
Traffic Impact Study Home Depot C-Store

LEE'S SUMMIT, MISSOURI

MAY 2022

Prepared By:

5/13/2022

Contents

1.0 INTRODUCTION	5
1.1 REPORT PURPOSE AND OBJECTIVES	5
2.0 EXISTING CONDITIONS	6
2.1 STUDY AREA	6
2.2 STREET NETWORK	6
2.3 DATA COLLECTION	7
3.0 PROPOSED DEVELOPMENT	8
3.1 SITE DESCRIPTION	8
3.2 SITE CIRCULATION	8
3.3 TRIP GENERATION	8
3.4 PROJECT TRIP DISTRIBUTION AND ASSIGNMENT	8
4.0 ACCESS MANAGEMENT	10
4.1 ACCESS SPACING	10
4.2 DRIVEWAY THROAT LENGTH	10
4.3 TURN LANE ANALYSIS	11
5.0 FUTURE CONDITIONS	12
6.0 INTERSECTION CAPACITY ANALYSIS	13
6.1 LEVEL OF SERVICE OVERVIEW	13
6.2 EXISTING (YEAR 2022) ANALYSIS	14
6.3 EXISTING PLUS DEVELOPMENT ANALYSIS	14
6.4 FUTURE (YEAR 2042) ANALYSIS	15
6.0 CONCLUSIONS AND RECOMMENDATIONS	17
Annendiy	10

TABLES

TABLE 1: PROPOSED DEVELOPMENT TRIP GENERATION	8
TABLE 2: PROPOSED DEVELOPMENT TRIP DISTRIBUTION	9
TABLE 3: LEVEL OF SERVICE	13
TABLE 4: EXISTING (YEAR 2022) PEAK HOUR CONDITIONS	14
TABLE 5: EXISTING PLUS DEVELOPMENT PEAK HOUR CONDITIONS	15
TABLE 6: FUTURE (YEAR 2042) PEAK HOUR CONDITIONS	16

EXHIBITS (SEE APPENDIX A)

EXHIBIT 1: PROJECT SITE LOCATION AND STUDY AREA

EXHIBIT 2: EXISTING CONDITIONS (YEAR 2022) PEAK HOUR TRAFFIC VOLUMES

EXHIBIT 3: EXISTING GEOMETRY AND INTERSECTION CONTROL

EXHIBIT 4: SITE TRIP DISTRIBUTION

EXHIBIT 5: PROJECT TRAFFIC

EXHIBIT 6: EXISTING PLUS DEVELOPMENT PEAK HOUR TRAFFIC

EXHIBIT 7: EXISTING PLUS DEVELOPMENT GEOMETRY AND INTERSECTION

CONTROL

EXHIBIT 8: FUTURE CONDITIONS (YEAR 2042) PEAK HOUR TRAFFIC VOLUMES

1.0 INTRODUCTION

This report serves as the traffic analysis for the Home Depot C-Store development, located at the southeast corner of the Hamblen Road and Oldham Parkway intersection in Lee's Summit, Missouri. The location of the development site is shown on **Exhibit 1** in **Appendix A**.

The following traffic analysis focused on two analysis years: The Existing Year (2022) and the Horizon Year (2042).

1.1 REPORT PURPOSE AND OBJECTIVES

The purpose of this study is to address traffic and transportation impacts of the proposed development on surrounding streets and intersections. This traffic impact study was prepared based on criteria set forth by the City of Lee's Summit. The following information is provided:

- A description and map of the existing and proposed street network to be affected by the proposed development. This information includes existing and proposed roadway characteristics as well as existing year (2022) and horizon year (2042) traffic volumes.
- Trip generation calculations based on the Institute of Traffic Engineers (ITE) Trip Generation Manual, 11th Edition, for the proposed development. In addition, projected trip distributions onto the street network are provided.
- Analysis of impacts of the traffic generated by the proposed development on the street network, including analysis of peak period levels of service (LOS), delay times, and queuing at study area intersections.
- Review of access management at the site driveway intersections.
- Discussion of potential improvements and traffic management measures identified to mitigate operational concerns.

In summary, the study is to determine the trip generation of the Home Depot C-Store development, assign new development trips to the street network, analyze various scenarios to determine the impacts of proposed site traffic, and identify potential mitigation measures needed to achieve acceptable operations at the study intersections.

2.0 EXISTING CONDITIONS

2.1 STUDY AREA

The proposed development site is located in a commercial area south of the US-50 Highway and Route 291 north junction. The site is currently a vacant pad site located to the west of the parking lot for the Home Depot store. The Home Depot store site developed more than 20 years ago and is located southeast of the site. The pad site has been vacant since the store was constructed. Another vacant pad site with an existing parking aisle is located directly south of the site. The surrounding area consist of commercial land uses. Several small buildings for different businesses and a contractor's office are located to the west of the site across Hamblen Road. To the north of the site across Oldham Parkway is an Aldi grocery store.

Through discussion with City staff, the following intersections were included within the study area for the traffic analysis. The list provides the existing intersection control for each of the study intersections.

- Hamblen Road & Oldham Parkway (Traffic Signal)
- Hamblen Road & Home Depot driveway (Side Street Stop)
- Oldham Parkway & Home Depot driveway (Side Street Stop)

2.2 STREET NETWORK

The existing street network within the study area includes Hamblen Road, Oldham Parkway and two driveways to the Home Depot parking lot. The following provides a summary of the existing street network within the study area:

Hamblen Road is a north-south minor arterial street along the west edge of the site. North of the site the street provides access to the regional highway system at a diamond interchange with US-50 Highway, where Hamblen Road becomes Route 291 Highway. Hamblen Road is a four-lane divided street with curbs and gutters and a short, raised median to the north of Oldham Parkway. South of Oldham Parkway the street narrows to three lanes with a center two-way left-turn lane. There are no sidewalks or bicycle facilities along Hamblen Road near the development site. The posted speed limit is 35 miles per hour (mph).

Improvements are currently being designed for the US-50 Highway and Route 291 north junction. The improvements will add capacity to the interchange and increase spacing between intersections on Route 291 Highway just north of the interchange. No capacity improvements are expected at the study intersections as part of the project, but the additional capacity at the nearby intersections should improve traffic flow and reduce congestion along the Hamblen Road/Route 291 corridor.

Oldham Parkway is an east-west commercial collector roadway located along the north edge of the proposed development site. Adjacent to the site the street has two lanes in the eastbound direction, one lane in the westbound direction. There are curbs and gutters and a raised median east of the Hamblen Road intersection. The raised median ends and a center two-way left-turn lane is provided to the east of the Home Depot driveway. Farther to the east the curb and gutter ends, the street narrows to two lanes, and Oldham Parkway serves as the frontage road along the south side of US-50 Highway. There are sidewalks along both sides of Oldham Parkway adjacent to the development site, but they are not continuous along the north side of the street. There are no bicycle facilities along Oldham Parkway. The posted speed limit is 40 mph.

Driveway 1 is located along the south edge of the development site and provides access to Home Depot. This existing private driveway along Hamblen Road is located 430 feet south of the Oldham Parkway

intersection, when measured between centerlines. The driveway is 40 feet wide, providing two exiting lanes and one entering lane. Driveway 1 has a throat length of 48 feet between Hamblen Road and the first drive aisle on the south side of the driveway. The distance to the first drive aisle along the north side of Driveway 1 is roughly 200 feet.

Driveway 2 is located east of the development site and provides access to Home Depot. This existing private driveway along Oldham Parkway is located 465 feet east of the Hamblen Road intersection, when measured between centerlines. The driveway is 30 feet wide, providing one exiting lane and one entering lane. Driveway 2 has a throat length of 67 feet between Oldham Parkway and the first drive aisle within the parking lot.

2.3 DATA COLLECTION

Turning Movement Counts (TMCs) were collected the study intersections on Thursday, March 31st, 2022. The turning movement count data collected is included in **Appendix B**. The AM peak hour occurred between 7:15 AM and 8:15 AM, and the PM peak hour occurred between 4:30 PM and 5:30 PM. The existing conditions peak hour turning movement volumes are shown on **Exhibit 2**. For analysis purposes, southbound U-Turn movements at Hamblen Road & Oldham Parkway were included in the southbound left-turn volume. The existing geometry with lane configurations and intersection control at the study intersections is shown on **Exhibit 3**.

3.0 PROPOSED DEVELOPMENT

3.1 SITE DESCRIPTION

The proposed Home Depot C-Store development includes a 6,250 square foot convenience store facing Hamblen Road. In front of the store there will be 16 gasoline fueling positions under a canopy. Parking will be provided along the front of the store. An east-west drive aisle with parking on each side will be located in the northeast portion of the site connecting to Driveway 2. The proposed development site plan is included in **Appendix C** for reference.

3.2 SITE CIRCULATION

The proposed development will be accessed from two access points along private driveways internal to the Home Depot site. One access at the south side of the site will connect to Driveway 1, just east of Hamblen Road aligning with an existing drive aisle on the south side of Driveway 1. The other access point is the drive aisle in the northeast portion of the site that will connect to Driveway 2.

3.3 TRIP GENERATION

Trip generation estimates were prepared using the ITE *Trip Generation Manual*, 11th Edition. **Table 1** shows the expected trips to be generated by the proposed development. The total trip generation is anticipated to be 5,532 daily trips, 506 trips during the AM peak hour (253 entering and 253 exiting), and 430 trips during the PM peak hour (215 entering and 215 exiting). **Appendix D** provides the calculations used to determine the trip generation of the proposed development.

AM Peak Hour PM Peak Hour ITE Land Use Description Intensity / Units Daily LUC Out **Total** Out Total In In 16 Fueling Convenience Store/Gas Station 945 5,532 253 253 506 215 215 430 **Positions** Pass-By Trips 3,485 159 159 318 135 135 270 2,968 94 188 160 Net New Site Trips 94 80 80

TABLE 1: PROPOSED DEVELOPMENT TRIP GENERATION

Pass-by trips are common at gas stations. Pass-by trips occur when a driver already traveling on the street adjacent to the development makes a trip to the development while in route to another destination. For the purposes of this study, pass-by traffic would consist of existing traffic on Hamblen Road and on Oldham Parkway making a trip to the development. Therefore, pass-by trips do not add new trips to the street network, but they do increase turning movements in and out of the development site.

The errata to the *Trip Generation Handbook* published by ITE, dated February 6, 2018 indicates an average pass-by trip percentage of 63 percent during both peak hours for the Convenience Market with Gasoline Pumps land use. That pass-by trip percentage was applied to the trip generation for the proposed development as indicated in **Table 1**.

3.4 PROJECT TRIP DISTRIBUTION AND ASSIGNMENT

The estimated new site trips generated by the proposed development were assigned to the street network based on the trip distribution summarized in **Table 2**. This distribution is based on existing traffic patterns,

the expected service area of the proposed development, and engineering judgment. The detailed distribution patterns through the study intersections are shown on **Exhibit 4**.

TABLE 2: PROPOSED DEVELOPMENT TRIP DISTRIBUTION

Direction To/From	Percentage
North on Hamblen Road	45%
South on Hamblen Road	30%
East on Oldham Parkway	25%
Total	100%

Pass-by trips were accounted for using percentages similar to the distributions in **Table 2**. **Exhibit 5** shows the development trip assignment, including the pass-by trips.

The proposed development trip assignments and pass-by trips were added to the Existing (Year 2022) traffic volumes. **Exhibit 6** illustrates the Existing plus Development peak hour traffic volumes.

4.0 ACCESS MANAGEMENT

The City of Lee's Summit Access Management Code (AMC) provides guidance for the design of driveways, access spacing, and the need for turn lanes at intersections. These items are discussed in the following paragraphs.

4.1 ACCESS SPACING

The AMC includes requirements for minimum spacing between street connections, depending on street classification. Along minor arterial roadways such as Hamblen Road, the minimum spacing is 400 feet, measured between centerlines. Driveway 1 meets the minimum spacing requirement from Oldham Parkway, but it is only 275 from the next driveway to the south. There are also existing private driveways on the west side of Hamblen Road that are less than the minimum spacing from Driveway 1. These are all existing driveways and there is no practical way to improve these connection spacings with the proposed development.

For commercial collectors, the minimum spacing is 300 feet. Driveway 2 meets the minimum spacing from Hamblen Road, but the next driveway to the east is 285 feet away. These driveways were like constructed before the AMC was adopted, and the spacings very nearly satisfy the minimum requirements. Driveway 2 is located to align with the driveway on the north side of Oldham Parkway, which is indicative of good access management.

4.2 DRIVEWAY THROAT LENGTH

A driveways throat length is the distance along a driveway from the intersecting roadway to the first location on site where a driver can make a turn. Adequate throat lengths minimize the potential for inbound traffic to queue onto the public street. The throat length also provides space for outbound traffic to queue without adversely impacting site circulation.

The throat length requirements in the AMC are based on the two-way traffic volume on the driveway and the adjacent street classification. Driveway 1 is projected to have 400 or more vehicles per hour during the peak hour. As such the minimum throat length is 150 feet. The existing driveway currently has a throat length of 48 feet to the drive aisle on the south side of the driveway, which does not meet the minimum throat length requirement. The access to the proposed development is planned to align with the existing drive aisle.

Consideration should be given to relocating the site access on Driveway 1 east to align with the drive aisle along the front of the proposed convenience store. This would increase the throat length to approximately 110 feet along the north side of the driveway. Queue lengths projected at the driveway will be discussed in the analysis section of this study.

Driveway 2 is projected to have a volume of less than 300 vehicles per hour during the peak hours. Therefore, the minimum throat length is 100 feet. The existing throat length is only 67 feet. The throat length cannot be increased without significant modifications to the existing Home Depot parking lot. Queue lengths projected at the driveway will be discussed in the analysis section of this study.

4.3 TURN LANE ANALYSIS

The AMC also provides requirements for right- and left-turn lanes based on traffic volumes and street classifications. At Hamblen Road and Driveway 1 there is already an existing southbound left-turn lane. On a minor arterial street, a right-turn lane is warranted if there are 60 or more right turns during a peak hour. The volumes in **Exhibit 6** indicate that 100 northbound right-turns are projected during each peak hour. Therefore, a northbound right-turn lane is warranted at the Hamblen Road and Driveway 1 intersection. The AMC indicates that a right-turn lane at this location should be a minimum of 150 feet in length plus taper. There is not enough distance between Driveway 1 and the next driveway to the south to accommodate a turn lane of that length. As a result, the northbound right-turn lane should be 100 feet in length plus a 60-foot taper.

Additionally, there is an existing curb inlet along the east side of Hamblen Road, approximately 100 feet south of Driveway 1. The large (7'x7') curb inlet has a 42-inch pipe, a 33-inch x 52-inch elliptical pipe, and a 15-inch pipe entering the structure. The curb inlet would be impacted by widening for a right-turn lane. Given that a standard length turn lane cannot be constructed, and it will impact a large existing curb inlet, the benefits of the right-turn lane may not outweigh the cost to construct the lane.

At Oldham Parkway and Driveway 2 there is an existing westbound left-turn lane. On a commercial collector street, a right-turn lane is warranted if there are 100 or more right-turns during a peak hour. The volumes in **Exhibit 6** indicate that 57 and 79 eastbound right-turns are projected during the AM and PM peak hours, respectively. Therefore, an eastbound right-turn lane is not warranted at Driveway 2.

The recommended geometry with lane configurations and intersection control at the study intersections for Existing plus Development conditions is shown on **Exhibit 7**.

5.0 FUTURE CONDITIONS

The traffic analysis focused on two analysis years: existing year (2022) and horizon year (2042). To develop the future conditions traffic volume projections, background traffic growth was added to the existing traffic volumes, then the proposed development site trips were added.

To estimate background traffic growth, the existing traffic volumes at the study intersections were assumed to increase at a rate of 1% per year. The annual growth rate was estimated from historical traffic volumes in the area provided on the Missouri Department of Transportation's website. The turning movements at the private driveway intersections were not increased. The Future (Year 2042) peak hour traffic volumes are shown on **Exhibit 8**.

6.0 INTERSECTION CAPACITY ANALYSIS

6.1 LEVEL OF SERVICE OVERVIEW

Intersection capacity analysis was performed at the study intersections for the following scenarios:

- Existing Conditions (Year 2022)
- Existing plus Development Conditions
- Future Conditions (Year 2042)

The capacity analysis was performed for the weekday AM and PM peak hours using Synchro traffic modeling software to determine intersection delay and level of service (LOS). Calculations were performed based on the methodologies outlined in the *Highway Capacity Manual (HCM)*, 6th Edition, which is published by the Transportation Research Board.

LOS is a quantitative measure used by traffic engineers to describe the operations of an intersection. It ranges from A to F, with A being the best and F being the worst level of operation. LOS A conditions are characterized by minimal vehicle delay and free-flow conditions, while LOS F is characterized by long vehicle delay – usually when demand exceeds available roadway capacity. **Table 3** shows the definition of LOS for unsignalized and signalized intersections.

Average Control Delay (seconds/vehicle) at: Level of Service **Unsignalized Intersections Signalized Intersections** 0 - 100 - 10Α В > 10 - 15> 10 - 20C > 15 - 25 > 20 - 35D > 25 - 35> 35 - 55 Ε > 35 - 50 > 55 - 80F > 50 > 80

TABLE 3: LEVEL OF SERVICE

Levels of service are evaluated based on the movement groupings which are required to yield to other traffic. Typically, these are left turns off the major street and the side street approaches for two-way stop-controlled intersections. For signalized intersections each movement grouping is evaluated, and LOS is evaluated for the intersection as a whole.

The City of Lee's Summit has adopted LOS C as the minimum desirable LOS. However, LOS D and E may be considered acceptable for low to moderate traffic volumes, the availability of alternate routes, and the duration of activity resulting in lower LOS.

Traffic queues were also evaluated as part of the analyses. Long traffic queues which extend beyond the amount of storage available, either between intersections or within turn lanes, can have significant impacts on operations. The 95th percentile vehicular queues were analyzed to ensure the analyses are reflective of the physical constraints of the study intersections and to identify if additional storage is needed for turn lanes. The 95th percentile queue represents the queue length that has only a 5% chance of being exceeded during the analysis period.

6.2 EXISTING (YEAR 2022) ANALYSIS

Capacity analysis was conducted for Existing (Year 2022) traffic conditions at the study intersections to determine baseline conditions for the existing analysis year. The analysis was performed for weekday AM and PM peak hours and is based on the lane configurations, traffic controls, and traffic volumes shown in **Exhibits 2** and **3**.

Table 4 provides a summary of the capacity analysis at the study intersections. The Synchro reports are provided in **Appendix E**.

TABLE 4: EXISTING (YEAR 2022) PEAK HOUR CONDITIONS

			Operational Analysis Results										
1	Ctl		AM	Peak Ho	ur	PM Peak Hour							
Intersection	Control	Movement	Delay (sec/veh)	LOS	95% Queue	Delay (sec/veh)	LOS	95% Queue					
Hamblen Deed 0	Side	WBL	15.1	С	< 50'	23.4	С	< 50'					
Hamblen Road &	Driveway 1	WBR	10.7	В	< 50'	11.9	В	< 50'					
Dilveway 1	Stop	SBL	8.2	Α	< 50'	8.7	Α	< 50'					
	WBL	14.4	В	< 50'	17.6	В	57'						
		WBR	12.0	В	< 50'	11.8	В	101'					
Hamblen Road &	Traffic	NBT/R	13.6	В	79'	20.9	С	142'					
Oldham Parkway	Signal	SBL	8.3	Α	< 50'	12.5	В	112'					
		SBT	5.4	Α	67'	7.9	Α	137'					
		Overall	10.0	Α		13.7	В						
	6: 1	NB	12.2	В	< 50'	20.0	С	< 50'					
Oldham Parkway &	Side	EBL	7.7	Α	< 50'	8.1	Α	< 50'					
Driveway 2	Street Stop	WBL	7.8	Α	< 50'	8.1	Α	< 50'					
	Stop	SG	11.0	В	< 50'	13.9	В	< 50'					

Based on the analysis results in **Table 4**, all intersections currently operate at acceptable LOS. The results indicate that all queues are contained within their respective turn lanes.

Some longer queues were observed on Hamblen Road during the counts during the PM peak hour. Between 5:00 PM and 5:30 PM, some long queues of northbound traffic extended back from the US-50 Highway interchange through Oldham Parkway and the intersection was blocked at times. One time during the PM peak hour the blockage resulted in the northbound through queue extending back to Driveway 1. This only occurred once during the traffic counts and the queue did clear during the next cycle of the signal. The improvements planned for the interchange should improve operations and alleviate the congestion observed on Hamblen Road.

6.3 EXISTING PLUS DEVELOPMENT ANALYSIS

Capacity analysis was conducted for Existing plus Development traffic conditions at the study intersections to determine the impact of site generated traffic from the proposed development. The analysis was performed for weekday AM and PM peak hours and is based on the lane configurations, traffic controls, and traffic volumes shown on **Exhibits 6** and **7**.

Table 5 provides a summary of the capacity analysis at the study intersections. The Synchro reports are provided in **Appendix E**.

TABLE 5: EXISTING PLUS DEVELOPMENT PEAK HOUR CONDITIONS

				Оре	rational A	Analysis Res	ults		
			AM	Peak Ho	ur	PM Peak Hour			
Intersection	Control	Movement	Delay (sec/veh)	LOS	95% Queue	Delay (sec/veh)	LOS	95% Queue	
Hamblen Deed 9	Side	WBL	22.5	С	< 50'	44.4	E	63'	
Hamblen Road & Driveway 1	Street	WBR	10.9	В	< 50'	12.3	В	< 50'	
Driveway 1	Stop	SBL	8.6	Α	< 50'	9.1	Α	< 50'	
		WBL	14.4	В	< 50'	18.1	В	60'	
		WBR	11.9	В	< 50'	12.1	В	116′	
Hamblen Road &	Traffic	NBT/R	14.3	В	86'	21.4	С	157'	
Oldham Parkway	Signal	SBL	8.6	Α	50'	12.9	В	126'	
		SBT	5.6	Α	75'	8.2	Α	149'	
		Overall	10.3	В		14.1	В		
	6: 1	NB	14.7	В	< 50'	30.7	D	70'	
Oldham Parkway &	Side	EBL	7.6	Α	< 50'	8.0	Α	< 50'	
Driveway 2	Street Stop	WBL	8.0	Α	< 50'	8.3	Α	< 50'	
	Stop	SG	12.1	В	< 50'	15.2	С	< 50'	

The analysis results in the table indicate that, most movements are projected to continue operating at acceptable LOS with the addition of traffic from the proposed development.

There are several movements that are projected to operate at undesirable levels of service in this scenario. The westbound left-turn movement at Hamblen Road & Driveway 1 is projected to operate at LOS E with 44.4 seconds of delay during the PM peak hour. Also, the northbound approach at Oldham Parkway & Driveway 2 is projected to operate at LOS D with 30.7 seconds of delay during the PM peak hour. While these LOS are lower for the PM peak hour, these movements operate acceptably during the AM peak hour. If these delays are unacceptable to drivers, alternate routes are available. Drivers can circulate through the Home Depot site to other driveways. Drivers can also make right turns out of the site instead of left turns and travel to the surrounding streets such as Century Drive and Bailey Road to reach the same destinations. For these reasons, no improvements are identified to mitigate the lower levels of service projected in this scenario.

The westbound queue lengths at Driveway 1 are projected to be 63 feet or less during both peak hours. This will block the proposed site access and existing drive aisle to the south. If the site access was shifted east as discussed in Section 4.2 of this study, the queues would not block the access.

Northbound queues at Driveway 2 are projected to be 70 feet during the PM peak hour, which will slightly exceed the throat length of the driveway. Inbound traffic will still be able to access the proposed gas station and Home Depot if 70-foot queues occur, therefore no operational concerns are expected in this scenario.

6.4 FUTURE (YEAR 2042) ANALYSIS

Capacity analysis was conducted for Future (Year 2042) traffic conditions at the study intersections to determine if improvements may be needed in the future. The analysis was performed for weekday AM and PM peak hours and is based on the traffic volumes shown on **Exhibit 8**. The lane configurations and traffic controls from the previous scenario shown on **Exhibit 7** were also used for this scenario.

Table 6 provides a summary of the capacity analysis at the study intersections. The Synchro reports are provided in **Appendix E**.

TABLE 6: FUTURE (YEAR 2042) PEAK HOUR CONDITIONS

			Operational Analysis Results										
			AM	Peak Ho	ur	PM Peak Hour							
Intersection	Control	Movement	Delay (sec/veh)	LOS	95% Queue	Delay (sec/veh)	LOS	95% Queue					
Hamblen Deed 0	Side	WBL	30.8	D	55'	90.7	F	108′					
Driveway 1	amblen Road & Street		11.8	В	< 50'	13.8	В	< 50'					
Dilveway 1	Stop	SBL	8.9	Α	< 50'	9.6	Α	< 50'					
		WBL	15.5	В	< 50'	22.3	С	99'					
		WBR	12.2	В	54'	14.2	В	224'					
Hamblen Road &	Traffic	NBT/R	16.7	В	113'	27.0	С	266'					
Oldham Parkway	Signal	SBL	10.0	Α	60'	18.3	В	278'					
		SBT	6.4	Α	94'	10.3	В	218′					
		Overall	11.7	В		18.0	В						
	6: 1	NB	17.1	С	< 50'	54.8	F	120'					
Oldham Parkway &	Side	EBL	7.7	Α	< 50'	8.2	Α	< 50'					
Driveway 2	Street Stop	WBL	8.1	Α	< 50'	8.5	Α	< 50'					
	310p	SG	12.5	В	< 50'	18.2	С	< 50'					

The analysis results in **Table 6** indicate some lower levels of service are projected exiting the Home Depot driveways in the future. The westbound left-turn movement at Hamblen Road & Driveway 1 is projected to operate at LOS D and F during the AM and PM peak hours, respectively. The northbound approach at Oldham Parkway & Driveway 2 is projected to operate at LOS F during the PM peak hour. While these are lower levels of service, alternate routes to exit the site will be available to drivers. Along higher volume corridors it is not uncommon for stop-controlled side street movements to experience longer delays during peak times. Signalization is not appropriate at either of the driveways due to the proximity of the existing traffic signal at Hamblen Road & Oldham Parkway.

At the Hamblen Road & Oldham Parkway signalized intersection, the queues for the northbound through movement and southbound left-turn movement are projected to increase. If these queues become a concern, additional capacity and storage could be added for the southbound left-turn movement. The existing pavement is wide enough to allow for dual southbound left-turn lanes. Increasing the capacity of this movement would allow for signal timing changes that would decrease the queue lengths for the southbound left-turn and the northbound through movements.

The westbound queue lengths at Driveway 1 are projected to be 108 feet or less during both peak hours. This will block the proposed site access. If the access was shifted east as discussed in Section 4.2 of this study, the queues would be able to be contained on the driveway without blocking the site access.

Northbound queues at Driveway 2 are projected to be 120 feet during the PM peak hour, which will extend back into the parking aisles. If this level of queueing occurs in the future, consideration should be given to installing signage and pavement markings directing drivers not to block the internal intersection. Providing a short northbound right-turn lane on Driveway 2 would also reduce queue lengths.

6.0 CONCLUSIONS AND RECOMMENDATIONS

A traffic impact study for the Home Depot C-Store development has been prepared by Kimley-Horn. The proposed development site is located at the southeast corner of the Hamblen Road and Oldham Parkway intersection in Lee's Summit, Missouri. The purpose of this study was to assess the impact of the proposed development on the surrounding transportation system.

The following provides a summary of the analysis. Intersection capacity analysis was performed at the study intersections for the following scenarios:

- Existing (Year 2022)
- Existing plus Development
- Future (Year 2042)

Counts were collected in March 2022 to serve as the baseline for analysis. All study intersections were found to currently be operating at acceptable levels of service.

The proposed development is projected to generate 5,532 daily trips, with 506 trips during the AM peak hour and 430 trips during the PM peak hour. The site trips were added to the street network, and it was determined that a northbound right-turn lane will be warranted at Hamblen Road & Driveway 1. Given that a standard length turn lane cannot be constructed at this location, and a turn lane will impact a large existing curb inlet, the benefits of the right-turn lane may not outweigh the cost to construct the lane.

With the addition of development traffic most movements at the study intersections are projected to operate acceptably. No mitigations are identified for the movements that operate at lower levels of service. Queues on Driveway 1 are projected to block the proposed site access during the PM peak hour. Consideration should be given to relocating the site access east to align with the drive aisle along the front of the proposed convenience store.

In the Future (Year 2042) scenario, the existing traffic volumes were grown at a rate of 1% per year, and the proposed site trips were included. Overall, the study intersections are projected to operate similar to the previous scenario. Delays and queues are projected to increase for some movements exiting the Home Depot driveways. In the future, there may be a need for some modifications at the Oldham Parkway and Driveway 2 intersection if queues exceed the throat length of the driveway.

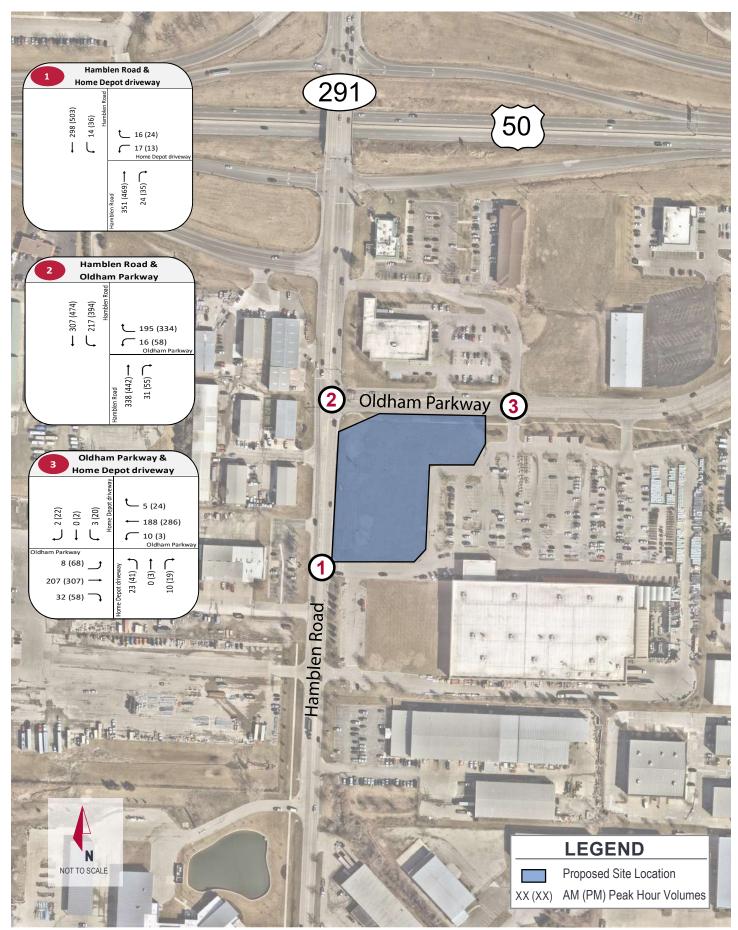
APPENDIX

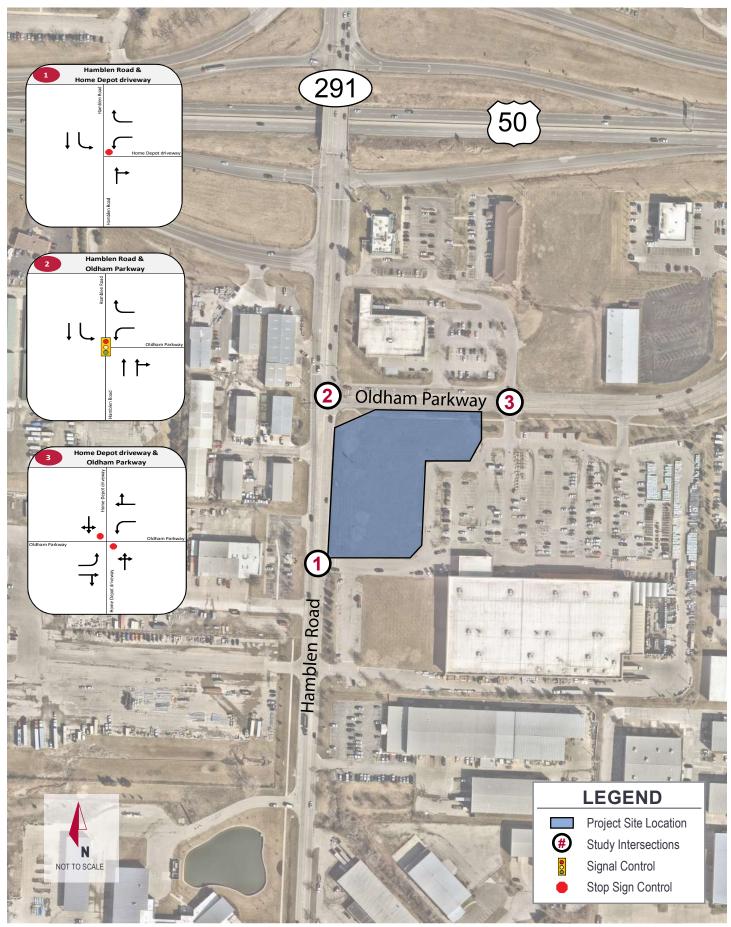
Appendix A: EXHIBITS

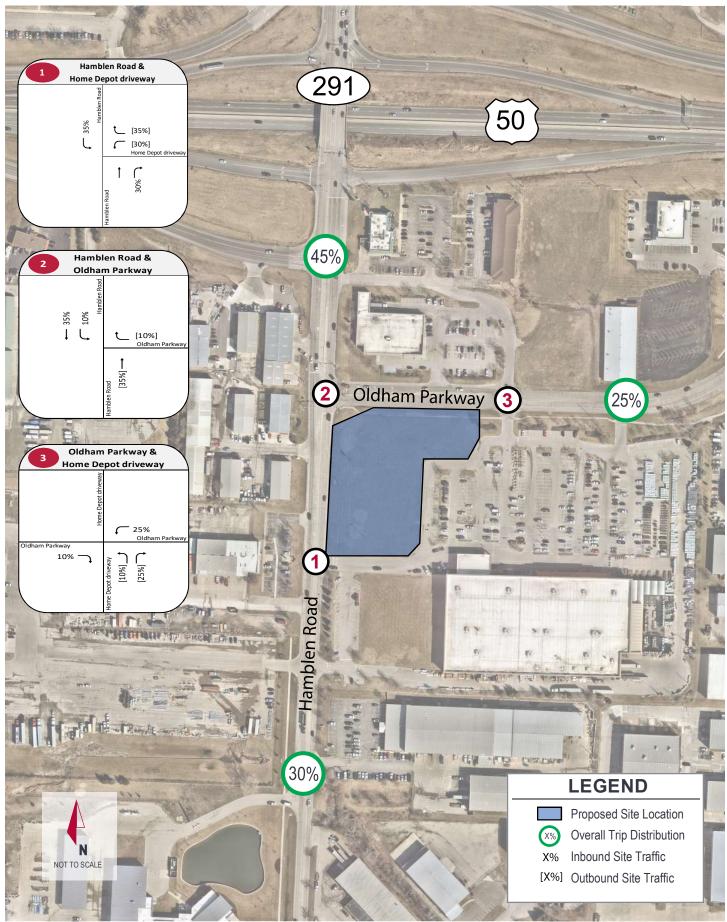
Appendix B: TRAFFIC COUNT DATA

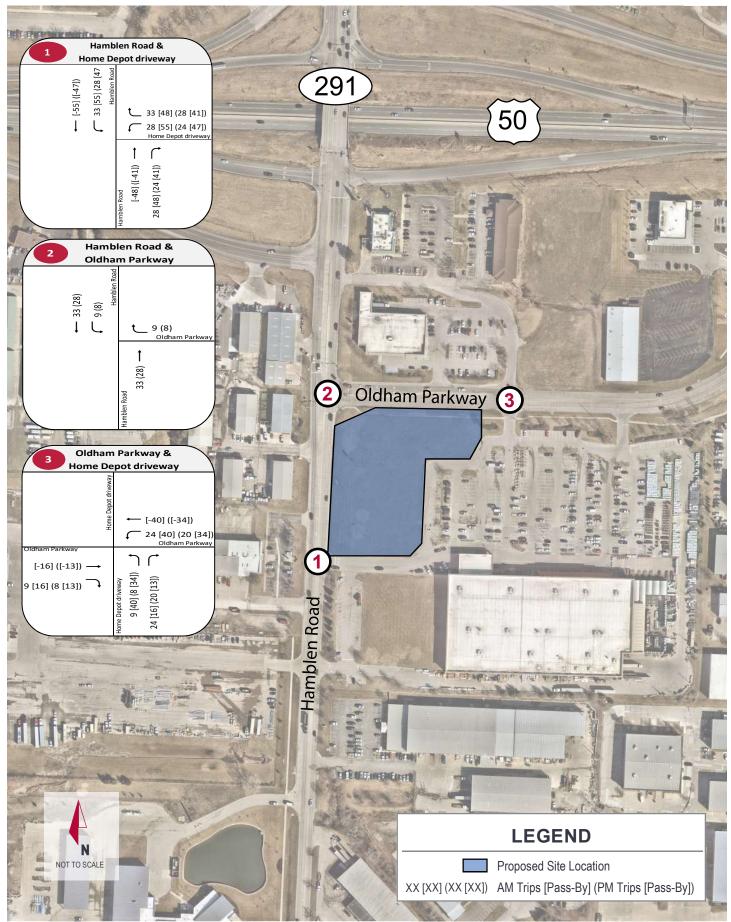
Appendix C: SITE PLAN

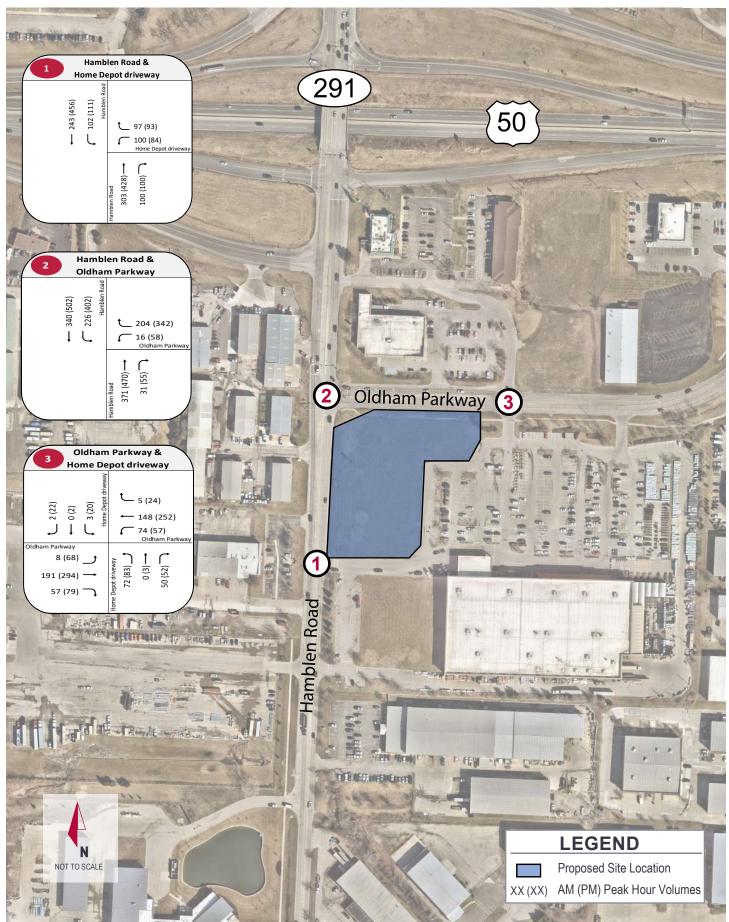
Appendix D: ITE TRIP GENERATION

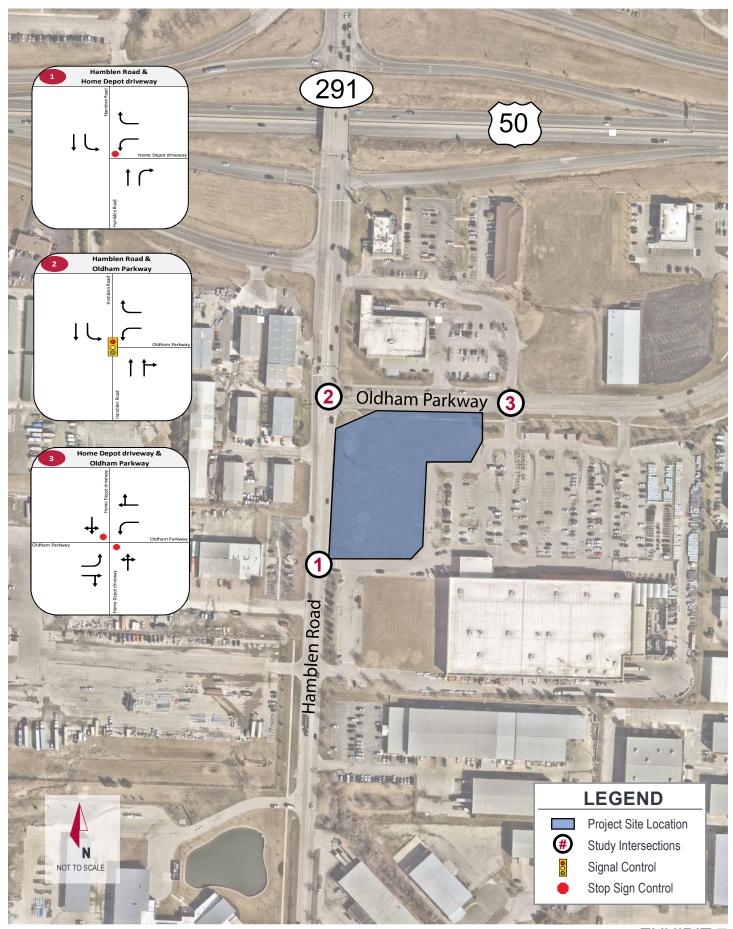

Appendix E: SYNCHRO REPORTS

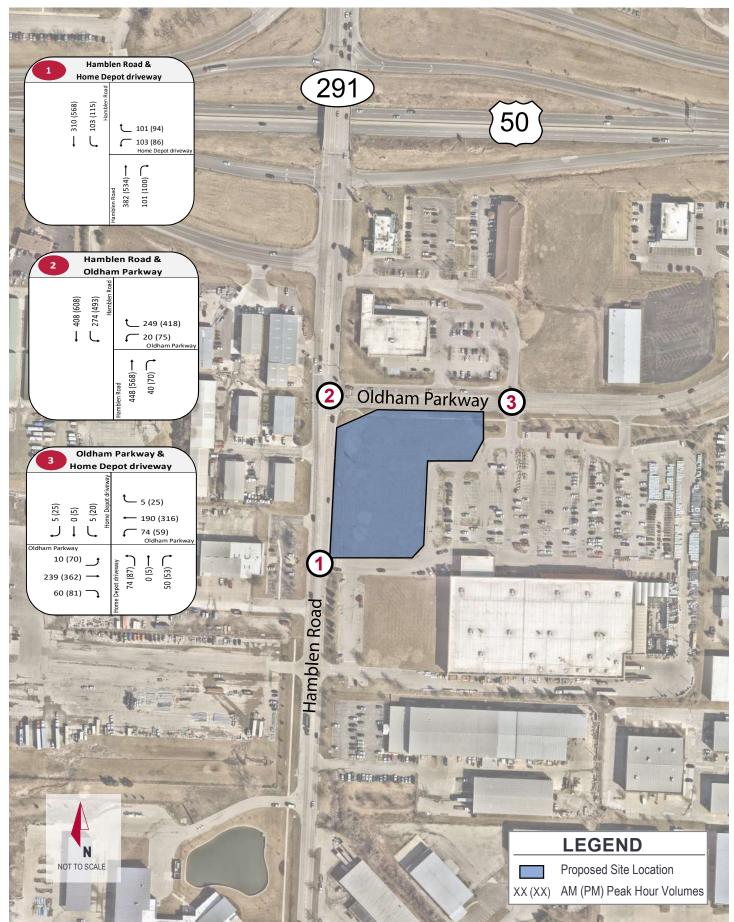

Appendix A: Exhibits




Kimley» Horn


EXHIBIT 1





Kimley» Horn

EXHIBIT 7

EXISTING PLUS DEVELOPMENT
GEOMETRY AND INTERSECTION CONTROL

Kimley» Horn

EXHIBIT 8
FUTURE CONDITIONS (YEAR 2042)
PEAK HOUR TRAFFIC VOLUMES

Appendix B: Traffic Count Data

Thu Mar 31, 2022

Full Length (7 AM-9 AM, 4 PM-6 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)

All Movements

ID: 935393, Location: 38.899682, -94.363233

625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Leg	Access				Hamblen				Hamblen				
Direction	Westbound				Northbound				Southbound				
Time	L	R	U	App	T	R	U	App	L	T	U	Арр	Int
2022-03-31 7:00AM	2	4	0	6	97	3	0	100	4	66	0	70	176
7:15AM	0	5	0	5	92	4	0	96	0	82	0	82	183
7:30AM	4	3	0	7	100	8	0	108	7	66	0	73	188
7:45AM	7	2	0	9	90	6	0	96	5	83	0	88	193
Hourly Total	13	14	0	27	379	21	0	400	16	297	0	313	740
8:00AM	6	6	0	12	69	6	0	75	2	67	0	69	156
8:15AM	4	4	0	8	82	8	0	90	7	59	0	66	164
8:30AM	1	6	0	7	62	10	0	72	6	60	0	66	145
8:45AM	7	8	0	15	83	11	0	94	9	52	0	61	170
Hourly Total	18	24	0	42	296	35	0	331	24	238	0	262	635
4:00PM	7	8	0	15	72	3	0	75	8	106	0	114	204
4:15PM	10	2	0	12	104	7	0	111	5	95	0	100	223
4:30PM	6	6	0	12	119	6	0	125	13	138	0	151	288
4:45PM	2	7	0	9	106	7	0	113	6	140	0	146	268
Hourly Total	25	23	0	48	401	23	0	424	32	479	0	511	983
5:00PM	2	5	0	7	148	11	0	159	11	124	0	135	301
5:15PM	3	6	0	9	96	11	0	107	6	101	0	107	223
5:30PM	5	3	0	8	57	5	0	62	3	111	0	114	184
5:45PM	3	6	0	9	81	7	0	88	3	86	0	89	186
Hourly Total	13	20	0	33	382	34	0	416	23	422	0	445	894
Total	69	81	0	150	1458	113	0	1571	95	1436	0	1531	3252
% Approach	46.0%	54.0%	0%	-	92.8%	7.2%	0%	-	6.2%	93.8%	0%	-	-
% Total	2.1%	2.5%	0%	4.6%	44.8%	3.5%	0%	48.3%	2.9%	44.2%	0%	47.1%	-
Lights	69	80	0	149	1386	111	0	1497	94	1355	0	1449	3095
% Lights	100%	98.8%	0%	99.3%	95.1%	98.2%	0%	95.3%	98.9%	94.4%	0%	94.6%	95.2%
Articulated Trucks	0	1	0	1	12	0	0	12	0	10	0	10	23
% Articulated Trucks	0%	1.2%	0%	0.7%	0.8%	0%	0%	0.8%	0%	0.7%	0%	0.7%	0.7%
Buses and Single-Unit Trucks	0	0	0	0	60	2	0	62	1	71	0	72	134
% Buses and Single-Unit Trucks	0%	0%	0%	0%	4.1%	1.8%	0%	3.9%	1.1%	4.9%	0%	4.7%	4.1%

^{*}L: Left, R: Right, T: Thru, U: U-Turn

Thu Mar 31, 2022

Full Length (7 AM-9 AM, 4 PM-6 PM)

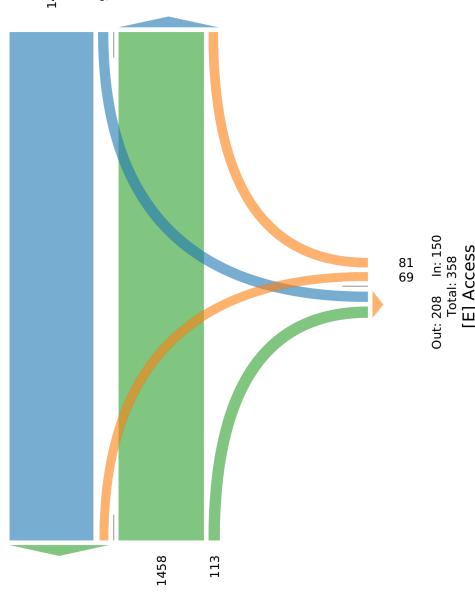
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)

All Movements

ID: 935393, Location: 38.899682, -94.363233

GEWALT HAMILTON ASSOCIATES, INC. Provided by: Gewalt Hamilton Associates Inc.

Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US


[N] Hamblen

Total: 3070

In: 1531 Out: 1539

1436

95

Out: 1505

In: 1571

Total: 3076 [S] Hamblen

Thu Mar 31, 2022

AM Peak (7 AM - 8 AM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)

All Movements

ID: 935393, Location: 38.899682, -94.363233

625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Leg	Access				Hamblen				Hamblen				
Direction	Westbound				Northbound				Southbound	i			
Time	L	R	U	App	T	R	U	App	L	T	U	Арр	Int
2022-03-31 7:00AM	2	4	0	6	97	3	0	100	4	66	0	70	176
7:15AM	0	5	0	5	92	4	0	96	0	82	0	82	183
7:30AM	4	3	0	7	100	8	0	108	7	66	0	73	188
7:45AM	7	2	0	9	90	6	0	96	5	83	0	88	193
Total	13	14	0	27	379	21	0	400	16	297	0	313	740
% Approach	48.1%	51.9%	0%	-	94.8%	5.3%	0%	-	5.1%	94.9%	0%	-	-
% Total	1.8%	1.9%	0%	3.6%	51.2%	2.8%	0%	54.1%	2.2%	40.1%	0%	42.3%	-
PHF	0.464	0.700	-	0.750	0.948	0.656	-	0.926	0.571	0.895	-	0.889	0.959
Lights	13	14	0	27	344	21	0	365	16	287	0	303	695
% Lights	100%	100%	0%	100%	90.8%	100%	0%	91.3%	100%	96.6%	0%	96.8%	93.9%
Articulated Trucks	0	0	0	0	4	0	0	4	0	3	0	3	7
% Articulated Trucks	0%	0%	0%	0%	1.1%	0%	0%	1.0%	0%	1.0%	0%	1.0%	0.9%
Buses and Single-Unit Trucks	0	0	0	0	31	0	0	31	0	7	0	7	38
% Buses and Single-Unit Trucks	0%	0%	0%	0%	8.2%	0%	0%	7.8%	0%	2.4%	0%	2.2%	5.1%

^{*}L: Left, R: Right, T: Thru, U: U-Turn

Thu Mar 31, 2022

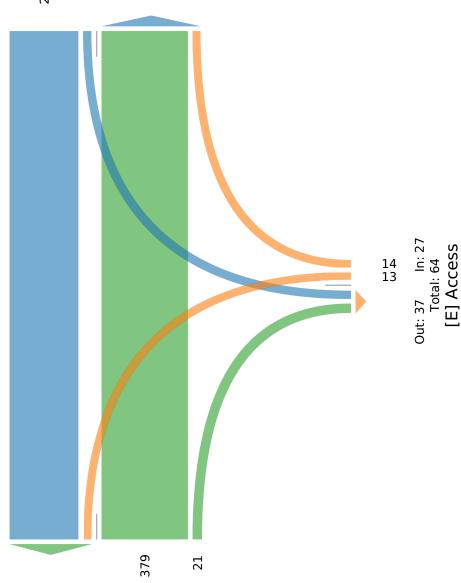
AM Peak (7 AM - 8 AM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)

All Movements

ID: 935393, Location: 38.899682, -94.363233

GEWALT HAMILTON ASSOCIATES, INC. Provided by: Gewalt Hamilton Associates Inc.


Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US

[N] Hamblen

Total: 706

In: 313 Out: 393

297

Out: 310 In: 400 Total: 710 [S] Hamblen

Thu Mar 31, 2022

PM Peak (4:15 PM - 5:15 PM) - Overall Peak Hour

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)

All Movements

ID: 935393, Location: 38.899682, -94.363233

Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Leg	Access				Hamblen				Hamblen				
Direction	Westbound				Northbound				Southbound				
Time	L	R	U	App	T	R	U	App	L	T	U	Арр	Int
2022-03-31 4:15PM	10	2	0	12	104	7	0	111	5	95	0	100	223
4:30PM	6	6	0	12	119	6	0	125	13	138	0	151	288
4:45PM	2	7	0	9	106	7	0	113	6	140	0	146	268
5:00PM	2	5	0	7	148	11	0	159	11	124	0	135	301
Total	20	20	0	40	477	31	0	508	35	497	0	532	1080
% Approach	50.0%	50.0%	0%	-	93.9%	6.1%	0%	-	6.6%	93.4%	0%	-	-
% Total	1.9%	1.9%	0%	3.7%	44.2%	2.9%	0%	47.0%	3.2%	46.0%	0%	49.3%	-
PHF	0.500	0.714	-	0.833	0.806	0.705	-	0.799	0.673	0.888	-	0.881	0.897
Lights	20	20	0	40	468	30	0	498	34	448	0	482	1020
% Lights	100%	100%	0%	100%	98.1%	96.8%	0%	98.0%	97.1%	90.1%	0%	90.6%	94.4%
Articulated Trucks	0	0	0	0	2	0	0	2	0	3	0	3	5
% Articulated Trucks	0%	0%	0%	0%	0.4%	0%	0%	0.4%	0%	0.6%	0%	0.6%	0.5%
Buses and Single-Unit Trucks	0	0	0	0	7	1	0	8	1	46	0	47	55
% Buses and Single-Unit Trucks	0%	0%	0%	0%	1.5%	3.2%	0%	1.6%	2.9%	9.3%	0%	8.8%	5.1%

^{*}L: Left, R: Right, T: Thru, U: U-Turn

Thu Mar 31, 2022

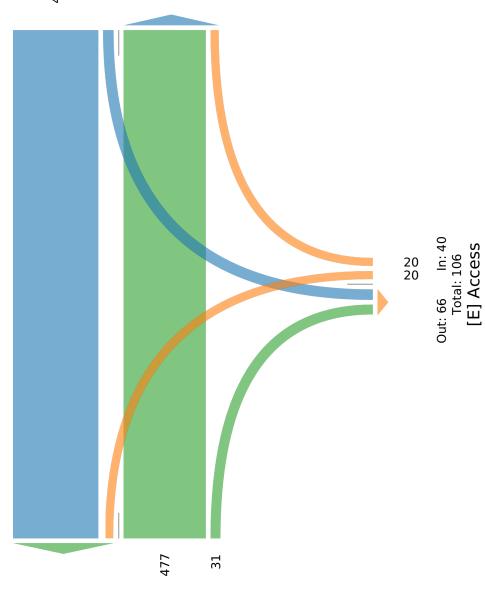
PM Peak (4:15 PM - 5:15 PM) - Overall Peak Hour

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)

All Movements

ID: 935393, Location: 38.899682, -94.363233

ASSOCIATES, INC. Provided by: Gewalt Hamilton Associates Inc.


625 Forest Edge Drive, Vernon Hills, IL, 60061, US

[N] Hamblen

Total: 1029

In: 532 Out: 497

497 35

Out: 517 In: 508 Total: 1025 [S] Hamblen

Hamblen Road & Oldham Pkwy - TMC

Thu Mar 31, 2022

Full Length (7 AM-9 AM, 4 PM-6 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)

All Movements

ID: 935394, Location: 38.900821, -94.363147

625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Leg	Oldham				Hamblen				Hamblen				
Direction	Westbound				Northbound				Southbound				
Time	L	R	U	App	T	R	U	App	L	T	U	App	Int
2022-03-31 7:00AM	1	54	0	55	100	2	0	102	24	70	0	94	251
7:15AM	1	42	0	43	91	5	0	96	48	83	0	131	270
7:30AM	7	49	0	56	100	9	0	109	49	71	0	120	285
7:45AM	4	52	0	56	83	6	0	89	56	84	0	140	285
Hourly Total	13	197	0	210	374	22	0	396	177	308	0	485	1091
8:00AM	4	52	0	56	64	11	0	75	63	69	1	133	264
8:15AM	11	39	0	50	80	6	0	86	52	52	0	104	240
8:30AM	9	57	0	66	65	4	0	69	54	61	0	115	250
8:45AM	12	54	0	66	77	8	0	85	85	52	0	137	288
Hourly Total	36	202	0	238	286	29	0	315	254	234	1	489	1042
4:00PM	12	76	0	88	80	6	0	86	94	106	2	202	376
4:15PM	8	60	0	68	93	11	0	104	84	95	1	180	352
4:30PM	19	87	0	106	108	16	0	124	100	134	5	239	469
4:45PM	20	83	0	103	106	16	0	122	86	124	3	213	438
Hourly Total	59	306	0	365	387	49	0	436	364	459	11	834	1635
5:00PM	8	84	0	92	130	12	0	142	103	125	7	235	469
5:15PM	11	80	0	91	98	11	0	109	89	91	1	181	381
5:30PM	18	76	0	94	60	9	0	69	67	97	2	166	329
5:45PM	5	66	0	71	82	8	0	90	72	88	0	160	321
Hourly Total	42	306	0	348	370	40	0	410	331	401	10	742	1500
Total	150	1011	0	1161	1417	140	0	1557	1126	1402	22	2550	5268
% Approach	12.9%	87.1%	0%	-	91.0%	9.0%	0%	-	44.2%	55.0%	0.9%	-	-
% Total	2.8%	19.2%	0%	22.0%	26.9%	2.7%	0%	29.6%	21.4%	26.6%	0.4%	48.4%	-
Lights	148	991	0	1139	1340	137	0	1477	1103	1317	22	2442	5058
% Lights	98.7%	98.0%	0%	98.1%	94.6%	97.9%	0%	94.9%	98.0%	93.9%	100%	95.8%	96.0%
Articulated Trucks	1	3	0	4	21	0	0	21	7	15	0	22	47
% Articulated Trucks	0.7%	0.3%	0%	0.3%	1.5%	0%	0%	1.3%	0.6%	1.1%	0%	0.9%	0.9%
Buses and Single-Unit Trucks	1	17	0	18	56	3	0	59	16	70	0	86	163
% Buses and Single-Unit Trucks	0.7%	1.7%	0%	1.6%	4.0%	2.1%	0%	3.8%	1.4%	5.0%	0%	3.4%	3.1%

^{*}L: Left, R: Right, T: Thru, U: U-Turn

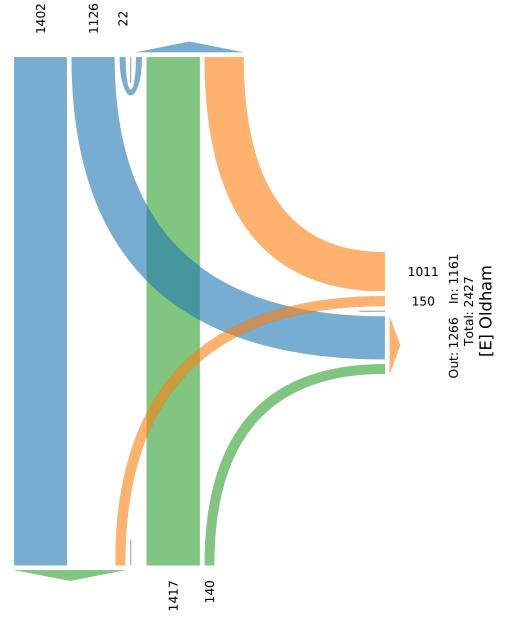
Hamblen Road & Oldham Pkwy - TMC

Thu Mar 31, 2022

Full Length (7 AM-9 AM, 4 PM-6 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)

All Movements


ID: 935394, Location: 38.900821, -94.363147

625 Forest Edge Drive, Vernon Hills, IL, 60061, US

[N] Hamblen

In: 1557 Out: 1552 Total: 3109 [S] Hamblen

Thu Mar 31, 2022

AM Peak (7:15 AM - 8:15 AM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)

All Movements

ID: 935394, Location: 38.900821, -94.363147

625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Leg	Oldham				Hamblen				Hamblen				
Direction	Westbound	d			Northbound				Southbound				
Time	L	R	U	Арр	T	R	U	Арр	L	T	U	Арр	Int
2022-03-31 7:15AM	1	42	0	43	91	5	0	96	48	83	0	131	270
7:30AM	7	49	0	56	100	9	0	109	49	71	0	120	285
7:45AM	4	52	0	56	83	6	0	89	56	84	0	140	285
8:00AM	4	52	0	56	64	11	0	75	63	69	1	133	264
Total	16	195	0	211	338	31	0	369	216	307	1	524	1104
% Approach	7.6%	92.4%	0%	-	91.6%	8.4%	0%	-	41.2%	58.6%	0.2%	-	-
% Total	1.4%	17.7%	0%	19.1%	30.6%	2.8%	0%	33.4%	19.6%	27.8%	0.1%	47.5%	-
PHF	0.571	0.938	-	0.942	0.845	0.705	-	0.846	0.857	0.914	0.250	0.936	0.968
Lights	16	190	0	206	308	30	0	338	210	296	1	507	1051
% Lights	100%	97.4%	0%	97.6%	91.1%	96.8%	0%	91.6%	97.2%	96.4%	100%	96.8%	95.2%
Articulated Trucks	0	1	0	1	9	0	0	9	1	2	0	3	13
% Articulated Trucks	0%	0.5%	0%	0.5%	2.7%	0%	0%	2.4%	0.5%	0.7%	0%	0.6%	1.2%
Buses and Single-Unit Trucks	0	4	0	4	21	1	0	22	5	9	0	14	40
% Buses and Single-Unit Trucks	0%	2.1%	0%	1.9%	6.2%	3.2%	0%	6.0%	2.3%	2.9%	0%	2.7%	3.6%

^{*}L: Left, R: Right, T: Thru, U: U-Turn

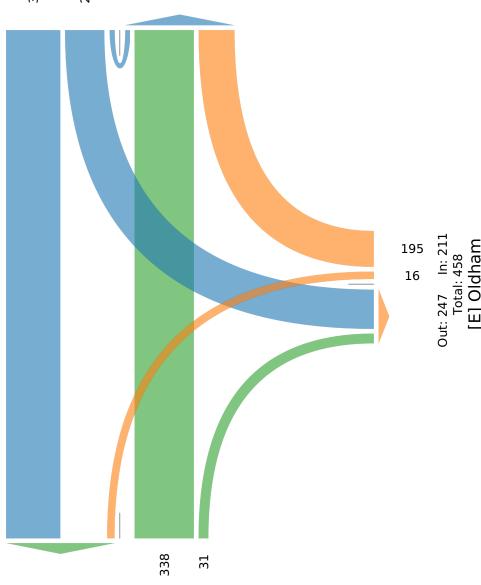
Thu Mar 31, 2022

AM Peak (7:15 AM - 8:15 AM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)

All Movements

ID: 935394, Location: 38.900821, -94.363147


Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US

[N] Hamblen

Total: 1058

In: 524 Out: 534

307

Out: 323 In: 369 Total: 692 [S] Hamblen

Thu Mar 31, 2022

PM Peak (4:30 PM - 5:30 PM) - Overall Peak Hour

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)

All Movements

ID: 935394, Location: 38.900821, -94.363147

Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Leg	Oldham				Hamblen				Hamblen				
Direction	Westbound				Northbound				Southbound				
Time	L	R	U	App	T	R	U	App	L	T	U	Арр	Int
2022-03-31 4:30PM	19	87	0	106	108	16	0	124	100	134	5	239	469
4:45PM	20	83	0	103	106	16	0	122	86	124	3	213	438
5:00PM	8	84	0	92	130	12	0	142	103	125	7	235	469
5:15PM	11	80	0	91	98	11	0	109	89	91	1	181	381
Total	58	334	0	392	442	55	0	497	378	474	16	868	1757
% Approach	14.8%	85.2%	0%	-	88.9%	11.1%	0%	-	43.5%	54.6%	1.8%	-	-
% Total	3.3%	19.0%	0%	22.3%	25.2%	3.1%	0%	28.3%	21.5%	27.0%	0.9%	49.4%	-
PHF	0.725	0.960	-	0.925	0.850	0.859	-	0.875	0.917	0.884	0.571	0.908	0.937
Lights	58	331	0	389	431	55	0	486	373	430	16	819	1694
% Lights	100%	99.1%	0%	99.2%	97.5%	100%	0%	97.8%	98.7%	90.7%	100%	94.4%	96.4%
Articulated Trucks	0	1	0	1	3	0	0	3	2	5	0	7	11
% Articulated Trucks	0%	0.3%	0%	0.3%	0.7%	0%	0%	0.6%	0.5%	1.1%	0%	0.8%	0.6%
Buses and Single-Unit Trucks	0	2	0	2	8	0	0	8	3	39	0	42	52
% Buses and Single-Unit Trucks	0%	0.6%	0%	0.5%	1.8%	0%	0%	1.6%	0.8%	8.2%	0%	4.8%	3.0%

^{*}L: Left, R: Right, T: Thru, U: U-Turn

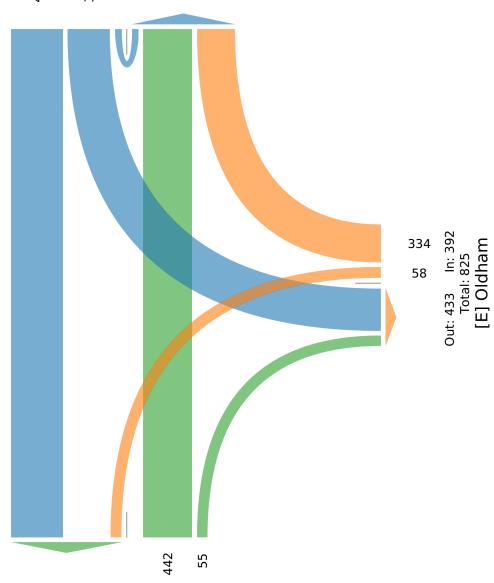
Thu Mar 31, 2022

PM Peak (4:30 PM - 5:30 PM) - Overall Peak Hour

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)

All Movements

ID: 935394, Location: 38.900821, -94.363147


Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US

[N] Hamblen

Total: 1660

In: 868 Out: 792

474 378 16

Out: 532 In: 497 Total: 1029 [S] Hamblen

Thu Mar 31, 2022

Full Length (7 AM-9 AM, 4 PM-6 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)

All Movements

ID: 935395, Location: 38.90084, -94.361516

625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Leg Direction	Oldhar Eastbo					Oldhai Westb					Access Northb					Access Southbo	ound				
Time	L	Т	R	U	Арр	L	T	R	U	Арр	L	T	R	U	App	L	T	R	U	Арр	Int
2022-03-31 7:00AM	3	17	5	0	25	3	51	0	0	54	2	0	1	0	3	0	0	1	0	1	83
7:15AM	0	50	4	0	54	3	40	0	0	43	6	0	1	0	7	0	0	0	0	0	104
7:30AM	1	49	6	0	56	2	54	0	0	56	4	0	1	0	5	1	0	0	0	1	118
7:45AM	4	47	12	0	63	2	47	1	0	50	4	0	4	0	8	2	0	0	0	2	123
Hourly Total	8	163	27	0	198	10	192	1	0	203	16	0	7	0	23	3	0	1	0	4	428
8:00AM	3	61	10	0	74	3	47	4	0	54	9	0	4	0	13	0	0	2	0	2	143
8:15AM	5	41	12	0	58	2	41	0	0	43	4	0	1	0	5	0	0	1	0	1	107
8:30AM	6	45	6	0	57	2	52	2	0	56	12	0	6	0	18	1	0	2	0	3	134
8:45AM	12	69	12	0	93	4	56	3	0	63	6	2	3	0	11	0	0	1	0	1	168
Hourly Total	26	216	40	0	282	11	196	9	0	216	31	2	14	0	47	1	0	6	0	7	552
4:00PM	17	73	12	0	102	2	68	8	0	78	5	1	3	0	9	4	1	2	0	7	196
4:15PM	19	61	16	0	96	1	58	5	0	64	3	0	4	0	7	4	1	3	0	8	175
4:30PM	19	79	18	0	116	2	77	5	0	84	14	1	3	0	18	7	0	5	0	12	230
4:45PM	16	70	14	0	100	0	74	4	0	78	4	1	6	0	11	4	1	6	0	11	200
Hourly Total	71	283	60	0	414	5	277	22	0	304	26	3	16	0	45	19	3	16	0	38	801
5:00PM	19	82	16	0	117	0	70	7	0	77	14	0	4	0	18	4	0	7	0	11	223
5:15PM	14	76	10	0	100	1	65	8	0	74	9	1	6	0	16		1	4	0	10	200
5:30PM	20	48	8	0	76	0	75	3	0	78	6	1	3	0	10		0	2	0	7	171
5:45PM	16	54		1	83	1	56	6	0	63	6	0	0	0	6		0	3	0	8	160
Hourly Total	69	260	46	1	376	2	266	24	0	292	35	2	13	0	50	19	1	16	0	36	754
Total	174	922	173	1	1270	28	931	56	0	1015	108	7	50	0	165	42	4	39	0	85	2535
% Approach	13.7%	72.6%	13.6%	0.1%	-	2.8%	91.7%	5.5%	0%	-	65.5%	4.2%	30.3% (0%	-	49.4%	4.7%	45.9%	0%	-	-
% Total	6.9%	36.4%	6.8%	0%	50.1%	1.1%	36.7%	2.2%	0% 4	10.0%	4.3%	0.3%	2.0% (0%	6.5%	1.7%	0.2%	1.5%	0%	3.4%	
Lights	174	901	171	1	1247	28	911	56	0	995	105	7	50	0	162	41	4	39	0	84	2488
% Lights	100%	97.7%	98.8%	100%	98.2%	100%	97.9%	100%	0% 9	98.0%	97.2%	100%	100% (0% 9	98.2%	97.6%	100%	100%	0% !	98.8%	98.1%
Articulated Trucks	0	4	0	0	4	0	5	0	0	5	0	0	0	0	0	0	0	0	0	0	9
% Articulated Trucks	0%	0.4%	0%	0%	0.3%	0%	0.5%	0%	0%	0.5%	0%	0%	0% (0%	0%	0%	0%	0%	0%	0%	
Buses and Single-Unit Trucks	0	17	2	0	19	0	15	0	0	15	3	0	0	0	3	1	0	0	0	1	38
% Buses and Single-Unit Trucks	0%	1.8%	1.2%	0%	1.5%	0%	1.6%	0%	0%	1.5%	2.8%	0%	0% (0%	1.8%	2.4%	0%	0%	0%	1.2%	1.5%

^{*}L: Left, R: Right, T: Thru, U: U-Turn

Thu Mar 31, 2022

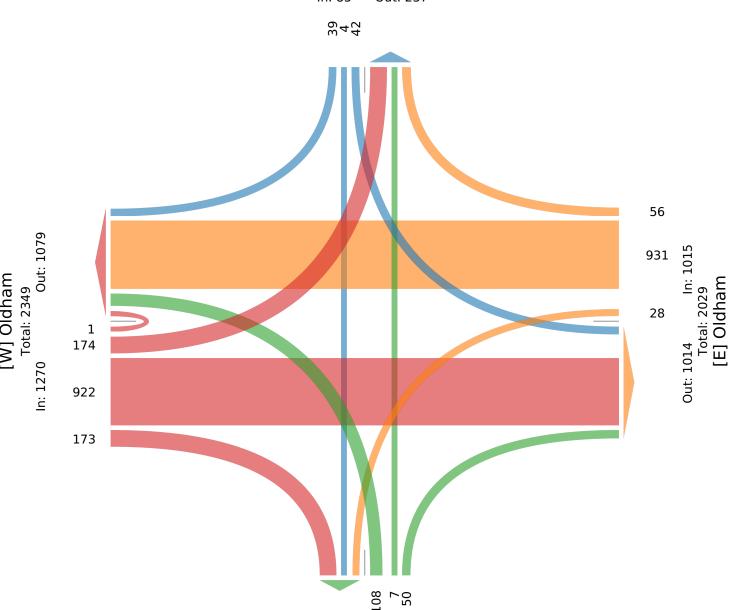
Full Length (7 AM-9 AM, 4 PM-6 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)

All Movements

[W] Oldham

ID: 935395, Location: 38.90084, -94.361516



625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Total: 322

In: 85 Out: 237

Out: 205 In: 165 Total: 370 [S] Access

Thu Mar 31, 2022

AM Peak (8 AM - 9 AM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)

All Movements

ID: 935395, Location: 38.90084, -94.361516

625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Leg		Oldhai	m				Oldha	m				Access					Access					
Direction		Eastbo	ound				Westb	ound				Northbo	ound				Southb	ound				
Time		L	T	R	U	App	L	T	R	U	App	L	T	R	U	App	L	T	R	U	App	Int
2022-0	03-31 8:00AM	3	61	10	0	74	3	47	4	0	54	9	0	4	0	13	0	0	2	0	2	143
	8:15AM	5	41	12	0	58	2	41	0	0	43	4	0	1	0	5	0	0	1	0	1	107
	8:30AM	6	45	6	0	57	2	52	2	0	56	12	0	6	0	18	1	0	2	0	3	134
	8:45AM	12	69	12	0	93	4	56	3	0	63	6	2	3	0	11	0	0	1	0	1	168
	Total	26	216	40	0	282	11	196	9	0	216	31	2	14	0	47	1	0	6	0	7	552
	% Approach	9.2%	76.6%	14.2%	0%	-	5.1%	90.7%	4.2%	0%	-	66.0%	4.3%	29.8% ()%	-	14.3%	0%	85.7%	0%	-	-
	% Total	4.7%	39.1%	7.2%	0%	51.1%	2.0%	35.5%	1.6%	0%	39.1%	5.6%	0.4%	2.5% ()%	8.5%	0.2%	0%	1.1%	0%	1.3%	-
	PHF	0.542	0.783	0.833	-	0.758	0.688	0.875	0.563	-	0.857	0.646	0.250	0.583	-	0.653	0.250	-	0.750	-	0.583	0.821
	Lights	26	207	39	0	272	11	186	9	0	206	29	2	14	0	45	1	0	6	0	7	530
	% Lights	100%	95.8%	97.5%	0%	96.5%	100%	94.9%	100%	0%	95.4%	93.5%	100%	100% ()% !	95.7%	100%	0%	100%	0%	100%	96.0%
Artic	culated Trucks	0	2	0	0	2	0	4	0	0	4	0	0	0	0	0	0	0	0	0	0	6
% Artic	culated Trucks	0%	0.9%	0%	0%	0.7%	0%	2.0%	0%	0%	1.9%	0%	0%	0% ()%	0%	0%	0%	0%	0%	0%	1.1%
Buses and Singl	e-Unit Trucks	0	7	1	0	8	0	6	0	0	6	2	0	0	0	2	0	0	0	0	0	16
% Buses and Singl	e-Unit Trucks	0%	3.2%	2.5%	0%	2.8%	0%	3.1%	0%	0%	2.8%	6.5%	0%	0% ()%	4.3%	0%	0%	0%	0%	0%	2.9%

^{*}L: Left, R: Right, T: Thru, U: U-Turn

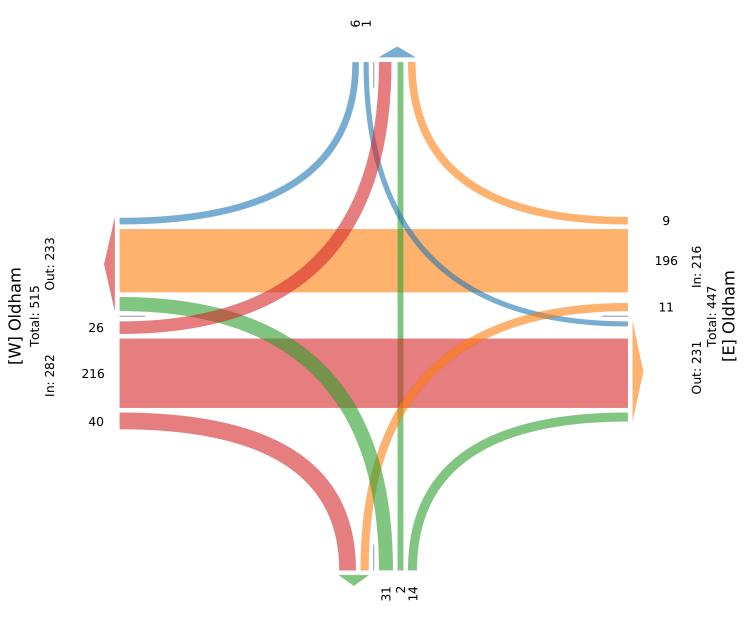
Thu Mar 31, 2022

AM Peak (8 AM - 9 AM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)

All Movements

ID: 935395, Location: 38.90084, -94.361516



Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Total: 44

In: 7 Out: 37

Out: 51 In: 47 Total: 98 [S] Access

Thu Mar 31, 2022

PM Peak (4:30 PM - 5:30 PM) - Overall Peak Hour

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)

All Movements

ID: 935395, Location: 38.90084, -94.361516

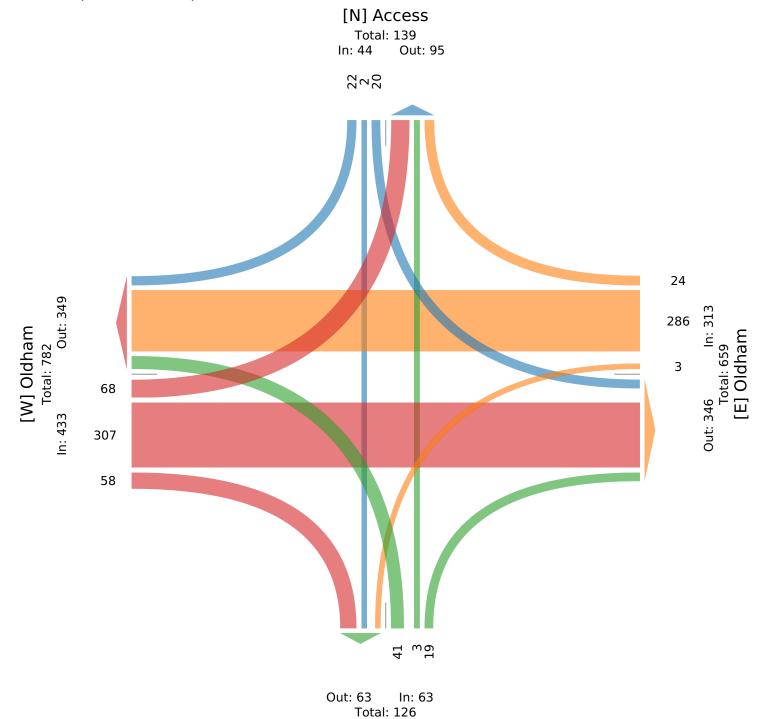
Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Leg	Oldhar	n				Oldha	n				Access					Access					
Direction	Eastbo	und				Westb	ound				Northb	ound				Southb	ound				
Time	L	T	R	U	App	L	T	R	U	App	L	T	R	U	App	L	T	R	U	App	Int
2022-03-31 4:30PM	19	79	18	0	116	2	77	5	0	84	14	1	3	0	18	7	0	5	0	12	230
4:45PM	16	70	14	0	100	0	74	4	0	78	4	1	6	0	11	4	1	6	0	11	200
5:00PM	19	82	16	0	117	0	70	7	0	77	14	0	4	0	18	4	0	7	0	11	223
5:15PM	14	76	10	0	100	1	65	8	0	74	9	1	6	0	16	5	1	4	0	10	200
Total	. 68	307	58	0	433	3	286	24	0	313	41	3	19	0	63	20	2	22	0	44	853
% Approach	15.7%	70.9%	13.4%	0%	-	1.0%	91.4%	7.7%	0%	-	65.1%	4.8%	30.2% (0%	-	45.5%	4.5%	50.0%	0%	-	-
% Total	8.0%	36.0%	6.8%	0%	50.8%	0.4%	33.5%	2.8%	0%	36.7%	4.8%	0.4%	2.2% (0%	7.4%	2.3%	0.2%	2.6%	0%	5.2%	-
PHF	0.895	0.936	0.806	-	0.925	0.375	0.929	0.750	-	0.932	0.732	0.750	0.792	- (0.875	0.714	0.500	0.786	- (0.917	0.927
Lights	68	303	57	0	428	3	284	24	0	311	41	3	19	0	63	20	2	22	0	44	846
% Lights	100%	98.7%	98.3%	0%	98.8%	100%	99.3%	100%	0%	99.4%	100%	100%	100% (0%	100%	100%	100%	100%	0%	100%	99.2%
Articulated Trucks	0	1	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	2
% Articulated Trucks	0%	0.3%	0%	0%	0.2%	0%	0.3%	0% (0%	0.3%	0%	0%	0% (0%	0%	0%	0%	0%	0%	0%	0.2%
Buses and Single-Unit Trucks	0	3	1	0	4	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	5
% Buses and Single-Unit Trucks	0%	1.0%	1.7%	0%	0.9%	0%	0.3%	0% (0%	0.3%	0%	0%	0% (0%	0%	0%	0%	0%	0%	0%	0.6%

^{*}L: Left, R: Right, T: Thru, U: U-Turn

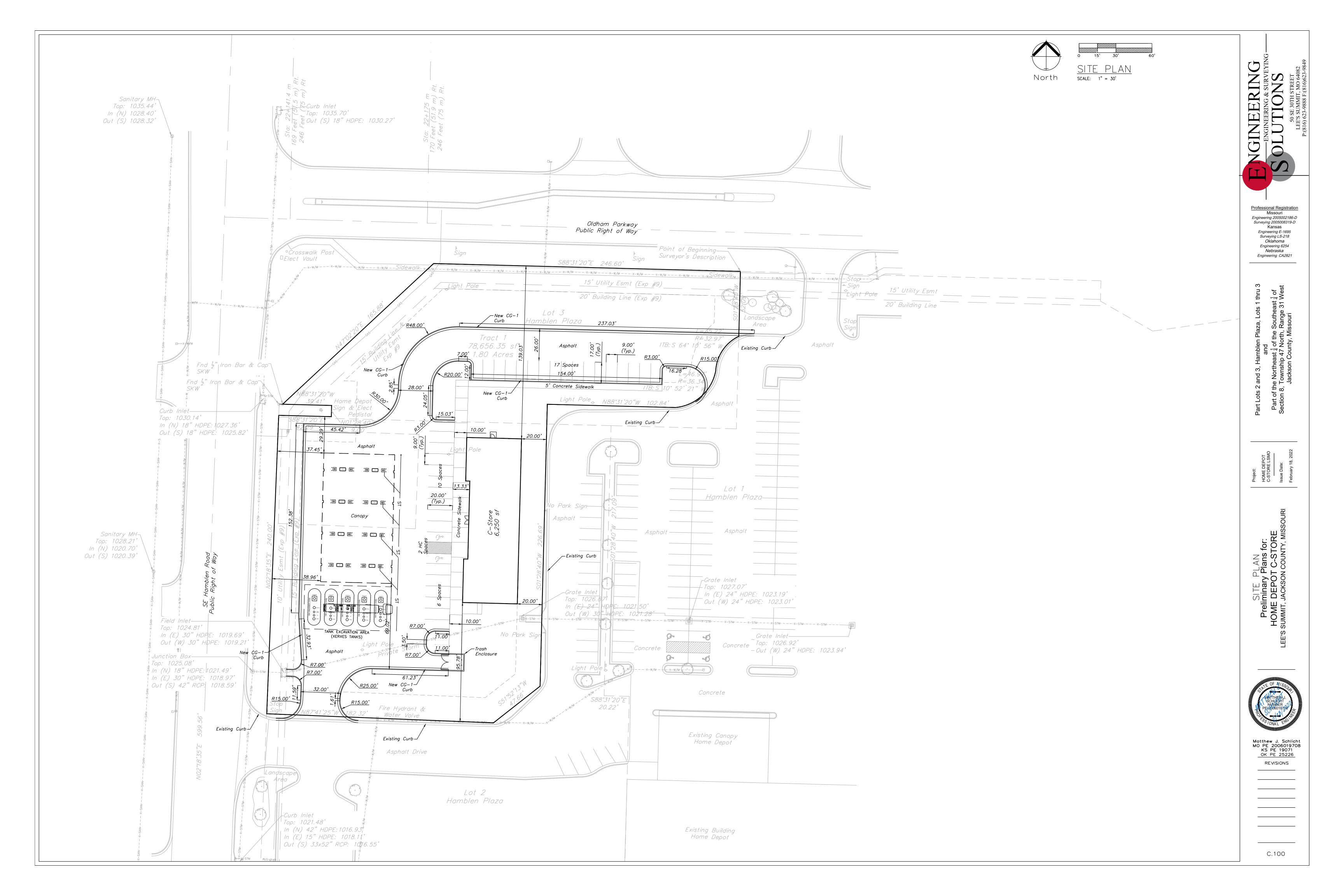
Thu Mar 31, 2022

PM Peak (4:30 PM - 5:30 PM) - Overall Peak Hour


All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)

All Movements

ID: 935395, Location: 38.90084, -94.361516



Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US

[S] Access

Appendix C: Site Plan

Appendix D: ITE Trip Generation

Convenience Store/Gas Station - GFA (5.5-10k) (945)

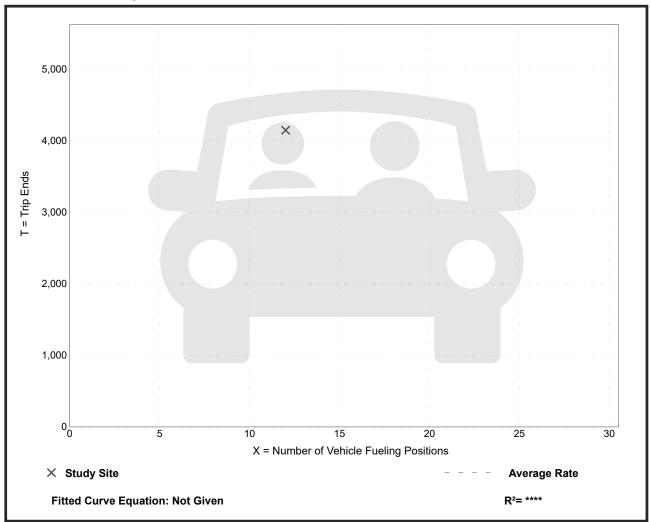
Vehicle Trip Ends vs: Vehicle Fueling Positions

On a: Weekday

Setting/Location: General Urban/Suburban

Number of Studies: 1

Avg. Num. of Vehicle Fueling Positions: 12


Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per Vehicle Fueling Position

Average Rate	Range of Rates	Standard Deviation
345.75	345.75 - 345.75	*

Data Plot and Equation

Caution - Small Sample Size

Trip Gen Manual, 11th Edition

• Institute of Transportation Engineers

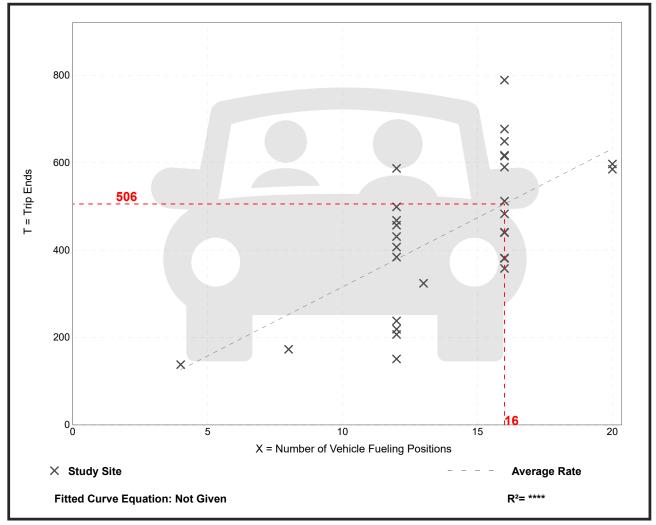
Convenience Store/Gas Station - GFA (5.5-10k) (945)

Vehicle Trip Ends vs: Vehicle Fueling Positions

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban


Number of Studies: 29 Avg. Num. of Vehicle Fueling Positions: 14

Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per Vehicle Fueling Position

Average Rate	Range of Rates	Standard Deviation
31.60	12.58 - 49.31	9.10

Data Plot and Equation

Trip Gen Manual, 11th Edition

• Institute of Transportation Engineers

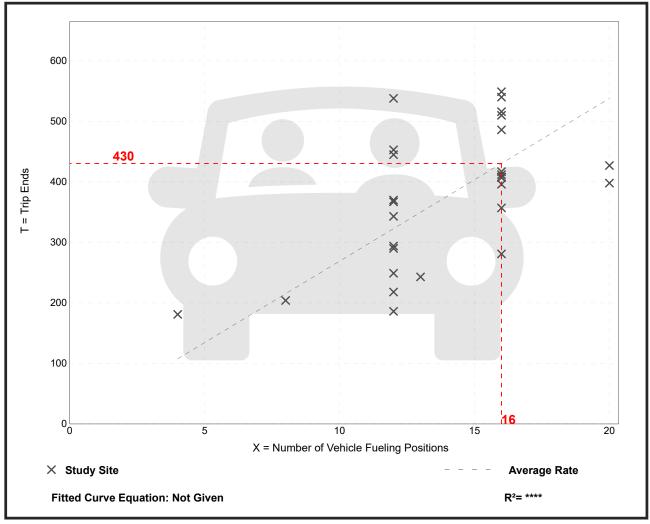
Convenience Store/Gas Station - GFA (5.5-10k) (945)

Vehicle Trip Ends vs: Vehicle Fueling Positions

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban


Number of Studies: 29 Avg. Num. of Vehicle Fueling Positions: 14

Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per Vehicle Fueling Position

Average Rate	Range of Rates	Standard Deviation
26.90	15.50 - 45.25	6.87

Data Plot and Equation

Trip Gen Manual, 11th Edition

• Institute of Transportation Engineers

Table E.15 Pass-By and Non-Pass-By Trips Weekday, AM Peak Period

Land Use 853 — Convenience Market with Gasoline Pumps

SIZE (1,000 SQ. FT. GFA)	SIZE (1,000 VEHICLE FUELING SQ. FT. GFA) POSITIONS	LOCATION	WEEKDAY SURVEY DATE	NO. OF INTERVIEWS	TIME PERIOD	PASS-BY TRIP (%)	NON-PA	NON-PASS-BY TRIPS (%)	(%)	ADJ. STREET PEAK HOUR VOLUME	SOURCE
							PRIMARY	DIVERTED	TOTAL		
2.3	9	Gaithersburg, MD	1992	37	7:00-9:00 a.m.	32	41	27	89	2,080	RBA
2.1	9	Bethesda, MD	1992	26	7:00-9:00 a.m.	58	23	19	42	2,080	RBA
2.0	8	Gaithersburg, MD	1992	46	7:00-9:00 a.m.	87	13	0	13	2,235	RBA
2.2	8	Silver Spring, MD	1992	35	7:00-9:00 a.m.	78	6	13	22	7,080	RBA
2.8		Louisville area, KY	1993	I	7:00-9:00 a.m.	54	11	35	46	1,240	BAA
2.4	1	Louisville area, KY	1993	1	7:00-9:00 a.m.	48	17	35	52	1,210	BAA
4.2		Louisville area, KY	1993	47	7:00-9:00 a.m.	62	19	19	38	1,705	BAA
2.6	I	Crestwood, KY	1993	I	7:00-9:00 a.m.	72	15	13	28	940	BAA
3.7	1	Louisville area, KY	1993	49	7:00-9:00 a.m.	99	16	18	34	066	BAA
3.0	1	New Albany, IN	1993	62	7:00-9:00 a.m.	74	10	16	26	790	BAA
2.3	1	Louisville, KY	1993	28	7:00-9:00 a.m.	64	2	31	36	1,255	BAA
2.2		New Albany, IN	1993	79	7:00-9:00 a.m.	56	9	38	44	635	BAA
3.6		Louisville area, KY	1993	49	7:00–9:00 a.m.	67	4	29	33	1,985	BAA
	- H										

Average Pass-By Trip Percentage: 63
"—" means no data were provided

Table E.16 Pass-By and Non-Pass-By Trips Weekday, PM Peak Period

Land Use 853 — Convenience Market with Gasoline Pumps

SOURCE		RBA	RBA	RBA	RBA	Barton-Aschman Assoc.	Tipton Associates Inc.														
ADJ. STREET PEAK HOUR VOLUME		7,080	2,760	1,060	2,635	2,875	2,655	2,300	950	2,175	1,165	1,954	820	2,505	I	I	I	I	I	!	
S (%)	TOTAL	46	09	47	38	38	42	42	33	39	35	43	52	44	27	19	31	26	26	13	
NON-PASS-BY TRIPS (%)	DIVERTED TOTAL	43	49	27	15	27	29	16	18	23	20	27	36	27	7	4	15	11	2	2	
NON-PAS	PRIMARY	က	11	20	23	1	13	26	15	16	15	16	16	17	20	15	16	15	24	œ	
PASS-BY TRIP (%)	_	54	40	53	62	62	58	58	29	61	65	22	48	56	73	81	69	74	74	87	
TIME PERIOD		4:00–6:00 p.m.	4:00–6:00 p.m.	4:00–6:00 p.m.	4:00–6:00 p.m.	4:00-6:00 p.m.	4:00–6:00 p.m.	4:00–6:00 p.m.	4:00–6:00 p.m.	4:00–6:00 p.m.	4:00–6:00 p.m.	4:00-6:00 p.m.									
NO. OF INTERVIEWS		35	55	30	47	I		61	89	70	80	29	115	09	82	86	115	86	38	82	
WEEKDAY SURVEY DATE		1992	1992	1992	1992	1993	1993	1993	1993	1993	1993	1993	1993	1993	July 1989						
LOCATION		Kensington, MD	Gaithersburg, MD	Bethesda, MD	Gaithersburg, MD	Louisville area, KY	Louisville area, KY	Louisville area, KY	Crestwood, KY	Louisville area, KY	New Albany, IN	Louisville, KY	New Albany, IN	Louisville area, KY	Seminole Co., FL	Seminole Co., FL	Seminole Co., FL	Volusia Co., FL	Volusia Co., FL	Volusia Co., FL	Average Pass-By Trip Percentage: 63
VEHICLE FUELING POSITIONS		8	9	9	8	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	Werade Pass-By T
SIZE (1,000 SQ. FT. GFA)		2.1	2.3	2.1	2.0	2.8	2.4	4.2	2.6	3.7	3.0	2.3	2.2	3.6	2.6	2.6	2.6	2.6	2.4	2.7	A

Average Pass-By Trip Percentage: 63
"—" means no data were provided

Appendix E: Synchro Reports

Intersection						
Int Delay, s/veh	0.8					
		WIDD	NDT	NDD	CDI	CDT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	\	7	}	24		†
Traffic Vol, veh/h	17	16	351	24	14	298
Future Vol, veh/h	17	16	351	24	14	298
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	0	-	-	125	-
Veh in Median Storage	e,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	8	2	2	3
Mvmt Flow	18	17	382	26	15	324
N.A. 1. (N.A.)	N #1					
	Minor1		/lajor1		Major2	
Conflicting Flow All	749	395	0	0	408	0
Stage 1	395	-	-	-	-	-
Stage 2	354	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	379	654	-	-	1151	-
Stage 1	681	-	-	_	-	-
Stage 2	710	-	-	_	-	-
Platoon blocked, %			_	_		_
Mov Cap-1 Maneuver	374	654	_	_	1151	_
Mov Cap-1 Maneuver	374	- 034			1101	
Stage 1	681	-	_	_	-	
J	701		-	-		-
Stage 2	701	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	13		0		0.4	
HCM LOS	В					
						0=:
Minor Lane/Major Mvr	nt	NBT	NBRV	VBLn1V		SBL
Capacity (veh/h)		-	-	374	654	1151
HCM Lane V/C Ratio		-	-	0.049	0.027	0.013
HCM Control Delay (s)	-	-	15.1	10.7	8.2
HCM Lane LOS		-	-	С	В	Α
HCM 95th %tile Q(vel	1)	-	-	0.2	0.1	0
	•					

2: Hamblen Road & Oldham Parkway

	•	•	†	-	Ţ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	17	212	401	236	334
v/c Ratio	0.05	0.37	0.35	0.33	0.20
Control Delay	15.2	3.7	10.1	3.3	1.9
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	15.2	3.7	10.1	3.3	1.9
Queue Length 50th (ft)	2	0	18	0	0
Queue Length 95th (ft)	18	26	79	47	67
Internal Link Dist (ft)	395		360		438
Turn Bay Length (ft)	130				
Base Capacity (vph)	1186	1568	3192	1668	1827
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.01	0.14	0.13	0.14	0.18
Intersection Summary					

Intersection												
Int Delay, s/veh	1.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	LDIN	ሻ	₽	VVDIX	NDL	4	NUN	JUL	4	JUIN
Traffic Vol, veh/h	8	207	32	10	188	5	23	0	10	3	0	2
Future Vol, veh/h	8	207	32	10	188	5	23	0	10	3	0	2
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-		-	-	None
Storage Length	150	-	-	150	-	-	-	-	-	-	-	-
Veh in Median Storage	2,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	3	2	4	2	2	33	2	2
Mvmt Flow	9	225	35	11	204	5	25	0	11	3	0	2
Major/Minor N	Major1			Major2		_	Minor1			Minor2		
Conflicting Flow All	209	0	0	260	0	0	491	492	130	360	507	207
Stage 1	-	-	-	-	-	-	261	261	-	229	229	-
Stage 2	-	-	_	-	_	-	230	231	-	131	278	_
Critical Hdwy	4.13	-	-	4.13	-	-	7.36	6.53	6.93		6.53	6.23
Critical Hdwy Stg 1	-	-	-	-	-	-	6.56	5.53		6.595	5.53	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.16	5.53	-	6.995	5.53	-
Follow-up Hdwy	2.219	-	-	2.219	-	-	3.538		3.319	3.8135	4.019	3.319
Pot Cap-1 Maneuver	1360	-	-	1303	-	-	470	477	896	521	468	833
Stage 1	-	-	-	-	-	-	717	692	-	699	714	-
Stage 2	-	-	-	-	-	-	767	713	-	784	680	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1360	-	-	1303	-	-	463	470	896	509	461	833
Mov Cap-2 Maneuver	-	-	-	-	-	-	463	470	-	509	461	-
Stage 1	-	-	-	-	-	-	712	687	-	694	708	-
Stage 2	-	-	-	-	-	-	759	707	-	769	675	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.2			0.4			12.1			11		
HCM LOS							В			В		
Minor Lane/Major Mvm	nt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR:	SBLn1			
Capacity (veh/h)		542	1360	-	-	1303	-	-	603			
HCM Lane V/C Ratio		0.066		-	-	0.008	-	-	0.009			
HCM Control Delay (s)		12.1	7.7	-	-	7.8	-	-	11			
HCM Lane LOS		В	Α	-	-	Α	-	-	В			
HCM 95th %tile Q(veh))	0.2	0	-	-	0	-	-	0			

Intersection						
Int Delay, s/veh	0.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	₽			
Traffic Vol, veh/h	13	24	469	35	36	503
Future Vol, veh/h	13	24	469	35	36	503
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	0	-	-	125	-
Veh in Median Storag	e,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	4	2	3	3	9
Mvmt Flow	14	26	510	38	39	547
			0.0		0,	0 . ,
	Minor1		/lajor1		Major2	
Conflicting Flow All	1154	529	0	0	548	0
Stage 1	529	-	-	-	-	-
Stage 2	625	-	-	-	-	-
Critical Hdwy	6.42	6.24	-	-	4.13	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.336	_	-	2.227	-
Pot Cap-1 Maneuver	218	546	_	-	1016	-
Stage 1	591	-	_	_	-	_
Stage 2	534	_	_	_	_	_
Platoon blocked, %	001		_	_		_
Mov Cap-1 Maneuver	210	546	_	_	1016	_
Mov Cap-1 Maneuver	210	J40 -	_	_	1010	
	591		-		-	-
Stage 1			-	-		-
Stage 2	514	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	15.9		0		0.6	
HCM LOS	С					
Minor Lane/Major Mvr	nt	NBT	NBRV	VBLn1V		SBL
Capacity (veh/h)		-	-	210	546	1016
HCM Lane V/C Ratio		-	-	0.067	0.048	0.039
HCM Control Delay (s)	-	-	23.4	11.9	8.7
HCM Lane LOS		-	-	С	В	Α
HCM 95th %tile Q(vel	1)	-	-	0.2	0.1	0.1
	,					

2: Hamblen Road & Oldham Parkway

	•	•	†	-	Ţ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	63	363	540	428	515
v/c Ratio	0.22	0.49	0.49	0.58	0.37
Control Delay	25.1	7.8	17.3	7.7	5.0
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	25.1	7.8	17.3	7.7	5.0
Queue Length 50th (ft)	18	36	74	53	69
Queue Length 95th (ft)	57	101	142	112	137
Internal Link Dist (ft)	395		360		438
Turn Bay Length (ft)	130				
Base Capacity (vph)	839	1534	2713	1475	1743
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.08	0.24	0.20	0.29	0.30
Intersection Summary					

	•	4	†	/	/	ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	ሻ	7	∱ }		ሻ	^	
Traffic Volume (veh/h)	58	334	442	55	394	474	
Future Volume (veh/h)	58	334	442	55	394	474	
nitial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Nork Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1767	
Adj Flow Rate, veh/h	63	363	480	60	428	515	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	2	2	2	2	2	9	
Cap, veh/h	393	701	741	92	608	994	
Arrive On Green	0.22	0.22	0.23	0.23	0.22	0.56	
Sat Flow, veh/h	1781	1585	3274	396	1781	1767	
Grp Volume(v), veh/h	63	363	267	273	428	515	
Grp Sat Flow(s), veh/h/ln	1781	1585	1777	1799	1781	1767	
2 Serve(g_s), s	1.6	9.2	7.5	7.6	8.9	10.0	
Cycle Q Clear(g_c), s	1.6	9.2	7.5	7.6	8.9	10.0	
Prop In Lane	1.00	1.00		0.22	1.00		
ane Grp Cap(c), veh/h	393	701	414	419	608	994	
//C Ratio(X)	0.16	0.52	0.65	0.65	0.70	0.52	
Avail Cap(c_a), veh/h	675	952	1219	1234	1596	2774	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Jpstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Jniform Delay (d), s/veh	17.4	11.2	19.2	19.2	11.0	7.5	
ncr Delay (d2), s/veh	0.2	0.6	1.7	1.7	1.5	0.4	
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	0.6	2.6	2.9	3.0	2.9	2.7	
Jnsig. Movement Delay, s/veh	1						
_nGrp Delay(d),s/veh	17.6	11.8	20.9	20.9	12.5	7.9	
_nGrp LOS	В	В	С	С	В	Α	
Approach Vol, veh/h	426		540			943	
Approach Delay, s/veh	12.6		20.9			10.0	
Approach LOS	В		С			Α	
Timer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	18.3	18.9				37.2	18.2
Change Period (Y+Rc), s	6.0	6.0				6.0	6.0
Max Green Setting (Gmax), s	43.0	38.0				87.0	21.0
Max Q Clear Time (g_c+I1), s	10.9	9.6				12.0	11.2
Green Ext Time (p_c), s	1.4	3.3				3.7	1.1
ntersection Summary	,,,	3.0				3.7	
			12.7				
HCM 6th Ctrl Delay			13.7				
HCM 6th LOS			В				

Movement	Intersection												
Traffic Vol, velvh		2.9											
Traffic Vol, veh/h	Movement	FRI	FRT	FRR	WRI	WRT	WRR	MRI	NRT	MRR	SRI	SRT	SRR
Traffic Vol, veh/h				LDIN			VVDIX	NDL		NUN	JUL		JUIN
Future Vol, veh/h 68 307 58 3 286 24 41 3 19 20 2 22 Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				58			24	41		19	20		22
Conflicting Peds, #/hr Free Fre													
Sign Control Free Free Free Free Free Free Free Free Free None	·												
RT Channelized					Free		Free	Stop	Stop	Stop			Stop
Veh in Median Storage, # - 0													
Grade, % - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 2<	Storage Length	150	-	-	150	-	-	-	-	-	-	-	-
Peak Hour Factor	Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Heavy Vehicles, % 2 2 2 2 2 2 2 2 2	Grade, %	-	0	-	-	0	-	-	0	-	-		
Mymit Flow 74 334 63 3 311 26 45 3 21 22 2 24 Major/Minor Major1 Major2 Minor1 Minor2 Conflicting Flow All 337 0 0 397 0 0 857 857 199 647 875 324 Stage 1 - - - - - 514 514 - 330 330 - Stage 2 - - - 4.13 - - 4.33 - 317 545 - Critical Hdwy Stg 1 - - - - 6.53 5.53 - 6.13 5.53 - 6.13 5.53 - 6.13 5.53 - 6.13 5.53 - 6.13 5.53 - 6.53 5.53 - 6.13 5.53 - 6.13 5.53 - 6.13 5.53 - 6.13 5.5			92	92	92	92		92	92				
Major/Minor Major1 Major2 Minor1 Minor2 Conflicting Flow All 337 0 0 397 0 0 857 857 199 647 875 324 Stage 1 - - - - - 514 514 - 330 330 - Critical Hdwy 4.13 - 4.13 - 7.33 6.53 6.93 7.33 6.53 6.23 Critical Hdwy Stg 1 - - - - 6.13 5.53 - 6.13 5.53 - 6.53 5.53 - 6.13 5.53 - 6.53 5.53 - 6.53 5.53 - 6.53 5.53 - 6.53 5.53 - 6.53 5.53 - 6.53 5.53 - 6.53 5.53 - 6.53 5.53 - 6.53 5.53 - 6.53 5.53 - 6.03 1.01 9.01													
Conflicting Flow All 337 0 0 397 0 0 857 857 199 647 875 324	Mvmt Flow	74	334	63	3	311	26	45	3	21	22	2	24
Conflicting Flow All 337 0 0 397 0 0 857 857 199 647 875 324													
Conflicting Flow All 337 0 0 397 0 0 857 857 199 647 875 324	Major/Minor N	Major1			Major2			Minor1			Minor2		
Stage 1			0			0	0	857	857	199	647	875	324
Stage 2			-	-	-	-	-	514	514	-	330	330	-
Critical Hdwy Stg 1 - - - - 6.53 5.53 - 6.13 5.53 - Critical Hdwy Stg 2 - - - - 6.13 5.53 - 6.53 5.53 - Follow-up Hdwy 2.219 - 2.219 - 3.519 4.019 3.319 3.519 4.019 3.319 3.519 4.019 3.319 3.519 4.019 3.319 3.519 4.019 3.319 3.519 4.019 3.319 3.519 4.019 3.319 3.519 4.019 3.319 3.519 4.019 3.319 3.519 4.019 3.319 3.519 4.019 3.319 3.519 4.019 3.319 3.519 4.019 3.319 5.53 - 6.68 6.65 5.18 - 6.65 5.18 - 6.65 5.18 - 7.16 8.0 5.18 - 7.16 8.0 9.18 2.0 7.16 8.0 9.2 7.16 <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>343</td> <td>343</td> <td>-</td> <td>317</td> <td>545</td> <td>-</td>		-	-	-	-	-	-	343	343	-	317	545	-
Critical Hdwy Stg 2 - - - - 6.13 5.53 - 6.53 5.53 - Follow-up Hdwy 2.219 - - 2.219 - - 3.519 4.019 3.319 3.519 4.019 3.319 3.519 4.019 3.319 3.519 4.019 3.319 3.519 4.019 3.319 3.519 4.019 3.319 3.519 4.019 3.319 3.519 4.019 3.319 3.519 4.019 3.319 3.519 4.019 3.319 3.519 4.019 3.319 3.519 4.019 3.319 3.519 4.019 3.319 3.519 4.019 3.319 3.519 4.019 3.319 3.519 4.019 3.319 3.519 4.019 3.319 3.519 4.019 3.319 3.519 4.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3.019 3	3	4.13	-	-	4.13	-	-			6.93			6.23
Follow-up Hdwy 2.219 - 2.219 - 3.519 4.019 3.319 3.519 4.019 3.319 Pot Cap-1 Maneuver 1221 - 1160 - 264 294 809 370 287 716 Stage 1 - 5 - 1160 - 264 294 809 370 287 716 Stage 2 - 6 - 5 - 512 534 - 682 645 - 518 Stage 2 - 7 - 669 518 - 716 Mov Cap-1 Maneuver 1221 - 1160 - 241 275 809 340 269 716 Mov Cap-2 Maneuver - 7 - 1160 - 241 275 809 340 269 716 Mov Cap-2 Maneuver - 7 - 7 - 241 275 - 340 269 - 340 269 716 Mov Cap-2 Maneuver - 7 - 7 - 645 635 - 608 486 - 518 Stage 2 - 7 - 7 - 645 635 - 608 486 - 608 Approach EB WB NB SB HCM Control Delay, s 1.3 0.1 20 13.9 HCM LOS C B Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1 Capacity (veh/h) 308 1221 - 1160 - 454 HCM Lane V/C Ratio 0.222 0.061 - 0.003 - 0.105 HCM Control Delay (s) 20 8.1 - 8.1 - 13.9 HCM Lane LOS C A - A - B		-	-	-	-	-	-			-			-
Pot Cap-1 Maneuver 1221	3 0		-	-	-	-	-						
Stage 1 - - - 512 534 - 682 645 - Stage 2 - - - - 671 637 - 669 518 - Platoon blocked, % - - - - - - - 669 518 - Mov Cap-1 Maneuver 1221 - 1160 - 241 275 809 340 269 716 Mov Cap-2 Maneuver - - - - 241 275 - 340 269 - Stage 1 - - - - 481 501 - 640 643 - Stage 2 - - - - - 645 635 - 608 486 - Approach EB WB WB NB SB SB HCM Loos - - - - - - <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			-	-		-	-						
Stage 2 - - - 671 637 - 669 518 - Platoon blocked, % - <		1221	-	-	1160	-	-						
Platoon blocked, %		-	-	-	-	-	-						-
Mov Cap-1 Maneuver 1221 - - 1160 - - 241 275 809 340 269 716 Mov Cap-2 Maneuver - - - - - 241 275 - 340 269 - Stage 1 - - - - - 481 501 - 640 643 - Stage 2 - - - - - 645 635 - 608 486 - Approach EB WB NB SB SB HCM Control Delay, s 1.3 0.1 20 13.9 HCM LoS C B B Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1 Capacity (veh/h) 308 1221 - 1160 - 454 HCM Lane V/C Ratio 0.222 0.061 - 0.003 - 0.105 HCM Control Delay (s) 20 8.1 - 1160 - 13.9 HCM Lane LOS CAR - AR - 13.9 HCM Lane LOS CAR - 13.9 HCM Lane LOS CAR - 1454 HCM Lane LOS HCM		-		-	-			671	637	-	669	518	-
Mov Cap-2 Maneuver - - - - 241 275 - 340 269 - Stage 1 - - - - - 481 501 - 640 643 - Stage 2 - - - - 645 635 - 608 486 - Approach EB WB NB NB SB HCM Control Delay, s 1.3 0.1 20 13.9 HCM LoS C B B Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1 Capacity (veh/h) 308 1221 - 1160 - 454 HCM Lane V/C Ratio 0.222 0.061 - 0.003 - 0.105 HCM Control Delay (s) 20 8.1 - 8.1 - 13.9 HCM Lane LOS C A - A - B		1001		-	11/0			241	275	000	240	2/2	71/
Stage 1 - - - - 481 501 - 640 643 - Stage 2 - - - - - 645 635 - 608 486 - Approach EB WB NB SB HCM Control Delay, s 1.3 0.1 20 13.9 HCM LOS C B Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1 Capacity (veh/h) 308 1221 - 1160 - 454 HCM Lane V/C Ratio 0.222 0.061 - 0.003 - 0.105 HCM Control Delay (s) 20 8.1 - 8.1 - 13.9 HCM Lane LOS C A - A - B	•			-	1160								
Stage 2 - - - - 645 635 - 608 486 - Approach EB WB NB SB HCM Control Delay, s 1.3 0.1 20 13.9 HCM LOS C B Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1 Capacity (veh/h) 308 1221 - - 1160 - - 454 HCM Lane V/C Ratio 0.222 0.061 - - 0.003 - - 0.105 HCM Control Delay (s) 20 8.1 - - 8.1 - - 13.9 HCM Lane LOS C A - A - - B			-	-	-								
Approach EB WB NB SB HCM Control Delay, s 1.3 0.1 20 13.9 HCM LOS C B Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1 Capacity (veh/h) 308 1221 - - 1160 - - 454 HCM Lane V/C Ratio 0.222 0.061 - - 0.003 - - 0.105 HCM Control Delay (s) 20 8.1 - - 8.1 - - 13.9 HCM Lane LOS C A - A - - B		-	-	-	-	-	-						
HCM Control Delay, s 1.3 0.1 20 13.9 HCM LOS C B Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1 Capacity (veh/h) 308 1221 - - 1160 - - 454 HCM Lane V/C Ratio 0.222 0.061 - - 0.003 - - 0.105 HCM Control Delay (s) 20 8.1 - - 8.1 - - 13.9 HCM Lane LOS C A - - A - - B	Staye 2	-	-	-	-	-	-	040	იათ	-	000	400	-
HCM Control Delay, s 1.3 0.1 20 13.9 HCM LOS C B Minor Lane/Major Mvmt NBLn1 EBL EBR WBL WBT WBR SBLn1 Capacity (veh/h) 308 1221 - - 1160 - - 454 HCM Lane V/C Ratio 0.222 0.061 - - 0.003 - - 0.105 HCM Control Delay (s) 20 8.1 - - 8.1 - - 13.9 HCM Lane LOS C A - A - - B													
Minor Lane/Major Mvmt NBLn1 EBL EBR WBL WBT WBR SBLn1 Capacity (veh/h) 308 1221 - - 1160 - - 454 HCM Lane V/C Ratio 0.222 0.061 - - 0.003 - - 0.105 HCM Control Delay (s) 20 8.1 - - 8.1 - - 13.9 HCM Lane LOS C A - A - B													
Minor Lane/Major Mvmt NBLn1 EBL EBR WBL WBT WBR SBLn1 Capacity (veh/h) 308 1221 - - 1160 - - 454 HCM Lane V/C Ratio 0.222 0.061 - - 0.003 - - 0.105 HCM Control Delay (s) 20 8.1 - - 8.1 - - 13.9 HCM Lane LOS C A - - A - B		1.3			0.1								
Capacity (veh/h) 308 1221 - - 1160 - - 454 HCM Lane V/C Ratio 0.222 0.061 - - 0.003 - - 0.105 HCM Control Delay (s) 20 8.1 - - 8.1 - - 13.9 HCM Lane LOS C A - A - B	HCM LOS							С			В		
Capacity (veh/h) 308 1221 - - 1160 - - 454 HCM Lane V/C Ratio 0.222 0.061 - - 0.003 - - 0.105 HCM Control Delay (s) 20 8.1 - - 8.1 - - 13.9 HCM Lane LOS C A - A - B													
HCM Lane V/C Ratio 0.222 0.061 - 0.003 - 0.105 HCM Control Delay (s) 20 8.1 - 8.1 - 13.9 HCM Lane LOS C A - A - B	Minor Lane/Major Mvm	nt I	VBLn1	EBL	EBT	EBR	WBL	WBT	WBR:	SBLn1			
HCM Lane V/C Ratio 0.222 0.061 - - 0.003 - - 0.105 HCM Control Delay (s) 20 8.1 - - 8.1 - - 13.9 HCM Lane LOS C A - A - B	Capacity (veh/h)		308	1221	-	-	1160	-	-	454			
HCM Lane LOS C A A B			0.222	0.061	-	-	0.003	-	-	0.105			
			20	8.1	-	-	8.1	-	-	13.9			
HCM 95th %tile Q(veh) 0.8 0.2 0 0.4					-	-		-	-				
	HCM 95th %tile Q(veh))	8.0	0.2	-	-	0	-	-	0.4			

Intersection							
Int Delay, s/veh	4.4						
		WDD	NDT	NDD	CDI	CDT	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	100	7	↑	100	ነ	↑	
Traffic Vol, veh/h	100	97	303	100	102	243	
Future Vol, veh/h	100	97	303	100	102	243	
Conflicting Peds, #/hr	0	0	0	0	0	_ 0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	0	-	100	125	-	
Veh in Median Storage		-	0	-	-	0	
Grade, %	0	-	0	-	-	0	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	8	2	2	3	
Mvmt Flow	109	105	329	109	111	264	
Major/Minor	Minor1	N	/lajor1	ı	Major2		
		329		0		0	
Conflicting Flow All	815		0		438	0	
Stage 1	329	-	-	-	-	-	
Stage 2	486	- ())	-	-	- 4 1 2	-	
Critical Hdwy	6.42	6.22	-	-	4.12	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy		3.318	-	-	2.218	-	
Pot Cap-1 Maneuver	347	712	-	-	1122	-	
Stage 1	729	-	-	-	-	-	
Stage 2	618	-	-	-	-	-	
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuver	313	712	-	-	1122	-	
Mov Cap-2 Maneuver	313	-	-	-	-	-	
Stage 1	729	-	-	-	-	-	
Stage 2	557	-	-	-	-	-	
Approach	WB		NB		SB		
HCM Control Delay, s	16.8		0		2.5		
HCM LOS	С						
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1V	VBLn2	SBL	
Capacity (veh/h)		_	-	313	712	1122	
HCM Lane V/C Ratio		_	_	0.347			
HCM Control Delay (s)	-	-	22.5	10.9	8.6	
HCM Lane LOS		-	-	С	В	A	
HCM 95th %tile Q(veh	1)	-	-	1.5	0.5	0.3	
1.5W 70W 70W Q(VCI	'/			1.0	0.0	0.0	

•	_	•	_	Г	•	•	•	_	•	•	•	
Δ	N/	١	P	ρ;	a	k	1	Н	n	п	r	

	•	•	†	-	ļ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	17	222	437	246	370
v/c Ratio	0.05	0.38	0.38	0.35	0.22
Control Delay	15.6	3.8	10.3	3.4	1.9
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	15.6	3.8	10.3	3.4	1.9
Queue Length 50th (ft)	2	0	21	0	0
Queue Length 95th (ft)	18	27	86	50	75
Internal Link Dist (ft)	395		360		438
Turn Bay Length (ft)	130				
Base Capacity (vph)	1176	1567	3182	1662	1827
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.01	0.14	0.14	0.15	0.20
Intersection Summary					

•	•	†	/	\	ļ	
WBL	WBR	NBT	NBR	SBL	SBT	
ሻ	7	ħβ		ň	†	
16	204	371	31	226	340	
16	204	371	31	226	340	
0	0	0	0	0	0	
1.00	1.00		1.00	1.00		
1.00	1.00	1.00	1.00	1.00	1.00	
No		No			No	
				246		
0.92	0.92		0.92	0.92	0.92	
2	3	9	3	3	4	
	492	769	65	563	994	
0.17	0.17	0.25	0.25	0.15	0.54	
1781	1572	3223	263	1767	1841	
17	222	215	222	246	370	
1781	1572	1678	1719	1767	1841	
0.3	4.6	4.5	4.6	3.7	4.7	
0.3	4.6	4.5	4.6	3.7	4.7	
1.00	1.00		0.15	1.00		
295	492	412	422	563	994	
0.06	0.45	0.52	0.53	0.44	0.37	
918	1042	1771	1814	1951	3931	
1.00	1.00	1.00	1.00	1.00	1.00	
1.00	1.00	1.00	1.00	1.00	1.00	
14.3	11.2	13.3	13.3	8.1	5.4	
0.1	0.6	1.0	1.0	0.5	0.2	
0.0	0.0	0.0	0.0	0.0	0.0	
0.1	1.2	1.5	1.5	1.0	1.0	
14.4	11.9	14.3	14.3	8.6	5.6	
В	В	В	В	Α	Α	
239		437			616	
12.0		14.3			6.8	
В		В			А	
1	2				6	8
12.0	16.0				28.0	12.7
6.0	6.0				6.0	6.0
38.0	43.0				87.0	21.0
					6.7	6.6
0.7	2.7				2.4	0.6
		10.3				
	16 16 0 1.00 1.00 No 1870 17 0.92 2 295 0.17 1781 0.3 0.3 1.00 295 0.06 918 1.00 1.00 14.3 0.1 0.0 0.1 14.4 B 239 12.0 B 12.0 6.0 38.0 5.7	16 204 16 204 0 0 1.00 1.00 1.00 1.00 No 1870 1856 17 222 0.92 0.92 2 3 295 492 0.17 0.17 1781 1572 17 222 1781 1572 0.3 4.6 0.3 4.6 0.3 4.6 1.00 1.00 295 492 0.06 0.45 918 1042 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.2 14.4 11.9 B B 239 12.0 B 1 2 12.0 16.0 6.0 38.0 43.0 5.7 6.6	16 204 371 16 204 371 16 204 371 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 No No 1870 1856 1767 17 222 403 0.92 0.92 0.92 2 3 9 295 492 769 0.17 0.17 0.25 1781 1572 3223 17 222 215 1781 1572 1678 0.3 4.6 4.5 0.3 4.6 4.5 0.3 4.6 4.5 0.3 4.6 4.5 1.00 1.00 295 492 412 0.06 0.45 0.52 918 1042 1771 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00	16 204 371 31 16 204 371 31 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 No No No No 1870 1856 1767 1856 17 222 403 34 0.92 0.92 0.92 0.92 2 3 9 3 295 492 769 65 0.17 0.17 0.25 0.25 1781 1572 3223 263 17 222 215 222 1781 1572 1678 1719 0.3 4.6 4.5 4.6 0.3 4.6 4.5 4.6 1.00 1.00 0.15 295 492 412 422 <	16 204 371 31 226 16 204 371 31 226 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1870 1856 1767 1856 1856 17 222 403 34 246 0.92 0.92 0.92 0.92 0.92 2 3 9 3 3 3 295 492 769 65 563 0.15 1767 17 222 215 222 246 1767 1767 1767 1767 1767 1767 1767 1767 1767 1767 1767 <	16 204 371 31 226 340 16 204 371 31 226 340 0 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 100 1.00 1.00 1.00 1.00 100 1.00 1.00 1.00 1.00 1870 1856 1767 1856 1856 1841 17 222 403 34 246 370 0.92 0.92 0.92 0.92 0.92 0.92 2 3 9 3 3 4 246 370 0.17 0.17 0.25 0.25 0.15 0.54 1781 1572 3223 263 1767 1841 17 222 215 222 246 370 1781 157

Intersection												
Int Delay, s/veh	4.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	†	LDIK	<u> </u>	₽	אפוו	NDL	4	NDI	JDL	4	UDIN
Traffic Vol, veh/h	8	191	57	74	148	5	72	0	50	3	0	2
Future Vol, veh/h	8	191	57	74	148	5	72	0	50	3	0	2
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	150	-	-	150	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	3	2	4	2	2	33	2	2
Mvmt Flow	9	208	62	80	161	5	78	0	54	3	0	2
Major/Minor N	Major1			Major2		Į.	Minor1			Minor2		
Conflicting Flow All	166	0	0	270	0	0	582	583	135	446	612	164
Stage 1	-	-	-	-	_	-	257	257	-	324	324	-
Stage 2	-	-	-	-	-	-	325	326	-	122	288	-
Critical Hdwy	4.13	-	-	4.13	-	-	7.36	6.53	6.93	7.795	6.53	6.23
Critical Hdwy Stg 1	-	-	-	-	-	-	6.56	5.53	-	6.595	5.53	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.16	5.53	-	6.995	5.53	-
Follow-up Hdwy	2.219	-	-	2.219	-	-	3.538	4.019	3.319	3.8135	4.019	3.319
Pot Cap-1 Maneuver	1411	-	-	1292	-	-	407	423	890	451	407	880
Stage 1	-	-	-	-	-	-	721	694	-	616	649	-
Stage 2	-	-	-	-	-	-	682	648	-	794	673	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1411	-	-	1292	-	-	385	394	890	401	379	880
Mov Cap-2 Maneuver	-	-	-	-	-	-	385	394	-	401	379	-
Stage 1	-	-	-	-	-	-	717	690	-	612	609	-
Stage 2	-	-	-	-	-	-	638	608	-	741	669	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.2			2.6			14.7			12.1		
HCM LOS							В			В		
Minor Lane/Major Mvm	nt I	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1			
Capacity (veh/h)		502		-		1292		-	513			
HCM Lane V/C Ratio		0.264		_		0.062	_		0.011			
HCM Control Delay (s)		14.7	7.6	-	_	8	_	_				
HCM Lane LOS		В	Α.	_	_	A	_	_	В			
HCM 95th %tile Q(veh))	1.1	0	-	-	0.2	-	-	0			
/ 5 / 5 5 (101)												

Intersection							
Int Delay, s/veh	4.6						
		MDD	NIDT	NDD	CDI	CDT	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	ች	7	^	7	ች	↑	
Traffic Vol, veh/h	84	93	428	100	111	456	
Future Vol, veh/h	84	93	428	100	111	456	
Conflicting Peds, #/hr	0	0	_ 0	_ 0	0	_ 0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	0	-	100	125	-	
Veh in Median Storag		-	0	-	-	0	
Grade, %	0	-	0	-	-	0	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	4	2	3	3	9	
Mvmt Flow	91	101	465	109	121	496	
Major/Minor	Minor1	N	/lajor1	N	/lajor2		
Conflicting Flow All	1203	465	0	0	574	0	
Stage 1	465	405	-	Ū	3/4	-	
Stage 2	738	-	_	-		-	
Critical Hdwy	6.42	6.24		-	4.13	-	
Critical Hdwy Stg 1	5.42	0.24	-	-	4.13	_	
Critical Hdwy Stg 2	5.42	-	-	-		-	
Follow-up Hdwy	3.518		_	-	2.227	-	
Pot Cap-1 Maneuver	204	593	-	-	994	-	
Stage 1	632	J7J -	-	-	774	-	
	473		-	-		-	
Stage 2 Platoon blocked, %	4/3	-	-	-	-		
	170	E02	-	-	004	-	
Mov Cap-1 Maneuver	179	593	-	-	994	-	
Mov Cap-2 Maneuver	179	-	-	-	-	-	
Stage 1	632	-	-	-	-	-	
Stage 2	415	-	-	-	-	-	
Approach	WB		NB		SB		
HCM Control Delay, s			0		1.8		
HCM LOS	D						
NA: 1 /NA: NA		NDT	NDDV	VDL 4VA	/DI 0	CDI	
Minor Lane/Major Mvr	nt	NBT	NBKA	VBLn1W		SBL	
Capacity (veh/h)		-	-	179	593	994	
HCM Lane V/C Ratio		-	-	0.51		0.121	
HCM Control Delay (s)	-	-	44.4	12.3	9.1	
HCM Lane LOS		-	-	Е	В	Α	
HCM 95th %tile Q(veh	1)	-	-	2.5	0.6	0.4	

•	٠.	- [
P	M	Peak Ho	ur

	•	•	†	>	ļ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	63	372	571	437	546
v/c Ratio	0.22	0.50	0.52	0.60	0.39
Control Delay	26.1	8.8	17.8	8.3	5.1
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	26.1	8.8	17.8	8.3	5.1
Queue Length 50th (ft)	19	43	80	55	76
Queue Length 95th (ft)	60	116	157	126	149
Internal Link Dist (ft)	395		360		438
Turn Bay Length (ft)	130				
Base Capacity (vph)	819	1517	2679	1458	1743
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.08	0.25	0.21	0.30	0.31
Intersection Summary					

	•	•	†	/	/	ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	۲	7	∱ }		Ĭ,	†	
Traffic Volume (veh/h)	58	342	470	55	402	502	
Future Volume (veh/h)	58	342	470	55	402	502	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1767	
Adj Flow Rate, veh/h	63	372	511	60	437	546	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	2	2	2	2	2	9	
Cap, veh/h	397	706	772	90	602	1003	
Arrive On Green	0.22	0.22	0.24	0.24	0.22	0.57	
Sat Flow, veh/h	1781	1585	3298	375	1781	1767	
Grp Volume(v), veh/h	63	372	283	288	437	546	
Grp Sat Flow(s), veh/h/ln	1781	1585	1777	1803	1781	1767	
Q Serve(g_s), s	1.6	9.8	8.2	8.3	9.4	11.1	
Cycle Q Clear(g_c), s	1.6	9.8	8.2	8.3	9.4	11.1	
Prop In Lane	1.00	1.00		0.21	1.00		
Lane Grp Cap(c), veh/h	397	706	428	435	602	1003	
V/C Ratio(X)	0.16	0.53	0.66	0.66	0.73	0.54	
Avail Cap(c_a), veh/h	652	932	1177	1194	1542	2679	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	17.9	11.5	19.6	19.7	11.2	7.8	
ncr Delay (d2), s/veh	0.2	0.6	1.7	1.7	1.7	0.5	
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	0.6	0.1	3.2	3.3	3.1	3.1	
Unsig. Movement Delay, s/veh							
LnGrp Delay(d),s/veh	18.1	12.1	21.4	21.4	12.9	8.2	
_nGrp LOS	В	В	С	С	В	Α	
Approach Vol, veh/h	435		571			983	
Approach Delay, s/veh	13.0		21.4			10.3	
Approach LOS	В		С			В	
Timer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	18.7	19.8				38.6	18.8
Change Period (Y+Rc), s	6.0	6.0				6.0	6.0
Max Green Setting (Gmax), s	43.0	38.0				87.0	21.0
Max Q Clear Time (g_c+l1), s	11.4	10.3				13.1	11.8
Green Ext Time (p_c), s	1.4	3.5				4.0	1.1
Intersection Summary							
HCM 6th Ctrl Delay			14.1				
HCM 6th LOS			14.1 B				
HOW OUT LUS			В				

Intersection												
Int Delay, s/veh	6.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	Λħ			Þ			4			4	
Traffic Vol, veh/h	68	294	79	57	252	24	83	3	52	20	2	22
Future Vol, veh/h	68	294	79	57	252	24	83	3	52	20	2	22
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	150	-	-	150	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	74	320	86	62	274	26	90	3	57	22	2	24
Major/Minor	Major1		N	Major2		ı	Minor1			Minor2		
		0			0			ODE		721	04.5	287
Conflicting Flow All	300	0	0	406	0	0	935 511	935	203	411	965 411	
Stage 1	-	-	-	-	-	-	424	511 424	-	310	554	-
Stage 2	4.13	-	-	4.13	-	-		6.53	6.93		6.53	4.22
Critical Hdwy	4.13		-	4.13	-		7.33 6.53	5.53		7.33 6.13	5.53	6.23
Critical Hdwy Stg 1	-	-	-	-	-	-	6.13	5.53	-	6.13	5.53	-
Critical Hdwy Stg 2	2 210		-	2 210	-				2 210			2 210
Follow-up Hdwy	2.219	-	-	2.219	-	-	3.519	4.019	3.319	3.519	4.019	
Pot Cap-1 Maneuver	1260		-	1151	-		233	265	805	328	254	751
Stage 1	-	-	-	-	-	-	514	536	-	617	594	-
Stage 2	-	-	-	-	-	-	607	586	-	676	513	-
Platoon blocked, %	1240	-	-	1101	-	-	205	22/	005	277	22/	751
Mov Cap 2 Manager	1260		-	1151	-	-	205	236	805	277 277	226 226	751
Mov Cap-2 Maneuver	-	-	-	-	-	-	205	236 504	-	581	562	-
Stage 1			-	-	-	-	484 554	554	-	588	483	-
Stage 2	-	-	-	-	-	-	554	554	-	ეგგ	483	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1.2			1.4			30.7			15.2		
HCM LOS							D			С		
Minor Lane/Major Mvr	nt I	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR:	SRI n1			
Capacity (veh/h)	int I	286	1260	LUI		1151	VVDI	WDR.	399			
HCM Lane V/C Ratio		0.524	0.059	-		0.054	-	-				
	١	30.7					-		0.12			
HCM Control Delay (s HCM Lane LOS)	30.7 D	8	-	-	8.3	-	-	15.2 C			
HCM 95th %tile Q(ver	,)	2.8	A 0.2	-	-	A 0.2	-	-	0.4			
	I)	2.8	0.2	-	-	0.2	-	-	0.4			

Intersection						
Int Delay, s/veh	4.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		- 7		7		
Traffic Vol, veh/h	103	101	382	101	103	310
Future Vol, veh/h	103	101	382	101	103	310
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	0	-	100	125	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	8	2	2	3
Mymt Flow	112	110	415	110	112	337
WWW. Tiow	112	110	110	110	112	007
Major/Minor	Minor1		/lajor1		Major2	
Conflicting Flow All	976	415	0	0	525	0
Stage 1	415	-	-	-	-	-
Stage 2	561	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	_	-	-	-
Follow-up Hdwy	3.518	3.318			2.218	_
Pot Cap-1 Maneuver	279	637	-	_	1042	_
Stage 1	666	-	_	_	-	_
Stage 2	571	_	_	_	_	_
Platoon blocked, %	371		_			_
	249	637		-	1042	-
Mov Cap 2 Manager				-		
Mov Cap-2 Maneuver	249	-	-	-	-	-
Stage 1	666	-	-	-	-	-
Stage 2	510	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	21.4		0		2.2	
HCM LOS	С					
TIOM EOO						
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1V	VBLn2	SBL
Capacity (veh/h)		-	-	249	637	1042
HCM Lane V/C Ratio		-	-	0.45	0.172	0.107
HCM Control Delay (s)	-	-	30.8	11.8	8.9
HCM Lane LOS		-	-	D	В	Α
HCM 95th %tile Q(veh	1)	-	-	2.2	0.6	0.4
	.,				3.3	J. 1

2: Hamblen Road & Oldham Parkway

	•	•	†	-	ļ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	22	271	530	298	443
v/c Ratio	0.07	0.47	0.44	0.41	0.26
Control Delay	18.1	6.9	11.1	3.6	1.9
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	18.1	6.9	11.1	3.6	1.9
Queue Length 50th (ft)	3	11	31	0	0
Queue Length 95th (ft)	24	54	113	60	94
Internal Link Dist (ft)	395		360		438
Turn Bay Length (ft)	130				
Base Capacity (vph)	1092	1536	3116	1631	1827
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.02	0.18	0.17	0.18	0.24
Intersection Summary					

	•	•	†	/	/	ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	ሻ	7	∱ }		ሻ	†	
Traffic Volume (veh/h)	20	249	448	40	274	408	
Future Volume (veh/h)	20	249	448	40	274	408	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/ln	1870	1856	1767	1856	1856	1841	
Adj Flow Rate, veh/h	22	271	487	43	298	443	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	2	3	9	3	3	4	
Cap, veh/h	337	561	794	70	552	1015	
Arrive On Green	0.19	0.19	0.25	0.25	0.17	0.55	
Sat Flow, veh/h	1781	1572	3209	275	1767	1841	
Grp Volume(v), veh/h	22	271	261	269	298	443	
Grp Sat Flow(s), veh/h/ln	1781	1572	1678	1717	1767	1841	
Q Serve(g_s), s	0.5	6.2	6.4	6.4	5.0	6.6	
Cycle Q Clear(g_c), s	0.5	6.2	6.4	6.4	5.0	6.6	
Prop In Lane	1.00	1.00		0.16	1.00		
Lane Grp Cap(c), veh/h	337	561	427	437	552	1015	
V/C Ratio(X)	0.07	0.48	0.61	0.62	0.54	0.44	
Avail Cap(c_a), veh/h	809	977	1560	1596	1708	3462	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	15.4	11.6	15.2	15.2	9.1	6.1	
Incr Delay (d2), s/veh	0.1	0.6	1.4	1.4	0.8	0.3	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	0.2	1.7	2.2	2.2	1.5	1.6	
Unsig. Movement Delay, s/veh		10.0	1/7	1/7	10.0	/ /	
LnGrp Delay(d),s/veh	15.5	12.2	16.7	16.7	10.0	6.4	
LnGrp LOS	В	В	Б	В	A	A 741	
Approach Vol, veh/h	293		530			741	
Approach Delay, s/veh	12.5		16.7			7.8	
Approach LOS	В		В			Α	
Timer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	13.7	17.8				31.5	14.8
Change Period (Y+Rc), s	6.0	6.0				6.0	6.0
Max Green Setting (Gmax), s	38.0	43.0				87.0	21.0
Max Q Clear Time (g_c+l1), s	7.0	8.4				8.6	8.2
Green Ext Time (p_c), s	0.9	3.4				3.0	0.8
Intersection Summary							
HCM 6th Ctrl Delay			11.7				

Intersection												
Int Delay, s/veh	4.1											
		EDT	EDD	WDL	WDT	MDD	NDI	NDT	NDD	CDI	CDT	CDD
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		↑ ↑	40	<u>ሻ</u>	100	Е	71	4	ΕΛ	С	4	Е
Traffic Vol, veh/h Future Vol, veh/h	10 10	239 239	60	74 74	190 190	5 5	74 74	0	50 50	5 5	0	5 5
Conflicting Peds, #/hr	0	239	0	0	190	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	Stop -	Stop -	None	Stop -	Stop -	None
Storage Length	150	-	INUITE -	150	_	INUITE -	-	_	NUITE -	_	_	INUITE
Veh in Median Storage		0		-	0			0		_	0	_
Grade, %	-, π	0	_	_	0	_	_	0	-	_	0	_
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	3	2	4	2	2	33	2	2
Mymt Flow	11	260	65	80	207	5	80	0	54	5	0	5
WWW. Tiow	•	200	00	00	207	o o	00	U	01	U	U	U
Moior/Ming-	Mole-1			Malera		_	line-1			Minara		
	Major1			Major2			Minor1	/07		Minor2	747	040
Conflicting Flow All	212	0	0	325	0	0	687	687	163	522	717	210
Stage 1	-	-	-	-	-	-	315	315	-	370	370	-
Stage 2	-	-	-	-	-	-	372	372	- / 02	152	347	- / 22
Critical Edwy	4.13	-	-	4.13	-	-	7.36	6.53	6.93	7.795	6.53	6.23
Critical Hdwy Stg 1	-	-	-	-	-	-	6.56	5.53		6.595	5.53	-
Critical Hdwy Stg 2	2 210	-	-	2.219	-	-	6.16 3.538	5.53		6.995	5.53	2 210
Follow-up Hdwy Pot Cap-1 Maneuver	2.219 1357	-	-	1233	-	-	3.538	4.019	3.319	3.8135	4.019	3.319
	1337	-	-	1233		-	666	655	854	579	619	830
Stage 1 Stage 2	-	-	-	-	-	-	643	618	-	761	634	-
Platoon blocked, %	-	-	-	-	-	-	043	010	-	701	034	-
Mov Cap-1 Maneuver	1357	-	-	1233	-	-	323	342	854	351	329	830
Mov Cap-1 Maneuver	1007			1233	-	_	323	342	034	351	329	030
Stage 1	-	-	-	_	-	_	661	650	-	574	579	_
Stage 2							597	578	-	707	629	_
Jiaye 2	_			_			371	370	-	707	027	-
				14.5			F LES			0.5		
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.2			2.2			17.1			12.5		
HCM LOS							С			В		
Minor Lane/Major Mvm	nt [VBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		431	1357	-	-	1233	-	-	493			
HCM Lane V/C Ratio		0.313	0.008	-	-	0.065	-	-	0.022			
HCM Control Delay (s)		17.1	7.7	-	-	8.1	-	-	12.5			
HCM Lane LOS		С	Α	-	-	Α	-	-	В			
HCM 95th %tile Q(veh))	1.3	0	-	-	0.2	-	-	0.1			

Intersection						
Int Delay, s/veh	6.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*	7	†	7	ሻ	↑
Traffic Vol, veh/h	86	94	534	100	115	568
Future Vol, veh/h	86	94	534	100	115	568
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None	-	None
Storage Length	0	0	_	100	125	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	_	0	_	_	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	4	2	3	3	9
Mvmt Flow	93	102	580	109	125	617
IVIVIIIL I IOW	73	102	300	107	123	017
	Minor1	N	/lajor1	N	/lajor2	
Conflicting Flow All	1447	580	0	0	689	0
Stage 1	580	-	-	-	-	-
Stage 2	867	-	-	-	-	-
Critical Hdwy	6.42	6.24	-	-	4.13	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.336	-	-	2.227	-
Pot Cap-1 Maneuver	145	510	-	-	901	-
Stage 1	560	-	-	-	-	-
Stage 2	411	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	125	510	-	-	901	-
Mov Cap-2 Maneuver	125	-	-	-	_	-
Stage 1	560	-	-	-	-	_
Stage 2	354	-	-	-	-	-
2.490 =						
A	\A4D		ND		65	
Approach	WB		NB		SB	
HCM Control Delay, s	50.5		0		1.6	
HCM LOS	F					
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1W	/BI n2	SBL
Capacity (veh/h)				125	510	901
HCM Lane V/C Ratio		_	_	0.748		0.139
HCM Control Delay (s)		_	-		13.8	9.6
HCM Lane LOS		_		70.7 F	В	7.0 A
HCM 95th %tile Q(veh)	-	_	4.3	0.7	0.5
	l)			4.5	0.7	0.5

2: Hamblen Road & Oldham Parkway

	•	•	†	-	Ţ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	82	454	693	536	661
v/c Ratio	0.33	0.55	0.63	0.72	0.49
Control Delay	38.2	12.6	25.3	16.2	6.3
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	38.2	12.6	25.3	16.2	6.3
Queue Length 50th (ft)	32	95	130	113	112
Queue Length 95th (ft)	99	224	266	278	218
Internal Link Dist (ft)	395		360		438
Turn Bay Length (ft)	130				
Base Capacity (vph)	606	1320	2103	1212	1680
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.14	0.34	0.33	0.44	0.39
Intersection Summary					

	•	•	†	/	/	ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	7	7	∱ }		ሻ	†	
Traffic Volume (veh/h)	75	418	568	70	493	608	
Future Volume (veh/h)	75	418	568	70	493	608	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1767	
Adj Flow Rate, veh/h	82	454	617	76	536	661	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	2	2	2	2	2	9	
Cap, veh/h	431	779	838	103	607	1050	
Arrive On Green	0.24	0.24	0.26	0.26	0.25	0.59	
Sat Flow, veh/h	1781	1585	3279	392	1781	1767	
Grp Volume(v), veh/h	82	454	344	349	536	661	
Grp Sat Flow(s),veh/h/ln	1781	1585	1777	1800	1781	1767	
Q Serve(g_s), s	2.7	15.0	13.0	13.0	14.5	17.8	
Cycle Q Clear(g_c), s	2.7	15.0	13.0	13.0	14.5	17.8	
Prop In Lane	1.00	1.00		0.22	1.00		
Lane Grp Cap(c), veh/h	431	779	467	473	607	1050	
V/C Ratio(X)	0.19	0.58	0.74	0.74	0.88	0.63	
Avail Cap(c_a), veh/h	510	849	920	932	1206	2095	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	22.1	13.3	24.7	24.7	13.8	9.6	
Incr Delay (d2), s/veh	0.2	0.9	2.3	2.3	4.5	0.6	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	1.1	4.7	5.4	5.5	5.5	5.6	
Unsig. Movement Delay, s/veh					100		
LnGrp Delay(d),s/veh	22.3	14.2	27.0	27.0	18.3	10.3	
LnGrp LOS	С	В	С	С	В	В	
Approach Vol, veh/h	536		693			1197	
Approach Delay, s/veh	15.4		27.0			13.9	
Approach LOS	В		С			В	
Timer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	24.3	25.3				49.6	23.8
Change Period (Y+Rc), s	6.0	6.0				6.0	6.0
Max Green Setting (Gmax), s	43.0	38.0				87.0	21.0
Max Q Clear Time (g_c+I1), s	16.5	15.0				19.8	17.0
Green Ext Time (p_c), s	1.8	4.3				5.3	0.8
Intersection Summary							
HCM 6th Ctrl Delay			18.0				
HCM 6th LOS			В				

Intersection												
Int Delay, s/veh	9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	†	LBR	ሻ	1≯	TI DIC	1100	4	HOIL	ODL	4	OBIT
Traffic Vol, veh/h	70	362	81	59	316	25	87	5	53	20	5	25
Future Vol, veh/h	70	362	81	59	316	25	87	5	53	20	5	25
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	150	-	-	150	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	76	393	88	64	343	27	95	5	58	22	5	27
Major/Minor N	/lajor1		I	Major2		1	Minor1			Minor2		
Conflicting Flow All	370	0	0	481	0	0	1090	1087	241	836	1118	357
Stage 1	-	-	-	-	-	-	589	589	-	485	485	-
Stage 2	-	-	-	-	-	-	501	498	-	351	633	-
Critical Hdwy	4.13	-	-	4.13	-	-	7.33	6.53	6.93	7.33	6.53	6.23
Critical Hdwy Stg 1	-	-	-	-	-	-	6.53	5.53	-	6.13	5.53	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.13	5.53	-	6.53	5.53	-
	2.219	-	-	2.219	-	-	3.519	4.019	3.319	3.519	4.019	3.319
Pot Cap-1 Maneuver	1187	-	-	1080	-	-	181	215	761	273	206	686
Stage 1	-	-	-	-	-	-	462 551	495 543	-	562	551	-
Stage 2 Platoon blocked, %	-	-	-	-	-	-	221	543	-	639	472	-
Mov Cap-1 Maneuver	1187	-	-	1080	-	-	154	189	761	224	181	686
Mov Cap-1 Maneuver	1107	-	-	1000	-	-	154	189	701	224	181	000
Stage 1				_	_	_	432	463	_	526	518	
Stage 2	_	_	_	_	_	_	493	511	_	546	442	_
2.230 L							.,,	5.7		3.3	, ,_	
Approach	EB			WB			NB			SB		
	1.1			1.3			54.8			18.2		
HCM Control Delay, s HCM LOS	1.1			1.5			54.8 F			18.2 C		
TIOWI LOG							ı			C		
Minor Long /Marian Ma		JDI 1	EDI	EDT	EDD	MDI	WDT	MPP	CDL 4			
Minor Lane/Major Mvm	t N	VBLn1	EBL	EBT	EBR	WBL	WBT	WBR S				
Capacity (veh/h)		219	1187	-		1080	-	-	326			
HCM Control Polov (c)			0.064	-		0.059	-		0.167			
HCM Lang LOS		54.8	8.2	-	-	8.5	-	-				
HCM Lane LOS HCM 95th %tile Q(veh)		F 4.8	A 0.2	-	-	A 0.2	-	-	0.6			
HOW FOUT WHIE Q(VEH)		4.0	0.2	-	-	0.2	-	-	0.0			