

Missouri Firm No. E-2012009242, Brian Kirk Ellison, PE #2009007270

STRUCTURAL CALCULATIONS

Salad and Go #2001

Lee's Summit (Chipman & NW Ward), MO Project No. 24-011

Table of Contents

<u>Mark</u>	Description
LC	Load Criteria
L	Lateral Design
RW	Roof and Wall Design
А	Awning Design
F	Foundation Design
D	Dumpster Enclosure Design
SB	Site Item Base Design

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE`S SUMMIT, MO				
S068 W. Plano Parkway Ofc: (972) 354-8855 Suite 200 Fax: (972) 334-8856 Plano, TX 75093 www.elisongage.com	Description	Calc. by	Date	Sheet No.	
	LOAD CRITERIA DESIGN (SEC. LC)	BG	4/11/2024	LC1	

LOAD CRITER	RIA				
C	2018 INTERNATIO	ONAL BUILDI	NG CODE (ASCE 7-16))	
 DEAD LOAD ROOF I F G 1 	S: NSULATION, AND META RAMING <u>DEILING, MECH, ELEC, A</u> OTAL	AL DECK	١G	<u>MAX.</u> 5.0 PSF 3.0 PSF 12.0 PSF 20 PSF	<u>MIN. (UPLIFT)</u> 2.0 PSF 2.0 PSF <u>2.0 PSF</u> <u>6 PSF</u>
 LIVE LOADS ROOF FLOOR (SLAB-ON-GRADE)		<u>20 PSF</u> 150 PSF		
 SNOW LOAD GROUNI 	D: (ASCE 7-16) D SNOW LOAD, Pg = 20 p	psf			
ATC Haz	ards by Location				
Search Infor	mation		Paul Bay	town	Blue Springs
Coordinates:	38.926402, -94.394617		Park	1000 6	
Elevation:	1000 ft			1000 π	7
Timestamp:	2024-04-05T19:18:01.814Z		35 470		Lake
Hazard Type:	Snow		Grandview	Lee's Summit Greenwo	Lotawana Lone Jack
ASCE 7-16	1	ASCE 7-10		ASCE 7-05	
Ground Snow Load	20 lb/sqft	Ground Snow Lo	ad 20 lb/sqft	Ground Snow Loa	d 20 lb/sqft

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO				
5068 W, Plano Parkway Ofc: (972) 354-8855 Suite 200 Fax: (972) 354-8856 Plano. 1X 75093 www.elisongage.com	Description	Cale. by	Date	Sheet No.	
	LOAD CRITERIA DESIGN (SEC. LC)	BG	4/11/2024	LC2	

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO				
S068 W. Plano Parkway Ofc: (972) 354-8855 Suite 200 Fax: (972) 334-8856 Plano, 1X 75093 www.ellisongage.com	Description	Calc. by	Date	Sheet No.	
	LOAD CRITERIA DESIGN (SEC. LC)	BG	4/11/2024	LC3	

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO				
5068 W. Plane Parkway Ofc: [972] 354-8855 Suite 200 Fax: [972] 354-8856 Plane, 1X 75093 www.elisongage.com	Description	Calc. by	Date	Sheet No.	
	LOAD CRITERIA DESIGN (SEC. LC)	BG	4/11/2024	LC4	

		w	IND LOADS (Cor	nponents & C	ladding, ASCE	7-16)			
Wind Load Parameters									
Risk Category =	11		[CHAPTER 20]						
Basic Wind Speed, V =	110	mph	[FIG. 26.5-1, A	TC WEBSITE]					
Service Wind Speed, V _{asd} =	85	mph							
K _d =	0.85		[TABLE 26.6-1]						
Exposure =	С		[26.7]						
K _{zt} =	1.00		[26.8.2]						
Elevation =	900	ft	[26.9]						
G =	0.85		[26.11.1]						
Enclosure Classification =	E		[26.12]						
GC _{pi} =	0.18		[TABLE 26.13-1	1]					
α =	9.5		[TABLE 26.11-1	1]					
z _g =	900	ft	[TABLE 26.11-1	1]					
Mean Roof Height, h =	14.0	ft							
K _h =	0.85		[TABLE 26.10-1	1]					
K _e =	0.968	nof/-++ f)	[TABLE 26.9-1]						
q _h =	21.6	psr (at n π)	[EQ. 26.10-1]						
Root Angle, θ =	1.2	ueg							
Enclosed and Partially Enc	losed Low-		[CHAPTER 30]		nclosed and Dr	artially Enclosed	Low-Rice Built	dinas with been	ft
Rise Buildings with h < 60	ft (Part 1)		[30.3]	E	Inclused and Pa	artially Eliciose		unys with n500	IL.
$p = q_h[(GC_p) - (GC_p)]$	i)] psf		[EQ. 30.3-1]						
	Effective				LRFD	LRFD	ASD	ASD	
Area	Wind Area	Zone	+GCp	-GCp	+ Pressure	- Pressure	+ Pressure	- Pressure	Reference
	(tt²)	A	0.00	0.00	(pst)	(psf)	(pst) * 0.6	(pst) * 0.6	
Walls (general)	0.0	4	0.90	-0.99	23.4	-25.3	14.0	-15.2	FIG. 30.3-1
	10.0	4	0.90	-0.99	23.4	-25.3	14.0	-15.2	FIG. 30.3-1
Walls 10 ft ²	10.0	5	0.90	-1.26	23.4	-31.2	14.0	-18.7	FIG. 30.3-1
Walls 20 ft ²	20.0	4	0.85	-0.94	22.3	-24.3	13.4	-14.6	FIG. 30.3-1
	20.0	5	0.85	-1.16	22.3	-29.1	13.4	-17.5	FIG. 30.3-1
Walls 50 ft ²	50.0	4	0.79	-0.88	21.0	-22.9	12.6	-13.7	FIG. 30.3-1
	100.0	5	0.79	-1.04	21.0	-26.3	12.6	-15.8	FIG. 30.3-1
Walls 100 ft ²	100.0	5	0.74	-0.83	19.9	-21.9	12.0	-13.1	FIG. 30.3-1
	200.0	4	0.69	-0.78	18.9	-20.8	11.3	-12.5	FIG. 30.3-1
Walls 200 ft ²	200.0	5	0.69	-0.85	18.9	-22.2	11.3	-13.3	FIG. 30.3-1
$M_{\text{ollo}} > 500 \text{ ft}^2$	500.0	4	0.63	-0.72	17.5	-19.5	10.5	-11.7	FIG. 30.3-1
waiis > 500 it	500.0	5	0.63	-0.72	17.5	-19.5	10.5	-11.7	FIG. 30.3-1
	00.0	41	0.04	0.00	0.4	02.4	50	14.0	
	82.0	1.	0.21	-0.90	8.4	-23.4	5.0	-14.0	FIG.30.3-2A
Roof (general)	82.0	2	0.21	-1.82	8.4	-32.3	5.0	-15.5	FIG.30.3-2A
	82.0	3	0.21	-2.23	8.4	-43.2	5.0	-25.9	FIG.30.3-2A
	10.0	1'	0.30	-0.90	10.4	<mark>-23.4</mark>	6.2	-14.0	FIG.30.3-2A
Roof 10 ft ²	10.0	1	0.30	-1.70	10.4	-40.7	6.2	-24.4	FIG.30.3-2A
	10.0	2	0.30	-2.30	10.4	-53.7	6.2	-32.2	FIG.30.3-2A
	20.0	3	0.30	-3.20 _0.00	10.4	-53.7 -23.4	6.2 5.9	-32.2	FIG.30.3-2A
0	20.0	1	0.27	-1,58	9.7	-23.4	5.8	-14.0	FIG.30.3-2A
Roof 20 ft ²	20.0	2	0.27	-2.14	9.7	-50.2	5.8	-30.1	FIG.30.3-2A
	20.0	3	0.27	-2.88	9.7	-50.2	5.8	-30.1	FIG.30.3-2A
	50.0	1'	0.23	-0.90	8.9	-23.4	5.3	-14.0	FIG.30.3-2A
Roof 50 ft ²	50.0	1	0.23	-1.41	8.9	-34.4	5.3	-20.7	FIG.30.3-2A
	50.0	2	0.23	-1.93	8.9	-45.6	5.3	-27.4	FIG.30.3-2A
	100.0	5 1'	0.23	-2.40	8.2	-40.0		-27.4	FIG.30.3-2A
D. (400.0 ²	100.0	1	0.20	-1.29	8.2	-31.8	4.9	-19.1	FIG.30.3-2A
Root 100 tt-	100.0	2	0.20	-1.77	8.2	-42.2	4.9	-25.3	FIG.30.3-2A
	100.0	3	0.20	-2.14	8.2	-42.2	4.9	-25.3	FIG.30.3-2A
	500.0	1'	0.20	-0.55	8.2	-15.8	4.9	-9.5	FIG.30.3-2A
Roof 500 ft ²	500.0	1	0.20	-1.00	8.2	-25.5	4.9	-15.3	FIG.30.3-2A
	500.0	2	0.20	-1.40	8.2	-34.2	4.9	-20.5	FIG.30.3-2A
	1000.0	3	0.20	-1.40	8.2	-34.2	4.9	-20.5	FIG.30.3-2A
^	1000.0	1	0.20	-0.40	8.2	-12.0	4.9	-15.3	FIG.30.3-2A
Roof > 1000 ft ²	1000.0	2	0.20	-1.40	8.2	-34.2	4.9	-20.5	FIG.30.3-2A
	1000.0	3	0.20	-1.40	8.2	-34.2	4.9	-20.5	FIG.30.3-2A

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO				
5068 W. Piano Parkway Ofc: (972) 354-8855 Suite 200 Fax: (972) 354-8856 Plano, TX 75093 www.ellisongoge.com	Description	Calc. by	Date	Sheet No.	
	LOAD CRITERIA DESIGN (SEC. LC)	BG	4/11/2024	LC5	

COMBINED WALL	WIND PRESS	URES N-S WIND	(PSF)			
HT (FT)	PWINDWARD	PLEEWARD	PTOTAL	0.6 * P _{TOTAL}		
0-15	15.2	-9.2	24.4	14.6		
15-20	16.1	-9.2	25.3	15.2		
20-25	16.9	-9.2	26.1	15.7		
25-30	17.6	-9.2	26.8	16.1		
30-40	18.7	-9.2	27.9	16.7		
40-50	19.6	-9.2	28.8	17.3		
50-60	20.3	-9.2	29.5	17.7		
60-70	21.0	-9.2	30.2	18.1		
COMBINED WALL	WIND PRESS	URES E-W WIND	(PSF)			
HT (FT)	PWINDWARD	PLEEWARD	P _{TOTAL}	0.6 * P _{TOTAL}		
0-15	15.2	-4.5	19.7	11.8		
15-20	16.1	-4.5	20.6	12.4		
20-25	16.9	-4.5	21.4	12.8		
25-30	17.6	-4.5	22.1	13.2		
30-40	18.7	-4.5	23.2	13.9		
40-50	19.6	-4.5	24.1	14.4		
50-60	20.3	-4.5	24.8	14.9		
60-70	21.0	-4.5	25.5	15.3		
		5				
Horiz dist from windward) 	1			
edae	P _{N-S WIND}	P E-W WIND	0.6*P _{N-S WIND}	0.6*P _{E-W WIND}		
0 to h/2	-24.8	-20.4	-14.9	-12.3		
h/2 to h	-18.3	-20.4	-11.0	-12.3		
h to 2h	-15.3	-13.1	-9.2	-7.9		
>2h	-13.8	-9.4	-8.3	-5.6		
	-		-			
			107.0.41			
PARAPETS			[27.3.4]			
$p_p = q_p(GC_{pp}) p_q$	31		[EQ. 27.3-3]			
	00 47	ft				
Top of parapet =	20.17					
Top of parapet = K _{z, top of parapet} =	0.90		[TABLE 26.10-	1]		
Top of parapet = K _{z, top of parapet =} q _{z, top of parapet =}	20.17 0.90 23.0	psf	[TABLE 26.10-	1] PARAPET (LEI	EWARD)	
Top of parapet = $K_{z, top of parapet} =$ $q_{z, top of parapet} =$ $+GC_{nn} =$	20.17 0.90 23.0 1.5	psf	[TABLE 26.10- [27.3.4]	1] PARAPET (LEE p₀ =[EWARD) 23.0	psf (Factored)
Top of parapet = $K_{z, top of parapet} =$ $q_{z, top of parapet} =$ $+GC_{pn} =$	20.17 0.90 23.0 1.5 -1.0	psf	[TABLE 26.10- [27.3.4] [27.3.4]	1] PARAPET (LEE p _p = 0.6 * p _n =	EWARD) 23.0 13.8	psf (Factored)
Top of parapet = $K_{z, top of parapet} =$ $q_{z, top of parapet} =$ $+GC_{pn} =$ $+GC_{pn} =$	20.17 0.90 23.0 1.5 -1.0 34.5	psf	[TABLE 26.10- [27.3.4] [27.3.4]	1] PARAPET (LEE p _p = 0.6 * p _p =	EWARD) 23.0 13.8	psf (Factored) psf (Unfactored)
Top of parapet = K_z , top of parapet = q_z , top of parapet = $+GC_{pn} =$ $-GC_{pn} =$ $+p_{windward} =$	20.17 0.90 23.0 1.5 -1.0 34.5 22.0	psf psf	[TABLE 26.10- [27.3.4] [27.3.4]	1] PARAPET (LEE $p_p = \begin{bmatrix} \\ 0.6 * p_p \end{bmatrix}$	EWARD) 23.0 13.8	psf (Factored) psf (Unfactored)
Top of parapet = $K_{z, top of parapet} =$ $q_{z, top of parapet} =$ $+GC_{pn} =$ $+GC_{pn} =$ $+p_{windward} =$ $-p_{beeward} =$	20.17 0.90 23.0 1.5 -1.0 34.5 -23.0	psf psf	[TABLE 26.10- [27.3.4] [27.3.4]	1] PARAPET (LEE $p_p = \begin{bmatrix} \\ 0.6 * p_p = \end{bmatrix}$ PARAPET (WII	EWARD) 23.0 13.8 NDWARD)	psf (Factored) psf (Unfactored)
Top of parapet = K_z , top of parapet = q_z , top of parapet = $+GC_{pn} =$ $-GC_{pn} =$ $+p_{windward} =$ $-p_{leeward} =$ $p_p =$	20.17 0.90 23.0 1.5 -1.0 34.5 -23.0 57.6	psf psf psf psf (Factored	[TABLE 26.10- [27.3.4] [27.3.4]	1] PARAPET (LEE $p_p = \begin{bmatrix} \\ 0.6 * p_p = \end{bmatrix}$ PARAPET (WII $p_p = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	EWARD) 23.0 13.8 NDWARD) 34.5	psf (Factored) psf (Unfactored) psf (Factored)

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO				
5068 W. Plane Parkway Ofc: [972] 354-8855 Suite 200 Fax: [972] 354-8856 Plane. TX 75093 www.ellisongage.com	Description	Calc. by	Date	Sheet No.	
	LOAD CRITERIA DESIGN (SEC. LC)	BG	4/11/2024	LC6	

WIND LOADS (Components & Cladding, ASCE 7-16)									
Wind Load Parameters			[CHAPTER 26]						
Risk Category =	II		[TABLE 1.5-1]						
Basic Wind Speed, V =	110	mph	[FIG. 26.5-1. A]	IC WEBSITE1					
Service Wind Speed V =	85	mph							
Service Wind Speed, Vasd -	00	mpn							
K _d =	0.85		[TABLE 26.6-1]						
Exposure =	С		[26.7]						
K _{zt} =	1.00		[26.8.2]						
Elevation =	900	ft	[26.9]						
	0.95		[_06 11 1]						
G =	0.85		[20.11.1]						
Enclosure Classification =	E		[26.12]						
GC _{pi} =	0.18		[TABLE 26.13-1]					
α =	9.5		[TABLE 26.11-1]					
$z_{\alpha} =$	900	ft	[TABLE 26.11-1	1					
Mean Roof Height h =	14 0	ft		-					
	0.95	it.		11					
ĸ _h –	0.65		[IABLE 20. 10-1	1					
K _e =	0.968		[TABLE 26.9-1]						
q _h =	21.6	psf (at h ft)	[EQ. 26.10-1]						
Roof Angle, θ =	1.2	deg							
5 7 8		-							
nclosed and Partially Encl	osed Low-		[CHAPTER 30]						
ise Buildings with $h < 60$ f	t (Part 1)		[30 3]	E	nclosed and Pa	artially Enclosed	I Low-Rise Build	dings with h<60	ft
	l pof								
$p - q_h[(GC_p) - (GC_{pi})$	J psi		[EQ. 30.3-1]						
	Effective				LRFD	LRFD	ASD	ASD	
Area	Wind Area	Zone	+GCp	-GCp	+ Pressure	- Pressure	+ Pressure	- Pressure	Reference
	(ft ²)				(psf)	(psf)	(psf) * 0.6	(psf) * 0.6	
	0.0	4	0.90	-0.99	23.4	-25.3	14.0	-15.2	FIG. 30.3-1
Walls (general)	0.0	5	0.90	-1 26	23.4	-31.2	14.0	-18 7	FIG 30 3-1
	10.0	4	0.90	_0.99	23.4	-25.3	14.0	-15.2	FIG 30 3-1
Walls 10 ft ²	10.0	5	0.00	_1.26	20.4	21.0	14.0	19.7	FIG 30.3-1
	20.0	3	0.30	-1.20	23.4	-31.2	14.0	-10.7	FIC 20.2.1
Walls 20 ft ²	20.0	4	0.85	-0.94	22.3	-24.3	13.4	-14.6	FIG. 30.3-1
	20.0	5	0.85	-1.16	22.3	-29.1	13.4	-17.5	FIG. 30.3-1
Walls 50 ft ²	50.0	4	0.79	-0.88	21.0	-22.9	12.6	-13.7	FIG. 30.3-1
	50.0	5	0.79	-1.04	21.0	-26.3	12.6	-15.8	FIG. 30.3-1
$M_{\rm ollo}$ 100 f^2	100.0	4	0.74	-0.83	19.9	-21.9	12.0	-13.1	FIG. 30.3-1
Walls 100 IL-	100.0	5	0.74	-0.94	19.9	-24.3	12.0	-14.6	FIG. 30.3-1
	200.0	4	0.69	-0.78	18.9	-20.8	11 3	-12 5	FIG 30.3-1
Walls 200 ft ²	200.0	5	0.60	0.95	19.0	-20.0	11.0	12.0	FIG 30 3 1
	500.0	3	0.03	-0.03	10.5	-22.2	11.5	-13.3	FIC 20.2.1
Walls > 500 ft ²	500.0	4	0.03	-0.72	17.5	-19.5	10.5	-11.7	FIG. 30.3-1
	500.0	5	0.63	-0.72	17.5	-19.5	10.5	-11.7	FIG. 30.3-1
	82.0	1'	0.21	-0.90	8.4	-23.4	5.0	-14.0	FIG.30.3-2A
Roof (general)	82.0	1	0.21	-1.32	8.4	-32.5	5.0	-19.5	FIG.30.3-2A
(general)	82.0	2	0.21	-1.82	8.4	-43.2	5.0	-25.9	FIG.30.3-2A
	82.0	3	0.21	-2.23	8.4	-43.2	5.0	-25.9	FIG.30.3-2A
	10.0	1'	0.30	-0.90	10.4	-23.4	6.2	-14.0	FIG.30.3-2A
	10.0	1	0.30	-1.70	10.4	-40.7	6.2	-24.4	FIG.30.3-2A
Roof 10 ft ²		2	0.30	-2.30	10.4	52.7	6.2	-32.2	FIG 30 3-24
	10.0			L.VV		*****			
	10.0	3	0.30	-3.20	10.4	-53.7	6.2	-32.2	FIG 30 3-24
1	10.0 10.0 20.0	3	0.30	-3.20	10.4	-53.7	6.2	-32.2	FIG.30.3-2A
	10.0 10.0 20.0	3 1'	0.30	-3.20 -0.90	10.4 9.7	-53.7 -53.7 -23.4	6.2 5.8	-32.2 -14.0	FIG.30.3-2A FIG.30.3-2A
Roof 20 ft ²	10.0 10.0 20.0 20.0	3 1' 1	0.30 0.27 0.27	-3.20 -0.90 -1.58	10.4 9.7 9.7	-53.7 -53.7 -23.4 -38.0	6.2 5.8 5.8	-32.2 -14.0 -22.8	FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A
Roof 20 ft ²	10.0 10.0 20.0 20.0 20.0	3 1' 1 2	0.30 0.27 0.27 0.27	-3.20 -0.90 -1.58 -2.14	10.4 9.7 9.7 9.7	-53.7 -53.7 -23.4 -38.0 -50.2	6.2 5.8 5.8 5.8	-32.2 -14.0 -22.8 -30.1	FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A
Roof 20 ft ²	10.0 10.0 20.0 20.0 20.0 20.0 20.0	3 1' 1 2 3	0.30 0.27 0.27 0.27 0.27 0.27	-3.20 -0.90 -1.58 -2.14 -2.88	10.4 9.7 9.7 9.7 9.7 9.7	-53.7 -23.4 -38.0 -50.2 -50.2	6.2 5.8 5.8 5.8 5.8 5.8	-32.2 -14.0 -22.8 -30.1 -30.1	FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A
Roof 20 ft ²	10.0 10.0 20.0 20.0 20.0 50.0	3 1' 1 2 3 1'	0.30 0.27 0.27 0.27 0.27 0.27 0.27 0.23	-3.20 -0.90 -1.58 -2.14 -2.88 -0.90	10.4 9.7 9.7 9.7 9.7 9.7 8.9	-53.7 -23.4 -38.0 -50.2 -50.2 -23.4	6.2 5.8 5.8 5.8 5.8 5.8 5.8 5.8	-32.2 -14.0 -22.8 -30.1 -30.1 -14.0	FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A
Roof 20 ft ²	10.0 10.0 20.0 20.0 20.0 20.0 50.0 50.0	3 1' 1 2 3 1' 1'	0.30 0.27 0.27 0.27 0.27 0.27 0.23 0.23	-3.20 -0.90 -1.58 -2.14 -2.88 -0.90 -1.41	10.4 9.7 9.7 9.7 9.7 9.7 8.9 8.9	-53.7 -23.4 -38.0 -50.2 -50.2 -23.4 -34.4	6.2 5.8 5.8 5.8 5.8 5.8 5.8 5.3 5.3	-32.2 -14.0 -22.8 -30.1 -30.1 -14.0 -20.7	FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A
Roof 20 ft ² Roof 50 ft ²	10.0 10.0 20.0 20.0 20.0 20.0 50.0 50.0 50.0	3 1' 1 2 3 1' 1' 1 2	0.30 0.27 0.27 0.27 0.27 0.23 0.23 0.23	-3.20 -0.90 -1.58 -2.14 -2.88 -0.90 -1.41 -1.93	10.4 9.7 9.7 9.7 9.7 8.9 8.9 8.9	-53.7 -53.7 -23.4 -38.0 -50.2 -50.2 -23.4 -34.4 -45.6	6.2 5.8 5.8 5.8 5.8 5.8 5.3 5.3 5.3 5.3	-32.2 -14.0 -22.8 -30.1 -30.1 -14.0 -20.7 -27.4	FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A
Roof 20 ft ² Roof 50 ft ²	10.0 10.0 20.0 20.0 20.0 50.0 50.0 50.0 50.0 5	3 1' 2 3 1' 1 1 2 3 1' 1 2 3	0.30 0.27 0.27 0.27 0.27 0.27 0.23 0.23 0.23 0.23	-3.20 -0.90 -1.58 -2.14 -2.88 -0.90 -1.41 -1.93 -2.46	10.4 9.7 9.7 9.7 9.7 8.9 8.9 8.9 8.9 8.9	-53.7 -23.4 -38.0 -50.2 -50.2 -23.4 -34.4 -45.6 -45.6	6.2 5.8 5.8 5.8 5.8 5.8 5.8 5.3 5.3 5.3 5.3 5.3	-32.2 -14.0 -22.8 -30.1 -30.1 -14.0 -20.7 -27.4 -27.4	FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A
Roof 20 ft ² Roof 50 ft ²	10.0 10.0 20.0 20.0 20.0 50.0 50.0 50.0 50.0 100 0	3 1' 2 3 1' 1 2 3 1' 2 3 1'	0.30 0.27 0.27 0.27 0.27 0.23 0.23 0.23 0.23 0.23 0.23 0.20	-3.20 -0.90 -1.58 -2.14 -2.88 -0.90 -1.41 -1.93 -2.46 -0.90	10.4 9.7 9.7 9.7 9.7 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9	-53.7 -23.4 -38.0 -50.2 -50.2 -23.4 -34.4 -34.4 -45.6 -23.4	6.2 5.8 5.8 5.8 5.8 5.8 5.3 5.3 5.3 5.3 5.3 4.9	-32.2 -14.0 -22.8 -30.1 -30.1 -14.0 -20.7 -27.4 -27.4 -14.0	FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A
Roof 20 ft ² Roof 50 ft ²	10.0 10.0 20.0 20.0 20.0 50.0 50.0 50.0 50.0 100.0 100.0	3 1' 2 3 1' 1' 1 2 3 1' 1	0.30 0.27 0.27 0.27 0.27 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.20 0.20	-3.20 -0.90 -1.58 -2.14 -2.88 -0.90 -1.41 -1.93 -2.46 -0.90 -1.29	10.4 9.7 9.7 9.7 8.9 8.9 8.9 8.9 8.9 8.9 8.2 8.2	-53.7 -23.4 -38.0 -50.2 -50.2 -23.4 -34.4 -34.4 -45.6 -45.6 -23.4 -34.8	6.2 5.8 5.8 5.8 5.8 5.3 5.3 5.3 5.3 5.3 4.9 4.9	-32.2 -14.0 -22.8 -30.1 -30.1 -14.0 -20.7 -27.4 -27.4 -27.4 -14.0 -19.1	FIG.30.3-2 <i>A</i> FIG.30.3-2 <i>A</i>
Roof 20 ft ² Roof 50 ft ² Roof 100 ft ²	10.0 10.0 20.0 20.0 20.0 50.0 50.0 50.0 50.0 5	3 1' 2 3 1' 1 1 2 3 1' 1 2 3 1' 1 2	0.30 0.27 0.27 0.27 0.27 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.20 0.20	-3.20 -0.90 -1.58 -2.14 -2.88 -0.90 -1.41 -1.93 -2.46 -0.90 -1.29 -1.29	10.4 9.7 9.7 9.7 8.9 8.9 8.9 8.9 8.9 8.9 8.2 8.2 8.2	-53.7 -23.4 -38.0 -50.2 -50.2 -23.4 -34.4 -45.6 -45.6 -23.4 -31.8	6.2 5.8 5.8 5.8 5.3 5.3 5.3 5.3 4.9 4.9	-32.2 -14.0 -22.8 -30.1 -14.0 -20.7 -27.4 -27.4 -27.4 -14.0 -19.1 -25.2	FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A
Roof 20 ft ² Roof 50 ft ² Roof 100 ft ²	10.0 10.0 20.0 20.0 20.0 50.0 50.0 50.0 50.0 5	3 1' 1 2 3 1' 1 2 3 1' 1 2 3 1' 1 2 2 2	0.30 0.27 0.27 0.27 0.27 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.20 0.20	-3.20 -0.90 -1.58 -2.14 -2.88 -0.90 -1.41 -1.93 -2.46 -0.90 -1.29 -1.77 -2.44	10.4 9.7 9.7 9.7 9.7 8.9 8.9 8.9 8.9 8.9 8.9 8.2 8.2 8.2 8.2 8.2 8.2	-53.7 -23.4 -38.0 -50.2 -50.2 -23.4 -34.4 -45.6 -45.6 -45.6 -23.4 -31.8 -42.2	6.2 5.8 5.8 5.8 5.3 5.3 5.3 5.3 4.9 4.9 4.9 4.9	-32.2 -14.0 -22.8 -30.1 -14.0 -20.7 -27.4 -27.4 -27.4 -14.0 -19.1 -25.3 -25.2	FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A
Roof 20 ft ² Roof 50 ft ² Roof 100 ft ²	10.0 10.0 20.0 20.0 20.0 50.0 50.0 50.0 50.0 100.0 100.0 100.0 100.0	3 1' 2 3 1' 1 2 3 1' 1 2 3 1' 1 2 3 3 3	0.30 0.27 0.27 0.27 0.27 0.23 0.23 0.23 0.20 0.20	-3.20 -0.90 -1.58 -2.14 -2.88 -0.90 -1.41 -1.93 -2.46 -0.90 -1.29 -1.77 -2.14	10.4 9.7 9.7 9.7 9.7 8.9 8.9 8.9 8.9 8.9 8.2 8.2 8.2 8.2 8.2 8.2 8.2	-53.7 -23.4 -38.0 -50.2 -50.2 -23.4 -34.4 -45.6 -45.6 -23.4 -45.6 -23.4 -31.8 -42.2 -42.2	6.2 5.8 5.8 5.8 5.8 5.3 5.3 5.3 5.3 4.9 4.9 4.9 4.9	-32.2 -14.0 -22.8 -30.1 -30.1 -20.7 -27.4 -27.4 -27.4 -27.4 -14.0 -19.1 -25.3 -25.3	FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A
Roof 20 ft ² Roof 50 ft ² Roof 100 ft ²	10.0 10.0 20.0 20.0 20.0 50.0 50.0 50.0 50.0 100.0 100.0 100.0 100.0 500.0	3 1' 2 3 1' 1 2 3 1' 1 2 3 1' 1 2 3 1'	0.30 0.27 0.27 0.27 0.27 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.20 0.20 0.20 0.20 0.20 0.20	-3.20 -0.90 -1.58 -2.14 -2.88 -0.90 -1.41 -1.93 -2.46 -0.90 -1.29 -1.77 -2.14 -0.55	10.4 9.7 9.7 9.7 9.7 8.9 8.9 8.9 8.9 8.9 8.2 8.2 8.2 8.2 8.2 8.2 8.2	-53.7 -23.4 -38.0 -50.2 -50.2 -23.4 -34.4 -45.6 -23.4 -31.8 -23.4 -31.8 -42.2 -42.2 -15.8	6.2 5.8 5.8 5.8 5.8 5.3 5.3 5.3 4.9 4.9 4.9 4.9 4.9 4.9 4.9	-32.2 -14.0 -22.8 -30.1 -30.1 -14.0 -20.7 -27.4 -27.4 -27.4 -19.1 -25.3 -25.3 -9.5	FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A
Roof 20 ft ² Roof 50 ft ² Roof 100 ft ²	10.0 10.0 20.0 20.0 20.0 50.0 50.0 50.0 50.0 100.0 100.0 100.0 100.0 500.0 500.0	3 1' 1 2 3 1' 1 2 3 1' 1 2 3 1' 1 2 3 1' 1 1 2 3 1' 1 1 1 1 1 1 1 1 1 1 1 1 1	0.30 0.27 0.27 0.27 0.27 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	-3.20 -0.90 -1.58 -2.14 -2.88 -0.90 -1.41 -1.93 -2.46 -0.90 -1.29 -1.77 -2.14 -0.55 -1.00	10.4 9.7 9.7 9.7 8.9 8.9 8.9 8.9 8.9 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	-53.7 -23.4 -38.0 -50.2 -50.2 -23.4 -34.4 -34.4 -45.6 -45.6 -23.4 -31.8 -42.2 -42.2 -42.2 -15.8 -25.5	6.2 5.8 5.8 5.8 5.3 5.3 5.3 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9	-32.2 -14.0 -22.8 -30.1 -30.1 -14.0 -20.7 -27.4 -27.4 -27.4 -27.4 -19.1 -25.3 -25.3 -25.3 -9.5 -15.3	FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A
Roof 20 ft ² Roof 50 ft ² Roof 100 ft ² Roof 500 ft ²	10.0 10.0 20.0 20.0 20.0 50.0 50.0 50.0 50.0 100.0 100.0 100.0 500.0 500.0 500.0	3 1' 1 2 2 1' 1 2 2 1' 1 2 2 1' 1 2 2 1' 1 2 2 1' 1 2 2 1' 1 2 1 1 2 2 1' 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 2 2 1 2 2 1 2 2 1 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	0.30 0.27 0.27 0.27 0.27 0.23 0.23 0.23 0.23 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	-3.20 -0.90 -1.58 -2.14 -2.88 -0.90 -1.41 -1.93 -2.46 -0.90 -1.29 -1.77 -2.14 -0.55 -1.00 -1.40	10.4 9.7 9.7 9.7 9.7 8.9 8.9 8.9 8.9 8.9 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	-53.7 -23.4 -38.0 -50.2 -50.2 -23.4 -34.4 -45.6 -23.4 -45.6 -23.4 -31.8 -42.2 -42.2 -15.8 -25.5 -34.2	6.2 5.8 5.8 5.8 5.3 5.3 5.3 5.3 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9	-32.2 -14.0 -22.8 -30.1 -30.1 -14.0 -20.7 -27.4 -27.4 -27.4 -14.0 -19.1 -25.3 -25.3 -9.5 -15.3 -20.5	FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A FIG.30.3-2A

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO				
5068 W. Plano Portway Ofc: (972) 354-8855 Suite 200 Fax: (972) 354-8856 Plano. TX 75093 www.ellisongage.com	Description	Calc. by	Date	Sheet No.	
	LOAD CRITERIA DESIGN (SEC. LC)	BG	4/11/2024	LC7	

Parapets				[30.8]						
$p = q_p((GC_p))$	-(GC _{pi})) psf			[EQ. 30.8-1]						
Top of Par	apet = 2	0.17	ft							
K _{z, top of p}	_{arapet} = ().90		[TABLE 30.3-1]					
q _{p. top of p}	arapet = 2	23.8	psf	[EQ. 30.3-1]						
Effective Wind	Area = 🕴	50.0	ft ²							
	GC _{ni} = (0.00		[TABLE 26.11-	-1]					
Min. Parapet Height A	Around Bldg. =	1.00	ft	[FIGURE 30.4- 2A, NOTE 5]						
Pressu	ire Coefficien	ts, GC _p]						
Area	Corr	er Zone	Int. Zone							
Negative Wall	-	1.04	-0.88	[FIG. 30.3-1]						
Positive Wall	().79	0.79	[FIG. 30.3-1]						
Negative Roof	-	1.93	-1.93	[FIG. 30.4-2A]						
PARAPET	WIND PRES	SURES (I	PSF) [FIG. 30.	.9-11	1					
Load Case A	p ₁	(psf)	p ₂ (psf)	p _{TOTAL} (psf)	p _{TOTAL} (ps 0.6	f) *				
Interior Zone		8.8	-45.9	64.7	38.8					
Corner Zone		8.8	-45.9	64.7	38.8					
Load Case B	p ₃	(psf)	p ₄ (psf)	р _{тотаL} (psf)	p _{TOTAL} (ps 0.6	f) *				
Interior Zone		8.8	-20.9	39.7	23.8					
Corner Zone		8.8	-24.7	43.5	26.1					
Area	Effective Wind Area (ft ²)	Zone	+GCp	-GCp	+ Pres	sure (psf)	- Pressure (psf)	- Pressure (psf) * 0.6	Dead Load (psf)	Net Pressure (psf)
	84	1'	0.21	-0.90		8.4	-23.4	-14.0	6.0	8.0
Joists	84	1	0.21	-1.32		8.4	-32.5	-19.5	6.0	13.5
	84	3	0.21	-1.01		8.4	-43.1	-25.9	6.0	19.9

ELLISON GAGE ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
5068 W. Plano Parkway Ofc: (972) 354-8855 Suite 200 Fax: (972) 354-8856 Plano, 1X 75093 www.elikongage.com	Description LOAD CRITERIA DESIGN (SEC. LC)	Calc. by BG	Date 4/11/2024	Sheet No. LC8

 SEISMIC LOADS: (A 	ASCE 7-	16, EQUIVALENT I	LATERAL FOR	RCE P	ROCEDURE)	
(SEE ATTACHE					EISMIC BASE SHEA	R)
			ALCOLATION	01 01		
$S_{DS} = 0.100$	$I_e = 1.00$					
ρ: REDUNDANC	Y (REF L	ATERAL DESIGN	SECTION)	[12.3.4	4]	
			,	-	-	
a = 1.0 FOR SEIS		SIGN CATEGORY	B			
p nor on oele			D			
			0== (0)			7
		SEISMIC LOADS (AS	CE 7-16)			
GENERAL INFORMATION:						
S _s =	0.099	[FROM USGS WEBSITE]				
S ₁ =	0.068	[FROM USGS WEBSITE]				
Site Class =	D	[FROM SOILS REPORT, C	OR ASSUMED]			
F _a =	1.6	[TABLE 11.4-1, or software	2]			
F _v =	2.4	[TABLE 11.4-2, or software]			
S _{MS} =	0.158	[EQ. 11.4-1]				
S _{M1} =	0.163	[EQ. 11.4-2]				
S _{De} =	0.106	EQ. 11.4-3]				1
S ₅₄ =	0.109	[EQ. 11.4-4]				
Risk Category		[TABLE 1.5-1]				1
	1 00	[TABLE 1 5-2]				1
Seismic Design Category =	B	[TABLES 11.6-1 & 11.6-2]				
R =	3.0	[TABLE 12.2-1]	*STEEL SYSTEM	NOT SPI	ECIFICALLY DETAILED FOR	1
$\Omega_0 =$	2.5	[TABLE 12.2-1]	SEISMIC RESIST	ANCE		1
		Eminalent Latination - D		0.01		
SEISMIC BASE SHEAR:		Equivalent Lateral Force P	rocedure, SECTION 1	2.8]		
C _S BOUND EQUATIONS:	0.005	(FO, 40.0.0)	C _t =	0.020	[IABLE 12.8-2]	
C _s =	0.035	[EQ. 12.8-2]	x =	0.75	[IABLE 12.8-2]	1
C _s =	0.251	[EQ. 12.8-3, 12.8-4]	h _n =	14.0	rt [12.8.2.1]	1
C _s =	0.010	[EQ. 12.8-5]	T _a =	0.14	sec [EQ. 12.8-7]	
C _s =	NA	[EQ. 12.8-6]	T _L =	6.00	sec [FIG. 22-14]	
C _s =	0.035	(GOVERNING VALUE)				
V = C _s W =	0.035	W [EQ. 12.8-1] ULTIMATE LOAD	(FACTOR	RED)	
V = C _s W =	0.025	W [EQ. 12.8-1]] SERVICE LEVEL	LOAD (U	LTIMATE LOAD x 0.7)	
						7
SEISMIC LOADS ON WALLS:		F				•
SEISMIC LOADS ON WALLS: Building Wall [Design for Out-of-PI	ane Forces.	SECTION 12.11.1]				
SEISMIC LOADS ON WALLS: Building Wall [Design for Out-of-PI F_ =	ane Forces, 0.4SpslsWr	SECTION 12.11.1] [12.11.1]				
SEISMIC LOADS ON WALLS: Building Wall [Design for Out-of-PI F _p =	ane Forces, 0.4S _{DS} l _e W _p 0 106	SECTION 12.11.1] [12.11.1] [SEE ABOVE]	<u>ا ما</u>	1 00		
SEISMIC LOADS ON WALLS: Building Wall [Design for Out-of-PI Fp = Sps = Sps = c	ane Forces, 0.4S _{DS} l _e W _p 0.106	SECTION 12.11.1] [12.11.1] [SEE ABOVE]	le =	1.00	[SEE ABOVE]	
SEISMIC LOADS ON WALLS: Building Wall [Design for Out-of-PI Fp = SDS = SDS = Fp = Nin F = Nin F =	ane Forces, 0.4S _{DS} I _e W _p 0.106 0.042 Wp	SECTION 12.11.1] [12.11.1] [SEE ABOVE]	le =	1.00	[SEE ABOVE]	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	ane Forces, 0.4S _{DS} l _e W _p 0.106 0.042 Wp 0.100 Wp	SECTION 12.11.1] [12.11.1] [SEE ABOVE] [12.11.1]	le =	1.00	[SEE ABOVE]	
eq:self-self-self-self-self-self-self-self-	ane Forces, 0.4S _{DS} I _e W _p 0.106 0.042 Wp 0.100 Wp 0.100 Wp	SECTION 12.11.1] [12.11.1] [SEE ABOVE] [12.11.1] (GOVERNING VALUE, FA	le = CTORED)	1.00	[SEE ABOVE]	
$\label{eq:selection} \begin{array}{ c c c } \hline \textbf{SEISMIC LOADS ON WALLS:} \\ \hline \textbf{Building Wall} & [Design for Out-of-PI \\ F_p = \\ S_{DS} = \\ F_p = \\ Min \ F_p = \\ F_p = \\ W_p = \\ \end{array}$	ane Forces, 0.4S _{DS} I _e W _p 0.106 0.042 Wp 0.100 Wp 0.100 Wp 15	SECTION 12.11.1] [12.11.1] [SEE ABOVE] [12.11.1] (GOVERNING VALUE, FA (PSF) 6" STUD WALL WF	le = CTORED) TH EIFS/STUCCO	1.00	[SEE ABOVE]	
$\label{eq:selection} \begin{array}{l} \displaystyle \frac{\text{SEISMIC LOADS ON WALLS:}}{\text{Building Wall}} & [\text{Design for Out-of-PI}] \\ & F_p = \\ & S_{DS} = \\ & S_{DS} = \\ & F_p = \\ & \text{Min } F_p = \\ & F_p = \\ & W_p = \\ & W_p = \\ & W_p = \end{array}$	ane Forces, 0.4S _{DS} I _e W _p 0.106 0.042 Wp 0.100 Wp 0.100 Wp 15 55	SECTION 12.11.1] [12.11.1] [SEE ABOVE] [12.11.1] (GOVERNING VALUE, FA (PSF) 6" STUD WALL WI (PSF) 6" STUD WALL WI	le = CTORED) TH EIFS/STUCCO TH BRICK VENEER	1.00	[SEE ABOVE]	
$\label{eq:selection} \begin{array}{ c c c } \hline \textbf{SEISMIC LOADS ON WALLS:} \\ \hline \textbf{Building Wall} & [Design for Out-of-PI \\ F_p = \\ S_{DS} = \\ F_p = \\ Min \ F_p = \\ F_p = \\ W_p = \\ W_p = \\ \hline \textbf{W}_p = \\$	ane Forces, 0.4S _{DS} I _e W _p 0.106 0.042 Wp 0.100 Wp 0.100 Wp 15 55 1.1	SECTION 12.11.1] [12.11.1] [SEE ABOVE] [12.11.1] (GOVERNING VALUE, FA (PSF) 6" STUD WALL WI (PSF) 6" STUD WALL WI PSF BY INSPEC	le = CTORED) TH EIFS/STUCCO TH BRICK VENEER STION, WIND CONTRO	1.00 DLS	[SEE ABOVE]	
$\label{eq:second} \begin{array}{ c c c c } \hline SEISMIC LOADS ON WALLS: \\ \hline Building Wall & [Design for Out-of-PI \\ F_p = \\ S_{DS} = \\ F_p = \\ Min \ F_p = \\ F_p = \\ W_p = \\ W_p = \\ \hline W_p = \\ 6'' \ WALL \ WITH \ EIFS/STUCCO \ F_p = \\ \hline 6'' \ WALL \ WITH \ BRICK \ F_p = \\ \hline \end{array}$	ane Forces, 0.4S _{DS} I _e W _p 0.106 0.042 Wp 0.100 Wp 0.100 Wp 15 55 1.1 3.9	SECTION 12.11.1] [12.11.1] [SEE ABOVE] [12.11.1] (GOVERNING VALUE, FA (PSF) 6" STUD WALL WI (PSF) 6" STUD WALL WI PSF BY INSPEC PSF BY INSPEC	le = CTORED) TH EIFS/STUCCO TH BRICK VENEER STION, WIND CONTRO STION, WIND CONTRO	1.00 DLS DLS	[SEE ABOVE]	
$\begin{tabular}{ c c c c c } \hline SEISMIC LOADS ON WALLS: \\ \hline Building Wall & [Design for Out-of-PI & F_p = $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	ane Forces, 0.4S _{DS} I _e W _p 0.106 0.042 Wp 0.100 Wp 0.100 Wp 15 55 1.1 3.9 Denstructural (SECTION 12.11.1] [12.11.1] [SEE ABOVE] [12.11.1] (GOVERNING VALUE, FA (PSF) 6" STUD WALL WI (PSF) 6" STUD WALL WI PSF BY INSPEC PSF BY INSPEC Components. SECTION 13.31	le = CTORED) TH EIFS/STUCCO TH BRICK VENEER CTION, WIND CONTRO CTION, WIND CONTRO	1.00 DLS DLS	[SEE ABOVE]	
$\label{eq:second} \begin{split} \hline \textbf{SEISMIC LOADS ON WALLS:} \\ \hline \textbf{Building Wall} & [Design for Out-of-PI \\ F_p = \\ S_{DS} = \\ F_p = \\ Min \ F_p = \\ Min \ F_p = \\ W_p = \\ W_p = \\ \hline \textbf{W}_p = \\ \hline W$	ane Forces, 0.4S _{DS} I _e W _p 0.106 0.042 Wp 0.100 Wp 0.100 Wp 15 55 1.1 3.9 Donstructural (0.4a _p SpsW _p	SECTION 12.11.1] [12.11.1] [SEE ABOVE] [12.11.1] (GOVERNING VALUE, FA (PSF) 6" STUD WALL WI (PSF) 6" STUD WALL WI PSF BY INSPEC PSF BY INSPEC Components, SECTION 13.3] (1+2z/h) [EQ. 13.3-1]	le = CTORED) TH EIFS/STUCCO TH BRICK VENEER STION, WIND CONTRO STION, WIND CONTRO	1.00 DLS DLS	[SEE ABOVE]	
$\begin{tabular}{ c c c c c } \hline SEISMIC LOADS ON WALLS: \\ \hline Building Wall & [Design for Out-of-PI & F_p = & & & \\ & S_{DS} = & & & \\ & F_p = & & & \\ & Min F_p = & & & \\ & & F_p = & & & \\ & & W_p = & & & \\ & & W_p = & & & \\ & & W_p = & & & \\ \hline & & & WALL WITH EIFS/STUCCO F_p = & & \\ \hline & & & & & \\ \hline & & & & & & \\ \hline & & & &$	ane Forces, 0.4S _{DS} I _e W _p 0.106 0.042 Wp 0.100 Wp 0.100 Wp 15 55 1.1 3.9 ponstructural (<u>0.4a_pS_{DS}W_p</u> Re/Ie	SECTION 12.11.1] [12.11.1] [SEE ABOVE] [12.11.1] (GOVERNING VALUE, FA (PSF) 6" STUD WALL WI (PSF) 6" STUD WALL WI PSF BY INSPEC PSF BY INSPEC Components, SECTION 13.3] (1+2z/h) [EQ. 13.3-1]	le = CTORED) TH EIFS/STUCCO TH BRICK VENEER CTION, WIND CONTRO CTION, WIND CONTRO	1.00 DLS DLS	[SEE ABOVE]	
$\begin{tabular}{ c c c c c } \hline SEISMIC LOADS ON WALLS: \\ \hline Building Wall & [Design for Out-of-PI & F_p = $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	ane Forces, 0.4S _{DS} I _e W _p 0.106 0.042 Wp 0.100 Wp 15 55 1.1 3.9 Donstructural (<u>0.4a_pSpsWp</u> R _p /I _p 0.106	SECTION 12.11.1] [12.11.1] [SEE ABOVE] [12.11.1] (GOVERNING VALUE, FA (PSF) 6" STUD WALL WI (PSF) 6" STUD WALL WI PSF BY INSPEC PSF BY INSPEC Components, SECTION 13.3] (1+2z/h) [EQ. 13.3-1]	le = CTORED) TH EIFS/STUCCO TH BRICK VENEER TION, WIND CONTRO TION, WIND CONTRO TION, WIND CONTRO	1.00 DLS DLS	[SEE ABOVE]	
$\begin{tabular}{ c c c c c } \hline SEISMIC LOADS ON WALLS: \\ \hline Building Wall & [Design for Out-of-PI & F_p = $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	ane Forces, 0.4S _{DS} I _e W _p 0.106 0.042 Wp 0.100 Wp 15 55 1.1 3.9 Donstructural (0 <u>0.4a_pS_{DS}W_p</u> R _p /I _p 0.106 2 5	SECTION 12.11.1] [12.11.1] [SEE ABOVE] [12.11.1] (GOVERNING VALUE, FA (PSF) 6" STUD WALL WIT (PSF) 6" STUD WALL WIT PSF BY INSPEC Components, SECTION 13.3] (1+2z/h) [See Above] ITABLE 12.5.1]	le = CTORED) TH EIFS/STUCCO TH BRICK VENEER STION, WIND CONTRO STION, WIND CONTRO STION, WIND CONTRO TON, WIND CONTRO	1.00 DLS DLS 1.00	[SEE ABOVE]	
$\begin{tabular}{ c c c c } \hline SEISMIC LOADS ON WALLS: \\ \hline Building Wall & [Design for Out-of-PI & F_p = & & & \\ & S_{DS} = & & F_p = & & \\ & & F_p = & & & \\ & & Min F_p = & & & \\ & & F_p = & & & \\ & & W_p = & & & \\ & & & W_p = $	ane Forces, 0.4S _{DS} I _e W _p 0.106 0.042 Wp 0.100 Wp 15 55 1.1 3.9 onstructural (0.4a _p S _{DS} W _p R _P /I _P 0.106 2.5 0.5	SECTION 12.11.1] [12.11.1] [SEE ABOVE] [12.11.1] (GOVERNING VALUE, FA (PSF) 6" STUD WALL WI (PSF) 6" STUD WALL WI PSF BY INSPEC PSF BY INSPEC Components, SECTION 13.3] (1+2z/h) [EQ. 13.3-1] [See Above] [TABLE 13.5-1] [TABLE 13.5-1]	le = CTORED) TH EIFS/STUCCO TH BRICK VENEER TTION, WIND CONTRO TTION, WIND CONTRO] z/h = lp =	1.00 DLS DLS 1.00 1.0	[SEE ABOVE]	
$\begin{tabular}{ c c c c c } \hline SEISMIC LOADS ON WALLS: \\ \hline Building Wall & [Design for Out-of-PI & F_p = $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	ane Forces, 0.4S _{DS} I _e W _p 0.106 0.042 Wp 0.100 Wp 15 55 1.1 3.9 Onstructural (0.4a _p S _{DS} W _p R _P /I _P 0.106 2.5 2.5	SECTION 12.11.1] [12.11.1] [SEE ABOVE] [12.11.1] (GOVERNING VALUE, FA (PSF) 6" STUD WALL WI PSF BY INSPEC Components, SECTION 13.3] (1+2z/h) [See Above] [TABLE 13.5-1] [TABLE 13.5-1]	le = CTORED) TH EIFS/STUCCO TH BRICK VENEER TTION, WIND CONTRO TTION, WIND CONTRO] z/h = lp =	1.00 DLS DLS 1.00 1.0	[SEE ABOVE] [SECTION 13.1.3]	
$\begin{tabular}{ c c c c } \hline SEISMIC LOADS ON WALLS: \\ \hline Building Wall & [Design for Out-of-PI & F_p = $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	ane Forces, 0.4S _{DS} I _e W _p 0.106 0.042 Wp 0.100 Wp 15 55 1.1 3.9 Onstructural O 0.4a _p S _{DS} W _p R _P /I _P 0.106 2.5 2.5 0.127 Wp	SECTION 12.11.1] [12.11.1] [SEE ABOVE] [12.11.1] (GOVERNING VALUE, FA (PSF) 6" STUD WALL WI PSF BY INSPEC Components, SECTION 13.3] [1+2z/h) [See Above] [TABLE 13.5-1] [EQ. 13.3-1]	le = CTORED) TH EIFS/STUCCO TH BRICK VENEER CTION, WIND CONTRO CTION, WIND CONTRO] z/h = lp =	1.00 DLS DLS 1.00 1.0	[SEE ABOVE] [SECTION 13.1.3]	
$\begin{tabular}{ c c c c } \hline SEISMIC LOADS ON WALLS: \\ \hline Building Wall & [Design for Out-of-PI & F_p = & & & \\ & S_{DS} = & & F_p = & & \\ & Min F_p = & & & F_p = & & \\ & My_p = & & & W_p = & & \\ & Wy_p = & & & W_p = & & \\ \hline & & & & & W_p = & & \\ \hline & & & & & & W_p = & & \\ \hline & & & & & & & & W_p = & & \\ \hline & & & & & & & & & & & \\ \hline & & & &$	ane Forces, 0.4S _{DS} I _e W _p 0.106 0.042 Wp 0.100 Wp 15 55 1.1 3.9 Onstructural (<u>0.4a_pS_{DS}W_p R_p/I_p 0.106 2.5 2.5 0.127 Wp 1.6S_{DS}I_pW_p =</u>	SECTION 12.11.1] [12.11.1] [SEE ABOVE] [12.11.1] (GOVERNING VALUE, FA (PSF) 6" STUD WALL WI PSF BY INSPEC PSF BY INSPEC Components, SECTION 13.3] (1+2z/h) [EQ. 13.3-1] [See Above] [TABLE 13.5-1] [TABLE 13.5-1] [EQ. 13.3-1] = 0.169 Wp [EQ. 13.3-2]	le = CTORED) TH EIFS/STUCCO TH BRICK VENEER CTION, WIND CONTRO CTION, WIND CONTRO] z/h = lp =	1.00 DLS DLS 1.00 1.0	[SEE ABOVE] [SECTION 13.1.3]	
$\begin{tabular}{ c c c c } \hline SEISMIC LOADS ON WALLS: \\ \hline Building Wall & [Design for Out-of-PI & F_p = & S_{DS} = & F_p = & Min F_p = & Min F_p = & Min F_p = & W_p = & & W_p = & & & & & & & & & & & & & & & & & & $	ane Forces, 0.4S _{DS} I _e W _p 0.106 0.042 Wp 0.100 Wp 15 55 1.1 3.9 Onstructural (<u>0.4a_pS_{DS}W_p</u> R _p /I _p 0.106 2.5 2.5 0.127 Wp 1.6S _{DS} I _p W _p	SECTION 12.11.1] [12.11.1] [SEE ABOVE] [12.11.1] (GOVERNING VALUE, FA (PSF) 6" STUD WALL WI (PSF) 6" STUD WALL WI PSF BY INSPEC PSF BY INSPEC Components, SECTION 13.3] (1+2z/h) [EQ. 13.3-1] [See Above] [TABLE 13.5-1] [TABLE 13.5-1] [EQ. 13.3-1] = 0.169 Wp [EQ. 13.3-2] = 0.032 Wp [EQ. 13.3-3]	le = CTORED) TH EIFS/STUCCO TH BRICK VENEER CTION, WIND CONTRO CTION, WIND CONTRO] z/h = lp =	1.00 DLS DLS 1.00 1.0	[SEE ABOVE] [SECTION 13.1.3]	
$\begin{tabular}{ c c c c } \hline SEISMIC LOADS ON WALLS: \\ \hline Building Wall & [Design for Out-of-PI & F_p = & S_{DS} = & F_p = & Min F_p = & Min F_p = & Min F_p = & W_p = & & & & & & & & & & & & & & & & & & $	ane Forces, 0.4S _{DS} I _e W _p 0.106 0.042 Wp 0.100 Wp 15 55 1.1 3.9 Donstructural (<u>0.4a_pS_{DS}W_p</u> R _p /I _p 0.106 2.5 2.5 0.127 Wp 1.6S _{DS} I _p W _p = 0.3S _{DS} I _p W _p = 0.127 Wp	SECTION 12.11.1] [12.11.1] [SEE ABOVE] [12.11.1] (GOVERNING VALUE, FA (PSF) 6" STUD WALL WI PSF BY INSPEC PSF BY INSPEC Components, SECTION 13.3] (1+22/h) [EQ. 13.3-1] [See Above] [TABLE 13.5-1] [TABLE 13.5-1] [EQ. 13.3-1] = 0.169 Wp [EQ. 13.3-2] = 0.032 Wp [EQ. 13.3-3] (GOVERNING VALUE, FA	le = CTORED) TH EIFS/STUCCO TH BRICK VENEER TION, WIND CONTRO TION, WIND CONTRO] Z/h = lp =] CTORED)	1.00 DLS DLS 1.00 1.0	[SEE ABOVE] [SECTION 13.1.3]	
$\begin{tabular}{ c c c c c } \hline SEISMIC LOADS ON WALLS: \\ \hline Building Wall & [Design for Out-of-PI & F_p = & S_{DS} = & F_p = & Min F_p = & Min F_p = & W_p = & & W_p = & & & & & & & & & & & & & & & & & & $	ane Forces, 0.4S _{DS} I _e W _p 0.106 0.042 Wp 0.100 Wp 15 55 1.1 3.9 onstructural (0.4a _p S _{DS} W _p R _p /I _p 0.106 2.5 2.5 0.127 Wp 1.6S _{DS} I _p W _p + 0.3S _{DS} I _p W _p + 0.127 Wp 15	SECTION 12.11.1] [12.11.1] [SEE ABOVE] [12.11.1] (GOVERNING VALUE, FA (PSF) 6" STUD WALL WI' PSF PSF BY INSPEC Components, SECTION 13.3] (1+22/h) [See Above] [TABLE 13.5-1] [EQ. 13.3-1] = 0.169 Wp = 0.032 Wp [GOVERNING VALUE, FA (PSF) 6" STUD WALL WI'	le = CTORED) TH EIFS/STUCCO TH BRICK VENEER TION, WIND CONTR(TION, WIND CONTR(2/h = lp = lp =] CTORED) TH EIFS/STUCCO	1.00 DLS DLS 1.00 1.0	[SEE ABOVE] [SECTION 13.1.3]	
$\begin{tabular}{ c c c c c } \hline SEISMIC LOADS ON WALLS: \\ \hline Building Wall & [Design for Out-of-PI & F_p = & S_{DS} = & F_p = & Min F_p = & Min F_p = & W_p = & & W_p = & & & & & & & & & & & & & & & & & & $	ane Forces, 0.4S _{DS} I _e W _p 0.106 0.042 Wp 0.100 Wp 15 55 1.1 3.9 onstructural (0.4a _p S _{DS} W _p R _p /I _p 0.106 2.5 2.5 0.127 Wp 1.6S _{DS} I _p W _p + 0.3S _{DS} I _p W _p + 0.127 Wp 15 55	SECTION 12.11.1] [12.11.1] [SEE ABOVE] [12.11.1] (GOVERNING VALUE, FA (PSF) 6" STUD WALL WI' PSF PY INSPEC Components, SECTION 13.3] (1+22/h) [See Above] [TABLE 13.5-1] [EQ. 13.3-1] = 0.169 Wp = 0.032 Wp [OVERNING VALUE, FA (PSF) 6" STUD WALL WI' (PSF) 6" STUD WALL WI'	$ e =$ CTORED) TH EIFS/STUCCO TH BRICK VENEER TION, WIND CONTRO $z/h =$ $l_p =$ $l_p =$] CTORED) TH EIFS/STUCCO TH BRICK VENEER	1.00 DLS DLS 1.00 1.0	[SEE ABOVE] [SECTION 13.1.3]	
$\begin{tabular}{ c c c c c } \hline SEISMIC LOADS ON WALLS: \\ \hline Building Wall & [Design for Out-of-PI & F_p = & S_{DS} = & F_p = & Min F_p = & Min F_p = & W_p = & & W_p = & & & & & & & & & & & & & & & & & & $	ane Forces, 0.4S _{DS} I _e W _p 0.106 0.042 Wp 0.100 Wp 15 55 1.1 3.9 onstructural (0.4a _p S _{DS} W _p R _p /I _p 0.106 2.5 2.5 0.127 Wp 1.6S _{DS} I _p W _p · 0.3S _{DS} I _p W _p · 0.127 Wp 15 55 1.3	SECTION 12.11.1] [12.11.1] [SEE ABOVE] [12.11.1] (GOVERNING VALUE, FA (PSF) 6" STUD WALL WI PSF BY INSPEC PSF BY INSPEC Components, SECTION 13.3] (1+22/h) [EQ. 13.3-1] [See Above] [TABLE 13.5-1] [TABLE 13.5-1] [EQ. 13.3-1] = 0.169 Wp [EQ. 13.3-2] = 0.032 Wp [EQ. 13.3-3] (GOVERNING VALUE, FA (PSF) 6" STUD WALL WI (PSF) 6" STUD WALL WI PSF BY INSPEC	$ e =$ CTORED) TH EIFS/STUCCO TH BRICK VENEER TION, WIND CONTRO $z/h =$ $l_p =$ $l_p =$ $l_p =$ $l_p = 0$ TH EIFS/STUCCO TH BRICK VENEER TION, WIND CONTRO $z/h = 0$	1.00 DLS DLS 1.00 1.0	[SEE ABOVE] [SECTION 13.1.3]	
$\begin{tabular}{ c c c c c } \hline SEISMIC LOADS ON WALLS: \\ \hline Building Wall & [Design for Out-of-PI & F_p = & S_{DS} = & F_p = & Min F_p = & Min F_p = & W_p = & & W_p = & & & & & & & & & & & & & & & & & & $	ane Forces, 0.4S _{DS} I _e W _P 0.106 0.042 Wp 0.100 Wp 15 55 1.1 3.9 onstructural (0 0.4a _p S _{DS} W _p R _P /I _P 0.106 2.5 2.5 0.127 Wp 1.6S _{DS} I _P W _P 0.3S _{DS} I _P W _P 0.127 Wp 15 55 1.3 4 9	SECTION 12.11.1] [12.11.1] [SEE ABOVE] [12.11.1] (GOVERNING VALUE, FA (PSF) 6" STUD WALL WI' PSF PSF BY INSPEC Components, SECTION 13.3] (1+22/h) [See Above] [TABLE 13.5-1] [EQ. 13.3-1] = 0.169 Wp [SOVERNING VALUE, FA (PSF) 6" STUD WALL WI' [SP Above] [TABLE 13.5-1] [EQ. 13.3-1] = 0.169 Wp [OVERNING VALUE, FA (PSF) 6" STUD WALL WI' (PSF) 6" STUD WALL WI' PSF BY INSPEC	$le =$ CTORED) TH EIFS/STUCCO TH BRICK VENEER TION, WIND CONTRO $z/h =$ $l_p =$] CTORED) TH EIFS/STUCCO TH BRICK VENEER TION, WIND CONTRO	1.00 DLS DLS 1.00 1.0	[SEE ABOVE] [SECTION 13.1.3]	

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
5048 W. Plane Parkway Offic: (972) 354-8855 Suite 200 Fac: (972) 354-8855 Plane, TX 75093 www.ellisongage.com	Description	Cale by.	Date	Sheet No.
	LATERAL DESIGN (SEC. L)	BG	4/19/2024	L1

LATERAL DESIGN

- DESIGN PHILOSOPHY:
 - LATERAL DESIGN IN THE PLAN NORTH-SOUTH DIRECTION: LATERAL DESIGN IN THE PLAN NORTH-SOUTH DIRECTION CONSISTS OF A RECTANGULAR, FLEXIBLE SHEATHED DIAPHRAGM SPANNING BETWEEN A STEEL MOMENT FRAME AT THE WEST WALL AND SHEAR WALLS SHEATHED WITH WOOD STRUCTURAL PANELS ALONG THE CENTER AND EAST WALLS.
 - LATERAL DESIGN IN THE PLAN EAST-WEST DIRECTION: LATERAL DESIGN IN THE PLAN EAST-WEST DIRECTION CONSISTS OF A RECTANGULAR, FLEXIBLE SHEATHED DIAPHRAGM SPANNING BETWEEN SHEAR WALLS SHEATHED WITH WOOD STRUCTURAL PANELS ALONG THE NORTH AND SOUTH WALLS.

O LAT	ERAL	ANAL R MWFRS V	YSIS F	OR WI	ND LO	ADS											
EAST-WEST I MWFRS WAL HT (FT)	L WIND PR	ESSURES		MWFRS PA	RAPET WINI P _{LEEWARD}) PRESSURI	es buildin Buildi	g length = Ng Width =	55 23	ft ft							
0-15 15-20 20-25 25-30	15.2 16.1 16.9 17.6	-4.5 -4.5 -4.5 -4.5		34.5	-23.0												
WEST WALL																	
Wall Height	h (ft)	L (ft)	Avg. Roof Elev. (ft)	Parapet Ht. (ft)	Windward (0-15')	Windward (15-20')	Windward (20-25')	Windward (25-30')	Leeward	Parapet Windward	Parapet Leeward	Windward Force (plf)	Windward Force (kips)	Leeward Force (plf)	Leeward Force (kips)	Windward Moment	Leeward Moment
20'-2"	20.17	25.00	13.8 0.0	6.34 0.00	1454 0	0	0	0	-429 0	3723 0	-2482 0	374 0	9.4 0.0	-210 0	-5.3 0.0	117 0	-66 0
			0.0	0.00	0	0	0	0	0	0	0	0	0.0	0	0.0	0	0
		25.0											9.4		-5.3	117	-66
EAST WALL																	
Wall Height	h (ft)	L (ft)	Avg. Roof Elev. (ft)	Parapet Ht. (ft)	Windward (0-15')	Windward (15-20')	Windward (20-25')	Windward (25-30')	Leeward	Parapet Windward	Parapet Leeward	Windward Force (plf)	Windward Force (kips)	Leeward Force (plf)	Leeward Force (kips)	Windward Moment	Leeward Moment
20'-2"	20.17	4.00	13.8 13.8	6.34	1454 1454	0	0	0	-429 -429	3723 2398	-2482 -1599	374 279	1.5	-210 -147	-0.8	3 59	-2
20'-2"	20.17	4.00	13.8	6.34	1454	0	0	0	-429	3723	-2482	374	1.5	-210	-0.8	34	-19
		25.0											7.7		-4.2	97	-52
WEST WIND T	TOTAL FOR	CE = CE =	13.5 13.0	K K													
WEST FORCES	(LRFD)			EAST FORCE	S (LRFD)					WEST FORCE	ES (ASD)			EAST FOR	CES (ASD)		
V _{SOUTH} =	6.8 6.8	к к		V _{SOUTH} =	6.5	к к				V _{SOUTH} =	4.1 4.1	к к		V _{SOUTH} =	3.9 3.9	к к	
MOMENT =	38	K-FT		MOMENT =	37	K-FT				MOMENT =	23	K-FT	N	10MENT =	22	K-FT	
WEST DIAPHR	AGM SHEA	RS (LRFD)		EAST DIAPH	IRAGM SHEAI	RS (LRFD)				WEST DIAPH	HRAGM SH	EARS (ASD)		EAST DIA	PHRAGM S	HEARS (ASD)	
v _{south} =	124	plf		V _{SOUTH} =	119	plf				v _{south} =	74	plf		v _{south} =	71	plf	
V _{NORTH} =	124	pit		V _{NORTH} =	119	pir				V _{NORTH} =	74	pir		V _{NORTH} =	71	pit]

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
Sub48 w. Plane Parkway Ofc: (972) 354-8855 Sub2 00 Fax: (972) 354-8855 Plano, TX 75093 www.ellisongage.com	Description	Cale by.	Date	Sheet No.
	LATERAL DESIGN (SEC. L)	BG	4/19/2024	L3

	WWFRS WALL	WIND PR	ON ESSURES		MWFRS PA	RAPET WIN	D PRESSUR	ES										
	HT (FT)		PLEEWARD		PWINDWARD	PLEEWARD												
	0-15	15.2	-9.2		34.5	-23.0												
	20-25	16.9	-9.2															
	25-30	17.6	-9.2															
Number Number<	AREA 1 SOUTH WALL																	
BY Display Dis	Wall Height	h (ft)	L (ft)	Avg. Roof Elev. (ft)	Parapet Ht. (ft)	Windward (0-15')	Windward (15-20')	Windward (20-25')	Windward (25-30')	Leeward	Parapet Windward	Parapet Leeward	Windward Force (plf)	Windward Force	Leeward Force	Leeward Force	Windward Moment	Leewar Momen
MPC 1332 2730 1400 4.20 1.91 0.00 0	20'-2"	20.17	10.00	14.0	6.17	1489	0	0	0	-901	3641	-2427	366	(KIDS) 3.7	-238	-2.4	18	-12
Image O O O O	18'-2"	18.17	37.80	14.0	4.17	1489	0	0	0	-901	2317	-1545	272	10.3	-175	-6.6	297	-191
Virtual Virtual <t< td=""><td></td><td></td><td></td><td>0.0</td><td>0.00</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0.0</td><td>0</td><td>0.0</td><td>0</td><td>0</td></t<>				0.0	0.00	0	0	0	0	0	0	0	0	0.0	0	0.0	0	0
North Num Num </td <td></td> <td></td> <td>47.8</td> <td></td> <td>13.9</td> <td></td> <td>-9.0</td> <td>315</td> <td>-203</td>			47.8											13.9		-9.0	315	-203
Number 1 No. No	NORTH WALL													10.0		-5.0	010	200
arrow with with with the with with with with with with with with	Wall Height	h (ft)	L (ft)	Avg. Roof Elev. (ft)	Parapet Ht. (ft)	Windward (0-15')	Windward (15-20')	Windward (20-25')	Windward (25-30')	Leeward	Parapet Windward	Parapet Leeward	Windward Force (plf)	Windward Force	Leeward Force	Leeward Force	Windward Moment	Leewar Momer
Image Yata Yata <t< td=""><td>20'-2"</td><td>20.17</td><td>10.00</td><td>13.7</td><td>6.50</td><td>1420</td><td>0</td><td>0</td><td>0</td><td>-859</td><td>3799</td><td>-2533</td><td>382</td><td>(KIPS)</td><td>-248</td><td>(kips)</td><td>19</td><td>-12</td></t<>	20'-2"	20.17	10.00	13.7	6.50	1420	0	0	0	-859	3799	-2533	382	(KIPS)	-248	(kips)	19	-12
NPT 20,17 14.00 13.7 6.50 14.00 0 0 -0.60 2700 2503 382 6.6 3.46 2.44 1.40 47.8 16.0 .16.0 <th.16.0< th=""> .16.0 .16.</th.16.0<>	18'-2"	18.17	23.30	13.7	4.50	1420	0	0	0	-859	2474	-1650	285	6.6	-184	-4.3	144	-93
ATS TED ABA ST ADDIT SOUTH MODITIAL FORCE : 2.0.3 K SOUTH MODITIAL FORCE : 2.0.3 K SOUTH MODITIAL FORCE : 2.0.3 K SOUTH MODITIAL FORCE : 2.0.0 K SOUTH MODITIAL FORCE : 2.0.0 K SOUTH MODITIAL FORCE : 2.0.0 K Variant : 10.0 K Variant : 7.1 K Variant : 63.0 MODITIAL FORCE : 63.0 MODITIAL FORCE : MODITIAL FORC	20'-2"	20.17	14.50	13.7	6.50	1420	0	0	0	-859	3799	-2533	382	5.5	-248	-3.6	224	-146
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			47.0											46.5			207	054
Voorstall 11.8 K Voorstall 11.8 K Voorstall 12.5 K Voorstall 13.2 K Voorstall 12.5 K Voorstall K Voorstall K Voorstall 12.5 K Voorstall 13.2 K MOMENT 100 K-FT MOMENT 100 100 100 100 100 100 100 100		TOTAL FO	RCE = RCE =	24.3 25.0	K K NORTH FOR	CES (LRFD)		1			SOUTH FOR	CES (ASD)			NORTH F	ORCES (AS	5D)	T
Value 1 12.5 K Value 1 12.2 K MOMENT = 166 K-FT MOMENT = 17.5 K MOMENT = 7.5 K MOMENT = 7.0 K MOMENT = 166 K-FT MOMENT = 17.5 K MOMENT = 7.5 K MOMENT = 7.0 K MOMENT = 163 pf Value 2 0.5 pf MOMENT = 17.0 K	VCENTER =	11.8	К		V _{CENTER} =	11.8	к				V _{CENTER} =	7.1	К		V _{CENTER} =	7.1	K	
MOMENT = 106 K-FT MOMENT = 107 K-FT SOUTH DUAPHRAGM SHEARS (LSFD) Vester = 055 pf 055 pf 055 pf 050 055 pf 050 050 050 050 050 050 pf 050	Vwest =	12.5	к		Vwest =	13.2	к				V _{WEST} =	7.5	к		V _{WEST} =	7.9	К	
NORTH DIAPHRAGM SHEARS (LRFD) Verst = 553 pf NORTH DIAPHRAGM SHEARS (LRFD) Verst = 653 pf NORTH DIAPHRAGM SHEARS (LRFD) Verst = 753 pf NORTH DIAPHRAGM SHEARS (LRFD) Verst = 7	MOMENT =	166	K-FT		MOMENT =	171	K-FT				MOMENT =	100	K-FT	N	MOMENT =	102	K-FT	
SOUTH DUPHRACM SHEARS (RPT) Vexes 1 NORTH PORCES (RPT) Vexes 1 NORTH PORCES (RPT) Vexes 1 NORTH PORCES (RPT) Vexes 1 NORTH PORCES (RPT) Vexes 2 NORTH PORCES (RPT) Vexes 2 <td></td>																		
Verment Oth Pill Verment Obs Pill AREA 2 SOUTH WALL South Wall Nome Affinities Affinities Nome Affinities Affinities<	SOUTH DIAPH	RAGM SHE	ARS (LRFD)		NORTH DIA	PHRAGM SHI	EARS (LRFD)				SOUTH DIAI	PHRAGM S	HEARS (ASD)		NORTH DI	IAPHRAGN	1 SHEARS (ASD)	
Water = 0.63 pl Water = 0.65 pl AREA 2 DOTT WALL Water = 0.63 pl Water = 0.65 pl Water = 0.52 pl Water = 0.51 pl AREA 2 DOTT WALL Water = 0.65 pl Windward Leward Windward Leward Force	V _{CENTER} =	697	plf		V _{CENTER} =	695	plf				V _{CENTER} =	418	pit		V _{CENTER} =	417	plf	
APER 2 Valia Heigh 1910 h.(t) 2010 L.(t) 2000 Parage 1000 Valiation 2000 Valiation 2000 Valiation 2000 Valiation 2000 Parage 2000 Parage 200	V _{WEST} =	553	plf		V _{WEST} =	585	plf	J			V _{WEST} =	332	plf		V _{WEST} =	351	plf	1
Wail Heigh h (th) L (th) Aug. Root Parapet Mindward Mindward Mindward Mindward Mindward Mindward Vindward Vindw	AREA 2																	
18-27 18.17 7.20 14.0 4.17 1489 0 0 0 -901 2317 -1546 272 2.0 -178 113 7 -5 7.2 20 -1.3 7 -5 7.2 20 -1.3 7 -5 7.2 20 -1.3 7 -5 7.2 20 -1.3 7 -5 7.2 20 -1.3 7 -5 7.2 20 -1.3 7 -5 7.2 20 -1.13 7 -5 7.2 20.17 7.2 2.0 -1.3 7 -1.3 7 -2.0 -1.3 7	SOUTH WALL														1	1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Wall Height	h (ft)	L (ft)	Avg. Roof Elev. (ft)	Parapet Ht. (ft)	Windward (0-15')	Windward (15-20')	Windward (20-25')	Windward (25-30')	Leeward	Parapet Windward	Parapet Leeward	Windward Force (plf)	Windward Force (kins)	Leeward Force (plf)	Leeward Force (kips)	Windward Moment	Leewar Momer
Image: Control of the contro	Wall Height 18'-2"	h (ft) 18.17	L (ft) 7.20	Avg. Roof Elev. (ft) 14.0	Parapet Ht. (ft) 4.17	Windward (0-15') 1489	Windward (15-20') 0	Windward (20-25') 0	Windward (25-30')	Leeward -901	Parapet Windward 2317	Parapet Leeward	Windward Force (plf) 272	Windward Force (kips) 2.0	Leeward Force (plf) -175	Leeward Force (kips) -1.3	Windward Moment 7	Leewar Momer -5
7.2 2.0 4.3 7 5 NORTH WALL Wall Height h (ft) L(ft) Avg. Roof Parapet Windward (0-16) Windward (20-25) Windward (20-25) Parapet Windward (20-25) Windward (20-	Wall Height 18'-2"	h (ft) 18.17	L (ft) 7.20	Avg. Roof Elev. (ft) 14.0	Parapet Ht. (ft) 4.17	Windward (0-15') 1489	Windward (15-20') 0	Windward (20-25') 0	Windward (25-30') 0	Leeward	Parapet Windward 2317	Parapet Leeward -1545	Windward Force (plf) 272	Windward Force (kips) 2.0	Leeward Force (plf) -175	Leeward Force (kips) -1.3	Windward Moment 7	Leewar Momer -5
NORTH WALL Wail Height h (ft) L (ft) Arg. cord (lev. (ft) Parapet (H. (ft) Windward (lev. (ft) Windward (lev. (ft) Windward (lev. (ft) Parapet (lev. (ft)	Wall Height 18'-2"	h (ft) 18.17	L (ft) 7.20	Avg. Roof Elev. (ft) 14.0	Parapet Ht. (ft) 4.17	Windward (0-15') 1489	Windward (15-20') 0	Windward (20-25') 0	Windward (25-30') 0	Leeward -901	Parapet Windward 2317	Parapet Leeward -1545	Windward Force (plf) 272	Windward Force (kips) 2.0	Leeward Force (plf) -175	Leeward Force (kips) -1.3	Windward Moment 7	Leewar Momer -5
Wall wall Wall Height h (ft) L (ft) Aug. Roof Parapet HL (ft) Windward (0-57) Windward (15-20) Windward (25-30) Leeward (25-30) Parapet Leeward Parapet Force (ip) Parapet (pit) Windward (pit) Leeward (pit) Windward (pit) <td>Wall Height 18'-2"</td> <td>h (ft) 18.17</td> <td>L (ft) 7.20</td> <td>Avg. Roof Elev. (ft) 14.0</td> <td>Parapet Ht. (ft) 4.17</td> <td>Windward (0-15') 1489</td> <td>Windward (15-20') 0</td> <td>Windward (20-25') 0</td> <td>Windward (25-30') 0</td> <td>Leeward -901</td> <td>Parapet Windward 2317</td> <td>Parapet Leeward -1545</td> <td>Windward Force (plf) 272</td> <td>Windward Force (kips) 2.0 2.0</td> <td>Leeward Force (plf) -175</td> <td>Leeward Force (kips) -1.3</td> <td>Windward Moment 7 </td> <td>Leewar Momer -5</td>	Wall Height 18'-2"	h (ft) 18.17	L (ft) 7.20	Avg. Roof Elev. (ft) 14.0	Parapet Ht. (ft) 4.17	Windward (0-15') 1489	Windward (15-20') 0	Windward (20-25') 0	Windward (25-30') 0	Leeward -901	Parapet Windward 2317	Parapet Leeward -1545	Windward Force (plf) 272	Windward Force (kips) 2.0 2.0	Leeward Force (plf) -175	Leeward Force (kips) -1.3	Windward Moment 7 	Leewar Momer -5
20'2" 20.17 7.20 13.7 6.50 1420 0 0 -859 3799 -2533 382 2.7 -248 1.8 10 -6 20'2" 20.17 7.20 13.7 6.50 1420 0 0 -859 3799 -2533 382 2.7 -248 1.8 10 -6 10 10 10 10 10 10 10 10 6 7.2 2.7 -1.8 10 -6 SOUTH WIND TOTAL FORCE = 3.7 K NORTH FORCES (IRFD) Vscritter = 1.9 K Vscritter = 2.0 K MOMENT = 2.8 K Vscritter = 2.0 K NORTH FORCES (ASD) NORTH FORCES (ASD) Vscritter = 1.9 K Vscritter = 2.0 K NOMENT = 1.5 K-FT MOMENT = 2.7 K-FT MOMENT = 1.6	Wall Height 18'-2"	h (ft) 18.17	L (ft) 7.20 7.2	Avg. Roof Elev. (ft) 14.0	Parapet Ht. (ft) 4.17	Windward (0-15') 1489	Windward (15-20') 0	Windward (20-25') 0	Windward (25-30') 0	Leeward -901	Parapet Windward 2317	Parapet Leeward -1545	Windward Force (plf) 272	Windward Force (kips) 2.0 2.0	Leeward Force (plf) -175	Leeward Force (kips) -1.3 -1.3	Windward Moment 7 4 4 7 7	Leewar Momer -5 -5
$\frac{20 \cdot 2}{2(1.1)} \frac{2(1.2)}{1.2} \frac{1.3}{1.2} \frac{1.3}{1.5} \frac{1.5}{1.5} \frac{1.4}{1.5} \frac{1.2}{1.5} \frac{1.2}{$	NORTH WALL Wall Height	h (ft) 18.17	L (ft) 7.20 7.2 L (ft)	Avg. Roof Elev. (ft) 14.0	Parapet Ht. (ft) 4.17	Windward (0-15') 1489 Windward (0-15')	Windward (15-20') 0 	Windward (20-25') 0 	Windward (25-30') 0 Windward (25-30')	Leeward -901	Parapet Windward 2317 Parapet Windward	Parapet Leeward -1545	Windward Force (plf) 272 Windward	Windward Force (kips) 2.0 2.0 Windward Force	Leeward (plf) -175	Leeward Force (kips) -1.3 -1.3 -1.3 Leeward Force	Windward Moment 7 	Leewar Momen -5 -5 -5
7.22.7-1.810-6SOUTH WIND TOTAL FORCE =3.7KVORTH WIND TOTAL FORCE =4.0KSOUTH WIND TOTAL FORCE =4.0KSOUTH FORCES (LRFD) VEAST =NORTH FORCES (LRFD) VEAST =NORTH FORCES (LRFD) VEAST =NORTH FORCES (LRFD) VEAST =SOUTH FORCES (LRFD) VEAST =NORTH FORCES (LRFD) VEAST =NORTH FORCES (LRFD) VEAST =NORTH FORCES (LRFD) VEAST =SOUTH DIAPHRAGM SHEARS (LRFD) VEAST =NORTH FORCES (LRFD) VEAST =NORTH DIAPHRAGM SHEARS (LRFD) VEAST =NORTH DIAPHRAGM SHEARS (LRFD) VEAST =VEAST =110plfVEAST =89plfVEAST =110plfVEAST =89plfVEAST =110plfVEAST =89plfVEAST =110plfVEAST =89plfVEAST =110plfVEAST =4.1 KVORTH =6.8 KVSOUTH =4.1 KVARTH =6.8 KVSOUTH =4.1 KVARTH =13.8 KVEAST =7.9 KVEAST =13.8 KVEAST =7.9 KVEAST =13.8 KVEAST =8.3 K	VORTH WALL	h (ft) 18.17 h (ft)	L (ft) 7.20 7.2 L (ft)	Avg. Roof Elev. (ft) 14.0 Avg. Roof Elev. (ft) 13.7	Parapet Ht. (ft) 4.17 Parapet Ht. (ft)	Windward (0-15') 1489 	Windward (15-20') 0 	Windward (20-25') 0 	Windward (25-30') 0 	Leeward	Parapet Windward 2317 	Parapet Leeward -1545 Parapet Leeward	Windward Force (plf) 272 Windward Force (plf) 382	Windward Force (kips) 2.0 2.0 Windward Force (kips) 2.7	Leeward Force (plf) -175	Leeward Force (kips) -1.3 -1.3 -1.3 Leeward Force (kips) -1.9	Windward Moment 7 7 Windward Moment	Leewar -5 -5 Leewar Momer
7.22.71.8107.22.71.810SOUTH WIND TOTAL FORCE =3.7KNORTH FORCES (LRFD)Vest =NORTH FORCES (LRFD)Vest =NORTH FORCES (LRFD)Vest =NORTH FORCES (LRFD)Vest =NORTH FORCES (LRFD)Vest =1.1KMOMENT =20KMOMENT =20KMOMENT =20KMOMENT =20KMOMENT =20KMOMENT =20KMOMENT =20KMOMENT =20KMOMENT =20KVest =1.1KVest =1.1KVest =1.1KVest =8.8Vest =8.8Vest =8.8Vest =8.8Vest =6.6 </td <td>Vorth WALL 18'-2" NORTH WALL Wall Height 20'-2"</td> <td>h (ft) 18.17 </td> <td>L (ft) 7.20 7.2 7.2 L (ft) 7.20</td> <td>Avg. Roof Elev. (ft) 14.0 Avg. Roof Elev. (ft) 13.7</td> <td>Parapet Ht. (ft) 4.17 Parapet Ht. (ft) 6.50</td> <td>Windward (0-15') 1489 </td> <td>Windward (15-20') 0 </td> <td>Windward (20-25') 0 </td> <td>Windward (25-30') 0 </td> <td>Leeward</td> <td>Parapet Windward 2317 </td> <td>Parapet Leeward -1545 Parapet Leeward -2533</td> <td>Windward Force (plf) 272 Windward Force (plf) 382</td> <td>Windward Force (kips) 2.0 2.0 2.0 Windward Force (kips) 2.7</td> <td>Leeward Force (plf) -175 Leeward Force (plf) -248</td> <td>Leeward Force (kips) -1.3 -1.3 -1.3 Leeward Force (kips) -1.8</td> <td>Windward Moment 7 7 Windward Moment 10</td> <td>Leewar Momer -5 -5 -5 Leewar Momer -6</td>	Vorth WALL 18'-2" NORTH WALL Wall Height 20'-2"	h (ft) 18.17 	L (ft) 7.20 7.2 7.2 L (ft) 7.20	Avg. Roof Elev. (ft) 14.0 Avg. Roof Elev. (ft) 13.7	Parapet Ht. (ft) 4.17 Parapet Ht. (ft) 6.50	Windward (0-15') 1489 	Windward (15-20') 0 	Windward (20-25') 0 	Windward (25-30') 0 	Leeward	Parapet Windward 2317 	Parapet Leeward -1545 Parapet Leeward -2533	Windward Force (plf) 272 Windward Force (plf) 382	Windward Force (kips) 2.0 2.0 2.0 Windward Force (kips) 2.7	Leeward Force (plf) -175 Leeward Force (plf) -248	Leeward Force (kips) -1.3 -1.3 -1.3 Leeward Force (kips) -1.8	Windward Moment 7 7 Windward Moment 10	Leewar Momer -5 -5 -5 Leewar Momer -6
$\frac{1.2}{2.7} - \frac{1.8}{10} - \frac{6}{6}$ SOUTH WIND TOTAL FORCE = 3.7 K NORTH WIND TOTAL FORCE = 4.0 K SOUTH FORCES (LRFD) VEAST = 1.9 K VCENTER = 1.9 K WOMENT = 26 K-FT MOMENT = 27 K-FT SOUTH DIAPHRAGM SHEARS (LRFD) NORTH DIAPHRAGM SHEARS (LRFD) $v_{EAST} = 110$ plf $v_{EAST} = \frac{2.0}{1.2}$ K MOMENT = 15 K-FT MOMENT = 16 K-FT SOUTH DIAPHRAGM SHEARS (LRFD) NORTH DIAPHRAGM SHEARS (LRFD) $v_{EAST} = 110$ plf $v_{EAST} = \frac{89}{9}$ plf $v_{CENTER} = \frac{10}{110}$ plf $v_{EAST} = \frac{66}{6}$ plf $v_{EAST} = \frac{53}{5}$ plf $v_{CENTER} = \frac{66}{5}$ plf $v_{CENTER} = \frac{53}{53}$ plf	VORTH WALL Wall Height 18'-2" VORTH WALL Wall Height 20'-2"	h (ft) 18.17 	L (ft) 7.20 7.2 7.2 L (ft) 7.20	Avg. Roof Elev. (ft) 14.0 Avg. Roof Elev. (ft) 13.7	Parapet Ht. (ft) 4.17 Parapet Ht. (ft) 6.50	Windward (0-15') 1489 Windward (0-15') 1420	Windward (15-20') 0 	Windward (20-25') 0 	Windward (25-30') 0 Windward (25-30') 0	Leeward	Parapet Windward 2317 Parapet Windward 3799	Parapet Leeward -1545 Parapet Leeward -2533	Windward Force (plf) 272 Windward Force (plf) 382	Windward Force (kips) 2.0 2.0 Windward Force (kips) 2.7	Leeward Force (plf) -175 Leeward Force (plf) -248	Leeward Force (kips) -1.3 -1.3 -1.3 Leeward Force (kips) -1.8	Windward Moment 7 7 Windward Moment 10	Leewar -5 -5 Leewar Momer -6
SOUTH WIND TOTAL FORCE =3.7KNORTH WIND TOTAL FORCE =4.0KSOUTH FORCES (LRFD) VEAST =NORTH FORCES (LRFD) VEAST =NORTH FORCES (LRFD) VEAST =NORTH FORCES (LRFD) VEAST =SOUTH FORCES (LRFD) VEAST =NORTH FORCES (LRFD) VEAST =NORTH FORCES (LRFD) VEAST =NORTH FORCES (LRFD) VEAST =SOUTH DIAPHRAGM SHEARS (LRFD) VEAST =NORTH DIAPHRAGM SHEARS (LRFD) VEAST =NORTH DIAPHRAGM SHEARS (LRFD) VEAST =NORTH DIAPHRAGM SHEARS (LRFD) VEAST =VEAST =110pifVEAST =89pifVEAST =110pifVEAST =89pifVEAST =6.8VMORTH =4.1 <k </k VEENTER =NORTH =VEAST =13.2KVMEST =7.9VEENT =13.8VEENT =7.9S	VORTH WALL Wall Height 18'-2" NORTH WALL Wall Height 20'-2"	h (ft) 18.17 	L (ft) 7.20 7.2 L (ft) 7.20	Avg. Roof Elev. (ft) 14.0 Avg. Roof Elev. (ft) 13.7	Parapet Ht. (ft) 4.17 Parapet Ht. (ft) 6.50	Windward (0-15') 1489	Windward (15-20') 0 Windward (15-20') 0	Windward (20-25') 0 0	Windward (25-30') 0	Leeward -901 -901 -859 -859	Parapet Windward 2317 Parapet Windward 3799	Parapet Leeward -1545 - Parapet Leeward -2533	Windward Force (plf) 272 Windward Force (plf) 382	Windward Force (kips) 2.0 2.0 Windward Force (kips) 2.7	Leeward Force (plf) -175 Leeward Force (plf) -248	Leeward Force (kips) -1.3 -1.3 Leeward Force (kips) -1.8	Windward Moment 7 7 Windward Moment 10	Leewar Momer -5 -5 Leewar Momer -6
NORTH WIND IDTAL FORCE =4.0KSOUTH FORCES (LRFD)NORTH FORCES (LRFD)VEAST =1.0K $V_{EAST} =$ 1.9KVEAST =2.0K $V_{CENTER} =$ 1.9KVEAST =1.1KVEAST =1.2K $V_{CENTER} =$ 1.9KVCENTER =2.0KVCENTER =1.1KVEAST =1.2K $V_{CENTER} =$ 1.0KVCENTER =2.0KVCENTER =1.1KVCENTER =1.2KSOUTH DIAPHRAGM SHEARS (LRFD)NORTH DIAPHRAGM SHEARS (LRFD)NORTH DIAPHRAGM SHEARS (LRFD)VEAST =1.5K-FTMOMENT =16K-FTVCENTER =110pifVEAST =89pifVEAST =66pifVEAST =53pifVCENTER =110pif4.1 KVONTH =4.1 KVONTH =4.1 KVONTH =4.1 KVONTH =4.1 KVEAST =7.9 KVEAST =VEAST =VEAST =VEAST =VEAST =VEAST =VEAST =VEAST	VORTH WALL Wall Height 18'-2" VORTH WALL 20'-2"	h (ft) 18.17 	L (ft) 7.20 7.2 L (ft) 7.20	Avg. Roof Elev. (ft) 14.0 Avg. Roof Elev. (ft) 13.7	Parapet Ht. (ft) 4.17 Parapet Ht. (ft) 6.50	Windward (0-15') 1489	Windward (15-20') 0 	Windward (20-25') 0 	Windward (25-30') 0 Windward (25-30') 0	Leeward	Parapet Windward 2317 Parapet Windward 3799	Parapet Leeward -1545 - Parapet Leeward -2533	Windward Force (plf) 272 Windward Force (plf) 382	Windward Force (kips) 2.0 2.0 Windward Force (kips) 2.7 2.7	Leeward Force (pif) -175 -175 	Leeward Force (kips) -1.3 -1.3 -1.3 Leeward Force (kips) -1.8 -1.8	Windward Moment 7 7 Windward Moment 10	Leewar Momer -5 -5 Leewar Momer -6
SOUTH FORCES (LRFD)NORTH FORCES (LRFD) $V_{EAST} = 1.9$ K $V_{EAST} = 2.0$ K $V_{CENTER} = 1.9$ K $V_{EAST} = 2.0$ K $V_{CENTER} = 1.9$ K $V_{CENTER} = 2.0$ K $MOMENT = 26$ K-FTMOMENT = 27K-FTSOUTH DIAPHRAGM SHEARS (LRFD)NORTH DIAPHRAGM SHEARS (LRFD)NORTH DIAPHRAGM SHEARS (LRFD) $v_{EAST} = 110$ plf $v_{EAST} = 89$ plf $v_{CENTER} = 110$ plf $v_{EAST} = 7.9$ plf $v_{CENTER} = 13.2$ K $v_{WEST} = 7.9$ plf $v_{VEST} = 13.2$ $V_{WEST} = 7.9$ pl $v_{VENTR} = 13.8$ $v_{VESTRR} = 8.3$ K	Wall Height 18'-2" NORTH WALL Wall Height 20'-2" SOUTH WIND	h (ft) 18.17 h (ft) 20.17 TOTAL FO	L (ft) 7.20 7.2 L (ft) 7.20 7.2 7.2	Avg. Roof Elev. (ft) 14.0 Avg. Roof Elev. (ft) 13.7	Parapet Ht. (ft) 4.17 Parapet Ht. (ft) 6.50	Windward (0-15') 1489 	Windward (15-20') 0 	Windward (20-25') 0 	Windward (25-30') 0 	Leeward 901 901 	Parapet Windward 2317 Parapet Windward 3799	Parapet Leeward -1545 	Windward Force (plf) 272 Windward Force (plf) 382	Windward Force (kips) 2.0 2.0 2.0 Windward Force (kips) 2.7 2.7	Leeward Force (pif) -175 Force (pif) -248	Leeward Force (kips) -1.3 -1.3 -1.3 Leeward Force (kips) -1.8 -1.8	Windward Moment 7 7 Windward Moment 10 10	Leewar Momen -5 -5 -5 Keewar Momen -6
$V_{EAST} = 1.9$ K $V_{EAST} = 2.0$ K $V_{CENTER} = 1.9$ K $V_{CENTER} = 2.0$ K $V_{CENTER} = 1.9$ K $V_{CENTER} = 2.0$ K $MOMENT = 26$ K-FTMOMENT = 27K-FTSOUTH DIAPHRAGM SHEARS (LRFD)NORTH DIAPHRAGM SHEARS (LRFD)NORTH DIAPHRAGM SHEARS (LRFD) $v_{EAST} = 110$ plf $v_{EAST} = 89$ plf $v_{CENTER} = 110$ plf $v_{EAST} = 89$ plf $v_{CENTER} = 110$ plf $v_{EAST} = 89$ plf $v_{CENTER} = 100$ plf $v_{EAST} = 89$ plf $v_{CENTER} = 100$ plf $v_{EAST} = 53$ plf $v_{CENTER} = 6.8$ $V_{NORTH} = 4.1$ K $v_{VEST} = 13.2$ K $v_{NORTH} = 4.1$ $v_{VEST} = 13.2$ $V_{WEST} = 7.9$ K $v_{VEST} = 13.8$ $V_{VEST} = 7.9$ K	VORTH WALL Wall Height 18'-2" NORTH WALL Wall Height 20'-2" SOUTH WIND	h (ft) 18.17 h (ft) 20.17 TOTAL FO TOTAL FO	L (ft) 7.20 7.2 L (ft) 7.20 7.20 7.20 7.20 7.20 7.20 7.20 7.20 7.20 RCE = RCE =	Avg. Roof Elev. (ft) 14.0 Avg. Roof Elev. (ft) 13.7	Parapet Ht. (ft) 4.17 Parapet Ht. (ft) 6.50 K K	Windward (0-15') 1489	Windward (15-20') 0 	Windward (20-25') 0	Windward (25-30') 0 	Leeward	Parapet Windward 2317 Parapet Windward 3799	Parapet Leeward -1545 	Windward Force (plf) 272 Windward Force (plf) 382	Windward Force (kips) 2.0 2.0 2.0 Windward Force (kips) 2.7 2.7	Leeward Force (pif) -175 Force (pif) -248	Leeward Force (kips) -1.3 -1.3 -1.3 -1.3 Force (kips) -1.8 -1.8	Windward Moment 7 7 Windward Moment 10	Leewar Momen -5 -5 -5 -5 Momen -6 -6
LinkLorLorK-FTMOMENT =26K-FTMOMENT =27K-FTSOUTH DIAPHRAGM SHEARS (LRFD)NORTH DIAPHRAGM SHEARS (LRFD)NORTH DIAPHRAGM SHEARS (LRFD)NORTH DIAPHRAGM SHEARS (LRFD) $v_{EAST} =$ 110plf $v_{EAST} =$ 89plf $v_{CENTER} =$ 110plf $v_{EAST} =$ 89plf $v_{CENTER} =$ 6.8K $v_{NORTH} =$ 4.1K $v_{VCENTER} =$ 6.8K $v_{SOUTH} =$ 4.1K $v_{VCENTER} =$ 13.2K $v_{WEST} =$ 7.9K $v_{VCENTER} =$ 13.8 $v_{VCENTER} =$ 8.3K	VORTH WALL Wall Height 18'-2" NORTH WALL Wall Height 20'-2" SOUTH WIND SOUTH WIND SOUTH FORCES	h (ft) 18.17 h (ft) 20.17 TOTAL FO TOTAL FO TOTAL FO S (LRFD)	L (ft) 7.20 7.2 L (ft) 7.20 RCE = RCE = RCE =	Avg. Roof Elev. (ft) 14.0 Avg. Roof Elev. (ft) 13.7 3.7 4.0	Parapet Ht. (ft) 4.17 -	Windward (0-15') 1489 	Windward (15-20') 0 	Windward (20-25') 0 	Windward (25-30') 0 	Leeward	Parapet Windward 2317 Parapet Windward 3799 SOUTH FOR	Parapet Leeward -1545 	Windward Force (plf) 272 Windward Force (plf) 382	Windward Force (kips) 2.0 2.0 2.0 Windward Force (kips) 2.7 2.7	Leeward Force (pif) -175 	Leeward Force (kips) -1.3 -1.3 -1.3 -1.3 -1.3 Force (kips) -1.8 -1.8	Windward Moment 7 7 Windward Moment 10 10	Leewar Momen -5 -5 Leewar Momen -6 -6
SOUTH DIAPHRAGM SHEARS (LRFD)NORTH DIAPHRAGM SHEARS (LRFD) $v_{EAST} = 110$ plf $v_{EAST} = 89$ plf $v_{CENTER} = 110$ plf $v_{EAST} = 89$ plf $v_{CENTER} = 110$ plf $v_{EAST} = 89$ plfVCENTER = 89plfVCENTER = 66plf $v_{EAST} = 53$ SUMMARY OF WIND FORCES INTO SHEAR WALLS $v_{NORTH} = 6.8$ $V_{NORTH} = 4.1$ $K_{VORTH} = 4.1$ $v_{VEST} = 13.2$ $V_{VEST} = 7.9$ K $v_{VEST} = 13.2$ $V_{VEST} = 7.9$ K	Wall Height 18'-2" NORTH WALL Wall Height 20'-2" SOUTH WIND ' NORTH WIND ' SOUTH WIND ' VORTH WIND ' VORTH FORCE: VCENTF =	h (ft) 18.17 18.17 h (ft) 20.17 TOTAL FO TOTAL FO TOTAL FO S (LRFD) 1.9 1.9	L (ft) 7.20 7.2 L (ft) 7.20	Avg. Roof Elev. (ft) 14.0 	Parapet Ht. (ft) 4.17 -	Windward (0-15') 1489 	Windward (15-20') 0 	Windward (20-25') 0 	Windward (25-30') 0 	Leeward	Parapet Windward 2317	Parapet Leeward -1545 	Windward Force (plf) 272 Windward Force (plf) 382 	Windward Force (kips) 2.0 2.0 2.0 Windward Force (kips) 2.7 2.7	Leeward Force (pif) -175 - - -	Leeward Force (kips) -1.3 -1.3 -1.3 -1.3 -1.3 Force (kips) -1.8 -1.8 -1.8 -1.8	Windward Moment 7 7 Windward Moment 10 10	Leewar Momei 5 5 5 5 6 6 6
SOUTH DIAPHRAGM SHEARS (LRFD)NORTH DIAPHRAGM SHEARS (LRFD) $v_{EAST} = 110$ plf $v_{EAST} = 89$ plf $v_{CENTER} = 110$ plf $v_{EAST} = 89$ plfV_CENTER = 89plfV_CENTER = 66plf $v_{EAST} = 53$ SOUTH DIAPHRAGM SHEARS (ASD)V_EAST = 66plfV_EAST = 53plfV_CENTER = 66INTERPORTNORTH I APHRAGM SHEARS (ASD)V_EAST = 53plfV_EAST = 66plfV_EAST = 66plfV_EAST = 53plfV_EAST = 66PLRFDASDV_NORTH = 4.1 KV_SOUTH = 4.1 KV_SOUTH = 4.1 KV_WEST = 7.9 KV_CENTER = 13.8 KVEENTER = 8.3 K	VORTH WALL Wall Height 18'-2" NORTH WALL Wall Height 20'-2" SOUTH WIND ' NORTH WIND ' SOUTH FORCES V _{CAST} = V _{CAST} = MOMENT =	h (ft) 18.17 18.17 18.17 20.17 20.17 TOTAL FO TOTAL FO TOTAL FO S (LRFD) 1.9 1.9 26	L (ft) 7.20 7.2 7.2 L (ft) 7.20	Avg. Roof Elev. (ft) 14.0 Avg. Roof Elev. (ft) 13.7 3.7 4.0	Parapet Ht. (ft) 4.17 -	Windward (0-15') 1489 	Windward (15-20) 0 	Windward (20-25) 0 	Windward (25-30') 0 	Leeward 901 	Parapet Windward 2317 Parapet Windward 3799 SOUTH FOR VEAST = VCENTER = NOMENT =	Parapet Leeward -1545 	Windward Force (plf) 272 Windward Force (plf) 382 382 K K K K-FT	Windward Force (kips) 2.0 2.0 2.0 Windward Force (kips) 2.7 2.7	Leeward Force (pif) -175	Leeward Force (kips) -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3	Windward Moment 7 7 Windward Moment 10 10 10 10 10 5D) K K-FT	Leewa Momei -5 -5 -6 -6 -6
$v_{EAST} =$ 110plf $v_{EAST} =$ 89plf $v_{CENTER} =$ 110plf $v_{CENTER} =$ 89plfSUMMARY OF WIND FORCES INTO SHEAR WALLSLRFDASD $v_{NORTH} =$ 6.8 $V_{NORTH} =$ 4.1K $v_{SOUTH} =$ 6.8 $V_{SOUTH} =$ 4.1K $v_{VENTER} =$ 13.2 K $v_{WEST} =$ 7.9K $v_{CENTER} =$ 13.8 $V_{CENTER} =$ 8.3K	Wall Height 18'-2" NORTH WALL Wall Height 20'-2" SOUTH WIND NORTH WIND SOUTH FORCE: VEAST = VCENTER = MOMENT =	h (ft) 18.17 18.17 h (ft) 20.17 TOTAL FO TOTAL FO TOTAL FO S (LRFD) 1.9 26	L (ft) 7.20 7.2 7.2 7.2 7.2 RCE = RCE = RCE = RCE = K K K-FT	Avg. Roof Elev. (ft) 14.0 Avg. Roof Elev. (ft) 13.7 3.7 4.0	Parapet Ht. (ft) 4.17 -	Windward (0-15') 1489 	Windward (15-20) 0 	Windward (20-25') 0	Windward (25-30') 0 0	Leeward -901 -901 	Parapet Windward 2317 Parapet Windward 3799 SOUTH FOR VEAST = VEAST = VEAST = NOMENT =	Parapet Leeward -1545 	Windward Force (plf) 272 Windward Force (plf) 382 382 K K-FT	Windward Force (kips) 2.0 2.0 2.0 Windward Force (kips) 2.7 2.7	Leeward Force (pif) -175 - - -	Leeward Force (kips) -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3	Windward Moment 7 7 Windward Moment 10 10 10 10 10 K K K-FT	Leewar Momei -5 -5 -5 -5 -6 -6
TextTextTextTextTextTextTextVCENTER =10pifSUMMARY OF WIND FORCES INTO SHEAR WALLSLRFDASDVNORTH =6.8 KVORTH =4.1 KVSOUTH =6.8 KVSOUTH =4.1 KVSOUTH =6.8 KVSOUTH =4.1 KVGENTER =13.2 KVGENTER =7.9 KVCENTER =13.8 KVCENTER =8.3 K	Wall Height 18'-2" NORTH WALL Wall Height 20'-2" SOUTH WIND SOUTH FORCE: VEAST = VCENTER = MOMENT = SOUTH DIAPHF	h (ft) 18.17 18.17 h (ft) 20.17 TOTAL FO TOTAL FO TOTAL FO S (LRFD) 1.9 26 RAGM SHE.	L (ft) 7.20 7.2 7.2 L (ft) 7.20 RCE = RCE = RCE = K K K-FT ARS (LRFD)	Avg. Roof Elev. (ft) 14.0 Avg. Roof Elev. (ft) 13.7 3.7 4.0	Parapet Ht. (ft) 4.17 -	Windward (0-15') 1489 -	Windward (15-20) 0 	Windward (20-25') 0	Windward (25-30') 0 0	Leeward 901 	Parapet Windward 2317 	Parapet Leeward -1545 -	Windward Force (plf) 272 Windward Force (plf) 382 382 K K K-FT HEARS (ASD)	Windward Force (kips) 2.0 2.0 2.0 Windward Force (kips) 2.7 2.7	Leeward Force (pif) -175 - - -	Leeward Force (kips) -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3	Windward Moment 7 7 Windward Moment 10 10 10 10 K K K-FT	Leewa Momei -5 -5 -5 -5 -6 -6 -6
SUMMARY OF WIND FORCES INTO SHEAR WALLS ASD LRFD ASD V_NORTH = 6.8 K V_NORTH = 4.1 K V_SOUTH = 6.8 K V_SOUTH = 4.1 K V_WEST = 13.2 K V_WEST = 7.9 K V_CENTER = 13.8 K V_CENTER = 8.3 K	Wall Height 18'-2" WORTH WALL Wall Height 20'-2" SOUTH WIND NORTH WIND SOUTH FORCE: VEAST = VCENTER = MOMENT = SOUTH DIAPHF	h (ft) 18.17 18.17 h (ft) 20.17 TOTAL FO TOTAL FO TOTAL FO S (LRFD) 1.9 1.9 26 RAGM SHE. 110	L (ft) 7.20 7.2 7.2 C (ft) 7.2 RCE = RCE = RCE = K K K-FT ARS (LRFD) plf	Avg. Roof Elev. (ft) 14.0 Avg. Roof Elev. (ft) 13.7 3.7 4.0	Parapet Ht. (ft) 4.17	Windward (0-15') 1489 	Windward (15-20) 0 Windward (15-20) 0 0 	Windward (20-25') 0	Windward (25-30') 0 0 (25-30') 0 0 0 0 0	Leeward 901 	Parapet Windward 2317 Parapet Windward 3799 SOUTH FOR VEAST = VCEMTER = MOMENT = SOUTH DIAI	Parapet Leeward -1545 -	Windward Force (plf) 272 Windward Force (plf) 382 382 K K-FT HEARS (ASD) plf	Windward Force (kips) 2.0 2.0 Windward Force (kips) 2.7 2.7	Leeward Force (pif) -175 Leeward Force (pif) -248 Vest Vest Vest Vest NORTH FI	Leeward Force (kips) -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8	Windward Moment 7 7 Windward Moment 10 10 10 10 K K K-FT 1 SHEARS (ASD)	Leewa Momei -5 -5 -5 -5 -6 -6 -6 -6
LRFD ASD V _{NORTH} = 6.8 K V _{NORTH} = 4.1 K V _{SOUTH} = 6.8 K V _{SOUTH} = 4.1 K V _{wEST} = 13.2 K V _{WEST} = 7.9 K V _{CENTER} = 13.8 K V _{CENTER} = 8.3 K	Wall Height 18'-2" NORTH WALL Wall Height 20'-2" SOUTH WIND NORTH WIND SOUTH FORCES VEAST = VCENTER = MOMENT = SOUTH DIAPHF VEAST = VCENTER =	h (ft) 18.17 18.17 h (ft) 20.17 TOTAL FO TOTAL FO TOTAL FO S (LRFD) 1.9 1.9 26 RAGM SHE. 110 110	L (ft) 7.20 7.2 7.2 CE RCE = RCE =	Avg. Roof Elev. (ft) 14.0 Avg. Roof Elev. (ft) 13.7 3.7 4.0	Parapet Ht. (ft) 4.17	Windward (0-15') 1489 1489 1489 1489 1480 1420 1420 1420 1420 2.0 2.0 2.0 2.0 2.0 2.7 PHRAGM SHI 89 89	Windward (15-20') 0 Windward (15-20') 0 	Windward (20-25') 0 Windward (20-25') 0	Windward (25-30') 0 0 (25-30') 0 0 0 0 0	Leeward	Parapet Windward 2317	Parapet Leeward -1545 - - - Parapet Leeward -2533 - <td>Windward Force (plf) 272 Windward Force (plf) 382 382 382 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</td> <td>Windward Force (kips) 2.0 Windward Force (kips) 2.7 2.7</td> <td>Leeward Force (pif) -175 - Leeward - Force (pif) -248 - Vents - VCENTER - VORTH FOR - VORTH PORT - NORTH DI - VEAST - VEAST - VEAST -</td> <td>Leeward Force (kips) -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8</td> <td>Windward Moment 7 7 Windward Moment 10 10 10 10 10 10 10 10</td> <td>Leewa Momei -5 -5 -5 -5 -6 -6</td>	Windward Force (plf) 272 Windward Force (plf) 382 382 382 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Windward Force (kips) 2.0 Windward Force (kips) 2.7 2.7	Leeward Force (pif) -175 - Leeward - Force (pif) -248 - Vents - VCENTER - VORTH FOR - VORTH PORT - NORTH DI - VEAST - VEAST - VEAST -	Leeward Force (kips) -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8	Windward Moment 7 7 Windward Moment 10 10 10 10 10 10 10 10	Leewa Momei -5 -5 -5 -5 -6 -6
VNORTH = 6.8 K VNORTH = 4.1 K VSOUTH = 6.8 K VSOUTH = 4.1 K VWEST = 13.2 K VWEST = 7.9 K VCENTER = 13.8 K VCENTER = 8.3 K	VORTH WALL Wall Height 18'-2" NORTH WALL Wall Height 20'-2" SOUTH WIND ' VEAST = VCENTER = MOMENT = SOUTH DIAPHF VEAST = VCENTER = SOUTH DIAPHF	h (ft) 18.17 18.17 18.17 20.17 20.17 TOTAL FO TOTAL FO S (LRFD) 1.9 26 RAGM SHE 110 110 WIND FO	L (ft) 7.20 7.2 7.2	Avg. Roof Elev. (ft) 14.0 	Parapet Ht. (ft) 4.17	Windward (0-15') 1489 - 1489 - 1489 - 1489 - - - 1489 - 1489 - 1420 -	Windward (15-20') 0 Windward (15-20') 0 0 	Windward (20-25') 0 Windward (20-25') 0 - -	Windward (25-30') 0 	Leeward -901 - - - 859 - - 859	Parapet Windward 2317	Parapet Leeward -1545 -	Windward Force (plf) 272 Windward Force (plf) 382 382 K K-FT HEARS (ASD) plf plf	Windward Force (kips) 2.0 2.0 2.0 Windward Force (kips) 2.7 2.7	Leeward Force (pif) -175 - - - Force (pif) -248 - VEAST - VCENTER - VCENTER - VOMENT - NORTH DI - VCENTER - VCENTER - VCENTER -	Leeward Force (kips) -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3	Windward Moment 7 7 Windward Moment 10 10 10 10 K K K-FT 1 SHEARS (ASD) plf plf	Leewa Momei -5 -5 -5
VSOUTH = 6.8 K VSOUTH = 4.1 K VWEST = 13.2 K VWEST = 7.9 K VCENTER = 13.8 K VCENTER = 8.3 K	VORTH WALL Wall Height 18'-2" NORTH WALL Wall Height 20'-2" SOUTH WIND SOUTH WIND SOUTH FORCES VEAST = VCENTER = MOMENT = SOUTH DIAPHF VEAST = VCENTER = SOUTH DIAPHF	h (ft) 18.17 18.17 18.17 20.17 20.17 TOTAL FO TOTAL FO TOTAL FO S (LRFD) 1.9 26 RAGM SHE 110 110 WIND FO LRFD	L (ft) 7.20 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	Avg. Roof Elev. (ft) 14.0 	Parapet Ht. (ft) 4.17	Windward (0-15') 1489 - 1489 - 1489 - 1489 -	Windward (15-20') 0 Windward (15-20') 0 0 	Windward (20-25') 0 Windward (20-25') 0 	Windward (25-30') 0 	Leeward	Parapet Windward 2317	Parapet Leeward -1545 -	Windward Force (plf) 272 Windward Force (plf) 382 382 K K-FT HEARS (ASD) plf plf	Windward Force (kips) 2.0 2.0 2.0 Windward Force (kips) 2.7 2.7	Leeward Force (pif) -175 - - - Force (pif) -248 - VEAST - VCENTER - MOMENT - NORTH DI - VCENTER - VCENTER -	Leeward Force (kips) -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3	Windward Moment 7 7 Windward Moment 10 10 10 10 10 K K K-FT 1 SHEARS (ASD) plf plf	Leewa Momei -5 -5 -5 -6 -6 -6 -6
V _{WEST} = 13.2 K V _{WEST} = 7.9 K V _{CENTER} = 13.8 K V _{CENTER} = 8.3 K	Wall Height 18'-2" NORTH WALL Wall Height 20'-2" SOUTH WIND VORTH WIND SOUTH FORCES VCENTER = MOMENT = SOUTH DIAPHE VEAST = VCENTER = MOMENT = SOUTH DIAPHE VEAST = VCENTER = MOMENT = SOUTH DIAPHE VEAST = VCENTER = MOMENT =	h (ft) 18.17 18.17 18.17 10.17 20.17 10.17 1.9 26 RAGM SHE 110 110 WIND FO LRFD 6.8	L (ft) 7.20 7.2 7.2 L (ft) 7.20 7.2 RCE = RCE = K K-FT ARS (LRFD) plf plf RCES INTO K	Avg. Roof Elev. (ft) 14.0 14.0 13.7 13.7 4.0 SHEAR WAI	Parapet Ht. (ft) 4.17 4.17 4.17 6.50 6.50 6.50 6.50 7 7 8.50 4.17	Windward (0-15') 1489 - 1489 - 1489 - 1489 - 1489 - 1489 - 1489 - 1420 -	Windward (15-20') 0 Windward (15-20') 0 0 	Windward (20-25') 0	Windward (25-30') 0 	Leeward -901 - - - - 859 - - 859	Parapet Windward 2317	Parapet Leeward -1545 -	Windward Force (plf) 272 Windward Force (plf) 382 382 KK-FT HEARS (ASD) plf plf	Windward Force (kips) 2.0 2.0 2.0 Windward Force (kips) 2.7 2.7	Leeward Force (pif) -175 - - - Force (pif) -248 - VEAST - VCENTER - MOMENT - NORTH DI - VCENTER - VCENTER - VCENTER -	Leeward Force (kips) -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3	Windward Moment 7 7 Windward Moment 10 10 10 10 10 K K K K-FT 1 SHEARS (ASD) plf plf	Leewar Momei -5 -5
V _{CENTER} = 13.8 K V _{CENTER} = 8.3 K	Wall Height 18'-2" NORTH WALL Wall Height 20'-2" SOUTH WIND ' WORTH WIND ' SOUTH FORCES VCENTER = MOMENT = SOUTH DIAPHE VEAST = VCENTER = MOMENT = SOUTH DIAPHE VEAST = VCENTER = SOUTH DIAPHE VEAST = VCENTER = SOUTH DIAPHE VEAST = VCENTER = SOUTH AND POINT = SOUTH AND POINT = VNORTH = VSOUTH =	h (ft) 18.17 18.17 18.17 1.18 20.17 1.9 1.9 1.9 26 RAGM SHEL 110 110 110 WIND FO LRFD 6.8 6.8	L (ft) 7.20 7.2 7.2 L (ft) 7.2 7.2 RCE = RCE = RCE = K K-FT ARS (LRFD) plf Plf RCES INTO 8 K	Avg. Roof Elev. (ft) 14.0 	Parapet Ht. (ft) 4.17 4.17 4.17 6.50 6.50 6.50 6.50 6.50 7 7 4.17 6.50 7 7 8.50 4.1 4.1	Windward (0-15') 1489 - 1489 - 1489 - 1489 -	Windward (15-20') 0 Windward (15-20') 0 0 	Windward (20-25') 0	Windward (25-30') 0 	Leeward	Parapet Windward 2317	Parapet Leeward -1545 -	Windward Force (plf) 272 Windward Force (plf) 382 382 K K-FT HEARS (ASD) plf plf	Windward Force (kips) 2.0 2.0 2.0 Windward Force (kips) 2.7 2.7	Leeward Force (pif) -175 - -175 - -175 - -175 - -175 - -175 - -175 - -175 - -175 - Force (pif) -248 - -248 - Ventsr - VCentra - VCentra - VOMENT = - NORTH DI - Ventra -	Leeward Force (kips) -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3	Windward Moment 7 7 Windward Moment 10 10 10 10 K K K-FT SHEARS (ASD) plf	Leewar Momer -5 -5 -6 -6 -6
	Wall Height 18'-2" NORTH WALL Wall Height 20'-2" Wall Height 20'-2" SOUTH WIND ' NORTH WIND ' SOUTH FORCES VCENTER = MOMENT = SOUTH DIAPHI VEAST = VCENTER = SOUTH DIAPHI VEAST = VCENTER = SUMMARY OF VNORTH = VSOUTH = VWEST =	h (ft) 18.17 18.17 18.17 1.10 1.10 1.9 1.9 1.9 26 RAGM SHEL 110 110 WIND FO LRFD 6.8 13.2	L (ft) 7.20 7.2 7.2 L (ft) 7.20 7.2 RCE = RCE = RCE = K K-FT ARS (LRFD) plf plf S K S K	Avg. Roof Elev. (ft) 14.0 	Parapet Ht. (ft) 4.17 4.17 4.17 6.50 6.50 6.50 6.50 6.50 6.50 7 4.17 6.50 7 7.9 4.1 7.9	Windward (0-15') 1489 - 1489 - 1489 - 1489 -	Windward (15-20') 0 Windward (15-20') 0 0 	Windward (20-25') 0	Windward (25-30') 0 	Leeward 901 	Parapet Windward 2317	Parapet Leeward -1545 -	Windward Force (plf) 272 Windward Force (plf) 382 382 K K-FT HEARS (ASD) plf plf	Windward Force (kips) 2.0 2.0 2.0 Windward Force (kips) 2.7 2.7	Leeward Force (pif) -175	Leeward Force (kips) -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8	Windward Moment 7 7 Windward Moment 10 10 10 10 K K K-FT SHEARS (ASD) plf	Leewar Momen -5 -5 -5 -6 -6

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
Sulte 200	Description	Calc by.	Date	Sheet No.
Plano, TX 75093 www.ellisongage.com	LATERAL DESIGN (SEC. L)	BG	4/19/2024	L4

0	SEISMIC LOADS IN DIAPHRAGM:		
	(SEE ATTACHED CALCULATION, "SE WALL AND ROOF WEIGHTS IN THE I	EISMIC EFFECTIVE WEIGHT CALCULATIONS" FOR FOLLOWING CALCULATIONS, PER ASCE 7-16, S	OR APPLICABLE SEC. 12.7.2)
	STRUCTURAL IRREGULARITY		[TABLE 12.3-1]
	RE-ENTRANT CORNER IRREGULAR	TY DOES NOT EXIST.	
	DIAPHRAGMS, CHORDS, AND COLL	<u>ECTORS</u>	[12.10.1.1]
	PER ASCE 7-16, DIAPHRAGM FORCI	$E F_p = V = C_s W$	
	FROM LOAD CRITERIA SHEET, $C_s = V = C_s W = 0.035 W$	0.035	
	THIS FORCE NEED NOT EXCEED	$0.4S_{DS}Iw_{px} = 0.4(0.106)(1.0)w_{px} = 0.042w_{px}$	
	BUT SHALL NOT BE LESS THAN	$0.2S_{DS}Iw_{px} = 0.2(0.106)(1.0)w_{px} = 0.021w_{px}$	
	: USE 0.035W		
	REDUNDANCY		[12.3.4]
	ρ = 1.0 PER SEC. 12.3.4.1		
•	TOTAL SEISMIC LOAD IN E-W DIREC	CTION	
	$V = 0.035 \times W \times \rho$		
	$V_{EW} = 0.035 \times 35.5 \text{ kip} \times 1.0$	= 1.24 K (LRFD)	
•	FORCES IN LINES OF RESISTANCE $V_{NORTH} = V_{SOUTH} = 1.24 \text{ K} / 2 = 0.62$	DUE TO SEISMIC (LRFD) K	
•	DIAPHRAGM SHEARS DUE TO SEISI	MIC (LRFD)	
	$v_{NORTH} = v_{SOUTH} = 620 \text{ lbs} / 54.5 \text{ ft} =$	11 lb/ft	
∴ BY	INSPECTION, WIND CONTROLS THE I	DESIGN IN THIS DIRECTION	
٠	TOTAL SEISMIC LOAD IN N-S DIREC	TION	
	$V_{\rm NS} = 0.035 \times 49.5 \text{kip} \times 1.0$	= 1.74 K (LRFD)	
•	FORCES IN LINES OF RESISTANCE VWEST = VCENTER = 1.74 K / 2 = 0.87	DUE TO SEISMIC (LRFD) K	
•	DIAPHRAGM SHEARS DUE TO SEISI vwest = vcenter = 870 lbs / 17.0 ft =	MIC (LRFD) 52 lb/ft	
∴ BY	INSPECTION, WIND CONTROLS THE I	DESIGN IN THIS DIRECTION	

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
5068 W. Plano Parkway Ofc: (972) 354-8855 Suite 200 Fax: (972) 354-8856 Plano, TX 75093 www.elibongage.com	Description LATERAL DESIGN (SEC. L)	Calc by. BG	Date 4/19/2024	Sheet No. L5

SEISMIC EFFECTIVE WEIGHT CALCULATIONS

	North	n-South \	Nall Effe	ctive Weight, W	[A7-16, 12.7.2]						
Location	Wall Type	h (ft)	L (ft)	Weight (psf)	Avg. Roof Elev. (ft)	Full Wall Weight (lb)	Weight Trib. To Roof (Ib)				
20'-2" South Wall	6" Stud	20.17	10.00	20	14.00	4034	2634				
18'-2" South Wall	6" Stud	18.17	45.000	20	14.00	16353	10053				
20'-2" North Wall	6" Stud	20.17	33.300	20	13.67	13433	8881				
18'-2" North Wall	6" Stud	18.17	21.700	20	13.67	7886	4919				
						0	0				
						0	0				
						0	0				
	55.0 TOTAL										

	Eas	t-West W	all Effec	tive Weight, W [A7-16, 12.7.2]		
Location	Wall Type	h (ft)	L (ft)	Weight (psf)	Avg. Roof Elev. (ft)	Full Wall Weight (lb)	Weight Trib. To Roof (lb)
20'-2" West Wall	6" Stud	20.17	25.000	20	13.83	10085	6628
18'-2" East Wall	6" Stud	18.17	17.700	20	13.83	6432	3984
20'-2" East Wall	6" Stud	20.17	7.300	20	13.83	2945	1935
						0	0
						0	0
						0	0
			25.0			TOTAL	12.5

	Roof Effectiv	ve Weigh	t, W [A7-	16, 12.7.2]	
Area	Surface Area (SF)	DL (psf)	SL (psf)	Permanent Equipment (lb)	Total Weight (K)
1	900	20.0	0.0	5000	23.0

TOTAL WEIG	HT (K) - DIAPHRAGM + OUT OF PLANE SHEAR WALLS
North-South	49.5
East-West	35.5

LATERAL ANALYSIS FOR SEI	SMIC	LOADS		
$V = C_S W$ C	; _s =	0.035		
EAST-WEST DIRECTION				
E-W WEIGHT, W =		35.5 K		
E-W TOTAL SEISMIC FORCE, T	V =	1.24 K		
E-W TOTAL WIND FORCE =		13.53 K	<- FROM	WIND ANALYSIS
WIND CONTROLS				
NORTH-SOUTH DIRECTION				
N-S WEIGHT, W =		49.5 K		
N-S TOTAL SEISMIC FORCE, \	/ =	1.73 K		
N-S TOTAL WIND FORCE =		29.0 K	<- FROM	WIND ANALYSIS
WIND CONTROLS				

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
5068 W. Plano Parkway Ofc. (972) 354-8855 Suite 200 Exc (972) 354-8856 Plano, TX 75093 www.ellisongage.com	Description	Cale by.	Date	Sheet No.
	LATERAL DESIGN (SEC. L)	BG	4/19/2024	L6

• ROOF DECK DESIGN

DESIGN DECK FOR GRAVITY LOADS

MAX. UNIFORM GRAVITY LOAD = 20 PSF DL + 35 PSF SL

= 55 PSF TL

JOIST SPACING = 2'-8" MAX WIND UPLIFT FORCE (ASD) = 32.2 PSF

TRY 19/32" WOOD STRUCTURAL I PANELS WITH A 40/20 SPAN RATING

DOWNWARD ALLOWABLE UNIFORM LOAD = 78 PSF > 55 PSF OK

TABLE 26

							St	rength /	Axis(a)					
Span Rating ^(b)	Load Governed By ^(d)		Perpendicular to Supports Span Center-to -Center of Supports (inches)							Parallel to Suppo Span Center-to-Ce of Supports (inch				
	-,	12	16	19.2	24	30	32	36	40	48	60	12	16	24
	L/360	261	98	54	26	13	10					77	29	10
	L/240	392	147	81	39	19	16					115	43	15
24/0	L/180	522	196	107	52	26	21					153	58	19
	Bending	250	141	98	63	40	35					121	68	24
	Shear	248	179	147	116	91	85					248	179	111
	L/360	339	128	70	34	17	14	12				111	42	14
	L/240	509	191	105	51	25	20	18				167	63	21
24/16	L/180	679	255	140	68	33	27	24				223	84	28
	Bending	321	180	125	80	51	45	29				144	81	29
	Shear	286	207	169	133	105	98	83				286	207	128
	L/360	500	188	103	50	24	20	18	13			174	65	22
	L/240	750	282	154	75	37	30	26	19			261	98	33
32/16	L/180	1,001	376	206	100	49	40	35	25			348	131	44
	Bending	371	209	145	93	59	52	33	27			206	116	41
	Shear	314	228	186	147	116	108	92	82			314	228	141
	L/360	979	368	201	98	48	39	34	25	16	_	390	147	50
	L/240	1,468	552	302	146	72	58	51	37	24		585	220	74
40/20	L/180	1,958	736	403	195	96	78	69	49	32		780	293	99
	Bending	625	352	244	156	100	88	56	45	31		338	190	68
	Shear	300	283	222	192	144	124	114	102	00		200	292	175

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
5068 W. Piano Parkway Ofc: (P72) 354-8855 Suite 200 Fac: (P72) 354-8856 Plano, TX 75093 www.ellisongage.com	Description	Cale by.	Date	Sheet No.
	LATERAL DESIGN (SEC. L)	BG	4/19/2024	L7

able 3.2.2 Nominal Loads ^{1,2,0}	Uniform Lo	ad Capa	cities	(psf) f	or Roo	f Shea	thing	Resi	sting O	rt-of-Pl	ane W
Sheathing Type ⁵	Span Rating or Grade	Minimum Thickness		Str	ength Axi endicular	s ⁷ Applie to Suppo	d orts		Streng Para	gth Axis ⁷ A llel to Sup	pplied ports
		(m.)		Rafte	r/Truss S	pacing (in.)		Rafter/	russ Spac	ing (in.)
			12	16	19.2	24	32	48	12	16	24
				Nomin	al Unifor	n Loads	(psf)		Nominal	Uniform Lo	ads (ps
Wood Structural Panels (Sheathing Grades, C-C, C-D, C-C Plugged, OSB)	24/0 24/16 32/16 40/20 48/24	3/8 7/16 15/32 19/32 23/32	425 540 625 955 1160 ³	240 305 355 595 840 ³	165 210 245 415 615 ³	105 135 155 265 395 ³	90 150 220 ³	- - 100 ³	90 110 155 255 455 ³	50 60 90 145 255 ³	30 ³ 35 ³ 45 ³ 75 ³ 115 ³
Wood Structural Panels (Single Floor Grades, Underlayment, C-C Plugged)	16 o.c. 20 o.c. 24 o.c. 32 o.c.	19/32 19/32 23/32 7/8	705 815 1160 ³ 1395 ⁴	395 455 670 ³ 1000 ⁴	275 320 465 ³ 695 ⁴	175 205 300 ³ 445 ⁴	100 115 170 ³ 250 ⁴	1104	170 235 440 ³ 1160 ⁴	95 135 250 ³ 655 ⁴	50 ³ 70 ³ 110 ³ 290 ⁴

```
ROOF SHEATHING TO BE ATTACHED WITH 10d COMMON NAILS (DIA=0.148") AT 8" OC MAX
MAX UPLIFT LOAD PER SCREW = 32.2 PSF x 2.67' OC x 8"/12 SPACING = 55 LBS
ALLOWABLE WITHDRAWAL OF 10d NAIL WITH 1.5" PENETRATION
W'=WCdCmCtCegCtn
                         [NDS TABLE 11.3.1]
   W = 1380 G<sup>5/2</sup> D
                          [EQ. 12.2-3]
          G = 0.42 (ASSUME SPF)
          D = 0.148" (10d NAILS)
   W = 1380(0.42)<sup>5/2</sup> (0.148)(1.5") = 35 LBS
   Cd = 1.6
   Cm = 1.0
                          Ceg = N/A
   Ct = 1.0
                          Ctn = N/A
W' = 35 LBS x 1.6 x 1.0 x 1.0 = 56 LBS > 55 LBS OK
```

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
Suite 200	Description	Cale by.	Date	Sheet No.
Plano, TX 75093 vww.elisongage.com	LATERAL DESIGN (SEC. L)	BG	4/19/2024	L8

DESIGN DECK FOR DIAPHRAGM SHEARS ROOF DIAPHRAGM ASPECT RATIO = 46.5 FT / 16.92 FT = 2.7 < 3.0 **OK** [SDPWS, TABLE 4.2.4]

MAX DIAPHRAGM SHEAR VMAX = 418 lb/ft (WIND, ASD, N-S DIRECTION, CENTER WALL)

IN N-S DIRECTION, LONG DIMENSION OF SHEATHING PANELS IS PERPENDICULAR TO SUPPORTS, SO USE CASE 1

FROM SDPWS TABLE 4.2A BLOCKED DIAPHRAGM,

Table	4.2A I	Nominal	Unit	Shear Ca	apac	itie:	s fo	Struc	od-	Fram	l Dia	aphra	gms	,5						
								onuc	curu	s	A	mugn						w	B	
					Nail	Nail Spacing (in.) at diaphragm boundaries (all cases), at continuous panel edges parallel to load (Cases 3 & 4), and at all panel edges (Cases 5 & 6).							load	Na boun panel 4), and	ail Spacing (in daries (all ca edges paralle d at all panel	n.) at diaph ses), at con el to load (0 edges (Cas	ntinuous Cases 3 8 ses 5 & 6			
		Minimum		Minimum Nominal Width		6		1	4			2-1/2			2		6 Nail S	4	2-1/2	2 rel edges
Sheathing	Common	Penetration in	Nominal	of Nailed Face			_	Nail Spa	cing (in) at other	panel ed	ges (Cases	1, 2, 3, 8	4)			-	(Cases 1	2, 3, 8 4)	
Grade	Nail Size	Framing Member or Blocking	Panel Thickness (in.)	Panel Edges and Boundaries	v. (plf)	(kipt	3, s/in.)	V. (plf)	(kip	G, os/in.)	v. (plf)	4 (kip)	3, s/in.)	v. (plf)	(kip	3, s/in.)	v. (plf)	v. (plf)	v. (pif)	v. (plf)
	64	(m.) 1-1/4	5/16	(in.) 2	370	058 15	PLY 12	500	058 8.5	PLY 7.5	750	058 12	PLY 10	840	058 20	PLY 15	520	700	1050	1175
Structural I	8d	1-3/8	3/8	2	540	14	11	720	9.0	7.5	1060	13	10	1200	21	15	755	1010	1485	1680
	10d	1-1/2	15/32	2	640	24	10	850	15	12	1280	20	15	1460	31	21	840	1120	1790	2045
			5/16	2	340	15	10	450	9.0	7.0	670	13	9.5	760	20	13	475	630	940	1085
	6d	1-1/4	3/8	23	370 420	80 12 9.0 500 7.0 5.0 750 10 8.0 800 17 12 370 13 9.5 500 7.0 6.0 750 10 8.0 840 18 12 470 10 8.0 55 5.0 840 85 7.0 660 14 10						520 590	700 785	1050	1175					
			3/8	2 3	480 540	15 12	11 9.5	640 720	9.5 7.5	7.5	960 1080	13 11	9.5 8.5	1090 1220	21 18	13 12	670 755	895 1010	1345 1510	1525 1710
Sheathing and Sincle Floor	8d	1-3/8	7/16	2 3	510 570	14 11	10	680 760	8.5 7.0	7.0	1010 1140	12 10	9.5 8.0	1150 1290	20 17	13 12	715	950 1065	1415 1595	1610 1805
			15/32	23	540 600	13 10	9.5 8.5	720 800	7.5	0.5 5.5	1060	11 9.0	8.5 7.5	1200 1350	19 15	13 11	755 840	1010	1485 1680	1680 1890
	104	1.12	15/32	2 3	580 650	25 21	15 14	770 860	15 12	11 9.5	1150 1300	21 17	14 12	1310 1470	33 28	18 16	810 910	1080 1205	1610 1820	1835 2080
	100	1-112	19/32	2 3	640 720	21 17	14 12	850 980	13 10	9.5 8.0	1280 1440	18 14	12 11	1460 1640	28 24	17 15	895	1190 1345	1790 2015	2045 2295
1. Nominal v ASD allov constructi structural	Nominal unit shear capacities shall be adjusted in accordance with 4.2.3 to determine ASD allowable unit shear capacities shall be adjusted in accordance with 4.2.3 to determine ASD allowable unit shear capacity and LRED factored unit resistance. For general construction requirements see 4.2.6. For specific requirements, see 4.2.7.1 for wood structural panel displaragms. See Appendix A for common nail dimensions. Cases 1&3:Continuous Panel Joints Perpendicular to Framing Cases 2&4: Contin Panel Joints Perpendicular to Framing										nuous el to	Cases 5&6 Panel Joint dicular and Framing	: Continuo s Perpen- Parallel t	o						
 Core species and grades of maming other man Dolighs-Fir-Larch of Southern Pine, reduced nominal unit shear capacities shall be determined by multiplying the tabulated nominal unit shear capacity by the Specific Gravity Adjustment Factor = [1-0.5-G]), where G = Specific Gravity Adjustment Factor and 1. Apparent thear stiffness values, G, are based on nail slip in framing with moisture content less than or equal to 19% at time of fabrication and panel stiffness values for diaphragms constructed with either OSB or 3-pip plywood panels. When 4-pip 										t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										
 to maparagmic constructed with either OSB or 3-pip pip/wood panels. When 4-pip or 5-pip pip/wood panels are used, G, values shall be permitted to be multiplied by 1.2. Where moisture content of the framing is greater than 19% at time of fabrication, G, values shall be multiplied by 0.5. Diaphragm resistance depends on the direction of continuous panel joints with respect to the loading direction and direction of framing members, and is independent of the panel orientation. 						ection xorts*	Cone 3		Furring Blocking Contraction proved a Deptroper based		Const Const	2 Li Contras Buyton	facting factory as permission pr barreley	Sum Come (Continues pro	U U U U U U U U U U U U				

(a) Panel span rating for out-of-plane loads may be lower than the span rating with the long panel direction perpendicular to supports (See Section 3.2.2 and Section 3.2.3)

DECK DIAPHRAGM CAPACITY = 895 PLF (ULTIMATE) ALLOWABLE DIAPHRAGM CAPACITY = 895 PLF / 2.0 = 448 PLF < 418 PLF **OK**

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
5068 W. Piono Parkway Ofc: (972) 3548855	Description	Cale by.	Date	Sheet No.
Fano, 1X 75093 www.elisongage.com	LATERAL DESIGN (SEC. L)	BG	4/19/2024	L9

		U	nblocked	Wood Struct	ural Pa	anel D	iaphra	gms ^{1,2}	2,3,4,5					
							SE	A			w	B		
	Common	Minimum Fastener	Minimum Minimum Nominal Wik Fastener Nominal of Nailed Fac			. Nail Sp and	acing at	diaphra ted pane	gm boun I edges	daries	6 in. Nail diaphragm t supported	Spacing at oundaries and panel edges		
Sheathing Grade	Nail Size	Penetration in Framing	Penetration in Framing	Panel Thickness	Supported Edges and	Case 1		Cases 2,3,4,5,6		4,5,6	Case 1	Cases 2,3,4,5,6		
		(in.)	(in.)	Boundaries (in.)	Va (plf)	(kip	s/in.)	Va (plf)	(kip	G _a os/in.)	Vw (plf)	V _w (plf)		
						OSB	PLY		OSB	PLY				
	6d	1-1/4	5/16	23	330	9.0	6.0	250	4.5	4.5	400	350		
Structural I	8d	1-3/8	3/8	23	480	8.5	7.0	360	6.0	4.5	670 740	505		
	10d	1-1/2	15/32	23	570	14	10	430	9.5	7.0	800	600 670		
		200	5/16	2	300	9.0	6.5	220	6.0	4.0	420	310		
	60	1-1/4	3/8	2	330 370	7.5	5.5	250 280	5.0	4.0	460	350 390		
			3/8	2 3	430 480	9.0 7.5	0.5 5.5	320 360	6.0 5.0	4.5	600 670	450 505		
Sheathing and Single-Floor	8d	1-3/8	1-3/8	7/16	1-3/8 7/16	2 3	460 510	8.5 7.0	6.0 5.5	340 380	5.5 4.5	4.0	645 715	475 530
Contraction of the local distribution of the			15/32	23	480 530	7.5	5.5	360 400	5.0 4.0	4.0 3.5	670 740	505 560		
	104	140	15/32	23	510 580	15 12	9.0 8.0	380 430	10 8.0	6.0 5.5	715 810	530 600		
	100	1-1/2	19/32	2	570 640	13	8.5	430	8.5	5.5	800	600 670		

DECK DIAPHRAGM CAPACITY = 800 PLF (ULTIMATE) ALLOWABLE DIAPHRAGM CAPACITY = 800 PLF / 2.0 = 400 PLF < 395 PLF OK

BLOCKED DIAPHRAGM REQUIRED ON PLAN NORTH SIDE OF CENTER SHEAR WALL. DETERMINE DISTANCE REQUIRED TO TRANSITION FROM BLOCKED TO UNBLOCKED DIAPHRAGM.

DIAPHRAGM DISTANCE FF	SHEAR OVER ROM GRID =	DISTANCE 1.3 FT	
SOUTH FORC	ES (ASD)	NORTH FOR	CES (ASD)
V _{CENTER} =	0.4 K	V _{CENTER} =	0.4 K
V _{WEST} =	0.4 K	V _{WEST} =	0.4 K
	005		000 alf
V _{CENTER} =	395 plf	V _{CENTER} =	393 plt
v _{west} =	314 plf	v _{west} =	333 plf

: USE 19/32" WOOD STRUCTURAL I PANELS WITH A SPAN RATING OF 40/20, BLOCKED WITH SCREWS SPACED AT 6" O.C. MAX AT PANEL EDGES AND 8" OC MAX IN THE FIELD OF THE PANEL AT INTERMEDIATE SUPPORTS IN JOIST SPACE PLAN NORTH OF CENTER SHEAR WALL

: AT ALL OTHER LOCATIONS, USE 19/32" WOOD STRUCTURAL I PANELS WITH A SPAN RATING OF 40/20, UNBLOCKED WITH SCREWS SPACED AT 6" O.C. MAX AT PANEL EDGES AND 8" OC MAX IN THE FIELD OF THE PANEL AT INTERMEDIATE SUPPORTS

ELLISON GAGE Associates, PLLC Consulting Structural Engineers 508 W, Plano Parkway Suite 200 Plano, TX 75073 www.ellisongage.com	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			
	Description LATERAL DESIGN (SEC. L)	Cale by. BG	Date 4/19/2024	Sheet No. L10

ELLISON GAGE & ASSOCIATION CONTROLOGIA Consulting Structural Engineers Suite 20 Fac: (772) 354-8855 Suite 20 Fac: (772) 354-8856 Plano, 1X 75073 www.ellioongage.com	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			
	Description LATERAL DESIGN (SEC. L)	Cale by. BG	Date 4/19/2024	Sheet No. L11

ELLISON GAGE & ASSOCIATION CONCENTRATION OF CONCENTRATICO OF CONCENTRATICO	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
	Description LATERAL DESIGN (SEC. L)	Cale by. BG	Date 4/19/2024	Sheet No. L12

ELLISON GAGE ASSOCIATION CONCENTION Soft W. Plano Parkway Sulfe 200 Plano, 1X 75073 Www.ellisongage.com	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
	Description LATERAL DESIGN (SEC. L)	Calc by. BG	Date 4/19/2024	Sheet No. L13

• DESIGN CHORDS/COLLECTORS:

WORST CASE CHORD/COLLECTOR FORCE = 6.0 K (N-S CHORD FORCE)

.: USE CONT 2x6 CHORD/COLLECTOR ON ALL WALLS

COMPRESSION: $P_A = (1,350 \text{ psi x } 1.6 \text{ x } 1.0 \text{ x } 1.1 \text{ x } 1.0 \text{ x } 0.39) \text{ x } 1.5" \text{ x } 5.5" = 7.7 \text{ kip}$ TENSION: $T_A = (575 \text{ psi x } 1.6 \text{ x } 1.0 \text{ x } 1.3) \text{ x } 1.5" \text{ x } 5.5" = 9.9 \text{ kip}$

• DESIGN OF CHORD/COLLECTOR SPLICES:

WORST CASE CHORD/COLLECTOR FORCE = 6.0 K (N-S CHORD FORCE)

:: SIMPSON MSTI48 STRAP WITH (48) 0.148 x 11/2" NAILS

STRAP CAPACITY = 3,800 x 2 = 7.6 K

MSTI26 21/16 26 (26) 0.148 x 11/2 2,745 2,3	380
MSTI36 21/16 36 (36) 0.148 x 1 1/2 3,800 3,1	295
MSTI48 12 21/16 48 (48) 0.148 x 11/2 5,070 4,1	390
MSTI60 21/16 60 (60) 0.148 x 1 1/2 5,070 5,1	070
MSTI72 21/16 72 (72) 0.148 x 1 1/2 5,070 5,0	070

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers Solds W. Plano Porkwy Suite 200 Plano, 1X 75073 www.ellsongage.com	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			
	Description LATERAL DESIGN (SEC. L)	Calc by. BG	Date 4/19/2024	Sheet No. L14

o SU	MMARY OF FORCES IN SHEAR WALLS, SEE ATTACHED OUTPUT:
	 NORTH WALL L = 20.8' H = 13.7' F = 4.06 K (ASD) v = 195 PLF END POST, C = 2.7 K HOLD DOWN FORCE, T = 1.0 K
	 SOUTH WALL L = 24.0' H = 14.0' F = 4.06 K (ASD) v = 164 PLF END POST, C = 2.3 K HOLD DOWN FORCE, T = 0.3 K
	WEST WALL SEE MOMENT FRAME DESIGN
	 CENTER WALL L = 15.9' H = 13.8' F = 8.29 K (ASD) v = 521 PLF END POST, C = 7.2 K HOLD DOWN FORCE, T = 7.0 K
	 EAST WALL (PERFORATED SHEAR WALL) L = 16.9' H = 13.8' F = 1.20 K (ASD) v = 157 PLF END POST, C = 2.6 K HOLD DOWN FORCE, T = 2.6 K

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
Sole W. Plano Parkway Ofc: (972) 354-8855 Suite 200 Fax: (972) 354-8856 Plano. TX 75093 www.elisongage.com	Description	Cale by.	Date	Sheet No.
	LATERAL DESIGN (SEC. L)	BG	4/19/2024	L15

	SHEAR W	ALLS:				
Wood She	ear Wall W	ithout Op	enings			
Location: No	orth Wall					
Shear Wall G	Geometry:					
h =	13.7 ft	Height	to Roof			
hp =	4.5 ft	Parapet	t Height			
L =	20.8 ft	Wall Le	ength			
Ld =	20.3 ft	Distanc	ce Between Ho	ld-Downs		
Loads:						
V =	4 06 K	Lateral	Force on Wall	(ASD)		
W/w =	12.0 nsf	Dead M	Veight of Wall ((Unfactored)		
WDL =	48.0 pJf	Roof De	ead Load (Linfa	ctored)		
WLL =	160.0 plf	Roof Liv	ve Load (Unfac	tored)		
Analysis:						
Спеск Аѕрес		0.66	01/		2.5	
	n/L=	0.66	ŬK	Max Aspect Ratio	0 = 3.5	
				(SDPW)	s, Table 4.3.4)	
			-		4 00	
Check In-Pla	ne Shear Loa	d in Wall	A	spect Ratio Facto	r= 1.00	
Check In-Pla v	ne Shear Loa = V / L =	d in Wall 195 plf	A	spect Ratio Facto	r= 1.00	
Check In-Pla v	ne Shear Loa = V / L = SE 15/32" RA '	d in Wall 195 plf TED SHEATHIN	A: NG (OSB), ONE	SIDE WITH	r = 1.00 Capacity =	870 PLF
Check In-Pla v	ne Shear Loa = V / L = SE 15/32" RA 6 IN P.	d in Wall 195 plf TED SHEATHIN ANEL EDGE SP	A: NG (OSB), ONE PACING	SIDE WITH	r = 1.00 Capacity = (SDPWS, Tabl	870 PLF e 4.3A)
Check In-Pla v	ne Shear Loa = V / L = SE 15/32" RA 6 IN P Vall =	d in Wall 195 plf TED SHEATHIN ANEL EDGE SP 435 plf	A: NG (OSB), ONE PACING OK	SIDE WITH	r = 1.00 Capacity = (SDPWS, Tabl	870 PLF e 4.3A)
Check In-Pla v U Determine T	ne Shear Loa = V / L = SE 15/32'' RA 6 IN P Vall =	d in Wall 195 plf TED SHEATHIN ANEL EDGE SP 435 plf pression Chor	A: NG (OSB), ONE PACING OK rd Force	SIDE WITH	r = 1.00 Capacity = (SDPWS, Tabl	870 PLF e 4.3A)
Check In-Pla v U Determine T T =	ne Shear Loa = V / L = SE 15/32'' RA 6 IN P Vall = Tension/Com C = vh =	d in Wall 195 plf TED SHEATHIN ANEL EDGE SP 435 plf pression Chor 2670 lb	A: NG (OSB), ONE PACING OK rd Force	SIDE WITH	r = 1.00 Capacity = (SDPWS, Tabl	870 PLF e 4.3A)
Check In-Pla v U Determine T T = Determine H	ne Shear Loa = V / L = SE 15/32'' RA 6 IN P Vall = Tension/Com C = vh = Hold-down Fc	d in Wall 195 plf TED SHEATHIN ANEL EDGE SP 435 plf pression Chor 2670 lb	A: NG (OSB), ONE PACING OK rd Force	SIDE WITH	r = 1.00 Capacity = (SDPWS, Tabl	870 PLF e 4.3A)
Check In-Pla v U! Determine T T = Determine H	ne Shear Loa = V / L = SE 15/32" RA 6 IN P Vall = Tension/Com C = vh = Hold-down Fc MOT =	d in Wall 195 plf TED SHEATHIN ANEL EDGE SP 435 plf pression Chor 2670 lb prce 56 K-FT	A: NG (OSB), ONE PACING OK rd Force Overturning	g Moment V x h	r = 1.00 Capacity = (SDPWS, Tabl	870 PLF e 4.3A)
Check In-Pla v U! Determine T T = Determine H	ne Shear Loa = V / L = SE 15/32" RA 6 IN P Vall = Tension/Com C = vh = Hold-down Fo MOT = Dwall =	d in Wall 195 plf TED SHEATHIN ANEL EDGE SP 435 plf pression Chor 2670 lb prce 56 K-FT 2.7 K	A: NG (OSB), ONE PACING OK rd Force Overturning 0.6 x DL of N	g Moment V x h Nall	r = 1.00 Capacity = (SDPWS, Tabl	870 PLF e 4.3A)
Check In-Pla v U! Determine T T = Determine H	ne Shear Loa = V / L = SE 15/32" RA 6 IN P. Vall = Tension/Com C = vh = Hold-down Fo MOT = Dwall = Droof =	d in Wall 195 plf TED SHEATHIN ANEL EDGE SP 435 plf pression Chor 2670 lb prce 56 K-FT 2.7 K 0.6 K	A: NG (OSB), ONE PACING OK rd Force Overturnin; 0.6 x DL of N 0.6 x DL of F	g Moment V x h Nall	r = 1.00 Capacity = (SDPWS, Tabl	870 PLF e 4.3A)
Check In-Pla v U! Determine T T = Determine H	ne Shear Loa = V / L = SE 15/32" RA 6 IN P Vall = Tension/Com C = vh = Hold-down FC MOT = Dwall = Droof = /Resist =	d in Wall 195 plf TED SHEATHIN ANEL EDGE SP 435 plf pression Chor 2670 lb prce 56 K-FT 2.7 K 0.6 K 34.7 K-FT	A: NG (OSB), ONE PACING OK rd Force Overturnin; 0.6 x DL of N 0.6 x DL of F Resisting N	g Moment V x h Nall Roof	r = 1.00 Capacity = (SDPWS, Tabl	870 PLF e 4.3A)
Check In-Pla v U! Determine T T = Determine H	ne Shear Loa = V / L = SE 15/32" RA 6 IN P Vall = Tension/Com C = vh = Hold-down Fo MOT = Dwall = Droof = /Resist = T =	d in Wall 195 plf TED SHEATHIN ANEL EDGE SP 435 plf pression Chor 2670 lb prce 56 K-FT 2.7 K 0.6 K 34.7 K-FT 1.0 K	A: NG (OSB), ONE PACING OK rd Force Overturnin; 0.6 x DL of N 0.6 x DL of F Resisting N Hold-Down	g Moment V x h Nall Roof Force (Tension)	r = 1.00 Capacity = (SDPWS, Tabl	870 PLF e 4.3A)

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO				
Sulte 200	Description	Calc by.	Date	Sheet No.	
Plano, TX 75093 www.ellsongage.com	LATERAL DESIGN (SEC. L)	BG	4/19/2024	L16	

Wood She	ear Wall W buth Wall	ithout Op	enings	
Shear Wall G	Geometry:			
h =	14.0 ft	Height	to Roof	
hp =	4.2 ft	Parape	t Height	
L=	24.8 ft	Wall Le	ength	
Ld =	24.3 ft	Distanc	ce Between Hold-Downs	
Loads:				
V =	4.06 K	Lateral	Force on Wall (ASD)	
Ww =	12.0 psf	Dead V	Veight of Wall (Unfactored)	
WDL =	48.0 plf	Roof D	ead Load (Unfactored)	
WLL =	160.0 plf	Roof Li	ve Load (Unfactored)	
Analysis:				
Check Aspec	t Ratio			
	h/L=	0.56	OK Max Aspect Rat	tio = 3.5
	,		(SDPV	NS. Table 4.3.4)
Check In-Pla	ne Shear Loa	d in Wall	Aspect Ratio Fact	tor = 1.00
v	= V / L =	164 plf		
U	SE 15/32" RAT	ED SHEATHIN	NG (OSB), ONE SIDE WITH	Capacity = 870 PLF
	6 IN P/	ANEL EDGE SI	PACING	(SDPWS, Table 4.3A)
	Vall =	435 plf	ОК	
Determine T	ension/Com	pression Cho	rd Force	
T =	C = vh =	2292 lb		
Determine H	lold-down Fo	rce		
	MOT =	57 K-FT	Overturning Moment V x h	I
	Dwall =	3.2 K	0.6 x DL of Wall	
	Droof =	0.7 K	0.6 x DL of Roof	
Ν	/Resist =	49.2 K-FT	Resisting Moment DL x L/	2
	T =	0.3 K	Hold-Down Force (Tension	n)

ELLISON GAGE & ASSOCIATES, PLIC Consulting Structural Engineers 5068 W. Plano Parkwy Suite 200 Fax: [972] 354-8855 Plano, 1X 75093 www.ellisongage.com	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			
	Description LATERAL DESIGN (SEC. L)	Cale by. BG	Date 4/19/2024	Sheet No. L17

Wood S Location:	hear Wall W Center Wall	ithout Ope	nings	
Shear Wa	ll Geometry:			
h =	13.8 ft	Height to	o Roof	
hp =	0.0 ft	Parapet I	Height	
L=	15.9 ft	Wall Len	gth	
Ld =	15.4 ft	Distance	Between Hold-Downs	
Loads:				
V =	8.29 K	Lateral Fo	orce on Wall (ASD)	
Ww =	6.0 psf	Dead We	eight of Wall (Unfactored)	
WDL =	9.0 plf	Roof Dea	ad Load (Unfactored)	
WLL =	30.0 plf	Roof Live	e Load (Unfactored)	
Analysis:				
Check Ası	pect Ratio			
	h/L=	0.87	OK Max Aspect Ratio	= 3.5
			(SDPWS)	, Table 4.3.4)
Check In-	Plane Shear Loa	d in Wall	Aspect Ratio Factor	= 1.00
	v = V / L =	521 plf		
	USE 15/32" RAT	TED SHEATHING	G (OSB), ONE SIDE WITH	Capacity = 1290 PLF
	Vall =	645 nlf	OK	(3DF W3, Table 4.3A)
	vun –	0-0 pi		
Determin	e Tension/Com	pression Chord	Force	
	T = C = vh =	7200 lb		
Dotormin	a Hald down Ea			
Determin	MOT =	115 K-FT	Overturning Moment V x h	
		110 1(1)		
	Dwall =	0.8 K	0.6 x DL of Wall	
	Droof =	0.1 K	0.6 x DL of Roof	
	MResist =	7.0 K-FT	Resisting Moment DL x L / 2	
	т –	70 K	Hold-Down Force (Tension)	
	C =	7.2 K	End-Post Force (Compression)

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
5068 W. Plane Parkway Ofc: (972) 354-8855 Suite 200 Fac: (972) 354-8855 Plano, TX 75093 www.ellisongage.com	Description	Cale by.	Date	Sheet No.
	LATERAL DESIGN (SEC. L)	BG	4/19/2024	L18

Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls13,6,7

					Wo	od-ba	ised l	Panel	S ⁴										
		Minimun	-						SEI	A SMIC							I Wi	3 ND	
Sheathing	Minimum Nominal	Fastener Penetration	Fastener				Pa	nel Edg	ge Fast	ener Sp	acing ((in.)				Par	space	e Faste	ner
Material	Panel	in Framing	Type & Size		6		S	4			3		_	2		6	4	3	2
	(in.)	Blocking (in.)		v, (pif)	(kip	3, s/in.)	v _s (plf)	(kip:	ŝ, s/in.)	V _s (plf)	(kip	G _a s/in.)	v _s (plf)	(kip	3, s/in.)	V _w (plf)	v., (plf)	v _w (plf)	v _w (pif)
			Nail (common or galvanized box)		OSB	PLY		OSB	PLY		OSB	PLY		OSB	PLY				
Wood	5/16	1-1/4	6d	400	13	10	600	18	13	780	23	16	1020	35	22	560	840	1090	1430
Panels -	3/8			460	19	14	720	24	17	920	30	20	1220	43	24	645	1010	1290	1710
Structural I ^{4,5}	15/00	1-38	ad	510	16	13	790	21	16	1010	2/	19	1340	40	24	715	1105	1410	18/5
÷.	15/32	1-1/2	104	680	22	16	1020	29	20	1330	36	22	1740	51	23	950	1430	1860	2435
10	5/16	1 112		360	13	95	540	18	12	700	24	14	900	37	18	505	755	980	1260
	3/8	1-1/4	60	400	11	8.5	600	15	11	780	20	13	1020	32	17	560	840	1090	1430
Structural	3/82	2		440	17	12	6-40	25	15	820	31	17	1060	45	20	615	895	1150	1485
Panels -	7/16*	1-3/8	ad	480	15	11	700	22	14	900	28	17	1170	42	21	670	980	1260	1640
Sheathing**	15/32	S Maria and		620	22	14	920	30	17	1200	37	10	1540	59	23	870	1290	1690	2155
	19/32	1-1/2	104	680	19	13	1020	26	16	1330	33	18	1740	48	22	950	1430	1860	2435
Plywood Siding	5/16	1-1/4	Nail (galvanized casing) 6d	280	<u>_</u>	13	420	j	16	550	3	17	720	:	21	390	590	770	1010
o meng	3/8	1-3/8	8d	320		16	480	1	8	620		20	820		22	450	670	870	1150
Particleboard Sheathing -	3/8		Nail (common or galvanized box) 6d	240		15	360		7	480	3	19	600	-	22	335	505	645	840
(M-S 'Exterior	3/8		8d	260	12	18	380	2	20	480	1	21	630	1	23	365	530	670	880
M-2 "Exterior	1/2			280		18	420	2	20	540	2	22	700	2	24	390	590	755	980
Glue")	1/2		10d	370		21	550	2	23	720		24	920		25	520	770	1010	1290
	5/8			400		21	610	2	3	790		24	1040	2	10	560	005	1105	1400
Structural Fiberboard	1/2		Nail (galvanized roofing) 11 ga. galv. roofing nail (0.120" x 1-1/2" long x 7/16" head)				340	4	L0	460	5	5.0	520	5	15	5	475	645	730
Sheathing	25/32		11 ga. galv. roofing nail (0.120" x 1-3/4" long x 3/8" head)	[340	4	.0	480	5	5.0	520	5	.5		475	645	730

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
Sub48 w. Plane Parkway Ofc: (972) 354-8855 Sub2 00 Fac: (972) 354-8855 Plano, TX 75093 www.ellisongage.com	Description	Calc by.	Date	Sheet No.
	LATERAL DESIGN (SEC. L)	BG	4/19/2024	L19

o SHEAR WALL SUMMARY

NORTH, SOUTH AND EAST SHEAR WALLS NOTED AS TYPE SW-2, REFER TO SHEET S004 SHEATHING SCREW SPACING IS 6" OC AT EDGES AND 12" OC INTERMEDIATE

CENTER SHEAR WALL NOTED AS TYPE SW-1, REFER TO SHEET S004 SHEATHING SCREW SPACING IS 4" OC AT EDGES AND 12" OC INTERMEDIATE

• DESIGN SHEAR WALL CONNECTION TO FOUNDATION:

CONNECTION TO FOUNDATION WILL BE THE SAME AT ALL SHEAR WALL LOCATIONS IN-PLANE SHEAR LOAD, v = 521 PLF (ASD, WORST CASE AT CENTER WALL) TRY ½" DIAMETER BOLTS AT 24" OC AT 2x SILL PLATE SHEAR CAPACITY OF BOLT = Z' = 650 LBS x 1.6 = 1,050 LBS/BOLT [NDS TABLE 12E] $v_{ALL} = 1040 LBS^{*}(12/24) = 525 PLF > 521 PLF \rightarrow ok$

USE 2x6 SILL PLATE ATTACHED WITH 1/2" DIAMETER BOLTS AT 24" OC

12E BOLTS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections^{1,2,3,4}

for sawn lumber or SCL to concrete

Thick	iness							_	ĺ,			
Embedment Depth in Concrete	Side Member	Bolt Diameter	G=0.67 Bed Oak		G=0.55 Mixed Maple	Southern Pine	G=0.50 Doundas Fir-Larch		G=0,49 Doundas Fir-Larch	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	G=0.46 Douglas Fir(S)	Hem-Fir(N)
t _m	t _s	D in.	Z _{II}	Z⊥ lbs.	Z _{II} Ibs.	Z ₁	Z _{II} Ibs.	Z⊥ lbs.	Z _{II} Ibs.	Z⊥ lbs.	Z _{II} Ibs.	Z ₁
	1-1/2	1/2 5/8 3/4 7/8	770 1070 1450 1890	480 660 890 960	680 970 1330 1750	410 580 660 720	650 930 1270 1690	380 530 590 630	640 920 1260 1680	380 520 560 600	620 890 1230 1640	360 470 520 550
·		1 1/2	2410 830	1020 510	2250	770 430	2100	680 400	2060 690	650 390	<u>1930</u> 670	600 370
6.0	1-3/4	5/8 3/4 7/8	1160 1530 1970 2480	680 900 1120 1190	1030 1390 1800 2290	600 770 840 890	980 1330 1730 2210	550 680 740 790	970 1310 1720 2200	550 660 700 750	940 1270 1680 2150	530 600 640 700
and greater	2-1/2	1/2 5/8 3/4 7/8	830 1290 1840 2290	590 800 1000 1240	790 1230 1630 2050	520 670 850 1080	770 1180 1540 1940	470 610 800 1020	760 1170 1520 1920	460 610 780 1000	750 1120 1460 1860	440 570 750 920
		1 1/2 5/8	2800 830 1290	1520 590 880	2530 790 1230	1280 540 810	2410 770 1200	1130 510 730	2390 760 1190	1080 500 720	2310 750 1170	1000 490 670
	3-1/2	3/4 7/8 1	1860 2540 3310	1190 1410 1670	1770 2410 2970	980 1190 1420	1720 2320 2800	900 1100 1330	1720 2290 2770	880 1070 1300	1680 2200 2660	830 1020 1260

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
Sulte 200	Description	Cale by.	Date	Sheet No.
Plano, TX 75093 www.ellisongage.com	LATERAL DESIGN (SEC. L)	BG	4/19/2024	L20

CHECK ¹/₂" DIA SIMPSON TITEN HD ANCHORS FOR IN-PLANE SHEAR LOAD, v = 521 PLF (ASD) FORCE IN ANCHOR = 521 PLF x 2 FT OC SPACING = 1040 LBS (ASD) FORCE IN ANCHOR = 1040 / 0.6 = 1,740 LBS (LRFD)

USE 1/2" DIA TITEN HD (hnom=3.5") SPACED AT 24" ON CENTER

T_{ALL} = 7,875 LBS < 7,000 LBS <u>OK</u>

0

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
5068 W. Plano Parkway Ofc: (972) 354-8855 Suite 200 Fax: (972) 354-8856 Plano, TX 75093 www.elisongage.com	Description LATERAL DESIGN (SEC. L)	Calc by. BG	Date 4/19/2024	Sheet No. L.2.1
-				221

	Madal			U	(in.)	115			(in.)	Minimum Wood	All	(160)	II LUdus	Carda
	No.	Ga.	w	н	в	CL	S 0	Anchor Bolt Dia. (in.)	Wood Fasteners	Member Size (in.)	DF/SP	SPF/HF	Deflection at Allowable Load (in.)	Ref.
1									(6) #9 x 1 ½" SD		840	840	0.17	
	DTT1Z	14	11/2	7%	17/16	3/4	3/16	3%	(6) 0.148 x 1 ½	11/2 × 31/2	910	640	0.167	
									(8) 0.148 x 1 ½]	910	850	0.167	
	01107								(8) ¼ x 1 ½ SDS	11/2×31/2	1,825	1,800	0.105	
	UTTZZ	14	31⁄4	615/16	1%	13/16	3/16	1/2	(8) ¼ x 1½ SDS	3 x 3½	2,145	1,835	0.128	
	DTT2Z-SDS2.5]							(8) ¼ x 2½ SDS	3 x 3½	2,145	2,105	0.128	
	HDU2-SDS2.5	14	3	811/16	31/4	15/16	1%	5%	(6) 1/4 x 21/2 SDS	3 x 31⁄2	3,075	2,215	0.088	IBC®,
	HDU4-SDS2.5	14	3	1015/16	31/4	15%6	1%	5%	(10) 1/4 x 21/2 SDS	3 x 31/2	4,565	3,285	0.114	FL, LA
	HDU5-SDS2.5	14	3	133/16	31/4	1 5/16	1%	5/8	(14) 1/4 x 21/2 SDS	3 x 3½	5,645	4,340	0.115	
										3 x 3½	6,765	5,820	0.11	
	HDU8-SDS2.5	10	3	16%	31/2	1%	1½	7/8	(20) ¼ x 2 ½ SDS	3½x3½	6,970	5,995	0.116	
										3½x4½	7,870	6,580	0.113	
		10	2	2014	214	134	116		1200 14 - 014 000	3½x5½	9,535	8,030	0.137	
	nu011-5052.5	10	3	2214	372	178	1 72		(30) 74 x 2 72 305	31/2 x 71/4	11,175	9,610	0.137	
1										3½ x 5½	10,770	9,260	0.122	—
	HDU14-SDS2.5	7	3	2511/16	31/2	1%6	1%6	1	(36) ¼ x 2 ½ SDS	3½x7¼	14,390	12,375	0.177	IBC,
				4						5½x5½	14,445	12,425	0.172	FL, LA

1. HDU14 requires heavy-hex anchor nut to achieve tabulated loads (supplied with holdown).

2. HDU14 loads on 4x6 post are applicable to installation on either the narrow or the wide face of the post.

3. Fasteners: Nail dimensions are listed diameter by length. SD and SDS screws are Simpson Strong-Trie Strong-Drive SD Connector

and SDS Heavy-Duty Connector screws. See pp. 23-24 for fastener information.

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
Sulte 200	Description	Cale by.	Date	Sheet No.
Plano, TX 75093 www.ellisongage.com	LATERAL DESIGN (SEC. L)	BG	4/19/2024	L22

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
5048 W. Plane Parkway Ofc: (972) 354-8855 Suite 200 Fax: (972) 354-8856 Plane, 1X 75093 www.elisongage.com	Description	Calc by.	Date	Sheet No.
	LATERAL DESIGN (SEC. L)	BG	4/19/2024	L23

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
5068 W. Plane Parkway Ofc: (?72) 354-8855 Suite 200 Fax: (?72) 354-8855 Plano, TX 75093 www.ellisongage.com	Description	Cale by.	Date	Sheet No.
	LATERAL DESIGN (SEC. L)	BG	4/19/2024	L24

Steel Code Check Summary - Group by member

Load conditions to be included in design :

D1=1.4DL D2=1.2DL+0.5LLr D3=1.2DL+1.6LLr D4=1.2DL+0.5WL D5=1.2DL+1.6LLr+0.5WL D6=1.2DL+WL D7=1.2DL+0.5LLr+WL D8=0.9DL+WL

Description	Section	Member	Ctrl Eq.	Ratio	Status	Reference
	HSS_RECT 10X4X1_4	3	D6 at 100.00%	0.43	ОК	
	W 12X22	4	D6 at 100.00%	0.51	ок	
COLUMN	HSS RECT 10X4X1 4	1	D8 at 0.00%	0.50	OK	
		5	D6 at 0.00%	0.53	OK	

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO					
5068 W. Plano Parkway Ofc; (972) 354-8855 Suite 200 Fax: (972) 354-8856 Plano, TX 75093 www.ellisongage.com	Description	Calc by.	Date	Sheet No.		
	LATERAL DESIGN (SEC. L)	DO	4/19/2024	L25		

Analysis result

Nodes

Nodal displacements envelope

Note.- Ic is the controlling load condition Nodal displacements envelope for : S1=DL S2=DL+LLr S3=DL+0.75LLr S4=DL+0.6WL S5=0.6DL+0.6WL

		Translation					Rotation						
Node	X [in]		IC	; Y [in]	Ic	Z [in]	IC	Rx [Rad]	IC	Ry [Rad]	IC	Rz [Rad]	IC
3	Max Min	0.507 -0.001	S5 S1	0.002	S5 S1	0.000	S1 S1	0.00000	S1 S1	0.00000	S1 S1	-0.00038 -0.00187	S1 S4
8	Max Min	0.502	S5 S1	-0.002 -0.005	S1 S4	0.000	S1 S1	0.00000	S1 S1	0.00000	S1 S1	0.00039 -0.00140	S1 S5

Reactions

Direction of positive forces and moments

	Forces [Kip]		Moments [Kip*ft]			
FX	FY FZ		MX	MY	MZ	
DL=Dead Load						
0.09363	2.58533	0.00000	0.00000	0.00000	-0.26846	
-0.09363	2.59019	0.00000	0.00000	0.00000	0.22654	
0.00000	5.17552	0.00000	0.00000	0.00000	-0.04192	
LLr=Roof Live Loa	d					
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
WL=Wind Load						
-6.66188	-6.44465	0.00000	0.00000	0.00000	35.63568	
-6.53812	6.44465	0.00000	0.00000	0.00000	35.35408	
-13.20000	0.00000	0.00000	0.00000	0.00000	70.98976	
	FX DL=Dead Load 0.09363 -0.09363 0.00000 LLr=Roof Llve Loa 0.00000 WL=Wind Load -6.66188 -6.53812 -13.20000	Forces [Kip] FX FY DL=Dead Load 0.09363 2.58533 -0.09363 2.59019 0.00000 0.00000 5.17552 LLr=Roof Llve Load 0.00000 0.00000 0.00000 WL=Wind Load -6.66188 -6.44465 -6.53812 6.44465 -13.20000 0.00000	Forces [Kip] FX FY FZ DL=Dead Load 0.09363 2.58533 0.00000 -0.09363 2.59019 0.00000 0.00000 5.17552 0.00000 LLr=Roof Live Load 0.00000 0.00000 WL=Wind Load -6.66188 -6.44465 0.00000 -6.53812 6.44465 0.00000 -13.20000 0.00000 0.00000	Forces [Kip] FZ MX DL=Dead Load 0.09363 2.58533 0.00000 0.00000 0.09363 2.59019 0.00000 0.00000 0.00000 5.17552 0.00000 0.00000 LLr=Roof Live Load 0.00000 0.00000 0.00000 WL=Wind Load -6.66188 -6.44465 0.00000 0.00000 -13.20000 0.00000 0.00000 0.00000 0.00000	Forces [Kip] Moments [Kip*ft] FX FY FZ MX MY DL=Dead Load 0.09363 2.58533 0.00000 0.00000 0.00000 0.09363 2.59019 0.00000 0.00000 0.00000 0.00000 5.17552 0.00000 0.00000 0.00000 LLr=Roof Llve Load 0.00000 0.00000 0.00000 0.00000 0.00000 WL=Wind Load -6.66188 -6.44465 0.00000 0.00000 0.00000 -13.20000 0.00000 0.00000 0.00000 0.00000	

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO					
5068 W. Plano Parkway Ofic. (972) 354-8855 Suite 200 Fac: (972) 354-8855 Plano, TX 75093 www.ellsongage.com	Description	Cale by.	Date	Sheet No.		
	LATERAL DESIGN (SEC. L)	BG	4/19/2024	L26		

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
Sulte 200	Description	Cale by.	Date	Sheet No.
Plano. 1X 75073 www.ellisongage.com	LATERAL DESIGN (SEC. L)	BG	4/19/2024	L27

urrent Date nits system ile name: Z	: 4/24/2024 12:02 PM h: English \24-001_24-999\24-011 SAG 2001 Lees Summit-MO\02-Design Info\Calcs\Moment Frame\2001-FIXED BASE PLATE CONNECTION.ronx
	Stool Connections
	Results
Conne	ection: 1 - Fixed uniaxial major axis BP

	[kip]	[kip*ft]	[kip*ft]	[kip]	[kip]	
DL	-2.60	0.00	0.30	0.10	0.00	Design
LLr	0.00	0.00	0.00	0.00	0.00	Design
w	6.40	0.00	35.60	6.70	0.00	Design
D1	-3.64	0.00	0.42	0.14	0.00	Design
D2	-3.12	0.00	0.36	0.12	0.00	Design
D3	-3.12	0.00	0.36	0.12	0.00	Design
D4	0.08	0.00	18.16	3.47	0.00	Design
D5	0.08	0.00	18.16	3.47	0.00	Design
DB	3.28	0.00	35.96	6.82	0.00	Design
D7	3.28	0.00	35.96	6.82	0.00	Design
D8	4.06	0.00	35.87	6.79	0.00	Design

Design calculations

Design for major axis Base plate (AISC 360-16 LRFD)

Geometric Considerations

Dimensions	Unit	Value	Min.	Max.	Sta.	References
Base plate		11.00				
Distance from anchor to edge	[in]	1.50	0.25			
Weld size	[1/16in]	6	2	-	~	table J2.4
Design Check						
Design Check Verification	Unit	Capacity	Demand	Ctrl EQ	Ratio	References
Design Check Verification Concrete base	Unit	Capacity	Demand	Ctrl EQ	Ratio	References

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
Sulte 200	Description	Cale by.	Date	Sheet No.
Plano, TX 75093 www.ellisongage.com	LATERAL DESIGN (SEC. L)	BG	4/19/2024	L28

Ratio	0.89					
Elastic method weld shear and axial capacity	[Kip/ft]	100.23	88.83	W	0.89	Sec. J2.4
Weld capacity	[Kip/ft]	150.35	25.19	W	0.17	HSS Manual p. 7-10
Column						
Flexural yielding (tension interface)	[Kip*ft/ft]	8.10	6.38	W	0.79	DG1 Eq. 3.3.13
Flexural yielding (bearing interface)	[Kip*ft/ft]	8.10	6.19	W	0.76	DG1 Sec 3.1.2
Base plate						

Anchors

Geometric Considerations

Dimensions	Unit	Value	Min.	Max.	Sta.	References	
Anchors							
Anchor spacing	[in]	5.00	4.00		~	Sec. D.8.1	
Concrete cover	[in]	15.50	3.00		~	Sec. 7.7.1	
Effective length	[in]	18.65	-	23.35	-		

Design Check

Verification	Unit	Capacity	Demand	Ctrl EQ	Ratio	References
Anchor tension	[Kip]	26.35	10.50	w	0.40	Eq. D-2
Breakout of anchor in tension	[Kip]	59.79	10.50	W	0.18	Sec. D.3.3.4.4
Breakout of group of anchors in tension	[Kip]	59.79	31.49	W	0.53	Sec. D.3.3.4.4
Pullout of anchor in tension	[Kip]	26.06	10.50	W	0.40	Sec. D.3.3.4.4
Anchor shear	[Kip]	10.96	1.14	D6	0.10	Eq. D-29, Sec. D.6.1.3
Breakout of anchor in shear	[Kip]	19.74	1.14	D6	0.06	Table D.4.1.1, Sec. D.4.3
Breakout of group of anchors in shear	[Kip]	20.08	6.82	D6	0.34	Table D.4.1.1, Sec. D.4.3
Pryout of anchor in shear	[Kip]	119.57	1.14	D6	0.01	Table D.4.1.1, Sec. D.4.3
Pryout of group of anchors in shear	[Kip]	152.79	6.82	D6	0.04	Table D.4.1.1, Sec. D.4.3
Interaction of tensile and shear forces	[Kip]	1.20	0.86	W	0.72	Eq. D-42
Ratio	0.72					
Global critical strength ratio	0.89					

Major axis

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
5048 W. Plano Parkway Ofc: [972] 354.8855 Suite 200 Fax: [972] 354.8856 Plano. TX 75093 www.elisongage.com	Description ROOF AND WALL DESIGN (SEC. RW)	Calc. by BG	4/9/2024	Description RW1

ROOF AND WALL FRAMING DESIGN

ROOF FRAMING DESIGN

- ROOF FRAMING IS PREFABRICATED WOOD TRUSSES BY TRUSS MFR
- STEEL FRAME AT GRID A

REFER TO LATERAL ANALYSIS FOR DESIGN OF MOMENT FRAME COMPONENTS

DESIGN HSS GIRT AT EL = 107'-10" FOR OUT OF PLANE WIND LOAD L = 16.5' MAX ASD WIND LOAD = 15.8 PSF x 12.6' / 2 = 100 PLF WEIGHT OF WINDOW AND FRAMING ABOVE HSS GIRD DL = 25 PSF x (12.6' - 7.8') = 120 PLF

USE HSS10x4x1/4

Wind Girt Design (Biaxial Bending)

General Input			
Girt Span (ft) =	16.50		
Lateral Pressure (psf) =	15.8		
Tributary Width (ft) =	6.30		
Lateral Load (plf) =	100		
Vertical Load (plf) =	120		
End Conditions	Pinned		

Girt Section Pr	operties
Girt Selection =	1
Area (in ²) =	6.17
I _X (in ⁴) =	74.70
S _X (in ⁴) =	14.90
l _y (in ⁴) =	17.70
S _y (in ³) =	8.87
F _y (ksi) =	46
E (ksi) =	29000

Model Girt Analysis Results			
Vert. Moment, M _X (k-ft) =	4.08		
Lat. Moment, M _Y (k-ft) =	3.39		
Column Reaction (k) =	0.82		
Max. Lat. Deflection (in) =	0.23		

Girt Che	ck	
f _{bx} (ksi) =	3.29	OK
F _{bx} (ksi) =	27.60	
f _{by} (ksi) =	4.58	OK
F _{by} (ksi) =	27.60	
Interaction =	0.29	OK
L/240 (in) =	0.83	OK

Girt Properties Table:

				Girt Size				
Property	HSS10x4x1/4	HSS10x4x5/16	HSS10x4x3/8	HSS8x4x1/4	HSS8x4x5/16	HSS8x4x3/8		
	1	2	3	4	5	6	7	8
A (in ²)	6.17	7.59	8.97	5.24	6.43	7.58		
I _X (in ⁴)	74.7	90.1	104.0	42.5	51.0	58.7		
S _X (in ⁴)	14.9	18.0	20.8	10.6	12.8	14.7		
l _y (in ⁴)	17.7	21.2	24.3	14.4	17.2	19.6		
S _y (in ³)	8.9	10.6	12.1	7.2	8.6	9.8		

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO				
5049 W. Plano Parkway Ofc: (P72) 354.8855 Suite 200 Plano, 1X 75093 www.elitongage.com	Description ROOF AND WALL DESIGN (SEC. RW)	Calc. by BG	4/9/2024	Description RW2	

WALL STUD DESIGN

WALL TRIB AREA FOR WIND = 14'*14'/3 = 65 SF, USE WIND LOADS FOR 50 PSF TRIB AREA LRFD WALL WIND PRESSURE = **26.3 PSF** (WORST CASE) LRFD PARAPET WIND PRESSURE = **64.7 PSF** (WORST CASE) LIMIT WALL DEFLECTION TO L/360

LOAD-BEARING NORTH AND SOUTH WALLS, 1-S401 TRUSSES BEAR ON TOP PLATE h = 12.3' LOAD FROM ROOF JOISTS: ROOF DEAD LOAD = 25 PSF x 24' / 2 = 270 PLF + 100 PLF (RTU) = 400 PLF ROOF LIVE LOAD = 20 PSF x 24' / 2 = 240 PLF ROOF SNOW LOAD = 35 PSF x 24' / 2 = 420 PLF (WORST CASE WALL DRIFT) LOAD FROM PARAPET WALL = 20 PSF x 20.2'-12.3' = 160 PLF

USE 2x6 SYP #2 WALL STUDS SPACED AT 16" OC

	D	esign Check Ca	Sizer 11 1		
oads:		WOOdWOIKS	01261 11.1		
Load	Туре	Distribution	Location [ft]	Magnitude	Unit
WIND	Wind C&C	Full Area	Start End	26.30(16.0")	psf
DL	Dead Deaf live	Axial UDL	(Ecc. = 0.92")	560	plf
SL	Snow	Axial UDL	(Ecc. = 0.92") (Ecc. = 0.92")	420	plf
Base	► ► 0'		— 12.33' ———		12 33
					12.33
Unfactored:	5				101
Snow	3				
Wind	216				21
Roof Live	2				-
Factored:					-
R->L					
Load comb					#
L->R	134				12
Load comb	#7				#
Support: Lumber S Spa inned base; Load nalysis vs All	Lumbe Stud Bottom plate aced at 16.0" c/c; face = width(b); K factor:	r Stud, S. Pine, N , S. Pine No.2; Bear Total length: 12.33'; te x Lb: 1.0 x 0.0 = 0 applied where permit s and Deflection	o.2, 2x6 (1-1/2"x5 ing length = stud thic Clear span: 12.205; .0 [ft]; Ke x Ld: 1.0 x itted (refer to online her using NDS 2015	-1/2") kness; continuous lo volume = 0.7 cu.ft. : 12.33 = 12.33 [ft]; R elp);	wer suppo
Criterion	Analysis	Value Design	Value Unit	Analysis/I	Design
Shear	fv =	24 Fv' =	280 psi	fv/Fv'	= 0.09
Bending(+)	fb = 6	581 Fb' =	2159 psi	fb/Fb'	= 0.32
Axial	fc = 1	.58 Fc' =	528 psi	fc/Fc'	= 0.30
Combined (axial + eccer	tric & side loa	ad bending)	Eq.15.4-1	1= 0.45
Axial Bearin	g fc = 1	.58 Fc* =	1610 psi	fc/Fc*	= 0.10
Support Bear	ing fcp = 1	58 Fcp =	706 psi	fcp/Fcp	= 0.22
Live Defl'n	0.26 = 1	0.41 =	L/360 in		0.64

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers Solide W. Plane Parkway Suite 20 Plane, TX 75093 Www.ellisongage.com	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			
	Description ROOF AND WALL DESIGN (SEC. RW)	Calc. by BG	4/9/2024	Description RW3

 LOAD-BEARING NORTH AND SOUTH WALLS, 1-S401 2x FRAMING ABOVE TOP PLATE

TOP OF WALL = 18'-2"

USE 2x6 SYP #2 WALL STUDS SPACED AT 16" OC

-0.00 = <L/999

0.15 = L/360

0.15 = L/360

Total

Total

Cantil. Live

0.07 = L/240

0.45 = L/120

0.45 = L/120

in

in

in

0.03

0.33

0.33

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO				
5048 W. Plano Parkway Oft: (972) 334-8855 Suite 200 Fax: (972) 334-8856 Plano, TX 75093 www.elisongage.com	Description ROOF AND WALL DESIGN (SEC. RW)	Calc. by BG	4/9/2024	Description RW4	

LOAD-BEARING NORTH AND SOUTH WALLS, 4 & 5-S401
2x FRAMING ABOVE TOP PLATE, 20'-2" WALLS TO RECEIVE DIAGONAL BRACE

TOP OF WALL = 20'-2"

USE 2x6 SYP #2 WALL STUDS SPACED AT 16" OC

ELLISON GAGE & ASSOCIATES, PLIC Consulting Structural Engineers Sold W, Plane Parkway Suite 200 Plane, TX 75073 Www.ellisongage.com	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			
	Description ROOF AND WALL DESIGN (SEC. RW)	Calc. by BG	4/9/2024	Description RW5

BALLOON-FRAMED EAST WALL, 2-S401 TOW = 118'-2" h = 13.8' PARAPET HT = 4.4' ROOF DEAD LOAD = 25 PSF x 2.7' / 2 = 35 PLF + 65 PLF (MISC) = 100 PLF ROOF LIVE LOAD = 20 PSF x 2.7' / 2 = 30 PLF ROOF SNOW NOAD = 45 PSF x 2.7' / 2 = 60 PLF

USE 2x6 SYP #2 WALL STUDS SPACED AT 16" OC

.

		WoodWorks	alcula Sizer 1	1.1	eet		
Loads:							
Load	Туре	Distribution	Pat- tern	Locati Start	on [ft] End	Magnitude Start End	Unit
WL PARAPET WL	Wind C&C Wind C&C	Partial Area Partial Area	No No	13.83 1.00	18.16 13.83	64.70(16.0") 26.30(16.0")	psf psf
Maximum Reac	tions (Ibs), Bea	ring Capacities	(lbs) a	nd Bea	ring Ler	igths (in) :	
	<u> </u>		— 18 .	16' —			
					rigen (de la pla	-	
	0'					13.726'	18.056
Roof jois Lateral sup	Lumb Supp t spaced at 16.0" c port: top= full, botto	er-soft, S. Pine, I borts: All - Lumber-so /c; Total length: 18.1 m= full; Repetitive fa	No.2, 2 oft Sill pl 16'; Clea actor: ap	x6 (1-1/2 ' ate, D.Fir- r span: 13 plied wher	'x5-1/2'') L No.2 .829', 4.33 e permitte	'; volume = 1.0 cu.ft. d (refer to online help);
WARNING: Member	length exceeds typ	pical stock length of	18.0 [ft]				
Analysis vs. All	owable Stress	and Deflection	using N	DS 2015 :	3		
Among Concerning and Andrews	Anna Anna di an Att	and an an a		**			

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 36	Fv' = 280	psi	fv/Fv' = 0.13
Bending(+)	fb = 440	Fb' = 1840	psi	fb/Fb' = 0.24
Bending(-)	fb = 770	Fb' = 1840	psi	fb/Fb' = 0.42
Deflection:				
Interior Live	0.17 = L/985	0.46 = L/360	in	0.37
Total	0.17 = L/985	0.69 = L/240	in	0.24
Cantil. Live	0.09 = L/580	0.29 = L/180	in	0.31
Total	0.09 = L/580	0.43 = L/120	in	0.21

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO				
S068 W. Plano Parkway Ofc: (972) 354-8855 Suite 200 Fax: (972) 334-8856 Plano. TX 75093 www.elisongage.com	Description ROOF AND WALL DESIGN (SEC. RW)	Calc. by BG	4/9/2024	Description RW6	

• INTERIOR WALL, 6-S401

TOW = 114'-1" ROOF DEAD LOAD = 25 PSF x 2.7' / 2 = 35 PLF + 65 PLF (MISC) = 100 PLF ROOF LIVE LOAD = 20 PSF x 2.7' / 2 = 30 PLF ROOF SNOW LOAD = 21 PSF x 2.7' / 2 = 30 PLF INTERIOR WIND LOAD = 10 PSF

USE 2x4 SYP #2 WALL STUDS SPACED AT 16" OC

	Des	ign Check Ca	Iculation She	et			
Landar		Woodworks	01261 11.1				
Loads:							_
Load	Type	Distribution	Location [f	t] Ma	gnitude	Unit	1
			Start En	d St	art End		
WIND	Wind C&C	Full Area		10.	00(16.0")	psf	1
DL	Dead	Axial UDL	(Ecc. = 0.92)	") 1	.00	plf	
LR	Roof live	Axial UDL	(Ecc. = 0.92)	")	30	plf	
SL	Snow	Axial UDL	(Ecc. = 0.92)	")	30	plf	J
Lateral Deastions							
Lateral Reactions	s (ibs):						
Ł			- 14 1'				
œ			14.1				
as P	States and a second second	And Street in Street Street	ile see available	N. K. Jay	Country of the second	Seat Sec	op
œ 0'						Δ	
						14.	1
Unfactored							
Dead	1						-1
Snow	â.						-0
Wind	94						94
Roof Live	0						-0
Factored:							Ľ
R->L							-1
Load comb							#2
L->R	57						56
Load comb	#7						# 6
2000 0000	1 · · ·						<u> </u>
	Lumber S	tud, D.Fir-L. N	o.2. 2x6 (1-1/2"	'x5-1/2")			
Support: Lumber Stu	id Bottom plate. D	Fir-I No 2 Bearing	na lenath = stud t	thickness	continuous lov		ht
Space	ed at 16 0" c/c: To	tal length: 14 1' (Clear span: 13 97	5' ⁻ volume	e = 0.8 cu ft	ner supp	
Pinned base: Load fac	e = width(b): Ke x	$1 b 10 \times 00 = 0$	0 [ft]: Ke x I d: 1	0 x 14 1	= 14 1 [ft]: Rep	etitive	
r milea base, Eoda lae	factor: apr	blied where permit	ted (refer to online	e heln):	14.1 [k], 10p	cuive	
		sied mere permit		e neip),			
Analysis vs. Allow	wable Stress a	and Deflection	using NDS 201	5:			
Criterion	Analysis Va	lue Design	Value Un	it	Analysis/I	esign	
Shear	fv = 10	Fv' =	288 ps	i	fv/Fv'	= 0.0	4
Bending(+)	fb = 324	Fb' =	2527 ps	i	fb/Fb'	= 0.1	3
Axial	fc = 21	Fc' =	462 ps	i	fc/Fc'	= 0.0	5
Combined (ax	al + eccentr	ic & side loa	ad bending)		Eq.15.4-1	= 0.1	4
Axial Bearing	fc = 21	Fc* =	1485 ps	i	fc/Fc*	= 0.0	1
Support Bearin	g fcp = 21	Fcp =	781 ps	i	fcp/Fcp	= 0.0	3
Live Defl'n	0.15 = <l 9<="" td=""><td>99 0.70 =</td><td>L/240 in</td><td></td><td></td><td>0.2</td><td>1</td></l>	99 0.70 =	L/240 in			0.2	1
Total Defl'n	0.16 = < L/9	99 0.70 =	L/240 in			0.2	2

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO				
5048 W. Plane Porkway Ofc: (972) 354-8855 Suite 200 Fac: (972) 354-8856 Plane, 1X 75093 www.eliscongage.com	Description ROOF AND WALL DESIGN (SEC. RW)	Calc. by BG	4/9/2024	Description RW7	

ROOF UPLIFT ANALYSIS AND CONNECTION DESIGN

NET ROOF UPLIFTS: ZONE 1' = 14.0 PSF (ASD) ZONE 1 = 19.5 PSF (ASD) ZONE 2 = 25.9 PSF (ASD) ZONE 3 = ZONE 2 = 25.9 PSF

0.6h = 8.4'

• FIND TRUSS UPLIFT, SEE 1-S401 SINCE BUILDING ROOF WIDTH IS ONLY 15.83', USE ZONE 2 UPLIFT LOAD ON ENTIRE ROOF

WORST CASE TRUSS SPAN = 23.0' F_{up} = (25.9 PSF – 6 PSF ROOF DL) x 23.0'/2 = 230 PLF

- TRUSS CONNECTION LOADS TRUSS SPACING = 32" = 2.67' UPLIFT = 230 PLF x 32"/12 = <u>610 LBS</u> AT EACH TRUSS <u>USE SIMPSON H2.5A</u> AT EACH TRUSS (Pall = 625 LBS > 610 LBS $\rightarrow ok$)
- FIND WALL UPLIFT AT TOP PLATE, SEE 1-S401

F_{up} = (25.9 PSF – 10 PSF ROOF DL) x 23.0'/2 = 185 PLF PARAPET WT = 5 PSF (18.17-14) = 20 PLF F_{up} = 165 PLF

 WALL CONNECTION LOADS TIE PLATE SPACING = 48" = 4' UPLIFT = 165 PLF x 40"/12 = <u>550 LBS</u> <u>USE SIMPSON SP1 AT 48" OC</u> (Pall = 555 LBS > 550 LBS → ok)

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
Sole W. Plans Porkway Ofc: [972] 354.8855 Sole D. 200 Fac: [972] 354.8856 Plano, 1X 75093 www.eliisongage.com	Description ROOF AND WALL DESIGN (SEC. RW)	Calc. by BG	4/9/2024	Description RW8

OUT-OF-PLANE ANALYSIS AND CONNECTION DESIGN

• DETAIL 2-S401, EAST WALL

WALL TRIB AREA FOR WIND = 14'*14'/3 = 65 SF, USE WIND LOADS FOR 50 PSF TRIB AREA ASD WALL WIND PRESSURE = **15.8 PSF** (WORST CASE) ASD PARAPET WIND PRESSURE = **38.8 PSF** (WORST CASE)

R_{ROOF} = 38.8 PSF*(4.5') + 15.8 PSF*(13.8'/2) = 280 PLF R_{FLOOR} = 15.8 PSF*(13.8'/2) = 100 PLF

WALL-TO-ROOF CONNECTION DESIGN: TRY SIMPSON H8 AT 32" OC F = 280 PLF x 32"/12 = 750 LBS USE SIMPSON H8 AT 32" OC (P_{all} = 780 LBS > 750 LBS $\rightarrow ok$)

ELLISON GAGE	Project				
ASSOCIATES, PLLC	SALAD AND GO #2001 – LEE'S SUMMIT, MO				
Sub 8 W. Plano Porkway Otc: (972) 354-8855 Sub 200 Fac: (972) 354-8855 Plano, TX 75093 www.ellsongage.com	Description ROOF AND WALL DESIGN (SEC. RW)	Calc. by BG	4/9/2024	Description RW9	

PARAPET BRACING DESIGN, REF 3, 4, AND 5-S401

R_{BRACE} = 38.8 PSF x [(20.2'-16.2') + (16.2'-13.7')/2] = 210 PLF R_{ROOF} = 38.8 PSF x (16.2'-13.7')/2 + 15.8 PSF (13.7'-12.3')/2 = 60 PLF R_{PLATE} = 15.8 PSF x [(13.7'-12.3')/2 + (12.3'/2)] = 110 PLF

 2x4 DIAGONAL BRACE DESIGN BRACE SPACING = 16" = 1.33' BRACE FORCE = 210 PLF x 1.33' / 0.707 = 400 LBS

UPPER BRACE CONNECTION: LAP 2x4 BRACE WITH VERT STUDS AND PROVIDE (6) 10d NAILS LATERAL CAPACITY OF NAILS = 118 LBS x 1.6 = 188 LBS x 6 = 1130 LBS > 400 LBS → ok

BRACE CONNECTION AT ROOF: SHEAR FORCE = 210 PLF x 16"/12 = 280 LBS <u>USE SIMPSON A23 ANGLE AT 16" OC</u> (P_{all} = 535 LBS > 280 LB \rightarrow ok) UPLIFT FORCE = 210 PLF x 16"/12 = 280 LBS <u>USE SIMPSON CS20 AT 16" OC WITH (6) 10d NAILS</u> (P_{all} = 1,030 LBS x 6/12 > 515 LBS \rightarrow ok)

FIND VERT FORCE ACTING ON TRUSS 4 AND 5-S401: F = 210 PLF x 32"/12 = **600 LBS** (WIND, ASD)

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project J SALAD AND GO #2001 – LEE'S SUMMIT, MO				
SU68 W. Plans Parkway Oft: (972) 354-8855 Suite 200 Fax: (972) 354-8855 Plano, TX 75093 www.ellisongage.com	Description ROOF AND WALL DESIGN (SEC. RW)	Calc. by BG	4/9/2024	Description RW10	

DESIGN OF FRAMING AT OPENINGS

REFER TO HEADER SCHEDULE, 5-S003.

 HEADER AT LOAD-BEARING WALLS UP TO 4'-0" WALL DL = 20 PSF x (20.2' - 7') = 265 PLF ROOF DL = 25 PSF x 23'/2 = 290 PLF ROOF LL = 20 PSF x 23'/2 = 230 PLF ROOF SL = 35 PSF x 23'/2 = 400 PLF

USE H-1 (3) 2x6 SYP #2

Analysis vs. Allowable Stress and Deflection using NDS 2015 :

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 90	Fv' = 201	psi	fv/Fv' = 0.45
Bending(+)	fb = 1051	Fb' = 1263	psi	fb/Fb' = 0.83
Live Defl'n	0.03 = < L/999	0.14 = L/360	in	0.21
Total Defl'n	0.09 = L/557	0.20 = L/240	in	0.43

ELLISON GAGE & ASSOCIATES, PLLC Cossiling Structural Engineers	Project 3 SALAD AND GO #2001 – LEE'S SUMMIT, MO					
Suite 200 Fax: 9721 354-8855 Fax: 9721 354-8855 Plano, TX 75093 www.ellbongage.com	Description ROOF AND WALL DESIGN (SEC. RW)	Calc. by BG	4/9/2024	Description RW11		

• JAMB AT LOAD-BEARING WALLS UP TO 4'-0"

DL = 1200 LBS LL = 500 LBS SL = 850 LBS WIND LOAD = 26.3 PSF x 4'/2 = 50 PLF

USE H-1 2x6 SYP #2, (1) KING AND (1) JACK STUD

	Des	sign Check Ca WoodWorks	Iculation S Sizer 11.1	heet		
Loads:						
Load	Туре	Distribution	Location	[ft] Ma	agnitude	Unit
DT.	Dead	Avial	(Fcc. = 0)	.00") 12	200	lbs
LB	Boof constr.	Axial	(Ecc. = 0)	.00")	500	lbs
WL	Wind C&C	Full UDL	(2001 01	50	0.0	plf
SL	Roof constr.	Axial	(Ecc. = 0)	.00") 8	350	lbs
Self-weight	Dead	Axial	,	···· /	60	lbs
Lateral Reaction	ns (lbs):		<u> </u>			14'
Unfactored: Dead Wind Roof Live Factored:	350					350
L->R	350					350
Load comb	#4					#4
Pinned base; Load fa	Lumber n- Total lengt ace = width(b); Buil 14.0 [ft]; Repetitive	-ply, S. Pine, No Support: N h: 14.0'; Clear spa tt-up fastener: nails factor: applied wh	b.2, 2x6, 2-pl on-wood n: 14.0'; volum s; Ke x Lb: 1.0 ere permitted	ly (3"x5-1/2 ne = 1.6 cu.ft) x 0.0 = 0.0 (refer to onlin	") [ft]; Ke x Ld: 1.(ie help);	0 x 14.0 =
Analysis vs. Allo	wable Stress	and Deflection	1 using NDS	2015 :		
Criterion	Analysis V	alue Design	Value	Unit	Analysis/D	esign
Shear	fv = 3	2 Fv' =	280	psi	fv/Fv'	= 0.11
Bending(+)	fb = 97	2 Fb' =	1600	psi	fb/Fb'	= 0.61
Axial	fc = 15	8 Fc' =	422	psi	fc/Fc'	= 0.37
Axial Bearing	fc = 15	8 Fc* =	1750	psi	fc/Fc*	= 0.09
Combined (axial compres	sion + side lo	oad bending	a)	Eq.3.9-3	= 0.76
Live Defl'n	0.52 = L/2	323 0.93 =	L/180	in		0.56
Total Defl'n	0.52 = L/3	323 0.93 =	L/180	in		0.56

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO				
5048 W. Plano Parkway Orc. (772) 354-8855 Suite 200 Fax: (772) 354-8856 Plano, 1X 75093 www.ellisongage.com	Description ROOF AND WALL DESIGN (SEC. RW)	Calc. by BG	4/9/2024	Description RW12	

HEADER AT NON LOAD-BEARING EAST WALL, SPAN = 6'-4"

WALL DL = 20 PSF x (18.2' – 7') = 250 PLF ROOF DL = 25 PSF x 2' = 50 PLF ROOF LL = 20 PSF x 2' = 40 PLF ROOF SL = 35 PSF x 2' = 70 PLF

USE H-2 (3) 2x8 SYP #2

	De	esign Check Ca WoodWorks	a lcula Sizer 1	tion Sheet				
Loads:								
Load	Type	Distribution	Pat-	Location	[ft]	Magnitu	de	Unit
			tern	Start	End	Start	End	
DL	Dead	Full UDL				300.0		plf
RL	Roof constr.	Full UDL				40.0		plf
SL	Snow	Full UDL				70.0		plf
Self-weight	Dead	Full UDL				8.5		plf

Lateral support: top= at supports, bottom= at supports; Repetitive factor: applied where permitted (refer to online help);

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011 Description RW13
S048 W. Plano Parkway Ofc: (972) 354-8855 Suite 200 Fax: (972) 354-8856 Plano. 1X 75093 www.ellisongage.com	Description ROOF AND WALL DESIGN (SEC. RW)	Calc. by BG	4/9/2024	Description RW13

• JAMB AT NON LOAD-BEARING EAST WALL, SPAN = 6'-4"

DL = 1000 LBS LL = 150 LBS

SL = 250 LBS WIND LOAD = 26.3 PSF x 6.33'/2 = 80 PLF

USE H-2 2x6 SYP #2, (2) KING AND (1) JACK STUD

	Des	sign Check Ca	Iculation Sheet		
		WoodWorks	Sizer 11.1		
Loads:					
Load	Туре	Distribution	Location [ft]	Magnitude	Unit
			Start End	Start End	
DL	Dead	Axial	(Ecc. = 0.00")	1000	lbs
LR	Roof constr.	Axial	(Ecc. = 0.00")	150	lbs
WL V	Wind C&C	Full ODL		70.0	plf
SL SL	Snow	Axial	(Ecc. = 0.00")	250	lbs
Self-Weight	Dead	AXIAI		59	sdl
Lateral Reactions	(lbs):				
Ba	Chinese Constanting				
se 7		Contraction of the second	and the second second second	an ingentering and the second second	Å
0					13.8
Unfactored:	T T				
Dead					
Snow					
Wind	483				483
Roof Live					
Factored:					
L->R	483				483
Load comb	# 6				#6
Pinned base; Load face 13	Lumber n- Total lengtl e = width(b); Buil 8.8 [ft]; Repetitive	ply, S. Pine, No Support: N h: 13.8'; Clear spa t-up fastener: nails factor: applied wh	b.2, 2x6, 2-ply (3''x on-wood n: 13.8'; volume = 1.6 s; Ke x Lb: 1.0 x 0.0 ere permitted (refer to	5-1/2'') 6 cu.ft. = 0.0 [ft]; Ke x Ld: 1. 5 online help);	0 x 13.8 =
Analysis vs. Allov	vable Stress	and Deflection	using NDS 2015 :		
Criterion	Analysis Va	alue Design	Value Unit	Analysis/I	Design
Shear	fv = 44	4 Fv' =	280 psi	fv/Fv'	= 0.16
Bending(+)	fb = 1322	2 Fb' =	1600 psi	fb/Fb'	= 0.83
Axial	fc = 79	9 Fc' =	431 psi	fc/Fc'	= 0.18
Axial Bearing	fc = 79	9 Fc* =	1610 psi	fc/Fc*	= 0.05
Combined (a:	ial compress	sion - side lo	oad bending)	Eq.3.9-3	= 0.98
Live Defl'n	0.69 = L/3	241 0.92 =	L/180 in		0.75
Total Defl'n	0.69 = L/2	241 0.92 =	L/180 in		0.75

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO				
5048 W. Plano Parkway Oft: (972) 354-8855 Suite 200 Fax: (972) 354-8856 Plano, 1X 75093 www.ellisongage.com	Description ROOF AND WALL DESIGN (SEC. RW)	Calc. by BG	4/9/2024	Description RW14	

 HEADER AT LOAD-BEARING WALLS UP TO 7'-0" WALL DL = 20 PSF x (20.2' - 7') = 265 PLF ROOF DL = 25 PSF x 23'/2 = 290 PLF ROOF LL = 20 PSF x 23'/2 = 230 PLF ROOF SL = 35 PSF x 23'/2 = 400 PLF

USE H-3 (3) 2x12 SYP #1

Design Check Calculation Sheet WoodWorks Sizer 11.1								
.oads:								
Load	Type Distribution Pat		Pat-	Location	[ft]	Magnitud	ie	Unit
			tern	Start	End	Start	End	
DL	Dead	Full UDL				555.0		plf
RL	Roof constr.	Full UDL				230.0		plf
SL	Snow	Full UDL				400.0		plf
Self-weight	Dead	Full UDL				13.1		plf

Lumber n-ply, S. Pine, No. 1, 2x12, 3-ply (4-1/2"x11-1/4")

Supports: All - Lumber n-ply Column, D.Fir-L No.2 Total length: 6.83'; Clear span: 6.83'; volume = 2.4 cu.ft.

Lateral support: top= at supports, bottom= at supports; Repetitive factor: applied where permitted (refer to online help);

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers S08 W, Plane Parkway Obc. (1972) 354-8855 Suite 200 Fax: (1972) 354-8855 Plane, 1X 75093 www.elitongoge.com	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO				
	Description ROOF AND WALL DESIGN (SEC. RW)	Calc. by BG	4/9/2024	Description RW15	

JAMB AT LOAD-BEARING WALLS UP TO 7'-0"

DL = 2100 LBS LL = 850 LBS SL = 1400 LBS WIND LOAD = 26.3 PSF x 7'/2 = 90 PLF

USE H-3 2x6 SYP #2, (3) KING AND (1) JACK STUD

ELLISON GAGE ASSOCIATES, PLLC Compliant Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO				
5088 W. Plano Parkway Oft: (772) 354-8855 Suite 200 Fax: (772) 354-8855 Plano, 1X 75093 www.ellisongage.com	Description ROOF AND WALL DESIGN (SEC. RW)	Calc. by BG	4/9/2024	Description RW16	

 HEADER AT LOAD-BEARING WALLS UP TO 8'-0" WALL DL = 20 PSF x (18.2' - 8') = 205 PLF ROOF DL = 25 PSF x 16'/2 = 200 PLF ROOF LL = 20 PSF x 16'/2 = 160 PLF ROOF SL = 25 PSF x 16'/2 = 200 PLF

USE H-3 (3) 2x12 SYP #1

1.00

1.00

1.00

1350

Cb

Cb min Cb support

Fc sup

		De	sign Check C	alcula	tion Sheet			
			WoodWork	s Sizer	11.1			
Loads:								
Load	Type		Distribution	Pat-	Location	[ft]	Magnitude	Unit
				tern	Start	End	Start En	d
DL	Dead		Full UDL				405.0	plf
RL	Roof co	onstr.	Full UDL				160.0	plf
SL	Snow		Full UDL				200.0	plf
Self-weight	Dead		Full UDL				13.1	plf
	_							
Maximum Rea	actions (lb	s), Beari	ng Capacities	(lbs) a	and Bearin	g Len	gths (in) :	
	·	-11		8	25'			
	1			0.	20			
		Statistics in	The second second	Second V	and a state of the	4 Charles	And a particular state	Print to a
								-
								and the second
		中国的四				57 °		San States
	1							, fil
	0.							8.084
Unfactored.								
Dead	1724							1724
Snow	825							825
Boof Live	660							660
Factored:	000							000
Total	2549							2549
Bearing	2345							2549
Capacity								
Rear	2014							2014
Summent	11507							11507
Support	11527							11527
Des ratio	0.07							0.00
Beam	0.67							0.67
Support	0.22							0.22
Load comb	#3							#3
Length	1.50							1.50
Min reg'd	1.00							1.00

Lumber n-ply, S. Pine, No. 1, 2x12, 3-ply (4-1/2"x11-1/4")

Supports: All - Lumber n-ply Column, D.Fir-L No.2

1.00

1.00

1.00

1350

Total length: 8.0'; Clear span: 8.0'; volume = 2.8 cu.ft. Lateral support: top= at supports, bottom= at supports; Repetitive factor: applied where permitted (refer to online help);

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO					
Suda W. Plane Porkway Ofc: (972) 354-8855 Suite 200 Fax: (972) 354-8856 Plane, TX 75093 www.ellisongage.com	Description ROOF AND WALL DESIGN (SEC. RW)	Calc. by BG	4/9/2024	Description RW17		

JAMB AT LOAD-BEARING WALLS UP TO 8'-0"

DL = 1750 LBS LL = 600 LBS SL = 830 LBS WIND LOAD = 26.3 PSF x 8'/2 = 100 PLF

USE H-3 2x6 SYP #2, (3) KING AND (1) JACK STUD

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO					
Suite 200 Fano Partway Ofc: (972) 354-8855 Suite 200 Fac: (972) 354-8856 Plano, TX 75093 www.elisongage.com	Description ROOF AND WALL DESIGN (SEC. RW)	Calc. by BG	4/9/2024	Description RW18		

 HEADER AT NON LOAD-BEARING WEST WINDOW, SPAN = 16'-3" WALL DL = 20 PSF x (20.2' – 13') = 140 PLF

USE H-4 (3) 1 3/4x9 1/2 LVL'S

Bending(+)

Live Defl'n

Total Defl'n

fb = 783

0.37 = L/534

negligible

			Desig	n Check C WoodWork	s Sizer	tion Sheet			
Loads:									
Load	Т	ype	Di	stributior	Pat- tern	Location [: Start E	ft] Magnit nd Start	ude End	Unit
DL	De	ad	Ful	L1 UDL			140.0		plf
Self-weight	De	ad	Ful	L1 UDL			14.4		plf
Maximum Rea	action	is (Ibs), B	earing	Capacities	(Ibs) a	and Bearing	Lengths (in)		
	⊢				- 16	.55'			
		-							
	37		Attant Total	- 16.00	-	and the second			and the second
	Ŭ.								T.
	0.								16.342
Unfactored:									
Dead	127	6							1276
Factored:		_							
Total	127	6							1276
Bearing:									
Capacity		-							
Beam	590	6							5906
Support	1052	15							10525
Des ratio									
Beam	0.2	2							0.22
Support	0.1	.2							0.12
Load comb	ŧ	1							#1
Length	1.5	0							1.50
Min req'd	0.50)*							0.50*
Cb	1.0	00							1.00
Cb min	1.0	00							1.00
Cb support	1.0	00							1.00
Fc sup	135	0							1350
*Minimum bearing	ng lengt	th setting us	ed: 1/2" fo	or end support	rts				
					201.21.24		And the second second		
		LVL n-ply	, 1.8E, 2	200Fb, 1-3/	4"x9-1/	2", 3-ply (5-1/4	"x9-1/2")		
		S	upports: A	II - Lumber n	-ply Colu	umn, D.Fir-L No.:	2		
		Tota	I length: 1	6.3; Clear sp	an: 16.3	; volume = 5.6 c	:u.ft.		
Lateral support: to	op= at	supports, bo	ottom= at	supports; Re	petitive f	actor: applied wh	nere permitted (refer to on	line help)
Analysis vs. A	llowa	able Stres	s and D	eflection	using N	DS 2015 :			
Criterion		Analysis	Value	Design	Value	Unit	Analueie/I	Design	
Shear		fv =	34	Fv! =	256	nei	fy/Fy!	= 0.1	3

Fb' = 961

0.82 = L/240

psi

in

fb/Fb' = 0.82

0.45

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO				
S048 W. Plano Partway Ofc: (972) 354.8855 Suite 200 Fac: (972) 354.8856 Plano. TX 75093 www.elisongage.com	Description ROOF AND WALL DESIGN (SEC. RW)	Calc. by BG	4/9/2024	Description RW19	

 JAMB AT NON LOAD-BEARING WEST WINDOW, SPAN = 16'-3" DL = 1500 LBS

WIND LOAD = 26.30 PSF x 1' = 25 PLF

USE H-4 2x6 SYP #2, (3) KING AND (1) JACK STUD

	D	esign Check Ca WoodWorks	Iculation Sheet Sizer 11.1		
_oads:					
Load	Type	Distribution	Location [ft] Start End	Magnitude Start End	Unit
DL	Dead	Axial	(Ecc. = 0.00")	1500	lbs
WL	Wind C&C	Full UDL		25.0	plf
Self-weight	Dead	Axial		82	lbs
ase	P				
11 11.5424	Ū				14'
Unfactored: Dead Wind Factored:	175				14'
Unfactored: Dead Wind Factored: L->R	175				14' 175 175

Lumber n-ply, D.Fir-L, No.2, 2x6, 3-ply (4-1/2"x5-1/2")

Support: Non-wood

Total length: 14.0'; Clear span: 14.0'; volume = 2.4 cu.ft.

Pinned base; Load face = width(b); Built-up fastener: nails; Ke x Lb: 1.0 x 0.0 = 0.0 [ft]; Ke x Ld: 1.0 x 14.0 = 14.0 [ft]; Repetitive factor: applied where permitted (refer to online help);

Analysis vs. Allowable Stress and Deflection using NDS 2015 :

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 11	Fv' = 288	psi	fv/Fv' = 0.04
Bending(+)	fb = 324	Fb' = 2153	psi	fb/Fb' = 0.15
Axial	fc = 64	Fc' = 462	psi	fc/Fc' = 0.14
Axial Bearing	fc = 64	Fc* = 1336	psi	fc/Fc* = 0.05
Combined (as	ial compression -	side load bendi	ng)	Eq.3.9-3 = 0.19
Live Defl'n	0.15 = <l 999<="" td=""><td>0.93 = L/180</td><td>in</td><td>0.16</td></l>	0.93 = L/180	in	0.16
Total Defl'n	0.15 = <l 999<="" td=""><td>0.93 = L/180</td><td>in</td><td>0.16</td></l>	0.93 = L/180	in	0.16

ELLISON GAGE & ASSOCIATES, PLLC	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
548 W. Plans Parkway Ofc: (972) 354-8855 5418 200 Plano, 1X 75093 www.elitongage.com	Description ROOF AND WALL DESIGN (SEC. RW)	Calc. by BG	4/9/2024	Description RW20

BACKUP INFORMATION:

Simpson Strong-Tie® Wood Construction Connectors

H/TSP

Seismic and Hurricane Ties (cont.)

These products are available with additional corrosion protection. For more information, see p. 14.

For stainless-steel fasteners, see p.21.

Many of these products are approved for installation with Strong-Drive® SD Connector screws. See pp. 348–352 for more information. SD

			Fasteners (in.)			DF/SP Allowable Loads			Uplift with	SPF/HF Allowable Loads			Is Uplift with	
	Model No.	Ga.	To Rafters/Truss	То	То	Uplift	Uplift Lateral		0.131" x 1 1/2" Nails	Uplift	Lateral (160)		0.131" x 11/2" Nails	Code Bef.
				Plates	Studs	(160)	Ft	F ₂	(160)	(160)	F1	F ₂	(160)	
	H1	18	(6) 0.131 x 1 1/2	(4) 0.131 x 21/2	-	480	510	190	455	425	440	165	370	IBC, FL, LA
	H1.81Z	18	(6) 0.131 x 1 1/2	(4) 0.131 x 2½	-	540	440	170	460	465	380	130	395	_
	H2A	18	(5) 0.131 x 1 1/2	(2) 0.131 x 1 ½	(5) 0.131 x 1 ½	525	130	55	-	495	130	55		IBC, FL, LA
SS	H2ASS	18	(5) 0.131 x 1 1/2	(2) 0.131 x 1 ½	(5) 0.131 x 1 ½	400	130	55	400	345	130	55	345	-
	H2.5A	18	(5) 0.131 x 2 1/2	(5) 0.131 x 2½		700	110	110	625	615	110	110	540	IBC, FL, LA
SS	H2.5ASS	18	(5) 0.131 x 2½	(5) 0.131 x 2½	-	440	75	70	365	380	75	70	310	-
	H2.5T	18	(5) 0.131 x 21/2	(5) 0.131 x 21/2	1	590	135	145	480	565	135	145	475	
	H3	18	(4) 0.131 x 2½	(4) 0.131 x 2½	—	400	210	170	400	365	180	145	290	IDG, FL, LA

Simpson Strong-Tie® Wood Construction Connectors

DSP/SSP/SP/SPH/RSP4/TSP/CS

Stud Plate Ties (cont.)

These products are available with additional corrosion protection. For more information, see p. 14.

SS For stainless-steel

fasteners, see p.21.

Many of these products are approved for installation SD with Strong-Drive® SD Connector screws. See pp. 348-352 for more information.

	Dimensi	ions (in.)			Fasten	Fasteners (in.) Allowable Uplift Loads							
Model			Stud	Plate			DI	F/SP	SF	F/HF	Code		
No. W	NO.	w	L	5100	Stud	Width	Stud	Plate	Side ⁸ (160)	Center ⁹ (160)	Side ⁸ (160)	Center ⁹ (160)	Ref.
SP1	31/2	51/16	2x	-	(6) 0.148 x 3	(4) 0.148 x 3	555	555	535	535			
SP2	31/2	6%	2x		(6) 0.148 x 3	(6) 0.148 x 3	1,010	1,010	605	605	1		
SP4	3%6	71/4	2x	4x	(6) 0.148 x 1 1/2		415	825	355	710	1		
SP6	5%6	73/4	2x	<u>6x</u>	(6) 0.148 x 1 1/2		415	825	355	710	1		
SP8	75%6	8%6	2x	8x	(6) 0.148 x 1 1/2		415	825	355	710	1		

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO				
S068 W. Plane Parkway Ofc: [972] 354-8855 Suife 200 Fax: [972] 354-8856 Plane, TX 75093 www.ellisongage.com	Description ROOF AND WALL DESIGN (SEC. RW)	Cale. by BG	4/9/2024	Description RW21	

Simpson Strong-Tie® Wood Construction Connectors

H/TSP

Seismic and Hurricane Ties (cont.)

These products are available with additional corrosion protection. For more information, see p. 14. SS For stainless-steel fasteners, see p.21.

less-steel 5, see p.21.

Many of these products are approved for installation with Strong-Drive® SD Connector screws. See pp. 348–352 for more information.

	1.1	Fasteners (in.)			DF/SP Allowable Loads Upl			Uplift with	SPF/HF Allowable Loads			S Uplift with		
	Model No.	Ga.	То	То	То	Uplift	Latera	al (160)	0.131" x 11/2" Nails	Uplift	Latera	ıl (160)	0.131" x 1 1/2" Nails	Code Ref.
			Rafters/Truss	Plates	Studs (160) F ₁ F ₂ (160		(160)	(160)	F1	F ₂	(160)			
	H1	18	(6) 0.131 x 1 ½	(4) 0.131 x 21/2		480	510	190	455	425	440	165	370	IBC, FL, LA
	H1.81Z	18	(6) 0.131 x 1 ½	(4) 0.131 x 21/2	-	540	440	170	460	465	380	130	395	-
	H2A	18	(5) 0.131 x 1 ½	(2) 0.131 x 1 1/2	(5) 0.131 x 1 ½	525	130	55	-	495	130	55	-	IBC, FL, LA
SS	H2ASS	18	(5) 0.131 x 1 ½	(2) 0.131 x 1 1/2	(5) 0.131 x 1 ½	400	130	55	400	345	130	55	345	-
	H2.5A	18	(5) 0.131 x 21/2	(5) 0.131 x 2½		700	110	110	625	615	110	110	540	IBC, FL, LA
SS	H2.5ASS	18	(5) 0.131 x 2½	(5) 0.131 x 2½	-	440	75	70	365	380	75	70	310	-
	H2.5T	18	(5) 0.131 x 21/2	(5) 0.131 x 2½	-	590	135	145	480	565	135	145	475	
	H3	18	(4) 0.131 x 2½	(4) 0.131 x 2½	-	400	210	170	400	365	180	145	290	IDO, FL, LA
SS	H3SS	18	(4) 0.131 x 2½	(4) 0.131 x 2½		280	145	120	275	225	100	85	210	
	H6 (to Plates)	16	-	(8) 0.131 x 21/2	(8) 0.131 x 2½	930	-	-	-	800	-	-	-	
	H6 (to Rim)	16	(8) 0.131 x 2½		(8) 0.131 x 2½	1,230	-	-	-	1,065	-			
	H7Z	16	(4) 0.131 x 2½	(2) 0.131 x 1 ½	(8) 0.131 x 2½	830	410	-	-	715	355	-	-	IDU, FL, LA
	H8	18	(5) 0.148 x 1 1/2	(5) 0.148 x 1 ½	-	780	95	90	630	710	95	90	510	
SS	H8SS	18	(5) 0.148 x 1 ½	(5) 0.148 x 1 ½	-	610	90	120	440	370	90	55	335	

Simpson Strong-Tie® Wood Construction Connectors

A

Angle

Our line of angles provides a way to make a wide range of 90° connections.

Material: A21 and A23 – 18 ga.; all other A angles – 12 ga.

Finish: Galvanized. Some products available in stainless steel or ZMAX[®] coating. See Corrosion Information, pp. 12–15.

Installation:

Use all specified fasteners; see General Notes

Codes: See p. 11 for Code Reference Key Chart

These products are available with additional corrosion protection. For more information, see p. 14.

8D Many of these products are approved for installation with Strong-Drive" SD Connector screws, See pp. 348–352 for more information.

Model	Dimensions (in.)				Fasteners Allowable Loa (in.) DF/SP		Allowable Loads DF/SP		Code	
No.					Base		Post	(1	60)	Ref.
	W1	w ₂	Ľ	Bolts	Nails	Bolts	Nails	F1 ³	F2	
A21	2	11/2	1%	-	(2) 0.148 x 1 ½	-	(2) 0.148 x 1 1/2	330	150	
A23	2	11/2	23/4	-	(4) 0.148 x 1 1/2	-	(4) 0.148 x 1 ½	680	535	IBC.
A33	3	3	1½	-	(4) 0.148 x 3	-	(4) 0.148 x 3	765	340	FL, LA

SIMPSON

Strong-Tie

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
S068 W. Plano Parkway Ofc: (972) 354-8855 Sule 200 Fox: (972) 354-8856 Plano. 1X 75093 www.elikongage.com	Description ROOF AND WALL DESIGN (SEC. RW)	Calc. by BG	4/9/2024	Description RW22

Simpson Strong-Tie® Wood Construction Connectors CS/CMST/CMSTC/CSHP

Coiled Straps (cont.)

These products are available with additional corrosion protection. For more information, see p. 14.

For stainless-steel fasteners, see p.21.

SD Many of these products are approved for installation with Strong-Drive® SD Connector screws. See pp. 348–352 for more information.

[Madal			DF/SP	•	SPF/HF		Allowable	Contra	
	No.	Total L	Ga.	Fasteners (in.)	End Length (in.)	Fasteners (in.)	End Length (in.)	Tension Loads (160)	Ref.	
	0110710	101	10	(74) 0.162 x 21/2	33	(84) 0.162 x 21/2	38	9,215		
	CMSTIZ	40	40'	IZ	(86) 0.148 x 2 1⁄2	39	(98) 0.148 x 21/2	44	9,215]
		5010		(56) 0.162 x 2½	26	(66) 0.162 x 21/2	30	6,475		
	CMS114	52.92	14	(66) 0.148 x 2½	30	(76) 0.148 x 2½	34	6,475		
	CMSTC16	54'	16	(50) 0.148 x 3¼	20	(58) 0.148 x 3 ¼	25	4,690		
				(26) 0.148 x 2 ½	15	(30) 0.148 x 2 ½	16	2,490		
	CS14	100'	14	(30) 0.131 x 2½	16	(36) 0.131 x 2½	19	2,490	1000	
-	0010	1501		(20) 0.148 x 2 1/2	11	(22) 0.148 x 21/2	13	1,705	IBC, FL, LA	
55	CS16	150	16	(22) 0.131 x 2½	13	(26) 0.131 x 21/2	15	1,705	1	
	0000	0501		(12) 0.148 x 2 ½	7	(14) 0.148 x 2½	9	1,030		
	CS20	250'	20	(14) 0.131 x 2 ½	9	(16) 0.131 x 2½	9	1,030		
			-						-	

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO				
50.68 W. Plane Parkway Ofc: (972) 354-8855 Suite 200 Fax: (972) 354-8855 Plane, TX 75093 www.ellisongage.com	Description ROOF AND WALL DESIGN (SEC. RW)	Calc. by BG	4/9/2024	Description RW23	

NDS TABLE 12N NAIL SHEAR VALUES:

Side Member Thickness	Nail Diameter	Common Wire Nail	Box Nail	Sinker Nail	G=0.67 Red Oak	G=0.55 Mixed Maple Southern Pine	G=0.5 Dauglas Fir-Larch	G=0.49 Douglas Fir-Larch (N)	G=0.46 Dαuglas Fir(S) Hem-Fir(N)	G=0.43 Hem-Fir	G=0.42 Spruœ-Pine-Fir
t _s in	D in	Pen	nvwe	iaht	lbs.	lbs.	lbs	lbs	lbs	lbs.	lbs.
3/4	0.099		6d	7d	73	61	55	54	51	48	47
	0.113	6d	8d	8d	94	79	72	71	65	58	57
	0.120		10d	10d	107	89	80	77	71	64 70	62
	0.120	8d	IUU		121	101	90	87	80	73	70
	0.135		16d	12d	135	108	94	91	84	76	74
	0.148	10d	20d	16d	154	121	105	102	94	85	83
	0.162	160	400	204	183	138	121	11/	108	99	96
	0.192	20d		30d	206	157	138	134	125	114	111
	0.207	30d		40d	216	166	147	143	133	122	119
	0.225	40d			229	178	158	154	144	132	129
1	0.244	500	6d	600 7d	73	182 61	162	158	<u>14/</u> 51	130	132
	0.113	6d ⁴	8d	8d	94	79	72	71	67	63	61
	0.120	111111		10d	107	89	81	80	76	71	69
	0.128		10d		121	101	93	91	86	80	79
	0.131	8d	164	124	127	106	97	95	90	84	82
	0.135	10d	20d	16d	154	128	118	115	109	99	96
	0.162	16d	40d		184	154	141	137	125	113	109
	0.177			20d	213	178	155	150	138	125	121
3	0.192	20d		30d	222	183	159	154	142	128	124
	0.225	40d		400	268	202	177	171	159	144	140
	0.244	50d	_	60d	274	207	181	175	162	148	143
1-1/4	0.099	al al	6d ⁴	7d4	73	61	55	54	51	48	47
	0.113	6d 4	8d	8d*	94	79	72	71	67	63	61
-	0.120		10d	100	107	101	81	91	86	80	79
	0.120	8d ⁴	100		127	106	97	95	90	84	82
	0.135	-u	16d	12d	135	113	103	101	96	89	88
	0.148	10d	20d	16d	154	128	118	115	109	102	100
	0.162	16d	40d	204	184	154	141	138	131	122	120
	0.192	20d		30d	222	185	170	166	157	145	140
	0.207	30d		40d	243	203	186	182	169	152	147
	0.225	40d		004	268	224	200	193	177	160	155
1.1/2	0.244	500		500 7d ⁴	276	230	204	197	181	103	158
1-1/2	0.099		8d4	844	04	79	72	71	67	63	61
	0.120		00	10d	107	89	81	80	76	71	69
	0.128		10d		121	101	93	91	86	80	79
	0.131	8d ⁴	101		127	106	97	95	90	84	82
	0.135	104	16d	12d	135	113	110	101	96	89	88
	0.148	16d	40d	100	184	154	141	138	131	122	120
	0.177			20d	213	178	163	159	151	141	138
	0.192	20d		30d	222	185	170	166	157	147	144
	0.207	30d	_	40d	243	203	186	182	172	161	158
	0.244	50d		60d	276	230	211	206	196	181	175

AWNING DESIGN

•	DEAD LOADS:	MAX	MIN (UPLIFT)
	METAL DECK	2.0 PSF	2.0 PSF
	FRAMING	4.0 PSF	2.0 PSF
	MISC	4.0 PSF	0.0 PSF
	TOTAL	<u>10 PSF</u>	<u>4 PSF</u>

LIVE LOADS:
ROOF
20 PSF

20 PSF (NOT TO BE REDUCED)

- SNOW LOADS: (SEE LOAD CRITERIA SECTION) DESIGN ROOF SNOW LOAD, Pf = 20 PSF x 1.2 (THERMAL FACTOR) = 21.8 PSF
- SNOW DRIFT: PER LOAD CRITERIA SHEET PAGE LC2, ADD 15 PSF x 3.4' LONG TRIANGULAR SNOW DRIFT TO AWNINGS.
- WIND LOADS: (SEE NEXT PAGE)
- SEISMIC LOADS

 $F_p = 0.4(1.0)(0.106)W_p (1+2(1)) / 2.5(1.0) = 0.051 W_p$ <- CONTROLS

 $\begin{array}{l} F_p \; \text{SHALL NOT BE GREATER THAN,} \\ F_p = 1.6 \; S_{\text{DS}I_{\text{P}}} W_p & [\text{EQ. 13.3-1}] \\ F_P = 0.170 \; W_p & \end{array}$

F_P = 0.051 (30 PSF) = 1.5 PSF <- WIND CONTROLS

VERTICAL SEISMIC FORCE: $F_V = \pm 0.2 \ S_{DS}W_p$

 $F_V = \pm 0.021 W_p$

 $F_V = \pm 0.021 (30 \text{ PSF}) = \pm 0.64 \text{ PSF}$ <- WIND CONTROLS

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO				
5068 W. Plane Parkway Ofc: (P72) 354-8855 Suite 200 Fice (P72) 354-8856 Plane, TX 75093 www.ellisongage.com	Description	Calc by.	Date	Sheet No.	
	AWNING DESIGN (SEC. A)	BG	04/24/2024	A2	

WIND DESIGN PRESSURES

HORIZONTAL WIND FORCE:

 $\begin{array}{ll} \mbox{PER ASCE 7-16, SECTION 27.3.4} \\ p_{LAT} = q_pGC_{pn} & [EQ.\ 27.3-2] \\ \mbox{WINDWARD } GC_{pn} = 1.5 \\ \mbox{LEEWARD } GC_{pn} = -1.0 \end{array}$

qp = VELOCITY PRESSURE = 0.00256	KzKztKdKeV ²
BASIC WIND SPEED (V)	= 110 MPH
EXPOSURE	= C
Н	= 10 FT
Kz	= 0.85
Kzt	= 1.0
Kd	= 0.85
Ke	= 0.968

 $q_h = 0.00256(0.85)(1.0)(0.85)(0.959)(110)^2 = 21.6 PSF$

$p_{LAT} = q_h G C_{pn}$	= 1.5(21.6)	= 32.4 PSF (WINDWARD, LRFD)
	= -1.0(21.6)	= -21.6 PSF (LEEWARD, LRFD)

VERTICAL WIND FORCE:

PER ASCE 7-16, SECTION 30.11

 $P = q_h (GC_P)$ [EQ. 30.11-1] $q_h = 21.6 PSF$ Hc / He = 10' / 14' = 0.71 GC_P = +0.90, -0.90 (FIGURE 30.11-1B)

P = +19.4 PSF (LRFD), +11.7 PSF (ASD) P = -19.4 PSF (LRFD), -11.7 PSF (ASD)

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			
Sulte 200	Description	Calc by.	Date	Sheet No.
Plano, TX 75073 WWW.ellisongage.com	AWNING DESIGN (SEC. A)	BG	04/24/2024	A3

AWNING #1 DESIGN

3-S401:

BELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO					
Consulting Structural Englishers Suite 200 Fax: [772] 354-8855 Suite 200 Fax: [772] 354-8856 Piano, 1X 75093 www.elisongage.com	Description AWNING DESIGN (SEC. A)	Calc by. BG	Date 04/24/2024	Sheet No. A4		

METAL DECK DESIGN:

MAX. UNIFORM GRAVITY LOAD = 10 PSF DL + 37 PSF SL = 47 PSF TL DECK SPAN = 1'-6"

WIND UPLIFT FORCE = 19.4 PSF (LRFD) = 11.7 PSF (ASD)

USE 1 1/2" – 22 GA TYPE B ROOF DECK

22 Gage 1.5B-36 Grade 50 Uniform Allowable Load Table, ASD (psf) For End Lapped Deck

36 / 7 Connection Pattern to Supports with 5/8" Visible Dia. Arc Spot Weld

Support Member A36 $0.25 \le t_2$ (in.)

Inward Unif	form Allowal	ole Load Tal	ole, ASD (ps	f)					
Span	(ft-in)	1'-6"	2'-0"	2'-6"	3'-0"	3'-6"	4'-0"	4'-6"	5'-0"
1	Wn/Ω	1076	807	540	375	275	211	167	135
1	L/240	-	-	-	-	237	159	112	81
2	Wn/Ω	699	524	419	349	284	219	173	141
2	L/240	-	-	-	-	-	-	-	
2	Wn/Ω	794	596	476	397	340	271	215	175
3	L/240	1.0			5	15	0.753	3	

plift (Out	vard) Unifor	m Allowabl	e Load Table	e, ASD (psf)					
Span	(ft-in)	1'-6"	2'-0"	2'-6"	3'-0"	3'-6"	4'-0"	4'-6"	5'-0"
	Wn/Ω	648	486	389	324	278	223	176	143.0
1	Rn/Ω	648	486	389	324	278	243	216	194
	L/240		-	-	-	272	182	128	93
	Wn/Ω	518	389	311	259	222	194	164	133
2	Rn/Ω	518	389	311	259	222	194	173	155
	L/240	-	-				-		
	Wn/Ω	589	442	353	294	252	221	196	166
3	Rn/Ω	589	442	353	294	252	221	196	177
	L/240	-	-	-	-	-	-	-	153

INWARD ALLOWABLE UNIFORM LOAD = 1076 PSF > 47 PSF OK OUTWARD (UPLIFT) ALLOWABLE UNIFORM LOAD = 648 PSF > 11.7 PSF OK

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO					
5068 W. Plane Parkway Off: (P72) 354-8835 Suite 200 Figure 100 Plano, TX 75093 www.ellisongage.com	Description	Calc by.	Date	Sheet No.		
	AWNING DESIGN (SEC. A)	BG	04/24/2024	A5		

DESIGN C10x15.3:

L = 5.75 FT

UNFACTORED LOADS	TRIB AREA						
DL =	30 PSF	Х	0.75 =	22.5 PLF			
L _R =	20 PSF	Х	0.75 =	15.0 PLF			
SL =	37 PSF	Х	0.75 =	27.75 PLF			
0.6W =	11.7 PSF	Х	0.75 =	8.78 PLF			
$0.6W_{UPLIFT} =$	-11.7 PSF	Х	0.75 =	-8.78 PLF			

ASD LOAD COMBINATIONS

D =	22.5 PLF	
D+L _R =	37.5 PLF	
D+S =	50.3 PLF	<controls< td=""></controls<>
D+.75L _R +.75(.6W) =	40.3 PLF	
D+.75SL+.75(.6W) =	49.9 PLF	

UNFACTORED UPLIFT		
0.6DL + 0.6W =	8.2 PLF	NO NET UPLIFT

USE <u>C10x15.3</u>

STEEL CODE: AISC 360-10 LRFD

SPAN IN	FORMATI	ION (ft):	I-End (0.0	0,0.00)	J-End (7.25	,0.00)		
Beam	Size (User	Selected)	=	C10X15.	3		Fy	= 36.0 ksi
Total	Beam Lengt	h (ft)	=	7.25				
Canti	lever on left ((ft)	=	0.75				
Canti	lever on right	t (ft)	=	0.75				
Mp (kip-ft)	= 47.70)					
Top f	lange not bra	aced by dec	king.					
LINE LO	ADS (k/ft):							
Load	Dist (ft)	DL	LL	PartL	1			
1	0.000	0.023	0.050	0.000)			
	0.750	0.023	0.050	0.000)			
2	0.750	0.023	0.050	0.000)			
	6.500	0.023	0.050	0.000)			
3	6.500	0.023	0.050	0.000)			
	7.250	0.023	0.050	0.000)			
SHEAR	(Ultimate):	Max Vu (1.2DL+1.	5LL) = 0.3	1 kips 0.90	Vn = 46.66	kips	
MOMEN	TS (Ultima	te):						
Span	Cond	Loa	dCombo	M	lu a	Lb	Cb	Phi
				kip-	ft ft	ft		
Left	Max -	1.21	DL+1.6LL	-0.	.0 0.8	0.8	1.00	0.90
C .		1.01	AT I A CTT	0	1 21	- 0		0.00

~pear	Cond	Dougoonioo				20	00		
			kip	-ft	ft	ft			kip-ft
Left	Max -	1.2DL+1.6LL	-0	.0	0.8	0.8	1.00	0.90	42.93
Center	Max +	1.2DL+1.6LL	0	.4	3.6	5.8	1.14	0.90	42.00
	Max -	1.4DL	-0	.0	3.6	5.8	1.15	0.90	42.32
Right	Max -	1.2DL+1.6LL	-0	.0	6.5	0.8	1.00	0.90	42.93
Controlling		1.2DL+1.6LL	0	.4	3.6	5.8	1.14	0.90	42.00
REACTIO	NS (kips):								
			Left	Rig	ht				
DL rea	ction		0.08	0.	08				
Max +I	LL reaction		0.18	0.	18				
Max -L	L reaction		-0.00	-0.	00				
Max +t	otal reaction (factored)	0.39	0.	39				

Phi*Mn

DESIGN HSS2 1/2x2 1/2x3/16:

L = 5.75 FT

UNFACTORED LOADS	TRIB AREA					
DL =	30 PSF	Х	0.75 =	22.5 PLF		
L _R =	20 PSF	Х	0.75 =	15.0 PLF		
SL =	37 PSF	Х	0.75 =	27.75 PLF		
0.6W =	11.7 PSF	Х	0.75 =	8.78 PLF		
$0.6W_{UPLIFT} =$	-11.7 PSF	Х	0.75 =	-8.78 PLF		

ASD LOAD COMBINATIONS	
D =	22.5 PLF
D+I =	27 5 DI E

$D+L_R =$	37.5 PLF	
D+S =	50.3 PLF	<controls< th=""></controls<>
D+.75L _R +.75(.6W) =	40.3 PLF	
D+.75SL+.75(.6W) =	49.9 PLF	

UNFACTORED UPLIFT		
0.6DL + 0.6W =	8.2 PLF	NO NET UPLIFT

USE HSS2 1/2x2 1/2x3/16

INPUT DATA & DESIGN SUMMARY MEMBER SHAPE (Tube, Pipe, or WF) &	SIZE	HSS	2-1/2X2-	1/2X3/16 -	< ==	Tube
STEEL YIELD STRESS	F _y =	46	ksi	_	_	
AXIAL COMPRESSION FORCE	P =	0	kips, AS	D		
STRONG AXIS EFFECTIVE LENGTH		$KL_x =$	5.75	ft		
WEAK AXIS EFFECTIVE LENGTH		$KL_y =$	5.75	ft		
STRONG AXIS BENDING MOMENT		$M_{rx} =$	0.4	ft-kips, A	SD	
STRONG AXIS BENDING UNBRACED I	ENGTH		$L_b =$	5.75	ît, (AISC	360-05 F2.2.c)
STRONG DIRECTION SHEAR LOAD, AS	SD V	strong =	0.22	kips		
WEAK AXIS BENDING MOMENT		$M_{ry} =$	0	ft-kips, A	SD	
WEAK DIRECTION SHEAR LOAD, ASD	ν	/ _{weak} =	0	kips		

THE DESIGN IS ADEQUATE.

ANALYSIS

CHECK COMBINED COMPRESSION AND BENDING CAPACITY (AISC 360-05, H1)

$\begin{cases} \frac{P_r}{P_c} + \frac{8}{9} \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) , & for \\ \frac{P_r}{2P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) , & for \end{cases}$	$\frac{P_r}{P_c} \ge 0.2$ $\frac{P_r}{P_c} < 0.2$	=	0.13	<	1.0	[Satisf	actory]	
Where $P_c = P_n / \Omega_c =$	49	/ 1.67 =	29.44	kips, (Al	SC 360-05 C	Chapter	E)	
			>	P _r	[Satisfact	ory]		
$M_{cx} = M_n / \Omega_b =$	5.06	/ 1.67 =	3.03	ft-kips, (AISC 360-05	Chapte	er F)	
			>	M _{rx}	[Satisfact	ory]		
$M_{cy} = M_n / \Omega_b =$	5.06	/ 1.67 =	3.03	ft-kips, (AISC 360-05	Chapte	er F)	
			>	M _{ry}	[Satisfact	ory]		
CHECK SHEAR CAPACITY (AISC 360-05, G	2)							
$V_{n,strong} / \Omega_V = 368$	3.0 / 1.67 =	220.4	kips	>	$V_{strong} =$	0.2	kips	[Satisfactory]
$V_{n, weak} / \Omega_V = 73$	3.6 / 1.67 =	44.1	kips	>	V weak =	0.0	kips	[Satisfactory]

FIND LOAD ON HANGER ROD:

UNFACTORED LOADS		Т	RIB AREA	
DL =	30 PSF	Х	16.3 =	489 LBS
L _R =	20 PSF	Х	16.3 =	326 LBS
SL =	37 PSF	Х	16.3 =	604 LBS
0.6W =	11.7 PSF	Х	16.3 =	191 LBS
$0.6W_{UPLIFT} =$	-11.7 PSF	Х	16.3 =	-191 LBS

ASD LOAD COMBINATIONS		
D =	489 LBS	
D+L _R =	816 LBS	
D+S =	1093 LBS	<controls< td=""></controls<>
D+.75L _R +.75(.6W) =	877 LBS	

UNFACTORED UPLIFT		
0.6DL + 0.6W =	179 LBS	NO NET UPLIFT

1085 LBS

D+.75SL+.75(.6W) =

W = LOAD AT HANGER = 1100 LBS / 2 = 550 LBS R_{HANGER} = 550 x 1.25' / 2' = 345 LBS R_{WALL} = 205 LBS

ELLISON GAGE & ASSOCIATES, PLIC Consulting Structural Engineers Sulte 20 Pano, 1X 75093 Free 1971 34-8855 www.elliongage.com	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO				
	Description AWNING DESIGN (SEC. A)	Calc by. BG	Date 04/24/2024	Sheet No. A8	

AWNING #2 DESIGN

4-S401:

BELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers 568 W. Plano Parkway Ofc: (972) 354-8855 Suite 200 Fax (972) 354-8855 Plano, 1X 75093 www.elisongage.com	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO					
	Description AWNING DESIGN (SEC. A)	Calc by. BG	Date 04/24/2024	Sheet No. A9		

METAL DECK DESIGN:

MAX. UNIFORM GRAVITY LOAD = 10 PSF DL + 37 PSF SL = 47 PSF TL

DECK SPAN = 3'-6" WIND UPLIFT FORCE = 19.4 PSF (LRFD) = 11.7 PSF (ASD)

USE 1 1/2" - 22 GA ROOF DECK

22 Gage 1.5B-36 Grade 50 Uniform Allowable Load Table, ASD (psf)

For End Lapped Deck

36 / 7 Connection Pattern to Supports with 5/8" Visible Dia. Arc Spot Weld

Support Member A36 0.25 ≤ t₂ (in.)

Inward Unif	form Allował	ole Load Tal	ole, ASD (ps	f)					
Span	(ft-in)	1'-6"	2'-0"	2'-6"	3'-0"	3'-6"	4'-0"	4'-6"	5'-0"
1	Wn/Ω	1076	807	540	375	275	211	167	135
1	L/240	-		-	-	237	159	112	81
2	Wn/Ω	699	524	419	349	284	219	173	141
2	L/240	-		-	-	-	-	-	
2	Wn/Ω	794	596	476	397	340	271	215	175
3	L/240	150	1	5	5	12	052	3	5

plift (Outward) Uniform Allowable Load Table, ASD (psf)									
Span	(ft-in)	1'-6"	2'-0"	2'-6"	3'-0"	3'-6"	4'-0"	4'-6"	5'-0"
	Wn/Ω	648	486	389	324	278	223	176	143.0
1	Rn/Ω	648	486	389	324	278	243	216	194
	L/240	-	-	-	-	272	182	128	93
	Wn/Ω	518	389	311	259	222	194	164	133
2	Rn/Ω	518	389	311	259	222	194	173	155
	L/240		-				-		
	Wn/Ω	589	442	353	294	252	221	196	166
3	Rn/Ω	589	442	353	294	252	221	196	177
	L/240	-	-	-	-	-	-	-	153

INWARD ALLOWABLE UNIFORM LOAD = 275 PSF > 47 PSF OK OUTWARD (UPLIFT) ALLOWABLE UNIFORM LOAD = 278 PSF > 11.7 PSF OK

egg

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers State 20 Prano, 1X 75093 www.ellisongage.com	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO				
	Description AWNING DESIGN (SEC. A)	Cale by. BG	Date 04/24/2024	Sheet No. A10	

= 36.0 ksi

DESIGN C10x15.3:

L = 6.0 FT

UNFACTORED LOADS	TRIB AREA						
DL =	20 PSF	Х	1.5 =	30 PLF			
L _R =	20 PSF	Х	1.5 =	30.0 PLF			
SL =	37 PSF	Х	1.5 =	55.5 PLF			
0.6W =	11.7 PSF	Х	1.5 =	17.6 PLF			
$0.6W_{UPLIFT} =$	-11.7 PSF	Х	1.5 =	-17.6 PLF			

ASD LOAD COMBINATIONS

D =	30.0 PLF	
D+L _R =	60.0 PLF	
D+S =	85.5 PLF	<controls< td=""></controls<>
D+.75L _R +.75(.6W) =	65.7 PLF	
D+.75SL+.75(.6W) =	84.8 PLF	

UNFACTORED UPLIFT		
0.6DL + 0.6W =	7.5 PLF	NO NET UPLIFT

USE <u>C10x15.3</u>

STEEL CODE: AISC 360-10 LRFD

SPAN IN	FORMATI	ON (ft): I	-End (0.00,	0.00) J-En	d (7.50,0.0	00)	
Beam	Size (User S	Selected)	= (C10X15.3			Fy
Total	Beam Length	h (ft)	= 7	.50			
Canti	lever on left (ft)	= 0	.75			
Canti	lever on right	(ft)	= 0	.75			
Mp (kip-ft)	= 47.70					
Top f	lange not bra	ced by deck	cing.				
LINE LO	ADS (k/ft):						
Load	Dist (ft)	DL	LL	PartL			
1	0.000	0.030	0.083	0.000			
	0.750	0.030	0.083	0.000			
2	0.750	0.030	0.083	0.000			
	6.750	0.030	0.083	0.000			
3	6.750	0.030	0.083	0.000			
	7.500	0.030	0.083	0.000			
SHEAR	Ultimate):	Max Vu (1	.2DL+1.6L	L) = 0.51 kip	os 0.90V1	n = 46.66 l	cips
MOMEN	TS (Ultima	te):					
Span	Cond	Load	Combo	Mu	a	Lb	Cb
				kip-ft	ft	ft	

Span	Cond	LoadCombo	N	ſu	a	Lb	Cb	Phi	Phi*Mn
			kip	-ft	ft	ft			kip-ft
Left	Max -	1.2DL+1.6LL	-0	.0	0.8	0.8	1.00	0.90	42.93
Center	Max +	1.2DL+1.6LL	0	.7	3.8	6.0	1.14	0.90	41.36
	Max -	1.2DL+1.6LL	-0	.0	3.8	6.0	1.20	0.90	42.93
Right	Max -	1.2DL+1.6LL	-0	.0	6.8	0.8	1.00	0.90	42.93
Controlling		1.2DL+1.6LL	0	.7	3.8	6.0	1.14	0.90	41.36
REACTIO	NS (kips):								
			Left	Ri	ght				
DL read	ction		0.11	0	.11				
Max +I	L reaction		0.32	0	.32				
Max -L	L reaction		-0.00	-0	.00				
Max +t	otal reaction (factored)	0.64	0	.64				

DESIGN HSS2 1/2x2 1/2x3/16:

L = 6.0 FT

UNFACTORED LOADS	TRIB AREA						
DL =	20 PSF	Х	1.5 =	30 PLF			
L _R =	20 PSF	Х	1.5 =	30.0 PLF			
SL =	37 PSF	Х	1.5 =	55.5 PLF			
0.6W =	11.7 PSF	Х	1.5 =	17.6 PLF			
0.6W _{UPLIFT} =	-11.7 PSF	Х	1.5 =	-17.6 PLF			

ASD LOAD COMBINATIONS

30.0 PLF	
60.0 PLF	
85.5 PLF	<controls< td=""></controls<>
65.7 PLF	
84.8 PLF	
7.5 PLF	NO NET UPLIFT
	30.0 PLF 60.0 PLF 85.5 PLF 65.7 PLF 84.8 PLF 7.5 PLF

USE HSS2 1/2x2 1/2x3/16

INPUT DATA & DESIGN SUMMARY MEMBER SHAPE (Tube, Pipe, or WF) &	SIZE	HSS	2-1/2X2-	1/2X3/16	= Tube
STEEL YIELD STRESS	$F_y =$	46	ksi		
AXIAL COMPRESSION FORCE	P =	0	kips, AS	D	
STRONG AXIS EFFECTIVE LENGTH	1	$KL_{x} =$	6	ft	
WEAK AXIS EFFECTIVE LENGTH	1	$KL_y =$	6	ft	
STRONG AXIS BENDING MOMENT		M _{rx} =	0.6	ft-kips, A	SD
STRONG AXIS BENDING UNBRACED L	ENGTH		$L_b =$	6	ft, (AISC 360-05 F2.2.c)
STRONG DIRECTION SHEAR LOAD, AS	SD V _{st}	trong =	0.35	kips	
WEAK AXIS BENDING MOMENT		$M_{ry} =$	0	ft-kips, A	SD
WEAK DIRECTION SHEAR LOAD, ASD	V	weak =	0	kips	

THE DESIGN IS ADEQUATE.

ANALYSIS

CHECK COMBINED COMPRESSION AND BENDING CAPACITY (AISC 360-05, H1)

$\begin{cases} \frac{P_r}{P_c} + \frac{8}{9} \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) , & \text{for } \frac{P_r}{P_c} \\ \frac{P_r}{2P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) , & \text{for } \frac{P_r}{P_c} \end{cases}$	≥ 0.2< 0.2	=	0.20	<	1.0	[Satisf	actory]	
Where $P_c = P_n / \Omega_c =$	48	/ 1.67 =	28.50	kips, (AlS	C 360-05 C	hapter l	E)	
			>	Pr	[Satisfact	ory]		
$M_{cx} = M_n / \Omega_b =$	5.06	/ 1.67 =	3.03	ft-kips, (A	ISC 360-05	Chapte	rF)	
			>	M _{rx}	[Satisfact	ory]		
$M_{cy} = M_n / \Omega_b =$	5.06	/ 1.67 =	3.03	ft-kips, (A	ISC 360-05	Chapte	rF)	
			>	M _{ry}	[Satisfact	ory]		
CHECK SHEAR CAPACITY (AISC 360-05, G2)								
$V_{n,strong} / \Omega_V = 368.0 /$	1.67 =	220.4	kips	>	$V_{strong} =$	0.4	kips	[Satisfactory]
V _{n,weak} / Ω _V = 73.6 /	1.67 =	44.1	kips	>	V _{weak} =	0.0	kips	[Satisfactory]

FIND LOAD ON HANGER ROD:

UNFACTORED LOADS	TRIB AREA			
DL =	20 PSF	Х	25.4 =	508 LBS
L _R =	20 PSF	Х	25.4 =	508 LBS
SL =	37 PSF	Х	25.4 =	939 LBS
0.6W =	11.7 PSF	Х	25.4 =	297 LBS
$0.6W_{UPLIFT} =$	-11.7 PSF	Х	25.4 =	-297 LBS

ASD LOAD COMBINATIONS

D =	508 LBS	
D+L _R =	1015 LBS	
D+S =	1446 LBS	<controls< td=""></controls<>
D+.75L _R +.75(.6W) =	1111 LBS	
D+.75SL+.75(.6W) =	1434 LBS	

UNFACTORED UPLIFT 0.6DL + 0.6W = 126 LBS NO NET UPLIFT

W = LOAD AT HANGER = 1450 LBS / 2 = 725 LBS R_{HANGER} = 725 x 2.25' / 3.5' = 470 LBS R_{WALL} = 725 - 470 = 255 LBS

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
5068 W. Plano Parkway Off: (972) 354-8855 Suite 200 Filano, TX 75093 Www.ellisongage.com	Description	Calc by.	Date	Sheet No.
	AWNING DESIGN (SEC. A)	BG	04/24/2024	A13

HANGER ROD DESIGN

WORST CASE OCCURS AT AWNING #2 MAX ASD TENSILE FORCE T = 470 LBS / 0.707 = 670 LBS MAX ASD COMPRESSIVE FORCE = C = 0 LBS (NO NET UPLIFT)

USE 1" DIAMETER ROD WITH NO. 3 CLEVIS A = 0.79 IN² L = 4.3' r = 0.25 IN TENSION: T_{ALL} = 36 KSI x 0.79 IN² / 1.67 = 17.0 K > 670 LBS **OK**

AWNING CONNECTION TO WALL

WORST CASE LOADING OCCURS AT AWNING #2

VERTICAL FORCE AT WALL = 255 LBS x 2 = 510 LBS

ATTACH CHANNEL TO WALL WITH (2) 3/8" DIA LAG BOLTS AT (5) LOCATIONS (10 TOTAL BOLTS)

SHEAR FORCE PER ANCHOR VANCHOR = 600 LBS / 10 ANCHORS = 60 LBS

LAG SCREW CAPACITY (SEE CALC BELOW):

T_{ALL} = 543 LBS V_{ALL} = 276 LBS

INTERACTION:

0 / 543 + 60 / 276 = 0.22 < 1.0 **OK**

USE 3/8" DIA LAG SCREWS ARE OK

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
Suite 2006 W: Plano P Orckway Oft:: (??2) 354-8855 Suite 200 Fax: (??2) 354-8855 Plano, TX 75093 www.ellisongage.com	Description	Calc by.	Date	Sheet No.
	AWNING DESIGN (SEC. A)	BG	04/24/2024	A14

HANGER ROD CONNECTION TO WALL

HANGER FORCE F = 470 LBS

ATTACH PLATE TO WALL WITH (4) 3/8" DIA LAG BOLTS

SOLVE FOR T, 1.25T + 5.75T = 5.25F + 3.5F T = 590 LBS T_{ANCHOR} = 590 LBS / 2 ANCHORS = 295 LBS PER ANCHOR

SHEAR FORCE PER ANCHOR VANCHOR = 470 LBS / 4 ANCHORS = 120 LBS

LAG SCREW CAPACITY (SEE CALC BELOW):

T_{ALL} = 588 LBS V_{ALL} = 422 LBS

INTERACTION:

295 / 543 + 120 / 276 = 0.978 < 1.0 **OK**

USE (4) 3/8" DIA LAG SCREWS

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
Sude W. Plane Parkway Ofc: (972) 354-8855 Suite 200 Plane, TX 75093 www.elisongage.com	Description AWNING DESIGN (SEC. A)	Calc by. BG	Date 04/24/2024	Sheet No. A15

LAG SCREW CAPACITY IN TENSION:

Design Method	Allowable Stress Design (ASD)	~
Connection Type	Withdrawal loading	~
Fastener Type	Lag Screw	~
Loading Scenario	N/A	~
	Submit Initial Values	

Main Member Type	Douglas Fir-Larch	~
Main Member Thickness	3.5 in.	~
Side Member Type	Steel	~
Side Member Thickness	1/4 in.	~
Washer Thickness	0 in.	~
Nominal Diameter	3/8 in.	~
Length	3 in.	~
Load Duration Factor	C_D = 1.0	~
Wet Service Factor	C_M = 1.0	~
End Grain Factor	C_eg = 1.0	~
Temperature Factor	C_t = 1.0	~

Calculate Connection Capacity		
Connection Yield	Mode Descriptions	Limits of Use
Diaphragm Factor Help	Load Duration Factor Help	Technical Help
Show Printable View	1	

Adjusted ASD Capacity	543 lbs.
-----------------------	----------

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
5068 W. Plano Parkway Ofc. (972) 354-8855 Suite 200 Plano, TX 75093 www.ellisongage.com	Description AWNING DESIGN (SEC. A)	Calc by. BG	Date 04/24/2024	Sheet No. A16

LAG SCREW CAPACITY IN SHEAR:

Main Member Type	Douglas Fir-Larch	~
Main Member Thickness	3.5 in.	~
Main Member: Angle of Load to Grain	0	
Side Member Type	Steel	~
Side Member Thickness	1/4 in.	~
Side Member: Angle of Load to Grain	0	
Washer Thickness	0 in.	~
Nominal Diameter	3/8 in.	~
Length	3 in.	~
Load Duration Factor	C_D = 1.0	~
Wet Service Factor	C_M = 1.0	~
End Grain Factor	C_eg = 1.0	~
Temperature Factor	C_t = 1.0	~
Calculate Connection Capacity		

Connection Yield Mode Descriptions		Limits of Use
Diaphragm Factor Help	Load Duration Factor Help	Technical Help
Show Printable View	1	

Connection Yield Modes

Im	939 Ibs.	
Is	1441 lbs.	
П	452 lbs.	
IIIm	501 Ibs.	
IIIs	323 lbs.	
IV	276 lbs.	

Adjusted ASD Capacity	276 lbs.

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
Solds W. Plano Parkway Ofc. (972) 354-8855 Suite 200 Plano, TX 75093 www.elisongage.com	Description AWNING DESIGN (SEC. A)	Calc by. BG	Date 04/24/2024	Sheet No. A17

CHECK WALL STUDS AT AWNINGS

WALL TRIB AREA FOR WIND = 14'*14'/3 = 65 SF, USE 50 SF TRIB AREA FOR WIND LOADS LRFD WALL WIND PRESSURE = **23.6 PSF** (WORST CASE) LRFD PARAPET WIND PRESSURE = **64.7 PSF** (WORST CASE) LIMIT WALL DEFLECTION TO L/360

LOAD-BEARING WALLS AT AWNING #1 TOP PLATE EL = 112'-4" DL FROM WALL ABOVE = 20 PSF x 20.2' - 12.3' = 160 PLF ROOF DL = 25 PSF x 17' / 2 = 220 PLF ROOF LL = 20 PSF x 17' / 2 = 170 PLF ROOF SL = 35 PSF x 17' / 2 = 300 PLF HORIZ LOAD FROM AWNING HANGER ROD: P_{HORIZ} = 345 LBS x 0.67 = 230 LBS (ASD) APPLIED AT 10.4' VERT LOAD FROM HANGER ROD AND CANOPY P_{VERT} = 345 LBS + 150 LBS = 500 LBS x 0.67 = 350 LBS

USE 2x6 SYP #2 WALL STUDS SPACED AT 16" OC

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
5048 W. Plane Parkway Oft: (972) 354-8855 Suite 20 Fax (972) 354-8856 Plane, TX 75093 www.ellisongage.com	Description AWNING DESIGN (SEC. A)	Calc by. BG	Date 04/24/2024	Sheet No. A18

 LOAD-BEARING WALLS AT AWNING #2 HANGER ROD LOAD IS APPLIED TO 2x FRAMING ABOVE TOP PLATE (EL=13.4')

TOP OF WALL = 20'-2"

HORIZ LOAD FROM AWNING HANGER ROD: P_{HORIZ} = 470 LBS (ASD) APPLIED AT 13.4' VERT LOAD FROM HANGER ROD P_{VERT} = 470 LBS

USE 2x6 SYP #2 WALL STUDS SPACED AT 16" OC

LISON GAGE ASSOCIATES, PLLC Isulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
W. Plano Parkway Ofc; (972) 354-8855 200 Fax: (972) 354-8856 , TX 75093 www.elisongage.com	Description AWNING DESIGN (SEC. A)	Calc by. BG	Date 04/24/2024	Sheet No. A19

7.766'

Loads:

Load	Type	Distribution	Pat-	Locatio	n [ft]	Magnitude	Unit
			tern	Start	End	Start En	1
WL	Wind C&C	Partial Area	No	0.00	1.67	23.60(16.0")	psf
HANGER ROD	Dead	Point	No	1.07		470	lbs
PARAPET WL	Wind C&C	Partial Area	No	1.67	7.87	64.70(16.0")	psf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in) :

	7.87	
1.566	3.666	

Unfactored:				
Dead	142	357	-29	
Wind	141	-427	874	1 1
Factored:	105-12-123		050012553	 -
Uplift		-42	-29	
Total	226	357	507	1 1
Bearing:				
Capacity				1 1
Joist	1271	1589	4979	1 1
Support	1406	1758	6445	1 1
Des ratio				1 1
Joist	0.18	0.22	0.10	
Support	0.16	0.20	0.08	1 1
Load comb	#3	#1	#2	
Length	1.50	1.50	5.50	1 1
Min req'd	0.50*	0.50*	0.43**	1 1
Cb	1.00	1.25	1.07	
Cb min	1.00	1.75	1.75	
Cb support	1.00	1.25	1.25	
Fcp sup	625	625	625	

**Minimum bearing length governed by the required width of the supporting member. Maximum reaction on at least one support is from a different load combination than the critical one for bearing

design, shown here, due to Kd factor. See Analysis results for reaction from critical load combination. Bearing for wall supports is perpendicular-to-grain bearing on top plate. No stud design included.

Lumber-soft, S. Pine, No.2, 2x6 (1-1/2"x5-1/2")

Supports: 1,2 - Lumber-soft Sill plate, D.Fir-L No.2; 3 - Lumber Stud Wall, D.Fir-L No.2; Roof joist spaced at 16.0" c/c; Total length: 7.87'; Clear span: 1.669', 2.098', 4.098'; volume = 0.5 cu.ft. Lateral support: top= full, bottom= full; Repetitive factor: applied where permitted (refer to online help);

Analysis vs. Allowable Stress and Deflection using NDS 2015 : Design Value Analysis Value Criterion Analysis/Design Unit Shear fv = 60 Fv' = 157 psi fv/Fv' = 0.38 Fb' = 1035 fb = 217fb/Fb' = 0.21Bending(+) psi Bending(-) fb = 690Fb' = 1840psi fb/Fb' = 0.38Deflection: -0.00 = <L/999Interior Live 0.11 = L/2400.03 in -0.00 = <L/999 0.11 = L/2400.04 Total in 0.12 = L/4160.41 = L/120Cantil. Live in 0.29 0.12 = L/399 0.41 = L/1200.30 Total in

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
Sulte 200	Description	Cale by.	Date	Sheet No.
Piano, TX 75093 www.ellisongage.com	FOUNDATION DESIGN (SEC. F)	BG	04/25/2024	F1

FOUNDATION DESIGN

FOUNDATION DESIGN REQUIREMENTS (FROM SOILS REPORT)

TYPE ALLOWABLE BEARING PRESSURE = 2,100 PSF MINIMUM FOOTING DIMENSION

= SHALLOW SPREAD FOOTINGS

- = 24" (INDIVIDUAL)
- = 18" (CONTINUOUS)
- MINIMUM FOOTING EMBEDMENT = 36" BELOW EXTERIOR GRADE (EXTERIOR FOOTINGS)
- CONTINUOUS FOOTING DESIGN (WORST CASE NORTH/SOUTH WALLS)

WALL DL = 20 PSF x 20.0' = 400 PLF ROOF DL = 25 PSF x 24' / 2 = 300 PLF + 50 PLF (RTU) = 350 PLF ROOF SL = 35 PSF x 24' / 2 = 420 PLF

TOTAL DL = 750 PLF TOTAL LL = 420 PLF

USE 2'-0" WIDE BY 2'-8" DEEP CONC FOOTING REINF WITH (3) #6 CONT TOP AND BOTTOM REFER TO 1-S301

INPUT DATA					DESIGN SUMMARY				
COLUMN WIDTH	c ₁	=	6	in	FOOTING WIDTH	В	=	1.00	ft
COLUMN DEPTH	c ₂	=	12	in	FOOTING LENGTH	L	=	2.00	ft
BASE PLATE WIDTH	b ₁	=	6	in	FOOTING THICKNESS	Т	=	32	in
BASE PLATE DEPTH	b ₂	=	12	in	LONGITUDINAL REINF., TOP	N	lot Req	uired	
FOOTING CONCRETE STRENGTH	f _c '	=	4	ksi	LONGITUDINAL REINF., BOT.	2	#6@	6 in o.c.	
REBAR YIELD STRESS	fy	=	60	ksi	TRANSVERSE REINF., BOT.	2	#6@	18 in o.c.	
AXIAL DEAD LOAD	P_{DL}	=	0.75	k		IΡ			
AXIAL LIVE LOAD	P_{LL}	=	0.42	k		- /-	M		
LATERAL LOAD (0=WIND, 1=SEISI	MIC)	=	0	Wind,ASD					
WIND AXIAL LOAD	P_{LAT}	=	0	k, ASD		777	7//	////	,
WIND MOMENT LOAD	M_{LAT}	=	0	ft-k, ASD	Df	V	t ⊈_tb		
WIND SHEAR LOAD	V_{LAT}	=	0	k, ASD		ine fairs	she		μ
SURCHARGE	qs	=	0	ksf	<u>ب</u>	flex			*
SOIL WEIGHT	Ws	=	0	kcf	L1		L	2	
FOOTING EMBEDMENT DEPTH	Df	=	3.33	ft		Í		ſ	
FOOTING THICKNESS	Т	=	32	in		C 1			
ALLOW SOIL PRESSURE	Qa	=	2.1	ksf					B
FOOTING WIDTH	B ₁	=	0.5	ft	þ 2		C 2		
	B ₂	=	0.5	ft	m				
FOOTING LENGTH	L ₁	=	1	ft		J D1	/		-
	L ₂	=	1	ft					m
REINFORCING SIZE		#	6						
					Ļ L				
THE FOOTING DESIG	GN IS A	DEQ	JATE.			L		ĺ	

B ELLISON GAGE & ASSOCIATES, PLLC Consulfing Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
S048 W. Plano Parkway Ofc: (972) 354-8855 Suite 200 Fax: (972) 354-8856 Plano, TX 75093 www.elisongage.com	Description	Calc by.	Date	Sheet No.
	FOUNDATION DESIGN (SEC. F)	BG	04/25/2024	F2

Service Loads	CASE 1	CASE 2	CASE 3			7
Р	1.2	1.2	1.2		k	
е	0.0	0.0	0.0		ft (from center of footing)	_
q _s B L	0.0	0	0.0		k, (surcharge load)	
0.15-w _s)T B L	0.8	0.8	0.8		k, (footing increased)	
ΣΡ	2.0	2.0	2.0		k	
eL	0.0 < L/6	6 0.0 < L/6	0.0	< L/6	ft	
е _в	0.0 < B/	6 0.0 < B/6	0.0	< B/6	ft	_
q∟	1.0	1.0	1.0		k / ft	
q _{max}	1.0	1.0	1.0		ksf	
q _{allow}	2.1	2.8	2.8		ksf	
$q_L = \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\frac{L}{3(0.5L-e_L)},$	for $e_L \ge \frac{L}{6}$ q_M	$AX = \begin{cases} \frac{B}{B} \\ \frac{2q_L}{3(0.5B - e)} \end{cases}$	$\frac{1}{e_B}$, for $\frac{1}{e_B}$, for $\frac{1}{e_B}$, for $\frac{1}{e_B}$, for $\frac{1}{e_B}$, \frac	$\begin{array}{l} \text{or} e_B \leq \frac{B}{6} \\ \text{or} e_B > \frac{B}{6} \end{array} $ [Satisf	factory]
$q_L = \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\frac{L}{3(0.5L-e_L)},$ K FLEXURE SHEAF 10.2, 10.3.5, 10.5.4.	for $e_L \ge \frac{L}{6}$ for $e_L > \frac{L}{6}$ 7.12.2, 12.2, 12.5, 15.5.2, 11.	$AX = \begin{cases} \frac{1}{B} \\ \frac{2q_L}{3(0.5B - \epsilon)} \end{cases}$	$\frac{d}{de_B}$, for $\frac{d}{de_B}$, $\frac{d}{de_$	or $e_B \le \frac{B}{6}$ [Satisform of $e_B > \frac{B}{6}$	factory]
$q_{L} = \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\frac{L}{3(0.5L-e_L)},$ $\frac{2(\Sigma P)}{3(0.5L-e_L)},$ EX FLEXURE SHEAF 10.2, 10.3.5, 10.5.4, $\frac{u}{2}, \text{ for } e_u \leq \frac{L}{6}$	for $e_L \ge \frac{L}{6}$ for $e_L \ge \frac{L}{6}$ 7.12.2, 12.2, 12.5, 15.5.2, 11. $0.85\beta_1 f_c$	$AX = \begin{cases} \frac{1}{B} \\ \frac{2q_L}{3(0.5B - \epsilon)} \end{cases}$ 1.3.1, & 11.3)	$\left[\begin{array}{c} \frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2}\end{array}\right], f d $	$\begin{array}{c} \text{or} e_B \leq \frac{B}{6} \\ \text{or} e_B > \frac{B}{6} \\ \hline \end{array}$	Pusuch
$q_{L} = \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\frac{L}{2(\Sigma P)},$ $\frac{2(\Sigma P)}{3(0.5L - e_L)},$ EX FLEXURE SHEAF 10.2, 10.3.5, 10.5.4, $\frac{\mu}{2}, \text{ for } e_u \leq \frac{L}{6}$ $\frac{1}{2}, \text{ for } e_u > \frac{L}{6}$	for $e_L \ge \frac{L}{6}$ q_M for $e_L > \frac{L}{6}$ 7.12.2, 12.2, 12.5, 15.5.2, 11. $\rho_{MAX} = \frac{0.85\beta_1 f_C}{f_y} \frac{1}{\epsilon}$	$AX = \begin{cases} \frac{1}{B} \\ \frac{2q_L}{3(0.5B - \epsilon)} \end{cases}$ $\frac{\varepsilon_u}{u^+ \varepsilon_t}$	$\left(\frac{1}{2B}\right)$, for $\frac{1}{2B}$, for $\frac{1}{2B}$	$\begin{array}{c} \text{Dr} e_B \leq \frac{B}{6} \\ \text{Dr} e_B > \frac{B}{6} \\ \hline \\ $	Pueurch Pueurch Quemax

FACTORED SOIL PRESS	SURE							
Factored Loads	CASE 1	(CASE 2		CASE	3		
Pu	1.6		1.3		0.7		k	
e _u	0.0	0.0 0.0		0.0		ft		
γq _s B L	0.0 0.0 0.0		k, (factored surcharge lo	oad)				
γ[0.15T + w _s (D _f - T)]BL	1.0		1.0		0.7		k, (factored footing & bac	ckfill loads)
ΣP_u	2.5		2.3		1.4		k	
e _u	0.0 < L/6	3	0.0 < L/	6	0.0	< L/6	ft	
q _{u, max}	1.266		1.140		0.698	5	ksf	
DESIGN FLEXURE				-	-			
Location	M _{u,max}	d (i	in) ρ _{min}	ρreqD	ρmax	s _{max}	use	ρprovD
Top Longitudinal	0.0 ft	t-k 29.	63 0.0000	0.0000	0.0206	no limit	Not Required	0.0000
Bottom Longitudinal	0.2 ft	t-k 28.	63 0.0000	0.0000	0.0206	18	2 # 6 @ 6 in o.c.	0.0026
Bottom Transverse	0 ft	t-k / ft 28.	25 0.0000	0.0000	0.0206	18	2 # 6 @ 18 in o.c.	0.0013

CHECK FLEXURE SHEAR

Direction	V _{u,max}	$\phi V_{c} = 2 \phi b d (f_{c}')^{0.5}$	check V _u < _∲ V _c
Longitudinal	0.6 k	33 k	[Satisfactory]
Transverse	0.3 k / ft	32 k / ft	[Satisfactory]

[Satisfactory]

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
Sold W. Pinon Parkway Off: (172) 354-8855 Sulte 200 Fax: (172) 354-8855 Plano. TX 75073 www.elisongage.com	Description	Cale by.	Date	Sheet No.
	FOUNDATION DESIGN (SEC. F)	BG	04/25/2024	F4

ELLISON GAGE & ASSOCIATES, PLIC Consulting Structural Engineers 5068 W. Plano Parkway Suite 200 Plano, TX 75073 www.elisongoge.com	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO				
	Description FOUNDATION DESIGN (SEC. F)	Calc by. BG	Date 04/25/2024	Sheet No. F5	

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
5068 W. Plano Parkway Otc: (972) 354-8855 Suffe 200 Fox: (972) 354-8856 Plano, TX 75093 www.ellisongoge.com	Description FOUNDATION DESIGN (SEC. F)	Cale by. BG	Date 04/25/2024	Sheet No. F6

ELLISON GAGE & ASSOCIATES, PLIC Consulting Structural Engineers 5048 W. Rono Parkway Ofc: (772) 354-8855 Suite 200 Fax: (772) 354-8855 Fono, TX 75073 www.ellisongage.com	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO				
	Description FOUNDATION DESIGN (SEC. F)	Calc by. BG	Date 04/25/2024	Sheet No. F7	

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
5068 W. Plano Parkway Ofc: (P72) 354-8855 Suite 200 Fac: (P72) 354-8856 Plano, TX 75093 www.ellisongage.com	Description	Cale by.	Date	Sheet No.
	FOUNDATION DESIGN (SEC. F)	BG	04/25/2024	F8

K SOIL BEARING CAPAC	CITY (ACI 318 SEC.15.2.2)			
Service Loads	CASE 1	CASE 2	CASE 3	
Р	2.0	8.8	5.4	k
е	-8.7	18.7	13.6	ft, (at base, including V T / P)
q _s B L	0.0	0.0	0.0	k, (surcharge load)
(0.15-w _s)T B L	35.6	35.6	35.6	k, (footing increased)
ΣΡ	37.6	44.4	41.0	k
е	-0.5 < L/6	3.7 < L/6	1.8 < L/6	ft
q _{max}	0.4	0.9	0.7	ksf
q _{allow}	2.1	2.8	2.8	ksf

[Satisfactory]

Where

$$q_{MAX} = \begin{cases} \frac{\left(\Sigma P\right)\left(1 + \frac{6e}{L}\right)}{BL}, & for \ e \leq \frac{L}{6} \\ \frac{2\left(\Sigma P\right)}{3B(0.5L - e)}, & for \ e > \frac{L}{6} \end{cases}$$

DESIGN FLEXURE & CHECK FLEXURE SHEAR

(ACI 318 SEC.15.4.2, 10.2, 10.5.4, 7.12.2, 12.2, 12.5, 15.5.2, 11.1.3.1, & 11.3)

$$\rho = \frac{0.85f_{c}^{\prime} \left(1 - \sqrt{1 - \frac{Mu}{0.383bd^{2}f_{c}}}\right)}{f_{y}}$$

FACTORED SOIL PRESSURE

 $\rho_{MIN} = MIN \left(0.0018 \frac{T}{d}, \frac{4}{3} \rho \right)$

Factored Loads	CASE 1	CASE 2	CASE 3	
Pu	2.8	10.5	9.2	k
e _u	-8.7	19.3	23.3	ft, (at base, including V _u T / P _u)
γq _s B L	0.0	0.0	0.0	k, (factored surcharge load)
γ[0.15 T + w _s (D _f - T)] B L	42.8	42.8	32.1	k, (factored footing & backfill loads)
ΣPu	45.6	53.3	41.3	k
e _u	-0.5 < L/6	3.8 < L/6	5.2 > L/6	ft
q _{u, max}	0.447	1.136	1.044	ksf

DESIGN FLEXURE

Location	M _{u,max}		d (in)	ρmin	ρreqD	ρmax	s _{max} (in)	use	ρprovD
Top Longitudinal	-82	ft-k	29.63	0.0007	0.0005	0.0206	no limit	2 # 6 @ 35 in o.c., cont.	0.0007
Bottom Longitudinal	11	ft-k	28.63	0.0001	0.0001	0.0206	18	3 # 6 @ 18 in o.c., cont.	0.0011
Bottom Transverse, b _e	0	ft-k / ft	27.88	0.0000	4.3E-06	0.0206	18	4 # 6 @ 12 in o.c.	0.0015

[Satisfactory]

CHECK	FLEXURE	SHEAR

Direction	V _{u,max}	$\phi V_{c} = 2 \phi b d (f_{c}')^{0.5}$	check V _u < _∲ V _c
Longitudinal	8 k	114 k	[Satisfactory]
Transverse	0 k / ft	32 k / ft	[Satisfactory]

(cont'd)

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers Suite 20 Fax (972) 354-8855 Suite 20 Fax (972) 354-8856 Plano, 1X 75073 www.elisongage.com	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			
	Description CMU DUMPSTER DESIGN (SEC. D)	Calc. by BG	Date 04/29/2024	Sheet No. D1

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			
5048 W. Plano Parkway Ofc:: (972) 354-8855 Suite 200 Fax: (972) 354-8856 Plano. TX 75093 www.elisongage.com	Description	Calc. by	Date	Sheet No.
	CMU DUMPSTER DESIGN (SEC. D)	BG	04/29/2024	D2

DETERMINE WINE NOTE: USE Cf = 1) LOAD C .4	N DUMP	PSTER WALL
DE	ESIGN WIN	D LOADS	: SOLID FREESTANDING WALLS AND SOLID SIGNS S - Directional Procedure, ASCE 7-16)
$F = q_h GC$; A s (lb)		[EQ. 29.3-1]
Risk Category =	II		[TABLE 1.5-1]
Basic Wind Speed, V =	110	mph	[FIG. 26.5-1, ATC WEBSITE] <u>https://hazards.atcouncil.org/</u>
Service Wind Speed, V _{asd} =	85	mph	
Exposure =	C	A	[26.7]
Height to Top of Sign, $h = $	8.00	π	[FIG. 29.3-1] [TABLE 26.11-1]
α -	9.0 000	ft	[TABLE 20.11-1]
∠ _g – ⊭	0.95	n.	
$r_h =$	1.00		
$\kappa_{zt} =$	1.00		
$K_d =$	0.85	0	[IABLE 26.6-1]
Elevation =	900	π	
$\kappa_e = 0$	0.97	nef	[TABLE 20.9-1] IEO. 26 10 11
$q_h = $	21.0	psi	[EQ: 20: 10-1] [26: 11: 1]
Height to Top of Sign $h =$	8.00	ft	[20.11.1] [FIG 29.3-1]
Sign Height, s =	8.00	ft	[FIG. 29.3-1]
Sign Length, $B =$	13.33	ft	[FIG. 29.3-1]
Clearance Ratio, s/h =	1.00		
Return Corner Length, L_r =	13.33	ft	[FIG. 29.3-1]
Aspect Ratio, $L_r/s =$	1.67		
Aspect Ratio, <i>B</i> /s =	1.67		DISREGARD CASE C
C. Case A & Case B =	1 4	•	[FIG 29 3-1]
	1.4		[110. 20.0-1]
C _f , Ca	se C:	_	[FIG. 29.3-1]
0 to s =	2.25		
s to 2s =	1.50		
2s to 3s =	1.15		
	C (design) = 1	00
	e o (design) – 1.	
Gross Area of Sign, A_s =	107	ft²	
Maximum Force, F =	2745	lb	[EQ. 29.3-1]
Maximum Pressure, P =	25.7	psf	(ULTIMATE LEVEL)
Maximum Pressure, P =	15.4	psf	(SERVICE LEVEL)
L			

DETERMINE SEIS	MIC LOAD	ON DUMPSTER WALL	
SEISMIC LOADS ON FREEST	ANDING WA	ALLS:	
[SECTION 15.6.8, Ground Supp	ported Cantil	evered Walls and Fences]	
Per 15.4. I, Design Walls Using		0	
S ₁ -	0.000		
S _{DS} =	0.106		
S _{D1} =	0.109		
R =	1.25	[TABLE 15.4-2]	
C _d =	2.50	[TABLE 15.4-2]	
l _e =	1.0	[TABLE 1.5-2]	
T _L =	6.00	sec, [FIG. 22-14]	
T =	1.030	sec, [Sec. 12.8.2]	
C _s BOUND EQUATIONS:			
C _s =	0.084	[EQ. 12.8-2]	
C _s =	0.084	[EQ. 12.8-3, 12.8-4]	
C _s =	0.030	[EQ. 15.4-1]	
C _s =	NA	[EQ. 12.8-6]	
C _s =	0.084	(GOVERNING VALUE)	
$V = C_s W =$	0.084	W [EQ. 12.8-1]	ULTIMATE LOAD (FACTORED)
$V = C_s W =$	0.059	W [EQ. 12.8-1]	SERVICE LEVEL LOAD (ULTIMATE LOAD x 0.7)
VV =	50	PSF, 8" CMU WALLS	
	70	PSF, 12" CMU WALLS	
8" CMU WALL V =	4.2	PSF (ULTIMATE)	
12" CMU WALL V =	5.9	PSF (ULTIMATE)	

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers 5069 W. Plano Porkway Ofc: (772) 354-8855 Suite 200 For (772) 354-8855 Plano, 1X 75073 www.ellisongage.com	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			
	Description CMU DUMPSTER DESIGN (SEC. D)	Calc. by BG	Date 04/29/2024	Sheet No. D4

GIVEN: WIND PRESSURE = 25.7 PSF (LRFD), 15.4 PSF (ASD) ←CONTROLS SEISMIC PRESSURE (8" CMU) = 5.9 PSF (LRFD), 4.2 PSF (ASD) WALL HEIGHT = 7.5 FT f'm = 1,500 PSI MASONRY STRESS = 675 PSI STEEL STRESS = 32 KSI

USE 8" CMU REINFORCED WITH #5 VERTICAL AT 32" ON CENTER

Dumpster Enclosure Screenwall

Masonry Wall Properties		
Weight of wall (psf) =	51	
Wall type (s or c) =	С	
Reinforcement (s or d)=	S	
CMU thickness (in) =	8	
Wall ht. (ft) =	7.50	
Wall ht for critical axial load (ft) =	7.50	
Design width, b (in) =	12	
Grout Spacing (in) =	32	
Bar size =	5	
r (in) =	2.59	
E _s (ksi) =	29000	
f _m (psi) =	1500	
E _m (ksi) =	1350	
n =	21.48	
Equiv. Solid Thickness (in) =	4.9	
d (in) =	3.81	
A _e (in ²) =	58.8	
A _{bar} (in ²) =	0.31	
$A_s (in^2) =$	0.11625	
ρ =	0.002541	
_ρ n =	0.054584	
k =	0.2803	
j =	0.906567	
I_g (in ⁴) =	117.65	
I _{cr} (in ⁴) =	23.68	
S _{cr} (in ³) =	22.16	
S (in ³) =	48.02	
f _r (psi) =	96.82	
h/r=	69.50	
F _a (psi)=	282.590	
Critical axial load P _a (lbs)=	382.5	

Load Info.			
Addtl. axial load (k)=	0.00		
Eccentricity of load (in.) =	0.0		
M _{max, axial} (k-ft)=	0.000		
Pilaster trib width (ft) =	0.00		
Wind pressure (psf) =	15.4		
Uniform load, w (lb/ft) =	15.4		
M _{max, lateral} (k-ft) =	0.433		
M _{max, analysis} (k-ft) =	0.000		
M_{tot} (k-ft) =	0.433		

Steel Stress Chee	ck	
f _s (ksi) =	12.94	
F _s (ksi) =	32.00	OK
Stress % =	40.42	OK

Masonry Stress Check			
f _b (psi) =	234.53		
F _b (psi) =	675.00		

OK

Deflection Check	k	
Parapet Δ_{max} (in) =	0.23	
Wall Δ_{max} (in) =	N/A	
L/120 (in) =	0.75	OK
L/240 (in) =	N/A	N/A

Masonry Axial Che		
f _a (psi)=	6.51	
F _a (psi)=	282.59	0.K.

Interaction Equation		
$f_a/F_a + f_b/F_b =$	0.37	0.K.

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			
5068 W. Plane Parkway Ofc: (972) 354-8855 Suite 200 Fax: (972) 354-8855 Plano, TX 75093 www.ellisongage.com	Description	Calc. by	Date	Sheet No.
	CMU DUMPSTER DESIGN (SEC. D)	BG	04/29/2024	D5

Current Date: 4/29/2024 10:17 AM Units system: English File name: Z:\24-001_24-999\24-011 SAG 2001 Lees Summit-MO\02-Design Info\Calcs\Masonry Screenwall\2001-Dumpster Enclosure Wall Footing.rtw

Design Results **Retaining wall**

General Information

Design code	:	ACI 318-2014				
Masonry design code	:	TMS 402-2016 ASD				
<u>Materials</u>						
Description			:	C 3-	60	
Concrete, f'c			:	3.00 [Kip/ir	2]	
Steel, fy			:	60.00 [Kip/ir	2]	
Elasticity modulus			:	3122.02 [Kip/ir	2]	
Unit weight			:	0.15 [Kip/f	ť3]	
Description			:	CMU 1.5-	60	
Masonry, F'm			:	1.50 [Kip/ir	า2]	
Steel, Fs			:	32.00 [Kip/ir	2]	
Elasticity modulus			:	1350.00 [Kip/ir	2]	
Unit weight			:	0.14 [Kip/f	t3]	
Grouting type			:	Partial grouti	ng	
0						
<u>SOII</u> Madulua of submanda no				450.00 [1/:/	401	
Nodulus of subgrade rea	ICUON		:	150.00 [Kip/i	[3]	
Васктії віоре			:	0.00	[-]	
Description	U.W.	Saturated U.W	. phi	с	Friction	Ко
	[Kip/ft3]	[Kip/ft3]	[°]	[Lb/ft2]	wall/soil	
Base Soil	0.11	0.14	27.00	0.00	22.78	
Backfill Soil	0.11		27.00	0.00	0.00	0.00

Geometry

Wall type Restrained Τt Ηf Н Thl Ttl Bt Df Ht Τt Kd Btl Kw Retained height H 2.00 [ft] Base depth Df 3.00 [ft]

Wall height above retained soil Hf	:	7.33 [ft]
Use key	:	No
Toe thickness Tt	:	1.25 [ft]
Heel thickness Ht	:	1.25 [ft]

Stem blocks	number	:	1
Block	Thickness [in]	Height [ft]	Material
1	7.63	9.33	CMU 1.5-60

:

1

:

1

0.93 [ft]

2.00 [ft]

0.93 [ft]

C 3-60

7.63 [in]

Loads

Backfill surcharge	:	0.10 [Kip/ft2]
Surcharge over toe	:	0.10 [Kip/ft2]
Wind pressure	:	0.03 [Kip/ft2]
Stem axial load (DL)	:	0.37 [Kip]

Load conditions included in the design:

Service Load Combinations:

Top toe length Ttl

Bottom toe length Btl

Stem thickness at base Bt

Top heel length Thl

Base material

S1 = DL+HS2 = DL+LL+HS3 = DL+LL+0.6HS4 = DL+0.75LL+HS5 = DL+0.75LL+0.45W+H S6 = 0.6DL+0.6W+H S7 = 0.6DL+0.6W+0.6H

Strength Design Load Combinations:

R1 = 1.4DL R2 = 1.2DL+1.6LL R3 = 1.2DL+0.5W R4 = 1.2DL+W R5 = 1.2DL+W+LL R6 = 0.9DL+W R7 = 0.9DL+W+1.6H R8 = 0.9DL+W+0.9H

Masonry Design Load Combinations:

A1 = DL+LL+H A2 = DL A3 = DL+LL A4 = DL+H+LL A5 = DL+0.75LL A6 = DL+W A7 = DL+H+W A8 = DL+0.75W+0.75LL A9 = DL+H+0.75W+0.75LL A10 = 0.6DL+W A11 = 0.6DL+W+H

Reinforcement

Steel reinforcement bars:

:	0.25 [ft]
:	0.25 [ft]
:	0.75
:	1.00 [in]

Longitudinal reinforcement

Element	Size S	Spacing [in]	Pos	Axis	Dist1 [ft]	Dist2 [ft]	Hook1 I	Hook2
Stem	#5	32.00	Int.	3	-0.96	9.04	Yes	No

Development and splice lengths

Element	Diameter	Ld [in]	Ldh [in]	L. Splice [in]	L. total [ft]
Stem	#5	11.50			10.00

Horizontal reinforcement

Element	Diameter	Nr	@ [in]	Position
Base	#5	3	10.00	Int.

Assumptions

:	At rest
:	Boussinesq
:	Hansen
:	1.50 [ft]
:	0.00 [ft]
	:

Design

Status : OK

Calculation of resisting forces

Description	Force [Kip]	Distance [ft]	Moment [Kip*ft]
Weight of soil over heel (W1)	0.20	2.03	0.42
Surcharge over heel (W3)	0.09	2.03	0.19
Weight of soil over toe (W5)	0.18	0.47	0.08
Surcharge over toe (W6)	0.09	0.47	0.04
Stem weight (W7)	0.80	1.25	1.00
Base weight (W9)	0.47	1.25	0.58
Stem axial load (DL)	0.37	1.25	0.46
Total	2.21		2.78
Toe horizontal soil pressure against sliding (Pp)	0.66	0.67	0.44

Calculation of destabilizing forces

Description	Force	Distance	Moment
	[Kip]	[ft]	[Kip*ft]
Heel horizontal soil pressure (Pah)	0.49	1.28	0.63
Wind force (Pw)	0.19	6.92	1.30

<u>Global stability</u> Minimum additional safety factor for soil pressures :

Load	case qmax [Lb/ft2]	qa [Lb/ft2]	Soil Pres. SF	RM [Kip*ft]	OTM [Kip*ft]	Overt. SF	Res F [Kip]	Slid F [Kip]	Slid. SF	Defl [in]
S1	1040.29	2100.00	2.02	-	-	N.A.	-	_	N.A.	-
S2	1114.82	2100.00	1.88	-	-	N.A.	-	-	N.A.	-
S3	1015.03	2100.00	2.07	-	-	N.A.	-	-	N.A.	-
S4	1096.19	2100.00	1.92	-	-	N.A.	-	-	N.A.	-
S5	977.81	2100.00	2.15	-	-	N.A.	-	-	N.A.	-
S6	732.45	2100.00	2.87	-	-	N.A.	-	-	N.A.	-
S7	832.24	2100.00	2.52	-	-	N.A.	-	-	N.A.	-

1.00

Bending and Shear per element

Element : Toe

Station		d	Mu[Kip*ft]		φ*Mn∣	∳*Mn [Kip*ft]		Asreq [in2]		Asprov [in2]		sb [in]	
Nr.	Dist	[in]	neg	pos	neg	pos	ext	int	ext	int	ext	int	
1	0%	15.00	-0.27	0.48	-6.16	6.16	0.00	0.00	0.00	0.00			0.08
2	10%	15.00	-0.22	0.39	-6.16	6.16	0.00	0.00	0.00	0.00			0.06
3	20%	15.00	-0.17	0.31	-6.16	6.16	0.00	0.00	0.00	0.00			0.05
4	30%	15.00	-0.13	0.24	-6.16	6.16	0.00	0.00	0.00	0.00			0.04
5	40%	15.00	-0.10	0.17	-6.16	6.16	0.00	0.00	0.00	0.00			0.03
6	50%	15.00	-0.07	0.12	-6.16	6.16	0.00	0.00	0.00	0.00			0.02
7	60%	15.00	-0.04	0.08	-6.16	6.16	0.00	0.00	0.00	0.00			0.01
8	70%	15.00	-0.02	0.04	-6.16	6.16	0.00	0.00	0.00	0.00			0.01
9	80%	15.00	-0.01	0.02	-6.16	6.16	0.00	0.00	0.00	0.00			0.00
10	90%	15.00	0.00	0.00	-6.16	6.16	0.00	0.00	0.00	0.00			0.00
11	100%	15.00	0.00	0.00	-6.16	6.16	0.00	0.00	0.00	0.00			0.00
С	0%	15.00	-0.27	0.48	-6.16	6.16	0.00	0.00	0.00	0.00			0.08
Max	Maximum allowed spacing between bars							:	18.00 [ir	 1]			

Base transverse reinforcement:

Top reinforcement	:	0.00 [in2]
Bottom reinforcement	:	0.37 [in2]
Minimum shrinkage and temperature reinforcement	:	0.36 [in2]

Station Nr.	n Dist	Vu [Kip]	Vc [Kip]	φ*Vn [Kip]	Vu/(థ*Vn)
1	0%	1.03	15.77	9.46	0.11
2	10%	0.93	15.77	9.46	0.10
3	20%	0.83	15.77	9.46	0.09
4	30%	0.73	15.77	9.46	0.08
5	40%	0.62	15.77	9.46	0.07
6	50%	0.52	15.77	9.46	0.05
7	60%	0.42	15.77	9.46	0.04
8	70%	0.31	15.77	9.46	0.03
9	80%	0.21	15.77	9.46	0.02
10	90%	0.10	15.77	9.46	0.01
11	100%	0.00	15.77	9.46	0.00
С	0%	1.03	15.77	9.46	0.11

TOE: : D	∂iagrams Vu - Phi*Vn	
	·····	
Ш ∨u	□ Phi*Vn	

Element : Heel

Stat	tion	d	Mu[ł	<pre>(ip*ft]</pre>	∳*Mn[[Kip*ft]	Asreo	1 [in2]	Asprov	/ [in2]	sb	[in]	Mu/(∳*Mn)
Nr.	Dist	[in]	neg	pos	neg	pos	ext	int	ext	int	ext	int	
1	0%	15.00	-0.28	0.44	-6.16	6.16	0.00	0.00	0.00	0.00			0.07
2	10%	15.00	-0.23	0.35	-6.16	6.16	0.00	0.00	0.00	0.00			0.06
3	20%	15.00	-0.18	0.28	-6.16	6.16	0.00	0.00	0.00	0.00			0.05
4	30%	15.00	-0.14	0.21	-6.16	6.16	0.00	0.00	0.00	0.00			0.03
5	40%	15.00	-0.10	0.16	-6.16	6.16	0.00	0.00	0.00	0.00			0.03
6	50%	15.00	-0.07	0.11	-6.16	6.16	0.00	0.00	0.00	0.00			0.02
7	60%	15.00	-0.04	0.07	-6.16	6.16	0.00	0.00	0.00	0.00			0.01
8	70%	15.00	-0.03	0.04	-6.16	6.16	0.00	0.00	0.00	0.00			0.01
9	80%	15.00	-0.01	0.02	-6.16	6.16	0.00	0.00	0.00	0.00			0.00
10	90%	15.00	0.00	0.00	-6.16	6.16	0.00	0.00	0.00	0.00			0.00
11	100%	15.00	0.00	0.00	-6.16	6.16	0.00	0.00	0.00	0.00			0.00
С	0%	15.00	-0.28	0.44	-6.16	6.16	0.00	0.00	0.00	0.00			0.07

Maximum allowed spacing between bars

HEEL: : Diagrams Mu - Phi*Mn

Station Nr.	Dist	Vu [Kip]	Vc [Kip]	∳*Vn [Kip]	Vu/(థ*Vn)
1	0%	0.94	15.77	9.46	0.10
2	10%	0.85	15.77	9.46	0.09
3	20%	0.75	15.77	9.46	0.08
4	30%	0.66	15.77	9.46	0.07
5	40%	0.56	15.77	9.46	0.06
6	50%	0.47	15.77	9.46	0.05

18.00 [in]

:

7 8 9 10	60% 70% 80% 90%	0.37 0.28 0.19 0.09	15.77 15.77 15.77 15.77	9.46 9.46 9.46 9.46	0.04 0.03 0.02 0.01
11	100%	0.00	15.77	9.46	0.00
С	0%	0.94	15.77	9.46	0.10

Element : Stem (Block 1, Masonry)

Station		d	M [Kip*ft]		Ма	Asreq	Asprov	Р	Ра	Bending
No.	Dist	[in]	neg	pos	[Kip*ft]	[in2]	[in2]	[Kip]	[Kip]	ratio
1	0%	4.13	-0.27	0.06	1.04	0.03	0.12	0.37	19.50	0.26
2	10%	4.13	-0.03	0.18	1.23	0.02	0.12	0.37	19.50	0.14
3	20%	4.13	-0.01	0.63	1.23	0.06	0.12	0.37	19.50	0.51
4	30%	4.13	0.00	0.55	1.23	0.05	0.12	0.37	19.50	0.45
5	40%	4.13	0.00	0.40	1.23	0.04	0.12	0.37	19.50	0.33
6	50%	4.13	0.00	0.28	1.23	0.03	0.12	0.37	19.50	0.23
7	60%	4.13	0.00	0.18	1.23	0.02	0.12	0.37	19.50	0.15
8	70%	4.13	0.00	0.10	1.23	0.01	0.12	0.37	19.50	0.08
9	80%	4.13	0.00	0.04	1.23	0.00	0.12	0.37	19.50	0.04
10	90%	4.13	0.00	0.01	1.23	0.00	0.12	0.37	19.50	0.02
11	100%	4.13	0.00	0.00	1.23	0.00	0.12	0.37	19.50	0.00

Station No.	Dist	V [Kip]	Va [Kip]	V/Va
1	0%	0.48	3.93	0.20
2	10%	0.48	3.93	0.16
3	20%	0.54	3.93	0.24
4	30%	0.17	3.93	0.08
5	40%	0.14	3.93	0.06
6	50%	0.12	3.93	0.05
7	60%	0.10	3.93	0.04
8	70%	0.07	3.93	0.03
9	80%	0.05	3.93	0.02
10	90%	0.02	3.93	0.01
11	100%	0.00	3.93	0.00

Notes

- * The soil beneath the wall is considered elastic and homogeneous. A linear variation of pressures is adopted.
- * The required reinforcement for bending takes into account the minimum reinforcement ratio given by Code.
- * For bending and shear design, the critical section is adopted at the support faces and axial forces are not considered.
- * Shear reinforcement is not considered.
- * Values shown in red are not in compliance with a provision of the code
- * Ld,Ldh = Development length of each bar. If the bar ends with a hook, it considers the Ldh length.
- *qprom = Mean compression pressure on soil.
- *qmax = Maximum compression pressure on soil.
- * SF = Safety factor, RM = Resisting moment, OTM = Overturning moment.
- * ResF = Resisting force, SlidF = Sliding force, Defl = Deflection.
- * sb = Free distance between bars.

* If the section at which member flexural strength is being calculated is within the development length of a group of bars, the bars will contribute to the bending capacity an amount proportional to their actual length / their full development length.

* Asprov is the provided reinforcement, considering the reduction due to the development length as described previously.

Job Ref.

Sheet No.

24-011

SB1

LIGHT POLE BASE DESIGN

5-S004:

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
Sulte 200	Description	Calc. by	Date	Sheet No.
Piano, TX 75093 www.ellisongage.com	SITE ITEM BASE DESIGN (SEC. SB)	BG	4/29/2024	SB2

	Total Applied Service Level Moment at Ground
7690	(ft-lbs) =
694	Total Applied Service Lateral Force (lbs) =
11.1	Distance from Ground to Force (ft) =

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
Sulte 200	Description	Calc. by	Date	Sheet No.
Plano, 1X 75093 www.ellisongage.com	SITE ITEM BASE DESIGN (SEC. SB)	BG	4/29/2024	SB3

USE 24" DIA BASE EMBEDDED 8' BELOW GRADE

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
5068 W. Plane Parkway Ofc: (972) 354-8855 Suite 20 Fax: (972) 354-8856 Plane, TX 75093 www.ellisongage.com	Description	Calc. by	Date	Sheet No.
	SITE ITEM BASE DESIGN (SEC. SB)	BG	4/29/2024	SB4

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO		Job Ref. 24-011	
Sulte 200	Description	Calc. by	Date	Sheet No.
Piano, 1X 75093 www.ellisongage.com	SITE ITEM BASE DESIGN (SEC. SB)	BG	4/29/2024	SB5

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO		Job Ref. 24-011	
5048 W. Plano Parkway Ofc: (972) 354-8855 Suite 200 Fax: (972) 354-8856 Plano, TX 75073 www.elisongage.com	Description SITE ITEM BASE DESIGN (SEC. SB)	Calc. by BG	Date 4/29/2024	Sheet No. SB6

	ES (ASCE 7-16, CHAPTER 15):
PER 15.4.1, DESIGN WALLS USING SECTION 12.8	
$S_1 = 0.099$	
$S_{DS} = 0.106$	
$S_{D1} = 0.109$ P = -2.00	
K = -3.00 $C_{1} = -3.00$	[TABLE 15.4-2] [TABLE 15.4-2]
I = 10	[TABLE 15.7-2]
$T_{e} = -1.0$ $T_{I} = -6.00$	sec [FIG 22-14]
T = 1.028	sec. [Sec. 12.8.2]
C _s Bound Equations:	
$C_s = 0.035$	[EO. 12.8-2]
$C_{s} = 0.035$	[EQ. 12.8-3, 12.8-4]
$C_{s} = 0.030$	[EO. 15.4-1]
$C_s = NA$	[EQ. 12.8-6]
$C_{s} = 0.035$	(Governing Value)
$V = C_s W = 0.035$	W [EQ. 12.8-1] Ultimate Load (Factored)
$V = C_s W = 0.025$	W [EQ. 12.8-1] Service Load (Ultimate Load x 0.7)
Menu Board Weight, W = 800	lbs
Summary of Seismic Forces:	
Applied Service Lateral Force = 20	lbs
Distance from Ground to Force = 4.0	ft
Service Level Moment = 79	ft-lbs Wind Controls
(87.38)	
· · · · · · · · · · · · · · · · · · ·	
	(54.12)
	(54.12)
	(54.12)
	(54.12) (70.19)
	(54.12) (70.19)
	(54.12) (70.19)
	(54.12) (70.19)
	(54.12)
	(16.00) GRADE

ELLISON GAGE & ASSOCIATES, PLLC Consulting Structural Engineers	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO		Job Ref. 24-011	
Sulte 200	Description	Calc. by	Date	Sheet No.
Piano, TX 75093 www.elligongage.com	SITE ITEM BASE DESIGN (SEC. SB)	BG	4/29/2024	SB7

ELLISON GAGE & ASSOCIATES, PLL Consulting Structural Engineers Suite 200 Fax: [77] 354-8855 Suite 200 Fax: [77] 354-8856 Plano, 1X 7507 www.elisongage.com	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
	Description SITE ITEM BASE DESIGN (SEC. SB)	Calc. by BG	Date 4/29/2024	Sheet No. SB8

ELLISON GAGE Ansulting Structural Engineers Sold W. Plano Parkway Ofc: (772) 354-8855 Sulte 200 Fax: (772) 354-8855 Rano, 1X 75073 www.ellisongage.com	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
	Description SITE ITEM BASE DESIGN (SEC. SB)	Cale. by BG	Date 4/29/2024	Sheet No. SB9

ELLISON GAGE & ASSOCIATES, PLIC Consulting Structural Engineers 5058 W. Plano Patkway Ofc: (972) 354-8855 Suite 200 Fax: (972) 354-8855 Plano, 12 / 5093 www.ellisongoge.com	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
	Description SITE ITEM BASE DESIGN (SEC. SB)	Cale. by BG	Date 4/29/2024	Sheet No. SB10

ELLISON GAGE AssUting Structural Engineers S058 W. Plane Parkway Ofc: (972) 354-8855 Suite 200 Fax: (972) 354-8855 Suite 200 Fax: (972) 354-8855 Www.elisongage.com	Project SALAD AND GO #2001 – LEE'S SUMMIT, MO			Job Ref. 24-011
	Description SITE ITEM BASE DESIGN (SEC. SB)	Calc. by BG	Date 4/29/2024	Sheet No. SB11

