FINAL DEVELOPMENT PLANS FOR MID-CONTINENT LIBRARY LEE'S SUMMIT BRANCH 150 SOUTH WEST OLDHAM PKWY

UTILITY COMPANIES AND GOVERNING AGENCIES:

CITY OF LEE'S SUMMIT. PUBLIC WORKS:

ENGINEERING 220 SE GREEN LEE'S SUMMIT, MO 64063 816.969.1800

CITY OF LEE'S SUMMIT, CITY HALL: 220 SE GREEN LEE'S SUMMIT, MO 64063 816.969.1000

CITY OF LEE'S SUMMIT, FIRE CHIEF: 207 SE DOUGLAS LEE'S SUMMIT, MO 64063 816.969.7407

CITY OF LEE'S SUMMIT, POLICE CHIEF: 10 NE TUDOR LEE'S SUMMIT, MO 64086

816.969.1700 WATER UTILITIES: 1200 SE HAMBLEN ROAD

LEE'S SUMMIT, MO 64081 816.969.1900 **BUILDING INSPECTIONS**

220 SE GREEN LEE'S SUMMIT, MO 64063 816.969.1200

OWNER & DEVELOPER MID CONTINENT PUBLIC LIBRARY DISTRICT NO 3 15616 E US HWY 24 INDEPENDENCE MO 64050-2057

ENGINEER

TERRY PARSONS OLSSON 7301 W. 133RD STREET SUITE 200 OVERLAND PARK, KS 66213 PHONE: 913.381.1170 EMAIL: tparsons@olsson.com

ACCORDING TO MDNR STATE OIL & GAS COUNSEL THERE ARE NO OIL AND GAS WELLS LOCATED WITHIN OR ADJACENT TO THE PROPERTY.

THE ENTIRE PROPERTY IS DESIGNATED "ZONE X - AREA OF MINIMAL FLOOD HAZARD" AS DEFINED BY FEMA PANEL 29095C0438G - EFFECTIVE DATE JANUARY 20, 2017

THE CONTRACTOR SHALL ADHERE TO THE PROVISIONS OF THE SENATE BILL NUMBER 583, 78TH GENERAL ASSEMBLY OF THE STATE OF MISSOURI. THE BILL REQUIRES THAT ANY PERSON OR FIRM DOING EXCAVATION ON PUBLIC RIGHT-OF-WAY DO SO ONLY AFTER GIVING NOTICE TO, & OBTAINING INFORMATION FROM. UTILITY COMPANIES. STATE LAW REQUIRES 48 HOURS ADVANCE NOTICE. CALL 1-800-DIG-RITE.

POWER COMPANY: EVERGY 8700 EAST FRONT STREET KANSAS CITY., MO 64120 816.471.5275

GAS COMPANY: SPIRE GAS 3025 S.E CLOVER ST LEES SUMMIT, MO 64082 816.756.5252

TELEPHONE: AT&T DARRIN SHEPARD 816.275.3825 ds616h@att.com

<u>CABLE/FIBER:</u> SPECTUM 877.772.2253

GOOGLE FIBER 877.454.6959

NE 1/4 OF SECTION 1, TOWNSHIP 47 NORTH, RANGE 32 WEST LEE'S SUMMIT, JACKSON COUNTY, MISSOURI

BENCHMARKS

<u>OA Bench Mark #1:</u> ELEVATION=973.75' (NAVD'88)

SET PUNCH MARK IN CHISELED "" CUT ON THE TOP EAST SIDE OF A CONCRETE BASE FOR A LIGHT POLE, FIRST LIGHT POLE EAST OF THE ENTRANCE TO GENESIS GYM. 205'± WNW OF THE NW CORNER OF THE MID-CONTINENT PUBLIC LIBRARY, 340' ENE OF THE SOUTH CORNER OF GOODYEAR TIRE STORE.

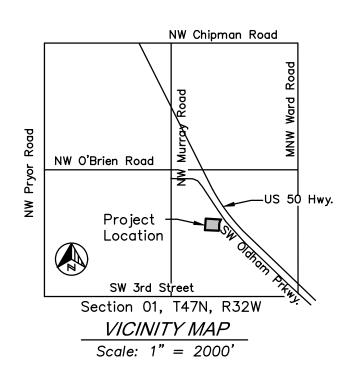
<u>OA Bench Mark #2:</u> ELEVATION=952.38' (NAVD'88)

SET CHISELED "X" CUT ON TOP OF CURB ON THE NORTH SIDE OF A CONCRETE CURB ISLAND, WEST OF EQUITY BANK BUILDING. 213'± EAST OF THE EAST FACE OF THE MID-CONTINENT PUBLIC LIBRARY, 22' EAST OF THE & OF MCCLENDON DRIVE.

LEGAL DESCRIPTION:

LIBRARY PROPERTY MID-CONTINENT ADD TRACT A JACKSON COUNTY, MISSOURI, CONTAINING 70,306 SQUARE FEET OR 1.6140 ACRES, MORE OR LESS.

SHOPPING CENTER PROPERTY SUMMIT SHOPPING CENTER LOT 1 JACKSON COUNTY, MISSOURI, CONTAINING 722,033 SQUARE FEET OR 16.5756 ACRES, MORE OR LESS.


Sheet List Table		
Sheet Number	Sheet Title	
C1.0	COVER SHEET	
C1.1	GENERAL NOTES	
C1.2	DEMOLITION PLAN	
C2.0	SITE DIMENSION PLAN	
C3.0	GRADING PLAN	
C3.1	GRADING DETAILS	
C3.2	GRADING DETAILS	
C3.3	GRADING DETAILS	
C3.4	GRADING DETAILS	
C4.0	UTILITY PLAN	
C5.0	STORM SEWER PLAN & PROFILE	
C5.1	STORM SEWER PLAN & PROFILE	
C5.2	STORM SEWER PLAN & PROFILE	
C5.3	STORM SEWER PLAN & PROFILE	
C5.4	STORM SEWER PLAN & PROFILE	
C6.0	DRAINAGE PLAN	
C6.1	DRAINAGE CALCULATIONS	
C7.1	EROSION CONTROL PLAN	
C7.2	EROSION CONTROL DETAILS	
C7.3	EROSION CONTROL DETAILS	
C8.0	STANDARD DETAILS	
C8.1	STANDARD DETAILS	
C8.2	STANDARD DETAILS	
C8.3	STANDARD DETAILS	
C8.4	STANDARD DETAILS	
C8.5	STANDARD DETAILS	

NOTE:

ACCORDING TO MDNR STATE OIL & GAS COUNSEL THERE ARE NO OIL AND GAS WELLS LOCATED WITHIN OR ADJACENT TO THE PROPERTY.

THE ENTIRETY OF THE SITE LIES WITHIN ZONE X - AREA OF MINIMAL FLOOD HAZARD PER FEMA PANEL 290174 (CITY OF LEE'S SUMMIT, MO)

GENERAL NOTES:

- THE EXISTING UTILITY LOCATIONS SHOWN ON THE PLANS ARE APPROXIMATE AND MAY NOT INCLUDE ALL LINES PRESENT. THE CONTRACTOR SHALL BE RESPONSIBLE TO CALL "1-800-DIG-RITE", 1(800)344-7483 OR 811 AND COORDINATE FIELD LOCATION OF EXISTING UNDERGROUND UTILITIES PRIOR TO BEGINNING GRADING ACTIVITIES. !! STOP!! CALL BEFORE YOU DIG!!
- THE CONTRACTOR SHALL NOT CHANGE OR DEVIATE FROM THE PLANS WITHOUT FIRST OBTAINING WRITTEN APPROVAL FROM THE OWNER AND ENGINEER
- 3. ALL WORK AND MATERIALS SHALL BE SUBJECT TO INSPECTION AND APPROVAL BY THE OWNER OR THE OWNER'S REPRESENTATIVE.
- 4. ALL ESTIMATES OF QUANTITIES ARE FOR INFORMATION PURPOSES ONLY. CONTRACTOR AND SUBCONTRACTOR SHALL BE RESPONSIBLE FOR DETERMINING ALL QUANTITIES AND FOR BRINGING THE PROJECT TO THE LINES AND GRADES SHOWN HEREIN. CONTRACTOR SHALL PROVIDE ALL WORK AND MATERIALS REQUIRED TO FULFILL THE PLANS IT IS THE CONTRACTOR'S SOLE RESPONSIBILITY TO DETERMINE EARTHWORK QUANTITIES AND TO ACCOUNT FOR HAUL IN OR HAUL OFF OF MATERIAL AS NECESSARY TO MEET THE LINES AND GRADES OF THE PLANS EVEN IF QUANTITY ESTIMATES ARE SHOWN WITHIN THESE DOCUMENTS. NO ADDITIONAL PAYMENTS WILL BE MADE FOR IMPORT OR EXPORT OF MATERIAL OR FOR ADJUSTMENTS TO QUANTITY ESTIMATES.
- ALL CONSTRUCTION SHALL CONFORM TO THE LATEST STANDARDS AND SPECIFICATIONS OF THE AMERICAN PUBLIC WORKS ASSOCIATION KANSAS CITY METROPOLITAN CHAPTER (APWA-KC) AND THE CITY OF LEE'S SUMMIT. MO. EXCEPT WHERE SHOWN OTHERWISE. NOTIFY ENGINEER OF DISCREPANCIES.
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL REQUIRED PERMITS, PAYING ALL FEES AND FOR OTHERWISE COMPLYING WITH ALL APPLICABLE REGULATIONS GOVERNING THE WORK.
- THE CONTRACTOR SHALL ADHERE TO THE PROVISIONS OF MISSOURI STATE LAW WHICH REQUIRES THAT ANY PERSON OR FIRM DOING EXCAVATION ON PUBLIC RIGHT-OF-WAY DO SO ONLY AFTER GIVING NOTICE TO, AND OBTAINING INFORMATION FROM UTILITY COMPANIES.
- PRIOR TO COMMENCEMENT OF WORK. THE CONTRACTOR SHALL NOTIFY ALL THOSE COMPANIES WHICH HAVE FACILITIES IN THE NEAR VICINITY OF THE CONSTRUCTION TO BE PERFORMED. 9. THE CONTRACTOR SHALL LIMIT THE REMOVAL OF TREES TO THE LIMITS OF DEMOLITION SHOWN ON THE DEMOLITION PLAN.
- 10. CLEARING AND GRUBBING OPERATIONS AND DISPOSAL OF ALL DEBRIS THEREFROM SHALL BE PERFORMED BY THE CONTRACTOR IN STRICT ACCORDANCE WITH ALL LOCAL CODES AND ORDINANCES.
- 11. ALL WASTE MATERIAL RESULTING FROM THE PROJECT SHALL BE DISPOSED OF OFF-SITE BY THE CONTRACTOR.
- 12. ALL MANHOLES, CATCH BASINS, UTILITY VALVES AND METER PITS ARE TO BE ADJUSTED OR REBUILT TO GRADE AS REQUIRED.
- 13. THE CONTRACTOR SHALL BE RESPONSIBLE FOR CONTROL OF SURFACE EROSION DURING CONSTRUCTION AND UNTIL THE OWNER ACCEPTS THE WORK AS COMPLETE. EROSION CONTROL MEASURES INCLUDING, BUT NOT LIMITED TO, THE SILT FENCES AND GRAVEL FILTER BAGS SHOWN ON THE EROSION CONTROL PLAN SHALL BE IN PLACE FOR THE DURATION OF THE SITE IMPROVEMENTS.
- 14. ALL HDPE PIPE SHALL BE ADS (N-12) OR APPROVED EQUAL, AND CONFORM TO AASHTO M294 SPECIFICATIONS. ALL PIPE LENGTHS ARE MEASURED FROM CENTER OF STRUCTURE TO CENTER OF STRUCTURE.
- 15. IF PRECAST CONCRETE STORM SEWER STRUCTURES ARE TO BE USED ON THIS PROJECT, THE CONTRACTOR SHALL SUBMIT SHOP DRAWINGS AND HAVE THEM APPROVED BY THE ENGINEER PRIOR TO FABRICATION OF THE STRUCTURES. FAILURE TO DO SO SHALL BE CAUSE FOR REJECTION. 19. EXISTING TOPSOIL SHALL BE STRIPPED TO A POINT WHERE ALL VEGETATION IS REMOVED. REFER TO THE GEOTECHNICAL REPORT PROVIDED BY CFS ENGINEERS, PROJECT NO. 20-1074 AND
- DATED JUNE 8, 202 AND ALL ADDENDUMS FOR ADDITIONAL REQUIREMENTS. 20. THE CONTRACTOR SHALL, BY HIS OWN INVESTIGATION, AND PRIOR TO COMMENCING WORK, SATISFY HIMSELF AS TO THE SURFACE AND SUBSURFACE CONDITIONS TO BE ENCOUNTERED
- 21. THE CONTRACTOR IS RESPONSIBLE FOR THE PROTECTION OF ALL BOUNDARY CORNERS AND SECTION CORNERS. ANY BOUNDARY CORNER AND/OR SECTION CORNER DISTURBED OR DAMAGED BY CONSTRUCTION ACTIVITIES SHALL BE RESET BY A LAND SURVEYOR LICENSED IN THE STATE OF MISSOURI, AT THE CONTRACTOR'S EXPENSE.
- 22. NO FEDERALLY OWNED MAILBOX MAY BE DISTURBED. THE CONTRACTOR SHALL GIVE AT LEAST TWENTY-FOUR (24) HOURS ADVANCE NOTICE TO THE MANAGER OF DELIVERY AND COLLECTIONS. TAMPERING WITH FEDERAL MAIL FACILITIES MAY SUBJECT THE CONTRACTOR TO PROSECUTION BY THE FEDERAL GOVERNMENT
- 23. THE CONTOUR LINES SHOWN ARE FOR MASS GRADING PURPOSES.
- 24. EXISTING CONTOURS REPRESENT MASS FINISH GRADE ELEVATIONS.
- 25. THE CONTRACTOR SHALL FINISH GRADE SLOPES AS SHOWN NO STEEPER THAN 1 FOOT VERTICAL IN 3 FEET HORIZONTAL UNLESS OTHERWISE SHOWN BY CONTOURS OR SPOT ELEVATIONS.
- 26. THE CONTRACTOR SHALL GRADE LANDSCAPED AREAS TO PROVIDE POSITIVE DRAINAGE IN THE BORROW AREA.
- 27. THE CONTRACTOR SHALL MAKE HIS OWN ASSUMPTIONS ON THE LOCATION AND CONSISTENCY OF ANY EXISTING ROCK LAYERS UNDERLYING THE PROJECT SITE. ALL ROCK EXCAVATION AND REMOVAL SHALL BE INCLUDED IN THE CONTRACTORS' BID.
- 28. CONTRACTOR TO FIELD VERIFY ELEVATIONS AND LOCATIONS OF EXISTING UTILITIES AND INFRASTRUCTURE PRIOR TO CONSTRUCTION. NOTIFY ENGINEER OF ANY DISCREPANCIES BETWEEN PLANS AND FIELD CONDITIONS.
- 29. BY ACCEPTING AND UTILIZING ANY ELECTRONIC FILE OF ANY DRAWING, REPORT OR DATA TRANSMITTED BY OLSSON (OLSSON), THE RECIPIENT AGREES FOR ITSELF, ITS SUCCESSORS, ASSIGNS INSURERS AND ALL THOSE CLAIMING UNDER OR THROUGH IT. THAT BY USING ANY OF THE INFORMATION CONTAINED IN THE ELECTRONIC FILE. ALL USERS AGREE TO BE BOUND BY THE FOLLOWING TERMS. ALL OF THE INFORMATION CONTAINED IN THIS ELECTRONIC FILE IS THE WORK PRODUCT AND INSTRUMENT OF SERVICE OF OLSSON, WHO SHALL BE DEEMED THE AUTHOR, AND SHALL RETAIN ALL COMMON LAW, STATUTORY LAW AND OTHER RIGHTS, INCLUDING COPYRIGHTS, UNLESS THE SAME HAVE PREVIOUSLY BEEN TRANSFERRED IN WRITING TO THE RECIPIENT. THE INFORMATION CONTAINED IN THE ELECTRONIC FILE IS PROVIDED FOR THE CONVENIENCE OF THE RECIPIENT AND IS PROVIDED IN "AS IS" CONDITION. THE RECIPIENT IS AWARE THAT DIFFERENCES MAY EXIST BETWEEN THE ELECTRONIC FILES AND THE PRINTED HARD-COPY ORIGINAL SIGNED AND SEALED DRAWINGS OR REPORTS. IN THE EVENT OF A CONFLICT BETWEEN THE SIGNED AND SEALED ORIGINAL DOCUMENTS PREPARED BY OLSSON AND THE ELECTRONIC FILES TRANSFERRED HEREWITH. THE SIGNED AND SEALED ORIGINAL DOCUMENTS SHALL GOVERN. OLSSON SPECIFICALLY DISCLAIMS ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO ELECTRONIC FILES. IT SHALL BE THE RECIPIENT'S RESPONSIBILITY TO CONFIRM THE ACCURACY OF THE INFORMATION CONTAINED IN THE ELECTRONIC FILE AND THAT IF ACCURATELY REFLECTS THE INFORMATION NEEDED BY THE RECIPIENT. THE RECIPIENT SHALL NOT RETRANSMIT THE ELECTRONIC FILE, OR ANY PORTION THEREOF, WITHOUT INCLUDING THIS DISCLAIMER AS PART OF ANY SUCH TRANSMISSION. IN ADDITION, THE RECIPIENT AGREES, TO THE FULLEST EXTENT PERMITTED BY LAW, TO INDEMNIFY AND HOLD HARMLESS OLSSON, ITS OFFICERS, DIRECTORS, EMPLOYEES AND SUBCONSULTANTS AGAINST ANY AND ALL DAMAGES, LIABILITIES, CLAIMS OR COSTS, INCLUDING REASONABLE ATTORNEY'S AND EXPERT WITNESS FEES AND DEFENSE COSTS, ARISING FROM ANY CHANGES MADE BY ANYONE OTHER THAN OLSSON OR FROM ANY REUSE OF THE ELECTRONIC FILES WITHOUT THE PRIOR WRITTEN CONSENT OF OLSSON.
- DESIGN PROFESSIONAL SHALL REVIEW SHOP DRAWINGS OR SAMPLES FOR GENERAL CONFORMANCE WITH THE DESIGN CONCEPTS ON THE PROJECT AND FOR COMPLIANCE WITH THE INFORMATION GIVEN IN THE CONTRACT DOCUMENTS, AND SHALL NOT EXTEND TO MEANS OR METHODS OF CONSTRUCTION. THE DESIGN PROFESSIONAL'S REVIEW SHALL NOT RELIEVE CONTRACTOR FROM RESPONSIBILITY FOR ANY VARIATION FROM THE REQUIREMENTS OF THE CONTRACT DOCUMENTS UNLESS CONTRACTOR HAS IN WRITING CALLED DESIGN PROFESSIONAL'S ATTENTION TO EACH SUCH VARIATION AT THE TIME OF SUBMISSION, AND DESIGN PROFESSIONAL HAS GIVEN WRITTEN APPROVAL OF EACH SUCH VARIATION BY SPECIFIC WRITTEN NOTATION THEREOF INCORPORATED INTO OR ACCOMPANYING THE SHOP DRAWING OR SAMPLE; NOR WILL ANY APPROVAL BY THE DESIGN PROFESSIONAL RELIEVE CONTRACTOR FROM RESPONSIBILITY FOR ERRORS OR OMISSIONS IN SHOP DRAWINGS WITH CONFORMANCE TO CONTRACT DOCUMENTS.
- GENERAL CONSTRUCTION NOTE REGARDING SEQUENCING OF EROSION CONTROL ALL PERIMETER SILT FENCE, EARTH DIKES, SEDIMENT BASINS, AND ROCK CONSTRUCTION ENTRANCES WILL BE INSTALLED BEFORE GRADING OPERATIONS BEGIN, EXCEPT THAT SILT FENCE WHICH IS TO BE PLACED ALONG THE BACK OF CURB FOR PROTECTION OF THE STREET. SILT FENCE AND EARTH DIKES THAT ARE PLACED BEFORE GRADING BEGINS WILL BE MAINTAINED BY THE GRADING CONTRACTOR UNTIL ALL UTILITIES ARE IN PLACE. THE SILT FENCE THAT IS PLACED ALONG THE BACK OF THE CURB OR RIGHT -OF-WAY WILL BE INSTALLED IMMEDIATELY AFTER THE CURB IS CONSTRUCTED. EROSION AND SEDIMENTATION CONTROLS ARE TEMPORARY AND MUST BE REMOVED BY THE CONTRACTOR AFTER CONSTRUCTION IS COMPLETE AND THE DISTURBED AREA IS AT LEAST 70% PERMANENTLY VEGETATED.
- 32. HANDICAP PARKING STALLS SHALL BE SIGNED WITH CITY/ADA APPROVED SIGNAGE AND CONSTRUCTED IN STRICT ACCORDANCE WITH THE LATEST STANDARDS AND SPECIFICATIONS OF THE APWA-KC, CITY OF LEE'S SUMMIT ADA STANDARDS, AND SHALL NOT EXCEED 2.00 PERCENT IN ANY DIRECTION. ACCESSIBLE SIDEWALKS HAVE A MAXIMUM CROSS SLOPE OF 2 PERCENT AND A MAXIMUM LONGITUDINAL SLOPE OF 5 PERCENT.
- 33. ALL WATER LINES SHALL BE INSTALLED PER THE LATEST STANDARDS AND SPECIFICATIONS OF THE APWA-KC AND THE CITY OF LEE'S SUMMIT, MO. ALL WATER LINES SHALL BE A MINIMUM OF 48 INCHES BELOW THE FINISHED GRADE ELEVATIONS SHOWN HEREIN.
- 34. ALL WATER LINES SHALL BE INSTALLED PER CITY STANDARDS. ALL WATER LINES SHALL BE A MINIMUM OF 48 INCHES BELOW THE FINISHED GRADE ELEVATIONS SHOWN HEREIN.
- 35. ALL EXTERIOR CONCRETE SHALL BE KCMMB-4K AND HAVE A MINIMUM 28-DAY COMPRESSIVE STRENGTH OF 4000 PSI, SHALL MEET KCMMB STANDARDS AND SPECIFICATIONS, AND SHALL BE AIR ENTRAINED. FLYASH IS NOT A SUITABLE REPLACEMENT FOR PORTLAND CEMENT.
- 36. ALL ON-SITE WIRING AND CABLES SHALL BE PLACED UNDERGROUND.
- 37. CONCRETE PAVEMENT JOINTS SHALL BE CONSTRUCTED AS FOLLOWS (REFER TO HARDSCAPE PLANS FOR SPECIFIC TREATMENT OF THESE AREAS): A. CONTROL JOINTS SPACED AT INTERVALS NOT GREATER THAN 12 FEET AND TOOLED TO 1/3 THE SLAB THICKNESS. B. CONSTRUCTION JOINTS AT THE END OF EACH POUR AND WHEN PAVING OPERATIONS ARE SUSPENDED FOR 30 MINUTES OR MORE.
- C. ISOLATION JOINTS PLACED WHERE THE PAVEMENT ABUTS THE BUILDING, DRAINAGE STRUCTURES AND OTHER FIXED STRUCTURES, CONSTRUCTED WITH A 1/2" NONEXTRUDING FILLER, CLOSED-CELL FOLSSONM RUBBER OR A BITUMEN-TREATED FIBER-BOLSSONRD, AND WITH A THICKENED EDGE, INCREASED BY 20 PERCENT, TAPERED TO THE REGULAR THICKNESS IN 5 FEET. D. ALL EXPANSION JOINTS SHALL BE FILLED AND SEALED WITH A PLASTIC JOINT SEALANT MATERIAL.
- 35. TELEPHONE AND COMMUNICATION SERVICE ROUTING AND CONDUITS NOT SHOWN ON PLANS. CONTRACTOR SHALL INSTALL NECESSARY CONDUIT PRIOR TO PAVEMENT INSTALLATION. CONTRACTOR SHALL COORDINATE ROUTING AND INSTALLATION SCOPE WITH SERVICE PROVIDER.
- 36. ANY CONTRACTOR BIDDING ANY PORTION OF THIS WORK SHALL HAVE IN HIS OR HER POSSESSION A COMPLETE SET OF CONSTRUCTION DOCUMENTS AND BE FAMILIAR WITH ALL SCOPES OF WORK AND TRADES TO UNDERSTAND THEIR INTERACTIONS.
- 37. EXISTING TOPSOIL SHALL BE STRIPPED TO A POINT WHERE ALL VEGETATION IS REMOVED. REFER TO THE GEOTECHNICAL REPORT PROVIDED BY OLSSON DATED 01/09/2019 AND ALL ADDENDUMS.
- 38. SITE PREPARATION, GRADING AND EXCAVATION PROCEDURES SHALL CONFORM TO THE RECOMMENDATIONS AS OUTLINED IN THE GEOTECHNICAL REPORT PREPARED BY OLSSON DATED 01/09/2019 AND ALL ADDENDUMS.
- 39. ALL SIGNS MUST COMPLY WITH THE SIGN REQUIREMENTS AS OUTLINED IN THE SIGN SECTION OF THE UDO OR AS APPROVED ON THESE PLANS. SIGNS WILL BE REVIEWED AND PERMITTED UNDER SEPARATE APPLICATION.

GENERAL UTILITY NOTES

- NOTIFIED IMMEDIATELY.
- 40. IRRIGATION CONTRACTOR SHALL BE RESPONSIBLE FOR INSTALLING SLEEVING UNDER PAVING AREAS WHERE NECESSARY
- 41. INSTALL ALL PIPE LENGTHS, BENDS AND FITTINGS NECESSARY FOR UTILITY CONNECTIONS.
- 42. CONTRACTOR SHALL VERIFY ALL CROSSING ELEVATIONS AND LOCATIONS, SIZES, AND ELEVATIONS OF EXISTING UTILITIES PRIOR TO CONSTRUCTION OF STORM LINES AND ALL UTILITY
- 43. CONTRACTOR TO VERIFY FIRE SERVICE SIZE WITH SPRINKLER DESIGNER/CONTRACTOR PRIOR TO CONSTRUCTION AND INSTALLATION OF METER/BACKFLOW PREVENTER AND SERVICES. NOTIFY ENGINEER OF ALTERATIONS.
- 44. CONTRACTOR RESPONSIBLE FOR PAYING ALL TAP AND CONNECTION FEES AND SHALL CONTRACT AND PAY FOR ANY REQUIRED SUB CONTRACTORS BY UTILITY COMPANIES. 45. REFERENCE MEP PLANS FOR BUILDING CONNECTIONS.
- 46. CONTRACTOR TO REPAIR ALL AREA DAMAGED BY CONSTRUCTION TO EXISTING CONDITIONS OR BETTER
- 47. BACK FLOW PREVENTION TO BE PROVIDED INSIDE BUILDING. SEE MEP AND ARCHITECTURAL PLANS FOR DETAILS.
- 48. LOCATION FOR POWER SHOWN IS APPROXIMATE AND SUBJECT TO CHANGE. CONTRACTOR TO VERIFY FINAL LOCATION AND DESIGN WITH UTILITY COMPANY PRIOR TO CONSTRUCTION.
- 49. CONTRACTOR TO COORDINATE LIGHT POLE LOCATIONS WITH OWNER, STORM SEWER INSTALLATION AND UTILITY COMPANIES PRIOR TO INSTALLATION TO AVOID CONFLICTS. NOTIFY ENGINEER AND ARCHITECT OF ANY CONFLICTS PRIOR TO INSTALLATION.
- 50. WATER METER CANNOT BE INSTALLED IN THE BUILDING.
- 51. CONTRACTOR SHALL COORDINATE CABLE/FIBER OPTIC CONDUIT AND SERVICE INSTALLATION WITH UTILITY COMPANY.
- 53. CONTRACTOR TO COORDINATE POWER ROUTING TO MONUMENT SIGNS NOT SHOWN ON PLANS.
- AND FITTINGS NEEDED TO BUILD ROUTING AS SHOWN SHALL BE INCLUDED IN BID.
- CONNECTIONS / FITTINGS, INCLUDING BUT NOT LIMITED TO BENDS AND TEES, SHALL BE MADE OF HDPE PIPE UNLESS OTHERWISE NOTED WITHIN THIS PLAN

PAVEMENT MARKING NOTES

1. PAVEMENT MARKING PAINT: LATEX, WATER-BASE EMULSION, READY-MIXED, COMPLYING WITH FS TT-P-1952 WITH DRYING TIME OF LESS THAN 45 MINUTES. 2. DO NOT APPLY PAVEMENT MARKING PAINT UNTIL LAYOUT, COLORS AND PLACEMENT HAVE BEEN VERIFIED WITH THE ARCHITECT.

- 3. ALLOW PAVING TO AGE FOR 24 HOURS BEFORE MARKING.
- 4. SWEEP AND CLEAN SURFACE PRIOR TO INSTALLING PAVEMENT MARKINGS.
- 6. THIS WORK SHALL CONSIST OF FURNISHING AND APPLYING PAINT ON PAVEMENT SURFACES, IN TRAFFIC LANES, PARKING BAYS, AREAS RESTRICTED TO HANDICAPPED PERSONS, CROSSWALKS, AND OTHER DETAIL PAVEMENT MARKINGS, IN ACCORDANCE WITH THE DETAILS SHOWN ON THE DRAWINGS.
- 7. DETAILS NOT SHOWN SHALL BE IN CONFORMITY WITH THE STATE STANDARDS FOR TRAFFIC CONTROL DEVICES FOR STREETS AND HIGHWAYS, AND SIMILAR REQUIREMENTS ESTABLISHED BY THE U.S. DEPARTMENT OF TRANSPORTATION, FEDERAL HIGHWAY ADMINISTRATION.
- 8. ALL PARKING LOT STRIPING SHALL BE SINGLE LINE 4" WIDE AS PER THE SITE PLANS.
- 9. PAINT FOR MARKING PAVEMENT SHALL CONFORM TO FEDERAL HIGHWAY MARKING STANDARDS. USE SHERWIN WILLIAMS PROMAR TRAFFIC MARKING PAINT, COLORS TO MATCH THE EXISTING ADJACENT INSTALLATIONS. USE FLAT BLACK, WHITE OR YELLOW, WHERE APPROPRIATE. UNLESS OTHERWISE DIRECTED, USE THE FOLLOWING: A. BLACKTOP OR BITUMINOUS ASPHALT PAVING: USE WHITE COLOR. B. PORTLAND CEMENT CONCRETE PAVING: USE YELLOW COLOR. C. HANDICAPPED ACCESSIBLE PARKING AND ENTRYWAYS: USE WHITE COLOR WITH WHITE STRIPES. D. PROVIDE PAINTED CURBS AT FIRE LANE DESIGNATIONS PER FIRE MARSHAL REQUIREMENTS.
- 10. APPLY ALL MARKINGS USING APPROVED MECHANICAL EQUIPMENT (WITH PROVISIONS FOR CONSTANT AGITATION OF PAINT), CAPABLE OF APPLYING THE MARKING WIDTHS AS SHOWN. USE PNEUMATIC SPRAY GUNS FOR HAND APPLICATION OF PAINT. ALL PAINTING EQUIPMENT AND OPERATIONS SHALL BE UNDER THE CONTROL OF EXPERIENCED TECHNICIANS THOROUGHLY FAMILIAR WITH EQUIPMENT AND MATERIALS AND MARKING LAYOUTS.
- 11. DETAIL PAVEMENT MARKINGS SHALL BE THAT MARKING, EXCLUSIVE OF ACTUAL TRAFFIC LANE MARKING, AT EXIT AND ENTRANCE ISLANDS AND TURNOUTS, ON CURBS, AT CROSSWALKS, AT PARKING BAYS AND AT SUCH OTHER LOCATIONS AS SHOWN. HANDICAPPED PARKING SPACES SHALL BE MARKED BY THE INTERNATIONAL HANDICAPPED SYMBOL AT INDICATED PARKING SPACES. USE A SUITABLE TEMPLATE THAT WILL PROVIDE A PAVEMENT MARKING WITH TRUE, SHARP EDGES AND ENDS.

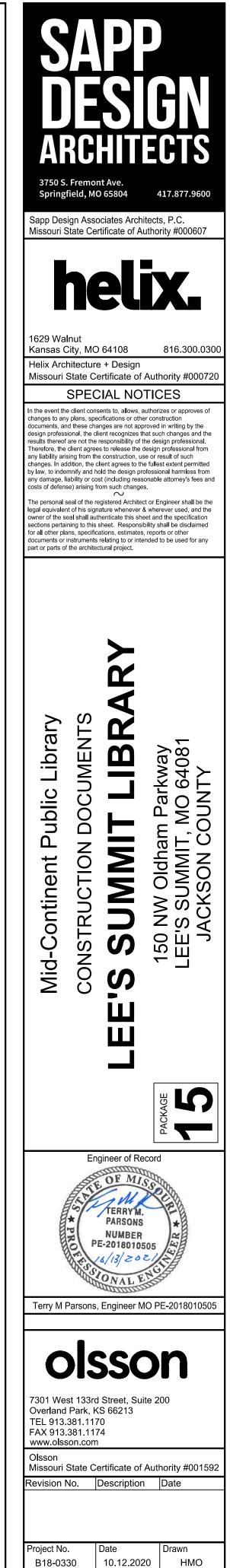
39. THE SIZE AND LOCATION OF SERVICES SHALL BE VERIFIED WITH THE ARCHITECTURAL AND MEP PLANS PRIOR TO CONSTRUCTION. IF DISCREPANCIES EXIST, THE ENGINEER SHALL BE

SERVICE CONNECTIONS. ANY CONFLICTS SHALL BE MADE KNOWN TO THE ENGINEER AND RESOLVED PRIOR TO CONSTRUCTION.

52. ALL TAPS AND CONNECTIONS FOR FIRE AND DOMESTIC WATER SERVICES ARE TO BE IN ACCORDANCE WITH THE CITY OF LEE' SUMMIT. MO. STANDARDS AND SPECIFICATIONS.

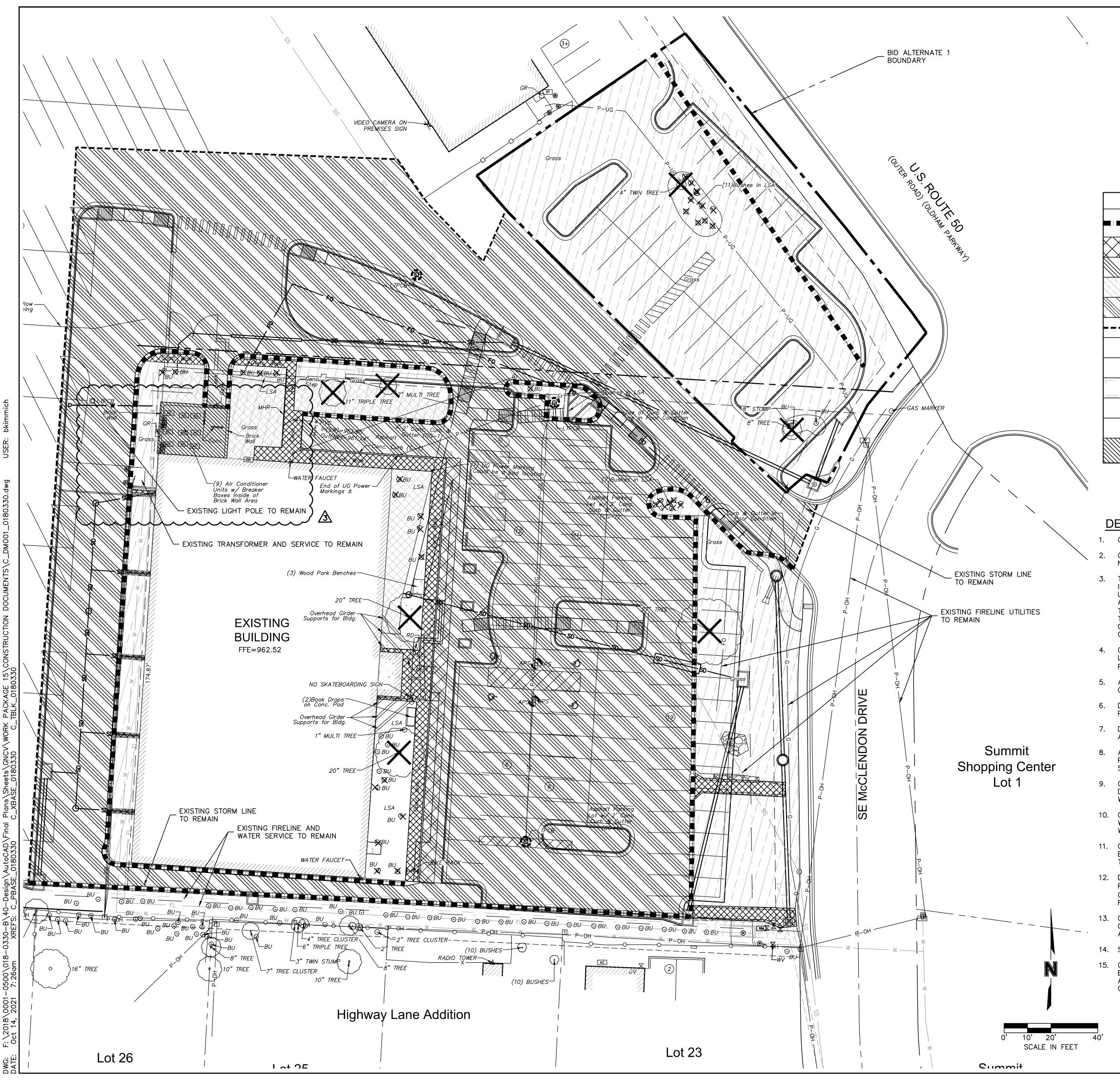
54. ALL ROOF DRAIN AND DOWNSPOUT HEADER PIPES SHALL BE 12" HDPE PIPE AND INSTALLED AT 1.00% MINIMUM SLOPE UNLESS OTHERWISE NOTED WITHIN THIS PLAN. ALL BENDS

55. CONTRACTOR SHALL PROVIDE AND INSTALL ALL NECESSARY FITTINGS TO COMPLETE ROOF DRAIN AND DOWNSPOUT CONNECTIONS TO BUILDINGS. ALL ROOF DRAIN AND DOWNSPOUT


5. APPLY PAINT WITH MECHANICAL EQUIPMENT TO PRODUCE MARKINGS WITH UNIFORM STRAIGHT EDGES. PROVIDE A MINIMUM WET FILM THICKNESS OF 15 MILS.

ACCORDING TO MDNR STATE OIL & GAS COUNSEL THERE ARE NO OIL AND GAS WELLS LOCATED WITHIN OR ADJACENT TO THE PROPERTY.

THE ENTIRE PROPERTY IS DESIGNATED "ZONE X - AREA OF MINIMAL FLOOD HAZARD" AS DEFINED BY FEMA PANEL 29095C0438G -EFFECTIVE DATE JANUARY 20, 2017


THE CONTRACTOR SHALL ADHERE TO THE PROVISIONS OF THE SENATE BILL NUMBER 583, 78TH GENERAL ASSEMBLY OF THE STATE OF MISSOURI. THE BILL REQUIRES THAT ANY PERSON OR FIRM DOING EXCAVATION ON PUBLIC RIGHT- OF-WAY DO SO ONLY AFTER GIVING NOTICE TO, & OBTAINING INFORMATION FROM, UTILITY COMPANIES. STATE LAW REQUIRES 48 HOURS ADVANCE NOTICE. CALL 1-800-DIG-RITE.

Drawing No

GENERAL NOTES

right 2019 - Sapp Design Associates, Architects, P.

EXISTING CONDITIONS LEGEND

P-OH
P-UG
TEL
———— FO ————
G
W
<u>sdsd</u> sd
#

PROPERTY LINES RIGHT-OF-WAY LINES EASEMENT LINES OVERHEAD ELECTRIC UNDERGROUND ELECTRIC UNDERGROUND TELEPHONE UNDERGROUND FIBER OPTIC GAS LINE WATER LINE STORM SEWER LINE

OF EXISTING SPACES

KEY NOTE LEGEND	
	REMOVE EXISTING CURB AND GUTTER
	REMOVE EXISTING CONCRETE
	REMOVE EXISTING ASPHALT
4	REMOVE EXISTING LANDSCAPING
5	REMOVE EXISTING SIDEWALK
6	SAWCUT EXISTING PAVEMENT
\checkmark	REMOVE EXISTING TREES
8 ×	REMOVE EXISTING SHRUBS
9	PROTECT EXISTING STORM SEWER PIPE & STRUCTURE
10	REMOVE AND SALVAGE EXISTING LIGHT POLES. CAP EXISTING CONNECTIONS.
(1)	REMOVE AND SALVAGE EXISTING SIGNS
	REMOVAL AND EQUIPMENT PAD AND SALVAGE EQUIPMENT.

DEMOLITION NOTES

CONTRACTOR TO PRESERVE ALL SURVEY CONTROL.

CONTRACTOR TO COMPLETE DEMOLITION PER THE INTENT OF THESE PLANS AND THAT NECESSARY FOR NEW GRADING PER THESE PLANS.

3. THE UNDERGROUND UTILITIES SHOWN HAVE BEEN LOCATED FROM FIELD SURVEY INFORMATION AND EXISTING DRAWINGS. THE ENGINEER MAKES NO GUARANTEES THAT THE UTILITIES SHOWN COMPRISE ALL SUCH UTILITIES IN THE AREA, EITHER IN SERVICE OR ABANDONED. THE ENGINEER HAS NOT PHYSICALLY LOCATED THE UNDERGROUND UTILITIES. THIS INCLUDES PRIVATE AND PUBLIC UTILITIES. IT IS THE CONTRACTOR'S RESPONSIBILITY TO LOCATE ALL PUBLIC AND PRIVATE UTILITIES AND RELOCATE AS NECESSARY. CONTRACTOR SHALL CONTACT MISSOURI ONE CALL IN ADVANCE OF ANY EXCAVATION TO COORDINATE UTILITY LOCATIONS.

4. CONTRACTOR IS REQUIRED TO TAKE PRECAUTIONARY MEASURES TO PROTECT THE UTILITY LINES SHOWN AND ANY OTHER EXISTING LINES NOT OF RECORD OR SHOWN ON THESE PLANS. CONTRACTOR SHALL REPAIR ALL UTILITIES DAMAGED AT CONTRACTOR'S EXPENSE.

5. ALL ITEMS REMOVED AND NOTE SALVAGED SHALL BE LEGALLY DISPOSED OFF SITE BY THE CONTRACTOR.

6. DO NOT DISRUPT UTILITY SERVICE TO ADJACENT BUSINESSES OR RESIDENCES WITHOUT PRIOR WRITTEN APPROVAL BY THE ENGINEER OR OWNER.

7. DO NOT DISRUPT TRAFFIC ON ADJACENT PUBLIC STREETS WITHOUT PRIOR WRITTEN APPROVAL BY THE CITY.

8. ALL SIDEWALK AND PAVEMENT TO REMAIN SHALL BE PROTECTED IN PLACE INCLUDING PROTECTION FROM DAMAGE CAUSED BY REMOVAL OF ABUTTING PAVEMENT. CONTRACTOR SHALL SAW CUT WHERE NECESSARY.

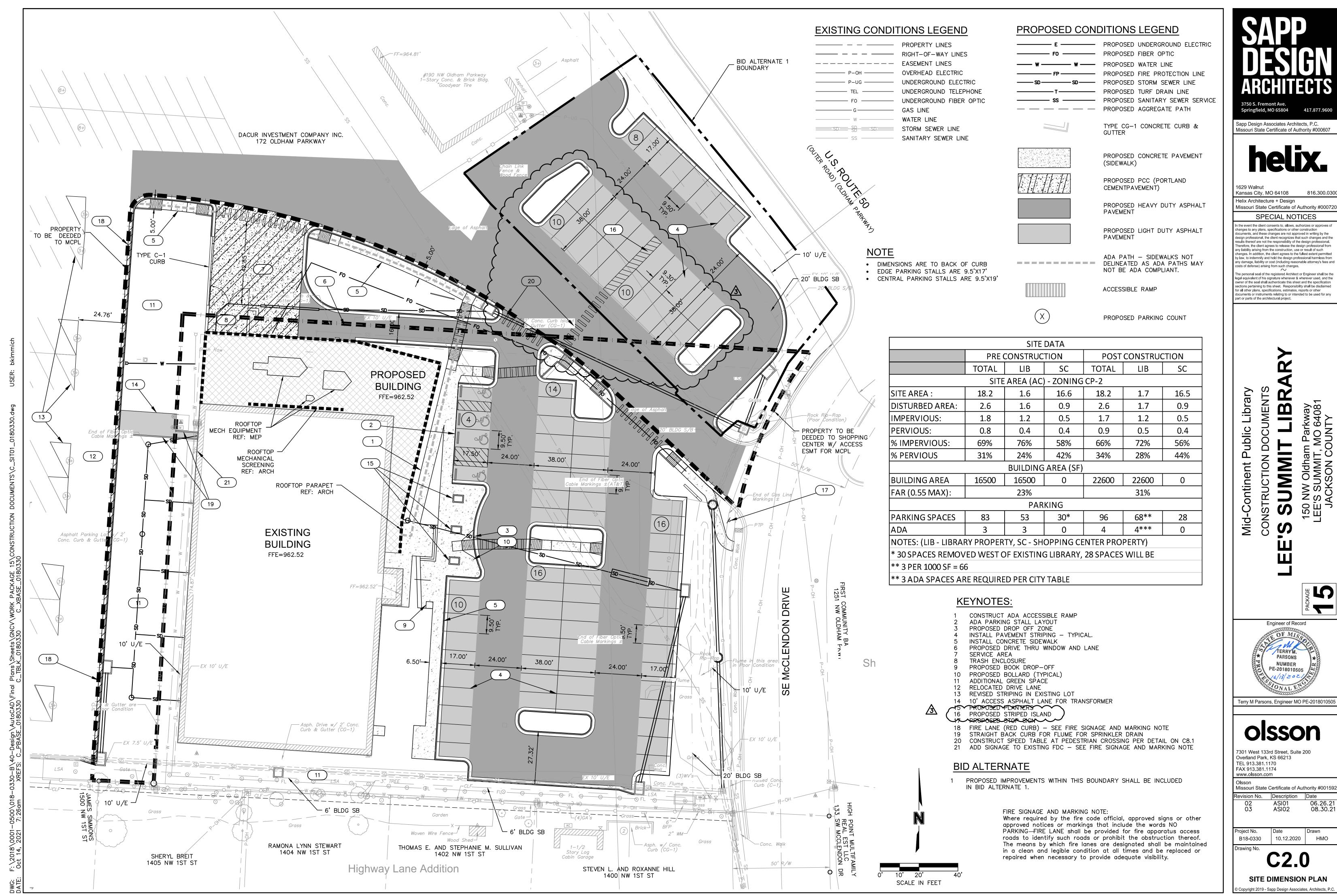
9. CONTRACTOR SHALL GIVE NOTICE TO ALL UTILITY COMPANIES REGARDING DISCONNECTION, DEMOLITION, AND REMOVAL OF SERVICE LINES. CAP ALL LINES BEFORE PROCEEDING WITH WORK ON THIS CONTRACT.

10. CONTRACTOR SHALL COORDINATE WITH UTILITY COMPANY CONCERNING PORTIONS OF WORK WHICH MAY BE PERFORMED BY THE UTILITY COMPANIES WORK FORCE AND ANY FEES WHICH ARE TO BE PAID TO THE UTILITY COMPANY FOR THEIR SERVICES.

11. CONTRACTOR SHALL PROTECT THE PUBLIC AT ALL TIME WITH FENCING, BARRICADES, ENCLOSURES, ETC. TO THE BEST PRACTICES AND AS APPROVED BY THE ENGINEER AND THE OWNER.

12. DAMAGE TO EXISTING CURB, ASPHALT, CONCRETE PAVING OR STORM STRUCTURES AS A RESULT OF CONSTRUCTION ACTIVITIES SHALL BE REPLACED AND/OR REPAIRED AT CONTRACTOR'S EXPENSE. ALL REPLACEMENT SHALL BE JOINT TO JOINT. NO PARTIAL REPLACEMENT WILL BE ALLOWED.

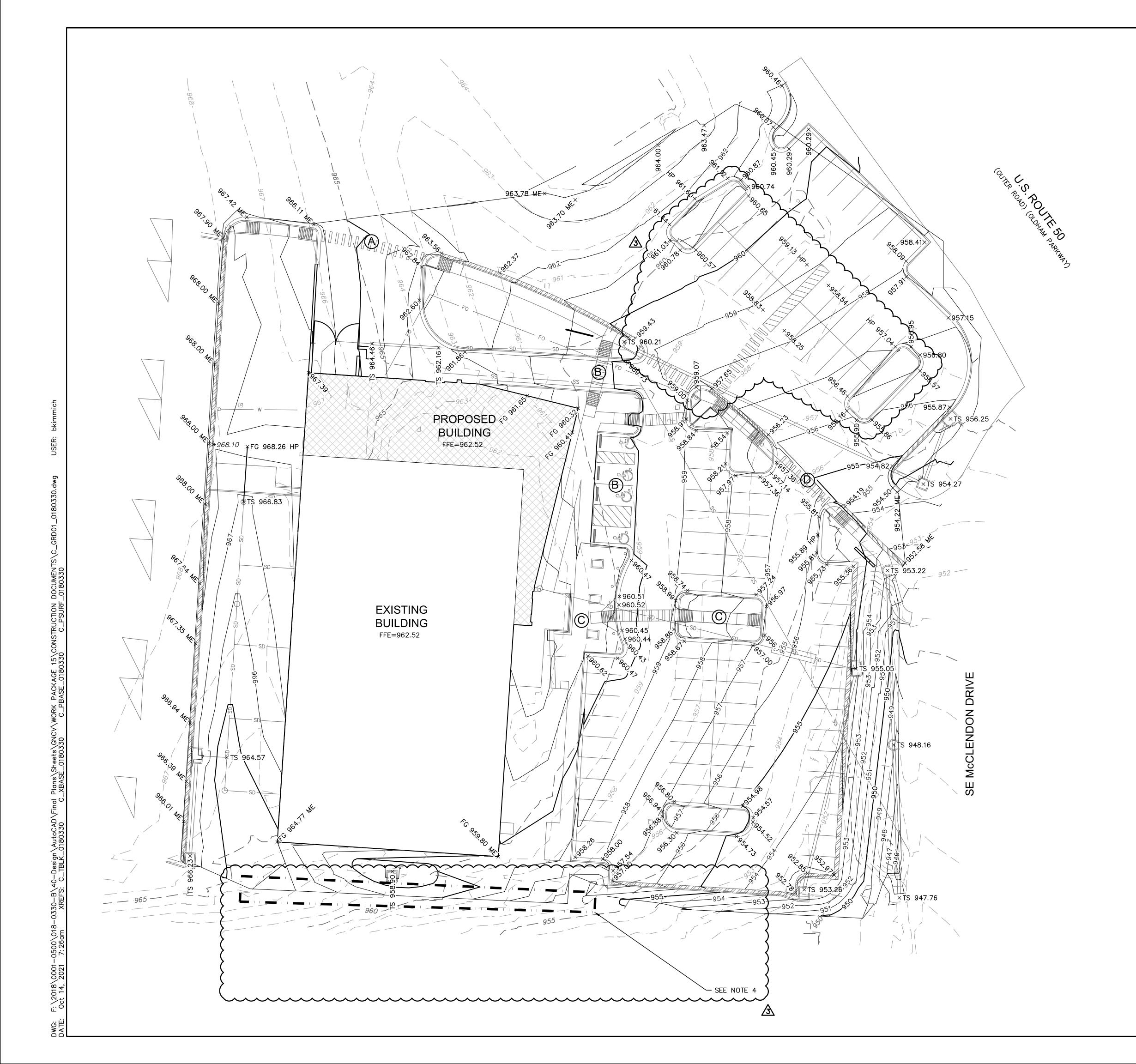

13. CONTRACTOR TO FIELD VERIFY LOCATION, SIZE AND DEPTH OF EXISTING UTILITIES. CONTRACTOR SHALL NOTIFY ENGINEER OF ANY DISCREPANCIES BETWEEN FIELD CONDITIONS AND THESE PLANS.


14. SEE UTILITY PLANS FOR ADDITIONAL INFORMATION.

15. CONTRACTOR TO SALVAGE SITE MISCELLANEOUS SITE ITEMS SUCH AS EQUIPMENT, , SIGNS, BENCHES AND TRASH RECEPTACLES FOR USE BY MCPL IN FUTURE CONDITIONS. ITEMS NOT ACCEPTED BY MCPL FOR SALVAGE SHALL BE PROPERLY DISPOSED OF BY THE CONTRACTOR.

BID ALTERNATE

PROPOSED DEMOLITION WITHIN THIS BOUNDARY SHALL BE INCLUDED IN BID ALTERNATE 1.



iam Parkway IT, MO 64081 COUNTY ΞZ <u>Ч</u> 150 NW Old EE'S SUMI JACKSO Engineer of Record PE-2018010505 Terry M Parsons, Engineer MO PE-2018010505 olsson 7301 West 133rd Street, Suite 200 Missouri State Certificate of Authority #001592 IDate 06.26.21 08.30.21 Drawn 10.12.2020 HMO

816.300.0300

SITE DIMENSION PLAN yright 2019 - Sapp Design Associates, Architects, P.C.

LEGEND

 995
 995
998
 998

TTTTTT

(A)

PROPERTY LINE
 EXISTING MAJOR CONTOUR
 EXISTING MINOR CONTOUR
 PROPOSED MAJOR CONTOUR
 PROPOSED MINOR CONTOUR

RAMP

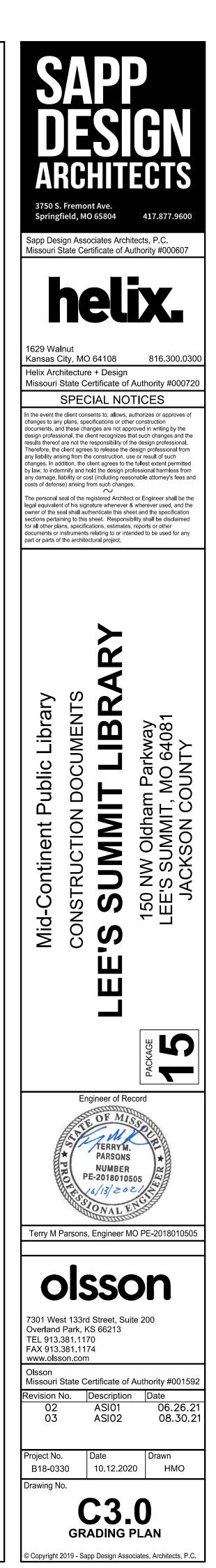
CONCRETE CURB & GUTTER TYPE "CG—1"

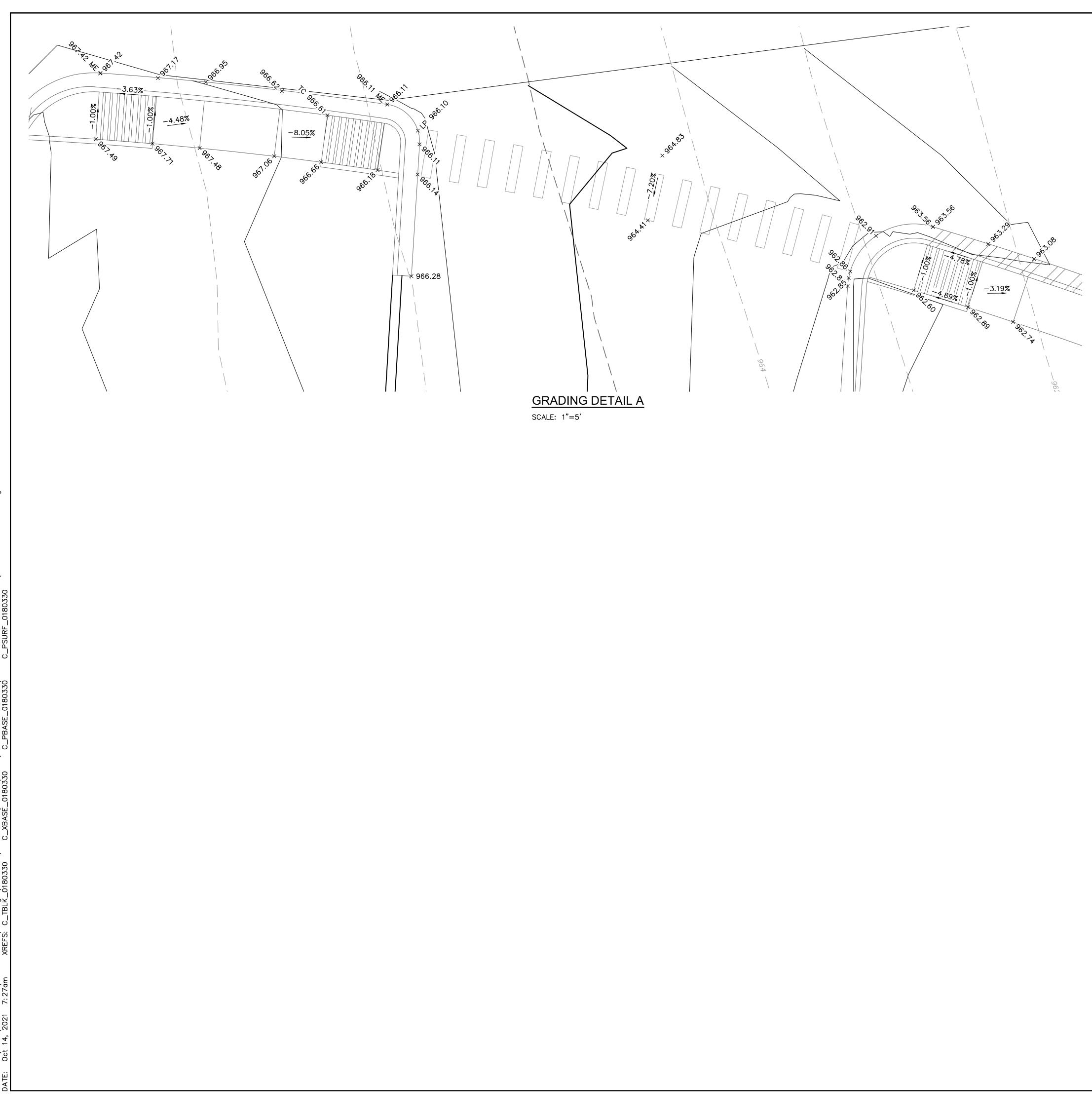
CONCRETE CURB & GUTTER TYPE "CG-1 DRY"

CONCRETE CURB TYPE "C-1" MODIFIED GRADING DETAIL

NOTES:

3


- 1. CONTRACTOR TO REMOVE AND REPLACE ALL SIDEWALK NECESSARY FOR CONNECTION TO EXISTING.
- 2. ALL ADA ACCESSIBLE SIDEWALK CROSS SLOPES SHALL HAVE A MAXIMUM CROSS SLOPE OF 2.00% AND MAXIMUM LONGITUDINAL SLOPE OF 5.00%.
- 3. ALL ADA ACCESSIBLE PARKING AREAS SHALL NOT EXCEED 2.00% IN ANY DIRECTION.
- 4. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISITNG LANDSCAPING AT FENCE AND NEIGHBORING PROPERTY.


SPOT ELEVATION LEGEND

ALL SPOT ELEVATIONS ARE TOP OF PAVEMENT ELEVATION UNLESS NOTED OTHERWISE. RE: PLAN VIEW, LEGEND AND DETAILS FOR CURB TYPE AND TO CALCULATE TOP OF CURB ELEVATION.

TC=	TOP OF CURB
FG=	FINISHED GRADE WITHIN GREENSPACE
TS=	TOP OF STRUCTURE
TP=TC=	CURB DEPRESSED TO BE FLUSH WITH
	ADJACENT PAVEMENT
HP=	HIGH POINT
LP=	LOW POINT
MATCH EX.=	= MATCH EXISTING
FFE=	FINISH FLOOR ELEVATION AT TOP OF SLAB

N N 0' 10' 20' 40' SCALE IN FEET

WORK PACKAGE 15\CONSTRUCTION DOCUMENTS C_PBASE_0180330 C_PSURF_0180330 F: \2018\0001-0500\018 Oct 14, 2021 7:27am AG: ATF. 66

LEGEND

 995
 995
 998
 998 ———

----- PROPERTY LINE — EXISTING MAJOR CONTOUR ----- EXISTING MINOR CONTOUR ----- PROPOSED MAJOR CONTOUR ----- PROPOSED MINOR CONTOUR

TITI

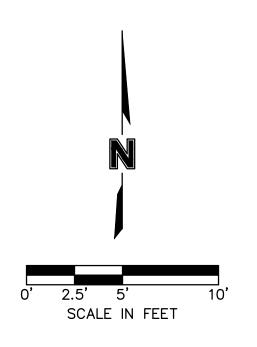
RAMP

CONCRETE CURB & GUTTER TYPE "CG-1"

CONCRETE CURB & GUTTER TYPE "CG-1 DRY"

CONCRETE CURB TYPE "C-1" MODIFIED

NOTES:


- 1. CONTRACTOR TO REMOVE AND REPLACE ALL SIDEWALK NECESSARY FOR CONNECTION TO EXISTING.
- 2. ALL ADA ACCESSIBLE SIDEWALK CROSS SLOPES SHALL HAVE A MAXIMUM CROSS SLOPE OF 2.00% AND MAXIMUM LONGITUDINAL SLOPE OF 5.00%.
- 3. ALL ADA ACCESSIBLE PARKING AREAS SHALL NOT EXCEED 2.00% IN ANY DIRECTION.

SPOT ELEVATION LEGEND

ALL SPOT ELEVATIONS ARE TOP OF PAVEMENT ELEVATION UNLESS NOTED OTHERWISE. RE: PLAN VIEW, LEGEND AND DETAILS FOR CURB TYPE AND TO CALCULATE TOP OF CURB ELEVATION.

TC=	TOP OF CURB
FG=	FINISHED GRADE WITHIN GREENSPACE
TS=	TOP OF STRUCTURE
TP=TC=	CURB DEPRESSED TO BE FLUSH WITH
	ADJACENT PAVEMENT
HP=	HIGH POINT
LP=	LOW POINT
MATCH EX.=	= MATCH EXISTING

FFE= FINISH FLOOR ELEVATION AT TOP OF SLAB

<u>LEGEND</u>

 995
 <u> </u>
998
 998

PROPERTY LINE
 EXISTING MAJOR CONTOUR
 EXISTING MINOR CONTOUR
 PROPOSED MAJOR CONTOUR
 PROPOSED MINOR CONTOUR

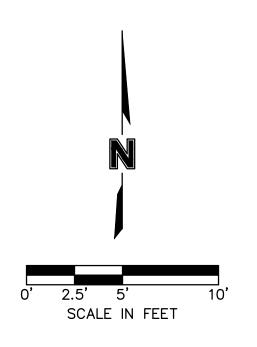
RAMP

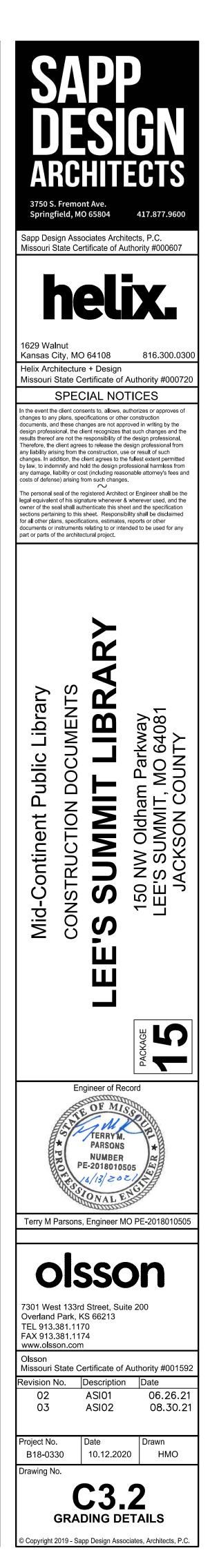
CONCRETE CURB & GUTTER TYPE "CG-1"

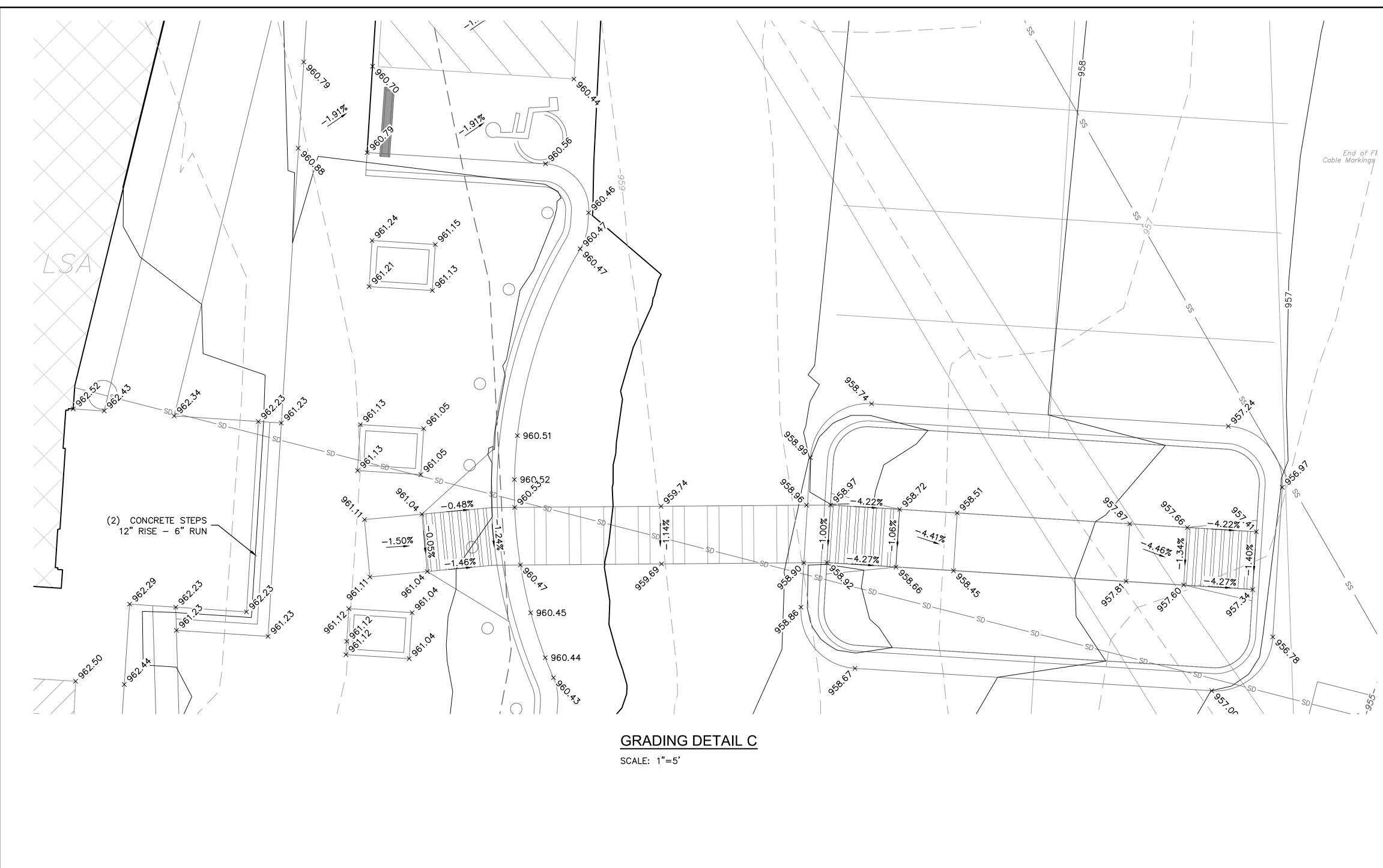
CONCRETE CURB & GUTTER TYPE "CG-1 DRY"

CONCRETE CURB TYPE "C-1" MODIFIED

NOTES:


- 1. CONTRACTOR TO REMOVE AND REPLACE ALL SIDEWALK NECESSARY FOR CONNECTION TO EXISTING.
- 2. ALL ADA ACCESSIBLE SIDEWALK CROSS SLOPES SHALL HAVE A MAXIMUM CROSS SLOPE OF 2.00% AND MAXIMUM LONGITUDINAL SLOPE OF 5.00%.
- 3. ALL ADA ACCESSIBLE PARKING AREAS SHALL NOT EXCEED 2.00% IN ANY DIRECTION.


SPOT ELEVATION LEGEND


ALL SPOT ELEVATIONS ARE TOP OF PAVEMENT ELEVATION UNLESS NOTED OTHERWISE. RE: PLAN VIEW, LEGEND AND DETAILS FOR CURB TYPE AND TO CALCULATE TOP OF CURB ELEVATION.

TC=	TOP OF CURB
FG=	FINISHED GRADE WITHIN GREENSPACE
TS=	TOP OF STRUCTURE
TP=TC=	CURB DEPRESSED TO BE FLUSH WITH
	ADJACENT PAVEMENT
HP=	HIGH POINT
LP=	LOW POINT
MATCH EX.=	= MATCH EXISTING

FFE= FINISH FLOOR ELEVATION AT TOP OF SLAB

TRUCTION DOCUMENTS WORK PACKAGE 15\CONS C_PBASE_0180330 -0330-B\40-I XREFS: C_ F: \2018\0001-0500\018 Oct 14, 2021 7:27am DWG: DATE

LEGEND

·		-
	995	
	995	
	998	
	998	

TITI

----- PROPERTY LINE — EXISTING MAJOR CONTOUR ----- EXISTING MINOR CONTOUR ----- PROPOSED MAJOR CONTOUR ----- PROPOSED MINOR CONTOUR

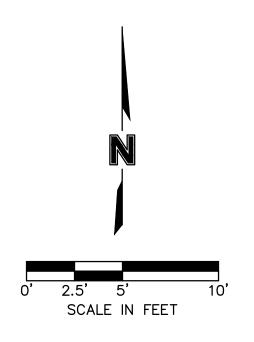
RAMP

CONCRETE CURB & GUTTER TYPE "CG-1"

CONCRETE CURB & GUTTER TYPE "CG-1 DRY"

CONCRETE CURB TYPE "C-1" MODIFIED

NOTES:


- 1. CONTRACTOR TO REMOVE AND REPLACE ALL SIDEWALK NECESSARY FOR CONNECTION TO EXISTING.
- 2. ALL ADA ACCESSIBLE SIDEWALK CROSS SLOPES SHALL HAVE A MAXIMUM CROSS SLOPE OF 2.00% AND MAXIMUM LONGITUDINAL SLOPE OF 5.00%.
- 3. ALL ADA ACCESSIBLE PARKING AREAS SHALL NOT EXCEED 2.00% IN ANY DIRECTION.


SPOT ELEVATION LEGEND

ALL SPOT ELEVATIONS ARE TOP OF PAVEMENT ELEVATION UNLESS NOTED OTHERWISE. RE: PLAN VIEW, LEGEND AND DETAILS FOR CURB TYPE AND TO CALCULATE TOP OF CURB ELEVATION.

TC=	TOP OF CURB
FG=	FINISHED GRADE WITHIN GREENSPACE
TS=	TOP OF STRUCTURE
TP=TC=	CURB DEPRESSED TO BE FLUSH WITH
	ADJACENT PAVEMENT
HP=	HIGH POINT
LP=	LOW POINT

MATCH EX.= MATCH EXISTING FFE= FINISH FLOOR ELEVATION AT TOP OF SLAB

DOCUMENTS C_PSURF_ ORK PACKAGE 15\C C_PBASE_0180330 Plans\Sheets\GV _XBASE_0180330 inal C 0330-B\40-Design\AutoCAD\F XREFS: C_TBLK_0180330 F: \2018\0001-0500\018 Oct 14, 2021 7:27am ÿ₽

LEGEND

 995
 995
 998
 998 ———

----- PROPERTY LINE — EXISTING MAJOR CONTOUR ----- EXISTING MINOR CONTOUR ----- PROPOSED MAJOR CONTOUR ----- PROPOSED MINOR CONTOUR

TTTTT A

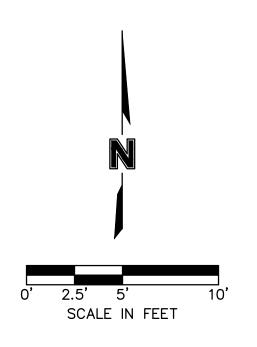
RAMP

CONCRETE CURB & GUTTER TYPE "CG-1"

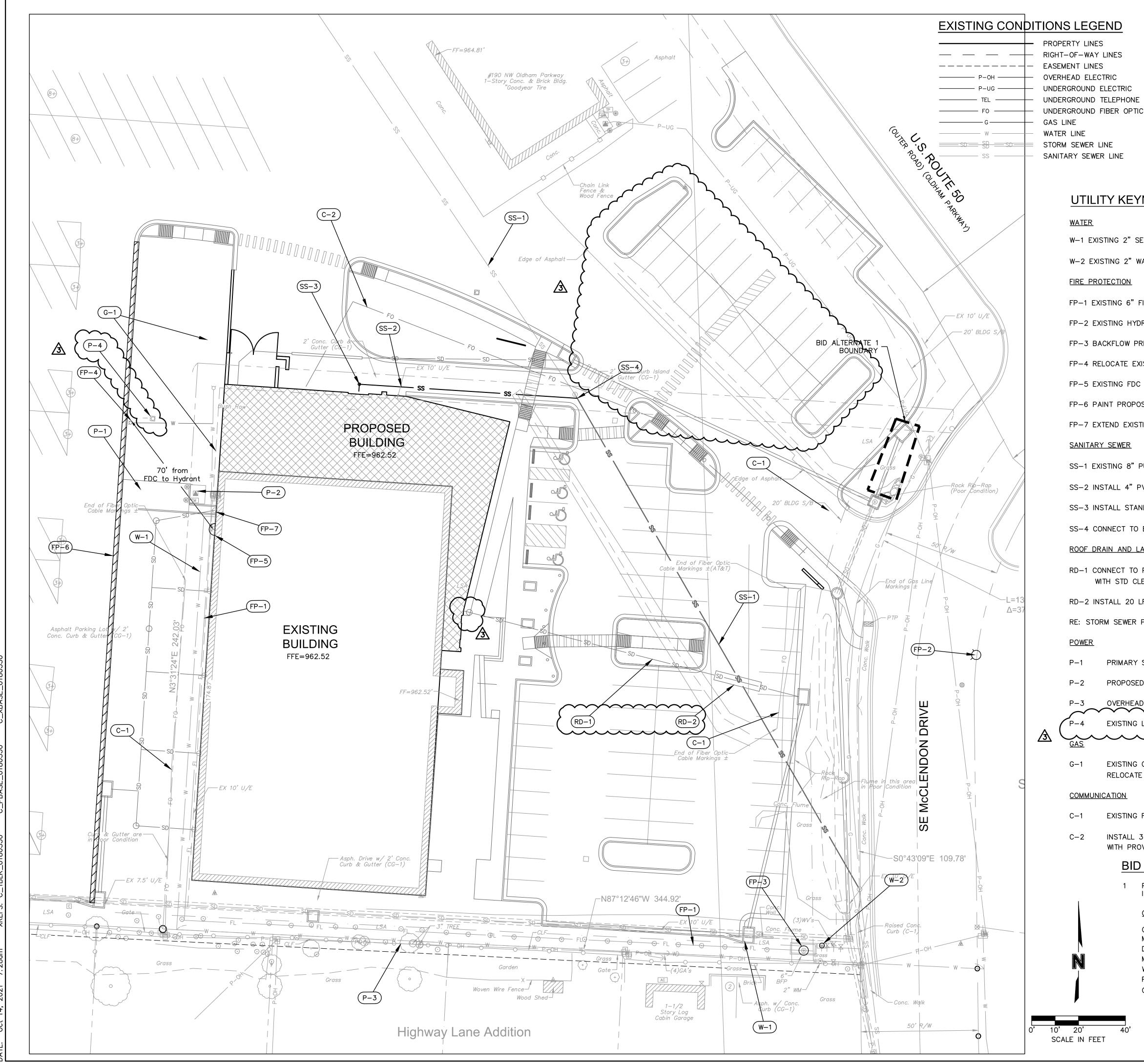
CONCRETE CURB & GUTTER TYPE "CG-1 DRY"

CONCRETE CURB TYPE "C-1" MODIFIED

NOTES:


- 1. CONTRACTOR TO REMOVE AND REPLACE ALL SIDEWALK NECESSARY FOR CONNECTION TO EXISTING.
- 2. ALL ADA ACCESSIBLE SIDEWALK CROSS SLOPES SHALL HAVE A MAXIMUM CROSS SLOPE OF 2.00% AND MAXIMUM LONGITUDINAL SLOPE OF 5.00%.
- 3. ALL ADA ACCESSIBLE PARKING AREAS SHALL NOT EXCEED 2.00% IN ANY DIRECTION.

SPOT ELEVATION LEGEND


ALL SPOT ELEVATIONS ARE TOP OF PAVEMENT ELEVATION UNLESS NOTED OTHERWISE. RE: PLAN VIEW, LEGEND AND DETAILS FOR CURB TYPE AND TO CALCULATE TOP OF CURB ELEVATION.

то	
TC=	TOP OF CURB
FG=	FINISHED GRADE WITHIN GREENSPACE
TS=	TOP OF STRUCTURE
TP=TC=	CURB DEPRESSED TO BE FLUSH WITH
	ADJACENT PAVEMENT
HP=	HIGH POINT
LP=	LOW POINT
MATCH EX.=	= MATCH EXISTING

FFE= FINISH FLOOR ELEVATION AT TOP OF SLAB

ה א ts/ ਨੁਣ Ш Š2 йĶ 018\0001-14, 2021

PROPOSED CONDITIONS LEGEND

	PROPOSED	UNDERGROUND ELECTRIC
	PROPOSED	FIBER OPTIC
— w —	PROPOSED	WATER LINE
	PROPOSED	FIRE PROTECTION LINE
— SD ——	PROPOSED	STORM SEWER LINE
	PROPOSED	TURF DRAIN LINE
	PROPOSED	SANITARY SEWER SERVICE
	CONCRETE	CURB & GUTTER

PROPOSED BUILDING

UTILITY KEYNOTES: (XX) -

W-1 EXISTING 2" SERVICE LINE TO REMAIN

W-2 EXISTING 2" WATER METER TO REMAIN

FP-1 EXISTING 6" FIRE SERVICE TO REMAIN

FP-2 EXISTING HYDRANT TO REMAIN

FP-3 BACKFLOW PREVENTOR AND VAULT TO REMAIN

FP-4 RELOCATE EXISTING HYDRANT

FP-5 EXISTING FDC TO REMAIN

FP-6 PAINT PROPOSED CURB RED AT BACK OF BUILDING FOR FIRE LANE PER CITY STANDARDS

FP-7 EXTEND EXISTING SPRINKLER DRAIN TO OUTFLOW ONTO PROPOSED ASPHALT FLUME

SS-1 EXISTING 8" PUBLIC SANITARY MAIN

SS-2 INSTALL 4" PVC SERVICE LINE

SS-3 INSTALL STANDARD CLEANOUT

SS-4 CONNECT TO EXISTING WYE ON THE EXISTING 8" MAIN (APPROX. FL=962.68)

ROOF DRAIN AND LANDSCAPE DRAINS

RD-1 CONNECT TO PROPOSED CANOPY ROOF DRAIN AND INSTALL 147 LF 4" PVC PIPE WITH STD CLEANOUT AT BLDG AND CONNECT TO PROP. INLET (IE = 951.82)

RD-2 INSTALL 20 LF OF CONCRETE ENCASEMENT ON STORM LINE PER CITY STANDARDS

RE: STORM SEWER PLAN & PROFILE - SHEETS C5.0 THRU C5.4 FOR REMAINDER OF ROOF DRAINS

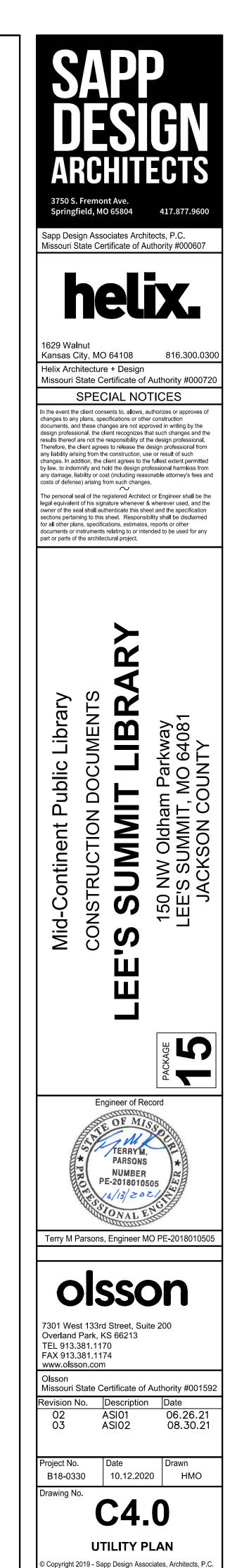
PRIMARY SERVICE

PROPOSED TRANSFORMER TO REMAIN

OVERHEAD POWER TO REMAIN $\sim\sim\sim\sim\sim$ EXISTING LIGHT POLE TO REMAIN.

EXISTING GAS METER TO BE REMOVED AND RESET DURING ADDIION CONSTRUCTION. RELOCATE GAS LINE (COORDINATE FINAL LOCATION WITH PROVIDER).

EXISTING FIBER LINE TO REMAIN


INSTALL 3 – 4" PVC CONDUITS PER PROVIDER STANDARDS. COORDINATE FINAL LOCATION WITH PROVIDER

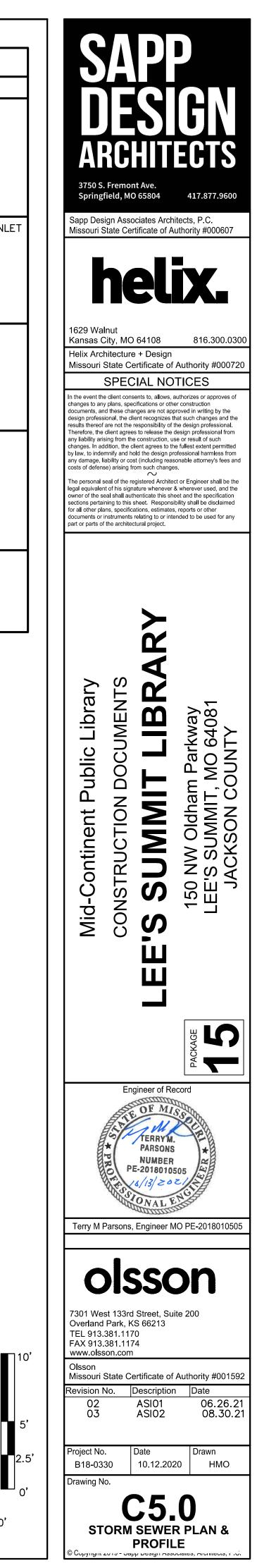
BID ALTERNATE

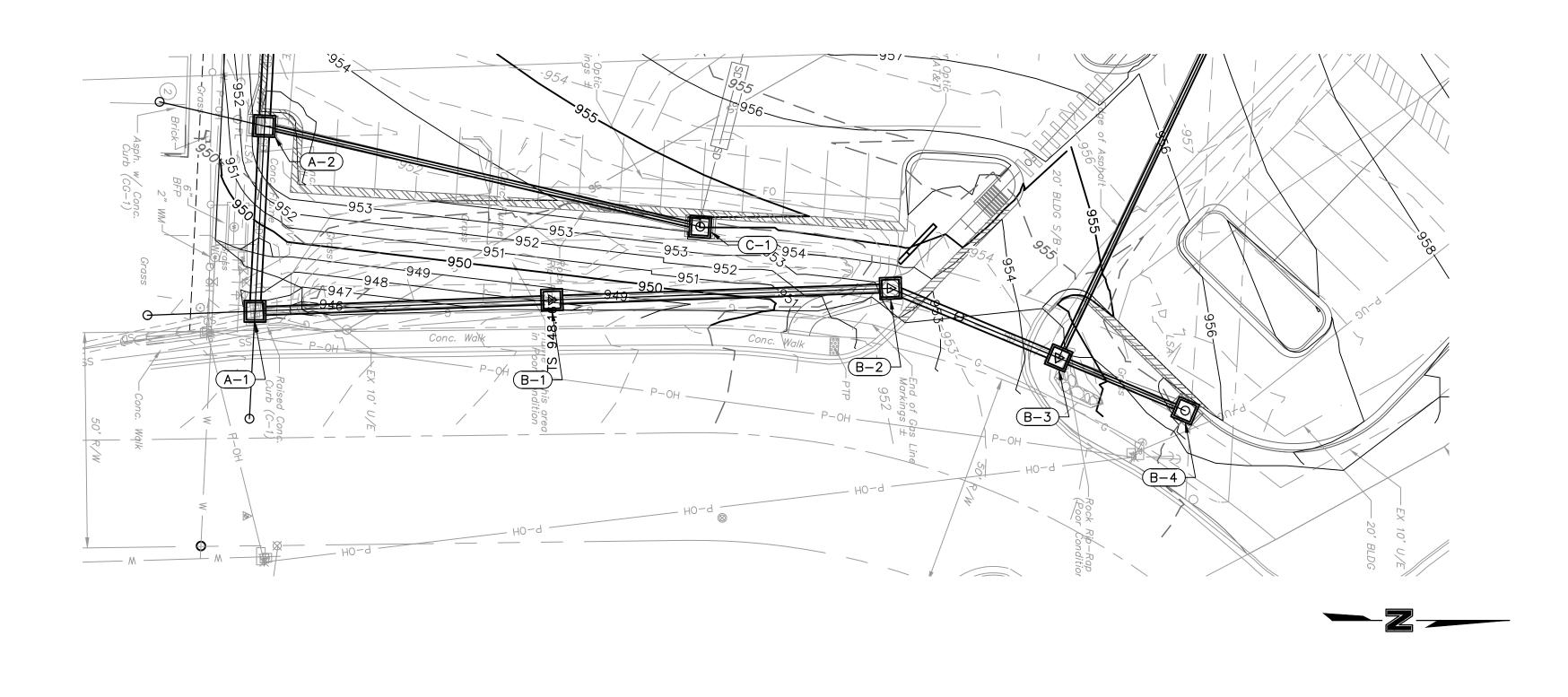
PROPOSED STORM IMPROVEMENTS WITHIN THIS BOUNDARY SHALL BE INCLUDED IN BID ALTERNATE 1.

CONTRACTOR NOTE (W-2):

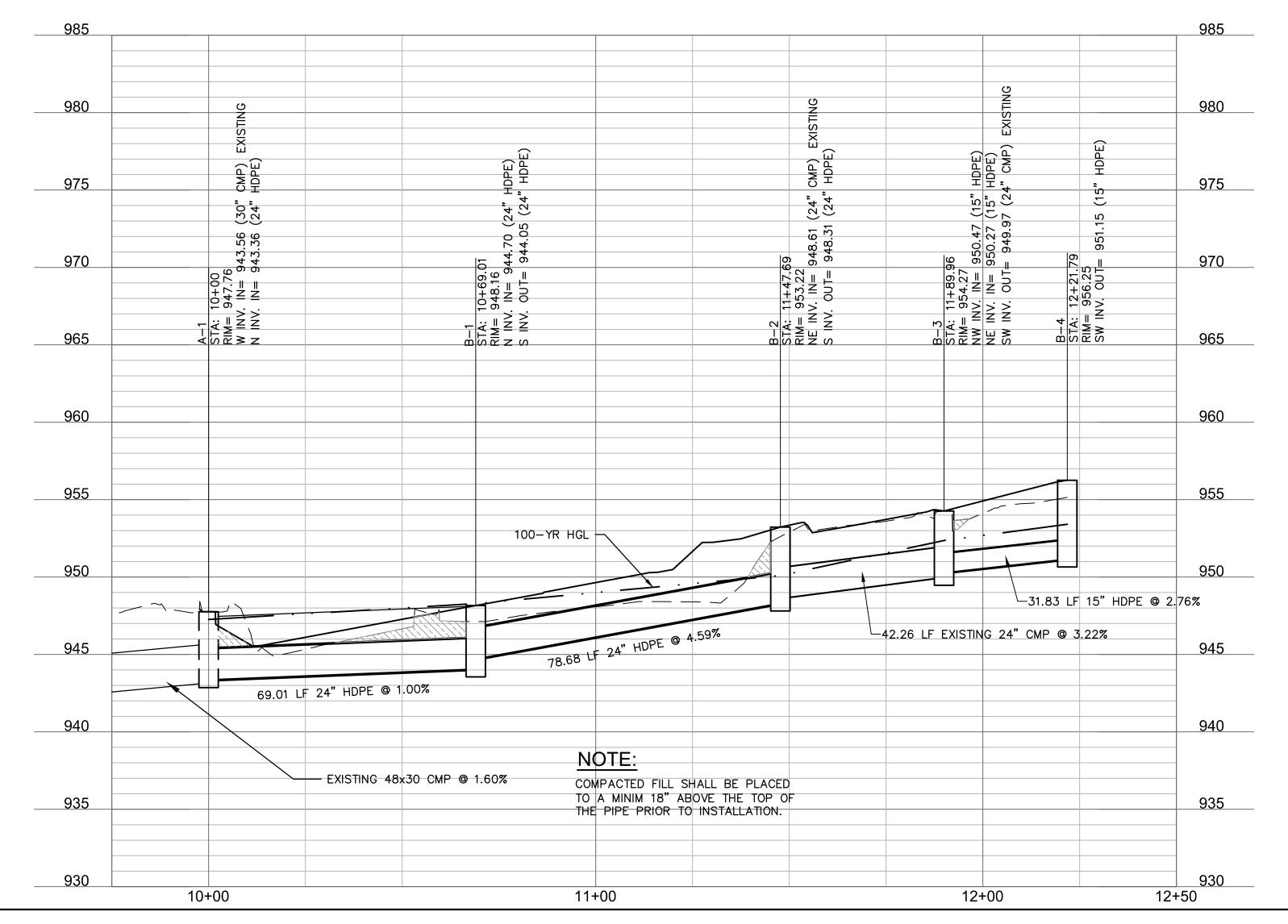
CONTRACTOR TO VERIFY DEPTH OF EXISTING 2" WATERLINE AT METER. 4 FT OF MINIMUM COVER IS DESIRED. IF THE DEPTH OF THE SERVICE LINE IS LESS THAN DESIRED THE CONTRACTOR SHALL NOTIFY THE ENGINEER. GRADE ADJUSTMENTS MAY BE REQUIRED TO THE METER PIT AND BFP VAULT. SEGMENTAL RETAINING WALL MAY ALSO BE REQUIRED TO PREVENT DISTURBANCE OF NEIGHBORING PROPERTY. THE CONTRACTOR SHALL CARRY AN ALLOWANCE FOR AN INCREASE OF 1' IN HEIGHT TO THE PIT AND VAULT AND 30 SF OF WALL FACE.

						n								
					SIA: 12+28.98 RIM= 958.90 W INV. IN= 952.84 (30" CMP) EXISTING	Ĭ						EXISTING EXISTING		
						<u>,</u>						EXISTING EXISTING EXISTIN		
					S S	ζ						IS X		
					<u> </u>	-						ХШ		
						È						23 = 956.55 (30° CMP) E) = 958.33 (15° HDPE) F= 956.55 (30° CMP)		
					<u>₹</u>	5								
					<u> </u>							Ο <u>Τ</u>		
						<								
					<u> </u>	+								
					4 (ò						<u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>7</u>		
												0.0 0.0		
					98 92; 92;	Ŋ					48	9;58 9;		
					8,00,	<u> </u>					0			
						S					+			
											13	$\varphi = = 0$		
				m.	ż≣ź	> 					+ ':	RIM= 966.23 W INV. IN= 956. N INV. IN= 958. E INV. OUT= 958.		
						-					Ì₽			
					лш > і					<				
											_			
											_			
											_			
											┷┑			
											- 1			
YR HGL	_			-		_							· · ·	·
					/									
				┣┷	-						F			
									<u> </u>				30"	CMP @ 4.0
1								· ·			-		EXISTING JU	
									_			88.41 -	EXISTING 30"	
					F	•	91.50 LF EXISTING			15%				_
								30" CMP (0 4.	JO, -				
• • •							50 LE EXISTING	,						
						Ç	J1.50 =							
	P @ 4.05%													
- 30" CM	P @ 4.00													
,														
		NOT	-E·											
														_
		COMPA	CTED FILL SHAL	LE	BE PLAC	ED								
		το Α	VINIMUM OF 18"	AE	BOVE TH	IE TO	OP OF							
		THE P	PE PRIOR TO IN	ISTA	ALLATIO	۷.								
				-										
		12+	-00						13-	+00				


82	10-	1
00		1

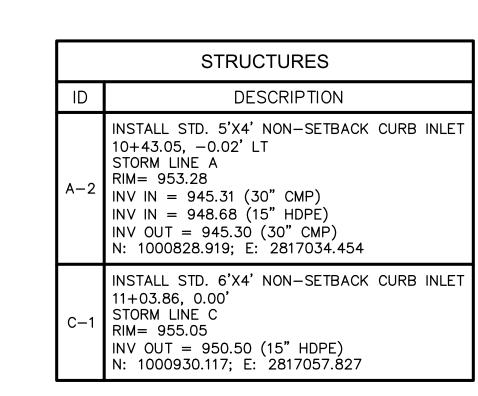

	STRUCTURES				
ID	DESCRIPTION				
A-1	EXISTING 5'X3' AREA INLET RECONSTRUCT TO AREA INLET WITH THROAT OPENING (N.) 10+00, 0.00' STORM LINE A RIM= 947.76 INV IN = 943.56 (30" CMP) EXISTING INV IN = 943.36 (24" HDPE) EXISTING N: 1000826.723; E: 2817077.444				
A-2	INSTALL STD. 5'X4' NON-SETBACK CURB INLET 10+43.05, -0.02' LT STORM LINE A RIM= 953.28 INV IN = 945.31 (30" CMP) INV IN = 948.68 (15" HDPE) INV OUT = 945.30 (30" CMP) N: 1000828.919; E: 2817034.454				
A-3	INSTALL STD. 4'X4' JUNCTION BOX ON EXISTING 30" HDPE 12+28.98, 0.00' STORM LINE A RIM= 958.90 INV IN = 952.84 (30" CMP) INV OUT = 952.84 (30" CMP) N: 1000838.496; E: 2816848.767				
A-4	INSTALL STD. 6'X4' NON-SETBACK CURB INLET ON EXISTING 30" HDPE 13+20.48, 0.00' STORM LINE A RIM= 966.23 INV IN = 956.55 (30" CMP) INV IN = 958.33 (15" HDPE) INV OUT = 956.55 (30" CMP) N: 1000843.200; E: 2816757.391				
A-5	EXISTING 5'X3' AREA INLET 14+08.88, 0.00' STORM LINE A RIM= 968.63 INV OUT = 960.13 (30" CMP) N: 1000847.745; E: 2816669.102				

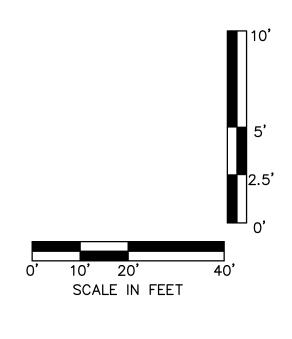
10' 20'


SCALE IN FEET

40'

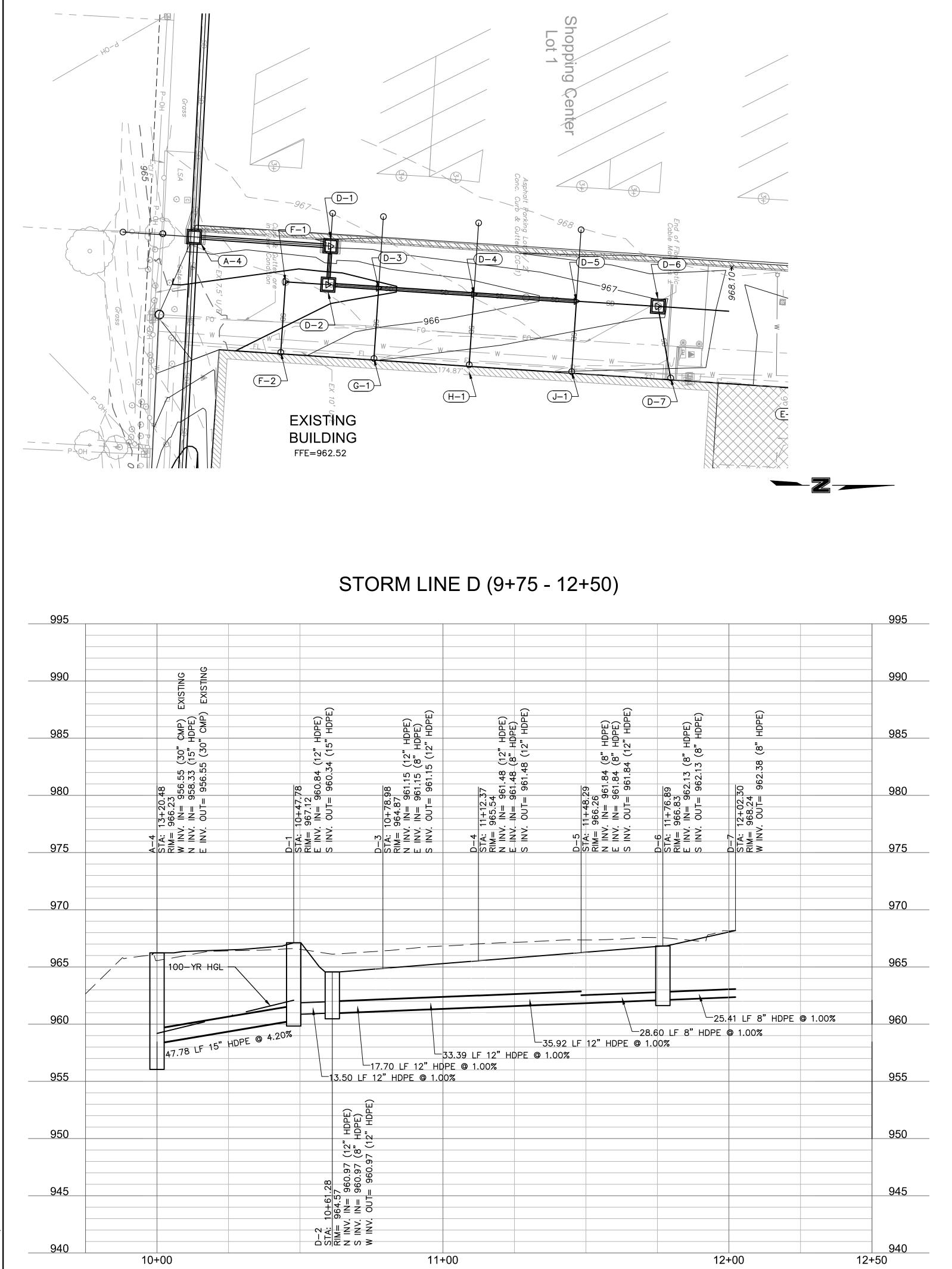


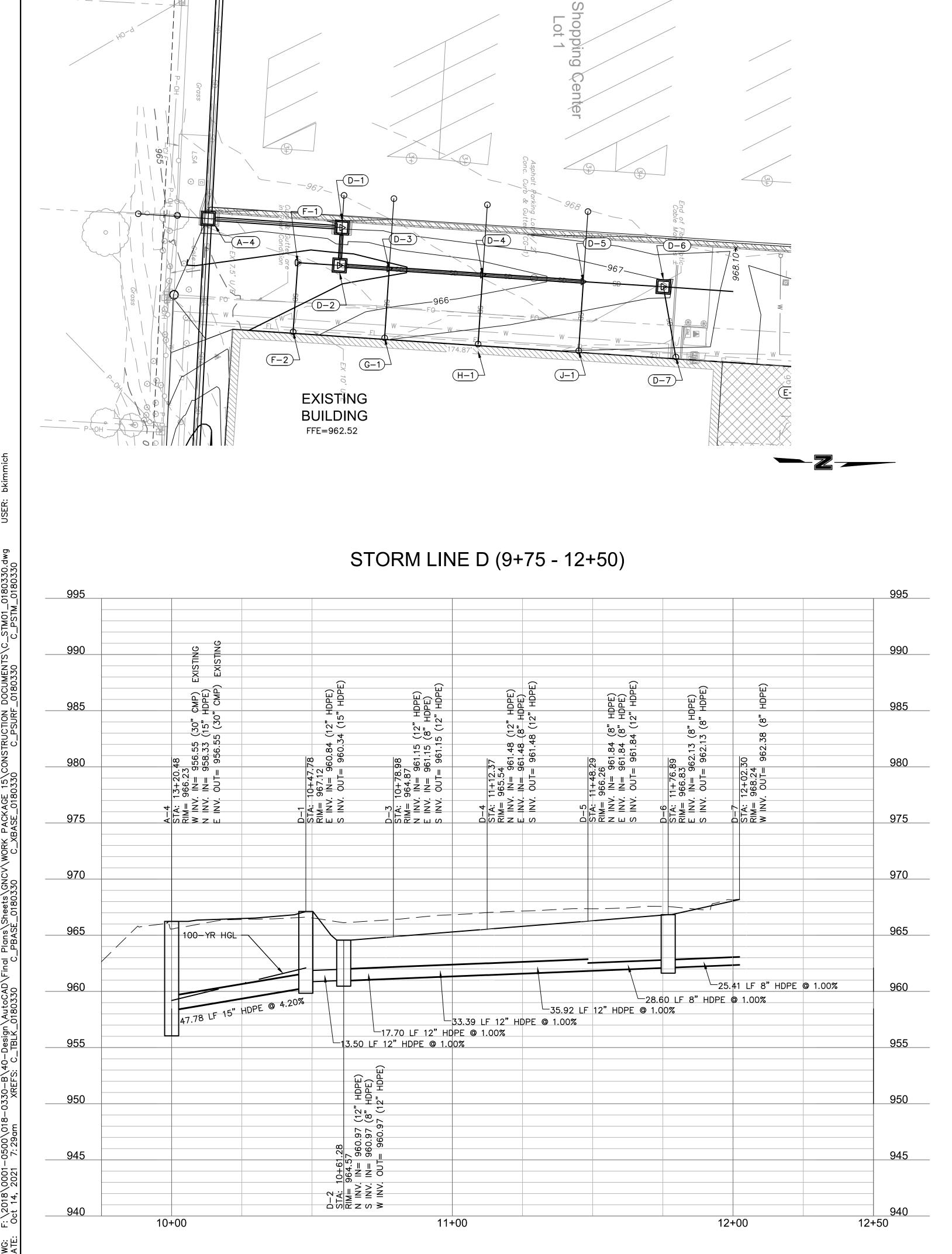

STORM LINE B (9+75 - 12+50)



180330. 180330. 'U N 0001 018/ 14,

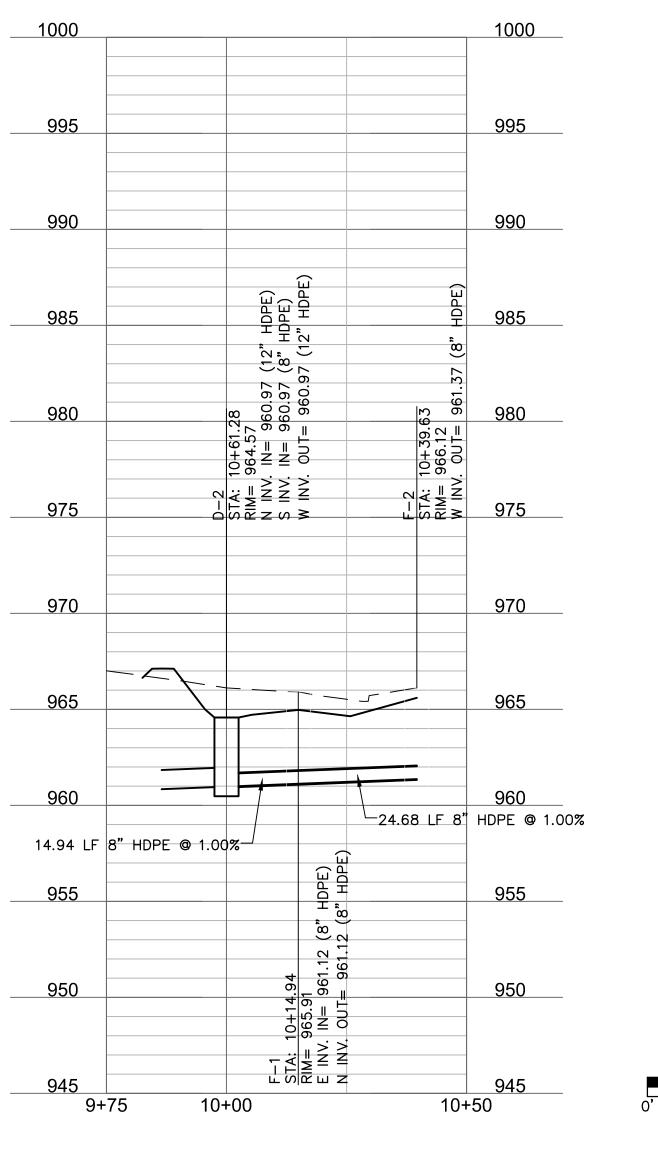
	STRUCTURES				
ID	DESCRIPTION				
A-1	EXISTING 5'X3' AREA INLET RECONSTRUCT TO AREA INLET WITH THROAT OPENING (N.) 10+00, 0.00' STORM LINE A RIM= 947.76 INV IN = 943.56 (30" CMP) INV IN = 943.36 (24" HDPE) N: 1000826.723; E: 2817077.444				
B-1	INSTALL STD. 4'X4' GRATE INLET 10+69.01, 0.00' STORM LINE B RIM= 948.16 INV IN = 944.70 (24" HDPE) INV OUT = 944.05 (24" HDPE) N: 1000895.688; E: 2817074.834				
B-2	INSTALL STD. 4'X4' JUNCTION BOX 11+47.69, 0.00' STORM LINE B RIM= 953.22 INV IN = 948.61 (24" CMP) INV OUT = 948.31 (24" HDPE) N: 1000974.321; E: 2817072.115				
B-3	INSTALL STD. 4'X4' GRATE INLET 11+89.96, 0.00' STORM LINE B RIM= 954.27 INV IN = 950.47 (15" HDPE) INV IN = 950.27 (15" HDPE) INV OUT = 949.97 (24" CMP) N: 1001013.366; E: 2817088.293				
B-4	INSTALL STD. 6'X4' NON-SETBACK CURB INLET 12+21.79, 0.00' STORM LINE B RIM= 956.25 INV OUT = 951.15 (15" HDPE) N: 1001042.746; E: 2817100.544				

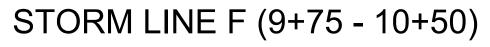


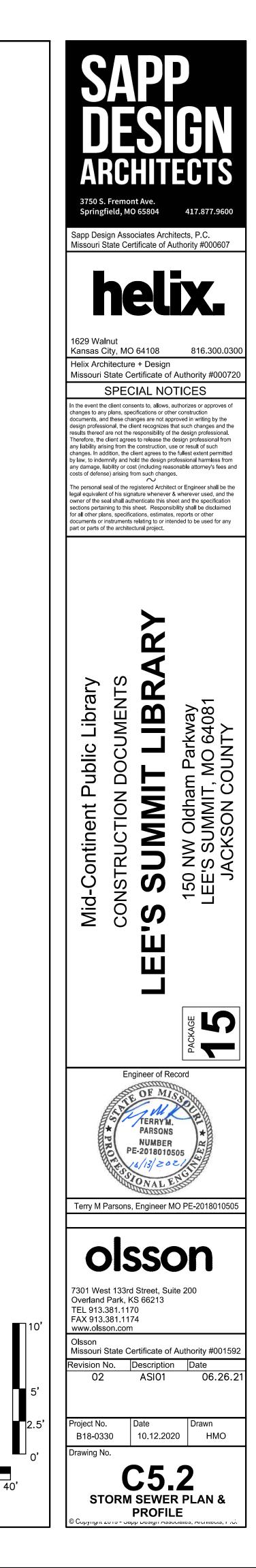


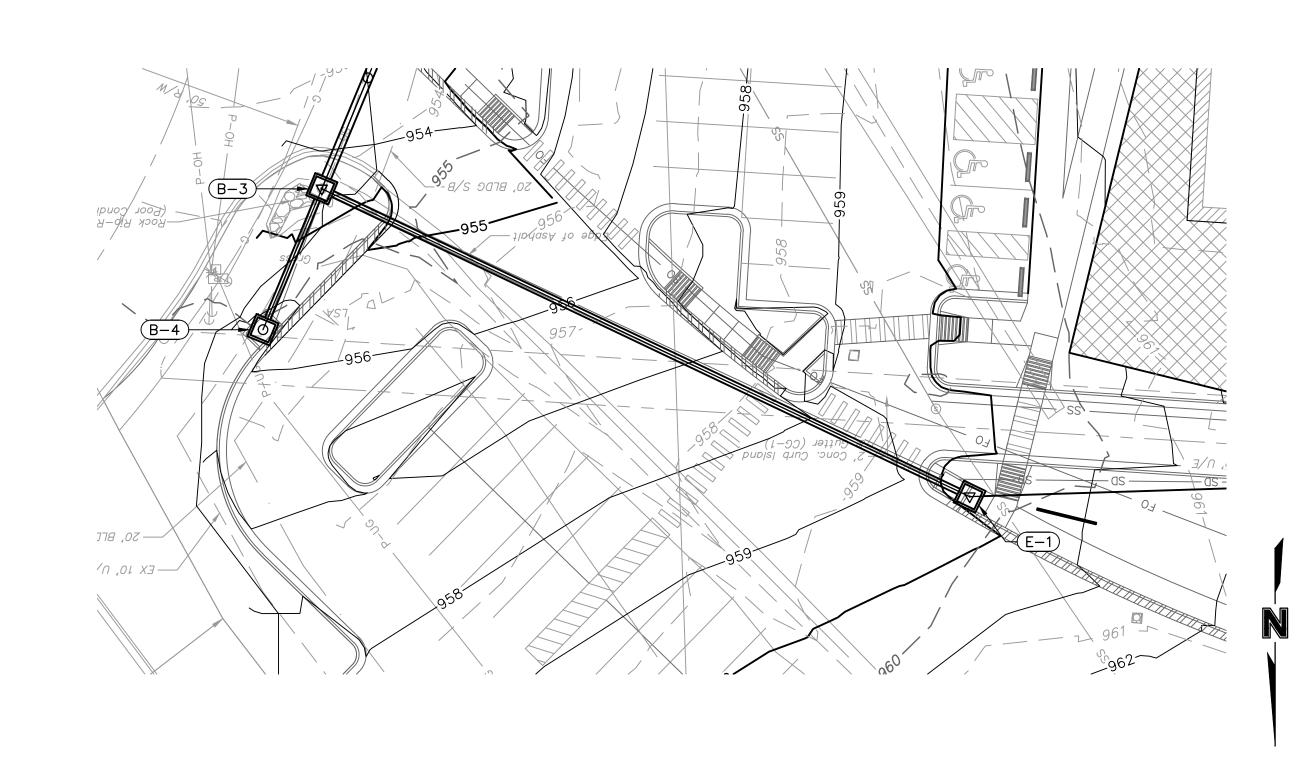
STORM LINE C (9+75 - 11+50)

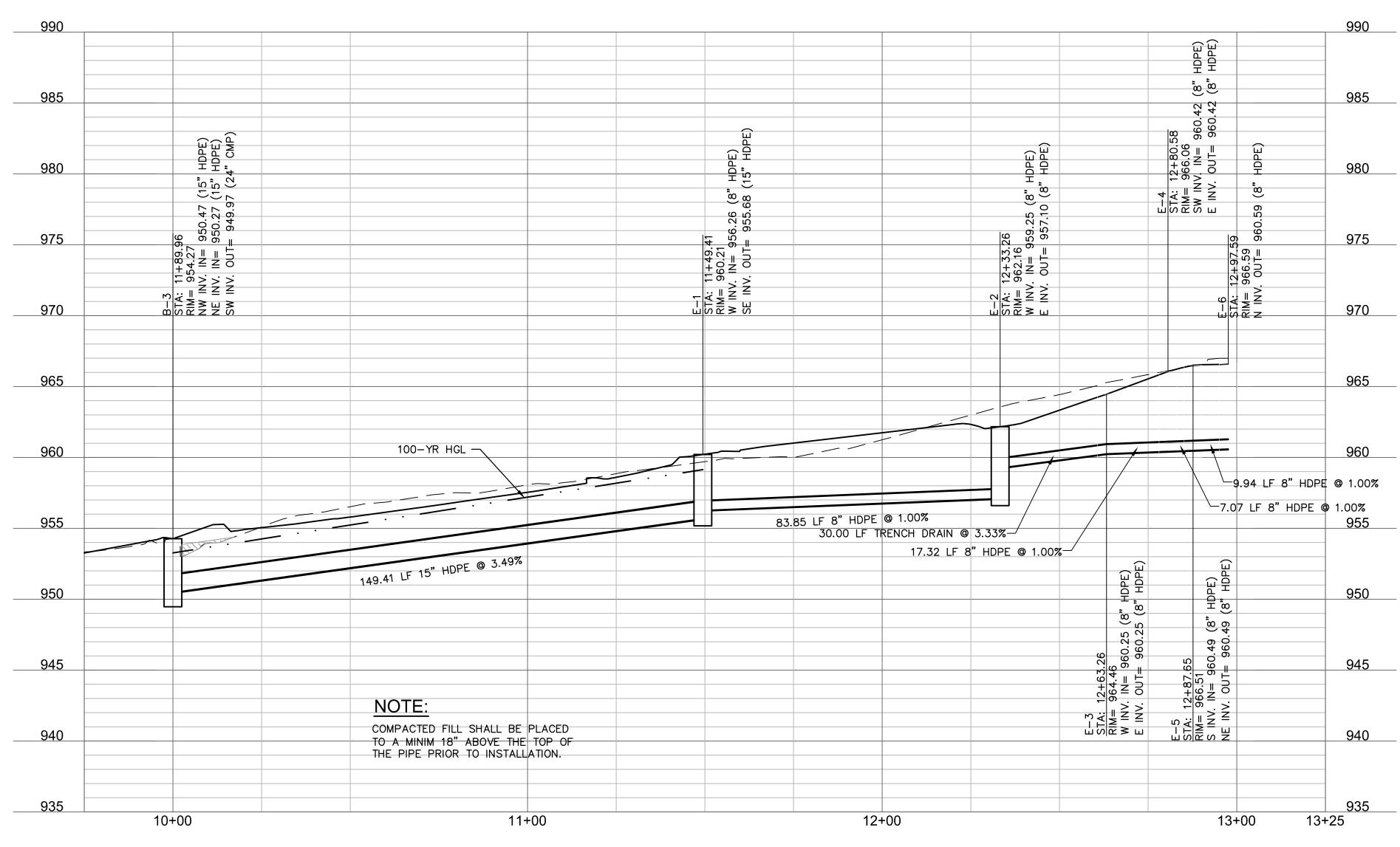
		985
		980
	HDPE)	
		975
	(15"	
	<u>م</u>	
	0 0 0 0	970
	0.15 0.17	
	C-1 STA: 11+03.86 RIM= 955.05 S INV. OUT= 95	
		965
		960
100-YR HGL -		955
		950
103.86 LF 15" HDPE @ 1.75%		
		945
		940
		935
		930
	11+00	


слрр
DESIGN
ARCHITECTS 3750 S. Fremont Ave. Springfield, MO 65804 417.877.9600
Sapp Design Associates Architects, P.C. Missouri State Certificate of Authority #000607
helix.
1629 Walnut Kansas City, MO 64108 816.300.0300 Helix Architecture + Design
Missouri State Certificate of Authority #000720 SPECIAL NOTICES
In the event the client consents to, allows, authorizes or approves of changes to any plans, specifications or other construction documents, and these changes are not approved in writing by the design professional, the client recognizes that such changes and the results thereof are not the responsibility of the design professional. Therefore, the client agrees to release the design professional from any liability arising from the construction, use or result of such changes. In addition, the client agrees to the fullest extent permitted by law, to indemnify and hold the design professional harmless from any damage, liability or cost (including reasonable attorney's fees and costs of defense) arising from such changes.
Mid-Continent Public Library CONSTRUCTION DOCUMENTS CONSTRUCTION DOCUMENTS LEE'S SUMMIT LIBRARY 150 NW Oldham Parkway LEE'S SUMMIT, MO 64081 JACKSON COUNTY
P ACKAGE
Engineer of Record
TERRYM. PARSONS NUMBER PE-2018010505
Terry M Parsons, Engineer MO PE-2018010505
olsson
7301 West 133rd Street, Suite 200 Overland Park, KS 66213 TEL 913.381.1170 FAX 913.381.1174 www.olsson.com
Www.olsson.com Olsson Missouri State Certificate of Authority #001592 Revision No. Description Date
Revision No. Description Date 02 ASI01 06.26.21 03 ASI02 08.30.21
Project No.DateDrawnB18-033010.12.2020HMO
Drawing No. C5.1 STORM SEWER PLAN & PROFILE © Cupyingin 2010- Dapp Design Associates, And Interces, 1.44

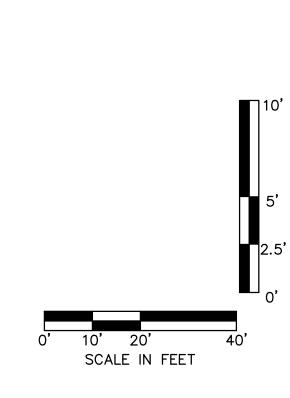


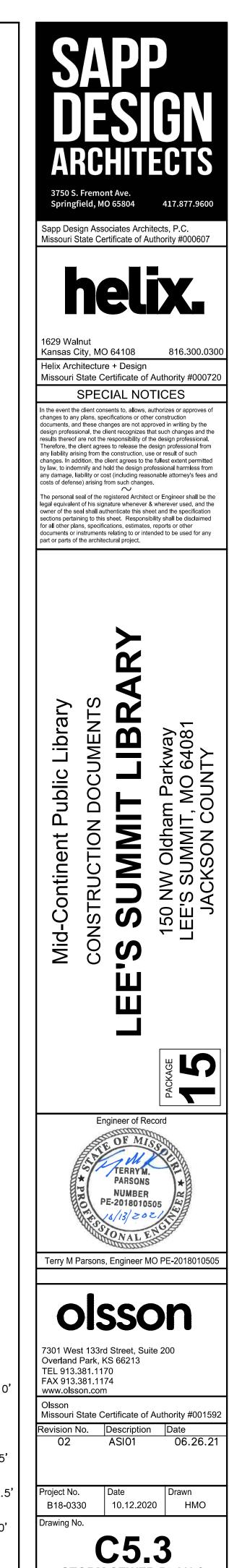

STRUCTURES ID DESCRIPTION IA INSTALL STD. 6'X4' NON-SETBACK ONE INLE ON EXISTING 30" HDPE 13+20.48, 0.00' STORM LINE A INV IN STALL STD. 6'X4' NON-SETBACK CURB I 13+20.48, 0.00' STORM LINE A INV IN 956.35 (30" CMP) INV UT = 956.55 (30" CMP) INV UT = 960.34 (12" HDPE) INV UT = 960.34 (12" HDPE) INV UT = 960.34 (15" HDPE) INV UT = 960.97 (12" HDPE) INV UT = 960.97 (12" HDPE) INV IN = 961.15 (12" HDPE) INV UT = 961.45 (12" HDPE) INV UT = 961.15 (12" HDPE) INV IN = 961.15 (12" HDPE) INV IN = 961.15 (12" HDPE) INV IN = 961.48 (12" HDPE) INV UT = 961.84 (8" HDPE) INV UT = 961.84 (8" HDPE) INV IN = 961.84 (8" HDPE) INV UT = 962.13 (8" HDPE) INV UT = 962.23 (0.00' STORM LINE D RIM= 968.24 INV UT = 962.23 (0.00' STORM LINE D RIM= 968.24 INV UT = 962.23 (0.00' STORM LINE D RIME 968.24 INV UT = 962.23 (0.00' STORM LINE D RIME
A-4 INSTALL STD. 6'X4' NON-SETBACK CURB INLET ON EXISTING 30" HDPE 13+20.48, 0.00' STORM LINE A RIM= 966.23 INV IN = 956.55 (30" CMP) INV IN = 956.55 (30" CMP) INV IN = 956.55 (30" CMP) N: 1000843.200; E: 2816757.391 D-1 INSTALL STD. 6'X4' NON-SETBACK CURB I 10+47.78, 0.00' STORM LINE D RIM= 967.12 INV IN = 960.34 (12" HDPE) N: 1000890.876; E: 2816760.610 D-2 INSTALL 15" DIA. NYLOPLAST BASIN WTH SOLID LID 10+61.28, 0.00' STORM LINE D RIM= 964.57 INV IN = 960.97 (12" HDPE) NV IN = 960.97 (12" HDPE) INV OUT = 960.97 (12" HDPE) INV IN = 960.97 (12" HDPE) INV IN = 960.97 (12" HDPE) NV IOUT = 960.97 (12" HDPE) NV IOUT = 961.515 (12" HDPE) NV IOUT = 961.15 (12" HDPE) NV IN = 961.15 (12" HDPE) NV IN = 961.15 (12" HDPE) INV IN = 961.15 (12" HDPE) INV IN = 961.15 (12" HDPE) NV IN = 961.15 (12" HDPE) NV IN = 961.48 (8" HDPE) INV IN = 961.48 (8" HDPE) INV IN = 961.48 (8" HDPE) NV IN = 961.48 (8" HDPE) INV IN = 961.84 (8" HDPE) INV IN = 962.13 (8" HDPE) INV IN = 962.13 (8" HDPE) INV IN = 962.13 (8" HDPE) INV IN = 962.23 (8" HDPE) D-7 CONNECT TO BUILDING RE: MEP I2+02.30, 0.00' STORM LINE D RIM 968.24 (B" HDPE)
N: 1000843.200; E: 2816757.391 INSTALL STD. 6'X4' NON-SETBACK CURB I 10+47.78, 0.00' STORM LINE D RIM= 967.12 INV IN = 960.34 (12" HDPE) INV OUT = 960.34 (15" HDPE) N: 1000890.876; E: 2816760.610 D-2 INSTALL 15" DIA. NYLOPLAST BASIN WITH SOLID LID 10+61.28, 0.00' STORM LINE D RIM= 964.57 INV IN = 960.97 (12" HDPE) INV IN = 960.97 (8" HDPE) INV IN = 960.97 (8" HDPE) INV IN = 960.97 (8" HDPE) INV IN = 960.97 (12" HDPE) N: 1000890.024; E: 2816774.083 D-3 INSTALL 12" X 12" X 8" HDPE TEE 10+78.98, 0.00' STORM LINE D RIM= 964.87 INV IN = 961.15 (12" HDPE) INV OUT = 961.15 (12" HDPE) INV IN = 961.15 (12" HDPE) INV OUT = 961.15 (12" HDPE) INV IN = 961.15 (12" HDPE) INV IN = 961.48 (12" HDPE) N: 1000907.681; E: 2816775.260 D-4 INSTALL 12" X 12" X 8" HDPE TEE 11+12.37, 0.00' STORM LINE D RIM= 965.54 INV IN = 961.48 (12" HDPE) N: 1000941.001; E: 2816777.453 D-4 INSTALL 12"X8"X8" HDPE TEE 11+48.29, 0.00' STORM LINE D RIM= 966.26 INV IN = 961.84 (8" HDPE) INV OUT = 961.84 (8" HDPE) INV IN = 962.13 (8" HDPE) INV IN = 962.13 (8" HDPE) INV OUT = 962.38 (8" HDPE) D-7 CONNECT TO BUILDING RE: MEP IL40.20, 0.00' STORM LINE D RIM= 966.24 INV OUT = 962.38 (8" HDPE)
D-2WITH SOLID LID 10+61.28, 0.00' STORM LINE D RIM= 964.57 INV IN = 960.97 (12" HDPE) INV OUT = 960.97 (8" HDPE) INV OUT = 960.97 (12" HDPE) NN 1000890.024; E: 2816774.083 $D-3$ INSTALL 12" X 12" X 8" HDPE TEE 10+78.98, 0.00' STORM LINE D RIM= 964.87 INV IN = 961.15 (12" HDPE) INV OUT = 961.15 (12" HDPE) NN' IN 00907.681; E: 2816775.260 $D-4$ INSTALL 12" X 12" X 8" HDPE TEE 11+12.37, 0.00' STORM LINE D RIM= 965.54 INV IN = 961.48 (12" HDPE) INV OUT = 961.44 (8" HDPE) INV OUT = 961.84 (8" HDPE) INV OUT = 961.84 (8" HDPE) INV IN = 961.84 (8" HDPE) INV OUT = 961.84 (12" HDPE) INV OUT = 961.84 (12" HDPE) INV OUT = 961.84 (12" HDPE) INV IN = 961.84 (8" HDPE) INV OUT = 961.84 (12" HDPE) INV OUT = 962.13 (8" HDPE) INV OUT = 962.13 (8" HDPE) INV OUT = 962.13 (8" HDPE) INV OUT = 962.33 (8" HDPE) $D-7$ CONNECT TO BUILDING RE: MEP I2+02.30, 0.00' STORM LINE D RIM= 968.24 INV OUT = 962.38 (8" HDPE)
D-3 10+78.98, 0.00' STORM LINE D RIM= 964.87 INV IN = 961.15 (12" HDPE) INV IN = 961.15 (8" HDPE) INV OUT = 961.15 (12" HDPE) NV OUT = 961.15 (12" HDPE) NV OUT = 961.15 (12" HDPE) NV IN = 961.48 (12" HDPE) INSTALL 12" X 12" X 8" HDPE TEE 11+12.37, 0.00' STORM LINE D RIM= 965.54 INV IN = 961.48 (12" HDPE) INV OUT = 961.48 (8" HDPE) INV OUT = 961.48 (8" HDPE) NV OUT = 961.48 (8" HDPE) NV OUT = 961.84 (8" HDPE) INV IN = 961.84 (8" HDPE) INV OUT = 961.84 (12" HDPE) INV IN = 961.84 (8" HDPE) INV OUT = 962.13 (8" HDPE) INV OUT = 962.38 (8" HDPE)
$D-4 \begin{cases} 11+12.37, 0.00' \\ STORM LINE D \\ RIM= 965.54 \\ INV IN = 961.48 (12" HDPE) \\ INV IN = 961.48 (8" HDPE) \\ INV OUT = 961.48 (12" HDPE) \\ N: 1000941.001; E: 2816777.453 \end{cases}$ $D-5 \begin{cases} INSTALL 12"X8"X8" HDPE TEE \\ 11+48.29, 0.00' \\ STORM LINE D \\ RIM= 966.26 \\ INV IN = 961.84 (8" HDPE) \\ INV IN = 961.84 (8" HDPE) \\ INV OUT = 961.84 (12" HDPE) \\ N: 1000976.838; E: 2816779.868 \end{cases}$ $D-6 \begin{cases} INSTALL 15" DIA. NYLOPLAST BASIN \\ WITH DOMED LID \\ 11+76.89, 0.00' \\ STORM LINE D \\ RIM= 966.83 \\ INV IN = 962.13 (8" HDPE) \\ NV OUT = 962.13 (8" HDPE) \\ NV OUT = 962.13 (8" HDPE) \\ N: 1001005.378; E: 2816781.680 \end{cases}$ $D-7 \begin{cases} CONNECT TO BUILDING \\ RE: MEP \\ 12+02.30, 0.00' \\ STORM LINE D \\ RIM= 968.24 \\ INV OUT = 962.38 (8" HDPE) \end{cases}$
 D-5 11+48.29, 0.00' STORM LINE D RIM= 966.26 INV IN = 961.84 (8" HDPE) INV IN = 961.84 (8" HDPE) INV OUT = 961.84 (12" HDPE) N: 1000976.838; E: 2816779.868 INSTALL 15" DIA. NYLOPLAST BASIN WITH DOMED LID 11+76.89, 0.00' STORM LINE D RIM= 966.83 INV IN = 962.13 (8" HDPE) INV OUT = 962.13 (8" HDPE) N: 1001005.378; E: 2816781.680 D-7 CONNECT TO BUILDING RE: MEP 12+02.30, 0.00' STORM LINE D RIM= 968.24 INV OUT = 962.38 (8" HDPE)
<pre>WITH DOMED LID 11+76.89, 0.00' STORM LINE D RIM= 966.83 INV IN = 962.13 (8" HDPE) INV OUT = 962.13 (8" HDPE) N: 1001005.378; E: 2816781.680</pre>
RE: MEP 12+02.30, 0.00' D-7 STORM LINE D RIM= 968.24 INV OUT = 962.38 (8" HDPE)


	STRUCTURES
ID	DESCRIPTION
D-2	INSTALL 15" DIA. NYLOPLAST BASIN WITH SOLID LID 10+61.28, 0.00' STORM LINE D RIM= 964.57 INV IN = 960.97 (12" HDPE) INV IN = 960.97 (8" HDPE) INV OUT = 960.97 (12" HDPE) N: 1000890.024; E: 2816774.083
F—1	INSTALL 8" HDPE 90 DEGREE BEND 10+14.94, 0.00' STORM LINE F RIM= 965.91 INV IN = 961.12 (8" HDPE) INV OUT = 961.12 (8" HDPE) N: 1000875.112; E: 2816773.101
F-2	CONNECT TO ROOF DRAIN. RE: MEP 10+39.63, 0.00' STORM LINE F RIM= 966.12 INV OUT = 961.37 (8" HDPE) N: 1000873.472; E: 2816797.728



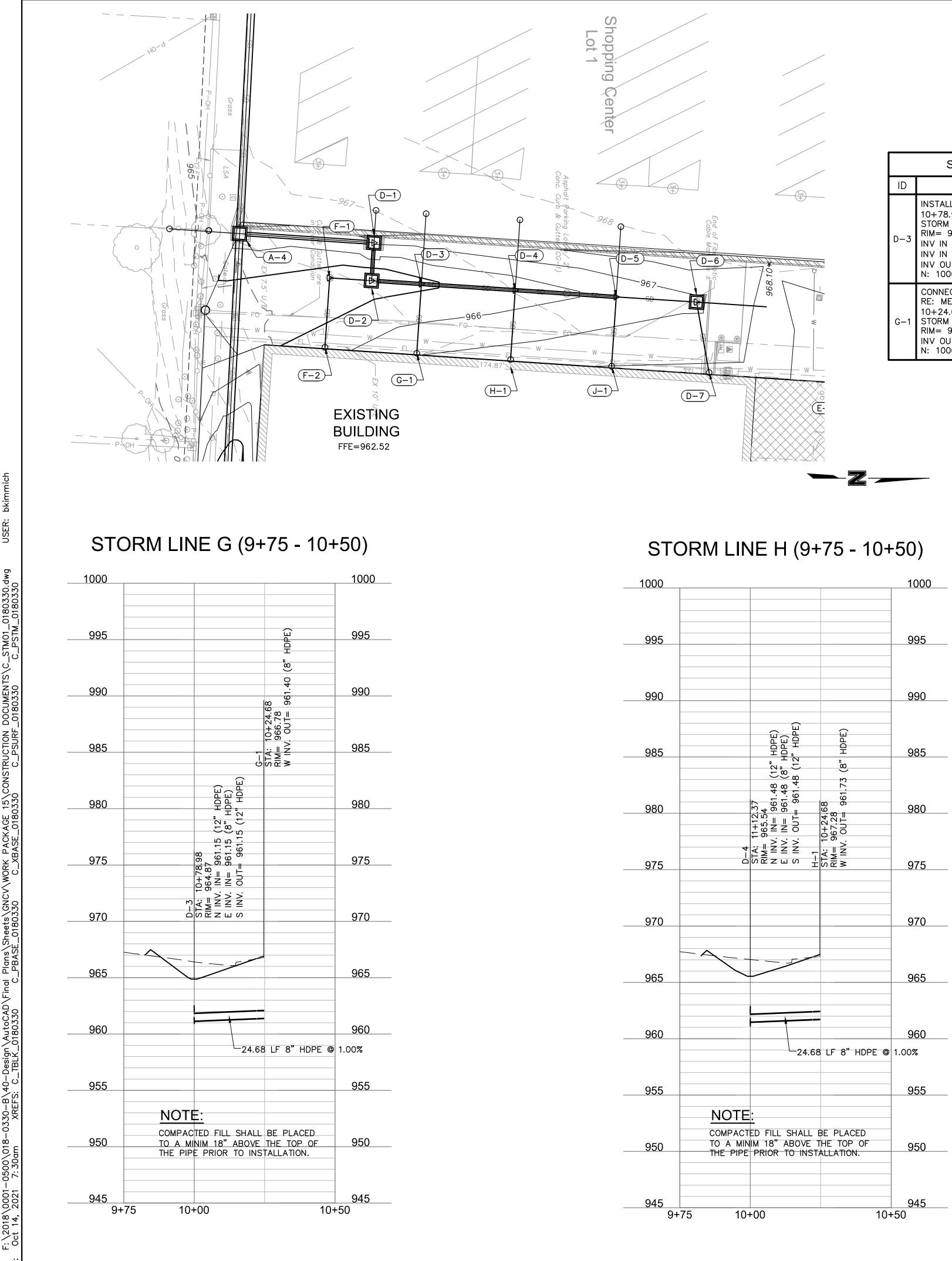
10' 20' SCALE IN FEET



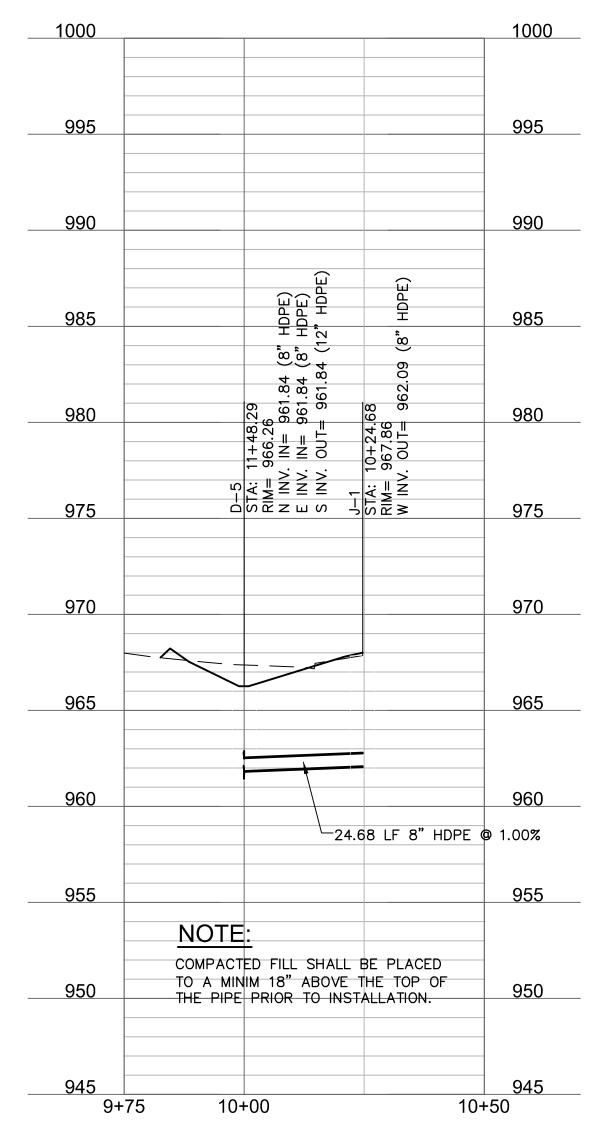


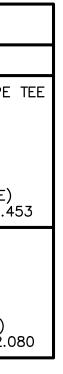
ט מי CUMEN⁻ 80330 Ζμ GE 15\(180330 sts∕ 803. Plans/S PBASE ssign BLK ⁄; й 0500) 7:29 F: \2018\0001-Oct 14, 2021 ä₽

STORM LINE E (9+75 - 13+25)

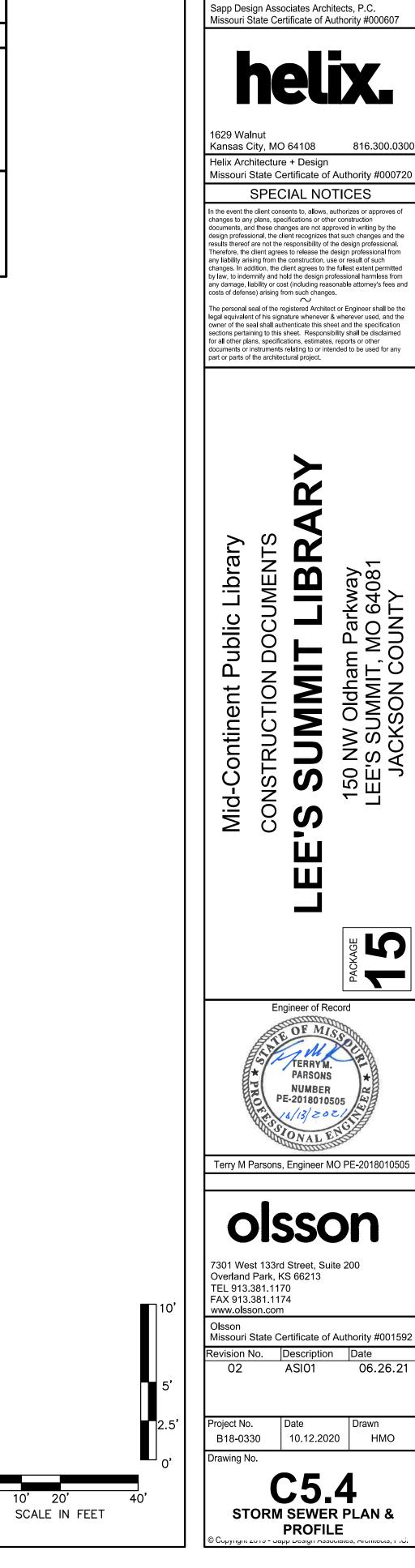

	STRUCTURES
ID	DESCRIPTION
B-3	INSTALL STD. 4'X4' GRATE INLET 11+89.96, 0.00' STORM LINE B RIM= 954.27 INV IN = 950.47 (15" HDPE) INV IN = 950.27 (15" HDPE) INV OUT = 949.97 (24" CMP) N: 1001013.366; E: 2817088.293
E-1	INSTALL STD. 6'X4' NON-SETBACK CURB INLET 11+49.41, 0.00' STORM LINE E RIM= 960.21 INV IN = 956.26 (8" HDPE) INV OUT = 955.68 (15" HDPE) N: 1001077.512; E: 2816953.349
E-2	INSTALL ACO FG200 FLOWDRAIN TRENCH DRAIN WITH F660 CLASS E IRON SLOTTED GRATE 12+33.26, 0.00' STORM LINE E RIM= 962.16 INV IN = 959.25 (8" HDPE) INV OUT = 957.10 (8" HDPE) N: 1001074.822; E: 2816869.545
E-3	END TRENCH DRAIN 12+63.26, 0.00' STORM LINE E RIM= 964.46 INV IN = 960.25 (8" HDPE) INV OUT = 960.25 (8" HDPE) N: 1001076.726; E: 2816839.605
E-4	INSTALL 45 DEGREE BEND 12+80.58, 0.00' STORM LINE E RIM= 966.06 INV IN = 960.42 (8" HDPE) INV OUT = 960.42 (8" HDPE) N: 1001077.825; E: 2816822.323
E-5	INSTALL 45 DEGREE BEND 12+87.65, 0.00' STORM LINE E RIM= 966.51 INV IN = 960.49 (8" HDPE) INV OUT = 960.49 (8" HDPE) N: 1001073.153; E: 2816817.015
	CONNECT TO ROOF DRAIN RE: MEP 12+97.59, 0.00' STORM LINE E RIM= 966.59 INV OUT = 960.59 (8" HDPE) N: 1001063.232; E: 2816816.384

STORM SEWER PLAN &


PROFILE



	STRUCTURES
ID	DESCRIPTION
D-3	INSTALL 12" X 12" X 8" HDPE TEE 10+78.98, 0.00' STORM LINE D RIM= 964.87 INV IN = 961.15 (12" HDPE) INV IN = 961.15 (8" HDPE) INV OUT = 961.15 (12" HDPE) N: 1000907.681; E: 2816775.260
G-1	CONNECT TO ROOF DRAIN. RE: MEP 10+24.68, 0.00' STORM LINE G RIM= 966.78 INV OUT = 961.40 (8" HDPE) N: 1000906.041; E: 2816799.887


	STRUCTURES
ID	DESCRIPTION
D-4	INSTALL 12" X 12" X 8" HDPE 11+12.37, 0.00' STORM LINE D RIM= 965.54 INV IN = 961.48 (12" HDPE) INV IN = 961.48 (8" HDPE) INV OUT = 961.48 (12" HDPE) N: 1000941.001; E: 2816777.4
H-1	CONNECT TO ROOF DRAIN. RE: MEP 10+24.68, 0.00' STORM LINE H RIM= 967.28 INV OUT = 961.73 (8" HDPE) N: 1000939.361; E: 2816802.0

STORM LINE J (9+75 - 10+50)

	STRUCTURES
ID	DESCRIPTION
D-5	INSTALL 12"X8"X8" HDPE TEE 11+48.29, 0.00' STORM LINE D RIM= 966.26 INV IN = 961.84 (8" HDPE) INV IN = 961.84 (8" HDPE) INV OUT = 961.84 (12" HDPE) N: 1000976.838; E: 2816779.868
J—1	CONNECT TO ROOF DRAIN. RE: MEP 10+24.68, 0.00' STORM LINE J RIM= 967.86 INV OUT = 962.09 (8" HDPE) N: 1000975.198; E: 2816804.495

IKUH

 3750 S. Fremont Ave.

 Springfield, MO 65804
 417.877.9600

816.300.0300

150 NW Oldham Parkway LEE'S SUMMIT, MO 64081 JACKSON COUNTY

Drawn

HMO

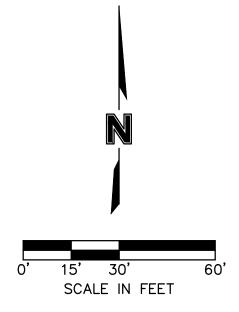
EXISTING CONDITIONS LEGEND

———— P-OH ————
P-UG
TEL
FO
G
W
<u></u>
SS

PROPERTY LINES RIGHT-OF-WAY LINES EASEMENT LINES OVERHEAD ELECTRIC UNDERGROUND ELECTRIC UNDERGROUND TELEPHONE UNDERGROUND FIBER OPTIC GAS LINE WATER LINE STORM SEWER LINE SANITARY SEWER LINE

PROPOSED CONDITIONS LEGEND

	— E —	
	- FO -	
— w —		— w ——
	— FP —	
SD		— SD ———
	<u> </u>	
	- 99 -	


PROPOSED UNDERGROUND ELECTRIC PROPOSED FIBER OPTIC PROPOSED WATER LINE PROPOSED FIRE PROTECTION LINE PROPOSED STORM SEWER LINE PROPOSED TURF DRAIN LINE PROPOSED SANITARY SEWER SERVICE ----- PROPOSED AGGREGATE PATH

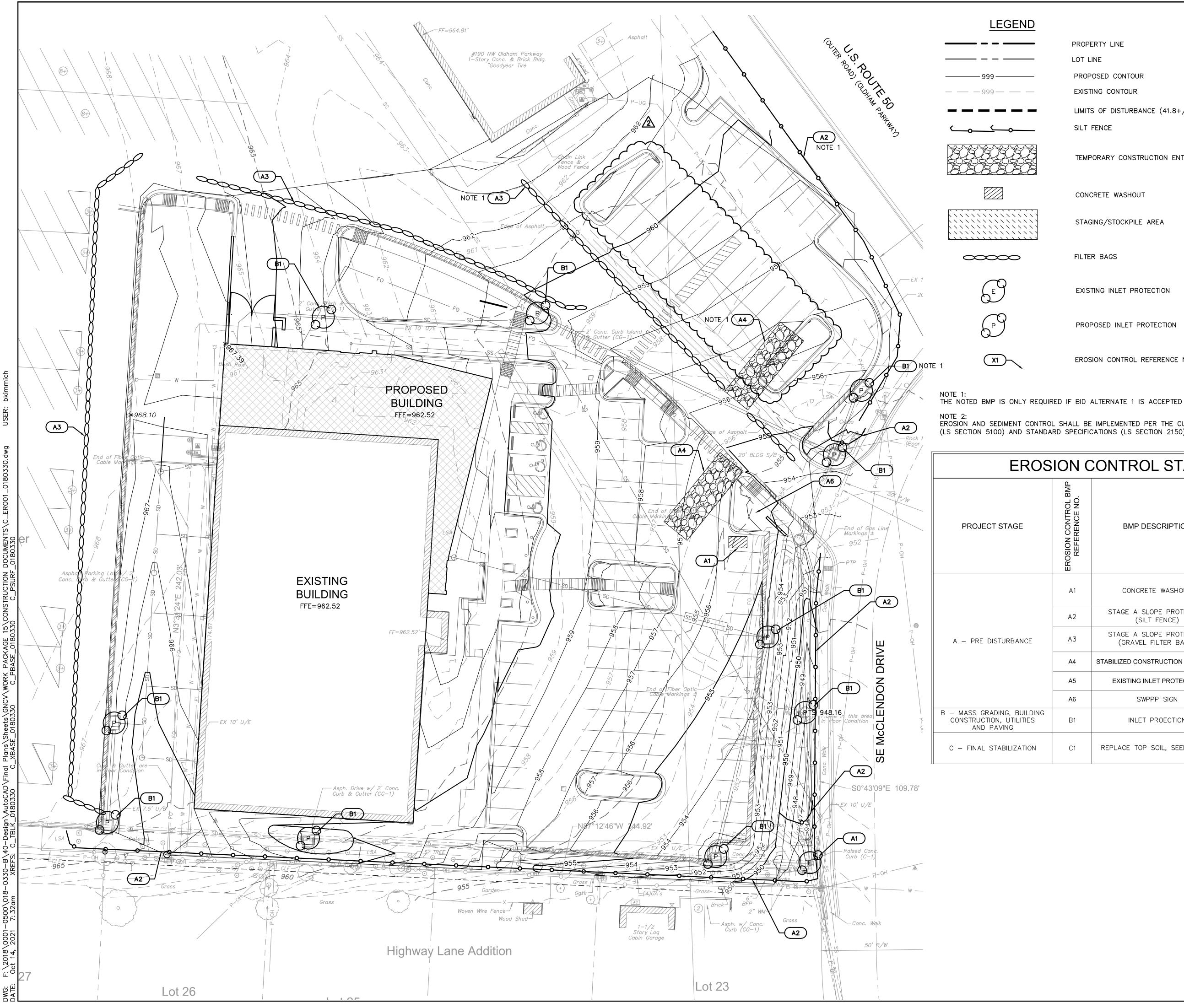


NOTE:

GENERAL STRUCTURE DESCRIPTIONS AND CALCULATIONS ARE PROVIDED ON SHEET C5.1. PIPE & STRUCTURES SIZES AND DIMENSIONS ARE PROVIDED ON THE TABLE. DRAINAGE AREAS OUTSIDE OF THE SURVEY AREA WERE DEFINED BY GOOGLE EARTH SURFACE

0.02 AC C-0.90 DRAINS OFF SITE



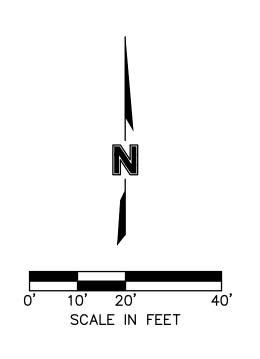


	SUMMIT LIB	KARY							
OB #: B18-0									
		15: 10 FE	AR SIUR		IN I NOFF C/	ALCUL		<u> </u>	
FROM	ТО	DIRECT AREA (ACRES)	TOTAL AREA (ACRES)	С	KC (K=1.00)	Tc (MIN)	FLOW TIME (MIN)	INTENSITY (IN/HR)	DESIGN Q (CFS)
A5		0.30		0.90	0.90	5.0	-	7.35	1.98
	A4		0.73	0.75	0.75	5.0	-	7.35	4.02
A4		0.43		0.89	0.89	5.0	-	7.35	2.81
	A3		1.16	0.78	0.78	5.0	-	7.35	6.65
A3		0.04		0.30	0.30	5.0	-	7.35	0.09
	A2		1.58	0.75	0.75	5.0	-	7.35	8.71
A2		0.45		0.70	0.70	5.0	-	7.35	2.32
	A1		4.72	0.70	0.70	5.0	-	7.35	24.28
A1		0.12		0.30	0.30	5.0	-	7.35	0.26
	A0		4.84	0.67	0.67	5.0	-	7.35	23.83
B4		0.30		0.72	0.72	5.0	_	7.35	1.59
	B3		0.30	0.72	0.72	5.0	-	7.35	1.59

										¢.	FORM SE			STRUC									
			URE TABLE							3													
.E: LEES 3	SUMMIT LIE	BRARY																					
		NS: 10 YE			INT																		
	TURES		-			ALCUL		5				ESIGN											
ROM	то	DIRECT AREA	TOTAL AREA	с	KC	Тс	FLOW	INTENSITY	DESIGN Q	DESCRIPTION	PIPE LENGTH	PIPE SLOPE	PIPE DIA	Q FULL	PIPE AREA	V FULL			МН ТОР	UPSTREAM		DOWNSTREAM WATER	Comments
		(ACRES)			(K=1.00)	(MIN)	(MIN)	(IN/HR)	(CFS)		(L.F.)	(%)	(IN)	(CFS)	(SQ.FT.)	(F/S)	V (F/S)		ELEVATION	FLOWLINE	FLOWLINE	ELEVATION	Comments
A5		0.30		0.90	0.90	5.0	-	7.35	1.98	EXISTING STRUCTURE									968.63				EXISTING STRUCTURE TO REMIAN
A4	A4	0.43	0.73	0.75	0.75 0.89	5.0 5.0	-	7.35 7.35	4.02	EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE	88.00	4.05	30	44.83	4.91	9.13	8.71	0.68	967.36	960.13	956.55	958.30	CONSTRU CT BOX OVER EXISTING PIPE
7.1	A3	0.10	1.16	0.78	0.78	5.0	-	7.35	6.65	EXISTING 30" CMP	92.00	4.05	30	44.83	4.91	9.13	10.10	0.70	007.00	956.55	952.84	954.64	
A3		0.04	4.50	0.30	0.30	5.0	-	7.35	0.09	4X4 AREA INLET OF EX. PIPE	400.00	4.05	20	44.00	4.04	0.40	40.00	0.70	960.88	050.04	0.45.00	0.47.00	CONSTRU CT BOX OVER EXISTING PIPE
A2	A2	0.45	1.58	0.75	0.75 0.70	5.0 5.0	-	7.35 7.35	8.71 2.32	EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE	182.00	4.05	30	44.83	4.91	9.13	10.93	0.72	952.68	952.84	945.23	947.88	CONSTRU CT BOX OVER EXISTING PIPE
	A1		4.72	0.70	0.70	5.0	-	7.35	24.28	EXISTING 30" CMP	47.00	4.05	30	44.83	4.91	9.13	14.63	1.06		945.23	943.58	946.52	
A1	A0	0.12	4.84	0.30	0.30 0.67	5.0 5.0	-	7.35 7.35	0.26	5x5 AREA INLET OVER EX. PIPE EXISTING 36" EQ CMP PIPE	118.00	1.60	36	49.99	7.07	7.07	10.27	0.82	947.76	943.58	941.69	945.55	RECONSTRUCT AREA INLET
			4.04	0.07	0.07	5.0	-	1.55	23.03		110.00	1.00	30	49.99	7.07	7.07	10.27	0.82		943.30	941.09	943.33	
B4		0.30	0.00	0.72	0.72	5.0	-	7.35	1.59	6x4 CURB INLET		0.70		40.70	4.00	0.77	0.07	0.70	955.15	054.45	050.07	054.00	
B3	B3	0.81	0.30	0.72	0.72 0.40	5.0	-	7.35	1.59 2.38	15 in. HDPE RECONS EX. AREA INLET	32.00	2.76	15	10.76	1.23	8.77	6.27	0.72	954.27	951.15	950.27	951.36	RECONSTRUCT AREA INLET
	B3		1.11	0.42	0.42	5.0	-	7.35	3.43	24 in. HDPE	42.00	3.22	24	40.70	3.14	12.96	7.86	0.69		949.97	948.61	950.29	
B2	B1	0.00	2.55	0.30	0.30 0.67	5.0 5.0	-	7.35 7.35	0.00	JUNCTION BOX 24 in. HDPE	79.00	3.32	24	41.33	3.14	13.16	11.52	0.99	952.61	948.31	945.70	947.51	CONSTRU CT BOX OVER EXISTING PIPE
B1		0.14	2.00	0.07	0.42	5.0	-	7.35	0.43	5x5 AREA INLET	79.00	5.52	24	41.55	5.14	15.10	11.52	0.99	948.50	940.31	943.70	547.51	
	A1		2.69	0.67	0.67	5.0	-	7.35	13.25	24 in. HDPE	69.00	1.90	24	31.27	3.14	9.95	9.52	1.02		945.20	943.88	946.57	
C1		0.38		0.68	0.68	5.0	-	7.35	1.90	6x4 CURB INLET									954.82				
0.	A2	0.00	0.38	0.68	0.68	5.0	-	7.35	1.90	15 in. HDPE	103.00	1.76	15	8.59	1.23	7.00	5.62	0.75	001.02	950.50	948.68	948.01	
		0.42		0.90	0.90	5.0		7.25	2.01										067.26				
D1	A4	0.43	0.43	0.89	0.89 0.71	5.0	-	7.35 7.35	2.81	6x4 CURB INLET 15 in. HDPE	48.00	1.76	15	8.59	1.23	7.00	5.90	0.78	967.36	962.50	962.02	958.30	
E2	E1	0.19	0.19	0.52	0.52 0.33	5.0 5.0	-	7.35	0.73	TRENCH DRAIN 15 in. HDPE	82.00	4.10	12	7.23	0.79	9.21	5.20	0.68	961.75	959.95	956.68	956.67	
E1		1.25	0.19	0.33	0.33	5.0	-	7.35	7.99	6x4 CURB INLET	02.00	4.10		1.20	0.79	9.21	5.20	0.00	960.23	909.90	930.00	330.07	
	B3		1.44	0.83	0.83	5.0	-	7.35	8.78	18 in. HDPE	148.00	3.49	18	19.68	1.77	11.13	10.81	1.33		955.68	950.47	951.36	
RM SEV																							
E: LEES	VER PIPE AN SUMMIT LIE		URE TABLE																				
E: LEES #: B18-(SUMMIT LIE 0330	BRARY																					
E: LEES #: B18-0 SIGN (SUMMIT LIE	BRARY		ORM EV		ALCUI		<u> </u>			PI	PE DESI	GN										
: LEES #: B18-0 61GN 0 6TRU0	SUMMIT LIE	NS: 100 Y	'EAR STC	DRM EV RUI	NOFF C		LATIONS		DESIGN Q		PIPE	PE DESI	PIPE	Q FULL	PIPE	V FULL	DESIGN		MH TOP	UPSTREAM	DOWNSTREAM	DOWNSTREAM	
: LEES #: B18-(BIGN C	SUMMIT LIE	NS: 100 Y DIRECT AREA	'EAR STC TOTAL AREA	DRM EV RUI c		Тс	FLOW TIME	INTENSITY (IN/HR)	DESIGN Q (CFS)	DESCRIPTION	PIPE LENGTH	PIPE SLOPE	PIPE DIA	Q FULL (CFS)	AREA	V FULL (F/S)	DESIGN V (F/S)		MH TOP ELEVATION		DOWNSTREAM	WATER	Comments
: LEES #: B18-(SIGN C TRUC	SUMMIT LIE	NS: 100 Y DIRECT AREA	'EAR STC	DRM EV RUI c	NOFF C кс	Тс	FLOW	INTENSITY		DESCRIPTION EXISTING STRUCTURE	PIPE	PIPE	PIPE DIA	(CES)		(F/S)							Comments EXISTING STRUCTURE TO REMIAN
: LEES #: B18-(5)GN (TRU(ROM	SUMMIT LIE	BRARY NS: 100 Y DIRECT AREA (ACRES) 0.30	'EAR STC TOTAL AREA	DRM EV RUI C 0.90 0.75	NOFF C KC (K=1.25) 1.00 0.94	Tc (MIN) 5.0 5.0	FLOW TIME (MIN)	INTENSITY (IN/HR) 10.32 10.32	(CFS) 3.10 7.06	EXISTING STRUCTURE EXISTING 30" CMP	PIPE LENGTH	PIPE SLOPE	PIPE DIA	(CES)	AREA	(F/S)			ELEVATION 968.63			WATER	EXISTING STRUCTURE TO REMIAN
: LEES #: B18-(SIGN C TRUC ROM	SUMMIT LIE	RARY NS: 100 Y DIRECT AREA (ACRES)	TOTAL AREA (ACRES)	DRM EV RUI C 0.90 0.75 0.89	NOFF C KC (K=1.25) 1.00 0.94 1.11	Tc (MIN) 5.0	FLOW TIME (MIN)	INTENSITY (IN/HR) 10.32 10.32 10.32	(CFS) 3.10 7.06 4.94	EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE	PIPE LENGTH (L.F.) 81.00	PIPE SLOPE (%) 4.05	PIPE DIA (IN) 30	(CFS) 44.83	AREA (SQ.FT.) 4.91	(F/S) 9.13	V (F/S) 10.28	0.70	ELEVATION	FLOWLINE 960.13	FLOWLINE 956.55	WATER ELEVATION 958.45	
: LEES #: B18-0 61GN 0 6TRU0	SUMMIT LIE	BRARY NS: 100 Y DIRECT AREA (ACRES) 0.30	'EAR STC TOTAL AREA (ACRES)	DRM EV RUI C 0.90 0.75 0.89 0.78 0.30	NOFF C KC (K=1.25) 1.00 0.94	Tc (MIN) 5.0 5.0	FLOW TIME (MIN)	INTENSITY (IN/HR) 10.32 10.32	(CFS) 3.10 7.06	EXISTING STRUCTURE EXISTING 30" CMP	PIPE LENGTH (L.F.)	PIPE SLOPE (%)	PIPE DIA (IN)	(CFS)	AREA (SQ.FT.)	(F/S)	V (F/S) 10.28 11.90	0.70	ELEVATION 968.63	FLOWLINE 960.13 956.55	FLOWLINE 956.55 952.84	WATER ELEVATION 958.45 954.90	EXISTING STRUCTURE TO REMIAN
:: LEES #: B18-(SIGN C STRUC ROM A5 A4 A3	SUMMIT LIE	BRARY NS: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.04	TOTAL AREA (ACRES)	DRMEV RUI C 0.90 0.75 0.89 0.78 0.30 0.75	NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.94	Tc (MIN) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	FLOW TIME (MIN)	INTENSITY (IN/HR) 10.32 10.32 10.32 10.32 10.32 10.32	(CFS) 3.10 7.06 4.94 11.67 0.15 15.29	EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP	PIPE LENGTH (L.F.) 81.00	PIPE SLOPE (%) 4.05	PIPE DIA (IN) 30 30	(CFS) 44.83	AREA (SQ.FT.) 4.91	(F/S) 9.13	V (F/S) 10.28	0.70	ELEVATION 968.63 967.36 960.88	FLOWLINE 960.13	FLOWLINE 956.55	WATER ELEVATION 958.45	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE
: LEES #: B18-(SIGN C TRUC ROM A5 A4 A3	SUMMIT LIE 0330 CONDITION TO TO A4 A3	RARY NS: 100 Y DIRECT AREA (ACRES) 0.30 0.43	TOTAL AREA (ACRES) 0.73	DRM EV RUI C 0.90 0.75 0.89 0.78 0.30	NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38	Tc (MIN) 5.0 5.0 5.0 5.0 5.0 5.0	FLOW TIME (MIN)	INTENSITY (IN/HR) 10.32 10.32 10.32 10.32 10.32	(CFS) 3.10 7.06 4.94 11.67 0.15	EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE	PIPE LENGTH (L.F.) 81.00 92.00	PIPE SLOPE (%) 4.05 4.05	PIPE DIA (IN) 30 30	(CFS) 44.83 44.83	AREA (SQ.FT.) 4.91 4.91	(F/S) 9.13 9.13	V (F/S) 10.28 11.90	0.70	ELEVATION 968.63 967.36	FLOWLINE 960.13 956.55	FLOWLINE 956.55 952.84	WATER ELEVATION 958.45 954.90	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIPE
: LEES #: B18-(SIGN C TRUC ROM A5 A4 A3 A2	SUMMIT LIE 0330 CONDITION TO A4 A3 A2 A1	BRARY NS: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.04	ZEAR STC TOTAL AREA (ACRES) 0.73 0.73 1.16 1.58 4.72	C 0.90 0.75 0.89 0.78 0.75 0.75 0.70 0.70 0.30	NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.94 0.88 0.88 0.38	Tc (MIN) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	FLOW TIME (MIN)	INTENSITY (IN/HR) 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32	(CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46	EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP	PIPE LENGTH (L.F.) 81.00 92.00 202.00 27.00	PIPE SLOPE (%) 4.05 4.05 4.05 4.05	PIPE DIA (IN) 30 30 30 30 30 30	(CFS) 44.83 44.83 44.83 44.83	AREA (SQ.FT.) 4.91 4.91 4.91 4.91	(F/S) 9.13 9.13 9.13 9.13 9.13	V (F/S) 10.28 11.90 12.85 16.95	0.70 0.76 0.82 1.87	ELEVATION 968.63 967.36 960.88	FLOWLINE 960.13 956.55 952.84 945.23	FLOWLINE 956.55 952.84 945.23 943.58	WATER ELEVATION 2014 958.45 954.90 949.91 949.91 946.70	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE
: LEES #: B18-(FIGN C TRUC ROM A5 A4 A3 A2	SUMMIT LIE 0330 CONDITION TURES TO A4 A3 A2	BRARY NS: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.43 0.04 0.45	'EAR STC TOTAL AREA (ACRES) 0.73 0.73 1.16 1.58	DRM EV RUI C 0.90 0.75 0.89 0.78 0.30 0.75 0.70 0.70	NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.94 0.88 0.88	Tc (MIN) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	FLOW TIME (MIN)	INTENSITY (IN/HR) 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32	(CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62	EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP	PIPE LENGTH (L.F.) 81.00 92.00 202.00	PIPE SLOPE (%) 4.05 4.05 4.05	PIPE DIA (IN) 30 30 30 30	(CFS) 44.83 44.83 44.83	AREA (SQ.FT.) 4.91 4.91 4.91	(F/S) 9.13 9.13 9.13	V (F/S) 10.28 11.90 12.85	0.70 0.76 0.82	ELEVATION 968.63 967.36 960.88 952.68	FLOWLINE 960.13 956.55 952.84	FLOWLINE 956.55 952.84 945.23	WATER ELEVATION 2007 958.45 954.90 949.91	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE
: LEES #: B18-(SIGN C TRUC ROM A5 A4 A3 A2 A1	SUMMIT LIE 0330 CONDITION TO A4 A3 A2 A1	BRARY NS: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.43 0.04 0.45	ZEAR STC TOTAL AREA (ACRES) 0.73 0.73 1.16 1.58 4.72	C 0.90 0.75 0.89 0.78 0.75 0.75 0.70 0.70 0.30	NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.94 0.88 0.88 0.38	Tc (MIN) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	FLOW TIME (MIN)	INTENSITY (IN/HR) 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32	(CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46	EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP	PIPE LENGTH (L.F.) 81.00 92.00 202.00 27.00	PIPE SLOPE (%) 4.05 4.05 4.05 4.05	PIPE DIA (IN) 30 30 30 30 30 30	(CFS) 44.83 44.83 44.83 44.83	AREA (SQ.FT.) 4.91 4.91 4.91 4.91	(F/S) 9.13 9.13 9.13 9.13 9.13	V (F/S) 10.28 11.90 12.85 16.95	0.70 0.76 0.82 1.87	ELEVATION 968.63 967.36 960.88 952.68	FLOWLINE 960.13 956.55 952.84 945.23	FLOWLINE 956.55 952.84 945.23 943.58	WATER ELEVATION 2014 958.45 954.90 949.91 949.91 946.70	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE
: LEES #: B18-(5IGN C TRUC ROM A5 A4 A3 A2 A1 B4	SUMMIT LIE 0330 CONDITION TO A4 A3 A2 A1	BRARY NS: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.43 0.43 0.45 0.45 0.12 0.12	ZEAR STC TOTAL AREA (ACRES) 0.73 0.73 1.16 1.58 4.72	C 0.90 0.75 0.89 0.75 0.30 0.75 0.30 0.70 0.70 0.70 0.72	NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.38 0.88 0.88 0.88 0.38 0.84 0.84	Tc (MIN) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	FLOW TIME (MIN)	INTENSITY (IN/HR) 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32	(CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46 41.83 2.79 2.79 2.79	EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OVER EX. PIPE EXISTING 36" EQ CMP PIPE 6x4 CURB INLET 15 in. HDPE	PIPE LENGTH (L.F.) 81.00 92.00 202.00 27.00	PIPE SLOPE (%) 4.05 4.05 4.05 4.05	PIPE DIA (IN) 30 30 30 30 30 30	(CFS) 44.83 44.83 44.83 44.83	AREA (SQ.FT.) 4.91 4.91 4.91 4.91	(F/S) 9.13 9.13 9.13 9.13 9.13	V (F/S) 10.28 11.90 12.85 16.95	0.70 0.76 0.82 1.87	ELEVATION 968.63 967.36 960.88 952.68 952.68 947.76 955.15	FLOWLINE 960.13 956.55 952.84 945.23	FLOWLINE 956.55 952.84 945.23 943.58	WATER ELEVATION 2014 958.45 954.90 949.91 949.91 946.70	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE RECONSTRUCT AREA INLET
: LEES #: B18-(5IGN C TRUC ROM A5 A4 A3 A2 A1 B4	SUMMIT LIE 0330 CONDITION TO TO A4 A3 A2 A1 A0	BRARY NS: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.43 0.45 0.45 0.12	ZEAR STC TOTAL AREA (ACRES) 0.73 0.73 1.16 1.58 4.72 4.84	C 0.90 0.75 0.89 0.75 0.30 0.75 0.30 0.70 0.30 0.72 0.72 0.40	NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.38 0.94 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.8	Tc (MIN) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	FLOW TIME (MIN)	INTENSITY (IN/HR) 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32	(CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46 41.83 2.79 2.79 2.79 4.18	EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OVER EX. PIPE EXISTING 36" EQ CMP PIPE 6X4 CURB INLET 15 in. HDPE RECONS EX. AREA INLET	PIPE LENGTH (L.F.) 81.00 92.00 202.00 27.00 118.00 110.00	PIPE SLOPE (%) 4.05 4.05 4.05 4.05 1.60 2.76	PIPE DIA (IN) 30 30 30 30 30 30 30 30 30 15 15	(CFS) 44.83 44.83 44.83 44.83 49.99	AREA (SQ.FT.) 4.91 4.91 4.91 4.91 7.07 7.07	(F/S) 9.13 9.13 9.13 9.13 9.13 7.07 8.77	V (F/S) 10.28 11.90 12.85 16.95 11.91 7.35	0.70 0.70 0.76 0.82 1.87 1.14 0.83	ELEVATION 968.63 967.36 960.88 952.68 947.76	FLOWLINE 960.13 956.55 952.84 945.23 943.58	FLOWLINE 956.55 952.84 945.23 943.58 941.69	WATER ELEVATION 2014 958.45 954.90 954.90 949.91 946.70 946.70 946.54 952.98	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE
:: LEES #: B18-(51GN C TRUC ROM A5 A4 A3 A2 A1 B4 B3	SUMMIT LIE 0330 CONDITION TURES TO A4 A3 A2 A1 A0 B3	BRARY NS: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.43 0.43 0.45 0.45 0.12 0.12	ZEAR STC TOTAL AREA (ACRES) 0.73 0.73 1.16 1.58 4.72 4.84 0.30	C 0.90 0.75 0.89 0.75 0.30 0.75 0.30 0.70 0.70 0.70 0.72	NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.38 0.88 0.88 0.88 0.38 0.84 0.84	Tc (MIN) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	FLOW TIME (MIN)	INTENSITY (IN/HR) 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32	(CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46 41.83 2.79 2.79 2.79	EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OVER EX. PIPE EXISTING 36" EQ CMP PIPE 6x4 CURB INLET 15 in. HDPE	PIPE LENGTH (L.F.) 81.00 92.00 202.00 27.00 118.00	PIPE SLOPE (%) 4.05 4.05 4.05 4.05 1.60	PIPE DIA (IN) 30 30 30 30 30 30 30 30 30 30	(CFS) 44.83 44.83 44.83 44.83 49.99	AREA (SQ.FT.) 4.91 4.91 4.91 4.91 7.07	(F/S) 9.13 9.13 9.13 9.13 7.07	V (F/S) 10.28 11.90 12.85 16.95 11.91	0.70 0.76 0.82 1.87 1.14	ELEVATION 968.63 967.36 960.88 952.68 952.68 947.76 955.15	FLOWLINE 960.13 956.55 952.84 945.23 943.58 943.58	FLOWLINE 956.55 952.84 945.23 943.58 941.69 950.27	WATER ELEVATION 2007 958.45 954.90 954.90 949.91 946.70 946.70 946.54	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE RECONSTRUCT AREA INLET
ELEES E B18-(IGN C TRUC ROM A5 A4 A3 A2 A1 B4 B4 B3 B3 B2	SUMMIT LIE 0330 CONDITION TURES TO A4 A3 A2 A1 A0 B3	BRARY NS: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.43 0.43 0.43 0.43 0.45 0.12 0.12 0.30 0.30 0.30 0.30 0.30	ZEAR STC TOTAL AREA (ACRES) 0.73 0.73 1.16 1.58 4.72 4.84 0.30	C 0.90 0.75 0.89 0.75 0.30 0.75 0.30 0.70 0.30 0.72 0.40 0.42 0.30 0.42	NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.38 0.38 0.88 0.38 0.84 0.38 0.84	Tc (MIN) 5.0	FLOW TIME (MIN)	INTENSITY (IN/HR) 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32	(CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46 41.83 2.79 2.79 2.79 4.18 6.01 0.00 22.04	EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OVER EX. PIPE EXISTING 36" EQ CMP PIPE EXISTING 36" EQ CMP PIPE ACCONS EX AREA INLET 15 in. HDPE RECONS EX. AREA INLET 24 in. HDPE JUNCTION BOX 24 in. HDPE	PIPE LENGTH (L.F.) 81.00 92.00 202.00 27.00 118.00 110.00	PIPE SLOPE (%) 4.05 4.05 4.05 4.05 1.60 2.76	PIPE DIA (IN) 30 30 30 30 30 30 30 30 30 15 15	(CFS) 44.83 44.83 44.83 44.83 49.99	AREA (SQ.FT.) 4.91 4.91 4.91 4.91 7.07 7.07	(F/S) 9.13 9.13 9.13 9.13 9.13 7.07 8.77	V (F/S) 10.28 11.90 12.85 16.95 11.91 7.35	0.70 0.70 0.76 0.82 1.87 1.14 0.83	ELEVATION 968.63 967.36 960.88 952.68 947.76 955.15 955.15 954.27 952.61	FLOWLINE 960.13 956.55 952.84 945.23 943.58 943.58	FLOWLINE 956.55 952.84 945.23 943.58 941.69 950.27	WATER ELEVATION 2014 958.45 954.90 954.90 949.91 946.70 946.70 946.54 952.98	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE RECONSTRUCT AREA INLET RECONSTRUCT AREA INLET
: LEES 4: B18-(IGN C IGN C IGN C A5 A4 A3 A2 A1 B4 B4 B3 B2	SUMMIT LIE 0330 CONDITION TURES TO A4 A3 A2 A1 A1 A0 B3 B3 B3	BRARY NS: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.43 0.43 0.44 0.45 0.12 0.12 0.30 0.30 0.30	ZEAR STC TOTAL AREA (ACRES) 0.73 1.16 1.58 4.72 4.84 0.30 1.11	C 0.90 0.75 0.89 0.75 0.30 0.75 0.30 0.70 0.70 0.72 0.40 0.42 0.30	NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.38 0.88 0.88 0.88 0.88 0.88 0.8	Tc (MIN) 5.0	FLOW TIME (MIN)	INTENSITY (IN/HR) 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32	(CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46 41.83 2.79 2.79 2.79 4.18 6.01 0.00	EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OVER EX. PIPE EXISTING 36" EQ CMP PIPE 6X4 CURB INLET 15 in. HDPE RECONS EX. AREA INLET 24 in. HDPE JUNCTION BOX	PIPE LENGTH (L.F.) 81.00 92.00 202.00 202.00 118.00 118.00 55.00	PIPE SLOPE (%) 4.05 4.05 4.05 4.05 1.60 2.76 3.22	PIPE DIA (IN) 30 30 30 30 30 30 30 30 30 30 30 15 15 24	(CFS) 44.83 44.83 44.83 44.83 49.99 10.76 40.70	AREA (SQ.FT.) 4.91 4.91 4.91 4.91 7.07 7.07 1.23 3.14	(F/S) 9.13 9.13 9.13 9.13 9.13 7.07 8.77 12.96	V (F/S) 10.28 11.90 12.85 16.95 11.91 7.35 9.27	0.70 0.70 0.76 0.82 1.87 1.14 0.83 0.83	ELEVATION 968.63 967.36 960.88 952.68 947.76 955.15 954.27	FLOWLINE 960.13 956.55 952.84 945.23 943.58 943.58 943.58	FLOWLINE 956.55 952.84 945.23 943.58 941.69 950.27 948.61	WATER ELEVATION 958.45 954.90 949.91 946.70 946.70 946.54 9946.54 9952.98 951.61	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE RECONSTRUCT AREA INLET RECONSTRUCT AREA INLET
: LEES #: B18-(5)GN C 5)GN C 7 ROM A5 A4 A3 A2 A1 B4 B3 B2 B1	SUMMIT LIE 0330 CONDITION TO TO A4 A3 A2 A1 A1 A0 B3 B3 B3 B1	BRARY NS: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.43 0.43 0.43 0.45 0.45 0.12 0.12 0.30 0.30 0.30 0.12 0.30 0.12	ZEAR STC TOTAL AREA (ACRES) 0.73 1.16 1.58 4.72 4.84 0.30 1.11 2.55	C 0.90 0.75 0.89 0.75 0.30 0.75 0.30 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.71 0.72 0.72 0.72 0.40 0.42 0.30 0.67 0.42 0.67	NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.38 0.38 0.88 0.88 0.38 0.84 0.90 0.90 0.90 0.90 0.50 0.50 0.53 0.38 0.38 0.38 0.38	Tc (MIN) 5.0	FLOW TIME (MIN)	INTENSITY (IN/HR) 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32	(CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46 41.83 2.79 2.79 2.79 4.18 6.01 0.00 22.04 0.76 23.25	EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OVER EX. PIPE EXISTING 36" EQ CMP PIPE EXISTING 36" EQ CMP PIPE ARECONS EX. AREA INLET 15 in. HDPE RECONS EX. AREA INLET 24 in. HDPE CURB INLET 24 in. HDPE	PIPE LENGTH (L.F.) 81.00 92.00 202.00 27.00 118.00 118.00 55.00 67.00	PIPE SLOPE (%) 4.05 4.05 4.05 4.05 1.60 2.76 3.22 3.32	PIPE DIA (IN) 30 30 30 30 30 30 30 30 30 30 30 30 30	(CFS) 44.83 44.83 44.83 44.83 44.83 49.99 10.76 40.70 41.33	AREA (SQ.FT.) 4.91 4.91 4.91 4.91 7.07 7.07 1.23 3.14 3.14	(F/S) 9.13 9.13 9.13 9.13 9.13 7.07 8.77 12.96 13.16	V (F/S) 10.28 11.90 12.85 16.95 11.91 7.35 9.27 13.34	0.70 0.76 0.82 0.82 1.87 1.14 0.83 0.83 0.74 1.65	ELEVATION 968.63 967.36 960.88 960.88 952.68 947.76 955.15 955.15 954.27 952.61 948.50	FLOWLINE 960.13 956.55 952.84 945.23 945.23 943.58 943.58 949.97 949.97 948.31	FLOWLINE 956.55 952.84 945.23 943.58 943.58 941.69 950.27 950.27 948.61	WATER ELEVATION 2 958.45 954.90 954.90 949.91 946.70 946.70 946.54 9946.54 9952.98 952.98 952.98 952.98 952.98	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE RECONSTRUCT AREA INLET RECONSTRUCT AREA INLET
: LEES #: B18-(5)GN C 5)GN C 7 ROM A5 A4 A3 A2 A1 B4 B3 B2 B1	SUMMIT LIE 0330 CONDITION TURES TO A4 A3 A3 A2 A1 B3 B3 B3 B3 B1 A1	BRARY	ZEAR STC TOTAL AREA (ACRES) 0.73 1.16 4.72 4.84 0.30 1.11 2.55 2.69	C 0.90 0.75 0.89 0.75 0.70 0.71 0.72 0.72 0.72 0.42 0.30 0.67 0.42 0.67 0.67 0.67 0.68	NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.38 0.38 0.88 0.88 0.88 0.88 0.8	Tc (MIN) 5.0	FLOW TIME (MIN) - - - - - - - - - - - - - - - - - - -	INTENSITY (IN/HR) 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32	(CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46 41.83 2.79 2.79 2.79 4.18 6.01 0.00 22.04 0.76 23.25 3.33	EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OVER EX. PIPE EXISTING 36" EQ CMP PIPE EXISTING 36" EQ CMP PIPE EXISTING 36" EQ CMP PIPE ACCURB INLET 15 in. HDPE RECONS EX. AREA INLET 24 in. HDPE CURB INLET 24 in. HDPE CURB INLET 24 in. HDPE	PIPE LENGTH (L.F.) 81.00 92.00 202.00 27.00 118.00 118.00 55.00 67.00 69.00	PIPE SLOPE (%) 4.05 4.05 4.05 4.05 1.60 2.76 3.22 3.32 1.90	PIPE DIA (IN) 30 30 30 30 30 30 30 30 30 30 30 30 30	(CFS) 44.83 44.83 44.83 44.83 49.99 10.76 40.70 41.33 31.27	AREA (SQ.FT.) 4.91 4.91 4.91 4.91 7.07 1.23 3.14 3.14 3.14	(F/S) 9.13 9.13 9.13 9.13 9.13 9.13 7.07 8.77 12.96 13.16 9.95	V (F/S) 10.28 11.90 12.85 16.95 11.91 7.35 9.27 13.34 10.88	0.70 0.76 0.82 1.87 1.14 0.83 0.74 0.74 1.65 1.76	ELEVATION 968.63 967.36 960.88 952.68 947.76 955.15 955.15 954.27 952.61	FLOWLINE 960.13 956.55 955.84 945.23 943.58 943.58 949.97 949.97 948.31 945.20	FLOWLINE 956.55 952.84 952.84 945.23 943.58 941.69 941.69 950.27 950.27 948.61 945.70 945.70 943.88	WATER ELEVATION 958.45 954.90 949.91 946.70 946.70 946.54 9946.54 9952.98 952.98 951.61 9947.26 947.26	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE RECONSTRUCT AREA INLET RECONSTRUCT AREA INLET
ELEES E B18-0 IGN C TRUC COM A5 A4 A3 A2 A1 B4 B4 B3 B3 B1	SUMMIT LIE 0330 CONDITION TO TO A4 A3 A2 A1 A1 A0 B3 B3 B3 B1	BRARY NS: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.43 0.43 0.43 0.45 0.45 0.12 0.12 0.30 0.30 0.30 0.12 0.30 0.12	ZEAR STC TOTAL AREA (ACRES) 0.73 1.16 1.58 4.72 4.84 0.30 1.11 2.55	C 0.90 0.75 0.89 0.75 0.30 0.75 0.30 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.71 0.72 0.72 0.72 0.40 0.42 0.30 0.67 0.42 0.67	NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.38 0.38 0.88 0.88 0.38 0.84 0.90 0.90 0.90 0.90 0.50 0.50 0.53 0.38 0.38 0.38 0.38	Tc (MIN) 5.0	FLOW TIME (MIN)	INTENSITY (IN/HR) 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32	(CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46 41.83 2.79 2.79 2.79 4.18 6.01 0.00 22.04 0.76 23.25	EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OVER EX. PIPE EXISTING 36" EQ CMP PIPE EXISTING 36" EQ CMP PIPE ARECONS EX. AREA INLET 15 in. HDPE RECONS EX. AREA INLET 24 in. HDPE CURB INLET 24 in. HDPE	PIPE LENGTH (L.F.) 81.00 92.00 202.00 27.00 118.00 118.00 55.00 67.00	PIPE SLOPE (%) 4.05 4.05 4.05 4.05 1.60 2.76 3.22 3.32	PIPE DIA (IN) 30 30 30 30 30 30 30 30 30 30 30 30 30	(CFS) 44.83 44.83 44.83 44.83 44.83 49.99 10.76 40.70 41.33	AREA (SQ.FT.) 4.91 4.91 4.91 4.91 7.07 7.07 1.23 3.14 3.14	(F/S) 9.13 9.13 9.13 9.13 9.13 7.07 8.77 12.96 13.16	V (F/S) 10.28 11.90 12.85 16.95 11.91 7.35 9.27 13.34	0.70 0.76 0.82 0.82 1.87 1.14 0.83 0.83 0.74 1.65	ELEVATION 968.63 967.36 960.88 960.88 952.68 947.76 955.15 955.15 954.27 952.61 948.50	FLOWLINE 960.13 956.55 952.84 945.23 945.23 943.58 943.58 949.97 949.97 948.31	FLOWLINE 956.55 952.84 945.23 943.58 941.69 950.27 950.27 948.61 945.70	WATER ELEVATION 2 958.45 954.90 954.90 949.91 946.70 946.70 946.54 9946.54 9952.98 952.98 952.98 952.98 952.98	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE RECONSTRUCT AREA INLET RECONSTRUCT AREA INLET
: LEES #: B18-0 FIGN C TRUC ROM A5 A4 A3 A2 A1 B4 B3 B2 B1 C1	SUMMIT LIE 0330 CONDITION TURES TO A4 A3 A3 A2 A1 A1 B3 B3 B3 B3 B3 B1 A1 A1 A1 A0 A1 A1 A0 A1 A1 A0 A1	BRARY NS: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.43 0.43 0.43 0.45 0.45 0.12 0.12 0.30 0.30 0.30 0.12 0.30 0.12	ZEAR STC TOTAL AREA (ACRES) 0.73 1.16 1.58 4.72 4.84 0.30 1.11 2.55 2.69 0.38	R C 0.90 0.75 0.89 0.75 0.30 0.75 0.30 0.70 0.67 0.42 0.30 0.67 0.42 0.67 0.67 0.67 0.67 0.68 0.68 0.68 0.68 0.89	NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.38 0.38 0.84 0.88 0.38 0.84 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	Tc (MIN) 5.0	FLOW TIME (MIN) - - - - - - - - - - - - - - - - - - -	INTENSITY (IN/HR) 10.32	(CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46 41.83 2.79 2.79 2.79 4.18 6.01 0.00 22.04 0.76 23.25 3.33 3.33 3.33	EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OVER EX. PIPE EXISTING 36" EQ CMP PIPE 6x4 CURB INLET 15 in. HDPE RECONS EX. AREA INLET 24 in. HDPE JUNCTION BOX 24 in. HDPE CURB INLET 24 in. HDPE 6x4 CURB INLET 15 in. HDPE	PIPE LENGTH (L.F.) 81.00 92.00 202.00 202.00 27.00 118.00 118.00 55.00 67.00 69.00	PIPE SLOPE (%) 4.05 4.05 4.05 4.05 2.76 3.22 3.32 1.90 1.76	PIPE DIA (IN) 30 30 30 30 30 30 30 30 30 30 30 30 30	(CFS) 44.83 44.83 44.83 44.83 49.99 10.76 40.70 41.33 31.27 8.59	AREA (SQ.FT.) 4.91 4.91 4.91 4.91 7.07 7.07 1.23 3.14 3.14 3.14 3.14	(F/S) 9.13 9.13 9.13 9.13 9.13 7.07 8.77 12.96 13.16 9.95 7.00	V (F/S) 10.28 11.90 12.85 16.95 11.91 7.35 9.27 13.34 10.88 6.56	HW/D 0.70 0.76 0.76 1.87 1.87 0.82 0.83 0.74 1.65 1.76 0.91	ELEVATION 968.63 967.36 960.88 960.88 952.68 947.76 955.15 955.15 954.27 952.61 948.50	FLOWLINE 960.13 956.55 955.84 945.23 943.58 943.58 949.97 949.97 948.31 945.20 945.20 950.50	FLOWLINE 956.55 952.84 952.84 945.23 943.58 941.69 941.69 945.70 948.61 945.70 945.70 948.68	WATER ELEVATION 958.45 954.90 954.90 949.91 946.70 946.70 946.54 952.98 951.61 947.26 947.76 950.03	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE RECONSTRUCT AREA INLET RECONSTRUCT AREA INLET
:: LEES #: B18-0 SIGN C TRUC ROM A5 A4 A3 A2 A1 B4 B3 B2 B1 C1	SUMMIT LIE 0330 CONDITION TURES TO A4 A3 A3 A2 A1 B3 B3 B3 B3 B1 A1	BRARY	ZEAR STC TOTAL AREA (ACRES) 0.73 1.16 1.58 4.72 4.84 0.30 1.11 2.55 2.69 2.69	C 0.90 0.75 0.89 0.75 0.70 0.71 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.67 0.67 0.67 0.67 0.67 0.68 0.68	NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.38 0.38 0.84 0.88 0.88 0.88 0.88 0.88 0.88 0.8	Tc (MIN) 5.0	FLOW TIME (MIN) - - - - - - - - - - - - - - - - - - -	INTENSITY (IN/HR) 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32	(CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46 41.83 2.79 2.79 2.79 4.18 6.01 0.00 22.04 0.76 23.25 3.33 3.33	EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OVER EX. PIPE EXISTING 36" EQ CMP PIPE EXISTING 36" EQ CMP PIPE ACCURB INLET 15 in. HDPE RECONS EX. AREA INLET 24 in. HDPE JUNCTION BOX 24 in. HDPE CURB INLET 24 in. HDPE 6x4 CURB INLET 24 in. HDPE	PIPE LENGTH (L.F.) 81.00 92.00 202.00 27.00 118.00 118.00 55.00 67.00 69.00	PIPE SLOPE (%) 4.05 4.05 4.05 4.05 1.60 2.76 3.22 3.32 1.90	PIPE DIA (IN) 30 30 30 30 30 30 30 30 30 30 30 30 30	(CFS) 44.83 44.83 44.83 44.83 49.99 10.76 40.70 41.33 31.27	AREA (SQ.FT.) 4.91 4.91 4.91 4.91 7.07 1.23 3.14 3.14 3.14	(F/S) 9.13 9.13 9.13 9.13 9.13 9.13 7.07 8.77 12.96 13.16 9.95	V (F/S) 10.28 11.90 12.85 16.95 11.91 7.35 9.27 13.34 10.88	0.70 0.76 0.82 1.87 1.14 0.83 0.74 0.74 1.65 1.76	ELEVATION 968.63 967.36 960.88 952.68 952.68 955.15 955.15 954.27 952.61 954.27 954.50 948.50 954.82	FLOWLINE 960.13 956.55 955.84 945.23 943.58 943.58 949.97 949.97 948.31 945.20	FLOWLINE 956.55 952.84 952.84 945.23 943.58 941.69 941.69 950.27 950.27 948.61 945.70 945.70 943.88	WATER ELEVATION 958.45 954.90 949.91 946.70 946.70 946.54 9946.54 9952.98 952.98 951.61 9947.26 947.26	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE RECONSTRUCT AREA INLET RECONSTRUCT AREA INLET
:: LEES #: B18-0 5IGN C TRUC ROM A5 A4 A3 A2 A1 B4 B3 B2 B1 C1	SUMMIT LIE 0330 CONDITION TURES TO A4 A3 A3 A2 A1 A1 B3 B3 B3 B3 B3 B1 A1 A1 A1 A0 A1 A1 A0 A1 A1 A0 A1	BRARY	ZEAR STC TOTAL AREA (ACRES) 0.73 1.16 1.58 4.72 4.84 0.30 1.11 2.55 2.69 0.38	C 0.90 0.75 0.89 0.75 0.70 0.67 0.42 0.30 0.67 0.42 0.67 0.68 0.68 0.68 0.89 0.71	NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.38 0.38 0.84 0.88 0.38 0.84 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	Tc (MIN) 5.0	FLOW TIME (MIN) - - - - - - - - - - - - - - - - - - -	INTENSITY (IN/HR) 10.32	(CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46 41.83 2.79 2.79 2.79 4.18 6.01 0.00 22.04 0.76 23.25 3.33 3.33 3.33	EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OVER EX. PIPE EXISTING 36" EQ CMP PIPE 6x4 CURB INLET 15 in. HDPE RECONS EX. AREA INLET 24 in. HDPE JUNCTION BOX 24 in. HDPE CURB INLET 24 in. HDPE 6x4 CURB INLET 15 in. HDPE	PIPE LENGTH (L.F.) 81.00 92.00 202.00 202.00 27.00 118.00 118.00 55.00 67.00 69.00	PIPE SLOPE (%) 4.05 4.05 4.05 4.05 2.76 3.22 3.32 1.90 1.76	PIPE DIA (IN) 30 30 30 30 30 30 30 30 30 30 30 30 30	(CFS) 44.83 44.83 44.83 44.83 49.99 10.76 40.70 41.33 31.27 8.59	AREA (SQ.FT.) 4.91 4.91 4.91 4.91 7.07 7.07 1.23 3.14 3.14 3.14	(F/S) 9.13 9.13 9.13 9.13 9.13 7.07 8.77 12.96 13.16 9.95 7.00	V (F/S) 10.28 11.90 12.85 16.95 11.91 7.35 9.27 13.34 10.88 6.56	HW/D 0.70 0.76 0.76 1.87 1.87 0.82 0.83 0.74 1.65 1.76 0.91	ELEVATION 968.63 967.36 960.88 952.68 952.68 955.15 955.15 954.27 952.61 954.27 954.50 948.50 954.82	FLOWLINE 960.13 956.55 955.84 945.23 943.58 943.58 949.97 949.97 948.31 945.20 945.20 950.50	FLOWLINE 956.55 952.84 952.84 945.23 943.58 941.69 941.69 945.70 948.61 945.70 945.70 948.68	WATER ELEVATION 958.45 954.90 954.90 949.91 946.70 946.70 946.54 952.98 951.61 947.26 947.76 950.03	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE RECONSTRUCT AREA INLET RECONSTRUCT AREA INLET
E: LEES #: B18-0 SIGN C SIGN C STRUC ROM A5 A4 A3 A2 A1 B4 B3 B2 B1 B1 C1 C1 C1 C1 C1 C1	SUMMIT LIE 0330 CONDITION TURES TO A4 A3 A3 A2 A1 A1 B3 B3 B3 B3 B3 B1 A1 A1 A1 A0 A1 A1 A0 A1 A1 A0 A1	RARY NS: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.043 0.12 0.30 0.30 0.30 0.043 0.045 0.30 0.30 0.30 0.30 0.12 0.30 0.14 0.38 0.19	ZEAR STC TOTAL AREA (ACRES) 0.73 1.16 1.58 4.72 4.84 0.30 1.11 2.55 2.69 0.38	C 0.90 0.75 0.89 0.75 0.70 0.71 0.68 0.68 0.68 0.71 0.52 0.33	NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.38 0.38 0.84 0.88 0.38 0.84 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	Tc (MIN) 5.0	FLOW TIME (MIN) - - - - - - - - - - - - - - - - - - -	INTENSITY (IN/HR) 10.32	(CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46 41.83 2.79 2.79 2.79 2.79 2.79 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33	EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OVER EX. PIPE EXISTING 36" EQ CMP PIPE EXISTING 36" EQ CMP PIPE EXISTING 36" EQ CMP PIPE ACCONS EX. AREA INLET 15 in. HDPE ACCONS EX. AREA INLET 24 in. HDPE CURB INLET 24 in. HDPE CURB INLET 24 in. HDPE 6x4 CURB INLET 15 in. HDPE 6x4 CURB INLET 15 in. HDPE	PIPE LENGTH (L.F.) 81.00 92.00 202.00 202.00 27.00 118.00 118.00 55.00 67.00 69.00	PIPE SLOPE (%) 4.05 4.05 4.05 4.05 2.76 3.22 3.32 1.90 1.76	PIPE DIA (IN) 30 30 30 30 30 30 30 30 30 30 30 30 30	(CFS) 44.83 44.83 44.83 44.83 49.99 10.76 40.70 41.33 31.27 8.59	AREA (SQ.FT.) 4.91 4.91 4.91 4.91 7.07 7.07 1.23 3.14 3.14 3.14	(F/S) 9.13 9.13 9.13 9.13 9.13 7.07 8.77 12.96 13.16 9.95 7.00	V (F/S) 10.28 11.90 12.85 16.95 11.91 7.35 9.27 13.34 10.88 6.56	HW/D 0.70 0.76 0.76 1.87 1.87 0.82 0.83 0.74 1.65 1.76 0.91	ELEVATION 968.63 967.36 960.88 952.68 955.15 955.15 955.15 954.27 954.27 954.27 954.82 954.82 967.36	FLOWLINE 960.13 956.55 955.84 945.23 943.58 943.58 949.97 949.97 948.31 945.20 945.20 950.50	FLOWLINE 956.55 952.84 952.84 945.23 943.58 941.69 941.69 945.70 948.61 945.70 945.70 948.68	WATER ELEVATION 958.45 954.90 954.90 949.91 946.70 946.70 946.54 952.98 951.61 947.26 947.76 950.03	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE RECONSTRUCT AREA INLET RECONSTRUCT AREA INLET
:: LEES #: B18-0 5IGN C TRUC ROM A5 A4 A3 A2 A1 B4 B3 B2 B1 C1	SUMMIT LIE 0330 CONDITION TO TO A4 A3 A2 A1 A0 B3 B3 B3 A1 A2 A1 A2 A1 A2 A1 A2 B3 A1 A2 A3	BRARY NS: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.43 0.45 0.45 0.45 0.45 0.45 0.12 0.12 0.30 0.12 0.12 0.30 0.12 0.30 0.30 0.12 0.30 0.30 0.30 0.30 0.30 0.43 0.38 0.38	ZEAR STC TOTAL AREA (ACRES) 0.73 1.16 1.58 4.72 4.84 0.30 1.11 2.55 2.69 2.69 0.38 0.38	R C 0.90 0.75 0.89 0.75 0.70 0.71 0.68 0.68 0.68 0.68 0.68 0.71 0.52	NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.38 0.38 0.84 0.88 0.84 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	Tc (MIN) 5.0	FLOW TIME (MIN) - - - - - - - - - - - - - - - - - - -	INTENSITY (IN/HR) 10.32	(CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46 41.83 2.79 2.79 2.79 2.79 2.79 2.79 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33	EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX PIPE EXISTING 30" CMP 5x5 AREA INLET OVER EX PIPE EXISTING 36" EQ CMP PIPE EXISTING 36" EQ CMP PIPE EXISTING 36" EQ CMP PIPE ACCONS EX AREA INLET 15 in. HDPE RECONS EX AREA INLET 24 in. HDPE CURB INLET 24 in. HDPE 6x4 CURB INLET 15 in. HDPE 6x4 CURB INLET 15 in. HDPE	PIPE LENGTH (L.F.) 81.00 92.00 202.00 227.00 27.00 118.00 118.00 55.00 67.00 67.00 69.00	PIPE SLOPE (%) 4.05 4.05 4.05 4.05 1.60 2.76 3.22 3.32 1.90 1.76	PIPE DIA (IN) 30 30 30 30 30 30 30 30 30 30 30 30 30	(CFS) 44.83 44.83 44.83 44.83 49.99 10.76 40.70 41.33 31.27 8.59 8.59	AREA (SQ.FT.) 4.91 4.91 4.91 4.91 7.07 7.07 1.23 3.14 3.14 3.14 1.23	(F/S) 9.13 9.13 9.13 9.13 9.13 9.13 7.07 8.77 12.96 13.16 9.95 7.00 7.00	V (F/S) 10.28 11.90 12.85 12.85 12.85 9.27 13.34 10.88 6.56 6.56	HW/D 0.70 0.76 0.76 0.82 1.87 0.83 0.74 1.65 0.74 0.91 1.00	ELEVATION 968.63 967.36 967.36 952.68 955.15 955.15 955.15 954.27 954.27 954.27 954.82 954.82	FLOWLINE 960.13 956.55 956.55 952.84 945.23 943.58 943.58 949.97 949.97 949.97 949.97 949.97 945.20 945.20 950.50 950.50	FLOWLINE 956.55 952.84 952.84 945.23 943.58 941.69 941.69 945.70 948.61 945.70 945.70 948.68 948.68	WATER I ELEVATION I 958.45 I 954.90 I 949.91 I 946.70 I 946.54 I 952.98 I 951.61 I 947.26 I 947.76 I 950.03 I 958.45 I	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE RECONSTRUCT AREA INLET RECONSTRUCT AREA INLET

										S	TORM SEV	VER PIP	E AND	STRUC	TURE T	ABLE							
	ER PIPE AN		JRE TABLE																				
LEES 3 B18-03	SUMMIT LIBF	RARY																					
		S: 10 YF	AR STO		NT																		
	TURES					CALCUL	LATIONS	S			PIPE DE	ESIGN											
		DIRECT	TOTAL		KC	Тс	FLOW	INTENSITY	DESIGN Q		PIPE	PIPE	PIPE	Q FULL	PIPE	V FULL	DESIGN		MH TOP	UPSTREAM	DOWNSTREAM	DOWNSTREAM	
ОМ	ТО			C C	(K=1.00)			(IN/HR)	(CFS)	DESCRIPTION		SLOPE	DIA	(CES)		(F/S)	V (F/S)		ELEVATION	FLOWLINE	FLOWLINE	WATER	Comments
5		(ACRES) 0.30	(ACRES)) 0.90	0.90	5.0	(MIN) _	7.35	1.98	EXISTING STRUCTURE		(%)	(IN)		(SQ.FT.)				968.63			ELEVATION	EXISTING STRUCTURE TO REMIAN
	A4	0.00	0.73	0.75	0.75	5.0	_	7.35	4.02	EXISTING 30" CMP	88.00	4.05	30	44.83	4.91	9.13	8.71	0.68	000.00	960.13	956.55	958.30	
4		0.43		0.89	0.89	5.0	-	7.35	2.81	6X4 CURB INLET OF EX. PIPE									967.36				CONSTRU CT BOX OVER EXISTING PIPI
	A3	0.04	1.16	0.78	0.78	5.0	-	7.35	6.65	EXISTING 30" CMP	92.00	4.05	30	44.83	4.91	9.13	10.10	0.70		956.55	952.84	954.64	
3	A2	0.04	1.58	0.30	0.30 0.75	<u>5.0</u> 5.0	-	7.35	0.09	4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP	182.00	4.05	30	44.83	4.91	9.13	10.93	0.72	960.88	952.84	945.23	947.88	CONSTRU CT BOX OVER EXISTING PIP
2	7 12	0.45	1.00	0.70	0.70	5.0	_	7.35	2.32	6X4 CURB INLET OF EX. PIPE	102.00	4.00		44.00	4.01	0.10	10.00	0.72	952.68	002.04	040.20	047.00	CONSTRU CT BOX OVER EXISTING PIP
	A1		4.72	0.70	0.70	5.0	-	7.35	24.28	EXISTING 30" CMP	47.00	4.05	30	44.83	4.91	9.13	14.63	1.06		945.23	943.58	946.52	
1		0.12	4.04	0.30	0.30	5.0	-	7.35	0.26	5x5 AREA INLET OVER EX. PIPE	440.00	4.00		40.00	7.07		40.07	0.00	947.76	0.40.50	0.44,00	045.55	RECONSTRUCT AREA INLET
	A0		4.84	0.67	0.67	5.0	-	7.35	23.83	EXISTING 36" EQ CMP PIPE	118.00	1.60	36	49.99	7.07	7.07	10.27	0.82		943.58	941.69	945.55	
4		0.30		0.72	0.72	5.0	_	7.35	1.59	6x4 CURB INLET									955.15				
	B3		0.30	0.72	0.72	5.0	-	7.35	1.59	15 in. HDPE	32.00	2.76	15	10.76	1.23	8.77	6.27	0.72		951.15	950.27	951.36	
3		0.81		0.40	0.40	5.0	_	7.35	2.38		40.00	0.00	0.1	40.70	0.44	40.00	7.00	0.00	954.27	0.40.07	040.04	050.00	RECONSTRUCT AREA INLET
2	B3	0.00	1.11	0.42	0.42	5.0 5.0		7.35	3.43	24 in. HDPE JUNCTION BOX	42.00	3.22	24	40.70	3.14	12.96	7.86	0.69	952.61	949.97	948.61	950.29	CONSTRU CT BOX OVER EXISTING PIP
-	B1	0.00	2.55	0.67	0.67	5.0	-	7.35	12.56	24 in. HDPE	79.00	3.32	24	41.33	3.14	13.16	11.52	0.99	JUE.UI	948.31	945.70	947.51	
		0.14		0.42	0.42	5.0	-	7.35	0.43	5x5 AREA INLET									948.50				
	A1		2.69	0.67	0.67	5.0	-	7.35	13.25	24 in. HDPE	69.00	1.90	24	31.27	3.14	9.95	9.52	1.02		945.20	943.88	946.57	
		0.38		0.68	0.68	5.0	-	7.35	1.90	6x4 CURB INLET	+		<u> </u>					$\left \right $	954.82			┨─────┤	
-	A2	0.00	0.38	0.68	0.68	5.0	-	7.35	1.90	15 in. HDPE	103.00	1.76	15	8.59	1.23	7.00	5.62	0.75	JU 1.UL	950.50	948.68	948.01	
1	Δ <i>Δ</i>	0.43	0.42	0.89	0.89	5.0	-	7.35	2.81	6x4 CURB INLET	49.00	1 76	15	0.50	4.00	7.00	5.00	0.70	967.36	062.50	062.02	059.20	
	A4		0.43	0.71	0.71	5.0	-	7.35	2.24	15 in. HDPE	48.00	1.76	15	8.59	1.23	7.00	5.90	0.78		962.50	962.02	958.30	
2		0.19		0.52	0.52	5.0	-	7.35	0.73	TRENCH DRAIN									961.75				
	E1		0.19	0.33	0.33	5.0	-	7.35	0.46	15 in. HDPE	82.00	4.10	12	7.23	0.79	9.21	5.20	0.68		959.95	956.68	956.67	
		1 1 26		1 1 2 /	N 07	5.0		7.35	7.99	6x4 CURB INLET									960.23				
•	B3	1.25		0.87	0.87						148.00	3 49	18	19.68	1 77	11 13	10.81	1 33	300.23	955.68	950 47	951 36	
1	B3	1.25	1.44	0.87	0.87	5.0	-	7.35	8.78	18 in. HDPE	148.00	3.49	18	19.68	1.77	11.13	10.81	1.33	300.23	955.68	950.47	951.36	
1	B3	1.25	1.44				-				148.00	3.49	18	19.68	1.77	11.13	10.81	1.33	300.23	955.68	950.47	951.36	
1	B3		1.44				- -				148.00	3.49	18	19.68	1.77	11.13	10.81	1.33		955.68	950.47	951.36	
				0.83			- -				148.00	3.49	18	19.68	1.77	11.13	10.81	1.33		955.68	950.47	951.36	
M SEW	ER PIPE AN	D STRUCT		0.83							148.00	3.49	18	19.68	1.77	11.13	10.81	1.33		955.68	950.47	951.36	
A SEW	ER PIPE AN SUMMIT LIBF	D STRUCT		0.83							148.00	3.49	18	19.68	1.77	11.13	10.81	1.33		955.68	950.47	951.36	
M SEW LEES 3 B18-03 GN C 0	ER PIPE AN SUMMIT LIBF 330 ONDITION	D STRUCT RARY	JRE TABLE	0.83	0.83 /ENT	5.0		7.35						19.68	1.77	11.13	10.81	1.33		955.68	950.47	951.36	
1 SEW LEES 3 B18-03 GN C (ER PIPE AN SUMMIT LIBF 330	D STRUCT RARY S: 100 Y	JRE TABLE	0.83	0.83 ENT NOFF C	5.0	LATIONS	7.35	8.78		PIP	PE DESI	SN DIDE										
1 SEW LEES 3 B18-03 GN C RUC	ER PIPE AN SUMMIT LIBF 330 ONDITION	D STRUCT RARY S: 100 Y DIRECT AREA	JRE TABLE	0.83	0.83 /ENT NOFF С КС	5.0	FLOW	7.35 S INTENSITY	8.78		PIPE	PE DESIC PIPE SLOPE	SN PIPE DIA	Q FULL	PIPE	V FULL	DESIGN		MH TOP	UPSTREAM	DOWNSTREAM		Comments
1 SEW LEES S B18-03 GN CO RUC	ER PIPE AN SUMMIT LIBF 330 ONDITION TURES	D STRUCT RARY S: 100 Y DIRECT AREA (ACRES)	JRE TABLE	0.83	0.83 'ENT NOFF C KC (K=1.25)	5.0 CALCUL Tc (MIN)	FLOW	7.35 S INTENSITY (IN/HR)	8.78 DESIGN Q (CFS)	18 in. HDPE	PIPE	PE DESI	SN PIPE DIA	Q FULL		V FULL (E/S)			MH TOP			DOWNSTREAM	
1 SEW LEES S B18-03 GN CO RUC	ER PIPE AN SUMMIT LIBF 330 ONDITION TURES TO	D STRUCT RARY S: 100 Y DIRECT AREA	JRE TABLE EAR STO TOTAL AREA (ACRES)	0.83	0.83 ENT NOFF C KC (K=1.25) 1.00	5.0 CALCUL Tc (MIN) 5.0	FLOW TIME	7.35 S INTENSITY (IN/HR) 10.32	8.78 DESIGN Q (CFS) 3.10	18 in. HDPE DESCRIPTION EXISTING STRUCTURE	PIPE LENGTH (L.F.)	PIPE SLOPE (%)	SN PIPE DIA (IN)	Q FULL (CFS)	PIPE AREA (SQ.FT.)	V FULL (F/S)	DESIGN V (F/S)	Hw/D	MH TOP	UPSTREAM FLOWLINE	DOWNSTREAM	DOWNSTREAM WATER ELEVATION	Comments EXISTING STRUCTURE TO REMIAN
I SEW LEES 3 B18-03 GN C 0 RUC	ER PIPE AN SUMMIT LIBF 330 ONDITION TURES	D STRUCT RARY S: 100 Y DIRECT AREA (ACRES) 0.30	JRE TABLE	0.83 0.83 0 0 0 0 0.90 0.75	0.83 ENT NOFF C (K=1.25) 1.00 0.94	5.0 CALCUL TC (MIN) 5.0 5.0	FLOW TIME	7.35 7.35 S INTENSITY (IN/HR) 10.32 10.32	8.78 DESIGN Q (CFS) 3.10 7.06	18 in. HDPE DESCRIPTION EXISTING STRUCTURE EXISTING 30" CMP	PIPE LENGTH (L.F.)	PE DESIC PIPE SLOPE	SN PIPE DIA	Q FULL	PIPE AREA	V FULL (E/S)	DESIGN		MH TOP ELEVATION 968.63	UPSTREAM	DOWNSTREAM	DOWNSTREAM WATER	EXISTING STRUCTURE TO REMIAN
1 SEW LEES 3 B18-03 GN C RUC	ER PIPE AN SUMMIT LIBF 330 ONDITION TURES TO	D STRUCT RARY S: 100 Y DIRECT AREA (ACRES)	JRE TABLE EAR STO TOTAL AREA (ACRES)	0.83	0.83 ENT NOFF C KC (K=1.25) 1.00	5.0 CALCUL Tc (MIN) 5.0	FLOW TIME	7.35 S INTENSITY (IN/HR) 10.32	8.78 DESIGN Q (CFS) 3.10	18 in. HDPE DESCRIPTION EXISTING STRUCTURE	PIPE LENGTH (L.F.)	PIPE SLOPE (%)	SN PIPE DIA (IN)	Q FULL (CFS)	PIPE AREA (SQ.FT.)	V FULL (F/S)	DESIGN V (F/S)	Hw/D	MH TOP	UPSTREAM FLOWLINE	DOWNSTREAM	DOWNSTREAM WATER ELEVATION	EXISTING STRUCTURE TO REMIAN
1 SEW LEES 3 B18-03 GN C 0 RUC 0M	ER PIPE AN SUMMIT LIBF 330 ONDITION TURES TO	D STRUCT RARY S: 100 Y DIRECT AREA (ACRES) 0.30	JRE TABLE EAR ST(TOTAL AREA (ACRES) 0.73 1.16	0.83 0.83 0 0 0 0 0 0 0.90 0.75 0.89 0.78 0.30	0.83 ENT NOFF C (K=1.25) 1.00 0.94 1.11	5.0 CALCUL Tc (MIN) 5.0 5.0 5.0	FLOW TIME	7.35 7.35 S INTENSITY (IN/HR) 10.32 10.32 10.32	8.78 DESIGN Q (CFS) 3.10 7.06 4.94 11.67 0.15	18 in. HDPE DESCRIPTION EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE	PIPE LENGTH (L.F.) 81.00 92.00	PE DESIC PIPE SLOPE (%) 4.05 4.05	SN PIPE DIA (IN) 30	Q FULL (CFS) 44.83	PIPE AREA (SQ.FT.) 4.91	V FULL (F/S) 9.13 9.13	DESIGN V (F/S) 10.28 11.90	Hw/D 0.70 0.76	MH TOP ELEVATION 968.63	UPSTREAM FLOWLINE 960.13 956.55	DOWNSTREAM FLOWLINE 956.55 952.84	DOWNSTREAM WATER ELEVATION 958.45	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIP
1 SEW LEES 3 B18-03 GN CO RUC DM	ER PIPE AN SUMMIT LIBF 330 ONDITION TURES TO	D STRUCT RARY S: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.04	JRE TABLE EAR STO TOTAL AREA (ACRES) 0.73	0.83 0.83 0.83 0.83 0.83 0.75 0.90 0.75 0.89 0.78 0.30 0.75	0.83 ENT NOFF C (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.94	5.0 CALCUL TC (MIN) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	FLOW TIME	7.35 7.35 S INTENSITY (IN/HR) 10.32 10.32 10.32 10.32 10.32 10.32 10.32	8.78 DESIGN Q (CFS) 3.10 7.06 4.94 11.67 0.15 15.29	18 in. HDPE DESCRIPTION EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP	PIPE LENGTH (L.F.) 81.00	PIPE SLOPE (%) 4.05	SN PIPE DIA (IN) 30	Q FULL (CFS) 44.83	PIPE AREA (SQ.FT.) 4.91	V FULL (F/S) 9.13	DESIGN V (F/S) 10.28	Hw/D	MH TOP ELEVATION 968.63 967.36 960.88	UPSTREAM FLOWLINE 960.13	DOWNSTREAM FLOWLINE 956.55	DOWNSTREAM WATER ELEVATION 958.45	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP
I SEW LEES S B18-03 GN CO RUC	ER PIPE AN SUMMIT LIBF 330 ONDITION TO TO A4 A3 A2	D STRUCT RARY S: 100 Y DIRECT AREA (ACRES) 0.30 0.43	JRE TABLE EAR ST(TOTAL AREA (ACRES) 0.73 1.16 1.58	0.83 0.83 0.83 0.83 0.83 0.75 0.90 0.75 0.89 0.78 0.30 0.75 0.30 0.75 0.70	0.83 ENT NOFF C (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.94 0.88	5.0 CALCUL TC (MIN) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	FLOW TIME	7.35 7.35 S INTENSITY (IN/HR) 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32	8.78 DESIGN Q (CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06	18 in. HDPE DESCRIPTION EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE	PIPE LENGTH (L.F.) 81.00 92.00 202.00	PE DESIC PIPE SLOPE (%) 4.05 4.05	PIPE DIA (IN) 30 30 30	Q FULL (CFS) 44.83 44.83	PIPE AREA (SQ.FT.) 4.91 4.91	V FULL (F/S) 9.13 9.13 9.13	DESIGN V (F/S) 10.28 11.90 12.85	Hw/D 0.70 0.76 0.82	MH TOP ELEVATION 968.63 967.36	UPSTREAM FLOWLINE 960.13 956.55 952.84	DOWNSTREAM FLOWLINE 956.55 952.84 945.23	DOWNSTREAM WATER ELEVATION 958.45 954.90 949.91	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP
I SEW LEES 3 B18-03 GN C 0 RUC M	ER PIPE AN SUMMIT LIBF 330 ONDITION TURES TO A4 A3	D STRUCT RARY S: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.04	JRE TABLE EAR ST(TOTAL AREA (ACRES) 0.73 1.16	0.83 0.83 0.83 0.83 0.89 0.75 0.89 0.75 0.89 0.75 0.30 0.75 0.70 0.70 0.70	0.83 ENT NOFF C (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.94 0.88 0.88	5.0 CALCUL TC (MIN) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	FLOW TIME	7.35 7.35 INTENSITY (IN/HR) 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32	8.78 DESIGN Q (CFS) 3.10 7.06 4.94 11.67 0.15 15.29	18 in. HDPE DESCRIPTION EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP	PIPE LENGTH (L.F.) 81.00 92.00	PE DESIC PIPE SLOPE (%) 4.05 4.05	SN PIPE DIA (IN) 30 30	Q FULL (CFS) 44.83 44.83	PIPE AREA (SQ.FT.) 4.91 4.91	V FULL (F/S) 9.13 9.13	DESIGN V (F/S) 10.28 11.90	Hw/D 0.70 0.76 0.82	MH TOP ELEVATION 968.63 967.36 960.88	UPSTREAM FLOWLINE 960.13 956.55	DOWNSTREAM FLOWLINE 956.55 952.84	DOWNSTREAM WATER ELEVATION 958.45	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP
1 SEW LEES 3 B18-03 GN C 0 RUC 0M	ER PIPE AN SUMMIT LIBF 330 ONDITION TO TO A4 A3 A2	D STRUCT RARY S: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.43 0.45	JRE TABLE EAR ST(TOTAL AREA (ACRES) 0.73 1.16 1.58	0.83 0.83 0.83 0.83 0.83 0.75 0.90 0.75 0.89 0.78 0.30 0.75 0.30 0.75 0.70	0.83 ENT NOFF C (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.94 0.88	5.0 CALCUL TC (MIN) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	FLOW TIME	7.35 7.35 S INTENSITY (IN/HR) 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32	8.78 DESIGN Q (CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62	18 in. HDPE DESCRIPTION EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE	PIPE LENGTH (L.F.) 81.00 92.00 202.00	PE DESIC PIPE SLOPE (%) 4.05 4.05	PIPE DIA (IN) 30 30 30	Q FULL (CFS) 44.83 44.83	PIPE AREA (SQ.FT.) 4.91 4.91	V FULL (F/S) 9.13 9.13 9.13	DESIGN V (F/S) 10.28 11.90 12.85	Hw/D 0.70 0.76 0.82	MH TOP ELEVATION 968.63 967.36 960.88 952.68	UPSTREAM FLOWLINE 960.13 956.55 952.84	DOWNSTREAM FLOWLINE 956.55 952.84 945.23	DOWNSTREAM WATER ELEVATION 958.45 954.90 949.91	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP
1 SEW LEES 3 B18-03 GN C 0 RUC M	ER PIPE AN SUMMIT LIBF 330 ONDITION TURES TO A4 A3 A2 A1	D STRUCT RARY S: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.43 0.43 0.45 0.45	JRE TABLE EAR ST(TOTAL AREA (ACRES) 0.73 1.16 1.58 4.72	0.83 0.83 0.83 0.83 0.75 0.90 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.70 0.70 0.70 0.70 0.70 0.70 0.30 0.67	0.83 ENT NOFF C (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.94 0.88 0.88 0.88 0.88 0.88 0.88	5.0 CALCUL TC (MIN) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	FLOW TIME	7.35 7.35 INTENSITY (IN/HR) 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32	8.78 DESIGN Q (CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46 41.83	18 in. HDPE DESCRIPTION EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OVER EX. PIPE EXISTING 36" EQ CMP PIPE	PIPE LENGTH (L.F.) 81.00 92.00 202.00 27.00	PIPE SLOPE (%) 4.05 4.05 4.05	PIPE DIA (IN) 30 30 30 30	Q FULL (CFS) 44.83 44.83 44.83	PIPE AREA (SQ.FT.) 4.91 4.91 4.91	V FULL (F/S) 9.13 9.13 9.13 9.13	DESIGN V (F/S) 10.28 11.90 12.85 16.95	Hw/D 0.70 0.76 0.82 1.87	MH TOP ELEVATION 968.63 967.36 960.88 952.68 947.76	UPSTREAM FLOWLINE 960.13 956.55 952.84 945.23	DOWNSTREAM FLOWLINE 956.55 952.84 945.23 943.58	DOWNSTREAM WATER ELEVATION 958.45 9954.90 949.91 946.70	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP
1 SEW LEES 3 B18-03 GN C 0 RUC M	ER PIPE AN SUMMIT LIBF 330 ONDITION TO A4 A3 A2 A1 A0	D STRUCT RARY S: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.43 0.45	JRE TABLE EAR ST(TOTAL AREA (ACRES) 0.73 1.16 1.58 4.72 4.84	0.83 0.83 0 0 0 0 0 0 0 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.70 0.70 0.70 0.70 0.70 0.70 0.70	0.83 ENT NOFF C (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.94 0.88 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38	5.0 CALCUL TC (MIN) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	FLOW TIME	7.35 7.35 S INTENSITY (IN/HR) 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32	8.78 DESIGN Q (CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46 41.83 2.79	18 in. HDPE DESCRIPTION EXISTING STRUCTURE EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OVER EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OVER EX. PIPE EXISTING 36" EQ CMP PIPE	PIPE LENGTH (L.F.) 81.00 92.00 202.00 202.00 118.00	PIPE SLOPE (%) 4.05 4.05 4.05 1.60	PIPE DIA (IN) 30 30 30 30 30 30 30 30	Q FULL (CFS) 44.83 44.83 44.83 44.83 44.83	PIPE AREA (SQ.FT.) 4.91 4.91 4.91 4.91 7.07	V FULL (F/S) 9.13 9.13 9.13 9.13 9.13	DESIGN V (F/S) 10.28 11.90 12.85 16.95 11.91	Hw/D 0.70 0.76 0.82 1.87 1.14	MH TOP ELEVATION 968.63 967.36 960.88 952.68	UPSTREAM FLOWLINE 960.13 956.55 952.84 945.23 943.58	DOWNSTREAM FLOWLINE 956.55 952.84 945.23 943.58 941.69	Image: state of the state	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP
1 SEW LEES 3 B18-03 GN C RUC DM 5 	ER PIPE AN SUMMIT LIBF 330 ONDITION TURES TO A4 A3 A2 A1	D STRUCT RARY S: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.43 0.43 0.45 0.45	JRE TABLE EAR ST(TOTAL AREA (ACRES) 0.73 1.16 1.58 4.72	0.83 0.83 0.83 0.83 0.75 0.90 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.70 0.70 0.70 0.70 0.70 0.70 0.30 0.67	0.83 ENT NOFF C (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.94 0.88 0.88 0.88 0.88 0.88 0.88	5.0 CALCUL TC (MIN) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	FLOW TIME	7.35 7.35 S INTENSITY (IN/HR) 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32	8.78 DESIGN Q (CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46 41.83	18 in. HDPE DESCRIPTION EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OVER EX. PIPE EXISTING 36" EQ CMP PIPE	PIPE LENGTH (L.F.) 81.00 92.00 202.00 27.00	PIPE SLOPE (%) 4.05 4.05 4.05	PIPE DIA (IN) 30 30 30 30	Q FULL (CFS) 44.83 44.83 44.83	PIPE AREA (SQ.FT.) 4.91 4.91 4.91	V FULL (F/S) 9.13 9.13 9.13 9.13	DESIGN V (F/S) 10.28 11.90 12.85 16.95	Hw/D 0.70 0.76 0.82 1.87	MH TOP ELEVATION 968.63 967.36 960.88 952.68 947.76	UPSTREAM FLOWLINE 960.13 956.55 952.84 945.23	DOWNSTREAM FLOWLINE 956.55 952.84 945.23 943.58	DOWNSTREAM WATER ELEVATION 958.45 9954.90 949.91 946.70	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP
1 SEW LEES 3 B18-03 GN C RUC DM 5 	ER PIPE AN SUMMIT LIBF 330 ONDITION TO A4 A3 A2 A1 A0	D STRUCT RARY S: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.43 0.43 0.43 0.43 0.43 0.43	JRE TABLE EAR ST(TOTAL AREA (ACRES) 0.73 1.16 1.58 4.72 4.84	0.83 0.83 0.83 0.75 0.90 0.75 0.90 0.75 0.89 0.75 0.70 0.70 0.70 0.70 0.70 0.70 0.70	0.83 ENT NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38	5.0 CALCUL TC (MIN) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	FLOW TIME	7.35 7.35 S INTENSITY (IN/HR) 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32	8.78 DESIGN Q (CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46 41.83 2.79 2.79 2.79	18 in. HDPE DESCRIPTION EXISTING STRUCTURE EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OF EX. PIPE EXISTING 36" EQ CMP PIPE EXISTING 36" EQ CMP PIPE	PIPE LENGTH (L.F.) 81.00 92.00 202.00 202.00 118.00	PIPE SLOPE (%) 4.05 4.05 4.05 1.60	PIPE DIA (IN) 30 30 30 30 30 30 30 30	Q FULL (CFS) 44.83 44.83 44.83 44.83 44.83	PIPE AREA (SQ.FT.) 4.91 4.91 4.91 4.91 7.07	V FULL (F/S) 9.13 9.13 9.13 9.13 9.13	DESIGN V (F/S) 10.28 11.90 12.85 16.95 11.91	Hw/D 0.70 0.76 0.82 1.87 1.14	MH TOP ELEVATION 968.63 967.36 960.88 952.68 952.68 955.15	UPSTREAM FLOWLINE 960.13 956.55 952.84 945.23 943.58	DOWNSTREAM FLOWLINE 956.55 952.84 945.23 943.58 941.69	Image: state of the state	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP RECONSTRUCT AREA INLET
1 SEW LEES 3 B18-03 GN C RUC 0M 5 4 3	ER PIPE AN SUMMIT LIBF 330 ONDITION TO A4 A3 A2 A1 A0 B3 B3	D STRUCT RARY S: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.43 0.43 0.43 0.43 0.43 0.43	JRE TABLE EAR ST(TOTAL AREA (ACRES) 0.73 1.16 1.58 4.72 4.84 0.30 1.11	0.83 0.83 0.83 0.75 0.90 0.75 0.89 0.75 0.89 0.75 0.70 0.75 0.70 0.70 0.70 0.70 0.70	0.83 ENT NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.3	5.0 CALCUL TC (MIN) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	FLOW TIME	7.35 7.35 INTENSITY (IN/HR) 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32	8.78 DESIGN Q (CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46 41.83 2.79 2.79 2.79 4.18 6.01 0.00	18 in. HDPE DESCRIPTION EXISTING STRUCTURE EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OF EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OVER EX. PIPE EXISTING 36" EQ CMP PIPE Z4 in. HDPE JUNCTION BOX	PIPE LENGTH (L.F.) 81.00 92.00 202.00 202.00 118.00 118.00 1110.00	PIPE SLOPE (%) 4.05 4.05 4.05 4.05 1.60 2.76 3.22	PIPE DIA (IN) 30 30 30 30 30 30 30 30 30 30 30 30 31 30 32	Q FULL (CFS) 44.83 44.83 44.83 44.83 44.83 10.76 40.70	PIPE AREA (SQ.FT.) 4.91 4.91 4.91 4.91 7.07 1.23 3.14	V FULL (F/S) 9.13 9.13 9.13 9.13 9.13 9.13 9.13 9.13	DESIGN V (F/S) 10.28 11.90 12.85 16.95 11.91 7.35 9.27	Hw/D 0.70 0.70 0.82 1.87 1.14 0.83 0.83	MH TOP ELEVATION 968.63 967.36 960.88 952.68 952.68 955.15	UPSTREAM FLOWLINE 960.13 956.55 952.84 945.23 943.58 943.58 943.58	DOWNSTREAM FLOWLINE 956.55 952.84 945.23 943.58 943.58 943.61	Image: state of the state	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP RECONSTRUCT AREA INLET RECONSTRUCT AREA INLET
1 SEW LEES 3 B18-03 GN CO RUC DM 5 4 3 2 1 4 3 2	ER PIPE AN SUMMIT LIBF 330 ONDITION TO A4 A3 A2 A1 A0 B3	D STRUCT RARY S: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.43 0.43 0.43 0.43 0.43 0.43	JRE TABLE EAR ST(TOTAL AREA (ACRES) 0.73 1.16 1.58 4.72 4.84 0.30	0.83 0.83 0.83 0.75 0.90 0.75 0.75 0.75 0.75 0.70 0.75 0.70 0.75 0.70 0.70	0.83 ENT NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.94 0.38 0.58 0.5	5.0 CALCUL TC (MIN) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	FLOW TIME	7.35 7.35 INTENSITY (IN/HR) 10.32	8.78 DESIGN Q (CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46 41.83 2.79 2.79 2.79 4.18 6.01 0.00 22.04	18 in. HDPE DESCRIPTION EXISTING STRUCTURE EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OF EX. PIPE EXISTING 36" CMP 5x5 AREA INLET OVER EX. PIPE EXISTING 36" EQ CMP PIPE 6x4 CURB INLET 15 in. HDPE RECONS EX. AREA INLET 24 in. HDPE JUNCTION BOX 24 in. HDPE	PIP PIPE LENGTH (L.F.) 81.00 92.00 92.00 202.00 202.00 118.00	PIPE SLOPE (%) 4.05 4.05 4.05 1.60 2.76	PIPE DIA (IN) 30 30 30 30 30 30 30 30 30 30 30 30 30	Q FULL (CFS) 44.83 44.83 44.83 44.83 44.83 44.83	PIPE AREA (SQ.FT.) 4.91 4.91 4.91 4.91 7.07 1.23	V FULL (F/S) 9.13 9.13 9.13 9.13 9.13 9.13 9.13 8.77	DESIGN V (F/S) 10.28 11.90 12.85 16.95 11.91 7.35	Hw/D 0.70 0.76 0.82 1.87 1.14 0.83	MH TOP ELEVATION 968.63 967.36 967.36 967.36 952.68 952.68 955.15 955.15	UPSTREAM FLOWLINE 960.13 956.55 952.84 945.23 943.58 943.58	DOWNSTREAM FLOWLINE 956.55 952.84 945.23 943.58 943.58 941.69	Image: state of the state	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP RECONSTRUCT AREA INLET RECONSTRUCT AREA INLET
1 SEW LEES 3 B18-03 GN CO RUC DM 5 2 2 1 3 2 2	ER PIPE AN SUMMIT LIBF 330 DNDITION TO A4 A3 A2 A1 A0 B3 B3 B3 B1	D STRUCT RARY S: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.43 0.43 0.43 0.43 0.43 0.43	EAR ST(TOTAL AREA (ACRES) 0.73 0.73 1.16 1.58 4.72 4.84 0.30 1.11 2.55	0.83 0.83 0.83 0.75 0.90 0.75 0.90 0.75 0.70 0.75 0.70 0.70 0.70 0.70 0.7	0.83 ENT NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.94 0.38 0.50 0.50 0.53 0.38 0.38 0.38 0.53 0.38 0.53 0.55 0.5	5.0 CALCUL TC (MIN) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	FLOW TIME	7.35 7.35 INTENSITY (IN/HR) 10.32	8.78 DESIGN Q (CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46 41.83 2.79 2.79 2.79 4.18 6.01 0.00 22.04 0.76	18 in. HDPE DESCRIPTION EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OVER EX. PIPE EXISTING 36" EQ CMP PIPE EXISTING 36" EQ CMP PIPE 6x4 CURB INLET 15 in. HDPE RECONS EX. AREA INLET 24 in. HDPE JUNCTION BOX 24 in. HDPE CURB INLET	PIPE LENGTH (L.F.) 92.00 92.00 202.00 202.00 1118.00 1118.00 1118.00 67.00	PIPE SLOPE (%) 4.05 4.05 4.05 4.05 1.60 2.76 3.22 3.32	PIPE DIA (IN) 30 30 30 30 30 30 30 30 30 30 30 31 30 32	Q FULL (CFS) 44.83 44.83 44.83 44.83 44.83 44.83 44.83 44.83 44.83	PIPE AREA (SQ.FT.) 4.91 4.91 4.91 4.91 7.07 1.23 3.14 3.14	V FULL (F/S) 9.13 9.13 9.13 9.13 9.13 9.13 9.13 9.13	DESIGN V (F/S) 10.28 11.90 12.85 16.95 16.95 11.91 7.35 9.27 9.27 13.34	Hw/D 0.70 0.70 0.76 0.82 1.87 1.14 0.83 0.83 0.74 1.65	MH TOP ELEVATION 968.63 967.36 960.88 952.68 952.68 955.15 955.15	UPSTREAM FLOWLINE 960.13 956.55 952.84 945.23 943.58 943.58 943.58	DOWNSTREAM FLOWLINE 956.55 952.84 952.84 945.23 943.58 943.58 943.58 943.61 948.61	Image: state of the state	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP RECONSTRUCT AREA INLET RECONSTRUCT AREA INLET
1 SEW LEES 3 B18-03 GN C 0 RUC DM 5 4 3 2 1 4 3 2	ER PIPE AN SUMMIT LIBF 330 ONDITION TO A4 A3 A2 A1 A0 B3 B3	D STRUCT RARY S: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.43 0.43 0.43 0.43 0.43 0.43	JRE TABLE EAR ST(TOTAL AREA (ACRES) 0.73 1.16 1.58 4.72 4.84 0.30 1.11	0.83 0.83 0.83 0.75 0.90 0.75 0.75 0.75 0.75 0.70 0.75 0.70 0.75 0.70 0.70	0.83 ENT NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.94 0.38 0.58 0.5	5.0 CALCUL TC (MIN) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	FLOW TIME	7.35 7.35 INTENSITY (IN/HR) 10.32	8.78 DESIGN Q (CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46 41.83 2.79 2.79 2.79 4.18 6.01 0.00 22.04	18 in. HDPE DESCRIPTION EXISTING STRUCTURE EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OF EX. PIPE EXISTING 36" CMP 5x5 AREA INLET OVER EX. PIPE EXISTING 36" EQ CMP PIPE 6x4 CURB INLET 15 in. HDPE RECONS EX. AREA INLET 24 in. HDPE JUNCTION BOX 24 in. HDPE	PIPE LENGTH (L.F.) 81.00 92.00 202.00 202.00 118.00 118.00 1110.00	PIPE SLOPE (%) 4.05 4.05 4.05 4.05 1.60 2.76 3.22	PIPE DIA (IN) 30 30 30 30 30 30 30 30 30 30 30 30 31 30 32	Q FULL (CFS) 44.83 44.83 44.83 44.83 44.83 10.76 40.70	PIPE AREA (SQ.FT.) 4.91 4.91 4.91 4.91 7.07 1.23 3.14	V FULL (F/S) 9.13 9.13 9.13 9.13 9.13 9.13 9.13 9.13	DESIGN V (F/S) 10.28 11.90 12.85 16.95 11.91 7.35 9.27	Hw/D 0.70 0.70 0.82 1.87 1.14 0.83 0.83	MH TOP ELEVATION 968.63 967.36 967.36 967.36 952.68 952.68 955.15 955.15	UPSTREAM FLOWLINE 960.13 956.55 955.55 952.84 945.23 945.23 945.23 945.23	DOWNSTREAM FLOWLINE 956.55 952.84 945.23 943.58 943.58 943.61	Image: state of the state	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP RECONSTRUCT AREA INLET RECONSTRUCT AREA INLET
1 SEW LEES 3 B18-03 GN C RUC DM 5 4 3 2 1 4 3 2 1	ER PIPE AN SUMMIT LIBF 330 DNDITION TO A4 A3 A2 A1 A1 A0 B3 B3 B3 B1 A1	D STRUCT RARY S: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.43 0.43 0.43 0.43 0.43 0.43	JRE TABLE JRE TABLE TOTAL AREA (ACRES) 0.73 0.73 1.16 1.58 4.72 4.84 0.30 1.11 2.55 2.69	0.83 0.83 0.83 0.75 0.70 0.90 0.75 0.75 0.70 0.75 0.70 0.75 0.70 0.70	0.83 ENT NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.50 0.50 0.53 0.38 0.38 0.38 0.53 0.38 0.38 0.38 0.53 0.38 0.53 0.38 0.53 0.38 0.53 0.55 0.53 0.55 0.53 0.55 0.53 0.55 0.53 0.55 0.53 0.55 0.5	5.0 CALCUL TC (MIN) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	FLOW TIME	7.35 7.35 INTENSITY (IN/HR) 10.32	8.78 8.78 DESIGN Q (CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46 41.83 2.79 2.79 4.18 6.01 0.00 22.04 0.76 23.25 3.33	18 in. HDPE DESCRIPTION EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OVER EX. PIPE EXISTING 36" EQ CMP PIPE EXISTING 36" EQ CMP PIPE 6x4 CURB INLET 15 in. HDPE RECONS EX. AREA INLET 24 in. HDPE CURB INLET 24 in. HDPE CURB INLET 24 in. HDPE	PIPE LENGTH (L.F.) 81.00 92.00 92.00 202.00 202.00 118.00 1118.00 55.00 67.00	PIPE SLOPE (%) 4.05 4.05 4.05 4.05 1.60 2.76 3.22 3.32 1.90	PIPE DIA (IN) 30 30 30 30 30 30 30 30 30 4 24 24 24 24	Q FULL (CFS) 44.83 44.83 44.83 44.83 44.83 44.83 44.83 44.83 44.83 44.83 44.83	PIPE AREA (SQ.FT.) 4.91 4.91 4.91 4.91 7.07 1.23 3.14 3.14 3.14	V FULL (F/S) 9.13 9.13 9.13 9.13 9.13 9.13 9.13 9.13	DESIGN V (F/S) 10.28 11.90 12.85 16.95 16.95 11.91 7.35 9.27 13.34 10.88	Hw/D 0.70 0.70 0.76 0.82 1.87 1.14 0.83 0.83 0.74 1.65	MH TOP ELEVATION 968.63 967.36 967.36 967.36 952.68 952.68 955.15 955.15	UPSTREAM FLOWLINE 960.13 956.55 955.55 952.84 945.23 943.58 943.58 943.58 943.58 943.58	DOWNSTREAM FLOWLINE 956.55 952.84 945.23 943.58 943.58 943.61 948.61 945.70	Image: state of the state	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP RECONSTRUCT AREA INLET RECONSTRUCT AREA INLET
1 SEW LEES 3 B18-03 GN C RUC DM 5 	ER PIPE AN SUMMIT LIBF 330 DNDITION TO A4 A3 A2 A1 A0 B3 B3 B3 B1	D STRUCT RARY S: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.43 0.43 0.43 0.43 0.43 0.43	EAR ST(TOTAL AREA (ACRES) 0.73 0.73 1.16 1.58 4.72 4.84 0.30 1.11 2.55	0.83 0.83 0.83 0.75 0.90 0.75 0.90 0.75 0.70 0.75 0.70 0.70 0.70 0.70 0.7	0.83 ENT NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.94 0.38 0.50 0.50 0.53 0.38 0.38 0.38 0.38 0.50 0.53 0.38 0.38 0.38 0.53 0.38 0.38 0.38 0.53 0.38 0.38 0.38 0.38 0.50 0.50 0.53 0.38 0.38 0.38 0.38 0.38 0.53 0.38 0.38 0.38 0.38 0.50 0.50 0.53 0.38 0.38 0.38 0.38 0.50 0.50 0.53 0.38 0.38 0.53 0.53 0.84	5.0 CALCUL TC (MIN) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	FLOW TIME	7.35 7.35 INTENSITY (IN/HR) 10.32	8.78 8.78 DESIGN Q (CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46 41.83 2.79 2.79 2.79 2.79 4.18 6.01 0.00 22.04 0.76 23.25	18 in. HDPE DESCRIPTION EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OVER EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OVER EX. PIPE EXISTING 36" EQ CMP PIPE CURB INLET 24 in. HDPE CURB INLET 24 in. HDPE	PIPE LENGTH (L.F.) 92.00 92.00 202.00 202.00 1118.00 1118.00 1118.00 67.00	PIPE SLOPE (%) 4.05 4.05 4.05 4.05 1.60 2.76 3.22 3.32	PIPE DIA (IN) 30 30 30 30 30 30 30 30 30 30 30 31 30 32	Q FULL (CFS) 44.83 44.83 44.83 44.83 44.83 44.83 44.83 44.83 44.83	PIPE AREA (SQ.FT.) 4.91 4.91 4.91 4.91 7.07 1.23 3.14 3.14	V FULL (F/S) 9.13 9.13 9.13 9.13 9.13 9.13 9.13 9.13	DESIGN V (F/S) 10.28 11.90 12.85 16.95 16.95 11.91 7.35 9.27 9.27 13.34	Hw/D 0.70 0.70 0.82 1.87 1.14 0.83 0.83 0.74	MH TOP ELEVATION 968.63 967.36 967.36 960.88 952.68 952.68 955.15 955.15 955.15	UPSTREAM FLOWLINE 960.13 956.55 955.55 952.84 945.23 945.23 945.23 945.23	DOWNSTREAM FLOWLINE 956.55 952.84 952.84 945.23 943.58 943.58 943.58 943.61 948.61	Image: state of the state	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP RECONSTRUCT AREA INLET RECONSTRUCT AREA INLET
1 SEW LEES 3 B18-03 GN C RUC DM 5 4 3 2 1 4 3 2 1	ER PIPE AN SUMMIT LIBF 330 DNDITION TO A4 A3 A2 A1 A1 A0 B3 B3 B3 B1 A1	D STRUCT RARY S: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.43 0.43 0.43 0.43 0.43 0.45 0.45 0.12 0.12 0.30 0.30 0.12 0.30	JRE TABLE JRE TABLE TOTAL AREA (ACRES) 0.73 0.73 1.16 1.58 4.72 4.84 0.30 1.11 2.55 2.69	0.83 0.83 0.83 0.75 0.75 0.90 0.75 0.75 0.75 0.70 0.75 0.70 0.70 0.7	0.83 ENT NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.94 0.38 0.53 0.38 0.38 0.38 0.53 0.38 0.38 0.38 0.53 0.38 0.38 0.53 0.38 0.38 0.53 0.38 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.55 0.55 0.85	5.0 CALCUL TC (MIN) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	FLOW TIME	7.35 7.35 INTENSITY (IN/HR) 10.32	8.78 8.78 DESIGN Q (CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46 41.83 2.79 2.79 2.79 2.79 4.18 6.01 0.00 22.04 0.76 23.25 3.33 3.33	18 in. HDPE DESCRIPTION EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OF EX. PIPE EXISTING 36" EQ CMP PIPE EXISTING 36" EQ CMP PIPE 6x4 CURB INLET 15 in. HDPE RECONS EX. AREA INLET 24 in. HDPE CURB INLET 24 in. HDPE CURB INLET 24 in. HDPE	PIPE LENGTH (L.F.) 81.00 92.00 92.00 202.00 202.00 118.00 1118.00 55.00 67.00	PIPE SLOPE (%) 4.05 4.05 4.05 4.05 1.60 2.76 3.22 3.32 1.90	PIPE DIA (IN) 30 30 30 30 30 30 30 30 30 4 24 24 24 24	Q FULL (CFS) 44.83 44.83 44.83 44.83 44.83 44.83 44.83 44.83 44.83 44.83 44.83	PIPE AREA (SQ.FT.) 4.91 4.91 4.91 4.91 7.07 1.23 3.14 3.14 3.14	V FULL (F/S) 9.13 9.13 9.13 9.13 9.13 9.13 9.13 9.13	DESIGN V (F/S) 10.28 11.90 12.85 16.95 16.95 11.91 7.35 9.27 13.34 10.88	Hw/D 0.70 0.70 0.76 0.82 1.87 1.14 0.83 0.83 0.74 1.65	MH TOP ELEVATION 968.63 967.36 967.36 967.36 952.68 952.68 955.15 955.15 955.15 955.15	UPSTREAM FLOWLINE 960.13 956.55 955.55 952.84 945.23 943.58 943.58 943.58 943.58 943.58	DOWNSTREAM FLOWLINE 956.55 952.84 945.23 943.58 943.58 943.61 948.61 945.70	Image: state of the state	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP RECONSTRUCT AREA INLET RECONSTRUCT AREA INLET
A SEW LEES 3 B18-03 GN C RUC DM 5 4 3 2 1 4 3 2 1	ER PIPE AN SUMMIT LIBF 330 DNDITION TO A4 A3 A2 A1 A1 A0 B3 B3 B3 B1 A1	D STRUCT RARY S: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.43 0.43 0.43 0.43 0.43 0.43	JRE TABLE JRE TABLE TOTAL AREA (ACRES) 0.73 0.73 1.16 1.58 4.72 4.84 0.30 1.11 2.55 2.69	0.83 0.83 0.83 0.75 0.70 0.90 0.75 0.75 0.70 0.75 0.70 0.75 0.70 0.70	0.83 ENT NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.94 0.38 0.50 0.50 0.53 0.38 0.38 0.38 0.53 0.38 0.38 0.38 0.53 0.38 0.53 0.38 0.53 0.38 0.53 0.55 0.53 0.55 0.53 0.55 0.53 0.55 0.53 0.55 0.53 0.55 0.5	5.0 CALCUL TC (MIN) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	FLOW TIME	7.35 7.35 INTENSITY (IN/HR) 10.32	8.78 8.78 DESIGN Q (CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46 41.83 2.79 2.79 4.18 6.01 0.00 22.04 0.76 23.25 3.33	18 in. HDPE DESCRIPTION EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OVER EX. PIPE EXISTING 36" EQ CMP PIPE EXISTING 36" EQ CMP PIPE 6x4 CURB INLET 15 in. HDPE RECONS EX. AREA INLET 24 in. HDPE CURB INLET 24 in. HDPE CURB INLET 24 in. HDPE	PIPE LENGTH (L.F.) 81.00 92.00 92.00 202.00 202.00 118.00 1118.00 55.00 67.00	PIPE SLOPE (%) 4.05 4.05 4.05 4.05 1.60 2.76 3.22 3.32 1.90	PIPE DIA (IN) 30 30 30 30 30 30 30 30 30 4 24 24 24 24	Q FULL (CFS) 44.83 44.83 44.83 44.83 44.83 44.83 44.83 44.83 44.83 44.83 44.83	PIPE AREA (SQ.FT.) 4.91 4.91 4.91 4.91 7.07 1.23 3.14 3.14 3.14	V FULL (F/S) 9.13 9.13 9.13 9.13 9.13 9.13 9.13 9.13	DESIGN V (F/S) 10.28 11.90 12.85 16.95 16.95 11.91 7.35 9.27 13.34 10.88	Hw/D 0.70 0.70 0.76 0.82 1.87 1.14 0.83 0.83 0.74 1.65	MH TOP ELEVATION 968.63 967.36 967.36 960.88 952.68 952.68 955.15 955.15 955.15	UPSTREAM FLOWLINE 960.13 956.55 955.55 952.84 945.23 943.58 943.58 943.58 943.58 943.58	DOWNSTREAM FLOWLINE 956.55 952.84 945.23 943.58 943.58 943.61 948.61 945.70	Image: state of the state	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP RECONSTRUCT AREA INLET RECONSTRUCT AREA INLET
A SEW LEES 3 B18-03 GN C RUC DM 5 4 3 2 1 4 3 2 1 4 3 2 1 1 4 3 2 1 1 1	ER PIPE AN SUMMIT LIBF 330 DNDITION TO A4 A3 A2 A1 A1 A0 B3 B3 B3 B1 A1 A1 A0	D STRUCT RARY S: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.43 0.43 0.45 0.45 0.45 0.45 0.12 0.12 0.30 0.12 0.12	JRE TABLE JRE TABLE TOTAL AREA (ACRES) 0.73 0.73 1.16 1.58 4.72 4.84 0.30 1.11 2.55 2.69 0.38	0.83 0.83 0.83 0.75 0.70 0.90 0.75 0.75 0.75 0.78 0.78 0.78 0.78 0.75 0.70 0.75 0.70 0.70 0.70 0.70 0.70	0.83 ENT NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.53 0.38 0.38 0.38 0.53 0.38 0.53 0.38 0.53 0.38 0.53 0.38 0.53 0.38 0.38 0.53 0.38 0.38 0.53 0.38 0.38 0.53 0.38 0.53 0.38 0.38 0.53 0.38 0.53 0.38 0.53 0.38 0.53 0.38 0.38 0.38 0.53 0.38 0.53 0.38 0.84 0.53 0.84 0.53 0.85 0.85 0.85 0.89	5.0 CALCUL TC (MIN) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	FLOW TIME	7.35 7.35 INTENSITY (IN/HR) 10.32	8.78 8.78 DESIGN Q (CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46 41.83 2.79 2.79 4.18 6.01 0.00 22.04 0.76 23.25 3.33 3.33 3.33	18 in. HDPE DESCRIPTION EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OVER EX. PIPE EXISTING 36" EQ CMP PIPE EXISTING 36" EQ CMP PIPE 6x4 CURB INLET 15 in. HDPE CURB INLET 24 in. HDPE CURB INLET 24 in. HDPE 6x4 CURB INLET 15 in. HDPE 6x4 CURB INLET 15 in. HDPE	PIPE LENGTH (L.F.) 81.00 92.00 92.00 202.00 202.00 118.00 118.00 55.00 67.00 69.00	PIPE SLOPE (%) 4.05 4.05 4.05 4.05 1.60 2.76 3.22 3.32 1.90	PIPE DIA (IN) 30 30 30 30 30 30 30 30 4 24 24 24 24 24 15 15 15	Q FULL (CFS) 44.83 44.83 44.83 44.83 44.83 44.83 44.83 44.83 44.83 44.83 31.27	PIPE AREA (SQ.FT.) 4.91 4.91 4.91 4.91 7.07 1.23 3.14 3.14 3.14	V FULL (F/S) 9.13 9.13 9.13 9.13 9.13 9.13 9.13 9.13	DESIGN V (F/S) 10.28 11.90 12.85 16.95 16.95 11.91 7.35 9.27 13.34 10.88 10.88	 Hw/D 0.70 0.70 0.76 0.82 1.87 1.14 0.83 0.74 1.65 1.76 0.91 	MH TOP ELEVATION 968.63 967.36 967.36 952.68 955.15 955.15 955.15 954.27 955.15 954.27 954.27	UPSTREAM FLOWLINE 960.13 960.13 956.55 955.55 945.23 943.58 943.58 943.58 943.58 943.58 943.58 943.58	DOWNSTREAM FLOWLINE 956.55 956.55 952.84 945.23 943.58 943.58 943.61 948.61 948.61 948.61	Image: state of the state	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP CONSTRU CT BOX OVER EXISTING PIP RECONSTRUCT AREA INLET RECONSTRUCT AREA INLET
A SEW LEES 3 B18-03 GN C RUC DM 5 4 3 2 1 4 3 2 1 4 3 2 1	ER PIPE AN SUMMIT LIBF 330 DNDITION TO A4 A3 A2 A1 A1 A0 B3 B3 B3 B1 A1 A1 A0 A1 A1 A0 A1 A2 A1	D STRUCT RARY S: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.43 0.43 0.43 0.43 0.43 0.45 0.45 0.12 0.12 0.30 0.30 0.12 0.30	EAR ST(TOTAL AREA (ACRES) 0.73 0.73 0.73 1.16 1.58 4.72 4.84 0.30 1.11 2.55 2.69 2.69 0.38	0.83 0.83 0.83 0.75 0.90 0.90 0.75 0.75 0.75 0.70 0.75 0.70 0.75 0.70 0.70	0.83 ENT NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.94 0.38 0.94 0.38 0.50 0.50 0.53 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.53 0.85 0.85 0.85 0.85 0.85	5.0 CALCUL TC (MIN) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	FLOW TIME	7.35 7.35 INTENSITY (IN/HR) 10.32	8.78 8.78 DESIGN Q (CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46 41.83 2.79 2.79 2.79 4.18 6.01 0.00 22.04 0.76 23.25 4.18 6.01 0.00 22.04 0.76 23.25 4.18 6.01 0.00 22.04 0.76 23.25 4.18 6.01 0.15 1.27	18 in. HDPE DESCRIPTION EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OVER EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OVER EX. PIPE EXISTING 36" EQ CMP PIPE 6x4 CURB INLET 15 in. HDPE CURB INLET 24 in. HDPE CURB INLET 24 in. HDPE 6x4 CURB INLET 24 in. HDPE 6x4 CURB INLET 15 in. HDPE 6x4 CURB INLET 15 in. HDPE 6x4 CURB INLET 15 in. HDPE	PIPE LENGTH (L.F.) 81.00 92.00 92.00 202.00 202.00 118.00 118.00 69.00 67.00 69.00	PIPE SLOPE (%) 4.05 4.05 4.05 4.05 4.05 1.60 2.76 3.22 3.32 1.90 1.76	PIPE DIA (IN) 30	Q FULL (CFS) 44.83 44.83 44.83 44.83 44.83 44.83 44.83 31.27 31.27 8.59 8.59	PIPE AREA (SQ.FT.) 4.91 4.91 4.91 4.91 7.07 1.23 3.14 3.14 3.14 3.14 1.23	V FULL (F/S) 9.13 9.13 9.13 9.13 9.13 9.13 9.13 9.13	DESIGN V (F/S) 10.28 11.90 12.85 16.95 11.91 7.35 9.27 9.27 13.34 10.88 6.56	Hw/D 0.70 0.70 0.76 0.82 1.87 1.14 0.83 0.83 0.74 1.65 1.65 1.76	MH TOP ELEVATION 968.63 967.36 967.36 967.36 955.15 955.15 955.15 955.15 955.15 955.15	UPSTREAM FLOWLINE 960.13 956.55 955.55 955.84 945.23 943.58 943.58 943.58 943.58 943.58 943.58 943.58 943.58	DOWNSTREAM FLOWLINE 956.55 956.55 952.84 943.58 943.58 943.58 943.61 943.61 943.61 943.61	Image: state stat	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE RECONSTRUCT AREA INLET RECONSTRUCT AREA INLET
A SEW LEES 3 B18-03 GN C RUC DM 5 	ER PIPE AN SUMMIT LIBF 330 DNDITION TO A4 A3 A2 A1 A1 A0 B3 B3 B3 B1 A1 A1 A0	D STRUCT RARY S: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.43 0.45 0.45 0.45 0.12 0.12 0.30 0.12 0.30 0.12 0.30 0.12	JRE TABLE JRE TABLE TOTAL AREA (ACRES) 0.73 0.73 1.16 1.58 4.72 4.84 0.30 1.11 2.55 2.69 0.38	0.83 0.83 0.83 0.75 0.75 0.90 0.75 0.75 0.75 0.75 0.70 0.75 0.70 0.75 0.70 0.75 0.70 0.75 0.70 0.72 0.72 0.72 0.72 0.72 0.72 0.72	0.83 ENT NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.94 0.38 0.50 0.50 0.50 0.53 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.50 0.50 0.50 0.53 0.53 0.53 0.38 0.84 0.53 0.84 0.53 0.84 0.53 0.84 0.53 0.84 0.53 0.84 0.53 0.84 0.53 0.84 0.53 0.84 0.53 0.84 0.53 0.84 0.53 0.85 0.8	5.0 CALCUI TC (MIN) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	FLOW TIME	7.35 7.35 INTENSITY (IN/HR) 10.32	8.78 DESIGN Q (CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46 42.62 0.46 41.83 2.79 2.79 2.79 2.79 4.18 6.01 0.00 22.04 0.76 23.25 3.33 3.33 3.33 3.33 3.33	18 in. HDPE DESCRIPTION EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OVER EX. PIPE EXISTING 36" EQ CMP PIPE 6X4 CURB INLET OVER EX. PIPE EXISTING 36" EQ CMP PIPE 6X4 CURB INLET 15 in. HDPE CURB INLET 24 in. HDPE CURB INLET 24 in. HDPE CURB INLET 24 in. HDPE 6X4 CURB INLET 15 in. HDPE 6X4 CURB INLET 15 in. HDPE 6X4 CURB INLET 15 in. HDPE	PIPE LENGTH (L.F.) 81.00 92.00 92.00 202.00 202.00 118.00 118.00 55.00 67.00 69.00	PIPE SLOPE (%) 4.05 4.05 4.05 4.05 1.60 2.76 3.22 3.32 1.90	PIPE DIA (IN) 30 30 30 30 30 30 30 30 4 24 24 24 24 24 15 15 15	Q FULL (CFS) 44.83 44.83 44.83 44.83 44.83 44.83 44.83 44.83 44.83 44.83 31.27	PIPE AREA (SQ.FT.) 4.91 4.91 4.91 4.91 7.07 1.23 3.14 3.14 3.14	V FULL (F/S) 9.13 9.13 9.13 9.13 9.13 9.13 9.13 9.13	DESIGN V (F/S) 10.28 11.90 12.85 16.95 16.95 11.91 7.35 9.27 13.34 10.88 10.88	 Hw/D 0.70 0.70 0.76 0.82 1.87 1.14 0.83 0.74 1.65 1.76 0.91 	MH TOP ELEVATION 968.63 967.36 960.88 952.68 955.15 955.15 954.27 955.15 954.27 954.27 954.27	UPSTREAM FLOWLINE 960.13 960.13 956.55 955.55 945.23 943.58 943.58 943.58 943.58 943.58 943.58 943.58	DOWNSTREAM FLOWLINE 956.55 956.55 952.84 945.23 943.58 943.58 943.61 948.61 948.61 948.61	Image: state of the state	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE RECONSTRUCT AREA INLET RECONSTRUCT AREA INLET
1 SEW LEES 3 B18-03 GN C RUC DM 5 4 3 2 1 4 3 2 1 1 4 3 2 1	ER PIPE AN SUMMIT LIBF 330 DNDITION TO A4 A3 A2 A1 A1 A0 B3 B3 B3 B1 A1 A1 A0 A1 A1 A0 A1 A2 A1	D STRUCT RARY S: 100 Y DIRECT AREA (ACRES) 0.30 0.43 0.43 0.43 0.45 0.45 0.45 0.45 0.12 0.12 0.30 0.12 0.12	EAR ST(TOTAL AREA (ACRES) 0.73 0.73 0.73 1.16 1.58 4.72 4.84 0.30 1.11 2.55 2.69 2.69 0.38	0.83 0.83 0.83 0.75 0.90 0.90 0.75 0.75 0.75 0.70 0.75 0.70 0.75 0.70 0.70	0.83 ENT NOFF C KC (K=1.25) 1.00 0.94 1.11 0.98 0.38 0.94 0.38 0.94 0.38 0.50 0.50 0.53 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.53 0.85 0.85 0.85 0.85 0.85	5.0 CALCUL TC (MIN) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	FLOW TIME	7.35 7.35 INTENSITY (IN/HR) 10.32	8.78 8.78 DESIGN Q (CFS) 3.10 7.06 4.94 11.67 0.15 15.29 4.06 42.62 0.46 41.83 2.79 2.79 2.79 4.18 6.01 0.00 22.04 0.76 23.25 4.18 6.01 0.00 22.04 0.76 23.25 4.18 6.01 0.00 22.04 0.76 23.25 4.18 6.01 0.15 1.27	18 in. HDPE DESCRIPTION EXISTING STRUCTURE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 4X4 AREA INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OF EX. PIPE EXISTING 30" CMP 6X4 CURB INLET OVER EX. PIPE EXISTING 30" CMP 5x5 AREA INLET OVER EX. PIPE EXISTING 36" EQ CMP PIPE 6x4 CURB INLET 15 in. HDPE CURB INLET 24 in. HDPE CURB INLET 24 in. HDPE 6x4 CURB INLET 24 in. HDPE 6x4 CURB INLET 15 in. HDPE 6x4 CURB INLET 15 in. HDPE 6x4 CURB INLET 15 in. HDPE	PIPE LENGTH (L.F.) 81.00 92.00 92.00 202.00 202.00 118.00 118.00 69.00 67.00 69.00	PIPE SLOPE (%) 4.05 4.05 4.05 4.05 4.05 1.60 2.76 3.22 3.32 1.90 1.76	PIPE DIA (IN) 30	Q FULL (CFS) 44.83 44.83 44.83 44.83 44.83 44.83 44.83 31.27 31.27 8.59 8.59	PIPE AREA (SQ.FT.) 4.91 4.91 4.91 4.91 7.07 1.23 3.14 3.14 3.14 3.14 1.23	V FULL (F/S) 9.13 9.13 9.13 9.13 9.13 9.13 9.13 9.13	DESIGN V (F/S) 10.28 11.90 12.85 16.95 11.91 7.35 9.27 9.27 13.34 10.88 6.56	Hw/D 0.70 0.70 0.76 0.82 1.87 1.14 0.83 0.83 0.74 1.65 1.65 1.76	MH TOP ELEVATION 968.63 967.36 967.36 952.68 955.15 955.15 955.15 954.27 955.15 954.27 954.27	UPSTREAM FLOWLINE 960.13 956.55 955.55 955.84 945.23 943.58 943.58 943.58 943.58 943.58 943.58 943.58 943.58	DOWNSTREAM FLOWLINE 956.55 956.55 952.84 943.58 943.58 943.58 943.61 943.61 943.61 943.61	Image: state stat	EXISTING STRUCTURE TO REMIAN CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE CONSTRU CT BOX OVER EXISTING PIPE RECONSTRUCT AREA INLET

PROPERTY LINE LOT LINE PROPOSED CONTOUR EXISTING CONTOUR LIMITS OF DISTURBANCE (41.8+/-ACRES)SILT FENCE TEMPORARY CONSTRUCTION ENTRANCE CONCRETE WASHOUT STAGING/STOCKPILE AREA FILTER BAGS EXISTING INLET PROTECTION PROPOSED INLET PROTECTION


EROSION CONTROL REFERENCE NUMBER

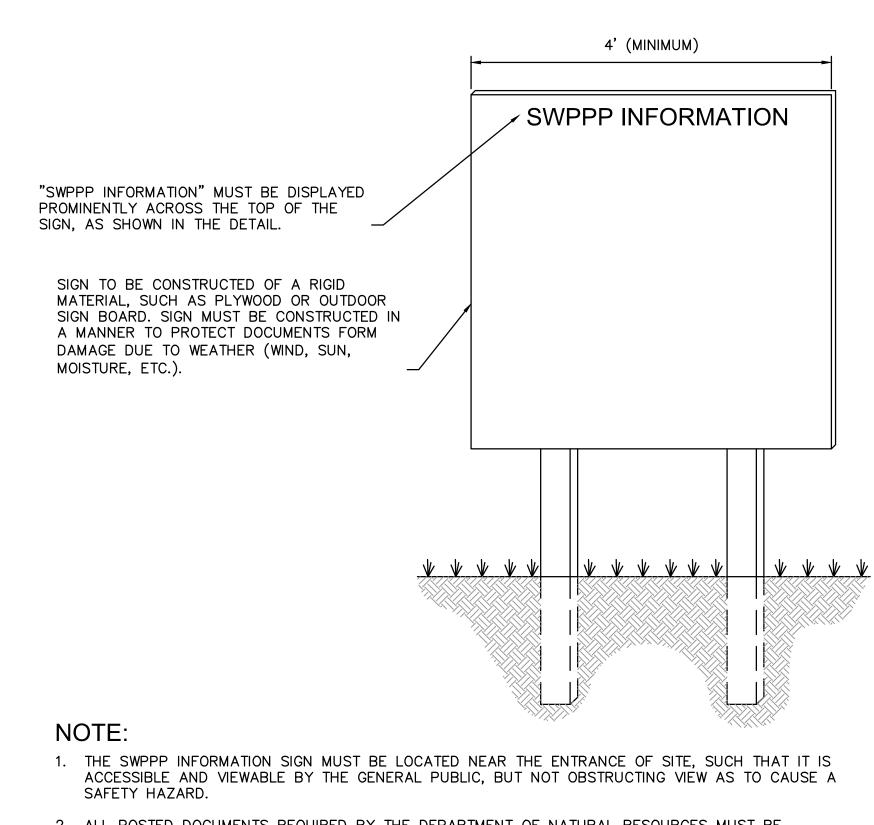
EROSION AND SEDIMENT CONTROL SHALL BE IMPLEMENTED PER THE CURRENTLY APPROVED DESIGN CRITERIA (LS SECTION 5100) AND STANDARD SPECIFICATIONS (LS SECTION 2150) FOR THE CITY OF LEE'S SUMMIT. MISSOURI.

EROSION CONTROL STAGING CHART ഥ ĽШ BMP DESCRIPTION NOTES: NSIC RE CONCRETE WASHOUT C INSTALL AS INDICATED ON PLANS A1 STAGE A SLOPE PROTECTION C INSTALL AS INDICATED ON PLANS A2 (SILT FENCE) STAGE A SLOPE PROTECTION C INSTALL AS INDICATED ON PLANS Α3 (GRAVEL FILTER BAGS) STABILIZED CONSTRUCTION ENTRANCE C INSTALL AS INDICATED ON PLANS A4 C INSTALL AS INDICATED ON PLANS A5 EXISTING INLET PROTECTION SWPPP SIGN A6 B1 INLET PROECTION C INSTALL AS INDICATED ON PLANS

REPLACE TOP SOIL, SEED MULCH

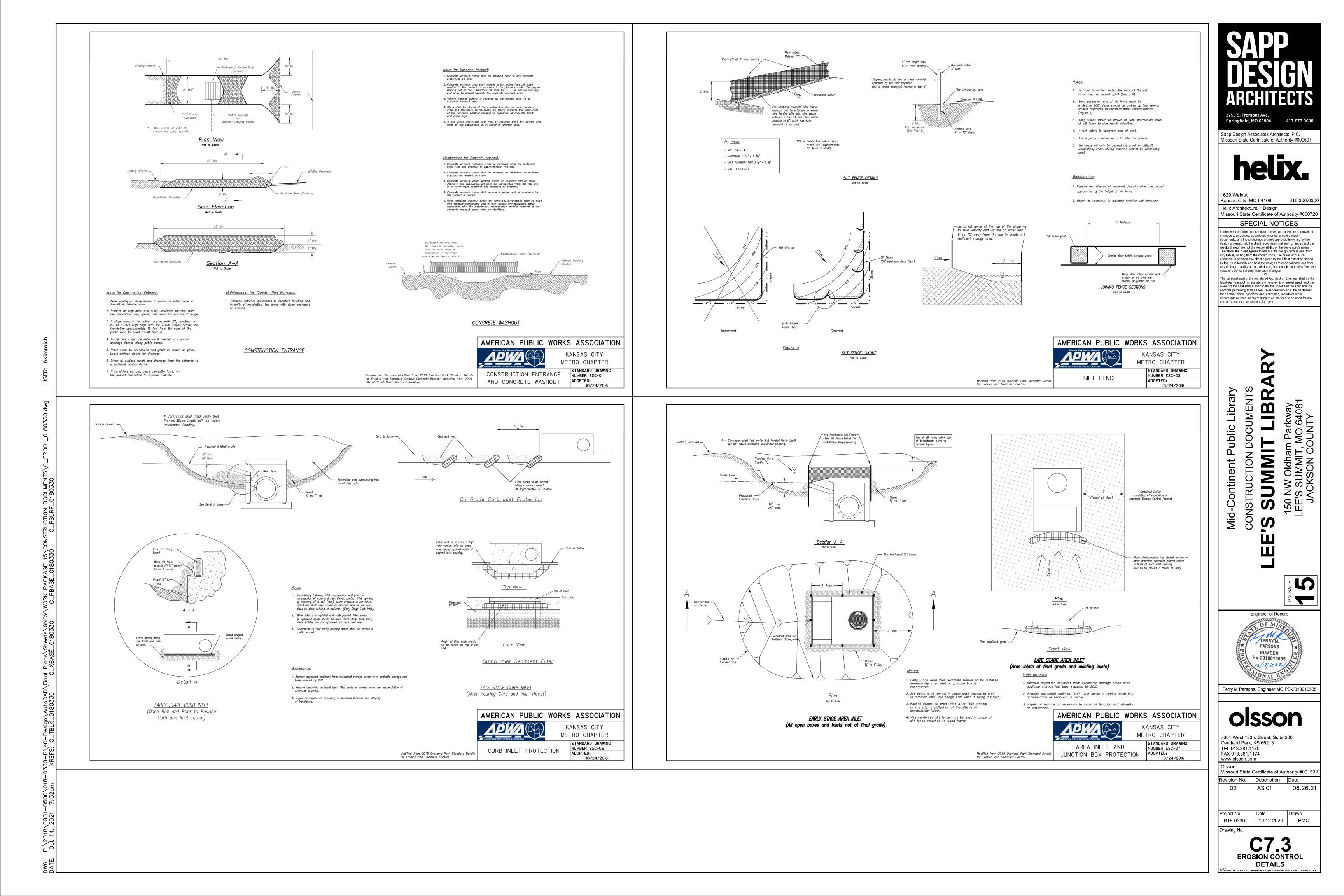
C1

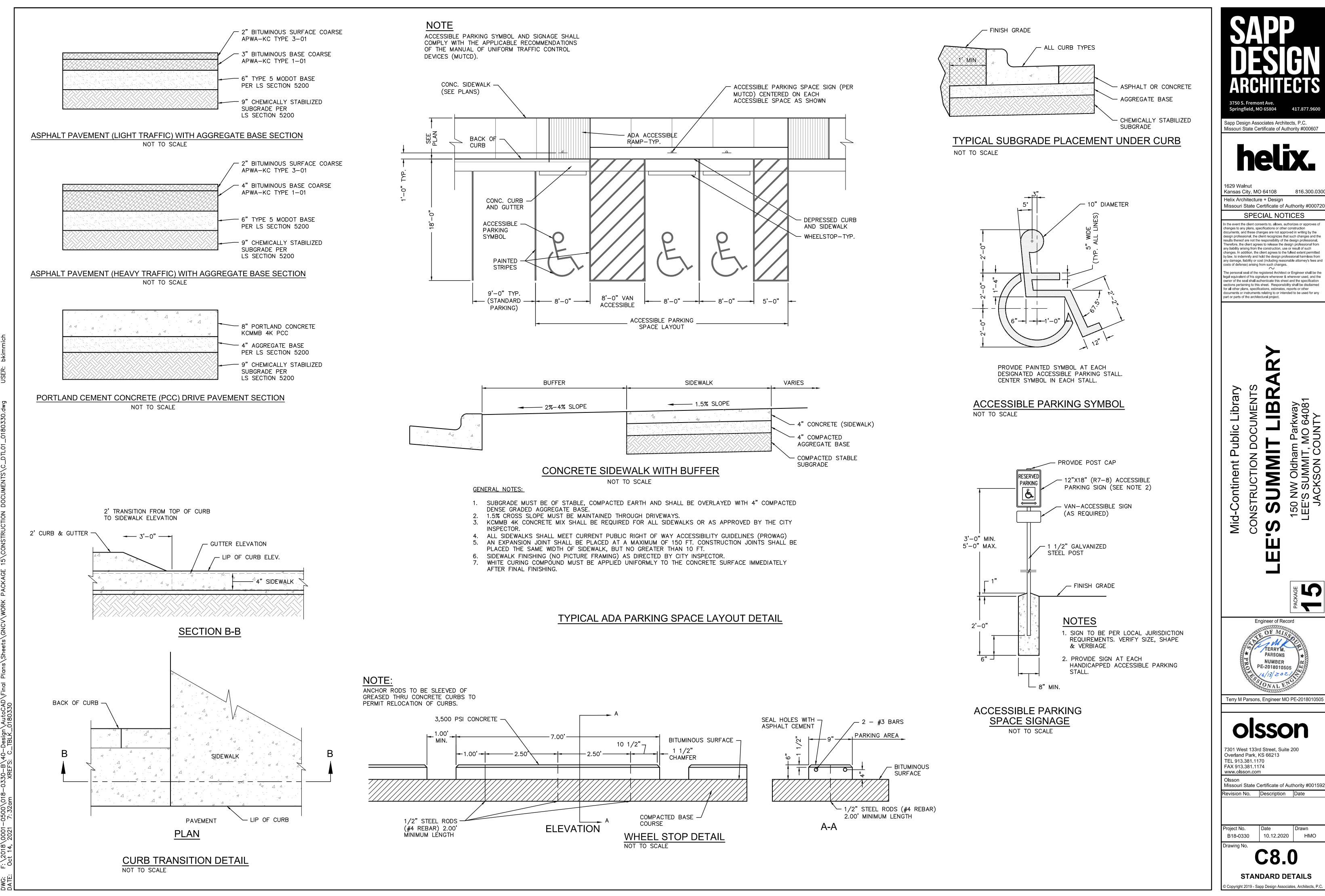
ESTABLISH PERENNIAL

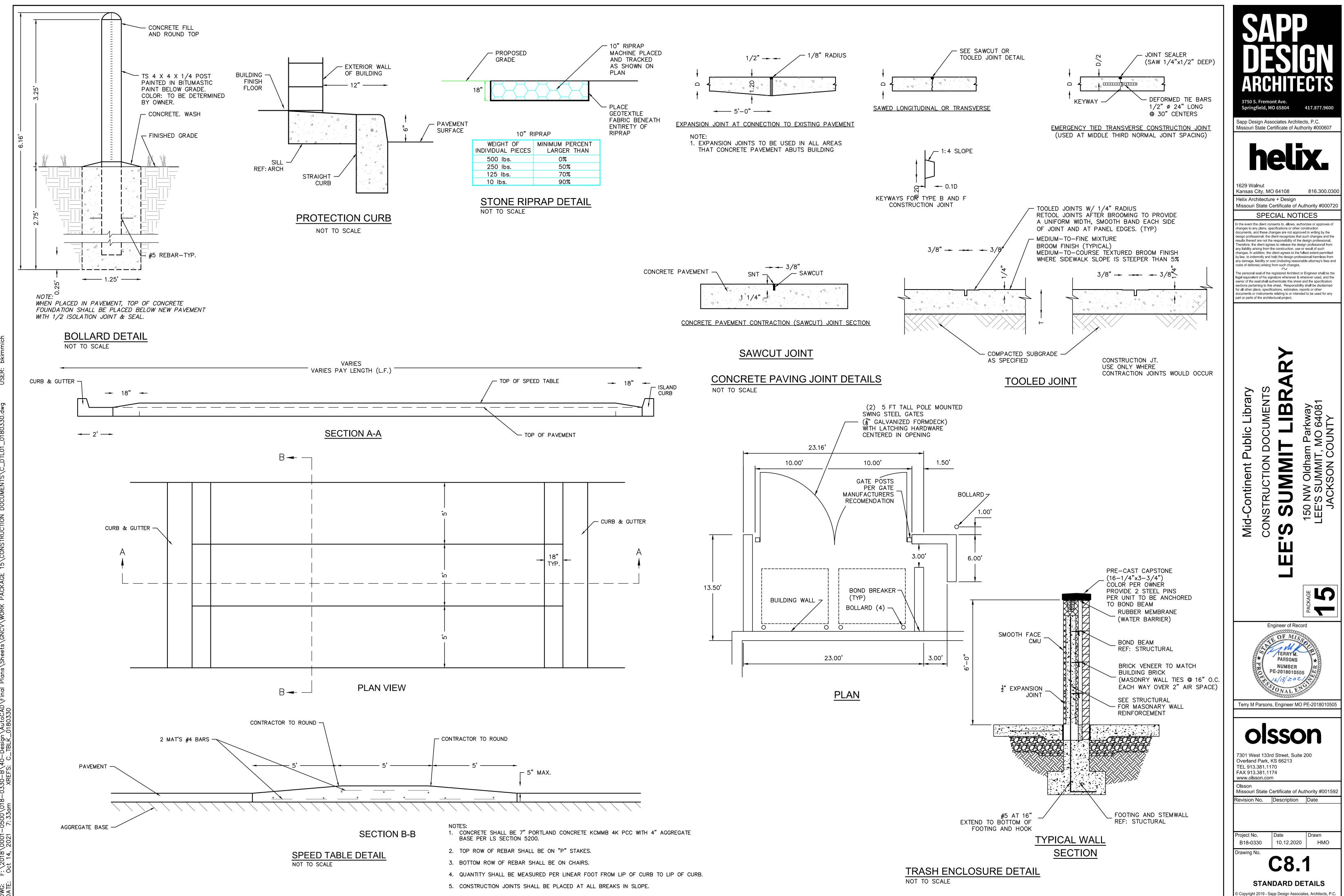

VEGETATION WITH A 70%

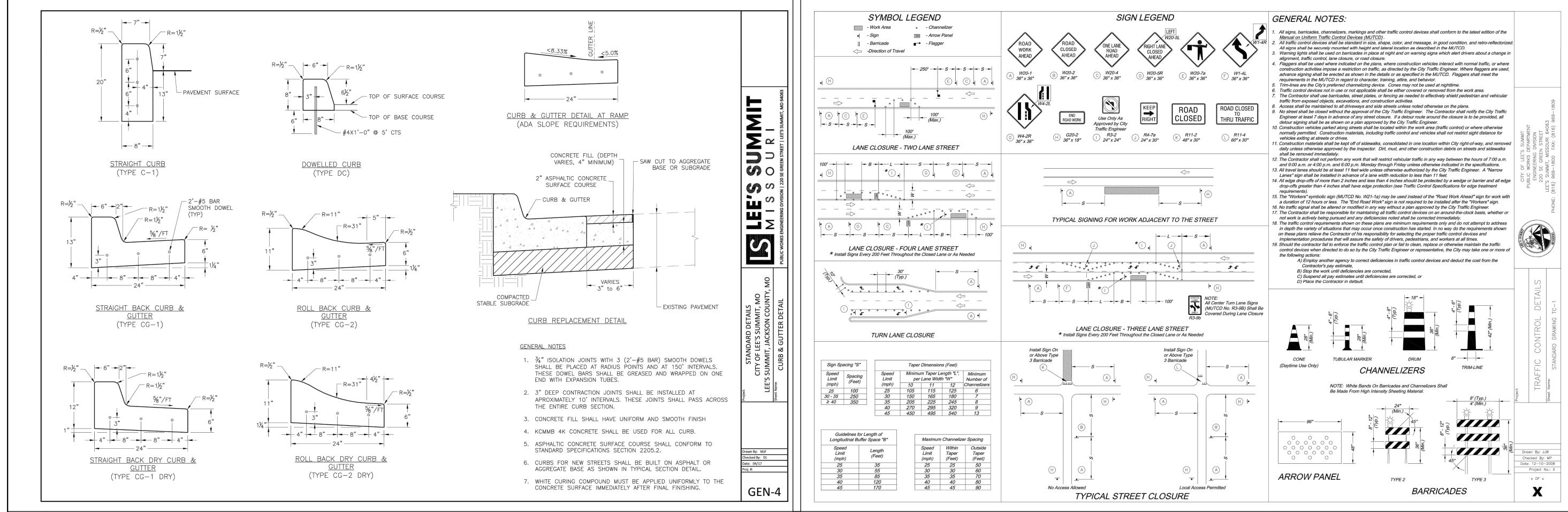
DENSITY OVER 100% OF DISTURBED AREA.

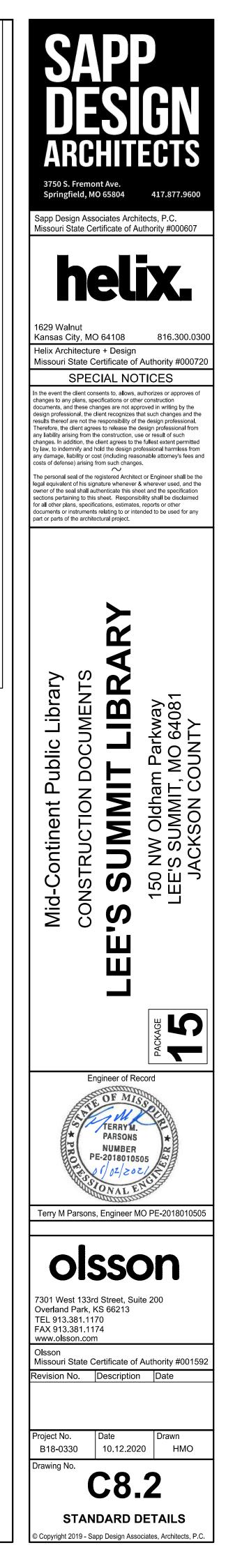
N/A

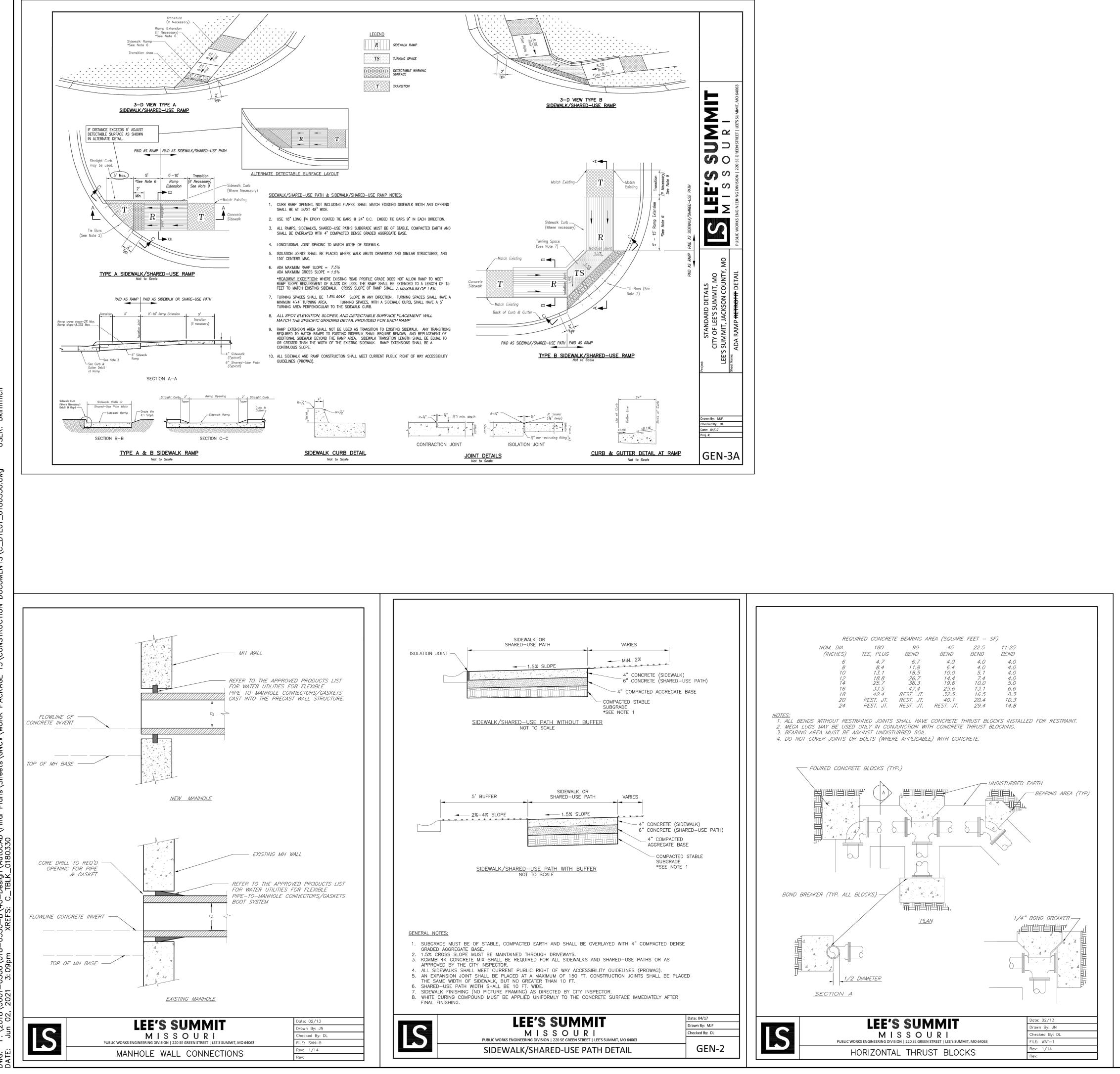

pyright 2019 - Sapp Design Associates, Architects, P.C.



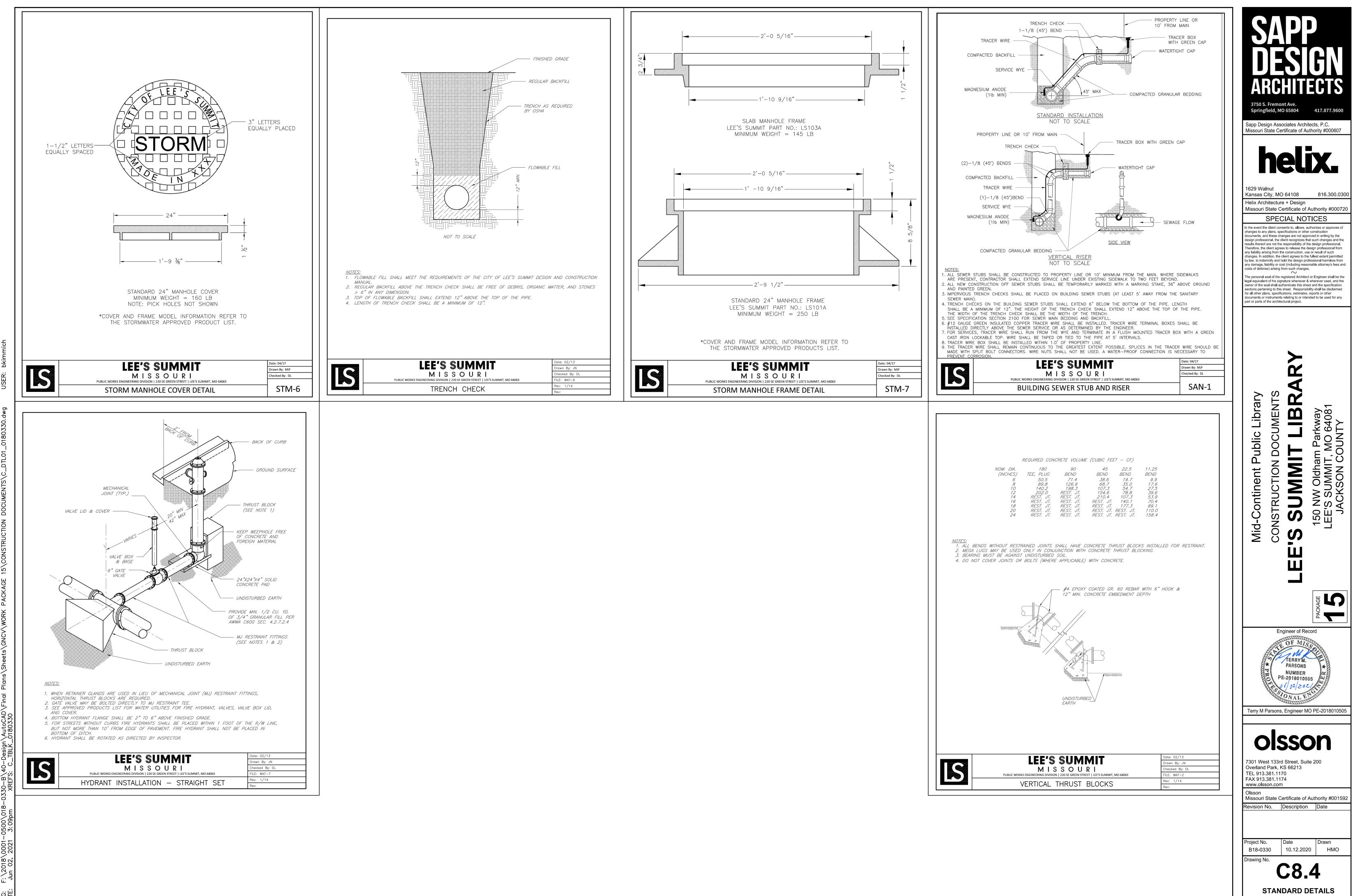

- 2. ALL POSTED DOCUMENTS REQUIRED BY THE DEPARTMENT OF NATURAL RESOURCES MUST BE MAINTAINED IN A CLEARLY READABLE CONDITION AT ALL TIMES THROUGHOUT CONSTRUCTION AND UNTIL THE NOTICE-OF-TERMINATION (NOT) IS FILED FOR THE PERMIT.
- 3. CONTRACTOR SHALL POST OTHER STORMWATER AND/OR EROSION CONTROL RELATED PERMITS ON THE SIGN AS REQUIRED BY THE GOVERNING AGENCY.
- SIGN SHALL BE LOCATED OUTSIDE PUBLIC RIGHT-OF-WAY AND EASEMENTS UNLESS APPROVED BY THE GOVERNING AGENCY.
- 5. CONTRACTOR IS RESPONSIBLE FOR ENSURING STABILITY OF THE SWPPP INFORMATION SIGN.

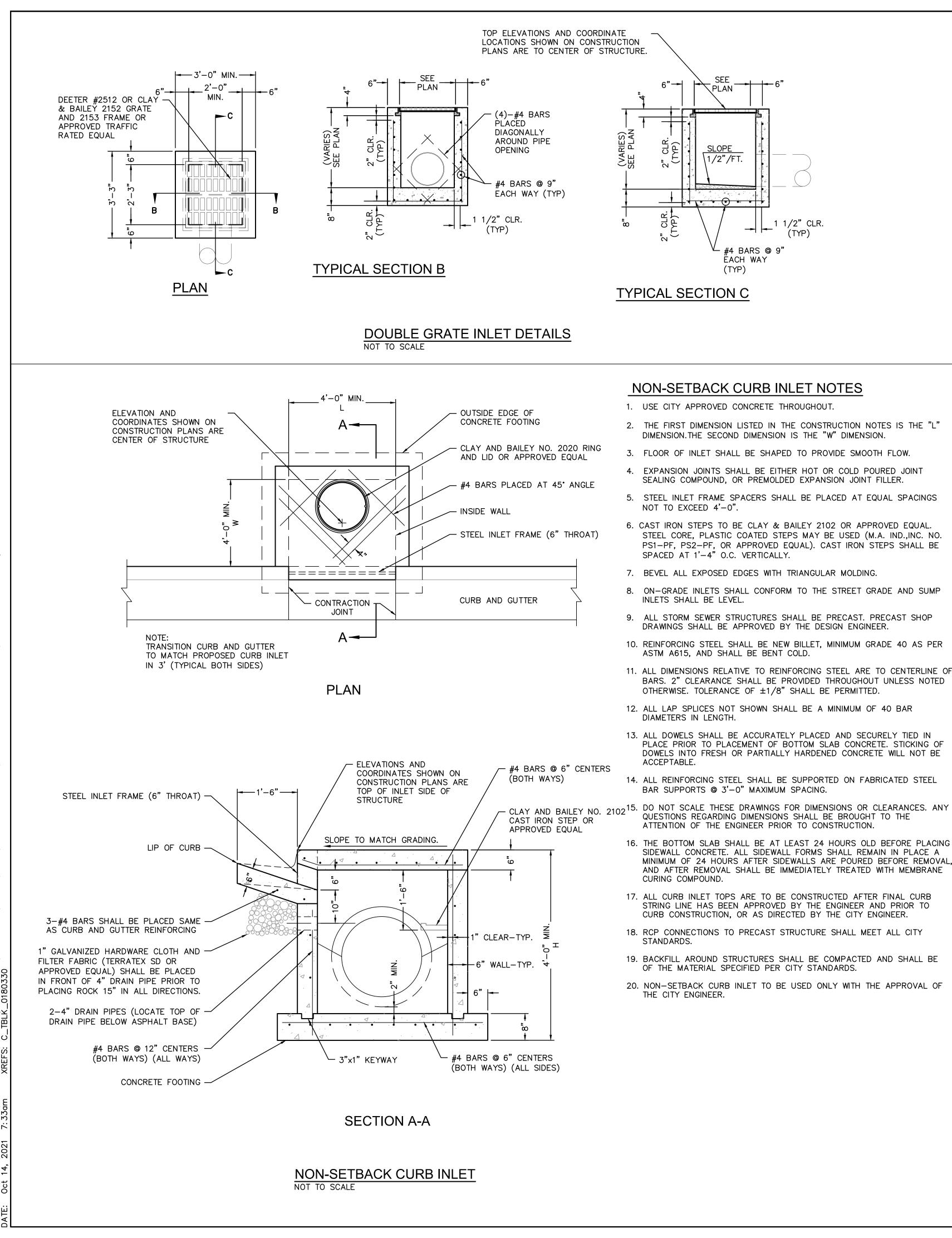

SWPPP INFORMATION SIGN







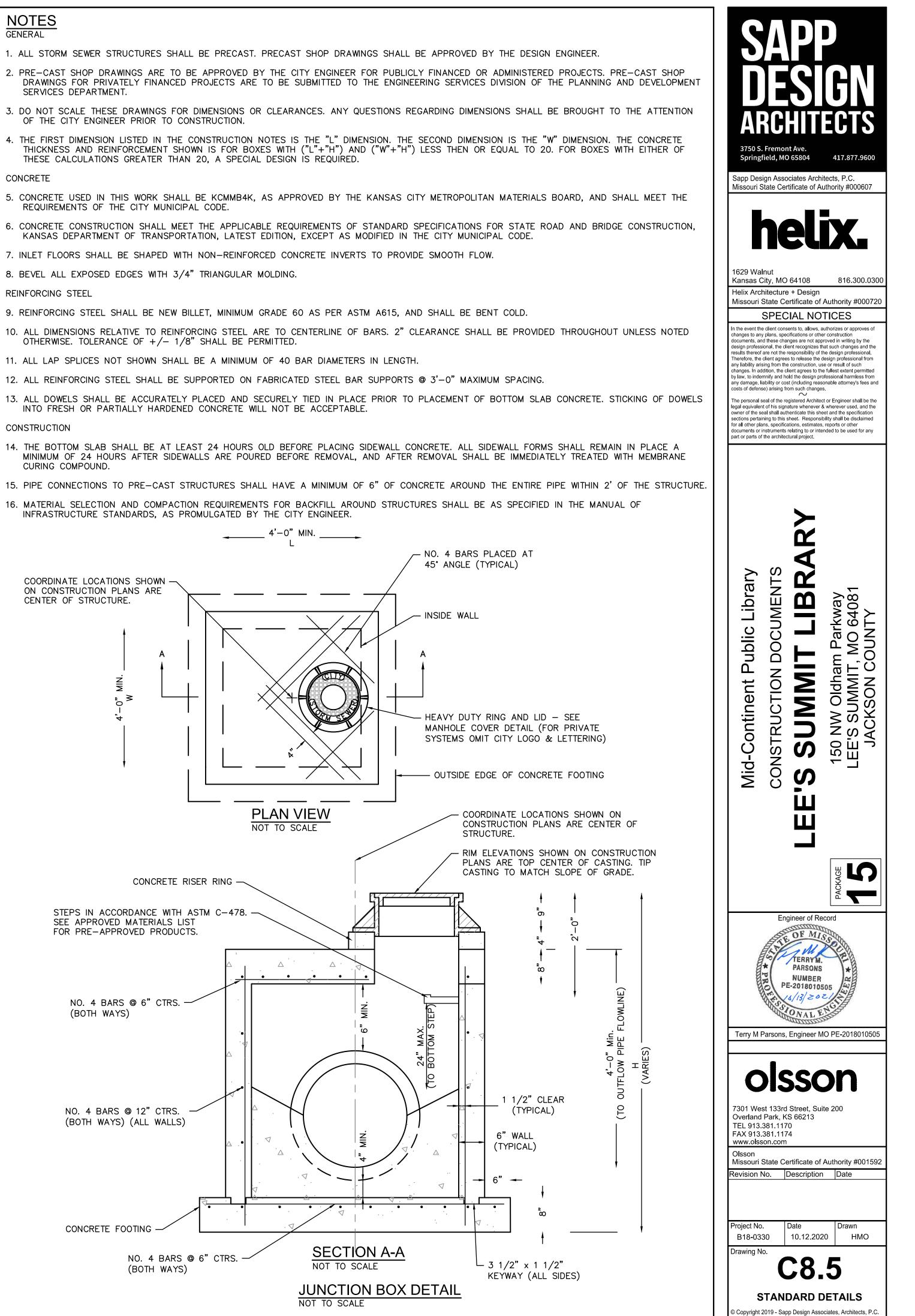

Design\AutoCAD _TBLK_0180330 -0330-B\40-I XREFS: C_ -0500\ 3:09p 018\0001-02, 2021



шŗ <u>7</u>3

yright 2019 - Sapp Design Associates, Architects, P.C.

NON-SETBACK CURB INLET NOTES


- 2. THE FIRST DIMENSION LISTED IN THE CONSTRUCTION NOTES IS THE "L" DIMENSION. THE SECOND DIMENSION IS THE "W" DIMENSION.
- 3. FLOOR OF INLET SHALL BE SHAPED TO PROVIDE SMOOTH FLOW.
- 4. EXPANSION JOINTS SHALL BE EITHER HOT OR COLD POURED JOINT SEALING COMPOUND, OR PREMOLDED EXPANSION JOINT FILLER.
- 5. STEEL INLET FRAME SPACERS SHALL BE PLACED AT EQUAL SPACINGS
- 6. CAST IRON STEPS TO BE CLAY & BAILEY 2102 OR APPROVED EQUAL. STEEL CORE, PLASTIC COATED STEPS MAY BE USED (M.A. IND., INC. NO. PS1-PF, PS2-PF, OR APPROVED EQUAL). CAST IRON STEPS SHALL BE
- 7. BEVEL ALL EXPOSED EDGES WITH TRIANGULAR MOLDING.
- 8. ON-GRADE INLETS SHALL CONFORM TO THE STREET GRADE AND SUMP
- 9. ALL STORM SEWER STRUCTURES SHALL BE PRECAST. PRECAST SHOP DRAWINGS SHALL BE APPROVED BY THE DESIGN ENGINEER.
- 10. REINFORCING STEEL SHALL BE NEW BILLET, MINIMUM GRADE 40 AS PER
- 11. ALL DIMENSIONS RELATIVE TO REINFORCING STEEL ARE TO CENTERLINE OF BARS. 2" CLEARANCE SHALL BE PROVIDED THROUGHOUT UNLESS NOTED OTHERWISE. TOLERANCE OF $\pm 1/8$ " SHALL BE PERMITTED.
- 12. ALL LAP SPLICES NOT SHOWN SHALL BE A MINIMUM OF 40 BAR
- 13. ALL DOWELS SHALL BE ACCURATELY PLACED AND SECURELY TIED IN PLACE PRIOR TO PLACEMENT OF BOTTOM SLAB CONCRETE. STICKING OF DOWELS INTO FRESH OR PARTIALLY HARDENED CONCRETE WILL NOT BE
- 14. ALL REINFORCING STEEL SHALL BE SUPPORTED ON FABRICATED STEEL
- QUESTIONS REGARDING DIMENSIONS SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER PRIOR TO CONSTRUCTION.
- 16. THE BOTTOM SLAB SHALL BE AT LEAST 24 HOURS OLD BEFORE PLACING SIDEWALL CONCRETE. ALL SIDEWALL FORMS SHALL REMAIN IN PLACE A MINIMUM OF 24 HOURS AFTER SIDEWALLS ARE POURED BEFORE REMOVAL, AND AFTER REMOVAL SHALL BE IMMEDIATELY TREATED WITH MEMBRANE
- 17. ALL CURB INLET TOPS ARE TO BE CONSTRUCTED AFTER FINAL CURB STRING LINE HAS BEEN APPROVED BY THE ENGINEER AND PRIOR TO CURB CONSTRUCTION, OR AS DIRECTED BY THE CITY ENGINEER.
- 18. RCP CONNECTIONS TO PRECAST STRUCTURE SHALL MEET ALL CITY
- 19. BACKFILL AROUND STRUCTURES SHALL BE COMPACTED AND SHALL BE OF THE MATERIAL SPECIFIED PER CITY STANDARDS.
- 20. NON-SETBACK CURB INLET TO BE USED ONLY WITH THE APPROVAL OF

NOTES GENERAL

- SERVICES DEPARTMENT.
- CONCRETE
- REQUIREMENTS OF THE CITY MUNICIPAL CODE.

8. BEVEL ALL EXPOSED EDGES WITH 3/4" TRIANGULAR MOLDING. REINFORCING STEEL

- CURING COMPOUND.

