ENGINEERING SUCCESS

11827 W 112th Street, Suite 200 Overland Park, KS 66210 913.317.9390

FINAL DRAINAGE REPORT FOR

ARCADE ALLEY 316 SE Douglas Street Lee's Summit, Missouri 64063

 PROJECT NUMBER:
 2202010333

 DATE:
 Feb. 2023

 REVISED:
 Feb. 2023

Table of Contents

General Information	1
Purpose	1
Location	1
Development	1
Datum	1
Soils	1
Flood Insurance Rate Map (FIRM)	1
Drainage Patterns	1
Hvdrologic Methods	1
Table 1 - Rainfall Depths (inches) for 24- Hour Design Storm	1
Drainage Conditions	. 2
Existing Conditions	2
Table 2. Existing Drainage Conditions	2
Proposed Conditions	2
Table 3. Proposed Drainage Conditions	2
Storm Water Quality (BMP's)	2
Utilities	. 3
Water	. 3
Sanitary Sewer	. 3
Stormwater Sewer	. 3
Permitting	. 3
U.S. Army Corps of Engineers	. 3
Federal Emergency Management Agency (FEMA)	. 3
Missouri Department of Natural Resources (MoDNR)	. 3
Missouri Department of Conservation (MDC)	. 3
Missouri Historical Society (MHS)	. 3
Summary	. 3
Appendix A - USGS Quadrangle	. 4
Appendix B - Aerial Photograph	. 5
Appendix C - Soils Survey	. 6
Appendix D - FEMA FIRM	7
Appendix E - Hydraflow Hydrograph Outputs	. 8
Appendix F - Existing Drainage Areas	. 9
Amendia O. Dreneed Dreinege Arees	

General Information

Purpose

This report evaluates the management of drainage and storm water runoff for the Arcade Alley site in Lee's Summit, Missouri. This report reviews existing drainage conditions and evaluates proposed drainage conditions as a result of the proposed improvements to the site and its conformance with requirements for managing storm water runoff. This report is required to document proposed flow rates from the site for the City of Lee's Summit, Missouri.

Location

Arcade Alley is located at 316 SE Douglas Street in Lee's Summit, Jackson County, Missouri. The site is located in Section 5, Township 47 North, Range 31 West. The site is shown on the USGS Quadrangle Exhibit, Appendix A and the Aerial Exhibit, Appendix B.

Development

The project site is located on a 0.4-acre site owned by 316 SE Douglas, LLC. The site is currently occupied by and existing building, concrete outdoor patio spaces, and an asphalt parking lot. This project will remove the asphalt parking lot and construct a larger outdoor covered concrete patio area with amenities.

Datum

The site survey uses NAVD 88 datum.

Soils

The drainage areas on site are comprised of the following soil types according to the Natural Resources Conservation Service (NRCS) Soil Survey, Appendix C:

• Urban land, upland, 5 to 9 percent slopes

No Hydraulic Soil Group (HSG) was provided for this soil type.

Flood Insurance Rate Map (FIRM)

The site is shown on FEMA FIRM Panel 29095C0417G, Jackson County, Missouri and Incorporated Areas, effective January 20, 2017, Appendix D. The site is in Zone X, areas of minimal flood hazard outside of the 1% annual chance flooding.

Drainage Patterns

Hydrologic Methods

The existing and proposed drainage areas were modeled using Hydraflow Hydrographs by AutoCAD, Appendix E. The SCS Method was used in calculations with rainfall depths determined from the NOAA Atlas 14 Lee's Summit, Missouri, as shown in Table 1. Time of Concentration was calculated using the TR-55 Method.

Table 1 - Rainfall Depths (inches) for 24- Hour Design Storm

	1-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Lee's Summit	ummit 3.1 4.8		5.7	7.0	8.1	9.2

Drainage Conditions

Existing Conditions

The Arcade Alley site is mostly impervious. A small, recessed island on the north side of the existing parking lot contains gravel and allows water to percolate into the soil. This area totals approximately 570 square feet or 0.01 acres. Currently, there is no underground storm water system for runoff to leave the site. All flow exits the property by overland flow. Under existing conditions, about ³/₄ of the property drains to the east into SE Douglas Street. The remaining ¹/₄ of the property drains to the west into the alley between SE Douglas Street and Main Street. Curb inlets eventually collect the runoff in SE Douglas Street while grate inlets collect the runoff in the alley. No known drainage issues exist within the area. Existing drainage areas are shown in Appendix F. Table 2 describes existing drainage area conditions.

	Area (acres)	Tc (min)	CN 1-Yr (cfs)		10-Yr (cfs)	100-Yr (cfs)
East Area	0.27 5.0		98	1.1	2.1	3.4
West Area	0.08	5.0	98	0.3	0.6	1.0

Table 2. Existing Drainage Conditions

Proposed Conditions

Under proposed conditions, the Arcade Alley site will continue to drain to the east and west. A new outdoor patio area will be constructed in place of the asphalt parking lot. A canopy will be constructed over the patio area and two artificial turf areas will be installed for games. Due to the downspout configuration from the new canopy, a slightly larger area will now the west drain to the west than previously did. Drains within the new patio areas as well as roof drains from the existing building and new canopy will be drain into the rock base under the artificial turf areas. Underdrains will then drain the turf areas onto the street and alley as before.

The recessed island on the north side of the project will be reduced to approximately 110 square feet. However, the artificial turf areas total approximately 2,305 square feet. The proposed site imperviousness will be decreased with the proposed conditions. The proposed artificial turf areas will allow storm water to pass through the surface into a rock base. Additional runoff will be drained to these areas as well. Runoff will be able to collect in the void space in the rock base and can infiltrate as much as possible in the clay soils before being collected by the underdrains and routed away. The turf will act as small detention basins as well as slowing the storm water runoff from leaving the site. Proposed drainage areas are shown in Appendix G. Table 3 describes proposed drainage area conditions.

Area (acres)		Tc (min) CN		1-Yr (cfs)	10-Yr (cfs)	100-Yr (cfs)	
East Area	0.23	5.0	98	1.0	1.8	2.9	
West Area	0.13	5.0	98	0.5	1.0	1.6	

Table 3. Proposed Drainage Conditions

Storm Water Quality (BMP's)

This project will not increase the imperviousness of the site and will not require detention or Best Management Practices (BMP's).

Utilities

Water

Domestic and/or fire service will not be required for the proposed outdoor patio improvements.

Sanitary Sewer

A sanitary sewer line will not be required for the proposed outdoor patio improvements.

Stormwater Sewer

Public improvement plans will not be required for the proposed outdoor patio improvements.

Permitting

U.S. Army Corps of Engineers

Since there are no potential wetlands on the site and there is no blue line stream on the site, permitting through the U.S. Army Corps of Engineers will not be required.

Federal Emergency Management Agency (FEMA)

There are no FEMA floodplains on the site; permitting through FEMA will not be required.

Missouri Department of Natural Resources (MoDNR)

The project disturbs less than 1.0 acre; therefore, a Notice of Intent (NOI) and Storm Water Pollution Prevention Plan (SWPPP) will not be prepared.

Missouri Department of Conservation (MDC)

The MDC will be contacted during the MoDNR NOI permitting process. It is not anticipated that there will be any concerns.

Missouri Historical Society (MHS)

The MHS will be contacted during the NOI permitting process. Since there are no historical buildings on site, it is not anticipated that there will be any concerns.

Summary

The Arcade Alley project at 316 SE Douglas Street is in Lee's Summit, Jackson County, Missouri. The site improvements include a new, larger outdoor patio area and amenities. Detention and water quality is not required on the site since the site's imperviousness is not increasing.

Appendix <u>A</u> - USGS Quadrangle

Appendix B - Aerial Photograph

MKEC

Overland Park, KS • 913.317.9390

1 "=100 ' / 1:1200

100

25 50

 $\mathbf{\uparrow}$

SHEET NO.

1 OF 1

LEE'S SUMMIT, MISSOURI

DATE: June 2022

DESIGNED BY: LES

APPROVED BY: KLA

PROJECT NO. 2202010333

DRAWN BY: LES

Appendix C - Soils Survey

Disturbed Boundary

Project Location

99012 Urban land, upland, 5 to 9 percent slopes

Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

DESIGNED BY: LES

DRAWN BY: LES

SEAth St

SEC: 05 TWP: T47N RNG: R31W 1"=100'/1:1200

SN Main St

Southeast Alley

Southeast Alley

SE Main St

SE Douglas St

SE 3rd St

©2022 MKEC Engineering All Rights Reserved www.mkec.com These drawings and their contents, including, but not limited to, all concepts, designs, & ideas are the exclusive property of MKEC Engineering (MKEC), and may not be used or reproduced in any way without the express consent of MKEC.

NRCS SOIL SURVEY EXHIBIT							
ARCADE ALLEY LEE'S SUMMIT, MISSOURI							
PROJECT NO. 2202010333	DATE: June 2022	SHEET					

APPROVED BY: KLA

EET	NO.	
1	OF	

Southeast Alley

Appendix D - FEMA FIRM

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	1.129	2	716	2,635				East Area
2	SCS Runoff	0.334	2	716	781				West Area
4	SCS Runoff	0.962	2	716	2,245				East Area
5	SCS Runoff	0.543	2	716	1,269				West Area
Arcade Alley Hydraflow.gpw			Return P	eriod: 1 Ye	ar	Thursday, 0	2 / 16 / 2023		

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 1

East Area

Hydrograph type	= SCS Runoff	Peak discharge	= 1.129 cfs
Storm frequency	= 1 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 2,635 cuft
Drainage area	= 0.270 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.10 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 2

West Area

Hydrograph type	= SCS Runoff	Peak discharge	= 0.334 cfs
Storm frequency	= 1 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 781 cuft
Drainage area	= 0.080 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.10 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 4

East Area

Hydrograph type	= SCS Runoff	Peak discharge	= 0.962 cfs
Storm frequency	= 1 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 2,245 cuft
Drainage area	= 0.230 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.10 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

4

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 5

West Area

Hydrograph type	= SCS Runoff	Peak discharge	= 0.543 cfs
Storm frequency	= 1 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 1,269 cuft
Drainage area	= 0.130 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.10 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	2.083	2	716	4,991				East Area
2	SCS Runoff	0.617	2	716	1,479				West Area
4	SCS Runoff	1.774	2	716	4,252				East Area
5	SCS Runoff	1.003	2	716	2,403				West Area
Arcade Alley Hydraflow.gpw			Return P	eriod: 10 Y	ear	Thursday, 0	2 / 16 / 2023		

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 1

East Area

Hydrograph type	= SCS Runoff	Peak discharge	= 2.083 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 4,991 cuft
Drainage area	= 0.270 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.67 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 2

West Area

Hydrograph type	= SCS Runoff	Peak discharge	= 0.617 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 1,479 cuft
Drainage area	= 0.080 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.67 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

8

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 4

East Area

Hydrograph type	= SCS Runoff	Peak discharge	= 1.774 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 4,252 cuft
Drainage area	= 0.230 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.67 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

9

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 5

West Area

Hydrograph type	= SCS Runoff	Peak discharge	= 1.003 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 2,403 cuft
Drainage area	= 0.130 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.67 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	3.403	2	716	8,269				East Area
2	SCS Runoff	1.008	2	716	2,450				West Area
4	SCS Runoff	2.899	2	716	7,044				East Area
5	SCS Runoff	1.639	2	716	3,981				West Area
Arc	l ade Alley Hyd	raflow.gp	w		Return P	eriod: 100	Year	Thursday, 0)2 / 16 / 2023

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 1

East Area

Hydrograph type	= SCS Runoff	Peak discharge	= 3.403 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 8,269 cuft
Drainage area	= 0.270 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 9.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 2

West Area

Hydrograph type	= SCS Runoff	Peak discharge	= 1.008 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 2,450 cuft
Drainage area	= 0.080 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 9.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 4

East Area

Hydrograph type	= SCS Runoff	Peak discharge	= 2.899 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 7,044 cuft
Drainage area	= 0.230 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 9.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 5

West Area

Hydrograph type	= SCS Runoff	Peak discharge	= 1.639 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 3,981 cuft
Drainage area	= 0.130 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 9.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

15

