

# FOR The Village at Discovery Lots 5-8

PROJECT NO. 230286



May 22, 2024

1000 W. Nifong Blvd. Building 1 • Columbia, MO 65203 Phone: 573-447-0292 www.crockettengineering.com



(573) 447-0292

### TABLE OF CONTENTS

| 1. | General information             | .1  |
|----|---------------------------------|-----|
| 2. | Methodology                     | . 2 |
| З. | Existing Conditions Analysis.   | .3  |
| 4. | Proposed Conditions Analysis.   | .3  |
| 5. | Conclusions and Recommendations | .4  |

### APPENDICES

| Α. | Drainage Area Maps                       |   |
|----|------------------------------------------|---|
|    | A1. Existing Condition Drainage Area Map | 5 |
|    | A2. Proposed Condition Drainage Area Map | 8 |
| B. | Supporting Calculations from Olsson      | 9 |
| C. | Exhibits                                 |   |
|    | C1. Soils Report                         |   |

1. General Information

The site is located at 1900–1920 NE Discovery Ave. and 1901–1921 NE Trails Edge Blvd. in Lee's Summit, Missouri. This project consists of developing four lots as part of The Village at Discovery Park development. The proposed development will include four structures with varying uses and adjacent parking for all lots. The proposed development will be constructed on Lots 5-8 of The Village at Discovery Park Plat recorded as Instrument Number 2023E0089550. Lots 5-8 of said Plat contains 4.83 acres. The proposed structures will have a total footprint of 54,663 sq. ft. and the total impervious area will be  $\pm$ 149,468 sq. ft. (3.43 ac.). The calculated runoff coefficient is determined by 0.3+0.6(% impervious), these lots have an overall runoff coefficient of 0.73.

The site is currently open grass area with a drainage ditch near the northern portion of the site along NE Alura Way. There is another drainage ditch near the eastern portion of the site along NE Discovery Ave. The stormwater currently sheet flows north and to the east. There are two side opening inlets, one in each drainage ditch. The runoff is collected in these inlets and then conveyed through pipe network to a regional detention facility. This regional detention facility is part of the "MASS GRADING &

EROSION AND SEDIMENT CONTROL PLANS<sup>®</sup> prepared by Olsson, approved and issued for construction on 10/25/2023.

The stormwater from the proposed development will be collected and conveyed with the use of on-site storm sewer. The on-site storm sewer will discharge into existing junction boxes/inlets and will then be conveyed to the regional detention facility. The water is treated and discharged through a 5' x 6' RCB to a tributary of Little Cedar Creek. This tributary is not regulated by USACE per the USGS National Water Information System Map.

Per the FEMA Flood Map Service Center no portion of the site is located in the 100 year flood plain per FIRM Map 29095C0409G, effective date of January 20, 2017. No floodplain permits are required.

The soil classifications per the USDA Nation Resources Conservation Service (NRCS) Web Soil Survey shows this site to consist of Sampsel silty clay loam, Greenton silty clay loam, and Sharpsburg-Urban land complex. See table below:

| Map Unit<br>Symbol | Map Unit<br>Name | Acres in AOI | Percent of<br>AOI | Slopes   | Hydrologic<br>Soil Group |  |  |  |  |  |  |  |
|--------------------|------------------|--------------|-------------------|----------|--------------------------|--|--|--|--|--|--|--|
| 30080              | Greenton         | 4.8          | 84.9              | 5% to 9% | C/D                      |  |  |  |  |  |  |  |
|                    | silty clay loam  |              |                   |          |                          |  |  |  |  |  |  |  |
| 10120              | Sharpsburg       | 0.9          | 15.1              | 2% to 5% | С                        |  |  |  |  |  |  |  |
|                    | silt loam        |              |                   |          |                          |  |  |  |  |  |  |  |

Soils Classifications Chart:

\*Refer to Exhibit C1

### 2. Methodology

The parameters for determining the runoff calculations for this site are equal to the parameters in the stormwater calculations prepared by Olsson for the plans named "Private Site Development Plans for the Village at Discovery Park Zone 1". These calculations and associated storm sewer plans have been approved by Development Services Department of Lee's Summit, Missouri. This report only includes a summary of the approved calculations.

Rational Method:

- Return Frequencies: 2, 10, & 100 year
- Intensity-Duration-Frequency Curves for Kansas City, Missouri
- Rational method runoff coefficients
- Rational method for Time of Concentration

### www.crockettengineering.com

- Rainfall data is taken from the APWA 5600 "Storm Drainage Systems & Facilities", dated February 16, 2011.
- Rainfall intensity is calculated from Table 5602-5, taking the time of concentration to be 5 minutes.
  - o 2 year 5.41 inches
  - 10 year 7.35 inches
  - $\circ$  100 year 10.32 inches
- 3. Existing Conditions Analysis

Existing conditions were modeled using the open space area as pasture in good condition. The stormwater currently sheet flows to multiple inlets positioned along the northern and eastern line. An existing storm pipe network conveys the water from the structures to an existing regional detention facility. The existing detention facility is designed to have capacity for this whole 4.83-acre site. This site has three separate drainage areas. Area L5 captures 0.76 acres in the northwest portion of the site, area G3 captures 2.01 acres in the middle portion of the site, and area N1 captures 2.20 acres in the southeast portion of the site. Please see sheet C402 and C404 for drainage areas on "PRIVATE SITE DEVELOPMENT PLANS" prepared by Olsson and approved for construction on 11/03/2023. See Section B of the Appendix for Olsson plans and calculations.

|         | Drainage |             |           | 2-year    | 10-year   | 100-year  |
|---------|----------|-------------|-----------|-----------|-----------|-----------|
|         | Area     | Runoff      | Тс        | Peak Flow | Peak Flow | Peak Flow |
| Subarea | (acres)  | Coefficient | (minutes) | (cfs)     | (cfs)     | (cfs)     |
| N1      | 2.20     | 0.3         | 5         | 3.57      | 4.85      | 8.52      |
| G3      | 2.01     | 0.3         | 5         | 3.26      | 4.43      | 7.78      |
| L5      | 0.76     | 0.3         | 5         | 1.23      | 1.68      | 2.94      |

The table below summarizes the existing conditions analysis:

### 4. Proposed Conditions Analysis

The stormwater from the proposed development will be collected and conveyed with the use of onsite storm sewer. The storm sewer will be routed to the existing storm network and then conveyed to a detention facility. Any runoff that is not collected by the on-site sewer system will be collected by gutter inlets placed along the private streets (Alura Way, Discovery Ave, Trails Edge Blvd.) and conveyed to the same regional detention facility. The calculations prepared by Olsson used a post-development runoff coefficient of 0.83. The storm sewer that this development ties into is designed for this capacity. After final design of this site the calculated runoff coefficient is 0.73, meaning that less runoff will be generated and there will be ample capacity in both the existing storm sewer and detention facility. The design factor of 0.81 comes from APWA 5600 – Table 5602-3: Runoff Parameters, neighborhood areas of business. This is used for design because it is more conservative than using the actual coefficient of 0.73.

|         | Drainage  |             |           | 2-year    | 10-year   | 100-year  |
|---------|-----------|-------------|-----------|-----------|-----------|-----------|
|         | Area      | Runoff      | Тс        | Peak Flow | Peak Flow | Peak Flow |
| Subarea | (Acres)   | Coefficient | (Minutes) | (cfs)     | (cfs)     | (cfs)     |
| DA 1    | 0.20      | 0.3         | 5         | 0.32      | 0.44      | 0.77      |
| DA 2    | 0.08      | 0.3         | 5         | 0.13      | 0.18      | 0.31      |
| DA 3    | 0.12      | 0.81        | 5         | 0.53      | 0.71      | 1.23      |
| DA 4    | 0.50      | 0.81        | 5         | 2.19      | 2.98      | 5.11      |
| DA 5    | 0.13      | 0.81        | 5         | 0.57      | 0.77      | 1.33      |
| DA 6    | 0.27      | 0.81        | 5         | 1.18      | 1.61      | 2.76      |
| DA 7    | 0.11      | 0.3         | 5         | 0.18      | 0.24      | 0.43      |
| DA 8    | DA 8 0.10 |             | 5         | 0.44      | 0.60      | 1.02      |
| DA 9    | 0.31      | 0.81        | 5         | 0.36      | 1.85      | 3.17      |
| DA 10   | 0.07      | 0.81        | 5         | 0.31 0.42 |           | 0.72      |
| DA 11   | 0.23      | 0.81        | 5         | 1.00      | 1.37      | 2.35      |
| DA 12   | 0.04      | 0.3         | 5         | 0.06      | 0.09      | 0.15      |
| DA 13   | 0.12      | 0.3         | 5         | 0.19      | 0.26      | 0.46      |
| DA 14   | 0.16      | 0.3         | 5         | 0.26      | 0.35      | 0.62      |
| DA 15   | 0.06      | 0.3         | 5         | 0.10      | 0.13      | 0.23      |
| DA 16   | 0.83      | 0.81        | 5         | 3.64      | 4.94      | 8.48      |
| DA 17   | 0.06      | 0.3         | 5         | 0.10      | 0.13      | 0.23      |
| DA 18   | 0.32      | 0.50        | 5         | 0.87      | 1.18      | 1.65      |
| TOTAL   | 4.83      | -           | 5         | 12.43     | 18.25     | 31.02     |

The table below summarizes the proposed conditions analysis:

### 5. Conclusions and Recommendations

The proposed development has been evaluated and this report shows that the post development stormwater runoff able to be handled by the existing storm network and regional detention facility.

# Appendix A

- A1 Existing Condition Drainage Area Map
- A2 Proposed Condition Drainage Area Map









# Appendix B Supporting Calculations from Olsson

www.crockettengineering.com

| Drainage Area | a Design Table |          |       |         |      |           |
|---------------|----------------|----------|-------|---------|------|-----------|
| 10            | Year Return F  | requency |       |         |      |           |
|               | Drainage       |          |       |         |      |           |
| Inlet ID      | Area           | С        | Тс    | i       | к    | Peak Flow |
|               |                |          |       |         |      |           |
|               | (ac)           |          | (min) | (in/hr) |      | (cfs)     |
| A2            | 5.84           | 0.45     | 5.00  | 7.35    | 1.00 | 19.32     |
| B2            | 1.78           | 0.30     | 5.00  | 7.35    | 1.00 | 3.93      |
| C2            | 3.25           | 0.30     | 5.00  | 7.35    | 1.00 | 7.17      |
| D1            | 3.33           | 0.30     | 10.47 | 5.98    | 1.00 | 5.97      |
| D2            | 0.43           | 0.66     | 5.00  | 7.35    | 1.00 | 2.09      |
| D3            | 0.73           | 0.66     | 5.00  | 7.35    | 1.00 | 3.54      |
| D4            | 0.26           | 0.83     | 5.00  | 7.35    | 1.00 | 1.59      |
| E1            | 4.95           | 0.30     | 10.67 | 5.94    | 1.00 | 8.82      |
| F1            | 0.36           | 0.83     | 5.00  | 7.35    | 1.00 | 2.20      |
| G1            | 0.37           | 0.83     | 5.00  | 7.35    | 1.00 | 2.26      |
| G2            | 0.43           | 0.83     | 5.00  | 7.35    | 1.00 | 2.62      |
| G3            | 2.01           | 0.30     | 5.00  | 7.35    | 1.00 | 4.43      |
| H1            | 0.16           | 0.83     | 5.00  | 7.35    | 1.00 | 0.98      |
| 11            | 0.11           | 0.83     | 5.00  | 7.35    | 1.00 | 0.67      |
| J1            | 0.27           | 0.83     | 5.00  | 7.35    | 1.00 | 1.65      |
| K1            | 0.12           | 0.83     | 5.00  | 7.35    | 1.00 | 0.73      |
| L2            | 0.20           | 0.83     | 5.00  | 7.35    | 1.00 | 1.22      |
| L5            | 0.76           | 0.30     | 5.00  | 7.35    | 1.00 | 1.68      |
| M1            | 0.30           | 0.83     | 5.00  | 7.35    | 1.00 | 1.83      |
| M2            | 0.24           | 0.83     | 5.00  | 7.35    | 1.00 | 1.46      |
| M3            | 0.31           | 0.83     | 5.00  | 7.35    | 1.00 | 1.89      |
| N1            | 2.20           | 0.30     | 5.00  | 7.35    | 1.00 | 4.85      |
| P1            | 0.22           | 0.83     | 5.00  | 7.35    | 1.00 | 1.34      |
| U1            | 0.12           | 0.83     | 5.00  | 7.35    | 1.00 | 0.73      |
| U2            | 0.09           | 0.83     | 5.00  | 7.35    | 1.00 | 0.55      |
| V1            | 1.20           | 0.30     | 5.00  | 7.35    | 1.00 | 2.65      |
| W1            | 0.87           | 0.83     | 5.00  | 7.35    | 1.00 | 5.31      |

| Š                                                           |  |
|-------------------------------------------------------------|--|
| plans\Sheets\GNCV\Street & Storm Plans\C_STM05_D2104643.dwg |  |
| -04643-d\40-design\AutoCAD\final<br>XREFS: C_PTBLK_D2104643 |  |
| F: \2021\04501-05000\021-<br>0ct 18, 2023 9:30am            |  |
| DWG:<br>DATE:                                               |  |

| Drainage Area Design Table |          |      |       |         |      |           |  |  |  |  |  |
|----------------------------|----------|------|-------|---------|------|-----------|--|--|--|--|--|
| 100 Year Return Frequency  |          |      |       |         |      |           |  |  |  |  |  |
|                            | Drainage |      |       |         |      |           |  |  |  |  |  |
| Inlet ID                   | Area     | С    | Тс    | i       | к    | Peak Flow |  |  |  |  |  |
|                            |          |      |       |         |      |           |  |  |  |  |  |
|                            | (ac)     |      | (min) | (in/hr) |      | (cfs)     |  |  |  |  |  |
| A2                         | 5.84     | 0.45 | 5.00  | 10.32   | 1.25 | 33.91     |  |  |  |  |  |
| B2                         | 1.78     | 0.30 | 5.00  | 10.32   | 1.25 | 6.89      |  |  |  |  |  |
| C2                         | 3.25     | 0.30 | 5.00  | 10.32   | 1.25 | 12.58     |  |  |  |  |  |
| D1                         | 3.33     | 0.30 | 10.47 | 8.46    | 1.25 | 10.56     |  |  |  |  |  |
| D2                         | 0.43     | 0.66 | 5.00  | 10.32   | 1.25 | 3.66      |  |  |  |  |  |
| D3                         | 0.73     | 0.66 | 5.00  | 10.32   | 1.25 | 6.22      |  |  |  |  |  |
| D4                         | 0.26     | 0.83 | 5.00  | 10.32   | 1.25 | 2.68      |  |  |  |  |  |
| E1                         | 4.95     | 0.30 | 10.67 | 8.40    | 1.25 | 15.60     |  |  |  |  |  |
| F1                         | 0.36     | 0.83 | 5.00  | 10.32   | 1.25 | 3.72      |  |  |  |  |  |
| G1                         | 0.37     | 0.83 | 5.00  | 10.32   | 1.25 | 3.82      |  |  |  |  |  |
| G2                         | 0.43     | 0.83 | 5.00  | 10.32   | 1.25 | 4.44      |  |  |  |  |  |
| G3                         | 2.01     | 0.30 | 5.00  | 10.32   | 1.25 | 7.78      |  |  |  |  |  |
| H1                         | 0.16     | 0.83 | 5.00  | 10.32   | 1.25 | 1.65      |  |  |  |  |  |
| 11                         | 0.11     | 0.83 | 5.00  | 10.32   | 1.25 | 1.14      |  |  |  |  |  |
| J1                         | 0.27     | 0.83 | 5.00  | 10.32   | 1.25 | 2.79      |  |  |  |  |  |
| K1                         | 0.12     | 0.83 | 5.00  | 10.32   | 1.25 | 1.24      |  |  |  |  |  |
| L2                         | 0.20     | 0.83 | 5.00  | 10.32   | 1.25 | 2.06      |  |  |  |  |  |
| L5                         | 0.76     | 0.30 | 5.00  | 10.32   | 1.25 | 2.94      |  |  |  |  |  |
| M1                         | 0.30     | 0.83 | 5.00  | 10.32   | 1.25 | 3.10      |  |  |  |  |  |
| M2                         | 0.24     | 0.83 | 5.00  | 10.32   | 1.25 | 2.48      |  |  |  |  |  |
| M3                         | 0.31     | 0.83 | 5.00  | 10.32   | 1.25 | 3.20      |  |  |  |  |  |
| N1                         | 2.20     | 0.30 | 5.00  | 10.32   | 1.25 | 8.52      |  |  |  |  |  |
| P1                         | 0.22     | 0.83 | 5.00  | 10.32   | 1.25 | 2.27      |  |  |  |  |  |
| U1                         | 0.12     | 0.83 | 5.00  | 10.32   | 1.25 | 1.24      |  |  |  |  |  |
| U2                         | 0.09     | 0.83 | 5.00  | 10.32   | 1.25 | 0.93      |  |  |  |  |  |
| V1                         | 1.20     | 0.30 | 5.00  | 10.32   | 1.25 | 4.65      |  |  |  |  |  |
| W1                         | 0.87     | 0.83 | 5.00  | 10.32   | 1.25 | 8.98      |  |  |  |  |  |

| 10 10    | Year Return F | requency    |            |              |        |         |
|----------|---------------|-------------|------------|--------------|--------|---------|
|          | Captured      |             | Inlet      |              | Gutter | Ponding |
| Inlet ID | Flow          | Bypass Flow | Efficiencv | Gutter Depth | Spread | Depth   |
|          |               |             | (Note 2)   |              |        |         |
|          | (cfs)         | (cfs)       | (%)        | (ft)         | (ft)   | (ft)    |
| A2       | 19.54         | 0.00        | 100.00%    |              |        | 0.44    |
| B2       | 3.93          | 0.00        | 100.00%    |              |        | 0.18    |
| C2       | 7.17          | 0.00        | 100.00%    |              |        | 0.26    |
| D1       | 5.97          | 0.00        | 100.00%    |              |        | 0.26    |
| D2       | 2.28          | 0.05        | 97.66%     | 0.19         | 8.71   |         |
| D3       | 3.31          | 0.25        | 93.07%     | 0.22         | 10.21  |         |
| D4       | 1.57          | 0.01        | 99.14%     | 0.16         | 7.54   |         |
| E1       | 8.82          | 0.00        | 100.00%    |              |        | 0.41    |
| F1       | 2.20          | 0.00        | 100.00%    |              | •••    |         |
| G1       | 2.26          | 0.00        | 100.00%    |              |        |         |
| G2       | 2.62          | 0.00        | 100.00%    |              |        |         |
| G3       | 4.43          | 0.00        | 100.00%    |              |        | 0.30    |
| H1       | 0.98          | 0.00        | 100.00%    |              |        |         |
| 11       | 0.67          | 0.00        | 100.00%    |              |        |         |
| J1       | 1.65          | 0.00        | 100.00%    |              |        |         |
| K1       | 0.73          | 0.00        | 99.99%     | 0.11         | 4.96   |         |
| L2       | 1.33          | 0.07        | 94.89%     | 0.12         | 5.55   |         |
| L5       | 1.68          | 0.00        | 100.00%    |              |        | 0.16    |
| M1       | 1.76          | 0.18        | 90.83%     | 0.14         | 6.27   |         |
| M2       | 1.52          | 0.11        | 93.16%     | 0.13         | 5.88   |         |
| M3       | 1.73          | 0.17        | 91.21%     | 0.13         | 6.21   |         |
| N1       | 0.00          | 0.00        | 0.00%      |              |        | 0.32    |
| P1       | 1.34          | 0.00        | 100.00%    |              |        |         |
| U1       | 0.73          | 0.00        | 99.99%     | 0.11         | 4.96   |         |
| U2       | 0.55          | 0.00        | 99.70%     | 0.10         | 4.45   |         |
| V1       | 2.65          | 0.00        | 100.00%    |              |        | 0.22    |
| W1(L)    |               |             |            | 0.25         | 11.38  |         |
| W1(R)    |               |             |            | 0.11         | 5.27   |         |
| W1       | 5.37          | 0.00        | 100.00%    |              |        |         |

Notes: 1. Inlet capacity at sag location has been reduced by a clogging factor of 0.80, reducing theoretical Both theoretical capacity and reduced capacity are shown.

2. Inlet efficiency shown in the tables is Captured Flow/Total Flow, denoting the actual percentage

# RELEASED FOR CONSTRUCTION As Noted on Plan Review

Development Services Department Lee's Summit, Missouri 11/01/2023

| 100      | ) Year Return F | requency    |            |              |        |         |
|----------|-----------------|-------------|------------|--------------|--------|---------|
|          | Captured        |             | Inlet      |              | Gutter | Ponding |
| Inlet ID | Flow            | Bypass Flow | Efficiency | Gutter Depth | Spread | Depth   |
|          |                 |             | (Note 2)   |              |        |         |
|          | (cfs)           | (cfs)       | (%)        | (ft)         | (ft)   | (ft)    |
| A2       | 35.22           | 0.00        | 100.00%    |              |        | 0.53    |
| B2       | 6.89            | 0.00        | 100.00%    |              |        | 0.26    |
| C2       | 12.58           | 0.00        | 100.00%    |              |        | 0.38    |
| D1       | 10.56           | 0.00        | 100.00%    |              |        | 0.37    |
| D2       | 4.27            | 0.39        | 91.57%     | 0.24         | 11.29  |         |
| D3       | 5.33            | 1.00        | 84.25%     | 0.27         | 12.67  |         |
| D4       | 2.57            | 0.11        | 95.93%     | 0.20         | 9.18   |         |
| E1       | 15.68           | 0.00        | 100.00%    |              |        | 0.42    |
| F1       | 3.72            | 0.00        | 100.00%    |              |        |         |
| G1       | 3.82            | 0.00        | 100.00%    |              |        |         |
| G2 4.44  |                 | 0.00        | 100.00%    |              |        |         |
| G3       | 7.78            | 0.00        | 100.00%    |              |        | 0.44    |
| H1       | 1.65            | 0.00        | 100.00%    |              |        |         |
| 11       | 1.14            | 0.00        | 100.00%    |              |        |         |
| J1       | 2.79            | 0.00        | 100.00%    |              |        |         |
| K1       | 1.21            | 0.03        | 97.86%     | 0.13         | 6.03   |         |
| L2       | 2.38            | 0.44        | 84.48%     | 0.16         | 7.22   |         |
| L5       | 2.94            | 0.00        | 100.00%    |              |        | 0.23    |
| M1       | 2.86            | 0.76        | 79.11%     | 0.17         | 7.92   |         |
| M2       | 2.53            | 0.52        | 82.85%     | 0.16         | 7.44   |         |
| M3       | 2.62            | 0.58        | 81.88%     | 0.16         | 7.56   |         |
| N1       | 0.00            | 0.00        | 0.00%      |              |        | 0.47    |
| P1       | 2.27            | 0.00        | 100.00%    |              |        |         |
| U1       | 1.22            | 0.02        | 98.53%     | 0.13         | 6.03   |         |
| U2       | 0.93            | 0.00        | 99.65%     | 0.12         | 5.42   |         |
| V1       | 4.65            | 0.00        | 100.00%    |              |        | 0.31    |
| W1(L)    |                 |             |            | 0.30         | 14.06  |         |
| W1(R)    |                 |             |            | 0.14         | 6.42   |         |
| W1       | 9.39            | 0.00        | 100.00%    |              |        |         |

1. Inlet capacity at sag location has been reduced by a clogging factor of 0.80, reducing theoretical Both theoretical capacity and reduced capacity are shown. 2. Inlet efficiency shown in the tables is Captured Flow/Total Flow, denoting the actual percentage

| Storm Sewer Desig | gn Calculation Table | 2               |          |            |       |          |           |            |              |          |            |             |           |
|-------------------|----------------------|-----------------|----------|------------|-------|----------|-----------|------------|--------------|----------|------------|-------------|-----------|
| 10                | Year Return Frequ    | ency            |          |            |       |          |           |            |              |          |            |             |           |
| Upstream          | Downstream           |                 | Upstream | Downstream |       |          | Manning's |            |              |          |            | Upstream    | Upstream  |
| Structure         | Structure            | Length          | Invert   | Invert     | Slope | Diameter | n         | Total Flow | Velocity     | Capacity | Flow Depth | Struct. HGL | Top Elev. |
|                   |                      | (ft)            | (ft)     | (ft)       | (%)   | (in)     |           | (cfs)      | (ft/s)       | (cfs)    | (ft)       | (ft)        | (ft)      |
| STM A2            | STM A1               | 50.22           | 931.43   | 930.00     | 2.85  | 36       | 0.013     | 28.68      | 10.04        | 112.54   | 1.73       | 933.16      | 939.00    |
| STM B2            | STM B1               | 66.27           | 932.65   | 930.00     | 4.00  | 24       | 0.013     | 3.93       | 6.42         | 45.23    | 0.69       | 933.34      | 946.00    |
| STM C2            | STM C1               | 70.49           | 932.82   | 930.00     | 4.00  | 24       | 0.013     | 7.17       | 7.68         | 45.24    | 0.95       | 933.77      | 946.00    |
| STM D1            | PUBL RCB             | 33.40           | 936.80   | 936.25     | 1.65  | 60       | 0.013     | 80.46      | 11.01        | 334.26   | 2.54       | 939.34      | 950.67    |
| STM D2            | STM D1               | 87.42           | 938.61   | 937.30     | 1.50  | 60       | 0.013     | 74.49      | 8.87         | 318.85   | 2.44       | 941.05      | 953.83    |
| STM D3            | STM D2               | 133.06          | 941.17   | 939.11     | 1.55  | 60       | 0.013     | 72.21      | 9.01         | 324.09   | 2.40*      | 943.57      | 955.16    |
| STM D4            | STM D3               | 128.22          | 943.89   | 941.27     | 2.04  | 60       | 0.013     | 68.90      | 7.73         | 372.32   | 2.34       | 946.23      | 956.44    |
| STM D5            | STM D4               | 80.81           | 946.53   | 944.89     | 2.03  | 48       | 0.013     | 67.33      | 11.42        | 204.84   | 2.48       | 949.01      | 956.95    |
| STM D6            | STM D5               | 72.98           | 947.83   | 947.03     | 1.10  | 42       | 0.013     | 36.41      | 6.72         | 105.33   | 1.87       | 949.70 i    | 957.70    |
| STM D7            | STM D6               | 197.01          | 950.20   | 948.03     | 1.10  | 42       | 0.013     | 34.21      | 7.18         | 105.52   | 1.81       | 952.01      | 959.70    |
| STM D8            | STM D7               | 129 31          | 952.12   | 950.70     | 1 10  | 36       | 0.013     | 24 90      | 7 43         | 69.95    | 1.61       | 953 73      | 962 59    |
| STM D9            | STM D8               | 15 22           | 952.89   | 952.62     | 1 75  | 36       | 0.013     | 24 90      | 8 46         | 88.22    | 1.61       | 954 49      | 962.46    |
| STM D10           | STM D9               | 96.59           | 954.78   | 953.02     | 1.75  | 36       | 0.013     | 23.25      | 6.73         | 88.23    | 1.51       | 956.33      | 964.22    |
| STM D10           | STM D10              | 50.55           | 956.17   | 955.09     | 1.75  | 30       | 0.013     | 18 39      | 7.80         | 5/ 25    | 1.55       | 957.62      | 965.22    |
| STM D12           | STM D10              | 155.87          | 959.17   | 956.37     | 1.75  | 30       | 0.013     | 16.01      | 6.23         | 54.25    | 1.45       | 960.45      | 968.36    |
| STM D12           | STM D12              | 155.87<br>91.40 | 959.10   | 950.57     | 2.75  | 30       | 0.013     | 16.01      | 0.23<br>9.42 | 68.01    | 1.35       | 963 10      | 908.30    |
|                   |                      | 20 50           | 901.84   | 959.00     | 2.75  | 20       | 0.013     | 16.01      | 0.42         | 00.01    | 1.35       | 903.19      | 071 55    |
|                   |                      | 50.59           | 903.91   | 902.34     | 4.07  | 26       | 0.013     | 10.01      | 0.41         | 02.72    | 1.55       | 905.20      | 971.55    |
|                   |                      | 50.55<br>07 70  | 949.05   | 947.55     | 3.01  | 20       | 0.013     | 30.92      | 7.95         | 115.07   | 1.60       | 950.85      | 950.17    |
| STIVIEZ           | STMEL                | 27.73           | 950.08   | 949.25     | 2.99  | 30       | 0.013     | 30.92      | 7.52         | 04.17    | 1.80       | 951.88      | 959.31    |
| STIME3            | STMEZ                | 59.68           | 951.47   | 950.28     | 1.99  | 36       | 0.013     | 30.92      | 7.52         | 94.17    | 1.80       | 953.27      | 960.41    |
| STIME4            | STM E3               | 128.00          | 954.23   | 951.67     | 2.00  | 36       | 0.013     | 30.92      | 7.52         | 94.32    | 1.80       | 956.03      | 962.96    |
| STME5             | STME4                | /9./2           | 956.02   | 954.43     | 1.99  | 36       | 0.013     | 30.92      | 7.52         | 94.19    | 1.80       | 957.82      | 964.55    |
| EX SIME-A         | STM E5               | 143.57          | 960.13   | 956.22     | 2.72  | 36       | 0.013     | 30.92      | 7.52         | 110.06   | 1.80       | 961.93      | 972.11    |
| STM F1            | STM D6               | 18.00           | 951.28   | 950.92     | 2.00  | 15       | 0.013     | 2.20       | 4.98         | 9.13     | 0.59       | 951.87      | 957.60    |
| STM G1            | STM D7               | 39.56           | 952.29   | 951.70     | 1.49  | 24       | 0.013     | 9.31       | 6.63         | 27.62    | 1.09       | 953.38      | 959.71    |
| STM G2            | STM G1               | 171.49          | 955.36   | 952.79     | 1.50  | 24       | 0.013     | 7.05       | 6.10         | 27.69    | 0.94       | 956.30      | 961.53    |
| STM G3            | STM G2               | 72.05           | 956.71   | 955.86     | 1.18  | 24       | 0.013     | 4.43       | 5.06         | 24.57    | 0.74       | 957.45      | 959.92    |
| STM H1            | STM D9               | 20.35           | 956.86   | 956.45     | 2.01  | 15       | 0.013     | 0.98       | 3.01         | 9.17     | 0.39       | 957.25      | 962.22    |
| STM I1            | STM D9               | 53.15           | 956.76   | 955.70     | 1.99  | 15       | 0.013     | 0.67       | 3.52         | 9.12     | 0.32       | 957.08      | 962.11    |
| STM J1            | STM D11              | 22.74           | 958.18   | 957.73     | 1.98  | 15       | 0.013     | 1.65       | 3.50         | 9.08     | 0.51       | 958.69      | 965.14    |
| STM K1            | STM D11              | 34.16           | 958.10   | 957.42     | 1.99  | 15       | 0.013     | 0.73       | 3.61         | 9.11     | 0.33       | 958.43      | 965.27    |
| STM L2            | STM L1               | 41.03           | 956.12   | 955.71     | 1.00  | 24       | 0.013     | 9.36       | 6.08         | 22.61    | 1.09       | 957.21      | 964.76    |
| STM L3            | STM L2               | 56.59           | 956.90   | 956.33     | 1.00  | 24       | 0.013     | 8.03       | 5.56         | 22.62    | 1.01       | 957.91      | 966.39    |
| STM L4            | STM L3               | 165.14          | 959.05   | 957.40     | 1.00  | 24       | 0.013     | 3.02       | 4.27         | 22.62    | 0.61       | 959.66      | 964.75    |
| STM L5            | STM L4               | 66.64           | 959.92   | 959.25     | 1.01  | 24       | 0.013     | 1.68       | 3.43         | 22.68    | 0.45       | 960.37      | 962.59    |
| STM M1            | STM L3               | 64.41           | 964.57   | 961.83     | 4.25  | 15       | 0.013     | 5.01       | 7.67         | 13.32    | 0.91       | 965.48      | 969.35    |
| STM M2            | STM M1               | 90.14           | 968.39   | 964.77     | 4.02  | 15       | 0.013     | 3.25       | 4.47         | 12.94    | 0.73       | 969.12      | 973.16    |
| STM M3            | STM M2               | 90.49           | 972.29   | 968.60     | 4.08  | 15       | 0.013     | 1.73       | 3.59         | 13.04    | 0.52       | 972.81      | 976.84    |
| STM N1            | STM D10              | 51.657          | 956.87   | 956.28     | 1.14  | 24       | 0.013     | 4.85       | 5.16         | 24.17    | 0.77       | 957.64      | 961.12    |
| STM O1            | STM D10              | 73.489          | 957.75   | 956.28     | 2     | 18       | 0.013     | 0.01       | 0.71         | 14.85    | 0.04       | 957.79      | 963.92    |
| STM P1            | STM L4               | 19.51           | 960.09   | 959.8      | 1.49  | 15       | 0.013     | 1.34       | 4.04         | 7.87     | 0.46       | 960.55      | 964.6     |
| STM U1            | PUBL RCB             | 14.935          | 939.49   | 938        | 9.98  | 15       | 0.013     | 1.28       | 6.25         | 20.4     | 0.45       | 939.94      | 954.22    |
| STM U2            | STM U1               | 62              | 949.36   | 948.12     | 2     | 15       | 0.013     | 0.55       | 3.33         | 9.13     | 0.29       | 949.65      | 954.67    |
| STM V1            | PUBL RCB             | 20              | 938      | 936        | 10    | 18       | 0.013     | 2.65       | 7.46         | 33.21    | 0.62       | 938.62      | 953.21    |
| STM W1            | PUBL RCB             | 23.713          | 938.85   | 936        | 12.02 | 15       | 0.013     | 5.37       | 10.13        | 22.39    | 0.94       | 939.79      | 951.03    |
| PUBL RCB BEND 1   | Outfall              | 188.958         | 931      | 928.4      | 1.38  | 84 x 156 | 0.013     | 486.99     | 14.33        | 2111.18  | 3.52       | 934.52      | 939.87    |
| PUBL RCB BEND 2   | PUBL RCB BEND 1      | 54.413          | 931.75   | 931        | 1.38  | 84 x 156 | 0.013     | 486.99     | 10.65        | 2113.02  | 3.52       | 935.27      | 940.25    |
| PUBL RCB BEND 3   | PUBL RCB BEND 2      | 423.772         | 937.58   | 931.75     | 1.38  | 84 x 156 | 0.013     | 486.99     | 10.65        | 2111.61  | 3.52       | 941.1       | 946.71    |
| RCB CONNECTION    | PUBL RCB BEND 3      | 60.78           | 938.42   | 937.58     | 1.38  | 84 x 156 | 0.013     | 486.99     | 10.65        | 2115.82  | 3.52       | 941.94      | 946.84    |

### Storm Sewer Design Calculation Table

| 100 Vear Beturn Frequency |                 |         |          |             |       |          |             |            |          |          |            |             |           |
|---------------------------|-----------------|---------|----------|-------------|-------|----------|-------------|------------|----------|----------|------------|-------------|-----------|
|                           | Dowingtroor     | епсу    | Upstreet | Doutrotroop |       |          | Mannin-la   | 1          |          |          | T          |             | l Inotro  |
| Opstream                  | Downstream      | احمعنه  | Upstream | Downstream  | Class | Diameter | ivianning's | Total Flam |          | Canacity |            | Opstream    | Upstream  |
| Structure                 | Structure       | Length  | Invert   | Invert      | Slope | Diameter | n           | Total Flow | velocity | Capacity | Flow Depth | Struct. HGL | TOP Elev. |
| CT1442                    | GT1 4 4 4       | (ft)    | (ft)     | (ft)        | (%)   | (in)     | 0.010       | (CTS)      | (ft/s)   | (CTS)    | (ft)       | (ft)        | (ft)      |
| STM A2                    | STM A1          | 50.22   | 931.43   | 930.00      | 2.85  | 36       | 0.013       | 49.51      | 11.98    | 112.54   | 2.29       | 933.72      | 939.00    |
| STM B2                    | STM B1          | 66.27   | 932.65   | 930.00      | 4.00  | 24       | 0.013       | 6.89       | 7.57     | 45.23    | 0.93       | 933.58      | 946.00    |
| STM C2                    | STM C1          | 70.49   | 932.82   | 930.00      | 4.00  | 24       | 0.013       | 12.58      | 9.14     | 45.24    | 1.27       | 934.09      | 946.00    |
| STM D1                    | PUBL RCB        | 33.40   | 936.80   | 936.25      | 1.65  | 60       | 0.013       | 140.80     | 13.10    | 334.26   | 3.40       | 940.20      | 950.67    |
| STM D2                    | STM D1          | 87.42   | 938.61   | 937.30      | 1.50  | 60       | 0.013       | 130.24     | 10.32    | 318.85   | 3.26       | 941.87      | 953.83    |
| STM D3                    | STM D2          | 133.06  | 941.17   | 939.11      | 1.55  | 60       | 0.013       | 125.97     | 10.39    | 324.09   | 3.21       | 944.38      | 955.16    |
| STM D4                    | STM D3          | 128.22  | 943.89   | 941.27      | 2.04  | 60       | 0.013       | 120.64     | 9.36     | 372.32   | 3.14       | 947.03      | 956.44    |
| STM D5                    | STM D4          | 80.81   | 946.53   | 944.89      | 2.03  | 48       | 0.013       | 118.07     | 13.80    | 204.84   | 3.27       | 949.81      | 956.95    |
| STM D6                    | STM D5          | 72.98   | 947.83   | 947.03      | 1.10  | 42       | 0.013       | 63.38      | 8.19     | 105.33   | 2.49       | 950.32      | 957.70    |
| STM D7                    | STM D6          | 197.01  | 950.20   | 948.03      | 1.10  | 42       | 0.013       | 59.66      | 8.68     | 105.52   | 2.42       | 952.62      | 959.70    |
| STM D8                    | STM D7          | 129.31  | 952.12   | 950.70      | 1.10  | 36       | 0.013       | 43.62      | 8.60     | 69.95    | 2.15       | 954.27      | 962.59    |
| STM D9                    | STM D8          | 15.22   | 952.89   | 952.62      | 1.75  | 36       | 0.013       | 43.62      | 9.49     | 88.22    | 2.15       | 955.04      | 962.46    |
| STM D10                   | STM D9          | 96.59   | 954.78   | 953.09      | 1.75  | 36       | 0.013       | 40.83      | 8.11     | 88.23    | 2.08       | 956.86      | 964.22    |
| STM D11                   | STM D10         | 50.57   | 956.17   | 955.28      | 1.75  | 30       | 0.013       | 32.30      | 8.91     | 54.25    | 1.93       | 958.10      | 965.22    |
| STM D12                   | STM D11         | 155.87  | 959.10   | 956.37      | 1.75  | 30       | 0.013       | 28.30      | 7.62     | 54.25    | 1.81       | 960.91      | 968.36    |
| STM D13                   | STM D12         | 81.40   | 961.84   | 959.60      | 2.75  | 30       | 0.013       | 28.30      | 9.15     | 68.01    | 1.81       | 963.65      | 968.75    |
| EX STM D-A                | STM D13         | 38.59   | 963.91   | 962.34      | 4.07  | 30       | 0.013       | 28.30      | 9.14     | 82.72    | 1.81       | 965.72      | 971.55    |
| STM E1                    | STM D5          | 50.53   | 949.05   | 947.53      | 3.01  | 36       | 0.013       | 54.69      | 9.27     | 115.67   | 2.40       | 951.45      | 956.17    |
| STM E2                    | STM E1          | 27.73   | 950.08   | 949.25      | 2.99  | 36       | 0.013       | 54.69      | 9.44     | 115.39   | 2.40       | 952.48      | 959.31    |
| STM E3                    | STM E2          | 59.68   | 951.47   | 950.28      | 1.99  | 36       | 0.013       | 54.69      | 9.44     | 94.17    | 2.40       | 953.87      | 960.41    |
| STM F4                    | STM F3          | 128.00  | 954.23   | 951.67      | 2.00  | 36       | 0.013       | 54.69      | 9.44     | 94.32    | 2.40       | 956.63      | 962.96    |
| STM E5                    | STM F4          | 79 72   | 956.02   | 954.43      | 1 99  | 36       | 0.013       | 54.69      | 9.44     | 94 19    | 2.40       | 958.42      | 964 55    |
| FX STM F-A                | STM E5          | 143 57  | 960.13   | 956.22      | 2 72  | 36       | 0.013       | 54.69      | 9.44     | 110.06   | 2.10       | 962 53      | 972 11    |
| STM F1                    | STM D6          | 18.00   | 951.28   | 950.22      | 2.72  | 15       | 0.013       | 3 72       | 5.84     | 9 13     | 0.78       | 952.05      | 957.60    |
| STM G1                    | STM D7          | 39.56   | 952.20   | 951.70      | 1/19  | 24       | 0.013       | 16.04      | 7.86     | 27.62    | 1.44       | 953.73      | 959 71    |
| STM G2                    | STM G1          | 171 /0  | 955.25   | 952.70      | 1.45  | 24       | 0.013       | 12.22      | 7.00     | 27.02    | 1.74       | 956.62      | 961 53    |
| STM C2                    | STM C2          | 72.05   | 955.30   | 055.75      | 1.50  | 24       | 0.013       | 7 70       | 5.07     | 27.05    | 0.00       | 950.02      | 901.93    |
|                           |                 | 72.05   | 950.71   | 955.60      | 2.01  | 24<br>1E | 0.013       | 1.70       | 2.57     | 24.57    | 0.99       | 957.70      | 959.92    |
|                           | STIVED9         | 20.35   | 950.80   | 950.45      | 2.01  | 15       | 0.013       | 1.05       | 5.51     | 9.17     | 0.51       | 957.57      | 962.22    |
|                           | STIVED9         | 53.15   | 956.76   | 955.70      | 1.99  | 15       | 0.013       | 1.14       | 4.11     | 9.12     | 0.42       | 957.18      | 962.11    |
| STIVIJI                   | STM D11         | 22.74   | 958.18   | 957.73      | 1.98  | 15       | 0.013       | 2.79       | 4.16     | 9.08     | 0.67       | 958.85      | 965.14    |
| STMIKI                    | SIMULI          | 34.16   | 958.10   | 957.42      | 1.99  | 15       | 0.013       | 1.21       | 2.49     | 9.11     | 0.43       | 958.53      | 965.27    |
| STM L2                    | SIM L1          | 41.03   | 956.12   | 955.71      | 1.00  | 24       | 0.013       | 15.60      | 7.14     | 22.61    | 1.42       | 957.54      | 964.76    |
| STM L3                    | STM L2          | 56.59   | 956.90   | 956.33      | 1.00  | 24       | 0.013       | 13.22      | 6.37     | 22.62    | 1.31       | 958.21      | 966.39    |
| STM L4                    | STM L3          | 165.14  | 959.05   | 957.40      | 1.00  | 24       | 0.013       | 5.21       | 4.39     | 22.62    | 0.80       | 959.85      | 964.75    |
| STM L5                    | STM L4          | 66.64   | 959.92   | 959.25      | 1.01  | 24       | 0.013       | 2.94       | 3.70     | 22.68    | 0.60       | 960.52      | 962.59    |
| STM M1                    | STM L3          | 64.41   | 964.57   | 961.83      | 4.25  | 15       | 0.013       | 8.01       | 9.14     | 13.32    | 1.11       | 965.68      | 969.35    |
| STM M2                    | STM M1          | 90.14   | 968.39   | 964.77      | 4.02  | 15       | 0.013       | 5.15       | 5.34     | 12.94    | 0.92       | 969.31      | 973.16    |
| STM M3                    | STM M2          | 90.49   | 972.29   | 968.60      | 4.08  | 15       | 0.013       | 2.62       | 3.86     | 13.04    | 0.65       | 972.94      | 976.84    |
| STM N1                    | STM D10         | 51.657  | 956.87   | 956.28      | 1.14  | 24       | 0.013       | 8.52       | 6.09     | 24.17    | 1.04       | 957.91      | 961.12    |
| STM 01                    | STM D10         | 73.489  | 957.75   | 956.28      | 2     | 18       | 0.013       | 0.01       | 0.45     | 14.85    | 0.04       | 957.79      | 963.92    |
| STM P1                    | STM L4          | 19.51   | 960.09   | 959.8       | 1.49  | 15       | 0.013       | 2.27       | 4.72     | 7.87     | 0.6        | 960.69      | 964.6     |
| STM U1                    | PUBL RCB        | 14.935  | 939.49   | 938         | 9.98  | 15       | 0.013       | 2.15       | 7.3      | 20.4     | 0.58       | 940.07      | 954.22    |
| STM U2                    | STM U1          | 62      | 949.36   | 948.12      | 2     | 15       | 0.013       | 0.93       | 3.87     | 9.13     | 0.38       | 949.74      | 954.67    |
| STM V1                    | PUBL RCB        | 20      | 938      | 936         | 10    | 18       | 0.013       | 4.65       | 8.93     | 33.21    | 0.83       | 938.83      | 953.21    |
| STM W1                    | PUBL RCB        | 23.713  | 938.85   | 936         | 12.02 | 15       | 0.013       | 9.39       | 12.66    | 22.39    | 1.17       | 940.02      | 951.03    |
| PUBL RCB BEND 1           | Outfall         | 188.958 | 931      | 928.4       | 1.38  | 84 x 156 | 0.013       | 760.31     | 16.63    | 2111.18  | 4.73       | 935.73      | 939.87    |
| PUBL RCB BEND 2           | PUBL RCB BEND 1 | 54.413  | 931.75   | 931         | 1.38  | 84 x 156 | 0.013       | 760.31     | 12.36    | 2113.02  | 4.73       | 936.48      | 940.25    |
| PUBL RCB BEND 3           | PUBL RCB BEND 2 | 423.772 | 937.58   | 931.75      | 1.38  | 84 x 156 | 0.013       | 760.31     | 12.36    | 2111.61  | 4.73       | 942.31      | 946.71    |
| RCB CONNECTION            | PUBL RCB BEND 3 | 60.78   | 938.42   | 937.58      | 1.38  | 84 x 156 | 0.013       | 760.31     | 12.36    | 2115.82  | 4.73       | 943.15      | 946.84    |
|                           |                 |         |          |             |       |          |             |            |          |          | · ···· •   |             |           |



| Drainage Area | Drainage Area Design Table |      |       |         |      |           |  |  |  |  |  |
|---------------|----------------------------|------|-------|---------|------|-----------|--|--|--|--|--|
| 10            | 10 Year Return Frequency   |      |       |         |      |           |  |  |  |  |  |
| Inlet ID      | Drainage<br>Area           | C    | Тс    | i       | к    | Peak Flow |  |  |  |  |  |
|               | (ac)                       |      | (min) | (in/hr) |      | (cfs)     |  |  |  |  |  |
| A2            | 3.37                       | 0.83 | 5.00  | 7.35    | 1.00 | 20.57     |  |  |  |  |  |
| B2            | 3.79                       | 0.83 | 5.00  | 7.35    | 1.00 | 23.13     |  |  |  |  |  |
| C2            | 2.08                       | 0.83 | 5.00  | 7.35    | 1.00 | 12.69     |  |  |  |  |  |
| D2            | 2.04                       | 0.83 | 5.00  | 7.35    | 1.00 | 12.45     |  |  |  |  |  |
| D3            | 0.42                       | 0.83 | 5.00  | 7.35    | 1.00 | 2.56      |  |  |  |  |  |
| D4            | 0.26                       | 0.83 | 5.00  | 7.35    | 1.00 | 1.59      |  |  |  |  |  |
| F1            | 0.36                       | 0.83 | 5.00  | 7.35    | 1.00 | 2.20      |  |  |  |  |  |
| G1            | 0.37                       | 0.83 | 5.00  | 7.35    | 1.00 | 2.26      |  |  |  |  |  |
| G2            | 0.43                       | 0.83 | 5.00  | 7.35    | 1.00 | 2.62      |  |  |  |  |  |
| H1            | 0.16                       | 0.83 | 5.00  | 7.35    | 1.00 | 0.98      |  |  |  |  |  |
| 11            | 0.11                       | 0.83 | 5.00  | 7.35    | 1.00 | 0.67      |  |  |  |  |  |
| J1            | 0.27                       | 0.83 | 5.00  | 7.35    | 1.00 | 1.65      |  |  |  |  |  |
| K1            | 0.12                       | 0.83 | 5.00  | 7.35    | 1.00 | 0.73      |  |  |  |  |  |
| L2            | 0.20                       | 0.83 | 5.00  | 7.35    | 1.00 | 1.22      |  |  |  |  |  |
| M1            | 0.30                       | 0.83 | 5.00  | 7.35    | 1.00 | 1.83      |  |  |  |  |  |
| M2            | 0.24                       | 0.83 | 5.00  | 7.35    | 1.00 | 1.46      |  |  |  |  |  |
| M3            | 0.31                       | 0.83 | 5.00  | 7.35    | 1.00 | 1.89      |  |  |  |  |  |
| N1            | 2.23                       | 0.83 | 5.00  | 7.35    | 1.00 | 13.61     |  |  |  |  |  |
| 01            | 0.83                       | 0.83 | 5.00  | 7.35    | 1.00 | 5.07      |  |  |  |  |  |
| P1            | 0.22                       | 0.83 | 5.00  | 7.35    | 1.00 | 1.34      |  |  |  |  |  |
| U1            | 0.12                       | 0.83 | 5.00  | 7.35    | 1.00 | 0.73      |  |  |  |  |  |
| U2            | 0.09                       | 0.83 | 5.00  | 7.35    | 1.00 | 0.55      |  |  |  |  |  |
| V1            | 1.20                       | 0.83 | 5.00  | 7.35    | 1.00 | 7.32      |  |  |  |  |  |
| W1            | 0.87                       | 0.83 | 5.00  | 7.35    | 1.00 | 5.31      |  |  |  |  |  |

| 100        | ) Year Return Fr | requency |       |         |      |          |
|------------|------------------|----------|-------|---------|------|----------|
|            | Drainage         | • •      |       |         |      |          |
| Inlet ID   | Area             | С        | Тс    | i       | к    | Peak Flo |
|            |                  | _        |       |         |      |          |
|            | (ac)             |          | (min) | (in/hr) |      | (cfs)    |
| A2         | 3.37             | 0.83     | 5.00  | 10.32   | 1.25 | 34.79    |
| B2         | 3.79             | 0.83     | 5.00  | 10.32   | 1.25 | 39.12    |
| C2         | 2.08             | 0.83     | 5.00  | 10.32   | 1.25 | 21.47    |
| D2         | 2.04             | 0.83     | 5.00  | 10.32   | 1.25 | 21.06    |
| D3         | 0.42             | 0.83     | 5.00  | 10.32   | 1.25 | 4.34     |
| D4         | 0.26             | 0.83     | 5.00  | 10.32   | 1.25 | 2.68     |
| F1         | 0.36             | 0.83     | 5.00  | 10.32   | 1.25 | 3.72     |
| G1         | 0.37             | 0.83     | 5.00  | 10.32   | 1.25 | 3.82     |
| G2         | 0.43             | 0.83     | 5.00  | 10.32   | 1.25 | 4.44     |
| H1         | 0.16             | 0.83     | 5.00  | 10.32   | 1.25 | 1.65     |
| <b>I</b> 1 | 0.11             | 0.83     | 5.00  | 10.32   | 1.25 | 1.14     |
| J1         | 0.27             | 0.83     | 5.00  | 10.32   | 1.25 | 2.79     |
| K1         | 0.12             | 0.83     | 5.00  | 10.32   | 1.25 | 1.24     |
| L2         | 0.20             | 0.83     | 5.00  | 10.32   | 1.25 | 2.06     |
| M1         | 0.30             | 0.83     | 5.00  | 10.32   | 1.25 | 3.10     |
| M2         | 0.24             | 0.83     | 5.00  | 10.32   | 1.25 | 2.48     |
| M3         | 0.31             | 0.83     | 5.00  | 10.32   | 1.25 | 3.20     |
| N1         | 2.23             | 0.83     | 5.00  | 10.32   | 1.25 | 23.02    |
| 01         | 0.83             | 0.83     | 5.00  | 10.32   | 1.25 | 8.57     |
| P1         | 0.22             | 0.83     | 5.00  | 10.32   | 1.25 | 2.27     |
| U1         | 0.12             | 0.83     | 5.00  | 10.32   | 1.25 | 1.24     |
| U2         | 0.09             | 0.83     | 5.00  | 10.32   | 1.25 | 0.93     |
| V1         | 1.20             | 0.83     | 5.00  | 10.32   | 1.25 | 12.39    |
| W1         | 0.87             | 0.83     | 5.00  | 10.32   | 1.25 | 8.98     |

٥ū  $\leq \circ$ 00.0 021\04501-18, 2023 0ct = 0

| nlet Design T | able          |             |            |              |        |         |
|---------------|---------------|-------------|------------|--------------|--------|---------|
| 10            | Year Return F | requency    |            |              |        |         |
|               | Captured      |             | Inlet      |              | Gutter | Ponding |
| Inlet ID      | Flow          | Bypass Flow | Efficiency | Gutter Depth | Spread | Depth   |
|               |               |             | (Note 2)   |              |        |         |
|               | (cfs)         | (cfs)       | (%)        | (ft)         | (ft)   | (ft)    |
| A2            | 18.67         | 2.11        | 89.83%     |              |        | 0.46    |
| B2            | 14.93         | 8.20        | 64.57%     |              |        | 0.36    |
| C2            | 12.69         | 0.00        | 100.00%    |              |        | 0.39    |
| D2            | 9.19          | 3.35        | 73.26%     | 0.35         | 16.37  |         |
| D3            | 2.48          | 0.10        | 96.27%     | 0.20         | 9.04   |         |
| D4            | 1.57          | 0.01        | 99.14%     | 0.16         | 7.54   |         |
| F1            | 2.20          | 0.00        | 100.00%    |              |        |         |
| G1            | 2.26          | 0.00        | 100.00%    |              |        |         |
| G2            | 2.62          | 0.00        | 100.00%    |              |        |         |
| H1            | 0.98          | 0.00        | 100.00%    |              |        |         |
| 11            | 0.67          | 0.00        | 100.00%    |              |        |         |
| J1            | 1.65          | 0.00        | 100.00%    |              |        |         |
| K1            | 0.73          | 0.00        | 99.99%     | 0.11         | 4.96   |         |
| L2            | 1.33          | 0.07        | 94.89%     | 0.12         | 5.55   |         |
| M1            | 1.76          | 0.18        | 90.83%     | 0.14         | 6.27   |         |
| M2            | 1.52          | 0.11        | 93.16%     | 0.13         | 5.88   |         |
| M3            | 1.73          | 0.17        | 91.21%     | 0.13         | 6.21   |         |
| N1            | 13.61         | 0.00        | 100.00%    |              |        |         |
| 01            | 5.07          | 0.00        | 100.00%    |              |        | •••     |
| P1            | 1.34          | 0.00        | 100.00%    |              |        | •••     |
| U1            | 0.73          | 0.00        | 99.99%     | 0.11         | 4.96   |         |
| U2            | 0.55          | 0.00        | 99.70%     | 0.10         | 4.45   |         |
| V1            | 7.32          | 0.00        | 100.00%    |              |        | 0.43    |
| W1(L)         |               |             |            | 0.30         | 13.87  |         |
| W1(R)         |               |             |            | 0.11         | 5.27   |         |
| W1            | 8.67          | 0.00        | 100.00%    |              |        |         |

Notes:

1. Inlet capacity at sag location has been reduced by a clogging factor of 0.80, reducing theoretical Both theoretical capacity and reduced capacity are shown. 2. Inlet efficiency shown in the tables is Captured Flow/Total Flow, denoting the actual percentage

# RELEASED FOR CONSTRUCTION As Noted on Plan Review

Development Services Department Lee's Summit, Missouri 11/01/2023

|  | υι | /20 | ZJ |
|--|----|-----|----|
|  |    |     |    |
|  |    |     |    |

| let Design Table          |          |             |            |              |        |         |  |  |  |
|---------------------------|----------|-------------|------------|--------------|--------|---------|--|--|--|
| 100 Year Return Frequency |          |             |            |              |        |         |  |  |  |
|                           | Captured |             | Inlet      |              | Gutter | Ponding |  |  |  |
| Inlet ID                  | Flow     | Bypass Flow | Efficiency | Gutter Depth | Spread | Depth   |  |  |  |
|                           |          |             | (Note 2)   |              |        |         |  |  |  |
|                           | (cfs)    | (cfs)       | (%)        | (ft)         | (ft)   | (ft)    |  |  |  |
| A2                        | 18.67    | 17.43       | 51.71%     |              |        | 0.50    |  |  |  |
| B2                        | 14.93    | 24.19       | 38.17%     |              |        | 0.50    |  |  |  |
| C2                        | 14.93    | 6.54        | 69.55%     |              |        | 0.31    |  |  |  |
| D2                        | 12.48    | 9.01        | 58.07%     | 0.43         | 20.04  |         |  |  |  |
| D3                        | 4.01     | 0.44        | 90.17%     | 0.24         | 11.10  |         |  |  |  |
| D4                        | 2.57     | 0.11        | 95.93%     | 0.20         | 9.18   |         |  |  |  |
| F1                        | 3.72     | 0.00        | 100.00%    |              |        |         |  |  |  |
| G1                        | 3.82     | 0.00        | 100.00%    |              |        |         |  |  |  |
| G2                        | 4.44     | 0.00        | 100.00%    |              |        |         |  |  |  |
| H1                        | 1.65     | 0.00        | 100.00%    |              |        |         |  |  |  |
| 11                        | 1.14     | 0.00        | 100.00%    |              |        |         |  |  |  |
| J1                        | 2.79     | 0.00        | 100.00%    |              |        |         |  |  |  |
| K1                        | 1.21     | 0.03        | 97.86%     | 0.13         | 6.03   |         |  |  |  |
| L2                        | 2.38     | 0.44        | 84.48%     | 0.16         | 7.22   |         |  |  |  |
| M1                        | 2.86     | 0.76        | 79.11%     | 0.17         | 7.92   |         |  |  |  |
| M2                        | 2.53     | 0.52        | 82.85%     | 0.16         | 7.44   |         |  |  |  |
| M3                        | 2.62     | 0.58        | 81.88%     | 0.16         | 7.56   |         |  |  |  |
| N1                        | 15.52    | 7.50        | 67.43%     |              |        |         |  |  |  |
| 01                        | 8.57     | 0.00        | 100.00%    |              |        |         |  |  |  |
| P1                        | 2.27     | 0.00        | 100.00%    |              |        |         |  |  |  |
| U1                        | 1.22     | 0.02        | 98.53%     | 0.13         | 6.03   |         |  |  |  |
| U2                        | 0.93     | 0.00        | 99.65%     | 0.12         | 5.42   |         |  |  |  |
| V1                        | 12.39    | 0.00        | 100.00%    |              |        | 0.41    |  |  |  |
| W1(L)                     |          |             |            | 0.40         | 18.34  |         |  |  |  |
| W1(R)                     |          |             |            | 0.14         | 6.42   |         |  |  |  |
| W1                        | 15.52    | 2.49        | 86.15%     |              |        |         |  |  |  |
| otes:                     |          |             |            |              |        |         |  |  |  |

1. Inlet capacity at sag location has been reduced by a clogging factor of 0.80, reducing theoretical Both theoretical capacity and reduced capacity are shown. 2. Inlet efficiency shown in the tables is Captured Flow/Total Flow, denoting the actual percentage

## Storm Sewer Design Calculation Tabl

| 10                    | Year Return Freque | ncv     |          |            |       |          |           |            |          |                |            |             |           |
|-----------------------|--------------------|---------|----------|------------|-------|----------|-----------|------------|----------|----------------|------------|-------------|-----------|
| Upstream              | Downstream         | ,       | Upstream | Downstream |       |          | Manning's |            |          |                |            | Upstream    | Upstream  |
| Structure             | Structure          | Length  | Invert   | Invert     | Slope | Diameter | n         | Total Flow | Velocity | Capacity       | Flow Depth | Struct, HGI | Top Flev. |
|                       |                    | (ft)    | (ft)     | (ft)       | (%)   | (in)     |           | (cfs)      | (ft/s)   | (cfs)          | (ft)       | (ft)        | (ft)      |
| STM A2                | STM A1             | 50.22   | 931.43   | 930.00     | 2.85  | 36       | 0.013     | 40.46      | 11.20    | 112.54         | 2.07       | 933.50      | 939.00    |
| STM B2                | STM B1             | 66.27   | 932.65   | 930.00     | 4.00  | 24       | 0.013     | 23.13      | 11.28    | 45.23          | 1.71       | 934.36      | 946.00    |
| STM C2                | STM C1             | 70.49   | 932.82   | 930.00     | 4.00  | 24       | 0.013     | 12.69      | 9.16     | 45.24          | 1.28       | 934.10      | 946.00    |
| STM D1                | PUBL RCB           | 33.40   | 936.80   | 936.25     | 1.65  | 60       | 0.013     | 156.75     | 13.57    | 334.26         | 3.59       | 940.39      | 950.67    |
| STM D2                | STM D1             | 87.42   | 938.61   | 937.30     | 1.50  | 60       | 0.013     | 140.23     | 10.46    | 318.85         | 3.39       | 942.00      | 953.83    |
| STM D3                | STM D2             | 133.06  | 941.17   | 939.11     | 1.55  | 60       | 0.013     | 127.78     | 10.20    | 324.09         | 3.23       | 944.40      | 955.16    |
| STM D4                | STM D3             | 128.22  | 943.89   | 941.27     | 2.04  | 60       | 0.013     | 125.30     | 9.57     | 372.32         | 3.20       | 947.09      | 956.44    |
| STM D5                | STM D4             | 80.81   | 946.53   | 944.89     | 2.03  | 48       | 0.013     | 123.73     | 14.05    | 204.83         | 3.34       | 949.87      | 956.95    |
| STM D6                | STM D5             | 72.98   | 947.83   | 947.03     | 1.10  | 42       | 0.013     | 63.39      | 8.11     | 105.33         | 2.49       | 950.32      | 957.70    |
| STM D7                | STM D6             | 197.01  | 950.20   | 948.03     | 1 10  | 42       | 0.013     | 61 19      | 8 84     | 105.53         | 2.15       | 952.65      | 959.70    |
| STM D8                | STM DC             | 129 31  | 952.12   | 950.70     | 1 10  | 36       | 0.013     | 51.88      | 9.72     | 69.95          | 2.35       | 954.46      | 962 59    |
| STM D9                | STM D8             | 15 22   | 952.12   | 952.62     | 1.10  | 36       | 0.013     | 51.88      | 10.08    | 88.22          | 2.34       | 955 23      | 962.55    |
| STM D10               | STM D0             | 06 50   | 954.78   | 953.02     | 1.75  | 36       | 0.013     | 50.23      | 8 97     | 88.22          | 2.34       | 957.08      | 964.22    |
| STM D10               | STM D10            | 50.55   | 956.17   | 955.09     | 1.75  | 30       | 0.013     | 31 55      | 8.07     | 54.25          | 1 91       | 958.08      | 965 22    |
| STM D11               | STM D10            | 155 97  | 959.17   | 956 37     | 1.75  | 30       | 0.013     | 20.17      | 7.85     | 54.25          | 1.91       | 960.94      | 968.36    |
| STM D12               |                    | 01 /0   | 959.10   | 950.37     | 2.75  | 20       | 0.013     | 29.17      | 0.00     | 54.25<br>69.01 | 1.04       | 062.69      | 908.30    |
|                       |                    | 20 50   | 901.04   | 959.00     | 2.75  | 20       | 0.013     | 29.17      | 9.22     | 00.01          | 1.04       | 905.08      | 908.75    |
|                       |                    | 50.55   | 903.91   | 902.54     | 4.07  | 26       | 0.013     | 29.17      | 9.22     | 115 67         | 2.04       | 905.75      | 971.55    |
| STMES                 |                    | 20.25   | 949.05   | 947.55     | 3.01  | 30       | 0.013     | 60.34      | 9.00     | 115.07         | 2.51       | 951.50      | 950.17    |
|                       |                    | 27.75   | 950.08   | 949.25     | 2.99  | 30       | 0.013     | 60.34      | 9.90     | 04.17          | 2.51       | 952.59      | 959.51    |
| STIVIES               |                    | 120.00  | 951.47   | 950.28     | 1.99  | 30       | 0.013     | 60.34      | 9.90     | 94.17          | 2.51       | 955.96      | 960.41    |
| STIVIE4               | STIVES             | 128.00  | 954.23   | 951.67     | 2.00  | 30       | 0.013     | 60.34      | 9.96     | 94.32          | 2.51       | 956.74      | 962.96    |
|                       |                    | 142 57  | 956.02   | 954.43     | 1.99  | 30       | 0.013     | 60.34      | 9.96     | 94.19          | 2.51       | 958.53      | 904.55    |
| EX STIM E-A           | STM ES             | 143.57  | 960.13   | 956.22     | 2.72  | 30       | 0.013     | 60.34      | 9.96     | 110.06         | 2.51       | 962.64      | 972.11    |
| STM F1                | STIVI D6           | 18.00   | 951.28   | 950.92     | 2.00  | 15       | 0.013     | 2.20       | 4.98     | 9.13           | 0.59       | 951.87      | 957.60    |
| STMGI                 |                    | 39.50   | 952.29   | 951.70     | 1.49  | 24       | 0.013     | 9.31       | 5.83     | 27.02          | 1.09       | 953.38      | 959.71    |
| STIM G2               |                    | 72.05   | 955.30   | 952.79     | 1.50  | 24       | 0.013     | 7.05       | 6.10     | 27.09          | 0.94       | 956.30      | 961.53    |
| STM G3                | STM G2             | 72.05   | 956.71   | 955.86     | 1.18  | 24       | 0.013     | 4.43       | 5.06     | 24.57          | 0.74       | 957.45      | 959.92    |
| STM H1                | STM D9             | 20.35   | 956.86   | 956.45     | 2.01  | 15       | 0.013     | 0.98       | 3.01     | 9.17           | 0.39       | 957.25      | 962.22    |
| SIMII                 | STM D9             | 53.15   | 956.76   | 955.70     | 1.99  | 15       | 0.013     | 0.67       | 3.52     | 9.12           | 0.32       | 957.08      | 962.11    |
| STM J1                | STM D11            | 22.74   | 958.18   | 957.73     | 1.98  | 15       | 0.013     | 1.65       | 3.50     | 9.08           | 0.51       | 958.69      | 965.14    |
| STM K1                | STM D11            | 34.16   | 958.10   | 957.42     | 1.99  | 15       | 0.013     | 0.73       | 1.94     | 9.11           | 0.33       | 958.43      | 965.27    |
| STM L2                | SIM L1             | 41.03   | 956.12   | 955.71     | 1.00  | 24       | 0.013     | 19.89      | 7.74     | 22.61          | 1.60       | 957.72      | 964.76    |
| STM L3                | STM L2             | 56.59   | 956.90   | 956.33     | 1.00  | 24       | 0.013     | 18.56      | 7.55     | 22.62          | 1.55       | 958.45      | 966.39    |
| STM L4                | STM L3             | 165.14  | 959.05   | 957.40     | 1.00  | 24       | 0.013     | 13.55      | 6.83     | 22.62          | 1.32       | 960.37      | 964.75    |
| STMLL5                | STM L4             | 66.64   | 959.92   | 959.25     | 1.01  | 24       | 0.013     | 12.21      | 6.30     | 22.68          | 1.25       | 961.17      | 962.59    |
| STM M1                | STM L3             | 64.41   | 964.57   | 961.83     | 4.25  | 15       | 0.013     | 5.01       | /.6/     | 13.32          | 0.91       | 965.48      | 969.35    |
| STM M2                | STM M1             | 90.14   | 968.39   | 964.77     | 4.02  | 15       | 0.013     | 3.25       | 4.47     | 12.94          | 0.73       | 969.12      | 9/3.16    |
| STM M3                | STM M2             | 90.49   | 972.29   | 968.60     | 4.08  | 15       | 0.013     | 1.73       | 3.59     | 13.04          | 0.52       | 972.81      | 976.84    |
| STM N1                | STM D10            | 51.657  | 956.87   | 956.28     | 1.14  | 24       | 0.013     | 13.61      | 7.03     | 24.17          | 1.33       | 958.2       | 961.12    |
| STM 01                | STM D10            | 73.489  | 957.75   | 956.28     | 2     | 18       | 0.013     | 5.07       | 5.02     | 14.85          | 0.87       | 958.62      | 963.92    |
| STM P1                | STM L4             | 19.51   | 960.09   | 959.8      | 1.49  | 15       | 0.013     | 1.34       | 2.87     | 7.87           | 0.46       | 960.55      | 964.6     |
| STM U1                | PUBL RCB           | 14.935  | 939.49   | 938        | 9.98  | 15       | 0.013     | 1.28       | 6.25     | 20.4           | 0.45       | 939.94      | 954.22    |
| STM U2                | STM U1             | 62      | 949.36   | 948.12     | 2     | 15       | 0.013     | 0.55       | 3.33     | 9.13           | 0.29       | 949.65      | 954.67    |
| STM V1                | PUBL RCB           | 20      | 938      | 936        | 10    | 18       | 0.013     | 7.32       | 10.29    | 33.21          | 1.05       | 939.05      | 953.21    |
| STM W1                | PUBL RCB           | 23.713  | 938.85   | 936        | 12.02 | 15       | 0.013     | 5.37       | 10.13    | 22.39          | 0.94       | 939.79      | 951.03    |
| PUBL RCB BEND 1       | Outfall            | 188.958 | 931      | 928.4      | 1.38  | 84 x 156 | 0.013     | 567.95     | 15.11    | 2111.18        | 3.9        | 934.9       | 939.87    |
| PUBL RCB BEND 2       | PUBL RCB BEND 1    | 54.413  | 931.75   | 931        | 1.38  | 84 x 156 | 0.013     | 567.95     | 11.22    | 2113.02        | 3.9        | 935.65      | 940.25    |
| PUBL RCB BEND 3       | PUBL RCB BEND 2    | 423.772 | 937.58   | 931.75     | 1.38  | 84 x 156 | 0.013     | 567.95     | 11.21    | 2111.6         | 3.9        | 941.48      | 946.71    |
| <b>RCB CONNECTION</b> | PUBL RCB BEND 3    | 60.78   | 938.42   | 937.58     | 1.38  | 84 x 156 | 0.013     | 567.95     | 11.22    | 2115.82        | 3.90       | 942.32      | 946.84    |

| Storm Sewer Design Calculation Table |                    |            |                |                  |        |           |                   |              |           |         |             |                 |           |
|--------------------------------------|--------------------|------------|----------------|------------------|--------|-----------|-------------------|--------------|-----------|---------|-------------|-----------------|-----------|
| 100                                  | Year Return Freque | ncy        |                | Devereting a res |        |           | N de jeue ije ele |              |           |         |             | L lucativa a un |           |
| Opstream                             | Downstream         | ما به مر م | Upstream       | Downstream       | Claura | Diawastaw | ivianning s       | Tatal Flave  | Malazitur |         | Flaur Dauth | Opstream        | Upstream  |
| Structure                            | Structure          | Length     | Invert<br>(ft) | Invert           | Siope  | Diameter  | n                 | I otal Flow  | velocity  |         | Flow Depth  | Struct. HGL     | TOP Elev. |
| CT14.42                              | CTN 4 4 4          | (ft)       | (ft)           | (ft)             | (%)    | (in)      | 0.010             | (CTS)        | (TT/S)    | (CTS)   | (ft)        | (ft)            | (ft)      |
| STM A2                               | STM AL             | 50.22      | 931.43         | 930.00           | 2.85   | 36        | 0.013             | 68.10        | 13.52     | 112.54  | 2.63        | 934.06          | 939.00    |
| STM B2                               | STM B1             | 66.27      | 932.65         | 930.00           | 4.00   | 24        | 0.013             | 39.12        | 12.50     | 45.23   | 1.95        | 934.60          | 946.00    |
| STM C2                               | STM C1             | 70.49      | 932.82         | 930.00           | 4.00   | 24        | 0.013             | 21.47        | 10.96     | 45.24   | 1.66        | 934.48          | 946.00    |
| STM D1                               | PUBL RCB           | 33.40      | 936.80         | 936.25           | 1.65   | 60        | 0.013             | 268.37       | 16.64     | 334.26  | 4.53        | 941.33          | 950.67    |
| STM D2                               | STM D1             | 87.42      | 938.61         | 937.30           | 1.50   | 60        | 0.013             | 240.21       | 13.70     | 318.85  | 4.36        | 942.97          | 953.83    |
| STM D3                               | STM D2             | 133.06     | 941.17         | 939.11           | 1.55   | 60        | 0.013             | 219.15       | 12.97     | 324.09  | 4.20        | 945.37          | 955.16    |
| STM D4                               | STM D3             | 128.22     | 943.89         | 941.27           | 2.04   | 60        | 0.013             | 215.14       | 12.40     | 372.32  | 4.17        | 948.06          | 956.44    |
| STM D5                               | STM D4             | 80.81      | 946.53         | 944.89           | 2.03   | 48        | 0.013             | 212.57       | 17.79     | 204.84  | 3.88        | 950.41          | 956.95    |
| STM D6                               | STM D5             | 72.98      | 947.83         | 947.03           | 1.10   | 42        | 0.013             | 108.46       | 11.64     | 105.33  | 3.15        | 950.98          | 957.70    |
| STM D7                               | STM D6             | 197.01     | 950.20         | 948.03           | 1.10   | 42        | 0.013             | 104.74       | 11.83     | 105.52  | 3.12        | 953.32          | 959.70    |
| STM D8                               | STM D7             | 129.31     | 952.12         | 950.70           | 1.10   | 36        | 0.013             | 88.70        | 12.55     | 69.95   | 3.00        | 955.99          | 962.59    |
| STM D9                               | STM D8             | 15.22      | 952.89         | 952.62           | 1.75   | 36        | 0.013             | 88.70        | 12.55     | 88.22   | 3.00        | 957.24          | 962.46    |
| STM D10                              | STM D9             | 96.59      | 954.78         | 953.09           | 1.75   | 36        | 0.013             | 85.91        | 12.15     | 88.23   | 3.00        | 959.82          | 964.22    |
| STM D11                              | STM D10            | 50.57      | 956.17         | 955.28           | 1.75   | 30        | 0.013             | 54.32        | 11.07     | 54.25   | 2.50        | 961.63          | 965.22    |
| STM D12                              | STM D11            | 155.87     | 959.10         | 956.37           | 1.75   | 30        | 0.013             | 50.32        | 10.25     | 54.25   | 2.50        | 964.74          | 968.36    |
| STM D13                              | STM D12            | 81.40      | 961.84         | 959.60           | 2.75   | 30        | 0.013             | 50.32        | 10.25     | 68.01   | 2.50        | 966.62          | 968.75    |
| EX STM D-A                           | STM D13            | 38.59      | 963.91         | 962.34           | 4.07   | 30        | 0.013             | 50.32        | 10.25     | 82.72   | 2.50        | 967.85          | 971.55    |
| STM E1                               | STM D5             | 50.53      | 949.05         | 947.53           | 3.01   | 36        | 0.013             | 104.11       | 14.89     | 115.67  | 2.91        | 951.96          | 956.17    |
| STM E2                               | STM E1             | 27.73      | 950.08         | 949.25           | 2.99   | 36        | 0.013             | 104.11       | 15.18     | 115.39  | 2.91        | 952.99          | 959.31    |
| STM E3                               | STM E2             | 59.68      | 951.47         | 950.28           | 1.99   | 36        | 0.013             | 104.11       | 14.73     | 94.17   | 3.00        | 954.74          | 960.41    |
| STM E4                               | STM E3             | 128.00     | 954.23         | 951.67           | 2.00   | 36        | 0.013             | 104.11       | 14.73     | 94.32   | 3.00        | 958.87          | 962.96    |
| STM E5                               | STM E4             | 79.72      | 956.02         | 954.43           | 1.99   | 36        | 0.013             | 104.11       | 14.73     | 94.19   | 3.00        | 961.83          | 964.55    |
| EX STM E-A                           | STM E5             | 143.57     | 960.13         | 956.22           | 2.72   | 36        | 0.013             | 104.11       | 14.73     | 110.06  | 3.00        | 966.34          | 972.11    |
| STM F1                               | STM D6             | 18.00      | 951.28         | 950.92           | 2.00   | 15        | 0.013             | 3.72         | 5.84      | 9.13    | 0.78        | 952.06          | 957.60    |
| STM G1                               | STM D7             | 39.56      | 952.29         | 951.70           | 1.49   | 24        | 0.013             | 16.04        | 6.25      | 27.62   | 1.44        | 953.73          | 959.71    |
| STM G2                               | STM G1             | 171.49     | 955.36         | 952.79           | 1.50   | 24        | 0.013             | 12.22        | 7.14      | 27.69   | 1.26        | 956.62          | 961.53    |
| STM G3                               | STM G2             | 72.05      | 956.71         | 955.86           | 1.18   | 24        | 0.013             | 7.78         | 5.97      | 24.57   | 0.99        | 957.70          | 959.92    |
| STM H1                               | STM D9             | 20.35      | 956.86         | 956.45           | 2 01   | 15        | 0.013             | 1.65         | 1 34      | 9 17    | 1 25        | 958.25          | 962.22    |
| STM 11                               | STM D9             | 53 15      | 956.76         | 955.70           | 1 99   | 15        | 0.013             | 1 14         | 0.93      | 9.17    | 1.25        | 958.23          | 962.11    |
| STM 11                               | STM D11            | 22 74      | 958.18         | 957.73           | 1.99   | 15        | 0.013             | 2 79         | 2 27      | 9.08    | 1.25        | 962.49          | 965 14    |
| STM K1                               | STM D11            | 3/ 16      | 958.10         | 957.73           | 1.90   | 15        | 0.013             | 1.21         | 0.99      | 9.00    | 1.25        | 962.49          | 965.27    |
| STM 12                               |                    | /1 03      | 956.10         | 955 71           | 1.00   | 24        | 0.013             | 22.21        | 10.70     | 22.61   | 2.00        | 958 51          | 964 76    |
| STM12                                |                    | 56 50      | 956.00         | 955.71           | 1.00   | 24        | 0.013             | 30.03        | 0.70      | 22.01   | 2.00        | 960.09          | 966 39    |
|                                      |                    | 165 1/     | 950.90         | 950.55           | 1.00   | 24        | 0.013             | 22 92        | 7 20      | 22.02   | 2.00        | 962.29          | 964.75    |
|                                      |                    | 66.64      | 959.05         | 957.40           | 1.00   | 24        | 0.013             | 22.52        | 6.57      | 22.02   | 2.00        | 902.39          | 904.75    |
|                                      |                    | 64.41      | 959.92         | 959.25           | 4.25   | 24<br>1E  | 0.013             | 20.03        | 0.57      | 12 22   | 2.00        | 903.20          | 902.39    |
|                                      |                    | 04.41      | 964.57         | 901.85           | 4.25   | 15        | 0.013             | 8.01<br>5.15 | 9.14      | 12.52   | 1.11        | 905.08          | 909.55    |
|                                      |                    | 90.14      | 968.39         | 964.77           | 4.02   | 15        | 0.013             | 5.15         | 2.34      | 12.94   | 0.92        | 969.31          | 973.16    |
|                                      |                    | 90.49      | 972.29         | 968.60           | 4.08   | 15        | 0.013             | 2.62         | 3.80      | 13.04   | 0.65        | 972.94          | 976.84    |
| SIMINI                               | STM D10            | 51.657     | 956.87         | 956.28           | 1.14   | 24        | 0.013             | 23.02        | 7.33      | 24.17   | 2.00        | 961.28          | 961.12    |
| SIM 01                               | STM D10            | /3.489     | 957.75         | 956.28           | 2      | 18        | 0.013             | 8.57         | 4.85      | 14.85   | 1.50        | 961.23          | 963.92    |
| STM P1                               | SIM L4             | 19.51      | 960.09         | 959.8            | 1.49   | 15        | 0.013             | 2.27         | 1.85      | /.8/    | 1.25        | 962.75          | 964.60    |
| STM U1                               | PUBL RCB           | 14.935     | 939.49         | 938              | 9.98   | 15        | 0.013             | 2.15         | 7.30      | 20.40   | 0.58        | 940.07          | 954.22    |
| STM U2                               | STM U1             | 62         | 949.36         | 948.12           | 2      | 15        | 0.013             | 0.93         | 3.87      | 9.13    | 0.38        | 949.74          | 954.67    |
| STM V1                               | PUBL RCB           | 20         | 938            | 936              | 10     | 18        | 0.013             | 12.39        | 12.45     | 33.21   | 1.33        | 939.33          | 953.21    |
| STM W1                               | PUBL RCB           | 23.713     | 938.85         | 936              | 12.02  | 15        | 0.013             | 9.39         | 12.66     | 22.39   | 1.17        | 940.02          | 951.03    |
| PUBL RCB BEND 1                      | Outfall            | 188.958    | 931            | 928.4            | 1.38   | 84 x 156  | 0.013             | 895.62       | 17.5      | 2111.18 | 5.28        | 936.28          | 939.87    |
| PUBL RCB BEND 2                      | PUBL RCB BEND 1    | 54.413     | 931.75         | 931              | 1.38   | 84 x 156  | 0.013             | 895.62       | 13.06     | 2113.02 | 5.28        | 937.03          | 940.25    |
| PUBL RCB BEND 3                      | PUBL RCB BEND 2    | 423.772    | 937.58         | 931.75           | 1.38   | 84 x 156  | 0.013             | 895.62       | 13.05     | 2111.61 | 5.28        | 942.86          | 946.71    |
| RCB CONNECTION                       | PUBL RCB BEND 3    | 60.78      | 938.42         | 937.58           | 1.38   | 84 x 156  | 0.013             | 895.62       | 13.06     | 2115.82 | 5.28        | 943.70          | 946.84    |



# C1 Appendix C NRCS Soils Report

www.crockettengineering.com

# EXHIBIT C1 WEB SOIL SURVEY MAP

| Search 😵            |                                                       |                 |                   |  |  |  |  |  |  |
|---------------------|-------------------------------------------------------|-----------------|-------------------|--|--|--|--|--|--|
| Map Unit Legend 🔗   |                                                       |                 |                   |  |  |  |  |  |  |
| 2                   |                                                       |                 |                   |  |  |  |  |  |  |
| Ja                  | ckson County, Misso                                   | uri (MO         | 095)              |  |  |  |  |  |  |
| Jackson             | County, Missouri (                                    | MO095           | ) 🛞               |  |  |  |  |  |  |
| Map Unit<br>Symbol  | Map Unit Name                                         | Acres<br>in AOI | Percent of<br>AOI |  |  |  |  |  |  |
| 10120               | Sharpsburg silt<br>loam, 2 to 5<br>percent slopes     | 0.9             | 15.1%             |  |  |  |  |  |  |
| 30080               | Greenton silty<br>clay loam, 5 to 9<br>percent slopes | 4.8             | 84.9%             |  |  |  |  |  |  |
| Totals f<br>Interes | or Area of<br>t                                       | 5.7             | 100.0%            |  |  |  |  |  |  |

