

STORM WATER NARRATIVE FOR Home2 Suites By Hilton

PROJECT NO. 230286

May 10, 2024

1000 W. Nifong Blvd., Bldg. 1 Columbia, Missouri 65203 (573) 447-0292

TABLE OF CONTENTS

1. General information	
2. Methodology	
3. Existing Conditions Analysis	
4. Proposed Conditions Analysis	
5. Conclusions and Recommendations	
APPENDICES	
A. Drainage Area Maps	
A1. Existing Condition Drainage Area Map	5
A2. Proposed Condition Drainage Area Map	8
B. Supporting Calculations from Olsson	12
C. Exhibits	
C1. Soils Report	

1. General Information

The site is located at 251 NE Alura Way in Lee's Summit, Missouri. The proposed development will be a Home2 Suites by Hilton. The proposed development will be constructed on Lot 2 of The Village at Discovery Park Plat recorded as Instrument Number 2023E0089550. Lot 2 of said Plat contains 2.28 acres. The proposed use will be a 4-story hotel building consisting of approximately 16,402 square feet on the main level and the 2nd, 3rd, and 4th floors consist of approximately 14,828 square feet for a total of approximately 60,886 square feet.

The site is currently open grass area with a drainage ditch along the west property line and NE Douglas St. along the east property line. The stormwater currently sheet flows to the west and northwest corner of the site where it is collected by a side opening inlet. An existing 7' x 13' reinforced concrete box storm sewer outlet that conveys water to a regional detention facility. This regional detention facility is part of the "MASS GRADING & EROSION AND SEDIMENT CONTROL PLANS" prepared by Olsson, approved and issued for construction on 10/25/2023.

The stormwater from the proposed development will be collected and conveyed with the use of on-site storm sewer. The on-site storm sewer will discharge into the existing reinforced concrete box and then will be conveyed to the regional detention facility. The water is then treated and discharged through a 5' x 6' RCB to a tributary of Little Cedar Creek. This tributary is not regulated by USACE per the USGS National Water Information System Map.

Per the FEMA Flood Map Service Center no portion of the site is located in the 100 year flood plain per FIRM Map 29095C0409G, effective date of January 20, 2017. No floodplain permits are required.

The soil classifications per the USDA Nation Resources Conservation Service (NRCS) Web Soil Survey shows this site to consist of Sampsel silty clay loam, Greenton silty clay loam, and Sharpsburg-Urban land complex. See table below:

Soils Classifications Chart:

Ocho Olabonic					
Map Unit	Map Unit		Percent of		Hydrologic
Symbol	Name	Acres in AOI	AOI	Slopes	Soil Group
10117	Sampsel silty	1.1	45.4	5% to 9%	C/D
	clay loam				
30080	Greenton	0.9	39.0	5% to 9%	C/D
	silty clay loam				
10128	Sharpsburg-	0.4	15.6	2% to 5%	D
	Urban land				
	complex				

^{*}Refer to Exhibit C1

2. Methodology

The parameters for determining the runoff calculations for this site are equal to the parameters in the stormwater calculations prepared by Olsson for the plans named "Private Site Development Plans for the Village at Discovery Park Zone 1". These calculations and associated storm sewer plans have been approved by Development Services Department of Lee's Summit, Missouri. This report only includes a summary of the approved calculations.

Rational Method:

- Return Frequencies: 2, 10, & 100 year
- Intensity-Duration-Frequency Curves for Kansas City, Missouri
- Rational method runoff coefficients
- Rational method for Time of Concentration
- Rainfall data is taken from the APWA 5600 "Storm Drainage Systems & Facilities", dated February 16, 2011.

- Rainfall intensity is calculated from Table 5602-5, taking the time of concentration to be 5 minutes.
 - 2 year 5.41 inches
 - 10 year 7.35 inches
 - 100 year 10.32 inches

3. Existing Conditions Analysis

Existing conditions were modeled using the open space area as pasture in good condition. The stormwater currently sheet flows to the west and northwest corner of the site where it flows into a side opening inlet. An existing 7´ x 13´ RCB conveys the water from the side opening inlet to an existing regional detention facility. The existing detention facility is designed to have capacity for this whole 2.28-acre site. This site is encompassed by drainage area "D1" on "PRIVATE SITE DEVELOPMENT PLANS" prepared by Olsson and approved for construction on 11/03/2023. See Section B of the Appendix for Olsson plans and calculations.

The table below summarizes the existing conditions analysis:

	Drainage			2-year	10-year	100-year
	Area	Runoff	Тс	Peak Flow	Peak Flow	Peak Flow
Subarea	(acres)	Coefficient	(minutes)	(cfs)	(cfs)	(cfs)
D1	3.33	0.3	10.47	5.40	5.97	10.56

4. Proposed Conditions Analysis

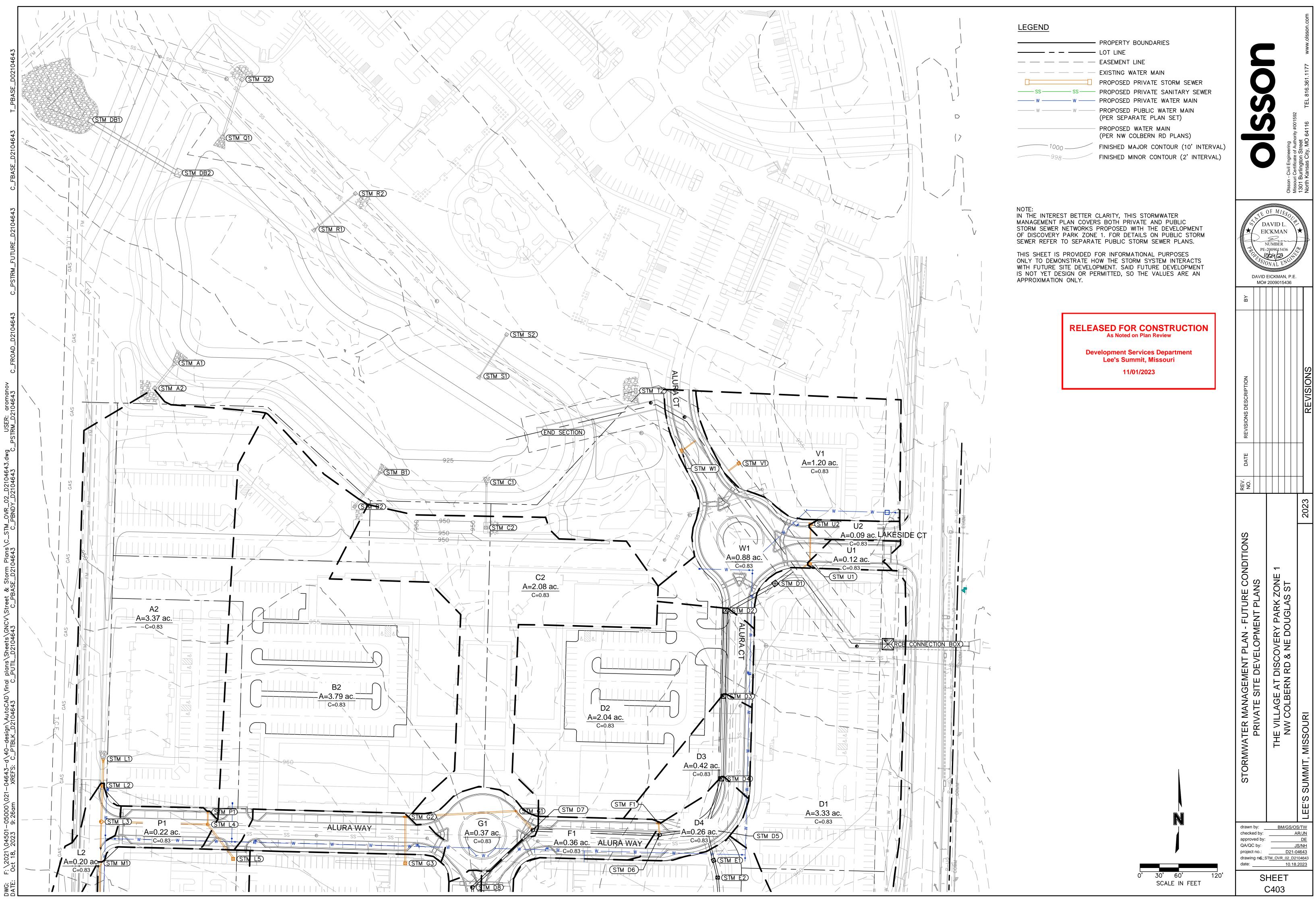
The stormwater from the proposed development will be collected and conveyed with the use of onsite storm sewer. The storm sewer will be routed to an existing RCB and then conveyed to a detention facility. Any runoff that is not collected by the on-site sewer system will be collected by gutter inlets placed along the private street (Alura Way) and conveyed to the same regional detention facility.

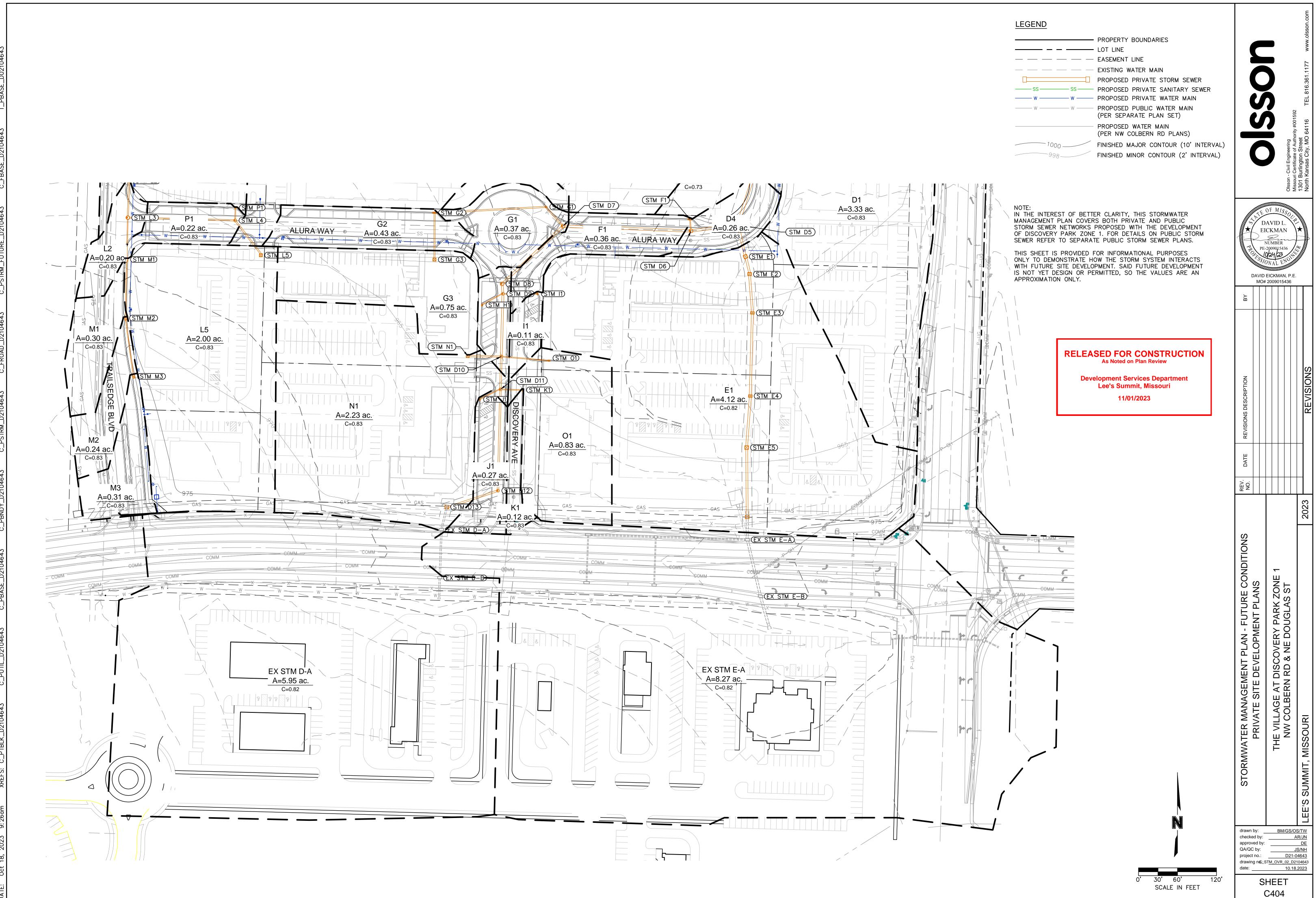
The calculations prepared by Olsson used a post-development runoff coefficient of 0.83; the storm sewer that this development ties into is designed for this capacity. After final design of this site the calculated actual runoff coefficient is 0.72, meaning that less runoff will be generated and there will be ample capacity in both the existing storm sewer and detention facility. The design factor of 0.81 comes from APWA 5600 – Table 5602–3: Runoff Parameters, neighborhood areas of business. This is used for design because it is more conservative than using the actual coefficient of 0.72.

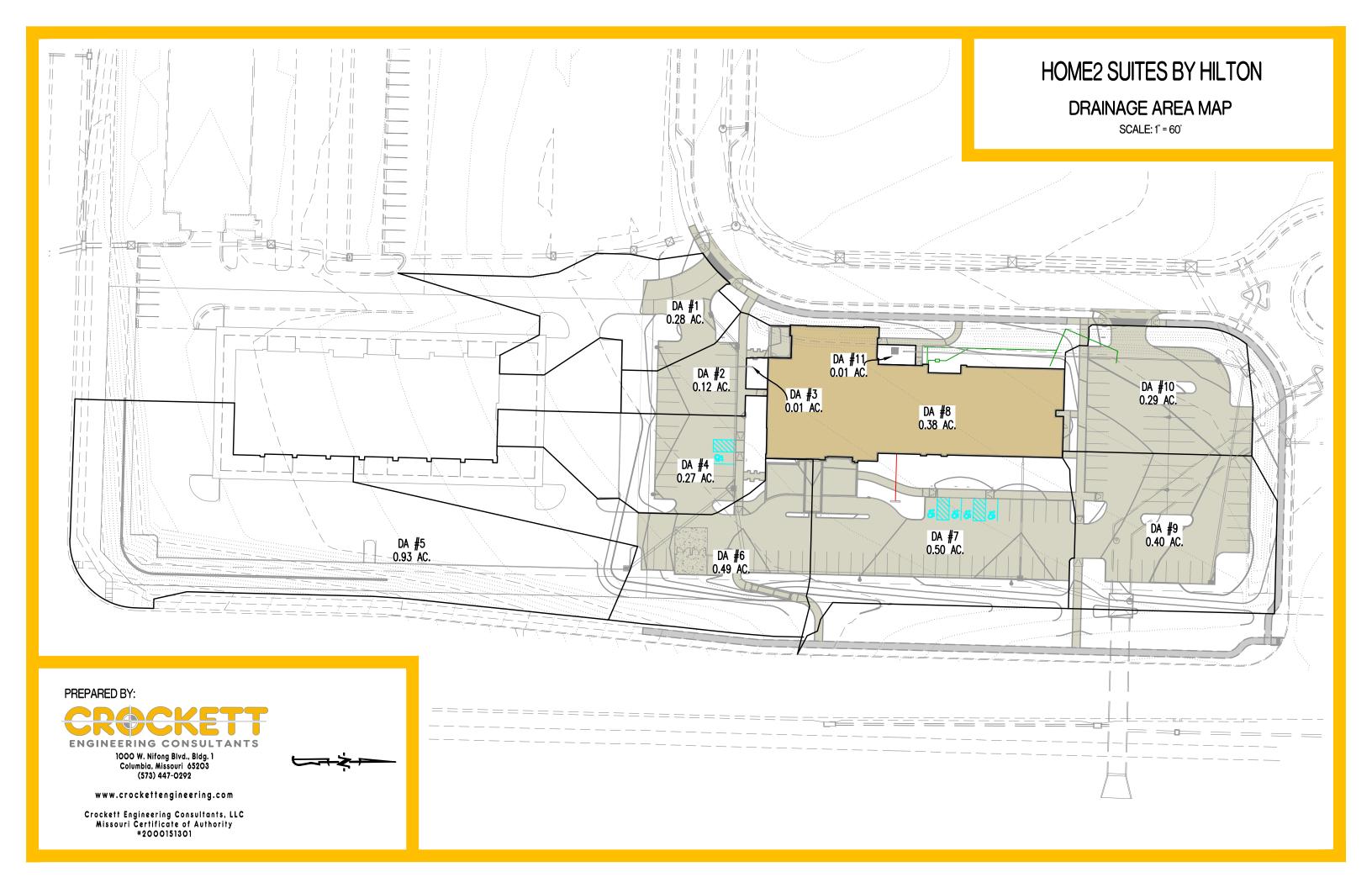
The table below summarizes the proposed conditions analysis:

	Drainage			2-year	10-year	100-year
	Area	Runoff	Тс	Peak Flow	Peak Flow	Peak Flow
Subarea	(Acres)	Coefficient	(Minutes)	(cfs)	(cfs)	(cfs)
DA 1	0.28	0.81	5	1.23	1.67	2.93
DA 2	0.12	0.81	5	0.53	0.71	1.25
DA 3	0.01	0.81	5	0.04	0.06	0.10
DA 4	0.27	0.81	5	1.18	1.61	2.82
DA 5	0.93	0.81	5	4.08	5.54	9.72
DA 6	0.49	0.81	5	2.15	2.92	5.12
DA 7	0.49	0.81	5	2.19	2.98	5.22
DA 8	0.38	1.00	5	2.06	2.79	4.90
DA 9	0.46	0.81	5	2.02	2.74	4.81
DA 10	0.24	0.81	5	1.05	1.43	2.51
DA 11	0.01	0.81	5	0.04	0.06	0.10
TOTAL	3.68	-	5	16.51	22.45	39.37

5. Conclusions and Recommendations


The proposed Home2 Suites by Hilton facility development has been evaluated and this report shows that the post development stormwater runoff able to be handled by the existing storm network and regional detention facility.


Appendix A


A1 Existing Condition Drainage Area Map
A2 Proposed Condition Drainage Area Map

Appendix B
Supporting Calculations from Olsson

Appendix C
C1 NRCS Soils Report

Appendix B
Supporting Calculations from Olsson

	a Design Table					
10	Year Return Fr	requency	T	1		1
	Drainage	_	_		.,	
Inlet ID	Area	С	Тс	i	K	Peak Flo
	(ac)		(min)	(in/hr)		(cfs)
A2	5.84	0.45	5.00	7.35	1.00	19.32
В2	1.78	0.30	5.00	7.35	1.00	3.93
C2	3.25	0.30	5.00	7.35	1.00	7.17
D1	3.33	0.30	10.47	5.98	1.00	5.97
D2	0.43	0.66	5.00	7.35	1.00	2.09
D3	0.73	0.66	5.00	7.35	1.00	3.54
D4	0.26	0.83	5.00	7.35	1.00	1.59
E1	4.95	0.30	10.67	5.94	1.00	8.82
F1	0.36	0.83	5.00	7.35	1.00	2.20
G1	0.37	0.83	5.00	7.35	1.00	2.26
G2	0.43	0.83	5.00	7.35	1.00	2.62
G3	2.01	0.30	5.00	7.35	1.00	4.43
H1	0.16	0.83	5.00	7.35	1.00	0.98
I1	0.11	0.83	5.00	7.35	1.00	0.67
J1	0.27	0.83	5.00	7.35	1.00	1.65
K1	0.12	0.83	5.00	7.35	1.00	0.73
L2	0.20	0.83	5.00	7.35	1.00	1.22
L5	0.76	0.30	5.00	7.35	1.00	1.68
M1	0.30	0.83	5.00	7.35	1.00	1.83
M2	0.24	0.83	5.00	7.35	1.00	1.46
M3	0.31	0.83	5.00	7.35	1.00	1.89
N1	2.20	0.30	5.00	7.35	1.00	4.85
P1	0.22	0.83	5.00	7.35	1.00	1.34
U1	0.12	0.83	5.00	7.35	1.00	0.73
U2	0.09	0.83	5.00	7.35	1.00	0.55
V1	1.20	0.30	5.00	7.35	1.00	2.65
W1	0.87	0.83	5.00	7.35	1.00	5.31

10	Year Return F	requency				
	Captured		Inlet		Gutter	Pondi
Inlet ID	Flow	Bypass Flow	Efficiency	Gutter Depth	Spread	Dept
			(Note 2)			
	(cfs)	(cfs)	(%)	(ft)	(ft)	(ft)
A2	19.54	0.00	100.00%			0.44
B2	3.93	0.00	100.00%			0.18
C2	7.17	0.00	100.00%			0.26
D1	5.97	0.00	100.00%			0.26
D2	2.28	0.05	97.66%	0.19	8.71	
D3	3.31	0.25	93.07%	0.22	10.21	
D4	1.57	0.01	99.14%	0.16	7.54	
E1	8.82	0.00	100.00%			0.41
F1	2.20	0.00	100.00%			
G1	2.26	0.00	100.00%			
G2	2.62	0.00	100.00%			
G3	4.43	0.00	100.00%			0.30
H1	0.98	0.00	100.00%			
11	0.67	0.00	100.00%			
J1	1.65	0.00	100.00%			
K1	0.73	0.00	99.99%	0.11	4.96	
L2	1.33	0.07	94.89%	0.12	5.55	
L5	1.68	0.00	100.00%			0.16
M1	1.76	0.18	90.83%	0.14	6.27	
M2	1.52	0.11	93.16%	0.13	5.88	
M3	1.73	0.17	91.21%	0.13	6.21	
N1	0.00	0.00	0.00%			0.32
P1	1.34	0.00	100.00%			
U1	0.73	0.00	99.99%	0.11	4.96	
U2	0.55	0.00	99.70%	0.10	4.45	
V1	2.65	0.00	100.00%			0.22
W1(L)		•••	•••	0.25	11.38	
W1(R)			•••	0.11	5.27	
W1	5.37	0.00	100.00%		•••	

1. Inlet capacity at sag location has been reduced by a clogging factor of 0.80, reducing theoretical Both theoretical capacity and reduced capacity are shown.

2. Inlet efficiency shown in the tables is Captured Flow/Total Flow, denoting the actual percentage

RELEASED FOR CONSTRUCTION
As Noted on Plan Review

Development Services Department Lee's Summit, Missouri

-	a Design Table Year Return Fr	eaneuch				
	Drainage					
Inlet ID	Area	С	Тс	i	K	Peak
	700					
	(ac)		(min)	(in/hr)		(c
A2	5.84	0.45	5.00	10.32	1.25	33.
B2	1.78	0.30	5.00	10.32	1.25	6.
C2	3.25	0.30	5.00	10.32	1.25	12
D1	3.33	0.30	10.47	8.46	1.25	10
D2	0.43	0.66	5.00	10.32	1.25	3.
D3	0.73	0.66	5.00	10.32	1.25	6.:
D4	0.26	0.83	5.00	10.32	1.25	2.
E1	4.95	0.30	10.67	8.40	1.25	15
F1	0.36	0.83	5.00	10.32	1.25	3.
G1	0.37	0.83	5.00	10.32	1.25	3.
G2	0.43	0.83	5.00	10.32	1.25	4.4
G3	2.01	0.30	5.00	10.32	1.25	7.
H1	0.16	0.83	5.00	10.32	1.25	1.0
11	0.11	0.83	5.00	10.32	1.25	1.
J1	0.27	0.83	5.00	10.32	1.25	2.
K1	0.12	0.83	5.00	10.32	1.25	1.:
L2	0.20	0.83	5.00	10.32	1.25	2.0
L5	0.76	0.30	5.00	10.32	1.25	2.
M1	0.30	0.83	5.00	10.32	1.25	3.
M2	0.24	0.83	5.00	10.32	1.25	2.
M3	0.31	0.83	5.00	10.32	1.25	3.:
N1	2.20	0.30	5.00	10.32	1.25	8.
P1	0.22	0.83	5.00	10.32	1.25	2.:
U1	0.12	0.83	5.00	10.32	1.25	1.3
U2	0.09	0.83	5.00	10.32	1.25	0.9
V1	1.20	0.30	5.00	10.32	1.25	4.6
W1	0.87	0.83	5.00	10.32	1.25	8.9

100	Year Return F	requency				
· · · · · · · · · · · · · · · · · · ·	Captured		Inlet		Gutter	Ponding
Inlet ID	Flow	Bypass Flow	Efficiency	Gutter Depth	Spread	Depth
			(Note 2)			
	(cfs)	(cfs)	(%)	(ft)	(ft)	(ft)
A2	35.22	0.00	100.00%			0.53
В2	6.89	0.00	100.00%			0.26
C2	12.58	0.00	100.00%			0.38
D1	10.56	0.00	100.00%		•••	0.37
D2	4.27	0.39	91.57%	0.24	11.29	
D3	5.33	1.00	84.25%	0.27	12.67	
D4	2.57	0.11	95.93%	0.20	9.18	
E1	15.68	0.00	100.00%		•••	0.42
F1	3.72	0.00	100.00%			
G1	3.82	0.00	100.00%			
G2	4.44	0.00	100.00%		•••	
G3	7.78	0.00	100.00%		•••	0.44
H1	1.65	0.00	100.00%		•••	
11	1.14	0.00	100.00%		•••	
J1	2.79	0.00	100.00%		•••	
K1	1.21	0.03	97.86%	0.13	6.03	
L2	2.38	0.44	84.48%	0.16	7.22	
L5	2.94	0.00	100.00%	•••	•••	0.23
M1	2.86	0.76	79.11%	0.17	7.92	
M2	2.53	0.52	82.85%	0.16	7.44	
M3	2.62	0.58	81.88%	0.16	7.56	
N1	0.00	0.00	0.00%			0.47
P1	2.27	0.00	100.00%			
U1	1.22	0.02	98.53%	0.13	6.03	
U2	0.93	0.00	99.65%	0.12	5.42	
V1	4.65	0.00	100.00%			0.31
W1(L)	•••	•••	•••	0.30	14.06	
W1(R)			•••	0.14	6.42	
W1	9.39	0.00	100.00%			

1. Inlet capacity at sag location has been reduced by a clogging factor of 0.80, reducing theoretical

Both theoretical capacity and reduced capacity are shown. 2. Inlet efficiency shown in the tables is Captured Flow/Total Flow, denoting the actual percentage

	Year Return Freque	ency	1	Ι		· · · · · · · · · · · · · · · · · · ·		ı				1	
Upstream	Downstream		Upstream	Downstream			Manning's					Upstream	Upstrea
Structure	Structure	Length	Invert	Invert	Slope	Diameter	n	Total Flow	Velocity	Capacity	Flow Depth	Struct. HGL	Top El
		(ft)	(ft)	(ft)	(%)	(in)		(cfs)	(ft/s)	(cfs)	(ft)	(ft)	(ft)
STM A2	STM A1	50.22	931.43	930.00	2.85	36	0.013	28.68	10.04	112.54	1.73	933.16	939.0
STM B2	STM B1	66.27	932.65	930.00	4.00	24	0.013	3.93	6.42	45.23	0.69	933.34	946.0
STM C2	STM C1	70.49	932.82	930.00	4.00	24	0.013	7.17	7.68	45.24	0.95	933.77	946.0
STM D1	PUBL RCB	33.40	936.80	936.25	1.65	60	0.013	80.46	11.01	334.26	2.54	939.34	950.€
STM D2	STM D1	87.42	938.61	937.30	1.50	60	0.013	74.49	8.87	318.85	2.44	941.05	953.8
STM D3	STM D2	133.06	941.17	939.11	1.55	60	0.013	72.21	9.01	324.09	2.40*	943.57	955.:
STM D4	STM D3	128.22	943.89	941.27	2.04	60	0.013	68.90	7.73	372.32	2.34	946.23	956.
STM D5	STM D4	80.81	946.53	944.89	2.03	48	0.013	67.33	11.42	204.84	2.48	949.01	956.9
STM D6	STM D5	72.98	947.83	947.03	1.10	42	0.013	36.41	6.72	105.33	1.87	949.70 j	957.
STM D7	STM D6	197.01	950.20	948.03	1.10	42	0.013	34.21	7.18	105.52	1.81	952.01	959.
STM D8	STM D7	129.31	952.12	950.70	1.10	36	0.013	24.90	7.43	69.95	1.61	953.73	962.
STM D9	STM D8	15.22	952.89	952.62	1.75	36	0.013	24.90	8.46	88.22	1.61	954.49	962.
STM D10	STM D9	96.59	954.78	953.09	1.75	36	0.013	23.25	6.73	88.23	1.55	956.33	964.:
STM D11	STM D10	50.57	956.17	955.28	1.75	30	0.013	18.39	7.80	54.25	1.45	957.62	965.
STM D12	STM D11	155.87	959.10	956.37	1.75	30	0.013	16.01	6.23	54.25	1.35	960.45	968.
STM D13	STM D12	81.40	961.84	959.60	2.75	30	0.013	16.01	8.42	68.01	1.35	963.19	968.
EX STM D-A	STM D13	38.59	963.91	962.34	4.07	30	0.013	16.01	8.41	82.72	1.35	965.26	971.
STM E1	STM D5	50.53	949.05	947.53	3.01	36	0.013	30.92	7.93	115.67	1.80	950.85	956.
STM E2	STM E1	27.73	950.08	949.25	2.99	36	0.013	30.92	7.52	115.39	1.80	951.88	959.
STM E3	STM E2	59.68	951.47	950.28	1.99	36	0.013	30.92	7.52	94.17	1.80	953.27	960.
STM E4	STM E3	128.00	954.23	951.67	2.00	36	0.013	30.92	7.52	94.32	1.80	956.03	962.
STM E5	STM E4	79.72	956.02	954.43	1.99	36	0.013	30.92	7.52	94.19	1.80	957.82	964.
EX STM E-A	STM E5	143.57	960.13	956.22	2.72	36	0.013	30.92	7.52	110.06	1.80	961.93	972.
STM F1	STM D6	18.00	951.28	950.92	2.00	15	0.013	2.20	4.98	9.13	0.59	951.87	957.
STM G1	STM D7	39.56	952.29	951.70	1.49	24	0.013	9.31	6.63	27.62	1.09	953.38	959.
STM G2	STM G1	171.49	955.36	952.79	1.50	24	0.013	7.05	6.10	27.69	0.94	956.30	961.
STM G3	STM G2	72.05	956.71	955.86	1.18	24	0.013	4.43	5.06	24.57	0.74	957.45	959.
STM H1	STM D9	20.35	956.86	956.45	2.01	15	0.013	0.98	3.01	9.17	0.39	957.25	962.
STM I1	STM D9	53.15	956.76	955.70	1.99	15	0.013	0.67	3.52	9.12	0.32	957.08	962.
STM J1	STM D11	22.74	958.18	957.73	1.98	15	0.013	1.65	3.50	9.08	0.51	958.69	965.
STM K1	STM D11	34.16	958.10	957.42	1.99	15	0.013	0.73	3.61	9.11	0.33	958.43	965.
STM L2	STM L1	41.03	956.12	955.71	1.00	24	0.013	9.36	6.08	22.61	1.09	957.21	964.
STM L3	STM L2	56.59	956.90	956.33	1.00	24	0.013	8.03	5.56	22.62	1.01	957.91	966.
STM L4	STM L3	165.14	959.05	957.40	1.00	24	0.013	3.02	4.27	22.62	0.61	959.66	964.
STM L5	STM L4	66.64	959.92	959.25	1.00	24	0.013	1.68	3.43	22.68	0.45	960.37	962.
STM M1	STM L3	64.41	964.57	961.83	4.25	15	0.013	5.01	7.67	13.32	0.43	965.48	969.
STM M2	STM M1	90.14	968.39	964.77	4.23	15	0.013	3.25	4.47	12.94	0.73	969.12	973.
STM M3	STM M2	90.14	972.29	968.60	4.02	15	0.013	1.73	3.59	13.04	0.73	972.81	975. 976.
STM N1	STM D10	51.657	956.87	956.28	1.14	24	0.013	4.85	5.16	24.17	0.32	957.64	961.
STM 01	STM D10	73.489	957.75	956.28	2	18	0.013	0.01	0.71	14.85	0.77	957.64	963.
STM P1	STM L4	19.51	960.09	959.8	1.49	15	0.013	1.34	4.04	7.87	0.04	960.55	963. 964
STM U1	PUBL RCB	14.935	939.49	939.8	9.98	15	0.013	1.34			0.45	939.94	954.
									6.25	20.4			
STM U2	STM U1	62	949.36	948.12	2	15	0.013	0.55	3.33	9.13	0.29	949.65	954.
STM V1	PUBL RCB	20	938	936	10	18	0.013	2.65	7.46	33.21	0.62	938.62	953.
STM W1	PUBL RCB	23.713	938.85	936	12.02	15	0.013	5.37	10.13	22.39	0.94	939.79	951.
UBL RCB BEND 1	Outfall	188.958	931	928.4	1.38	84 x 156	0.013	486.99	14.33	2111.18	3.52	934.52	939.
	PUBL RCB BEND 1	54.413	931.75	931	1.38	84 x 156	0.013	486.99	10.65	2113.02	3.52	935.27	940.
UBL RCB BEND 3	PUBL RCB BEND 2	423.772	937.58	931.75	1.38	84 x 156	0.013	486.99	10.65	2111.61	3.52	941.1	946.

	gn Calculation Table												
	Year Return Frequ	ency	Ι			1		I	1	I			
Upstream	Downstream	Lavaetla	Upstream	Downstream	Clavas	Diameter	Manning's	Tatal Flam	Mala aitu	Canaaitu	Flavy Danth	Upstream	Upstrea
Structure	Structure	Length	Invert	Invert	Slope	Diameter	n	Total Flow	Velocity	Capacity	Flow Depth	Struct. HGL	Top Ele
CTN4 A 2	CTN 4 A 1	(ft)	(ft)	(ft)	(%)	(in)	0.013	(cfs)	(ft/s)	(cfs)	(ft)	(ft)	(ft)
STM A2	STM A1	50.22	931.43	930.00	2.85	36	0.013	49.51	11.98	112.54	2.29	933.72	939.00
STM B2	STM B1	66.27	932.65	930.00	4.00	24	0.013	6.89	7.57	45.23	0.93	933.58	946.00
STM C2	STM C1	70.49	932.82	930.00	4.00	24	0.013	12.58	9.14	45.24	1.27	934.09	946.00
STM D1	PUBL RCB	33.40	936.80	936.25	1.65	60	0.013	140.80	13.10	334.26	3.40	940.20	950.67
STM D2	STM D1	87.42	938.61	937.30	1.50	60	0.013	130.24	10.32	318.85	3.26	941.87	953.83
STM D3	STM D2	133.06	941.17	939.11	1.55	60	0.013	125.97	10.39	324.09	3.21	944.38	955.16
STM D4	STM D3	128.22	943.89	941.27	2.04	60	0.013	120.64	9.36	372.32	3.14	947.03	956.44
STM D5	STM D4	80.81	946.53	944.89	2.03	48	0.013	118.07	13.80	204.84	3.27	949.81	956.95
STM D6	STM D5	72.98	947.83	947.03	1.10	42	0.013	63.38	8.19	105.33	2.49	950.32	957.70
STM D7	STM D6	197.01	950.20	948.03	1.10	42	0.013	59.66	8.68	105.52	2.42	952.62	959.70
STM D8	STM D7	129.31	952.12	950.70	1.10	36	0.013	43.62	8.60	69.95	2.15	954.27	962.59
STM D9	STM D8	15.22	952.89	952.62	1.75	36	0.013	43.62	9.49	88.22	2.15	955.04	962.46
STM D10	STM D9	96.59	954.78	953.09	1.75	36	0.013	40.83	8.11	88.23	2.08	956.86	964.22
STM D11	STM D10	50.57	956.17	955.28	1.75	30	0.013	32.30	8.91	54.25	1.93	958.10	965.22
STM D12	STM D11	155.87	959.10	956.37	1.75	30	0.013	28.30	7.62	54.25	1.81	960.91	968.36
STM D13	STM D12	81.40	961.84	959.60	2.75	30	0.013	28.30	9.15	68.01	1.81	963.65	968.75
EX STM D-A	STM D13	38.59	963.91	962.34	4.07	30	0.013	28.30	9.14	82.72	1.81	965.72	971.55
STM E1	STM D5	50.53	949.05	947.53	3.01	36	0.013	54.69	9.27	115.67	2.40	951.45	956.17
STM E2	STM E1	27.73	950.08	949.25	2.99	36	0.013	54.69	9.44	115.39	2.40	952.48	959.31
STM E3	STM E2	59.68	951.47	950.28	1.99	36	0.013	54.69	9.44	94.17	2.40	953.87	960.41
STM E4	STM E3	128.00	954.23	951.67	2.00	36	0.013	54.69	9.44	94.32	2.40	956.63	962.96
STM E5	STM E4	79.72	956.02	954.43	1.99	36	0.013	54.69	9.44	94.19	2.40	958.42	964.55
EX STM E-A	STM E5	143.57	960.13	956.22	2.72	36	0.013	54.69	9.44	110.06	2.40	962.53	972.11
STM F1	STM D6	18.00	951.28	950.92	2.00	15	0.013	3.72	5.84	9.13	0.78	952.06	957.60
STM G1	STM D7	39.56	952.29	951.70	1.49	24	0.013	16.04	7.86	27.62	1.44	953.73	959.71
STM G2	STM G1	171.49	955.36	952.79	1.50	24	0.013	12.22	7.14	27.69	1.26	956.62	961.53
STM G3	STM G2	72.05	956.71	955.86	1.18	24	0.013	7.78	5.97	24.57	0.99	957.70	959.92
STM H1	STM D9	20.35	956.86	956.45	2.01	15	0.013	1.65	3.51	9.17	0.51	957.37	962.22
STM I1	STM D9	53.15	956.76	955.70	1.99	15	0.013	1.14	4.11	9.12	0.42	957.18	962.11
STM J1	STM D11	22.74	958.18	957.73	1.98	15	0.013	2.79	4.16	9.08	0.67	958.85	965.14
STM K1	STM D11	34.16	958.10	957.42	1.99	15	0.013	1.21	2.49	9.11	0.43	958.53	965.27
STM L2	STM L1	41.03	956.12	955.71	1.00	24	0.013	15.60	7.14	22.61	1.42	957.54	964.76
STM L3	STM L2	56.59	956.90	956.33	1.00	24	0.013	13.22	6.37	22.62	1.31	958.21	966.39
STM L4	STM L3	165.14	959.05	957.40	1.00	24	0.013	5.21	4.39	22.62	0.80	959.85	964.75
STM L5	STM L4	66.64	959.92	959.25	1.01	24	0.013	2.94	3.70	22.68	0.60	960.52	962.59
STM M1	STM L3	64.41	964.57	961.83	4.25	15	0.013	8.01	9.14	13.32	1.11	965.68	969.35
STM M2	STM M1	90.14	968.39	964.77	4.02	15	0.013	5.15	5.34	12.94	0.92	969.31	973.16
STM M3	STM M2	90.49	972.29	968.60	4.08	15	0.013	2.62	3.86	13.04	0.65	972.94	976.84
STM N1	STM D10	51.657	956.87	956.28	1.14	24	0.013	8.52	6.09	24.17	1.04	957.91	961.12
STM 01	STM D10	73.489	957.75	956.28	2	18	0.013	0.01	0.45	14.85	0.04	957.79	963.92
STM P1	STM L4	19.51	960.09	959.8	1.49	15	0.013	2.27	4.72	7.87	0.6	960.69	964.6
STM U1	PUBL RCB	14.935	939.49	938	9.98	15	0.013	2.15	7.3	20.4	0.58	940.07	954.22
STM U2	STM U1	62	949.36	948.12	2	15	0.013	0.93	3.87	9.13	0.38	949.74	954.67
STM V1	PUBL RCB	20	938	936	10	18	0.013	4.65	8.93	33.21	0.83	938.83	953.23
STM W1	PUBL RCB	23.713	938.85	936	12.02	15	0.013	9.39	12.66	22.39	1.17	940.02	951.03
PUBL RCB BEND 1		188.958	931	928.4	1.38	84 x 156	0.013	760.31	16.63	2111.18	4.73	935.73	939.87
	PUBL RCB BEND 1		931.75	931	1.38	84 x 156	0.013	760.31	12.36	2113.02	4.73	936.48	940.25
PUBL RCB BEND 3	PUBL RCB BEND 2	423.772	937.58	931.75	1.38	84 x 156	0.013	760.31	12.36	2111.61	4.73	942.31	946.71

A PRO	I E	OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF	MB 090	[A]	N	Missouri Certificate of Authority #00	*	North Kansas City, MO 6411
	AVIE		JKI		-, -			
DATE REVISIONS DESCRIPTION								REVISIONS
REV. C								2023
	PRIVATE SITE DEVELOPMENT PLANS		THE VIII AGE AT DISCOVERY PARK 70NF 1		NW COLBERN RD & NE DOUGLAS ST			='S SUMMII, MISSOURI

QA/QC by: JS/NH
project no.: D21-04643
drawing no.: C_STM05_D2104643
date: 10.18.2023

SHEET

QA/QC by:

	D : T.I.					
	a Design Table					
10	Year Return Fi	requency		T		1
	Drainage					
Inlet ID	Area	С	Тс	i	K	Peak Flow
	(ac)		(min)	(in/hr)		(cfs)
A2	3.37	0.83	5.00	7.35	1.00	20.57
В2	3.79	0.83	5.00	7.35	1.00	23.13
C2	2.08	0.83	5.00	7.35	1.00	12.69
D2	2.04	0.83	5.00	7.35	1.00	12.45
D3	0.42	0.83	5.00	7.35	1.00	2.56
D4	0.26	0.83	5.00	7.35	1.00	1.59
F1	0.36	0.83	5.00	7.35	1.00	2.20
G1	0.37	0.83	5.00	7.35	1.00	2.26
G2	0.43	0.83	5.00	7.35	1.00	2.62
H1	0.16	0.83	5.00	7.35	1.00	0.98
l1	0.11	0.83	5.00	7.35	1.00	0.67
J1	0.27	0.83	5.00	7.35	1.00	1.65
K1	0.12	0.83	5.00	7.35	1.00	0.73
L2	0.20	0.83	5.00	7.35	1.00	1.22
M1	0.30	0.83	5.00	7.35	1.00	1.83
M2	0.24	0.83	5.00	7.35	1.00	1.46
M3	0.31	0.83	5.00	7.35	1.00	1.89
N1	2.23	0.83	5.00	7.35	1.00	13.61
01	0.83	0.83	5.00	7.35	1.00	5.07
P1	0.22	0.83	5.00	7.35	1.00	1.34
U1	0.12	0.83	5.00	7.35	1.00	0.73
U2	0.09	0.83	5.00	7.35	1.00	0.55
V1	1.20	0.83	5.00	7.35	1.00	7.32
W1	0.87	0.83	5.00	7.35	1.00	5.31

10	Year Return F	requency					
	Captured		Inlet		Gutter	Pondir	
Inlet ID	Flow	Bypass Flow	Efficiency	Gutter Depth	Spread	Deptl	
			(Note 2)				
	(cfs)	(cfs)	(%)	(ft)	(ft)	(ft)	
A2	18.67	2.11	89.83%			0.46	
В2	14.93	8.20	64.57%			0.36	
C2	12.69	0.00	100.00%			0.39	
D2	9.19	3.35	73.26%	0.35	16.37		
D3	2.48	0.10	96.27%	0.20	9.04		
D4	1.57	0.01	99.14%	0.16	7.54		
F1	2.20	0.00	100.00%				
G1	2.26	0.00	100.00%				
G2	2.62	0.00	100.00%				
H1	0.98	0.00	100.00%				
I1	0.67	0.00	100.00%				
J1	1.65	0.00	100.00%				
K1	0.73	0.00	99.99%	0.11	4.96		
L2	1.33	0.07	94.89%	0.12	5.55		
M1	1.76	0.18	90.83%	0.14	6.27		
M2	1.52	0.11	93.16%	0.13	5.88		
M3	1.73	0.17	91.21%	0.13	6.21		
N1	13.61	0.00	100.00%				
01	5.07	0.00	100.00%				
P1	1.34	0.00	100.00%				
U1	0.73	0.00	99.99%	0.11	4.96		
U2	0.55	0.00	99.70%	0.10	4.45		
V1	7.32	0.00	100.00%	•••		0.43	
W1(L)				0.30	13.87		
W1(R)				0.11	5.27		
W1	8.67	0.00	100.00%				

 Inlet capacity at sag location has been reduced by a clogging factor of 0.80, reducing theoretical Both theoretical capacity and reduced capacity are shown.

2. Inlet efficiency shown in the tables is Captured Flow/Total Flow, denoting the actual percentage

RELEASED FOR CONSTRUCTION
As Noted on Plan Review

Development Services Department Lee's Summit, Missouri 11/01/2023

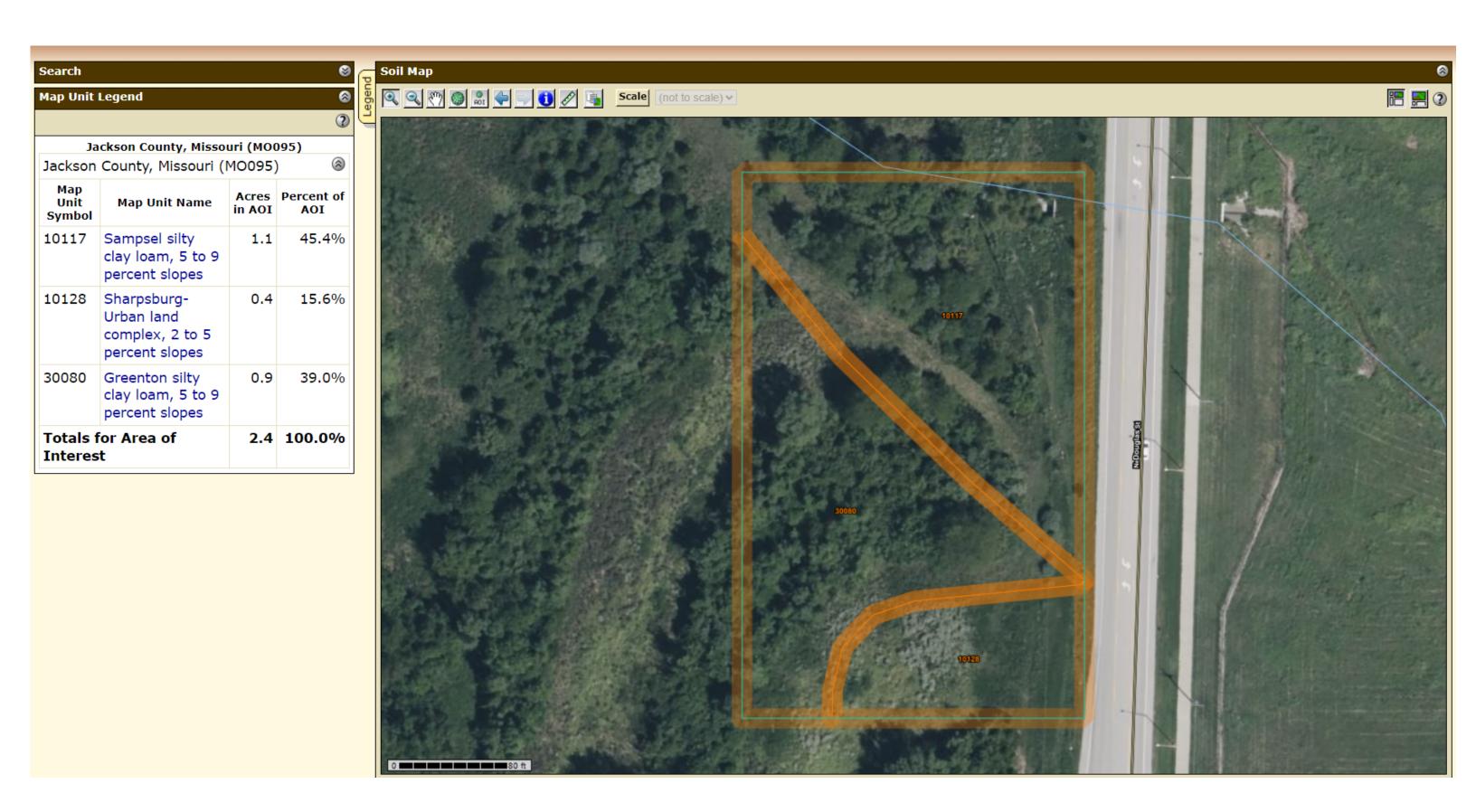
Drainage Area	Design Table					
100	Year Return Fi	requency				
	Drainage					
Inlet ID	Area	С	Тс	i	K	Peak Flow
	(ac)		(min)	(in/hr)		(cfs)
A2	3.37	0.83	5.00	10.32	1.25	34.79
В2	3.79	0.83	5.00	10.32	1.25	39.12
C2	2.08	0.83	5.00	10.32	1.25	21.47
D2	2.04	0.83	5.00	10.32	1.25	21.06
D3	0.42	0.83	5.00	10.32	1.25	4.34
D4	0.26	0.83	5.00	10.32	1.25	2.68
F1	0.36	0.83	5.00	10.32	1.25	3.72
G1	0.37	0.83	5.00	10.32	1.25	3.82
G2	0.43	0.83	5.00	10.32	1.25	4.44
H1	0.16	0.83	5.00	10.32	1.25	1.65
I1	0.11	0.83	5.00	10.32	1.25	1.14
J1	0.27	0.83	5.00	10.32	1.25	2.79
K1	0.12	0.83	5.00	10.32	1.25	1.24
L2	0.20	0.83	5.00	10.32	1.25	2.06
M1	0.30	0.83	5.00	10.32	1.25	3.10
M2	0.24	0.83	5.00	10.32	1.25	2.48
M3	0.31	0.83	5.00	10.32	1.25	3.20
N1	2.23	0.83	5.00	10.32	1.25	23.02
01	0.83	0.83	5.00	10.32	1.25	8.57
P1	0.22	0.83	5.00	10.32	1.25	2.27
U1	0.12	0.83	5.00	10.32	1.25	1.24
U2	0.09	0.83	5.00	10.32	1.25	0.93
V1	1.20	0.83	5.00	10.32	1.25	12.39
W1	0.87	0.83	5.00	10.32	1.25	8.98

100	Year Return F	requency				
	Captured		Inlet		Gutter	Ponding
Inlet ID	Flow	Bypass Flow	Efficiency	Gutter Depth	Spread	Depth
			(Note 2)			
	(cfs)	(cfs)	(%)	(ft)	(ft)	(ft)
A2	18.67	17.43	51.71%			0.50
B2	14.93	24.19	38.17%			0.50
C2	14.93	6.54	69.55%			0.31
D2	12.48	9.01	58.07%	0.43	20.04	
D3	4.01	0.44	90.17%	0.24	11.10	
D4	2.57	0.11	95.93%	0.20	9.18	
F1	3.72	0.00	100.00%			
G1	3.82	0.00	100.00%			
G2	4.44	0.00	100.00%			
H1	1.65	0.00	100.00%			
l1	1.14	0.00	100.00%			
J1	2.79	0.00	100.00%			
K1	1.21	0.03	97.86%	0.13	6.03	
L2	2.38	0.44	84.48%	0.16	7.22	
M1	2.86	0.76	79.11%	0.17	7.92	
M2	2.53	0.52	82.85%	0.16	7.44	
M3	2.62	0.58	81.88%	0.16	7.56	
N1	15.52	7.50	67.43%		•••	
01	8.57	0.00	100.00%		•••	•••
P1	2.27	0.00	100.00%		•••	
U1	1.22	0.02	98.53%	0.13	6.03	
U2	0.93	0.00	99.65%	0.12	5.42	
V1	12.39	0.00	100.00%		***	0.41
W1(L)				0.40	18.34	
W1(R)				0.14	6.42	

Inlet capacity at sag location has been reduced by a clogging factor of 0.80, reducing theoretical
 Both theoretical capacity and reduced capacity are shown.

2. Inlet efficiency shown in the tables is Captured Flow/Total Flow, denoting the actual percentage

	Year Return Freque	ncy				T	Т	1				T	
Upstream	Downstream		Upstream	Downstream			Manning's					Upstream	Upstrea
Structure	Structure	Length	Invert	Invert	Slope	Diameter	n	Total Flow	Velocity	Capacity	Flow Depth	Struct. HGL	Top Elev
		(ft)	(ft)	(ft)	(%)	(in)		(cfs)	(ft/s)	(cfs)	(ft)	(ft)	(ft)
STM A2	STM A1	50.22	931.43	930.00	2.85	36	0.013	40.46	11.20	112.54	2.07	933.50	939.00
STM B2	STM B1	66.27	932.65	930.00	4.00	24	0.013	23.13	11.28	45.23	1.71	934.36	946.00
STM C2	STM C1	70.49	932.82	930.00	4.00	24	0.013	12.69	9.16	45.24	1.28	934.10	946.0
STM D1	PUBL RCB	33.40	936.80	936.25	1.65	60	0.013	156.75	13.57	334.26	3.59	940.39	950.6
STM D2	STM D1	87.42	938.61	937.30	1.50	60	0.013	140.23	10.46	318.85	3.39	942.00	953.8
STM D3	STM D2	133.06	941.17	939.11	1.55	60	0.013	127.78	10.20	324.09	3.23	944.40	955.1
STM D4	STM D3	128.22	943.89	941.27	2.04	60	0.013	125.30	9.57	372.32	3.20	947.09	956.4
STM D5	STM D4	80.81	946.53	944.89	2.03	48	0.013	123.73	14.05	204.83	3.34	949.87	956.9
STM D6	STM D5	72.98	947.83	947.03	1.10	42	0.013	63.39	8.11	105.33	2.49	950.32	957.7
STM D7	STM D6	197.01	950.20	948.03	1.10	42	0.013	61.19	8.84	105.52	2.45	952.65	959.7
STM D8	STM D7	129.31	952.12	950.70	1.10	36	0.013	51.88	9.72	69.95	2.34	954.46	962.5
STM D9	STM D8	15.22	952.89	952.62	1.75	36	0.013	51.88	10.08	88.22	2.34	955.23	962.4
STM D10	STM D9	96.59	954.78	953.09	1.75	36	0.013	50.23	8.97	88.23	2.30	957.08	964.2
STM D11	STM D10	50.57	956.17	955.28	1.75	30	0.013	31.55	8.07	54.25	1.91	958.08	965.2
STM D12	STM D11	155.87	959.10	956.37	1.75	30	0.013	29.17	7.85	54.25	1.84	960.94	968.3
STM D13	STM D12	81.40	961.84	959.60	2.75	30	0.013	29.17	9.22	68.01	1.84	963.68	968.7
EX STM D-A	STM D13	38.59	963.91	962.34	4.07	30	0.013	29.17	9.22	82.72	1.84	965.75	971.5
STM E1	STM D5	50.53	949.05	947.53	3.01	36	0.013	60.34	9.88	115.67	2.51	951.56	956.1
STM E2	STM E1	27.73	950.08	949.25	2.99	36	0.013	60.34	9.96	115.39	2.51	952.59	959.3
STM E3	STM E2	59.68	951.47	950.28	1.99	36	0.013	60.34	9.96	94.17	2.51	953.98	960.4
STM E4	STM E3	128.00	954.23	951.67	2.00	36	0.013	60.34	9.96	94.32	2.51	956.74	962.9
STM E5	STM E4	79.72	956.02	954.43	1.99	36	0.013	60.34	9.96	94.19	2.51	958.53	964.5
EX STM E-A	STM E5	143.57	960.13	956.22	2.72	36	0.013	60.34	9.96	110.06	2.51	962.64	972.1
STM F1	STM D6	18.00	951.28	950.92	2.00	15	0.013	2.20	4.98	9.13	0.59	951.87	957.6
STM G1	STM D7	39.56	952.29	951.70	1.49	24	0.013	9.31	5.83	27.62	1.09	953.38	959.7
STM G2	STM G1	171.49	955.36	952.79	1.50	24	0.013	7.05	6.10	27.69	0.94	956.30	961.5
STM G3	STM G2	72.05	956.71	955.86	1.18	24	0.013	4.43	5.06	24.57	0.74	957.45	959.9
STM H1	STM D9	20.35	956.86	956.45	2.01	15	0.013	0.98	3.01	9.17	0.39	957.25	962.2
STM I1	STM D9	53.15	956.76	955.70	1.99	15	0.013	0.58	3.52	9.12	0.32	957.08	962.2
STM J1		22.74	958.18	957.73	1.98	15	0.013	1.65		9.12		958.69	965.1
	STM D11								3.50		0.51		
STM K1	STM D11	34.16	958.10	957.42	1.99	15	0.013	0.73	1.94	9.11	0.33	958.43	965.2
STM L2	STM L1	41.03	956.12	955.71	1.00	24	0.013	19.89	7.74	22.61	1.60	957.72	964.7
STM L3	STM L2	56.59	956.90	956.33	1.00	24	0.013	18.56	7.55	22.62	1.55	958.45	966.3
STM L4	STM L3	165.14	959.05	957.40	1.00	24	0.013	13.55	6.83	22.62	1.32	960.37	964.7
STM L5	STM L4	66.64	959.92	959.25	1.01	24	0.013	12.21	6.30	22.68	1.25	961.17	962.5
STM M1	STM L3	64.41	964.57	961.83	4.25	15	0.013	5.01	7.67	13.32	0.91	965.48	969.3
STM M2	STM M1	90.14	968.39	964.77	4.02	15	0.013	3.25	4.47	12.94	0.73	969.12	973.1
STM M3	STM M2	90.49	972.29	968.60	4.08	15	0.013	1.73	3.59	13.04	0.52	972.81	976.8
STM N1	STM D10	51.657	956.87	956.28	1.14	24	0.013	13.61	7.03	24.17	1.33	958.2	961.1
STM 01	STM D10	73.489	957.75	956.28	2	18	0.013	5.07	5.02	14.85	0.87	958.62	963.9
STM P1	STM L4	19.51	960.09	959.8	1.49	15	0.013	1.34	2.87	7.87	0.46	960.55	964.
STM U1	PUBL RCB	14.935	939.49	938	9.98	15	0.013	1.28	6.25	20.4	0.45	939.94	954.2
STM U2	STM U1	62	949.36	948.12	2	15	0.013	0.55	3.33	9.13	0.29	949.65	954.6
STM V1	PUBL RCB	20	938	936	10	18	0.013	7.32	10.29	33.21	1.05	939.05	953.2
STM W1	PUBL RCB	23.713	938.85	936	12.02	15	0.013	5.37	10.13	22.39	0.94	939.79	951.0
PUBL RCB BEND 1	Outfall	188.958	931	928.4	1.38	84 x 156	0.013	567.95	15.11	2111.18	3.9	934.9	939.8
	PUBL RCB BEND 1	54.413	931.75	931	1.38	84 x 156	0.013	567.95	11.22	2113.02	3.9	935.65	940.2
	PUBL RCB BEND 2	423.772	937.58	931.75	1.38	84 x 156	0.013	567.95	11.21	2111.6	3.9	941.48	946.7
RCB CONNECTION	PUBL RCB BEND 3	60.78	938.42	937.58	1.38	84 x 156	0.013	567.95	11.22	2115.82	3.90	942.32	946.


	Calculation Table												
Upstream	Year Return Freque Downstream	ncy	Upstream	Downstream			Manning's					Upstream	Upstrear
Structure	Structure	Length	Invert	Invert	Slope	Diameter		Total Flow	Velocity	Capacity	Flow Depth	Struct. HGL	Top Elev
Structure	Structure	(ft)	(ft)	(ft)	(%)	(in)	n	(cfs)	(ft/s)	(cfs)	(ft)	(ft)	(ft)
STM A2	STM A1	50.22	931.43	930.00	2.85	36	0.013	68.10	13.52	112.54	2.63	934.06	939.00
STM B2	STM B1	66.27	932.65	930.00	4.00	24	0.013	39.12	12.50	45.23	1.95	934.60	939.00
STM C2	STM C1	70.49	932.82	930.00	4.00	24	0.013	21.47	10.96	45.24	1.66	934.48	946.00
STM D1	PUBL RCB	33.40	936.80	936.25	1.65	60		268.37	16.64	334.26	4.53	934.48	950.67
STM D2	STM D1	87.42	938.61	937.30	1.50	60	0.013 0.013	240.21	13.70	318.85	4.36	941.33	953.83
			938.61	937.30	1.55	60	0.013	219.15	12.97				955.86
STM D3	STM D2	133.06								324.09	4.20	945.37	
STM D5	STM D3	128.22	943.89	941.27	2.04	60	0.013	215.14	12.40	372.32	4.17	948.06	956.44
STM D5	STM D4	80.81	946.53	944.89	2.03	48	0.013	212.57	17.79	204.84	3.88	950.41	956.95
STM D6	STM D5	72.98	947.83	947.03	1.10	42	0.013	108.46	11.64	105.33	3.15	950.98	957.70
STM D7	STM D6	197.01	950.20	948.03	1.10	42	0.013	104.74	11.83	105.52	3.12	953.32	959.70
STM D8	STM D7	129.31	952.12	950.70	1.10	36	0.013	88.70	12.55	69.95	3.00	955.99	962.59
STM D9	STM D8	15.22	952.89	952.62	1.75	36	0.013	88.70	12.55	88.22	3.00	957.24	962.46
STM D10	STM D9	96.59	954.78	953.09	1.75	36	0.013	85.91	12.15	88.23	3.00	959.82	964.22
STM D11	STM D10	50.57	956.17	955.28	1.75	30	0.013	54.32	11.07	54.25	2.50	961.63	965.22
STM D12	STM D11	155.87	959.10	956.37	1.75	30	0.013	50.32	10.25	54.25	2.50	964.74	968.36
STM D13	STM D12	81.40	961.84	959.60	2.75	30	0.013	50.32	10.25	68.01	2.50	966.62	968.75
EX STM D-A	STM D13	38.59	963.91	962.34	4.07	30	0.013	50.32	10.25	82.72	2.50	967.85	971.55
STM E1	STM D5	50.53	949.05	947.53	3.01	36	0.013	104.11	14.89	115.67	2.91	951.96	956.17
STM E2	STM E1	27.73	950.08	949.25	2.99	36	0.013	104.11	15.18	115.39	2.91	952.99	959.31
STM E3	STM E2	59.68	951.47	950.28	1.99	36	0.013	104.11	14.73	94.17	3.00	954.74	960.41
STM E4	STM E3	128.00	954.23	951.67	2.00	36	0.013	104.11	14.73	94.32	3.00	958.87	962.96
STM E5	STM E4	79.72	956.02	954.43	1.99	36	0.013	104.11	14.73	94.19	3.00	961.83	964.55
EX STM E-A	STM E5	143.57	960.13	956.22	2.72	36	0.013	104.11	14.73	110.06	3.00	966.34	972.11
STM F1	STM D6	18.00	951.28	950.92	2.00	15	0.013	3.72	5.84	9.13	0.78	952.06	957.60
STM G1	STM D7	39.56	952.29	951.70	1.49	24	0.013	16.04	6.25	27.62	1.44	953.73	959.71
STM G2	STM G1	171.49	955.36	952.79	1.50	24	0.013	12.22	7.14	27.69	1.26	956.62	961.53
STM G3	STM G2	72.05	956.71	955.86	1.18	24	0.013	7.78	5.97	24.57	0.99	957.70	959.92
STM H1	STM D9	20.35	956.86	956.45	2.01	15	0.013	1.65	1.34	9.17	1.25	958.25	962.22
STM I1	STM D9	53.15	956.76	955.70	1.99	15	0.013	1.14	0.93	9.12	1.25	958.23	962.11
STM J1	STM D11	22.74	958.18	957.73	1.98	15	0.013	2.79	2.27	9.08	1.25	962.49	965.14
STM K1	STM D11	34.16	958.10	957.42	1.99	15	0.013	1.21	0.99	9.11	1.25	962.40	965.27
STM L2	STM L1	41.03	956.12	955.71	1.00	24	0.013	33.31	10.70	22.61	2.00	958.51	964.76
STM L3	STM L2	56.59	956.90	956.33	1.00	24	0.013	30.93	9.85	22.62	2.00	960.09	966.39
STM L4	STM L3	165.14	959.05	957.40	1.00	24	0.013	22.92	7.30	22.62	2.00	962.39	964.75
STM L5	STM L4	66.64	959.92	959.25	1.01	24	0.013	20.65	6.57	22.68	2.00	963.28	962.59
STM M1	STM L3	64.41	964.57	961.83	4.25	15	0.013	8.01	9.14	13.32	1.11	965.68	969.35
STM M2	STM M1	90.14	968.39	964.77	4.02	15	0.013	5.15	5.34	12.94	0.92	969.31	973.16
STM M3	STM M2	90.49	972.29	968.60	4.08	15	0.013	2.62	3.86	13.04	0.65	972.94	976.84
STM N1	STM D10	51.657	956.87	956.28	1.14	24	0.013	23.02	7.33	24.17	2.00	961.28	961.12
STM O1	STM D10	73.489	957.75	956.28	2	18	0.013	8.57	4.85	14.85	1.50	961.23	963.92
STM P1	STM L4	19.51	960.09	959.8	1.49	15	0.013	2.27	1.85	7.87	1.25	962.75	964.60
STM U1	PUBL RCB	14.935	939.49	938	9.98	15	0.013	2.15	7.30	20.40	0.58	940.07	954.22
STM U2	STM U1	62	949.36	948.12	2	15	0.013	0.93	3.87	9.13	0.38	949.74	954.67
STM V1	PUBL RCB	20	938	936	10	18	0.013	12.39	12.45	33.21	1.33	939.33	953.21
STM W1	PUBL RCB	23.713	938.85	936	12.02	15	0.013	9.39	12.43	22.39	1.33	940.02	951.03
UBL RCB BEND 1	Outfall	188.958	930.63	928.4	1.38	84 x 156	0.013	895.62	17.5	2111.18	5.28	936.28	939.87
		54.413	931.75			84 x 156	0.013			2111.18		936.28	
	PUBL RCB BEND 2		931.75	931	1.38			895.62	13.06		5.28		940.25
	PUBL RCB BEND 3	423.772 60.78	937.58	931.75 937.58	1.38 1.38	84 x 156 84 x 156	0.013 0.013	895.62 895.62	13.05 13.06	2111.61 2115.82	5.28 5.28	942.86 943.70	946.71 946.84

DAVID L. EICKMAN NUMBER PE-2009015436 PE-2009015436 DAVID EICKMAN, P.E. MO# 2009015436								
DATE REVISIONS DESCRIPTION BY					REVISIONS			
REV. I								
STORMWATER CALCULATIONS - FUTURE CONDITIONS	PRIVATE SITE DEVELOPMENT PLANS		THE VILLAGE AT DISCOVERY PARK ZONE 1	NW COLBERN RD & NE DOUGLAS ST	LEE'S SUMMIT, MISSOURI			
drawn checke approv QA/QC project drawing date:	ed by: ed by: by: no.: g no.:			J D21-0 105_D2 10.18	NR/JN DE S/NH 04643 104643			

SHEET

Appendix C
C1 NRCS Soils Report

EXHIBIT C

