.16	7.44	
M3	2.62	0.58	81.88%	0.16	7.56	
N1	0.00	0.00	0.00%			0.47
P1	2.27	0.00	100.00%			
U1	1.22	0.02	98.53%	0.13	6.03	
U2	0.93	0.00	99.65%	0.12	5.42	
V1	4.65	0.00	100.00%			0.31
W1(L)	•••	•••	•••	0.30	14.06	
W1(R)			•••	0.14	6.42	
W1	9.39	0.00	100.00%			

1. Inlet capacity at sag location has been reduced by a clogging factor of 0.80, reducing theoretical

Both theoretical capacity and reduced capacity are shown. 2. Inlet efficiency shown in the tables is Captured Flow/Total Flow, denoting the actual percentage

	Year Return Freque	ency	1	Ι		· · · · · · · · · · · · · · · · · · ·		ı				1	
Upstream	Downstream		Upstream	Downstream			Manning's					Upstream	Upstrea
Structure	Structure	Length	Invert	Invert	Slope	Diameter	n	Total Flow	Velocity	Capacity	Flow Depth	Struct. HGL	Top El
		(ft)	(ft)	(ft)	(%)	(in)		(cfs)	(ft/s)	(cfs)	(ft)	(ft)	(ft)
STM A2	STM A1	50.22	931.43	930.00	2.85	36	0.013	28.68	10.04	112.54	1.73	933.16	939.0
STM B2	STM B1	66.27	932.65	930.00	4.00	24	0.013	3.93	6.42	45.23	0.69	933.34	946.0
STM C2	STM C1	70.49	932.82	930.00	4.00	24	0.013	7.17	7.68	45.24	0.95	933.77	946.0
STM D1	PUBL RCB	33.40	936.80	936.25	1.65	60	0.013	80.46	11.01	334.26	2.54	939.34	950.€
STM D2	STM D1	87.42	938.61	937.30	1.50	60	0.013	74.49	8.87	318.85	2.44	941.05	953.8
STM D3	STM D2	133.06	941.17	939.11	1.55	60	0.013	72.21	9.01	324.09	2.40*	943.57	955.:
STM D4	STM D3	128.22	943.89	941.27	2.04	60	0.013	68.90	7.73	372.32	2.34	946.23	956.
STM D5	STM D4	80.81	946.53	944.89	2.03	48	0.013	67.33	11.42	204.84	2.48	949.01	956.9
STM D6	STM D5	72.98	947.83	947.03	1.10	42	0.013	36.41	6.72	105.33	1.87	949.70 j	957.
STM D7	STM D6	197.01	950.20	948.03	1.10	42	0.013	34.21	7.18	105.52	1.81	952.01	959.
STM D8	STM D7	129.31	952.12	950.70	1.10	36	0.013	24.90	7.43	69.95	1.61	953.73	962.
STM D9	STM D8	15.22	952.89	952.62	1.75	36	0.013	24.90	8.46	88.22	1.61	954.49	962.
STM D10	STM D9	96.59	954.78	953.09	1.75	36	0.013	23.25	6.73	88.23	1.55	956.33	964.:
STM D11	STM D10	50.57	956.17	955.28	1.75	30	0.013	18.39	7.80	54.25	1.45	957.62	965.
STM D12	STM D11	155.87	959.10	956.37	1.75	30	0.013	16.01	6.23	54.25	1.35	960.45	968.
STM D13	STM D12	81.40	961.84	959.60	2.75	30	0.013	16.01	8.42	68.01	1.35	963.19	968.
EX STM D-A	STM D13	38.59	963.91	962.34	4.07	30	0.013	16.01	8.41	82.72	1.35	965.26	971.
STM E1	STM D5	50.53	949.05	947.53	3.01	36	0.013	30.92	7.93	115.67	1.80	950.85	956.
STM E2	STM E1	27.73	950.08	949.25	2.99	36	0.013	30.92	7.52	115.39	1.80	951.88	959.
STM E3	STM E2	59.68	951.47	950.28	1.99	36	0.013	30.92	7.52	94.17	1.80	953.27	960.
STM E4	STM E3	128.00	954.23	951.67	2.00	36	0.013	30.92	7.52	94.32	1.80	956.03	962.
STM E5	STM E4	79.72	956.02	954.43	1.99	36	0.013	30.92	7.52	94.19	1.80	957.82	964.
EX STM E-A	STM E5	143.57	960.13	956.22	2.72	36	0.013	30.92	7.52	110.06	1.80	961.93	972.
STM F1	STM D6	18.00	951.28	950.92	2.00	15	0.013	2.20	4.98	9.13	0.59	951.87	957.
STM G1	STM D7	39.56	952.29	951.70	1.49	24	0.013	9.31	6.63	27.62	1.09	953.38	959.
STM G2	STM G1	171.49	955.36	952.79	1.50	24	0.013	7.05	6.10	27.69	0.94	956.30	961.
STM G3	STM G2	72.05	956.71	955.86	1.18	24	0.013	4.43	5.06	24.57	0.74	957.45	959.
STM H1	STM D9	20.35	956.86	956.45	2.01	15	0.013	0.98	3.01	9.17	0.39	957.25	962.
STM I1	STM D9	53.15	956.76	955.70	1.99	15	0.013	0.67	3.52	9.12	0.32	957.08	962.
STM J1	STM D11	22.74	958.18	957.73	1.98	15	0.013	1.65	3.50	9.08	0.51	958.69	965.
STM K1	STM D11	34.16	958.10	957.42	1.99	15	0.013	0.73	3.61	9.11	0.33	958.43	965.
STM L2	STM L1	41.03	956.12	955.71	1.00	24	0.013	9.36	6.08	22.61	1.09	957.21	964.
STM L3	STM L2	56.59	956.90	956.33	1.00	24	0.013	8.03	5.56	22.62	1.01	957.91	966.
STM L4	STM L3	165.14	959.05	957.40	1.00	24	0.013	3.02	4.27	22.62	0.61	959.66	964.
STM L5	STM L4	66.64	959.92	959.25	1.00	24	0.013	1.68	3.43	22.68	0.45	960.37	962.
STM M1	STM L3	64.41	964.57	961.83	4.25	15	0.013	5.01	7.67	13.32	0.43	965.48	969.
STM M2	STM M1	90.14	968.39	964.77	4.23	15	0.013	3.25	4.47	12.94	0.73	969.12	973.
STM M3	STM M2	90.14	972.29	968.60	4.02	15	0.013	1.73	3.59	13.04	0.73	972.81	975. 976.
STM N1	STM D10	51.657	956.87	956.28	1.14	24	0.013	4.85	5.16	24.17	0.32	957.64	961.
STM 01	STM D10	73.489	957.75	956.28	2	18	0.013	0.01	0.71	14.85	0.77	957.64	963.
STM P1	STM L4	19.51	960.09	959.8	1.49	15	0.013	1.34	4.04	7.87	0.04	960.55	963. 964
STM U1	PUBL RCB	14.935	939.49	939.8	9.98	15	0.013	1.34			0.45	939.94	954.
									6.25	20.4			
STM U2	STM U1	62	949.36	948.12	2	15	0.013	0.55	3.33	9.13	0.29	949.65	954.
STM V1	PUBL RCB	20	938	936	10	18	0.013	2.65	7.46	33.21	0.62	938.62	953.
STM W1	PUBL RCB	23.713	938.85	936	12.02	15	0.013	5.37	10.13	22.39	0.94	939.79	951.
UBL RCB BEND 1	Outfall	188.958	931	928.4	1.38	84 x 156	0.013	486.99	14.33	2111.18	3.52	934.52	939.
	PUBL RCB BEND 1	54.413	931.75	931	1.38	84 x 156	0.013	486.99	10.65	2113.02	3.52	935.27	940.
UBL RCB BEND 3	PUBL RCB BEND 2	423.772	937.58	931.75	1.38	84 x 156	0.013	486.99	10.65	2111.61	3.52	941.1	946.

	gn Calculation Table												
	Year Return Frequ	ency	Ι			1		I	1	I			
Upstream	Downstream	Lavaetla	Upstream	Downstream	Clavas	Diameter	Manning's	Tatal Flam	Mala aitu	Canaaitu	Flavy Danth	Upstream	Upstrea
Structure	Structure	Length	Invert	Invert	Slope	Diameter	n	Total Flow	Velocity	Capacity	Flow Depth	Struct. HGL	Top Ele
CTN4 A 2	CTN 4 A 1	(ft)	(ft)	(ft)	(%)	(in)	0.013	(cfs)	(ft/s)	(cfs)	(ft)	(ft)	(ft)
STM A2	STM A1	50.22	931.43	930.00	2.85	36	0.013	49.51	11.98	112.54	2.29	933.72	939.00
STM B2	STM B1	66.27	932.65	930.00	4.00	24	0.013	6.89	7.57	45.23	0.93	933.58	946.00
STM C2	STM C1	70.49	932.82	930.00	4.00	24	0.013	12.58	9.14	45.24	1.27	934.09	946.00
STM D1	PUBL RCB	33.40	936.80	936.25	1.65	60	0.013	140.80	13.10	334.26	3.40	940.20	950.67
STM D2	STM D1	87.42	938.61	937.30	1.50	60	0.013	130.24	10.32	318.85	3.26	941.87	953.83
STM D3	STM D2	133.06	941.17	939.11	1.55	60	0.013	125.97	10.39	324.09	3.21	944.38	955.16
STM D4	STM D3	128.22	943.89	941.27	2.04	60	0.013	120.64	9.36	372.32	3.14	947.03	956.44
STM D5	STM D4	80.81	946.53	944.89	2.03	48	0.013	118.07	13.80	204.84	3.27	949.81	956.95
STM D6	STM D5	72.98	947.83	947.03	1.10	42	0.013	63.38	8.19	105.33	2.49	950.32	957.70
STM D7	STM D6	197.01	950.20	948.03	1.10	42	0.013	59.66	8.68	105.52	2.42	952.62	959.70
STM D8	STM D7	129.31	952.12	950.70	1.10	36	0.013	43.62	8.60	69.95	2.15	954.27	962.59
STM D9	STM D8	15.22	952.89	952.62	1.75	36	0.013	43.62	9.49	88.22	2.15	955.04	962.46
STM D10	STM D9	96.59	954.78	953.09	1.75	36	0.013	40.83	8.11	88.23	2.08	956.86	964.22
STM D11	STM D10	50.57	956.17	955.28	1.75	30	0.013	32.30	8.91	54.25	1.93	958.10	965.22
STM D12	STM D11	155.87	959.10	956.37	1.75	30	0.013	28.30	7.62	54.25	1.81	960.91	968.36
STM D13	STM D12	81.40	961.84	959.60	2.75	30	0.013	28.30	9.15	68.01	1.81	963.65	968.75
EX STM D-A	STM D13	38.59	963.91	962.34	4.07	30	0.013	28.30	9.14	82.72	1.81	965.72	971.55
STM E1	STM D5	50.53	949.05	947.53	3.01	36	0.013	54.69	9.27	115.67	2.40	951.45	956.17
STM E2	STM E1	27.73	950.08	949.25	2.99	36	0.013	54.69	9.44	115.39	2.40	952.48	959.31
STM E3	STM E2	59.68	951.47	950.28	1.99	36	0.013	54.69	9.44	94.17	2.40	953.87	960.41
STM E4	STM E3	128.00	954.23	951.67	2.00	36	0.013	54.69	9.44	94.32	2.40	956.63	962.96
STM E5	STM E4	79.72	956.02	954.43	1.99	36	0.013	54.69	9.44	94.19	2.40	958.42	964.55
EX STM E-A	STM E5	143.57	960.13	956.22	2.72	36	0.013	54.69	9.44	110.06	2.40	962.53	972.11
STM F1	STM D6	18.00	951.28	950.92	2.00	15	0.013	3.72	5.84	9.13	0.78	952.06	957.60
STM G1	STM D7	39.56	952.29	951.70	1.49	24	0.013	16.04	7.86	27.62	1.44	953.73	959.71
STM G2	STM G1	171.49	955.36	952.79	1.50	24	0.013	12.22	7.14	27.69	1.26	956.62	961.53
STM G3	STM G2	72.05	956.71	955.86	1.18	24	0.013	7.78	5.97	24.57	0.99	957.70	959.92
STM H1	STM D9	20.35	956.86	956.45	2.01	15	0.013	1.65	3.51	9.17	0.51	957.37	962.22
STM I1	STM D9	53.15	956.76	955.70	1.99	15	0.013	1.14	4.11	9.12	0.42	957.18	962.11
STM J1	STM D11	22.74	958.18	957.73	1.98	15	0.013	2.79	4.16	9.08	0.67	958.85	965.14
STM K1	STM D11	34.16	958.10	957.42	1.99	15	0.013	1.21	2.49	9.11	0.43	958.53	965.27
STM L2	STM L1	41.03	956.12	955.71	1.00	24	0.013	15.60	7.14	22.61	1.42	957.54	964.76
STM L3	STM L2	56.59	956.90	956.33	1.00	24	0.013	13.22	6.37	22.62	1.31	958.21	966.39
STM L4	STM L3	165.14	959.05	957.40	1.00	24	0.013	5.21	4.39	22.62	0.80	959.85	964.75
STM L5	STM L4	66.64	959.92	959.25	1.01	24	0.013	2.94	3.70	22.68	0.60	960.52	962.59
STM M1	STM L3	64.41	964.57	961.83	4.25	15	0.013	8.01	9.14	13.32	1.11	965.68	969.35
STM M2	STM M1	90.14	968.39	964.77	4.02	15	0.013	5.15	5.34	12.94	0.92	969.31	973.16
STM M3	STM M2	90.49	972.29	968.60	4.08	15	0.013	2.62	3.86	13.04	0.65	972.94	976.84
STM N1	STM D10	51.657	956.87	956.28	1.14	24	0.013	8.52	6.09	24.17	1.04	957.91	961.12
STM 01	STM D10	73.489	957.75	956.28	2	18	0.013	0.01	0.45	14.85	0.04	957.79	963.92
STM P1	STM L4	19.51	960.09	959.8	1.49	15	0.013	2.27	4.72	7.87	0.6	960.69	964.6
STM U1	PUBL RCB	14.935	939.49	938	9.98	15	0.013	2.15	7.3	20.4	0.58	940.07	954.22
STM U2	STM U1	62	949.36	948.12	2	15	0.013	0.93	3.87	9.13	0.38	949.74	954.67
STM V1	PUBL RCB	20	938	936	10	18	0.013	4.65	8.93	33.21	0.83	938.83	953.23
STM W1	PUBL RCB	23.713	938.85	936	12.02	15	0.013	9.39	12.66	22.39	1.17	940.02	951.03
PUBL RCB BEND 1		188.958	931	928.4	1.38	84 x 156	0.013	760.31	16.63	2111.18	4.73	935.73	939.87
	PUBL RCB BEND 1		931.75	931	1.38	84 x 156	0.013	760.31	12.36	2113.02	4.73	936.48	940.25
PUBL RCB BEND 3	PUBL RCB BEND 2	423.772	937.58	931.75	1.38	84 x 156	0.013	760.31	12.36	2111.61	4.73	942.31	946.71

XS PRO	I E	OF DAVIOR NUMBER-2007	MB 090	[A]	N	Missouri Certificate of Authority #00	*	North Kansas City, MO 6411
	IIVAC		JK۱		-, -			
ВУ								
REVISIONS DESCRIPTION								REVISIONS
DATE								
REV. NO.								
								2023
	PRIVATE SITE DEVELOPMENT PLANS		THE VILLAGE AT DISCOVERY PARK ZONE 1		NW COLBERN RD & NE DOUGLAS ST			E'S SUMMIT, MISSOURI

QA/QC by: JS/NH
project no.: D21-04643
drawing no.: C_STM05_D2104643
date: 10.18.2023

SHEET

QA/QC by:

	D : T.I.					
	a Design Table					
10	Year Return Fi	requency		T		1
	Drainage					
Inlet ID	Area	С	Тс	i	K	Peak Flow
	(ac)		(min)	(in/hr)		(cfs)
A2	3.37	0.83	5.00	7.35	1.00	20.57
В2	3.79	0.83	5.00	7.35	1.00	23.13
C2	2.08	0.83	5.00	7.35	1.00	12.69
D2	2.04	0.83	5.00	7.35	1.00	12.45
D3	0.42	0.83	5.00	7.35	1.00	2.56
D4	0.26	0.83	5.00	7.35	1.00	1.59
F1	0.36	0.83	5.00	7.35	1.00	2.20
G1	0.37	0.83	5.00	7.35	1.00	2.26
G2	0.43	0.83	5.00	7.35	1.00	2.62
H1	0.16	0.83	5.00	7.35	1.00	0.98
l1	0.11	0.83	5.00	7.35	1.00	0.67
J1	0.27	0.83	5.00	7.35	1.00	1.65
K1	0.12	0.83	5.00	7.35	1.00	0.73
L2	0.20	0.83	5.00	7.35	1.00	1.22
M1	0.30	0.83	5.00	7.35	1.00	1.83
M2	0.24	0.83	5.00	7.35	1.00	1.46
M3	0.31	0.83	5.00	7.35	1.00	1.89
N1	2.23	0.83	5.00	7.35	1.00	13.61
01	0.83	0.83	5.00	7.35	1.00	5.07
P1	0.22	0.83	5.00	7.35	1.00	1.34
U1	0.12	0.83	5.00	7.35	1.00	0.73
U2	0.09	0.83	5.00	7.35	1.00	0.55
V1	1.20	0.83	5.00	7.35	1.00	7.32
W1	0.87	0.83	5.00	7.35	1.00	5.31

10	Year Return F	requency				
	Captured		Inlet		Gutter	Pondir
Inlet ID	Flow	Bypass Flow	Efficiency	Gutter Depth	Spread	Deptl
			(Note 2)			
	(cfs)	(cfs)	(%)	(ft)	(ft)	(ft)
A2	18.67	2.11	89.83%			0.46
В2	14.93	8.20	64.57%			0.36
C2	12.69	0.00	100.00%			0.39
D2	9.19	3.35	73.26%	0.35	16.37	
D3	2.48	0.10	96.27%	0.20	9.04	
D4	1.57	0.01	99.14%	0.16	7.54	
F1	2.20	0.00	100.00%			
G1	2.26	0.00	100.00%			
G2	2.62	0.00	100.00%			
H1	0.98	0.00	100.00%			
I1	0.67	0.00	100.00%			
J1	1.65	0.00	100.00%			
K1	0.73	0.00	99.99%	0.11	4.96	
L2	1.33	0.07	94.89%	0.12	5.55	
M1	1.76	0.18	90.83%	0.14	6.27	
M2	1.52	0.11	93.16%	0.13	5.88	
M3	1.73	0.17	91.21%	0.13	6.21	
N1	13.61	0.00	100.00%			
01	5.07	0.00	100.00%			
P1	1.34	0.00	100.00%			
U1	0.73	0.00	99.99%	0.11	4.96	
U2	0.55	0.00	99.70%	0.10	4.45	
V1	7.32	0.00	100.00%	•••		0.43
W1(L)				0.30	13.87	
W1(R)				0.11	5.27	
W1	8.67	0.00	100.00%			

 Inlet capacity at sag location has been reduced by a clogging factor of 0.80, reducing theoretical Both theoretical capacity and reduced capacity are shown.

2. Inlet efficiency shown in the tables is Captured Flow/Total Flow, denoting the actual percentage

RELEASED FOR CONSTRUCTION
As Noted on Plan Review

Development Services Department Lee's Summit, Missouri 11/01/2023

Drainage Area	Design Table					
100	Year Return Fi	requency				
	Drainage					
Inlet ID	Area	С	Тс	i	K	Peak Flow
	(ac)		(min)	(in/hr)		(cfs)
A2	3.37	0.83	5.00	10.32	1.25	34.79
В2	3.79	0.83	5.00	10.32	1.25	39.12
C2	2.08	0.83	5.00	10.32	1.25	21.47
D2	2.04	0.83	5.00	10.32	1.25	21.06
D3	0.42	0.83	5.00	10.32	1.25	4.34
D4	0.26	0.83	5.00	10.32	1.25	2.68
F1	0.36	0.83	5.00	10.32	1.25	3.72
G1	0.37	0.83	5.00	10.32	1.25	3.82
G2	0.43	0.83	5.00	10.32	1.25	4.44
H1	0.16	0.83	5.00	10.32	1.25	1.65
I1	0.11	0.83	5.00	10.32	1.25	1.14
J1	0.27	0.83	5.00	10.32	1.25	2.79
K1	0.12	0.83	5.00	10.32	1.25	1.24
L2	0.20	0.83	5.00	10.32	1.25	2.06
M1	0.30	0.83	5.00	10.32	1.25	3.10
M2	0.24	0.83	5.00	10.32	1.25	2.48
M3	0.31	0.83	5.00	10.32	1.25	3.20
N1	2.23	0.83	5.00	10.32	1.25	23.02
01	0.83	0.83	5.00	10.32	1.25	8.57
P1	0.22	0.83	5.00	10.32	1.25	2.27
U1	0.12	0.83	5.00	10.32	1.25	1.24
U2	0.09	0.83	5.00	10.32	1.25	0.93
V1	1.20	0.83	5.00	10.32	1.25	12.39
W1	0.87	0.83	5.00	10.32	1.25	8.98

100	Year Return F	requency				
	Captured		Inlet		Gutter	Ponding
Inlet ID	Flow	Bypass Flow	Efficiency	Gutter Depth	Spread	Depth
			(Note 2)			
	(cfs)	(cfs)	(%)	(ft)	(ft)	(ft)
A2	18.67	17.43	51.71%			0.50
B2	14.93	24.19	38.17%			0.50
C2	14.93	6.54	69.55%			0.31
D2	12.48	9.01	58.07%	0.43	20.04	
D3	4.01	0.44	90.17%	0.24	11.10	
D4	2.57	0.11	95.93%	0.20	9.18	
F1	3.72	0.00	100.00%			
G1	3.82	0.00	100.00%			
G2	4.44	0.00	100.00%			
H1	1.65	0.00	100.00%			
l1	1.14	0.00	100.00%			
J1	2.79	0.00	100.00%			
K1	1.21	0.03	97.86%	0.13	6.03	
L2	2.38	0.44	84.48%	0.16	7.22	
M1	2.86	0.76	79.11%	0.17	7.92	
M2	2.53	0.52	82.85%	0.16	7.44	
M3	2.62	0.58	81.88%	0.16	7.56	
N1	15.52	7.50	67.43%		•••	
01	8.57	0.00	100.00%		•••	•••
P1	2.27	0.00	100.00%		•••	
U1	1.22	0.02	98.53%	0.13	6.03	
U2	0.93	0.00	99.65%	0.12	5.42	
V1	12.39	0.00	100.00%		***	0.41
W1(L)				0.40	18.34	
W1(R)				0.14	6.42	

Inlet capacity at sag location has been reduced by a clogging factor of 0.80, reducing theoretical
 Both theoretical capacity and reduced capacity are shown.

2. Inlet efficiency shown in the tables is Captured Flow/Total Flow, denoting the actual percentage

	Year Return Freque	ncy				T	Т	1				T	
Upstream	Downstream		Upstream	Downstream			Manning's					Upstream	Upstrea
Structure	Structure	Length	Invert	Invert	Slope	Diameter	n	Total Flow	Velocity	Capacity	Flow Depth	Struct. HGL	Top Elev
		(ft)	(ft)	(ft)	(%)	(in)		(cfs)	(ft/s)	(cfs)	(ft)	(ft)	(ft)
STM A2	STM A1	50.22	931.43	930.00	2.85	36	0.013	40.46	11.20	112.54	2.07	933.50	939.00
STM B2	STM B1	66.27	932.65	930.00	4.00	24	0.013	23.13	11.28	45.23	1.71	934.36	946.00
STM C2	STM C1	70.49	932.82	930.00	4.00	24	0.013	12.69	9.16	45.24	1.28	934.10	946.0
STM D1	PUBL RCB	33.40	936.80	936.25	1.65	60	0.013	156.75	13.57	334.26	3.59	940.39	950.6
STM D2	STM D1	87.42	938.61	937.30	1.50	60	0.013	140.23	10.46	318.85	3.39	942.00	953.8
STM D3	STM D2	133.06	941.17	939.11	1.55	60	0.013	127.78	10.20	324.09	3.23	944.40	955.1
STM D4	STM D3	128.22	943.89	941.27	2.04	60	0.013	125.30	9.57	372.32	3.20	947.09	956.4
STM D5	STM D4	80.81	946.53	944.89	2.03	48	0.013	123.73	14.05	204.83	3.34	949.87	956.9
STM D6	STM D5	72.98	947.83	947.03	1.10	42	0.013	63.39	8.11	105.33	2.49	950.32	957.7
STM D7	STM D6	197.01	950.20	948.03	1.10	42	0.013	61.19	8.84	105.52	2.45	952.65	959.7
STM D8	STM D7	129.31	952.12	950.70	1.10	36	0.013	51.88	9.72	69.95	2.34	954.46	962.5
STM D9	STM D8	15.22	952.89	952.62	1.75	36	0.013	51.88	10.08	88.22	2.34	955.23	962.4
STM D10	STM D9	96.59	954.78	953.09	1.75	36	0.013	50.23	8.97	88.23	2.30	957.08	964.2
STM D11	STM D10	50.57	956.17	955.28	1.75	30	0.013	31.55	8.07	54.25	1.91	958.08	965.2
STM D12	STM D11	155.87	959.10	956.37	1.75	30	0.013	29.17	7.85	54.25	1.84	960.94	968.3
STM D13	STM D12	81.40	961.84	959.60	2.75	30	0.013	29.17	9.22	68.01	1.84	963.68	968.7
EX STM D-A	STM D13	38.59	963.91	962.34	4.07	30	0.013	29.17	9.22	82.72	1.84	965.75	971.5
STM E1	STM D5	50.53	949.05	947.53	3.01	36	0.013	60.34	9.88	115.67	2.51	951.56	956.1
STM E2	STM E1	27.73	950.08	949.25	2.99	36	0.013	60.34	9.96	115.39	2.51	952.59	959.3
STM E3	STM E2	59.68	951.47	950.28	1.99	36	0.013	60.34	9.96	94.17	2.51	953.98	960.4
STM E4	STM E3	128.00	954.23	951.67	2.00	36	0.013	60.34	9.96	94.32	2.51	956.74	962.9
STM E5	STM E4	79.72	956.02	954.43	1.99	36	0.013	60.34	9.96	94.19	2.51	958.53	964.5
EX STM E-A	STM E5	143.57	960.13	956.22	2.72	36	0.013	60.34	9.96	110.06	2.51	962.64	972.1
STM F1	STM D6	18.00	951.28	950.92	2.00	15	0.013	2.20	4.98	9.13	0.59	951.87	957.6
STM G1	STM D7	39.56	952.29	951.70	1.49	24	0.013	9.31	5.83	27.62	1.09	953.38	959.7
STM G2	STM G1	171.49	955.36	952.79	1.50	24	0.013	7.05	6.10	27.69	0.94	956.30	961.5
STM G3	STM G2	72.05	956.71	955.86	1.18	24	0.013	4.43	5.06	24.57	0.74	957.45	959.9
STM H1	STM D9	20.35	956.86	956.45	2.01	15	0.013	0.98	3.01	9.17	0.39	957.25	962.2
STM I1	STM D9	53.15	956.76	955.70	1.99	15	0.013	0.58	3.52	9.12	0.32	957.08	962.2
STM J1		22.74	958.18	957.73	1.98	15	0.013	1.65		9.12		958.69	965.1
	STM D11								3.50		0.51		
STM K1	STM D11	34.16	958.10	957.42	1.99	15	0.013	0.73	1.94	9.11	0.33	958.43	965.2
STM L2	STM L1	41.03	956.12	955.71	1.00	24	0.013	19.89	7.74	22.61	1.60	957.72	964.7
STM L3	STM L2	56.59	956.90	956.33	1.00	24	0.013	18.56	7.55	22.62	1.55	958.45	966.3
STM L4	STM L3	165.14	959.05	957.40	1.00	24	0.013	13.55	6.83	22.62	1.32	960.37	964.7
STM L5	STM L4	66.64	959.92	959.25	1.01	24	0.013	12.21	6.30	22.68	1.25	961.17	962.5
STM M1	STM L3	64.41	964.57	961.83	4.25	15	0.013	5.01	7.67	13.32	0.91	965.48	969.3
STM M2	STM M1	90.14	968.39	964.77	4.02	15	0.013	3.25	4.47	12.94	0.73	969.12	973.1
STM M3	STM M2	90.49	972.29	968.60	4.08	15	0.013	1.73	3.59	13.04	0.52	972.81	976.8
STM N1	STM D10	51.657	956.87	956.28	1.14	24	0.013	13.61	7.03	24.17	1.33	958.2	961.1
STM 01	STM D10	73.489	957.75	956.28	2	18	0.013	5.07	5.02	14.85	0.87	958.62	963.9
STM P1	STM L4	19.51	960.09	959.8	1.49	15	0.013	1.34	2.87	7.87	0.46	960.55	964.
STM U1	PUBL RCB	14.935	939.49	938	9.98	15	0.013	1.28	6.25	20.4	0.45	939.94	954.2
STM U2	STM U1	62	949.36	948.12	2	15	0.013	0.55	3.33	9.13	0.29	949.65	954.6
STM V1	PUBL RCB	20	938	936	10	18	0.013	7.32	10.29	33.21	1.05	939.05	953.2
STM W1	PUBL RCB	23.713	938.85	936	12.02	15	0.013	5.37	10.13	22.39	0.94	939.79	951.0
PUBL RCB BEND 1	Outfall	188.958	931	928.4	1.38	84 x 156	0.013	567.95	15.11	2111.18	3.9	934.9	939.8
	PUBL RCB BEND 1	54.413	931.75	931	1.38	84 x 156	0.013	567.95	11.22	2113.02	3.9	935.65	940.2
	PUBL RCB BEND 2	423.772	937.58	931.75	1.38	84 x 156	0.013	567.95	11.21	2111.6	3.9	941.48	946.7
RCB CONNECTION	PUBL RCB BEND 3	60.78	938.42	937.58	1.38	84 x 156	0.013	567.95	11.22	2115.82	3.90	942.32	946.

	Calculation Table												
Upstream	Year Return Freque Downstream	ncy	Upstream	Downstream			Manning's					Upstream	Upstrear
Structure	Structure	Length	Invert	Invert	Slope	Diameter		Total Flow	Velocity	Capacity	Flow Depth	Struct. HGL	Top Elev
Structure	Structure	(ft)	(ft)	(ft)	(%)	(in)	n	(cfs)	(ft/s)	(cfs)	(ft)	(ft)	(ft)
STM A2	STM A1	50.22	931.43	930.00	2.85	36	0.013	68.10	13.52	112.54	2.63	934.06	939.00
STM B2	STM B1	66.27	932.65	930.00	4.00	24	0.013	39.12	12.50	45.23	1.95	934.60	939.00
STM C2	STM C1	70.49	932.82	930.00	4.00	24	0.013	21.47	10.96	45.24	1.66	934.48	946.00
STM D1	PUBL RCB	33.40	936.80	936.25	1.65	60		268.37	16.64	334.26	4.53	934.48	950.67
STM D2	STM D1	87.42	938.61	937.30	1.50	60	0.013 0.013	240.21	13.70	318.85	4.36	941.33	953.83
			938.61	937.30	1.55	60	0.013	219.15	12.97				955.86
STM D3	STM D2	133.06								324.09	4.20	945.37	
STM D5	STM D3	128.22	943.89	941.27	2.04	60	0.013	215.14	12.40	372.32	4.17	948.06	956.44
STM D5	STM D4	80.81	946.53	944.89	2.03	48	0.013	212.57	17.79	204.84	3.88	950.41	956.95
STM D6	STM D5	72.98	947.83	947.03	1.10	42	0.013	108.46	11.64	105.33	3.15	950.98	957.70
STM D7	STM D6	197.01	950.20	948.03	1.10	42	0.013	104.74	11.83	105.52	3.12	953.32	959.70
STM D8	STM D7	129.31	952.12	950.70	1.10	36	0.013	88.70	12.55	69.95	3.00	955.99	962.59
STM D9	STM D8	15.22	952.89	952.62	1.75	36	0.013	88.70	12.55	88.22	3.00	957.24	962.46
STM D10	STM D9	96.59	954.78	953.09	1.75	36	0.013	85.91	12.15	88.23	3.00	959.82	964.22
STM D11	STM D10	50.57	956.17	955.28	1.75	30	0.013	54.32	11.07	54.25	2.50	961.63	965.22
STM D12	STM D11	155.87	959.10	956.37	1.75	30	0.013	50.32	10.25	54.25	2.50	964.74	968.36
STM D13	STM D12	81.40	961.84	959.60	2.75	30	0.013	50.32	10.25	68.01	2.50	966.62	968.75
EX STM D-A	STM D13	38.59	963.91	962.34	4.07	30	0.013	50.32	10.25	82.72	2.50	967.85	971.55
STM E1	STM D5	50.53	949.05	947.53	3.01	36	0.013	104.11	14.89	115.67	2.91	951.96	956.17
STM E2	STM E1	27.73	950.08	949.25	2.99	36	0.013	104.11	15.18	115.39	2.91	952.99	959.31
STM E3	STM E2	59.68	951.47	950.28	1.99	36	0.013	104.11	14.73	94.17	3.00	954.74	960.41
STM E4	STM E3	128.00	954.23	951.67	2.00	36	0.013	104.11	14.73	94.32	3.00	958.87	962.96
STM E5	STM E4	79.72	956.02	954.43	1.99	36	0.013	104.11	14.73	94.19	3.00	961.83	964.55
EX STM E-A	STM E5	143.57	960.13	956.22	2.72	36	0.013	104.11	14.73	110.06	3.00	966.34	972.11
STM F1	STM D6	18.00	951.28	950.92	2.00	15	0.013	3.72	5.84	9.13	0.78	952.06	957.60
STM G1	STM D7	39.56	952.29	951.70	1.49	24	0.013	16.04	6.25	27.62	1.44	953.73	959.71
STM G2	STM G1	171.49	955.36	952.79	1.50	24	0.013	12.22	7.14	27.69	1.26	956.62	961.53
STM G3	STM G2	72.05	956.71	955.86	1.18	24	0.013	7.78	5.97	24.57	0.99	957.70	959.92
STM H1	STM D9	20.35	956.86	956.45	2.01	15	0.013	1.65	1.34	9.17	1.25	958.25	962.22
STM I1	STM D9	53.15	956.76	955.70	1.99	15	0.013	1.14	0.93	9.12	1.25	958.23	962.11
STM J1	STM D11	22.74	958.18	957.73	1.98	15	0.013	2.79	2.27	9.08	1.25	962.49	965.14
STM K1	STM D11	34.16	958.10	957.42	1.99	15	0.013	1.21	0.99	9.11	1.25	962.40	965.27
STM L2	STM L1	41.03	956.12	955.71	1.00	24	0.013	33.31	10.70	22.61	2.00	958.51	964.76
STM L3	STM L2	56.59	956.90	956.33	1.00	24	0.013	30.93	9.85	22.62	2.00	960.09	966.39
STM L4	STM L3	165.14	959.05	957.40	1.00	24	0.013	22.92	7.30	22.62	2.00	962.39	964.75
STM L5	STM L4	66.64	959.92	959.25	1.01	24	0.013	20.65	6.57	22.68	2.00	963.28	962.59
STM M1	STM L3	64.41	964.57	961.83	4.25	15	0.013	8.01	9.14	13.32	1.11	965.68	969.35
STM M2	STM M1	90.14	968.39	964.77	4.02	15	0.013	5.15	5.34	12.94	0.92	969.31	973.16
STM M3	STM M2	90.49	972.29	968.60	4.08	15	0.013	2.62	3.86	13.04	0.65	972.94	976.84
STM N1	STM D10	51.657	956.87	956.28	1.14	24	0.013	23.02	7.33	24.17	2.00	961.28	961.12
STM O1	STM D10	73.489	957.75	956.28	2	18	0.013	8.57	4.85	14.85	1.50	961.23	963.92
STM P1	STM L4	19.51	960.09	959.8	1.49	15	0.013	2.27	1.85	7.87	1.25	962.75	964.60
STM U1	PUBL RCB	14.935	939.49	938	9.98	15	0.013	2.15	7.30	20.40	0.58	940.07	954.22
STM U2	STM U1	62	949.36	948.12	2	15	0.013	0.93	3.87	9.13	0.38	949.74	954.67
STM V1	PUBL RCB	20	938	936	10	18	0.013	12.39	12.45	33.21	1.33	939.33	953.21
STM W1	PUBL RCB	23.713	938.85	936	12.02	15	0.013	9.39	12.43	22.39	1.33	940.02	951.03
UBL RCB BEND 1	Outfall	188.958	930.63	928.4	1.38	84 x 156	0.013	895.62	17.5	2111.18	5.28	936.28	939.87
		54.413	931.75			84 x 156	0.013			2111.18		936.28	
	PUBL RCB BEND 2		931.75	931	1.38			895.62	13.06		5.28		940.25
	PUBL RCB BEND 3	423.772 60.78	937.58	931.75 937.58	1.38 1.38	84 x 156 84 x 156	0.013 0.013	895.62 895.62	13.05 13.06	2111.61 2115.82	5.28 5.28	942.86 943.70	946.71 946.84

DAVID L. EICKMAN NUMBER PE-2009015436 DAVID EICKMAN, P.E. MO# 2009015436					
DATE REVISIONS DESCRIPTION BY					REVISIONS
REV. I					
STORMWATER CALCULATIONS - FUTURE CONDITIONS	PRIVATE SITE DEVELOPMENT PLANS		THE VILLAGE AT DISCOVERY PARK ZONE 1	NW COLBERN RD & NE DOUGLAS ST	LEE'S SUMMIT, MISSOURI
drawn checke approv QA/QC project drawing date:	ed by: ed by: by: no.: g no.:			J D21-0 105_D2 10.18	NR/JN DE S/NH 04643 104643

SHEET

Appendix C C1 NRCS Soils Report

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

... Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water
Perennial Water

Rock Outcrop

↓ Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

Spoil Area

Stony Spot

Very Stony Spot

Wet Spot
Other

Special Line Features

Water Features

Δ

Streams and Canals

Transportation

HH Rails

Interstate Highways

~

US Routes
Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Jackson County, Missouri Survey Area Data: Version 25, Aug 22, 2023

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Aug 30, 2022—Sep 8. 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
30080	Greenton silty clay loam, 5 to 9 percent slopes	1.5	100.0%
Totals for Area of Interest		1.5	100.0%