HYDRAULIC REPORT

FOR

Public Improvements to Serve Wilshire Hills III Lee's Summit, Missouri

> *Prepared for:* Wilshire Hills III L.P. 206 Peach Way Columbia, MO 54202

JUNE 22, 2023 REVISED: OCTOBER 12, 2023

PREPARED BY:

Engineering Surveys & Services

1113 Fay Street Columbia, MO 65201 (573) 449-2646

JOB NUMBER: 15925

TABLE OF CONTENTS

TABLE	OF CONTENTS	2										
1	Introduction	1										
2	Design	1										
2.1	Erosion & Sediment Control Design	1										
2.2	Stormwater Detention Design	2										
2.3	Water Quality	3										
2.4	Storm Sewer Design	4										
3	Conclusion	4										
Appen	dix A: Erosion and Sediment Control Calculations	A										
Appen	Appendix B: Stormwater Detention CalculationsB											
Appen	Appendix C: Storm Sewer CalculationsC											
Appen	dix D: Drainage Area Map(s)	D										

1 INTRODUCTION

The project consists of the construction of a public road and associated utilities to connect existing Wilshire Drive to Strother Road in Lee's Summit, MO. The road and associated storm sewer and sanitary sewer extensions will provide service to the future Wilshire Hills Phase III development and additional future development. The project shall be built in two phases. The first phase will be the rough grading of Wilshire Hills Phase III, excavation of the detention basin, and the completion of the road work. Phase III will include the completion of Wilshire Hills Phase III and future projects. Soil disturbing activities will include clearing and grubbing, installing erosion and sediment controls, grading, installation of underground utilities, and preparation for final seeding, mulching, and landscaping. Every part of the stormwater design will be accounted for to follow Lee's Summits stormwater requirements.

2 DESIGN

2.1 Erosion & Sediment Control Design

Design Standard(s):

• Missouri Department of Natural Resources (MDNR) Protecting Water Quality Field Guide, 2011

The Civil Site Plans and project Storm Water Pollution and Prevention Plan (SWPPP) indicate erosion and sediment control Best Management Practices (BMPs) to be utilized throughout construction activities. The proposed regional detention basin shall be used as a temporary sediment trap throughout construction. Appendix A includes erosion and sediment control storage calculations. The outfall control structure must be wrapped in filter fabric to an elevation of 916 according to these calculations.

Per the city of Lee's Summit the Detention basin has been lined with an erosion control blanket to assist in bank stabilization while the grass is being established. The basin currently has swales to assist with drainage, the future plan will include pipes from the surrounding development. The installation of this fabric in the first stage prepares the basin for future development as well as providing maximum protection.

The swales leading into the basin have temporary erosion control blankets to help protect earthwork while grass is being established. These blankets are not permanent, as are the nature of the swales. The swale was analyzed with only rip-rap and bare earth as well as vegetated and both were found to be stable. Bare earth was also calculated and resulted in being unstable. A temporary erosion blanket will provided the necessary stability to maintain the swale until vegetation establishes. The check dams and rip rap also provide excess protection and slow the water before entering the basin. The hydraulic results for each option has been included in Appendix A.

2.2 Stormwater Detention Design

Design Standard(s):

- Lee's Summit, Missouri Stormwater Discharge Control Regulations (Code of Ordinance Chapter 34 Article 3)
- APWA Section 5300
- LS Section 5600 Storm Drainage Systems and Facilities (revised July 2020)

The regional detention basin has been designed to serve all sites south of Meadowview Drive and west NE Manhattan Drive. This basin will provide detention and water quality with allocations for impervious areas for future development. Table 1 shows the area of each lot, the assumed impervious area, and the total impervious treated by the regional basin for the entire development. The first development will be Wilshire Hills Phase III. The impervious area from this site will be subtracted from the overall total for future development.

Impervious areas have been approximated based on future use of each lot. The time of concentrations and curve numbers reflect these assumptions for future site development.

	Area (acres)	Impervious (acres)	Curve Number
Wilshire III (Northwest	2.54	1.25	87
+ Bypass)			
Northeast	5.39	3.74	89
Southeast	6.27	4.57	91
Southwest	1.60	1.12	91
West	3.20	1.65	86
Total	19.0	12.33	

Table 1: Future Land Development

The pre-developed conditions were calculated based on conditions prior to any development, or pre-2006. The site was originally pasture before being cleared and mass graded for future development. Postdeveloped conditions include future impervious areas for future site development. This 12.33 acres of additional impervious area has been included with the design of this detention basin.

The assumptions for max release rate required all new additional impervious areas to have detention that restricts runoff to the pre project rates for the 50%, 10%, and 1% design storms. These rates come from the APWA Section 5300 and are 0.5, 2.0, and 3.0 cfs per acre in relation to the design storm. The existing onsite sediment trap will be removed and replaced with the new larger basin designed to serve all onsite lots west of the box culvert. It is important to note the large difference between pre vs. post detention that these limits create.

Appendix B includes HydraFlow detention calculations and Appendix D includes the detention drainage area maps. Table 2 shows the required discharge rates based on the area draining to the detention basin. This is then compared to the Designed basin discharge. This calculated data is then added with the offsite pass through and bypass to ensure that all is accounted for within the basin. 1 acre of Bypass is accounted

for in the design of this basin. 0.25 of this is utilized through the development of Wilshire Hills phase III. This leaves 0.75 acres for further developments to allow site bypass.

The following table is a visual representation of the data used to calculate the Total Allowed Basin Discharge in comparison to the Provided Basin Discharge. The Maximum allowable site rate is calculated using the APWA standards outlined in Lee' Summit Stormwater Requirements. Table 2 shows that the designed basin meets all discharge calculations and reduces the runoff of the site to meet the requirements according to city requirements.

Total Allowed Basin Discharge = Maximum Site Rate (cfs) + Offsite Pass Through (cfs) Provided Basin Discharge = Designed Basin Discharge (cfs) + Offsite Pass Through (cfs) + Onsite Bypass (cfs)

			Ta	DIE Z: Basin	Discharge Ra	ates			
	Rate (cfs)				Total				
	Allowable			Offsite	Allowed	Designed		Provided	
	per Acre	Area	Maximum	Pass	Basin	Basin	Onsite	Basin	
Design	per	Served	Site Rate	Through	Discharge	Discharge	Bypass	Discharge	Basin
Storm	APWA	(acres)	(cfs)	(cfs)	(csf)	(cfs)	(cfs)	(cfs)	Elevation
50% (2-	0.5	19.0	9.50	3.02	12.52	7.23	(-)	12.50	916.15
yr)							2.25		
20%	2.0	19.0	38.0	14 88	52.88	22.20	(-)	42.88	919 30
(10-yr)	2.0	15.0	50.0	14.00	52.00	22.20	5.80	42.00	515.50
1%	3.0	10.0	57.0	25.02	02 02	15 78	(-)	07 66	022 /15
(100-yr)	5.0	19.0	57.0	33.92	52.52	45.70	10.96	52.00	522.45

Table 2: Basin Discharge Rates

The 100-year level of rise in the basin is 922.45 and the top of the dam is 924.3, providing 1.85' of freeboard. 922.45 is the maximum water surface elevation. The emergency spillway for the basin is the grated top of the outfall structure in the basin with an elevation of 922.95. The 100-year design storm was routed through the basin, and the level of rise is 923.30, providing 1.0' of freeboard.

A spillway for the basin has been designed for the top of the earthen dam in the unlikely event the outfall structure should become completely blocked. Appendix B includes weir calculations that indicate the 100-year flow through the spillway is fully contained in the spillway and will not overtop the dam.

2.3 Water Quality

Design Standard(s):

- APWA Section 5608.4
- MARC/APWA BMP Manual Chapter 6.

The water quality required for this site is provided by a 40-hour extended detention of runoff of the 90% mean annual event. This is a 1.37"/24-hour event. The designed detention basin takes 60 hours to completely release all of the water quality storm after peaking at the 12-hour mark. This meets the

qualifications to meet water quality standards and requirements, according to APWA 5608.4 and Chapter 6 of the MARC/APWA BMP Manual.

2.4 Storm Sewer Design

Design Standard(s):

- Lee's Summit, Missouri Stormwater Discharge Control Regulations (Code of Ordinance Chapter 34 Article 3)
- APWA Section 5300
- LS Section 5600 Storm Drainage Systems and Facilities (revised July 2020)

All storm sewers for the road public improvement project will be public storm sewers. They have been designed to the 25-year storm but can handle the 100-year storm without impeding traffic. Appendix C includes HydraFlow storm sewer calculations. The calculations are based on the Storm Sewer Drainage Area Map in Appendix D.

It is important to note that the future offsite industrial is currently passing through the storm sewers causing an increase in volume in the pipes. The Storm Drainage Area map shows the designed divide between the inlets TMI42 and SOI6A. Currently all of the water is directed towards SOI6A through a swale to reduce water passing over the road. This is causing a much larger volume of water to enter SOI6A than usual though the pipes are sized to handle this increase in flow.

3 CONCLUSION

Erosion and sediment control has been designed per requirements. The site meets storm water detention requirements for developments within the City of Lee's Summit and is designed for future development on the site. The storm sewers have been designed to convey the 25-year design storm. All of the City of Lee's Summit stormwater requirements have been met.

APPENDIX A: EROSION AND SEDIMENT CONTROL CALCULATIONS

		Ŧ			Ē	ELIV	ERIN	IG YC	OUR V	1510	N ™																				_ Sł	iee	t:	<u> </u>	_ of	
Coiii (573) 4	імв 49-	ia 264	6	Jei (57	FFER (3) 6	SON 36-	СIT -330	Y)3	(66	SE 50) 8	DALI 326	A -86:	18														<u>.</u>									
ww	w.e	ess-i	nc.c	om				ess	@es	s-in	c.co	m				••••		-																	BY	S
							3										ļ																			
an bist		E	205	<u> </u>	0	2	215	<u>72</u>	pr	<u> </u>	<u>191</u>	CL	LA	Tic	<u>Þ</u>	5																				
-						~	~	A	C	41			1				<u> </u>																			
~					5	11	3	DA	e de	1	de	hr	ار مما	al		1.0		sed	lone		lor	<u>a:</u>														
а. – <mark>Р</mark> 1						11	3	F I	×	3.1	0	bc	F/A	c ?	= L	00	80		CF	5e	din	rent		60			***									
nia 1915 - Marij												Ī				1.1									3		243									
				E	4	IA	nor	5				6	on	TOL	sa	A	LEP	(5	F)				T	ът	AL.	సి	100	A61	. (C	F)	Ľ.					
					9	10								4	12	80	0										0									
_					9	11	ļ	ļ			ļ		ļ	Ę	5,1	14									-	4	69	3								
. F					9	12							ļ	6	, 0	06		ļ							١	O,	2	21 -	7							
ŀ					9	13							ļ	· (e	,9'	70	ļ	ļ							1	6,	7	2.8	<u>}</u>							
-					9	14								12	- 1	5	2.		•	~~~~~	*****					6		69								
					7	6	ļ							13	6	32	5	<u> </u>							e	2	0	う (d	ļ							
-					"	16								C1	-2))	, 9	T	<u></u>							
1																-																				
				5	21	17.	, ,	C.=		L.F		C.	Ale		A	afre			15		7-0	. 1.			on br		20		le.	. Ant						
ŀ				st	5-6	110	, j	T	hic	ß	k	el o	10	H.	0	- NOF	Ful	10 E	10		~~ ~	50	 	511	v. v	of	2		h	61	n N					
				Ga	bu	2	to	k	æ	w	ua	au																<u>H</u> ~			Ť					
ſ											- 6 - 1	- -																	1							
				T	+ 1	5	ex	frer	nel	٨	m	201	ta	nt	to	n	on	-11	nort	71	~	def	2h	of	• 1	vrs	R	om	3	3						
				a	6	equ	nn	her	ł	6r	hc	USI	hq	6	sh	0	na	-c	one	tru	svo	<u>n</u>	ha	5 1	re	n c	on	pu	nd	,	ļ					
				H	e	oed	m	41	ac	LUN	101	aw	ba	m	*	4- F	200	s v	101	58	ю	e	rev	nov	-14	ь	ene l	4 8	þ							
	******			;]	0	0	rigi	600	<u>\</u>	eli	va	100/		lev	als														ļ		 		ļļ			
		~~~~										<u> </u>		-		-			L													<u> </u>				
									-														ļ													
												-			-	-	-																<u>}</u>			
								1		†	1	1		1		1	1	-											1		1	1	+			
		-			-		1	1		1	1	1			1	1										-		1		1						
									ļ																											
										ļ			<u> </u>	ļ	ļ	ļ	<u> </u>	-	ļ	ļ	ļ		ļ		ļ		<u> </u>		-	ļ	-	<u> </u>				
					ļ	ļ	ļ	ļ	ļ					ļ			ļ		ļ	ļ	ļ				ļ	ļ		-	ļ	ļ	<b>_</b>	<u> </u>	ļ	ļ		
					ļ						ļ	ļ		ļ		ļ		<u> </u>	ļ				ļ	ļ		ļ								ļ	<b> </b>	
											<b> </b>		-									ļ	<u> </u>				-					<b> </b>				
			ļ																							<b> </b>							<u> </u>			
															+			+																		
			<u> </u>						-				-			_																				
		1	1	1	1	1	1	1		1	1	1	+	1	1	1	1	1	1	1	1	1	1	1	1	1	1			1	1	F	1	1		

ES	Engineer & Servic	ring Surveys es	Project: Wilshire H
Социмвіа (573) 449-2646	JEFFERSON CITY (573) 636-3303	SEDALIA (660) 826-8618	
www.ess-inc	.com ess	;@ess-inc.com	

		-		· · · · · ·	-			+			+							<b> </b>	_						_									+	_							
<u>b</u>	510	N		C	٩	2	TY/	4	L		e	ž	<u>u</u>	4	ţ	TC	2	<u>Þ</u>					ļ					ļ										_				ļ
					-			_		ļ	_			. 									ļ					ļ		_			[	1	_			_				ļ
	5	L	7	•	F	Er	70	۶	-	-	Ŀ	ro	tio	1	Le la	55	-#1	ar	╮		14	cre	-/	10	d	<del>61</del>		*	C	). j	20	25	<u>ه</u>	1			<b> </b>					ļ
					Ļ			_	******						4			<u> </u>	_			ļ		ļ				ļ	ļ	_			ļ	_				_	_			
		5		E	P.	51	Ö	ł	N	w	1	JH	SV	e	Þ	rij	<b>L</b> 3	S	1	nc	TH	E	25	<u>}</u>	h	F	E	<b>5</b>	10				ļ				Ĺ	_	_			
							D	1	57	UX	k	3.E	0	A	n	бΛ	:				O	5	8	A	cn	3				_			ļ	_			ļ					ļ
							S	١	π	F	÷łe	2	ce	1	4	N	5TI	<u> </u>			2.	ଷଟ୍	<u>،</u>	Fe	¢ 1	r		,	_				ļ									
			-				R	A	T	0	:		(	٥.!	5	3 /	2	8	¢		150 1914	Ć	þ. (	фc	)Z	0	•		_	_			ļ		_							
			÷.,	ji tirta			*****															ļ											L		_		Ļ		_		-	
	ļ	2	:)	N	6	27	ħ		4	B	d	<b>6</b> \n	O	4	.c.	11	P	le	e	(	NE	M	ecr	<u>1</u> 0	2	380	ٰدن	Þr	)				ļ					_				
							ſ.	21	s'	τυ	d.	60	20	r	14	еA	:				Ó	2.	ъ	191	ch.	8							ļ			******						
							9	W	.5	F	: 8	2	હ	4	ial	161	74				3	09	\$	F	eel	٢				_										******		
							V	Lp	FT	10	•		0.	2.	ອ,	/ ह	305	<u>}</u>	_		35 5	C	<u>). c</u>	<u>ى د</u>	0	9	×	1														ļ
																						Ļ										*****				****		_	_			
		1.	3)	S	6	UT	T4	k	54	e	de	.51	<u>n</u> (	50	t¢	ml	5	ie	e	()	NE	M	a	nh	24	2	Te	rre	Le.	2							_					
							C	>>	57	5	4	કહ	Q.	1	3	2e	4:	Ľ			8	5	3	A	en	ม			_													
							S	1	7	F	÷k	<b>N</b>	æ	L	5	NG	T	1:			6	32	1.	fe	ł																	
							72	4	m	0			1.	5	3	1	6	3	ч		5	O	C	pc	>2	_4	×	P.														
																																		_		uteriki karate						
																																					<u> </u>					
	10	JL	હ	٢	i	Pn	0	T	٤٢	T	10	nc	Ì .	-		<b>N</b>	et	d	es	iar		\$ 1	12	a	en	e.	di	shu	he	d:	or	e.s.				•				:	l	
																				<u> </u>														ŀ								
				c.	T		11					DI	ST	Ua	ud	E	5 1	172	e	À	-	0	11	4						ł												
					T																																					
				C	t	ŀ	2	-		Ι	ţ	21	87'	ba	.0	ec	5.6	n	G	A	53	O	. 17	3 \																		
	T				T			T																																		
	1			3	0	r	6	A			t	21	5T	Un	k	se (	Þ¥	re	E	A		0.	21	9.		,								Ī								Γ
					T	and the		Ť																																		
	1				T	~~~~		Ť			T							Ι						T									Τ	Τ								T
	İ				T		-	Ť		1	T	******		T					1			-								******		Ι										T
	1	-		[	$\dagger$		1	1				******	1	1	1		1	1	1		1	1	1				1	1	1			1	-			1			_		1	-

1115 Phase III Date: 10/11/2023

IMPROVAMENTS_____ Sheet:_____ of

#### Noth American Green - Erosion Control Materials Design Software Ver. 4.2 - Channel [10/12/20]03:37 FM

•

Discharge (cfs)	13.4
Peak Flow Period (hrs)	2
Channel Slope (ft/ft)	0.013
Channel Bottom Width (ft)	10.00
Left Side Slope (Horiz. to 1)	3.0
Right Side Slope (Horiz. to 1)	3.0
Existing Channel Bend	C Yes 📀 No
COMPOSITE CHANNEL LINING?	C Yes 🖲 No
	Channel Liner

#### 

Vegetation Analysis	
Retardance Class (A-E)	E <2 in
Vegetation Type (Growth Habit)	Sod Former
Vegetation Density	4. Poor <50%
Soil Type	Clay Loam

.024

Manning's 'n'

```
NORTH AMERICAN GREEN EROSION CONTROL MATERIALS DESIGN SOFTWARE VERSION 4.2
NORTH AMERICAN GREEN CHANNEL PROTECTION - ENGLISH/S.I.
USER SPECIFIED CHANNEL LINING BACK-UP COMPUTATIONS
PROJECT NAME: Wilshire Hills
                               PROJECT NO.: 15925
                               DATE: 10/12/2023
COMPUTED BY:
FROM STATION/REACH:
                               TO STATION/REACH:
DRAINAGE AREA:
                               DESIGN FREOUENCY:
INPUT PARAMETERS
Channel Discharge : 13.4 cfs
                          (.38 \text{ m}^3/\text{s})
Peak Flow Period
               : 2 hours
                : 0.013 ft/ft (0.013 m/m)
Channel Slope
Channel Bottom Width : 10.0 ft (3.05 m)
Left Side Slope : 3:1
Right Side Slope
               : 3:1
Channel Lining : Unreinforced Vegetation Sod <50%
Permi. Shear(Tp) :2.16 psf (103.4 Pa)
           Phase = 1
           Class = E Vegetation
           Soil = Clay Loam
           Allowable Soil Shear(Ta):0.05 psf (2.39400003567338 Pa)
CALCULATIONS
Initial Depth Estimate = 0.16 * (13.4 /(0.013^0.5))^0.375 = 0.96 ft (.29 m)
Final Channel Depth (after 10 iterations)
                                            = .25 ft (0.08 m)
Flow Area = (10.0 * 0.3) + (0.5 * 0.25^2 * (3.0+3.0))
                                           = 2.7 \text{ sq.ft} (0.3 \text{ m}^2)
Wet Per. =10.0 +(0.3*(((3.0^2)+1)^.5 +((3.0^2)+1)^.5)) = 11.6 ft (3.5 m)
Hydraulic Radius = (2.7 / 11.6)
                                            = 0.2 ft (0.1 m)
Channel Velocity = (1.486/0.013) * (0.2^0.667) * (0.013^.5)
                                            = 4.9 fps (1.5 m/s)
Channel Effective Manning's Roughness
                                            = 0.013
Calculated Shear (Td) = 62.4 \times 0.25 \times 0.013
                                            = 0.20 \text{ psf} (9.8 \text{ Pa})
Safety Factor = (Tp/Td) = (2.16 / 0.20)
                                            = 10.57
Effective Stress on Soil (Te)=0.2*(1-0.44)*(0.0156/0.013)^2 =0.16 psf (7.9 Pa)
Safety Factor = (Ta/Te) = (0.05 / 0.165)
                                             = 0.30
```

North America	n Green - ECH	4DS Version 4	.2			[10/12/20[03:44 PM]
HYDRAU	LIC RESU	JLTS				DC7E (+ 0.0E2)
Discharge [cfs]	Peak Flow Period (hrs)	Velocity (fps)	Area (sq.ft)	Hydraulic Radius(ft)	Normal Depth (it)	D375 (mill.005)
13.4	2.0	1.99	6.74	0.49	0.58	7
						S = 0.0130
						1 Bottom 30 Width = 10.00 ft 30

Not to Scale

#### LINER RESULTS

Reach	Matting Type	Stability Analysis	Veg	etation C	haracter	istics	Permissible	Calculated	Safety Factor	Remarks
	Staple Pattern		Phase	Class	Туре	Density	Shear Stress (psf)	Shear Stress (psf)		
Straight	DS75	Unvegetated					1.55	0.47	3.32	STABLE
	Staple D									

```
NORTH AMERICAN GREEN EROSION CONTROL MATERIALS DESIGN SOFTWARE VERSION 4.2
NORTH AMERICAN GREEN CHANNEL PROTECTION - ENGLISH/S.I.
USER SPECIFIED CHANNEL LINING BACK-UP COMPUTATIONS
PROJECT NAME: Wilshire Hills
                              PROJECT NO.: 15925
                              DATE: 10/12/2023
COMPUTED BY:
FROM STATION/REACH:
                              TO STATION/REACH:
DRAINAGE AREA:
                              DESIGN FREOUENCY:
INPUT PARAMETERS
Channel Discharge : 13.4 cfs (.38 m^3/s)
Peak Flow Period
               : 2 hours
               : 0.013 ft/ft (0.013 m/m)
Channel Slope
Channel Bottom Width : 10.0 ft (3.05 m)
Left Side Slope : 3:1
Right Side Slope : 3:1
Channel Lining : DS75 Staple D
Permi. Shear(Tp) :1.55 psf (74.2 Pa)
           Phase = 0
CALCULATIONS
Initial Depth Estimate = 0.16 \times (13.4 / (0.013^{0.5}))^{0.375} = 0.96 ft (.29 m)
Final Channel Depth (after 9 iterations)
                                           = .58 \text{ ft} (0.18 \text{ m})
Flow Area = (10.0 * 0.6) + (0.5 * 0.58^2 * (3.0+3.0))
                                          = 6.7 \text{ sq.ft} (0.6 \text{ m}^2)
Wet Per. =10.0 +(0.6*(((3.0^2)+1)^.5 +((3.0^2)+1)^.5)) = 13.6 ft (4.2 m)
                                          = 0.5 \text{ ft} (0.2 \text{ m})
Hydraulic Radius = (6.7 / 13.6)
Channel Velocity = (1.486/0.053) * (0.5^0.667) * (0.013^.5) = 2.0 fps (0.6 m/s)
Channel Effective Manning's Roughness
                                           = 0.053
Calculated Shear (Td) = 62.4 \times 0.58 \times 0.013
                                           = 0.47 \text{ psf} (22.3 \text{ Pa})
Safety Factor = (Tp/Td) = (1.55 / 0.47)
                                           = 3.32
```

North America	n Green - ECN	1DS Version 4	.2			(10/12/20(04:17 PM)
<u>HYDRAU</u>	LIC RESU	JLTS				8 1 8: ( 0.102)
Discharge [cfs]	Peak Flow Period (hrs)	Velocity (fps)	Area (sq.ft)	Hydraulic Radius(ft)	Normal Depth (ft)	Hock Hiprap (n=u, TUU)
13.4	2.0	1.30	10.27	0.68	0.82	7
						S = 0.0130

Not to Scale

#### LINER RESULTS

Reach	Matting Type	Stability Analysis	Veg	etation C	haracter	istics	Permissible	Calculated	Safety Factor	Remarks
	Staple Pattern	1	Phase	Class	Туре	Density	Shear Stress (psf)	Shear Stress (psf)		
Straight	Rock Riprap	Unvegetated					3.33	0.67	4.99	STABLE
	10in									

```
NORTH AMERICAN GREEN EROSION CONTROL MATERIALS DESIGN SOFTWARE VERSION 4.2
NORTH AMERICAN GREEN CHANNEL PROTECTION - ENGLISH/S.I.
USER SPECIFIED CHANNEL LINING BACK-UP COMPUTATIONS
PROJECT NAME: Wilshire Hills
                              PROJECT NO.: 15925
                              DATE: 10/12/2023
COMPUTED BY:
FROM STATION/REACH:
                              TO STATION/REACH:
DRAINAGE AREA:
                              DESIGN FREOUENCY:
INPUT PARAMETERS
Channel Discharge : 13.4 cfs (.38 m^3/s)
Peak Flow Period
               : 2 hours
               : 0.013 ft/ft (0.013 m/m)
Channel Slope
Channel Bottom Width : 10.0 ft (3.05 m)
Left Side Slope : 3:1
Right Side Slope
              : 3:1
Channel Lining : Rock Riprap 10in
Permi. Shear(Tp) :3.33 psf (159.6 Pa)
           Phase = 0
CALCULATIONS
Initial Depth Estimate = 0.16 \times (13.4 / (0.013^{0.5}))^{0.375} = 0.96 ft (.29 m)
Final Channel Depth (after 9 iterations)
                                           = .82 ft (0.25 m)
Flow Area = (10.0 * 0.8) + (0.5 * 0.82^2 * (3.0+3.0))
                                          = 10.3 \text{ sq.ft} (1.0 \text{ m}^2)
Wet Per. =10.0 +(0.8*(((3.0^2)+1)^.5 +((3.0^2)+1)^.5)) = 15.2 ft (4.6 m)
Hydraulic Radius = (10.3 / 15.2)
                                          = 0.7 \text{ ft} (0.2 \text{ m})
Channel Velocity = (1.486/0.100) * (0.7^0.667) * (0.013^.5) = 1.3 fps (0.4 m/s)
Channel Effective Manning's Roughness
                                           = 0.100
                                           = 0.67 \text{ psf} (32.0 \text{ Pa})
Calculated Shear (Td) = 62.4 \times 0.82 \times 0.013
Safety Factor = (Tp/Td) = (3.33 / 0.67)
                                           = 4.99
```

	Outlet Pipe	Discharge	Width Top	Width	Length	D50 Size	Thickness
	Diameter	(ft3/sec)	of Flow	Base of			
				Flow			
FES 4	24"	40.58	6 ft	12 ft	15 ft	5	1 ft
FES 40	36″	1.34	9 ft	30 ft	21 ft	20	2 ft
OCS 2	Discharge into existing concrete erosion control area						



APPENDIX B: STORMWATER DETENTION CALCULATIONS

### Hydraflow Table of Contents

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Watershed Model Schematic	1
Hydrograph Return Period Recap	2

#### 2 - Year

Summary Report	3
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Pre-Onsite	
Hydrograph No. 2, SCS Runoff, Pre- Offsite	
Hydrograph No. 3, SCS Runoff, 1 Northwest Onsite to Basi	n 6
Hydrograph No. 4, SCS Runoff, 2 Northeast Onsite to Basi	n7
Hydrograph No. 5, SCS Runoff, 3 Southeast Onsite to Basi	n 8
Hydrograph No. 6, SCS Runoff, 4 Southwest Onsite to Bas	in
Hydrograph No. 7, SCS Runoff, 5 West Onsite to Basin	
Hydrograph No. 8, Combine, TO BASIN	
Hydrograph No. 9, Reservoir, BASIN	
Pond Report - Regional Detention	
Hydrograph No. 10, SCS Runoff, Basin Bypass	
Hydrograph No. 11, Combine, Pre	
Hydrograph No. 12, Combine, Post	

#### 10 - Year

Summary Report	17
Hydrograph Reports	18
Hydrograph No. 1, SCS Runoff, Pre-Onsite	18
Hydrograph No. 2, SCS Runoff, Pre- Offsite	19
Hydrograph No. 3, SCS Runoff, 1 Northwest Onsite to Basin	20
Hydrograph No. 4, SCS Runoff, 2 Northeast Onsite to Basin	21
Hydrograph No. 5, SCS Runoff, 3 Southeast Onsite to Basin	22
Hydrograph No. 6, SCS Runoff, 4 Southwest Onsite to Basin	23
Hydrograph No. 7, SCS Runoff, 5 West Onsite to Basin	24
Hydrograph No. 8, Combine, TO BASIN	25
Hydrograph No. 9, Reservoir, BASIN	26
Hydrograph No. 10, SCS Runoff, Basin Bypass	27
Hydrograph No. 11, Combine, Pre	28
Hydrograph No. 12, Combine, Post	29

#### 100 - Year

Summary Report	30
lydrograph Reports	31
Hydrograph No. 1, SCS Runoff, Pre-Onsite	31
Hydrograph No. 2, SCS Runoff, Pre- Offsite	32
Hydrograph No. 3, SCS Runoff, 1 Northwest Onsite to Basin	33
Hydrograph No. 4, SCS Runoff, 2 Northeast Onsite to Basin	34
Hydrograph No. 5, SCS Runoff, 3 Southeast Onsite to Basin	35
Hydrograph No. 6, SCS Runoff, 4 Southwest Onsite to Basin	36
Hydrograph No. 7, SCS Runoff, 5 West Onsite to Basin	37
Hydrograph No. 8, Combine, TO BASIN	38

Hydrograph No. 9, Reservoir, BASIN	39
Hydrograph No. 10, SCS Runoff, Basin Bypass	40
Hydrograph No. 11, Combine, Pre	41
Hydrograph No. 12, Combine, Post	42

1



# Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd.	Hydrograph	drograph Inflow Peak Outflow (cfs)							Hydrograph		
No.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff			10.59			49.39			118.20	Pre-Onsite
2	SCS Runoff			3.023			14.88			35.92	Pre- Offsite
3	SCS Runoff			5.273			11.81			20.88	1 Northwest Onsite to Basin
4	SCS Runoff			13.37			27.66			47.22	2 Northeast Onsite to Basin
5	SCS Runoff			13.08			27.04			46.17	3 Southeast Onsite to Basin
6	SCS Runoff			4.297			8.859			15.10	4 Southwest Onsite to Basin
7	SCS Runoff			7.062			16.17			28.87	5 West Onsite to Basin
8	Combine	3, 4, 5,		42.70			90.37			156.50	TO BASIN
9	Reservoir	6, 7 8		7.229			22.17			45.78	BASIN
10	SCS Runoff			2.248			5.796			10.96	Basin Bypass
11	Combine	1, 2,		12.96			62.47			148.91	Pre
12	Combine	2, 9, 10,		9.807			35.30			75.68	Post
Pro	i. file: 15925	Regional	Detentio	n Basin	(10-17-2	023) DR	RY BASII	N.gpw		esday. 1	0/17/2023

# Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	10.59	2	724	37,148				Pre-Onsite
2	SCS Runoff	3.023	2	732	14,805				Pre- Offsite
3	SCS Runoff	5.273	2	722	14,805				1 Northwest Onsite to Basin
4	SCS Runoff	13.37	2	724	42,351				2 Northeast Onsite to Basin
5	SCS Runoff	13.08	2	724	41,408				3 Southeast Onsite to Basin
6	SCS Runoff	4.297	2	722	12,257				4 Southwest Onsite to Basin
7	SCS Runoff	7.062	2	722	19,803				5 West Onsite to Basin
8	Combine	42.70	2	724	130,625	3, 4, 5,			TO BASIN
9	Reservoir	7.229	2	746	130,623	6, 7 8	916.15	57,710	BASIN
10	SCS Runoff	2.248	2	718	4,511				Basin Bypass
11	Combine	12.96	2	726	51,953	1, 2,			Pre
12	Combine	9.807	2	738	149,939	2, 9, 10,			Post
159	25 Regional I	Detention	Basin (1	0-17-202	3) 2221/102	Silbidur®We		Tuesday 1	0/17/2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

### Hyd. No. 1

Pre-Onsite

Hydrograph type	= SCS Runoff	Peak discharge	= 10.59 cfs
Storm frequency	= 2 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 37,148 cuft
Drainage area	= 19.000 ac	Curve number	= 65*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 15.30 min
Total precip.	= 3.10 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(15.510 x 74)] / 19.000



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

### Hyd. No. 2

Pre- Offsite

Hydrograph type	= SCS Runoff	Peak discharge	= 3.023 cfs
Storm frequency	= 2 yrs	Time to peak	= 732 min
Time interval	= 2 min	Hyd. volume	= 14,805 cuft
Drainage area	= 7.500 ac	Curve number	= 65*
Basin Slope	= 5.0 %	Hydraulic length	= 100 ft
Tc method	= TR55	Time of conc. (Tc)	= 25.20 min
Total precip.	= 3.10 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(7.500 x 65)] / 7.500



5

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

### Hyd. No. 3

1 Northwest Onsite to Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 5.273 cfs
Storm frequency	= 2 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 14,805 cuft
Drainage area	= 2.290 ac	Curve number	= 87*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 13.90 min
Total precip.	= 3.10 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.180 x 98) + (1.110 x 74)] / 2.290



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

### Hyd. No. 4

2 Northeast Onsite to Basin

Hydrograph type =	= SCS Runoff	Peak discharge	= 13.37 cfs
Storm frequency =	= 2 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 42,351 cuft
Drainage area =	= 5.390 ac	Curve number	= 91*
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= TR55	Time of conc. (Tc)	= 19.90 min
Total precip.	= 3.10 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(3.740 x 98) + (1.650 x 74)] / 5.390



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

### Hyd. No. 5

3 Southeast Onsite to Basin

Hydrograph type =	SCS Runoff	Peak discharge	= 13.08 cfs
Storm frequency =	= 2 yrs	Time to peak	= 724 min
Time interval =	= 2 min	Hyd. volume	= 41,408 cuft
Drainage area =	= 5.270 ac	Curve number	= 91*
Basin Slope =	= 5.0 %	Hydraulic length	= 200 ft
Tc method =	= TR55	Time of conc. (Tc)	= 18.70 min
Total precip. =	= 3.10 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(4.570 x 98) + (1.700 x 74)] / 5.270



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

### Hyd. No. 6

4 Southwest Onsite to Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 4.297 cfs
Storm frequency	= 2 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 12,257 cuft
Drainage area	= 1.600 ac	Curve number	= 91*
Basin Slope	= 5.0 %	Hydraulic length	= 126 ft
Tc method	= TR55	Time of conc. (Tc)	= 14.40 min
Total precip.	= 3.10 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.120 x 98) + (0.480 x 74)] / 1.600



9

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

### Hyd. No. 7

5 West Onsite to Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 7.062 cfs
Storm frequency	= 2 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 19,803 cuft
Drainage area	= 3.200 ac	Curve number	= 86*
Basin Slope	= 5.0 %	Hydraulic length	= 100 ft
Tc method states and s	= TR55	Time of conc. (Tc)	= 14.20 min
Total precip.	= 3.10 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.650 x 98) + (1.550 x 74)] / 3.200



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

#### Hyd. No. 8

TO BASIN

Hydrograph type Storm frequency	= Combine = 2 vrs	Peak discharge Time to peak	= 42.70 cfs = 724 min
Time interval	$= 2 \min$	Hyd. volume Contrib drain area	= 130,625 cuft = 17,750 ac
innow nyus.	- 0, 4, 0, 0, 7		- 11.100 ac



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

#### Hyd. No. 9

Hydrograph type	= Reservoir	Peak discharge	= 7.229 cfs
Storm frequency	= 2 yrs	Time to peak	= 746 min
Time interval	= 2 min	Hyd. volume	= 130,623 cuft
Inflow hyd. No.	= 8 - TO BASIN	Max. Elevation	= 916.15 ft
Reservoir name	= Regional Detention	Max. Storage	= 57,710 cuft

Storage Indication method used.



### **Pond Report**

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

#### Pond No. 1 - Regional Detention

#### **Pond Data**

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 911.15 ft

#### Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	911.50	2,950	0	0
1.00	912.00	8,215	5,362	5,362
2.00	913.00	10,240	9,208	14,570
3.00	914.00	12,395	11,299	25,869
4.00	915.00	14,530	13,447	39,316
5.00	916.00	16,800	15,650	54,966
6.00	917.00	19,230	18,000	72,966
7.00	918.00	21,750	20,475	93,441
8.00	919.00	24,400	23,060	116,501
9.00	920.00	27,055	25,713	142,214
10.00	921.00	29,880	28,453	170,667
11.00	922.00	32,636	31,245	201,912
12.00	923.00	35,521	34,065	235,977

#### **Culvert / Orifice Structures**

#### **Weir Structures**

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 60.00	8.00	Inactive	0.00	Crest Len (ft)	= 29.50	0.50	90.00	Inactive
Span (in)	= 60.00	8.00	0.00	0.00	Crest El. (ft)	= 922.35	914.42	922.94	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 911.00	911.15	0.00	0.00	Weir Type	= 1	Rect	Rect	Rect
Length (ft)	= 95.30	0.00	0.00	0.00	Multi-Stage	= Yes	Yes	Yes	No
Slope (%)	= 0.26	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

### Hyd. No. 10

**Basin Bypass** 

Hydrograph type =	SCS Runoff	Peak discharge	= 2.248 cfs
Storm frequency =	= 2 yrs	Time to peak	= 718 min
Time interval =	= 2 min	Hyd. volume	= 4,511 cuft
Drainage area =	= 1.000 ac	Curve number	= 80*
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= User	Time of conc. (Tc)	= 5.00 min
Total precip. =	= 3.10 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.070 x 98) + (0.180 x 74)] / 1.000



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

### Hyd. No. 11

Hydrograph type Storm frequency	= Combine = 2 vrs	Peak discharge Time to peak	= 12.96 cfs = 726 min
Time interval	= 2 min	Hyd. volume	= 51,953 cuft
Inflow hyds.	= 1,2	Contrib. drain. area	= 26.500 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

#### Hyd. No. 12

Post

<ul><li>Combine</li><li>2 yrs</li></ul>	Peak discharge Time to peak	= 9.807 cfs = 738 min
= 2 min	Hyd. volume	= 149,939 cuft
= 2, 9, 10	Contrib. drain. area	= 8.500 ac
	= Combine = 2 yrs = 2 min = 2, 9, 10	= CombinePeak discharge= 2 yrsTime to peak= 2 minHyd. volume= 2, 9, 10Contrib. drain. area



## Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
49.39	2	722	142,181				Pre-Onsite
14.88	2	730	56,664				Pre- Offsite
11.81	2	722	34,058				1 Northwest Onsite to Basin
27.66	2	724	90,679				2 Northeast Onsite to Basin
27.04	2	724	88,660				3 Southeast Onsite to Basin
8.859	2	722	26,245				4 Southwest Onsite to Basin
16.17	2	722	46,396				5 West Onsite to Basin
90.37	2	722	286,037	3, 4, 5,			TO BASIN
22.17	2	742	286,036	6, 7 8	919.30	124,260	BASIN
5.796	2	716	11,859				Basin Bypass
62.47	2	724	198,845	1, 2,			Pre
35.30	2	734	354,559	2, 9, 10,			Post
	flow (cfs) 49.39 14.88 11.81 27.66 27.04 8.859 16.17 90.37 22.17 5.796 62.47 35.30	flow (cfs)       interval (min)         49.39       2         14.88       2         11.81       2         27.66       2         27.04       2         8.859       2         16.17       2         90.37       2         22.17       2         5.796       2         62.47       2         35.30       2	Feak       interval (cfs)       Peak (min)       Peak (min)         49.39       2       722         14.88       2       730         11.81       2       722         27.66       2       724         8.859       2       722         16.17       2       722         90.37       2       722         22.17       2       742         5.796       2       716         62.47       2       734	Theorem       Theorem	Tome of the mine of the	Tenterval (refs)         The Pack (min)         roj volume (cuti)         invertion hyd(s)         elevention (ft)           49.39         2         722         142,181             14.88         2         730         56,664             11.81         2         722         34,058             27.66         2         724         90,679             27.04         2         724         88,660             8.859         2         722         26,245             90.37         2         722         286,036         8         919.30           5.796         2         716         11,859             35.30         2         734         354,559         2,9,10,            4.9         4.9         4.9         4.9         4.9         4.9         4.9           4.9         4.9         4.9         4.9         4.9         4.9         4.9         4.9           5.79         2,9,10,	Teom         Interval         Peak (min)         Poice (urft)         hyd(s)         elevation (ft)         strege used (cuft)           49.39         2         722         142,181              14.88         2         730         56,664              11.81         2         722         34,058              27.66         2         724         90,679              8.59         2         722         26,245              90.37         2         722         286,037         3,4,5,             22.17         2         742         286,036         8         919.30         124,260           5.796         2         716         11,859              62.47         2         724         198,845         1,2,             35.30         2         734         354,559         2,9,10,

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

#### Hyd. No. 1

Pre-Onsite

Hydrograph type	= SCS Runoff	Peak discharge	= 49.39 cfs
Storm frequency	= 10 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 142,181 cuft
Drainage area	= 19.000 ac	Curve number	= 65*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 15.30 min
Total precip.	= 5.67 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(15.510 x 74)] / 19.000



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

#### Hyd. No. 2

Pre-Offsite

Hydrograph type	= SCS Runoff	Peak discharge	= 14.88 cfs
Storm frequency	= 10 yrs	Time to peak	= 730 min
Time interval	= 2 min	Hyd. volume	= 56,664 cuft
Drainage area	= 7.500 ac	Curve number	= 65*
Basin Slope	= 5.0 %	Hydraulic length	= 100 ft
Tc method	= TR55	Time of conc. (Tc)	= 25.20 min
Total precip.	= 5.67 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(7.500 x 65)] / 7.500



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

#### Hyd. No. 3

1 Northwest Onsite to Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 11.81 cfs
Storm frequency	= 10 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 34,058 cuft
Drainage area	= 2.290 ac	Curve number	= 87*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 13.90 min
Total precip.	= 5.67 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.180 x 98) + (1.110 x 74)] / 2.290



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

#### Hyd. No. 4

2 Northeast Onsite to Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 27.66 cfs
Storm frequency	= 10 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 90,679 cuft
Drainage area	= 5.390 ac	Curve number	= 91*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.90 min
Total precip.	= 5.67 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(3.740 x 98) + (1.650 x 74)] / 5.390



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

#### Hyd. No. 5

3 Southeast Onsite to Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 27.04 cfs
Storm frequency	= 10 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 88,660 cuft
Drainage area	= 5.270 ac	Curve number	= 91*
Basin Slope	= 5.0 %	Hydraulic length	= 200 ft
Tc method	= TR55	Time of conc. (Tc)	= 18.70 min
Total precip.	= 5.67 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(4.570 x 98) + (1.700 x 74)] / 5.270



22

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

#### Hyd. No. 6

4 Southwest Onsite to Basin

Hydrograph type =	= SCS Runoff	Peak discharge	= 8.859 cfs
Storm frequency :	= 10 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 26,245 cuft
Drainage area	= 1.600 ac	Curve number	= 91*
Basin Slope :	= 5.0 %	Hydraulic length	= 126 ft
Tc method =	= TR55	Time of conc. (Tc)	= 14.40 min
Total precip.	= 5.67 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.120 x 98) + (0.480 x 74)] / 1.600



23

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

#### Hyd. No. 7

5 West Onsite to Basin

Hydrograph type =	SCS Runoff	Peak discharge	= 16.17 cfs
Storm frequency =	10 yrs	Time to peak	= 722 min
Time interval =	2 min	Hyd. volume	= 46,396 cuft
Drainage area =	3.200 ac	Curve number	= 86*
Basin Slope =	5.0 %	Hydraulic length	= 100 ft
Tc method =	TR55	Time of conc. (Tc)	= 14.20 min
Total precip. =	5.67 in	Distribution	= Type II
Storm duration =	24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.650 x 98) + (1.550 x 74)] / 3.200



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

#### Hyd. No. 8

TO BASIN

Hydrograph type	= Combine	Peak discharge	= 90.37 cfs
Storm frequency	= 10 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 286,037 cuft
Inflow hyds.	= 3, 4, 5, 6, 7	Contrib. drain. area	= 17.750 ac



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

#### Hyd. No. 9

Hydrograph type	= Reservoir	Peak discharge	= 22.17 cfs
Storm frequency	= 10 yrs	Time to peak	= 742 min
Time interval	= 2 min	Hyd. volume	= 286,036 cuft
Inflow hyd. No.	= 8 - TO BASIN	Max. Elevation	= 919.30 ft
Reservoir name	= Regional Detention	Max. Storage	= 124,260 cuft

Storage Indication method used.



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

#### Hyd. No. 10

**Basin Bypass** 

Hydrograph type	= SCS Runoff	Peak discharge	= 5.796 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 11,859 cuft
Drainage area	= 1.000 ac	Curve number	= 80*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.67 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.070 x 98) + (0.180 x 74)] / 1.000



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

#### Hyd. No. 11

Hydrograph type	= Combine	Peak discharge	= 62.47 cfs
Storm frequency	= 10 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 198,845 cuft
Inflow byds	= 1 2	Contrib, drain, area	= 26 500 ac
Inflow hyds.	= 1,2	Contrib. drain. area	= 26.500 ac



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

#### Hyd. No. 12

Post

Hydrograph type Storm frequency	= Combine = 10 vrs	Peak discharge Time to peak	= 35.30 cfs = 734 min
Time interval	= 2 min	Hyd. volume	= 354,559 cuft
Inflow hyds.	= 2, 9, 10	Contrib. drain. area	= 8.500 ac



## Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	118.20	2	722	331,322				Pre-Onsite
2	SCS Runoff	35.92	2	728	132,043				Pre- Offsite
3	SCS Runoff	20.88	2	722	62,170				1 Northwest Onsite to Basin
4	SCS Runoff	47.22	2	724	159,668				2 Northeast Onsite to Basin
5	SCS Runoff	46.17	2	724	156,113				3 Southeast Onsite to Basin
6	SCS Runoff	15.10	2	722	46,212				4 Southwest Onsite to Basin
7	SCS Runoff	28.87	2	722	85,482				5 West Onsite to Basin
8	Combine	156.50	2	722	509,644	3, 4, 5,			TO BASIN
9	Reservoir	45.78	2	740	509,643	6, 7 8	922.45	217,151	BASIN
10	SCS Runoff	10.96	2	716	23,160				Basin Bypass
11	Combine	148.91	2	724	463,364	1, 2,			Pre
12	Combine	75.68	2	732	664,846	2, 9, 10,			Post
150						<b>64M-4-100</b>	Yoor	Tuesday 1	

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

#### Hyd. No. 1

Pre-Onsite

Hydrograph type	= SCS Runoff	Peak discharge	= 118.20 cfs
Storm frequency	= 100 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 331,322 cuft
Drainage area	= 19.000 ac	Curve number	= 65*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 15.30 min
Total precip.	= 9.25 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(15.510 x 74)] / 19.000



_____

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

#### Hyd. No. 2

Pre- Offsite

Hydrograph type	= SCS Runoff	Peak discharge	= 35.92 cfs
Storm frequency	= 100 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 132,043 cuft
Drainage area	= 7.500 ac	Curve number	= 65*
Basin Slope	= 5.0 %	Hydraulic length	= 100 ft
Tc method	= TR55	Time of conc. (Tc)	= 25.20 min
Total precip.	= 9.25 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(7.500 x 65)] / 7.500



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

#### Hyd. No. 3

1 Northwest Onsite to Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 20.88 cfs
Storm frequency	= 100 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 62,170 cuft
Drainage area	= 2.290 ac	Curve number	= 87*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 13.90 min
Total precip.	= 9.25 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.180 x 98) + (1.110 x 74)] / 2.290



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

#### Hyd. No. 4

2 Northeast Onsite to Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 47.22 cfs
Storm frequency	= 100 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 159,668 cuft
Drainage area	= 5.390 ac	Curve number	= 91*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.90 min
Total precip.	= 9.25 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(3.740 x 98) + (1.650 x 74)] / 5.390



Tuesday, 10 / 17 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

#### Hyd. No. 5

3 Southeast Onsite to Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 46.17 cfs
Storm frequency	= 100 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 156,113 cuft
Drainage area	= 5.270 ac	Curve number	= 91*
Basin Slope	= 5.0 %	Hydraulic length	= 200 ft
Tc method	= TR55	Time of conc. (Tc)	= 18.70 min
Total precip.	= 9.25 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(4.570 x 98) + (1.700 x 74)] / 5.270



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

#### Hyd. No. 6

4 Southwest Onsite to Basin

Hydrograph type =	SCS Runoff	Peak discharge	= 15.10 cfs
Storm frequency =	= 100 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 46,212 cuft
Drainage area =	= 1.600 ac	Curve number	= 91*
Basin Slope =	= 5.0 %	Hydraulic length	= 126 ft
Tc method =	= TR55	Time of conc. (Tc)	= 14.40 min
Total precip. =	= 9.25 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.120 x 98) + (0.480 x 74)] / 1.600



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

#### Hyd. No. 7

5 West Onsite to Basin

Hydrograph type =	SCS Runoff	Peak discharge	= 28.87 cfs
Storm frequency =	= 100 yrs	Time to peak	= 722 min
Time interval =	= 2 min	Hyd. volume	= 85,482 cuft
Drainage area =	= 3.200 ac	Curve number	= 86*
Basin Slope =	= 5.0 %	Hydraulic length	= 100 ft
Tc method =	= TR55	Time of conc. (Tc)	= 14.20 min
Total precip. =	= 9.25 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.650 x 98) + (1.550 x 74)] / 3.200



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

#### Hyd. No. 8

TO BASIN

Hydrograph type	= Combine	Peak discharge	= 156.50 cfs
Storm frequency	= 100 vrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 509,644 cuft
Inflow hyds.	= 3, 4, 5, 6, 7	Contrib. drain. area	= 17.750 ac



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

#### Hyd. No. 9

Hydrograph type	= Reservoir	Peak discharge	= 45.78 cfs
Storm frequency	= 100 yrs	Time to peak	= 740 min
Time interval	= 2 min	Hyd. volume	= 509,643 cuft
Inflow hyd. No.	= 8 - TO BASIN	Max. Elevation	= 922.45 ft
Reservoir name	= Regional Detention	Max. Storage	= 217,151 cuft

Storage Indication method used.



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

#### Hyd. No. 10

**Basin Bypass** 

Hydrograph type	= SCS Runoff	Peak discharge	= 10.96 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 23,160 cuft
Drainage area	= 1.000 ac	Curve number	= 80*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 9.25 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.070 x 98) + (0.180 x 74)] / 1.000



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

#### Hyd. No. 11

Hydrograph type	<ul> <li>= Combine</li> <li>= 100 yrs</li> <li>= 2 min</li> <li>= 1, 2</li> </ul>	Peak discharge	= 148.91 cfs
Storm frequency		Time to peak	= 724 min
Time interval		Hyd. volume	= 463,364 cuft
Inflow hyds.		Contrib. drain. area	= 26.500 ac
innow nyas.	= 1, 2	Contrib. drain. area	= 20.500 ac



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

#### Hyd. No. 12

Post

Hydrograph type Storm frequency	= Combine = 100 vrs	Peak discharge Time to peak	= 75.68 cfs = 732 min
Time interval	= 2 min	Hyd. volume	= 664,846 cuft
Inflow hyds.	= 2, 9, 10	Contrib. drain. area	= 8.500 ac



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

#### Wilshire Hills Public Improvments

Rectangular Weir		Highlighted	
Crest	= Broad	Depth (ft)	= 0.33
Bottom Length (ft)	= 90.00	Q (cfs)	= 43.44
Total Depth (ft)	= 1.35	Area (sqft)	= 29.27
		Velocity (ft/s)	= 1.48
Calculations		Top Width (ft)	= 90.00
Weir Coeff. Cw	= 2.60		
Compute by:	Known Q		
Known Q (cfs)	= 43.44		





APPENDIX C: STORM SEWER CALCULATIONS

#### Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan



# Storm Sewer Summary Report

Line No.	ne Line ID 5.		Line Size (in)	Line shape	Line length (ft)	_ine Invert II ength EL Dn E (ft) (ft) (		Invert Line EL Up Slope (ft) (%)		HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	EX WALL	16.63	60	Cir	95.300	910.75	911.15	0.420	912.32	912.27	n/a	912.27 j	End	OpenHeadwall
2	FES 4	33.34	36	Cir	33.145	922.47	922.64	0.513	924.74	924.51	0.40	924.51	End	Curb-Horiz
3	6	32.85	36	Cir	33.000	922.83	923.00	0.515	924.56	924.86	n/a	924.86	2	Curb-Horiz
4	6A	31.80	24	Cir	99.000	923.20	923.69	0.495	925.20*	926.87*	1.59	928.46	3	DropCurb
5	FES 40	1.24	24	Cir	26.463	928.76	929.03	1.020	929.08	929.41	0.07	929.41	End	Curb-Horiz
6	42	0.62	24	Cir	42.000	929.23	929.65	1.000	929.45	929.92	0.09	929.92	5	Curb-Horiz
Project F	File: Storm Sewers-OFFSITE ONL	Y- 25 Year	Storm.stm						Number o	f lines: 6		Run I	Date: 10/4/	2023
NOTES	Return period = 25 Yrs. ; *Surcha	arged (HGL	_ above crown	). ; j - Line	contains ł	ıyd. jump.								

#### **Storm Sewer Tabulation**

Statio	n	Len	Drng A	rea	Rnoff	Area x	С	Тс		Rain	Total	Сар	Vel	Pipe		Invert Ele	9V	HGL Ele	v	Grnd / Ri	m Elev	Line ID
Line	To		Incr	Total	coen	Incr	Total	Inlet	Syst		now	run		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	95.300	0.00	0.00	0.00	0.00	0.00	5.0	5.0	0.0	16.63	182.8	4.10	60	0.42	910.75	911.15	912.32	912.27	0.00	920.00	EX WALL
2	End	33.145	0.16	10.59	0.64	0.10	6.97	5.0	25.2	4.8	33.34	51.75	6.50	36	0.51	922.47	922.64	924.74	924.51	0.00	928.10	FES 4
3	2	33.000	0.36	10.43	0.61	0.22	6.87	5.0	25.2	4.8	32.85	51.86	7.45	36	0.52	922.83	923.00	924.56	924.86	928.10	929.66	6
4	3	99.000	10.07	10.07	0.66	6.65	6.65	25.2	25.2	4.8	31.80	17.24	10.12	24	0.49	923.20	923.69	925.20	926.87	929.66	929.00	6A
5	End	26.463	0.13	0.26	0.58	0.08	0.15	5.0	5.0	8.2	1.24	24.75	3.39	24	1.02	928.76	929.03	929.08	929.41	0.00	934.65	FES 40
6	5	42.000	0.13	0.13	0.58	0.08	0.08	5.0	5.0	8.2	0.62	24.50	2.88	24	1.00	929.23	929.65	929.45	929.92	934.65	934.65	42
Proje	Project File: Storm Sewers-OFFSITE ONLY- 25 Year Storm.stm Number of lines: 6 Run Date: 10/4/2023																					
	ES:Inte	nsity = 1	02.61 / (	(Inlet tim	e + 16.5	0) ^ 0.82	2; Returr	n period	=Yrs. 25	; Pipe	travel tin	ne suppr	essed.	; c = cir	e = ellip	b = box						

### **Inlet Report**

Line No	Inlet ID	Q = CIA	Q carry	Q capt	Q Byp	Junc Type	Curb Ir	let	Gra	te Inlet	1			G	utter					Inlet	1	Byp Line		
		(cfs)	(cfs)	(cfs)	(cfs)		Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	No		
1	OCS 2	16.63*	0.00	16.63	0.00	Hdwl	0.0	0.00	0.00	0.00	0.00	Sag	2.00	0.020	0.020	0.013	0.00	0.00	0.00	0.00	0.0	Off		
2	TMI 5	0.84	0.00	0.84	0.00	Curb	6.0	2.93	0.00	0.00	0.00	Sag	1.50	0.020	0.020	0.013	0.21	10.48	0.21	10.48	0.0	Off		
3	TMI 6	1.81	0.00	1.81	0.00	Curb	6.0	2.93	0.00	0.00	0.00	Sag	1.50	0.020	0.020	0.013	0.35	17.43	0.35	17.43	0.0	Off		
4	SOI 6A	31.80	0.00	31.80	0.00	DrCrb	12.0	5.00	0.00	0.00	0.00	Sag	0.00	0.020	0.020	0.013	1.90	95.06	1.90	95.06	0.0	Off		
5	TMI 41	0.62	0.00	0.62	0.00	Curb	4.0	1.00	0.00	0.00	0.00	Sag	2.00	0.050	0.020	0.013	0.21	7.55	0.21	7.55	0.0	Off		
6	TMI 42	0.62	0.00	0.62	0.00	Curb	6.0	4.00	0.00	0.00	0.00	Sag	2.00	0.050	0.020	0.013	0.17	5.40	0.17	5.40	0.0	Off		
Droigo	t Eile: Sterm Source	OFFEIT		25 Vaar										Numbar						10/4/202	2			
Projec	t File: Storm Sewers	-OFFSITE	E ONLY-	25 Year	Storm.s	tm								Number of lines: 6					Run Date: 10/4/2023					
NOTE	S: Inlet N-Values = (	0.016; Inte	ensity = 1	02.61 / (	(Inlet time	e + 16.50	D) ^ 0.82	Returr	n period	= 25 Yrs	.; <b>* Ind</b> i	icates Kr	iown Q a	added. Al	l curb inl	ets are l	Horiz thre	oat.						

### **Storm Sewer Inlet Time Tabulation**

Line	Line ID	Тс			Shallow Concentrated Flow						Channel Flow									
No.		Method	n- Value	flow Length (ft)	2-yr 24h P (in)	Land Slope (%)	Travel Time (min)	flow Length (ft)	Water Slope (%)	Surf Descr	Ave Vel (ft/s)	Travel Time (min)	X-sec Area (sqft)	Wetted Perim (ft)	Chan Slope (%)	n- Value	Vel	flow Length (ft)	Travel Time (min)	Travel Time (min)
1	EX WALL	User																		5.00
2	FES 4	User																		5.00
3	6	User																		5.00
4	6A	User																		25.20
5	FES 40	User																		5.00
6	42	User																		5.00
Drois				E Voct Sta		 /in Ta	od for inte		 	- E min							Data: 1	0/4/2022		
Projec	THIE: Storm Sewer	s-uffSill	= ONLY-2	5 Year Sto	rm.stml	iin. Icus	sea tor inte	ensity calcu	liations =	- o min		N	umper of	imes: 6			Date: 1	0/4/2023		

# Hydraulic Grade Line Computations

Li	ine	Size	Q			D	ownstre	eam				Len	Upstream								Chec	Check		Minor
				Invert	HGL	Depth	Area	Vel	Vel	EGL	Sf	1	Invert	HGL	Depth	Area	Vel	Vel	EGL	Sf	Ave Sf	Enrgy	coett	IOSS
		in)	(cfs)	(ft)	(ft)	(ft)	(sqft)	(ft/s)	(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(sqft)	(ft/s)	(ft)	(ft)	(%)	(%)	(ft)	(K)	(ft)
	1	60	16.63	910 75	912 32	1 57	3 29	3 15	0.40	912 72	0.000	95 300	011 15	912 27 i	1 12**	3 29	5.05	0.40	912.67	0.000	0.000	n/a	1 00	0.40
	2	36	33.34	922 47	924 74	2 27	4 64	5.81	0.40	925 54	0.000	33 145	922.64	924 51	1.12	4 64	7 18	0.40	925.32	0.000	0.000	n/a	0.50	0.40
	3	36	32.85	922.83	924.56	1.73*	4.23	7.76	0.79	925.36	0.000	33.000	923.00	924.86	1.86**	4.60	7.14	0.79	925.65	0.000	0.000	n/a	1.48	n/a
	4	24	31.80	923.20	925.20	2.00*	3.14	10.13	1.59	926.79	1.685	99.000	923.69	926.87	2.00	3.14	10.12	1.59	928.46	1.685	1.685	1.668	1.00	1.59
	5	24	1.24	928.76	929.08	0.32	0.32	3.83	0.13	929.21	0.000	26.463	929.03	929.41	0.38**	0.42	2.94	0.13	929.55	0.000	0.000	n/a	0.50	0.07
	6	24	0.62	929.23	929.45	0.22*	0.19	3.32	0.09	929.54	0.000	42.000	929.65	929.92	0.27**	0.25	2.45	0.09	930.01	0.000	0.000	n/a	1.00	0.09
	Proje	ct File: S	torm Se	wers-OFF	SITE ONL	' Y- 25 Ye	ar Storm	n.stm	1	1	1	1		1	N	umber o	f lines: 6	;	1	Rur	Date:	10/4/202	3	<u>I</u>
$\vdash$	Notes: * Normal depth assumed: ** Critical depth.; i-Line contains hvd. iump · c = cir e = ellip b = box																							
						, ]			· · · · · · · · · · · · · · · · · · ·	,														

#### Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan


# Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type	
1	EX WALL	42.41	60	Cir	98.333	910.75	911.15	0.407	912.40	912.97	n/a	912.97	End	OpenHeadwall	
2	FES 4	40.58	36	Cir	33.145	922.47	922.64	0.513	924.74	924.71	n/a	924.71	End	Curb-Horiz	
3	6	40.06	36	Cir	33.000	922.83	923.00	0.515	924.81	925.06	n/a	925.06	2	Curb-Horiz	
4	6A	38.88	24	Cir	99.000	923.20	923.69	0.495	925.20*	927.69*	2.38	930.07	3	DropCurb	
5	FES 40	1.34	24	Cir	26.463	928.76	929.03	1.020	929.08	929.43	0.07	929.43	End	Curb-Horiz	
6	42	0.74	24	Cir	42.000	929.23	929.65	1.000	929.47	929.95	0.10	929.95	5	Curb-Horiz	
Project F	ile: Storm Sewers-OFFSITE ONL	Y- 100 Yea	ar Storm.stm						Number of	f lines: 6		Run E	Date: 10/4/2	2023	
NOTES:	Return period = 100 Yrs. ; *Surch	narged (HG	L above crow	n).											

### **Storm Sewer Tabulation**

Station Ler		Len	n Drng Area I		Rnoff Area x C		Тс		Rain	Rain Total		Vel	Pipe	Pipe		Invert Elev		v	Grnd / Ri	m Elev	Line ID	
Line	To		Incr	Total	coen	Incr	Total	Inlet	Syst		now	iun		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	LINE	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
_																						
1	End	98.333	0.00	0.00	0.00	0.00	0.00	5.0	5.0	0.0	42.41	180.0	7.03	60	0.41	910.75	911.15	912.40	912.97	0.00	920.00	EX WALL
2	End	33.145	0.16	10.59	0.64	0.10	6.97	5.0	25.4	5.8	40.58	51.75	7.43	36	0.51	922.47	922.64	924.74	924.71	0.00	928.10	FES 4
3	2	33.000	0.36	10.43	0.61	0.22	6.87	5.0	25.3	5.8	40.06	51.86	7.92	36	0.52	922.83	923.00	924.81	925.06	928.10	929.66	6
4	3	99.000	10.07	10.07	0.66	6.65	6.65	25.2	25.2	5.8	38.88	17.24	12.38	24	0.49	923.20	923.69	925.20	927.69	929.66	929.00	6A
5	End	26.463	0.13	0.26	0.58	0.08	0.15	5.0	8.0	8.9	1.34	24.75	3.57	24	1.02	928.76	929.03	929.08	929.43	0.00	934.65	FES 40
6	5	42.000	0.13	0.13	0.58	0.08	0.08	5.0	5.0	9.8	0.74	24.50	3.03	24	1.00	929.23	929.65	929.47	929.95	934.65	934.65	42
Proje	ct File:	Storm \$	Sewers-(	OFFSITE	E ONLY-	100 Yea	ar Storm	.stm								Number	of lines: 6	<b>i</b>		Run Da	te: 10/4/20	)23
NOT	ES:Inte	nsity = 1	27.16 / (	(Inlet tim	e + 17.8	60) ^ 0.82	2; Returi	n period	=Yrs. 10	0 ; c=	cir e = e	ellip b=	box									

## **Inlet Report**

Line	Inlet ID	Q =	Q	Q	Q	Q Junc Curb Inlet			Grate Inlet					G	utter					Вур		
NO		(cfs)	(cfs)	(cfs)	сfs)	туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	No
1	OCS 2	42.41*	0.00	42.41	0.00	Hdwl	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.0	Off
2	TMI 5	1.01	0.00	1.01	0.00	Curb	6.0	2.93	0.00	0.00	0.00	Sag	1.50	0.020	0.020	0.013	0.24	11.78	0.24	11.78	0.0	Off
3	TMI 6	2.16	0.00	2.16	0.00	Curb	6.0	2.93	0.00	0.00	0.00	Sag	1.50	0.020	0.020	0.013	0.39	19.60	0.39	19.60	0.0	Off
4	SOI 6A	38.88	0.00	38.88	0.00	DrCrb	12.0	5.00	0.00	0.00	0.00	Sag	0.00	0.020	0.020	0.013	2.59	129.69	2.59	129.69	0.0	Off
5	TMI 41	0.74	0.00	0.74	0.00	Curb	4.0	1.00	0.00	0.00	0.00	Sag	2.00	0.050	0.020	0.013	0.23	8.49	0.23	8.49	0.0	Off
6	TMI 42	0.74	0.00	0.74	0.00	Curb	6.0	4.00	0.00	0.00	0.00	Sag	2.00	0.050	0.020	0.013	0.18	6.07	0.18	6.07	0.0	Off
Project	t File: Storm Sewers			100 Yes	ar Storm	stm								Number	of lines	6			un Date:	10/4/202	3	
Projec	Project File: Storm Sewers-OFFSITE ONLY- 100 Year Storm.stm													Number of lines: 6 Run Date: 10/4/2023								
NOTE	S: Inlet N-Values = (	0.016; Inte	nsity = 1	27.16/	Inlet time	e + 17.80	0) ^ 0.82	Returr	n period	= 100 Yr	s.; * In	dicates K	(nown Q	ו Q added.All curb inlets are Horiz throat.								

## **Storm Sewer Inlet Time Tabulation**

Line	Line ID	Тс		She	et Flow			Sha	llow Co	ncentrate	dFlow		Channel Flow								
No.		Method	n- Value	flow Length (ft)	2-yr 24h P (in)	Land Slope (%)	Travel Time (min)	flow Length (ft)	Water Slope (%)	Surf Descr	Ave Vel (ft/s)	Travel Time (min)	X-sec Area (sqft)	Wetted Perim (ft)	Chan Slope (%)	n- Value	Vel	flow Length (ft)	Travel Time (min)	Travel Time (min)	
1	EX WALL	User																		5.00	
2	FES 4	User																		5.00	
3	6	User																		5.00	
4	6A	User																		25.20	
5	FES 40	User																		5.00	
6	42	User																		5.00	
Projec	t File: Storm Sewers	s-OFFSITE	E ONLY- 1	00 Year St	orm.st <b>M</b>	in. Tc us	ed for inte	nsity calcu	lations =	5 min		N	umber of I	ines: 6			Date: 1	0/4/2023			

# Hydraulic Grade Line Computations

Line	Size	Q			D	ownstre	am				Len		Upstream Check										Minor
			Invert elev	HGL elev	Depth	Area	Vel	Vel head	EGL elev	Sf	1	Invert elev	HGL elev	Depth	Area	Vel	Vel head	EGL elev	Sf	Ave Sf	Enrgy loss	соеп	1055
	(in)	(cfs)	(ft)	(ft)	(ft)	(sqft)	(ft/s)	(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(sqft)	(ft/s)	(ft)	(ft)	(%)	(%)	(ft)	(K)	(ft)
1	60	42.41	910.75	912.40	1.65	5.66	7.49	0.67	913.07	0.000	98.333	911.15	912.97	1.82**	6.45	6.57	0.67	913.64	0.000	0.000	n/a	1.00	n/a
2	36	40.58	922.47	924.74	2.27	5.21	7.07	0.94	925.68	0.000	33.145	922.64	924.71	2.07**	5.21	7.79	0.94	925.66	0.000	0.000	n/a	0.50	n/a
3	36	40.06	922.83	924.81	1.98*	4.95	8.09	0.93	925.74	0.000	33.000	923.00	925.06	2.06**	5.17	7.75	0.93	925.99	0.000	0.000	n/a	1.48	n/a
4	24	38.88	923.20	925.20	2.00*	3.14	12.38	2.38	927.58	2.518	99.000	923.69	927.69	2.00	3.14	12.37	2.38	930.07	2.518	2.518	2.493	1.00	2.38
5	24	1.34	928.76	929.08	0.32	0.32	4.13	0.14	929.22	0.000	26.463	929.03	929.43	0.40**	0.45	3.00	0.14	929.57	0.000	0.000	n/a	0.50	0.07
6	24	0.74	929.23	929.47	0.24*	0.21	3.49	0.10	929.57	0.000	42.000	929.65	929.95	0.30**	0.29	2.56	0.10	930.05	0.000	0.000	n/a	1.00	0.10
Pro	piect File: 5	Storm Se	wers-OFF		Y- 100 Y	ear Stor	m stm									flines: 6			Bur		10/4/202	3	
Pro	Project File: Storm Sewers-OFFSITE ONLY- 100 Year Storm.stm													N	Number of lines: 6 Run Date: 10/4/2023								
No	tes: * Norm	nal depth	assumed;	** Critical	depth.;	c = cir	e = ellip	b = box															

Page 1

#### **Storm Sewer Profile**



#### **Storm Sewer Profile**







APPENDIX D: DRAINAGE AREA MAP(S)



\GENERAL PROJECTS\15925E-JES-WLSHIRE-HILLS-J-ENG\CAD\15925 DAM (6-14-2023).DWG 6/22/



:\GENERAL PROJECTS\15925E-JES-WLSHIRE-HILLS-3-ENG\CAD\15925 DAM (6-14-2023).DWG 6/22/2023



: \GENERAL PROJECTS \15925E - JES - WLSHIRE - HILLS - 3 - ENG \CAD \15925 DAM (6-14-2023).DWG 6/22/2023



