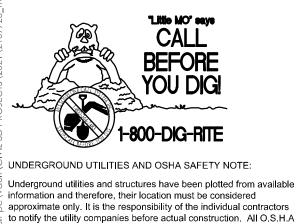
PROJECT DIRECTORY


OWNER / DEVELOPER

TM CROWLEY 501 PENNSYLVANIA PARKWAY SUITE 160 INDIANAPOLIS, IN 46280 (317) 705-8800

CIVIL ENGINEER PREMIER DESIGN GROUP 100 MIDLAND PARK DRIVE WENTZVILLE, MO 63385 314-925-7444 CONTACT: MATT FOGARTY

MUNICIPALITY CITY OF LEE'S SUMMIT 200 SE GREEN LEE'S SUMMIT, MO 64063 (816) 969-1200 CONTACT: DEVELOPMENT SERVICES DEPARTMENT

E	XIS	STING LEGEND							
\bigcirc	FOL	JND IRON PIPE							
0	SET	IRON PIPE							
·	FOUND STONE MONUMENT								
ţ	FIRE HYDRANT								
¥	WATER VALVE								
$\langle w \rangle$	WA	TER METER VAULT							
ICV	IRR	IGATION CONTROL VALVE							
З×	GAS	S VALVE							
$\langle G \rangle$	GAS	S METER							
¢	LIG	HT STANDARD							
eo e	CLE	AN OUT							
	SAN	NITARY SEWER MANHOLE							
•	STO	ORM SEWER MANHOLE							
目	STO	DRM SEWER INLET							
BLRD	PIP	E BOLLARD							
4	SIG	N							
C)	BUS	SH							
	TRE	E							
TSB	TRA	AFFIC SIGNAL BOX							
 N₩ O	MO								
Ŭ ●	TES	ST HOLE							
PS D	PEDESTRIAN SIGNAL								
$\langle E \rangle$	ELECTRIC METER								
<u> </u>	STORM CURB INLET								
<u> </u>									
DS		WN SPOUT							
TEL		EPHONE PEDESTAL							
0 3.0.C.		CK OF CURB							
•••	د م	FIRE HYDRANT							
<u> </u>	>								
	1								
c		GAS METER							
<u>-</u>									
-									
0									
	<u>,</u>	SANITARY SEWER MANHOLE							
		STORM SEWER MANHOLE							
		GRATE INLET							
		DOUBLE CURB INLET							
•		PIPE BOLLARD							
-•	-	SIGN							
		ELECTRIC METER							
—Ugl		UNDERGROUND ELECTRIC							
— Ug	т —	UNDERGROUND TELEPHONE							
—ОН	Е—	OVERHEAD ELECTRIC/PHONE							
—2"V	v—	2" WATER MAIN							
— 6"V	v —	6" WATER MAIN							
— 8"V	v —	8" WATER MAIN							
–X" G	AS-	GAS LINE							
-50	7—	CONTOUR LINE							

UTILITY PROVIDERS

WATER

CITY OF LEE'S SUMMIT WATER 1200 SE HAMBLEN RD LEE'S SUMMIT, MO 64081 (816) 969 1900 CONTACT: T.B.D.

ELECTRIC EVERGY 1351 NW WARD RD LEE'S SUMMIT, MO 64086 (888) 471-5275 CONTACT: RON DEJARNETTE

GAS SPIRE 1117 S. PLEASANT ST INDEPENDENCE, MO 64050 (800) 582-1234 CONTACT: T.B.D.

TELEPHONE AT&T BUSINESS COMMUNICATION SERVICES (618) 346-6400 CONTACT: T.B.D.

FIRE DEPARTMENT CITY OF LEE'S SUMMIT FIRE PROTECTION 207 E. DOUGLAS BLVD LEE'S SUMMIT, MO 64063 (816) 969-1313 CONTACT: MIKE SNIDER - FIRE CHIEF

SANITARY SEWER CITY OF LEE'S SUMMIT SEWER 1200 SE HAMBLEN ROAD LEE'S SUMMIT, MO 64081 (816) 969 1900 CONTACT: T.B.D.

CABLE SPECTRUM 188 NW OLDHAM PKWY LEE'S SUMMIT, MO 64081 (874) 874 2389 CONTACT: T.B.D.

500 NW CHIPMAN RD.

ALL OF LOT 4C, SUMMIT ORCHARD, LOT 4C-1, 4C-2 AND 4C-3, CORRECTED SUMMIT ORCHARD, LOTS 4A-4E, A SUBDIVISION IN LEE'S SUMMIT, JACKSON COUNTY, MISSOURI.

DISTURBED AREA = 0.73 ACRES

COORDINATE DATA:

PER ST. JACKSON COUNTY REGULATIONS, COORDINATE VALUE ARE SHOWN IN U.S. FEET AND ALL BEARINGS ARE GRID BEARINGS. ALL DISTANCES ARE GROUND DISTANCES. N: X,XXX,XXX.XXX USft. (in U.S. FEET) E: XXX,XXX.XXX USft. (IN U.S. FEET) PER MISSOURI COORDINATE SYSTEM 1983, WEST ZONE (ZONE NO. 2403) GRID FACTORS = 0.99899480

BEARINGS ADOPTED:

BASIS OF BEARINGS IS THE STATE PLANE COORDINATE SYSTEM (SPCS) NAD 83 (2011) WEST ZONE

ELEVATION ADOPTED:

THE ELEVATIONS WERE ESTABLISHED USING THE MISSOURI DEPARTMENT OF TRANSPORTATION'S VRS, RTK SYSTEM AND IS REFERENCED TO THE NAVD 88 DATUM WITH GEOID 18.

SHEET INDEX

C-000	COVER SHEET
C-001	GENERAL NOTES
C-100	SITE PLAN
C-200	GRADING PLAN
C-300	UTILITY PLAN
C-400	INITIAL EROSION CONTROL PLAN
C-401	FINAL EROSION CONTROL PLAN
C-402	EROSION CONTROL DETAILS
C-500	STORM SEWER PROFILES
C-600	CONSTRUCTION DETAILS
C-601	CONSTRUCTION DETAILS
C-700	UTILITY DETAILS
C-800	EXISTING DRAINAGE AREA MAP
C-801	STORMWATER MANAGEMENT PLAN
L-100	LANDSCAPE PLAN
E0.01	ELECTRICAL SITE & PHOTOMETRIC PLAN

PROPERTY DATA

OVERALL SITE ACREAGE	±0.828 ACRES
ADDRESS	500 NW CHIPMAN RD.
PARCEL ID#	52-900-03-42-00-0-00-000
EXISTING ZONING	PMIX - PLANNED MIXED USE
CURRENT LAND USE	VACANT COMMERCIAL PROPERTY
PROPOSED LAND USE	COMMERCIAL

LEGAL DESCRIPTION:

ALL OF LOT 4C, SUMMIT ORCHARD, LOT 4C-1, 4C-2 AND 4C-3, CORRECTED SUMMIT ORCHARD, LOTS 4A-4E, A SUBDIVISION IN LEE'S SUMMIT, JACKSON COUNTY, MISSOURI.

SITE COVERAGE CALCULATIONS

SITE AREA = ±0.828 ACRES / 36,067.68 S.F. FLOOR TO AREA RATIO 950/36,068 = 0.026 FAR

EXISTING IMPERVIOUS AREA PARKING LOT AND BUILDING 0.046 ACRES OF PAVEMENT 0.00 ACRES OF BUILDING

EXISTING GREEN SPACE 0.782 ACRES

EXISTING PERCENT OF IMPERVIOUS AREA COVERAGE = 5.56% PROPOSED IMPERVIOUS AREA PARKING LOT AND BUILDING 0.540 ACRES OF PAVEMENT 0.022 ACRES OF BUILDING

PROPOSED GREEN SPACE 0.266 ACRES OF GREEN SPACE

PROPOSED PERCENT OF IMPERVIOUS AREA COVERAGE = 67.87%

ELECTRONIC DRAWING NOTE: ELECTRONIC MEDIA OR DIGITAL DRAWINGS ARE INSTRUMENT OF PROFESSIONAL SERVICES. OWNERSHIP OF SUCH WILL BE RETAINED BY THE CIVIL ENGINEER AND MAY NOT BE RELEASED TO CONTRACTORS. CONTRACTORS ARE ADVISED TO CREATE BIDS BASED ON THE USE OF PAPER COPIES OF THE PLANS.

PAVING, GRADING, AND DRAINAGE NOTES:

- IN AGREEMENT, THE MOST STRINGENT SHALL GOVERN.
- TO EXISTING CONCRETE PAVEMENT
- UNDESIRABLE MATERIAL FROM ALL AREAS ON THE SITE TO BE PLANTED.

ORDERS WILL BE ACCEPTED FOR A.D.A. COMPLIANCE ISSUES.

- CURB ELEVATIONS.
- off-site discharge which violates local, state, or federal water quality standards
- REPAIR AND/OR REPLACE THE EXISTING STRUCTURE, FACILITY, OR IMPROVEMENT AS NECESSARY TO RETURN IT TO EXISTING CONDITIONS OR BETTER.

- 24. PRIVATE STORM PIPE MATERIAL SHALL BE PER CITY OF LEE'S SUMMIT SPECIFICATIONS. ARE NOTED AS FOLLOWS: TP=TOP OF PAVEMEN
- TC=TOP OF CURB TW=TOP OF WALL BW=FINISHED GROUND AT FACE OF WALL

GRADING PLAN NOTES:

- AND DETAILS.
- 6.
- SHOULD THE EROSION CONTROL PLAN AND DETAILS PROVE TO BE INSUFFICIENT DUE TO UNFORESEEN CIRCUMSTANCES.

- 13. INTERIM STORM WATER DRAINAGE CONTROL IN THE FORM OF SILTATION CONTROL MEASURES ARE REQUIRED.

ADA COMPLIANCE NOTES:

- SLOPES ARE NOT EXCEEDED.

ABBREVIATIONS:

MH..... MANHOLE CURB INLE DCI..... DOUBLE CURB INLET GSI..... 2GSI..... ADS DOME DME.... END OF PIPE FLARED END SECTION INTERCEPTOR MANHOLE TRENCH DRAIN ATG..... ADJUST TO GRADE TBR..... TO BE REMOVED TBR&R TO BE REMOVED & REPLACED

information and therefore, their location must be considered approximate only. It is the responsibility of the individual contractors to notify the utility companies before actual construction. All O.S.H.A rules and regulations established for the type of construction required by these plans shall be strictly followed (ie. trenching, blasting, etc.)

1. ALL PAVING, CONSTRUCTION MATERIALS, AND WORKMANSHIP WITHIN CITY RIGHT-OF-WAY SHALL BE IN ACCORDANCE WITH THE CITY OF LEE'S SUMMIT.

ALL AREAS IN EXISTING RIGHTS-OF-WAY DISTURBED BY SITE CONSTRUCTION SHALL BE RE-GRADED AND LANDSCAPED OR PAVED, (WHATEVER WAS THERE BEFORE DISTURBANCE). ALL DISTURBED AREAS SHALL BE REPAIRED TO THE PREVIOUS CONDITION OR BETTER THAN BEFORE AREA WAS DISTURBED.

TRAFFIC CONTROL ON ALL STATE, CITY AND COUNTY RIGHTS-OF-WAY SHALL MEET THE REQUIREMENTS OF THE MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES (U.S. DOT/FHA) AND THE REQUIREMENTS OF THE STATE AND ANY LOCAL AGENCY HAVING JURISDICTION . IN THE EVENT THAT THE CONTRACT DOCUMENTS AND THE JURISDICTIONAL AGENCY REQUIREMENTS ARE NOT

THE CONTRACTOR SHALL GRADE THE SITE TO THE ELEVATIONS INDICATED AND SHALL RE-GRADE ANY WASHOUTS WHERE THEY OCCUR AFTER EVERY RAINFALL EVENT UNTIL SOIL IS STABILIZED. ALL AREAS INDICATED AS PAVEMENT SHALL BE CONSTRUCTED IN ACCORDANCE WITH THE TYPICAL PAVEMENT SECTIONS AS INDICATED ON THE DRAWINGS AND THE PROJECT SPECIFICATIONS. WHERE EXISTING PAVEMENT IS INDICATED TO BE REMOVED AND REPLACED, THE CONTRACTOR SHALL SAW CUT TO FULL DEPTH OF EXISTING PAVEMENT. CONTRACTOR SHALL PREPARE A SMOOTH, SOUND, VERTICAL FACE AND MATCH THE EXISTING PAVEMENT ELEVATION UNLESS OTHERWISE NOTED. CONTRACTOR SHALL INSTALL LONGITUDINAL BUTT JOINTS WHEN CONNECTING

THE CONTRACTOR SHALL ENSURE THAT ALL PLANTING AREAS ARE NOT OVERLY COMPACTED AND DO NOT CONTAIN LIMEROCK. THE CONTRACTOR SHALL EXCAVATE AND REMOVE ALL

ALL DRAINAGE STRUCTURES SHALL BE DE-SILTED AS REQUIRED DURING AND AT THE END OF CONSTRUCTION TO PROVIDE POSITIVE DRAINAGE FLOWS. 9. STRIP TOPSOIL AND ORGANIC MATTER AND PAVING MATERIAL FROM ALL AREAS UNDER BUILDING. TOPSOIL MAY BE STOCKPILED ON SITE FOR REPLACEMENT IN GREEN AREAS.

10. FIELD DENSITY TESTS SHALL BE TAKEN AT A FREQUENCY AS REQUIRED IN THE PROJECT SPECIFICATIONS. BEFORE PLACING PAVEMENT, CONTRACTOR SHALL VERIFY THAT SUITABLE HANDICAPPED ROUTES (PER A.D.A. REQUIREMENTS) EXIST TO AND FROM EVERY ACCESSIBLE DOOR. IN NO CASE

Shall handicap ramp slopes exceed 1 vertical to 12 horizontal. In no case shall sidewalk cross slopes exceed 2.0 percent. In no case shall longitudinal sidewalk SLOPES EXCEED 5.0 PERCENT. CONTRACTOR SHALL CONTACT ARCHITECT AND CIVIL ENGINEER PRIOR TO PAVING IF ANY EXCESSIVE SLOPES ARE ENCOUNTERED. NO CONTRACTOR CHANGE

12. CONTRACTOR ADJUSTMENT TO SPOT GRADES TO MAINTAIN POSITIVE DRAINAGE IS ALLOWED, ONLY WITH THE PRIOR APPROVAL OF THE CIVIL ENGINEER. CONTRACTOR SHALL CONTACT THE CIVIL ENGINEER PRIOR TO PAVING IF ANY AREAS OF POOR DRAINAGE ARE ENCOUNTERED.

13. SPOT ELEVATIONS SHOWN ARE TO TOP OF PAVING SURFACE OR FINISHED EARTH GRADE UNLESS NOTED OTHERWISE. WHERE APPLICABLE, ADD 0.50 FEET TO SPOT GRADES SHOWN FOR TOP OF

14. THE CONTRACTOR TAKE ALL MEASURES NECESSARY TO CONTROL TURBIDITY, INCLUDING BUT NOT LIMITED TO, THE INSTALLATION OF BMP'S AT ALL LOCATIONS WHERE THE POSSIBILITY OF TRANSFERRING SUSPENDED SOLIDS INTO THE RECEIVING WATER BODY EXISTS DUE TO THE PROPOSED WORK. BMP'S MUST BE MAINTAINED IN EFFECTIVE CONDITION AT ALL LOCATIONS UNTIL CONSTRUCTION IS COMPLETED AND DISTURBED SOIL AREAS ARE STABILIZED. THEREAFTER, THE CONTRACTOR MUST REMOVE THE TEMPORARY BARRIERS, AT NO TIME SHALL THERE BE ANY

15. THE CONTRACTOR MUST REVIEW AND MAINTAIN A COPY OF THE STORM WATER PERMIT COMPLETE WITH ALL CONDITIONS, ATTACHMENTS, EXHIBITS, AND PERMIT MODIFICATIONS, IN GOOD CONDITION, AT THE CONSTRUCTION SITE. THE COMPLETE PERMIT MUST BE AVAILABLE FOR REVIEW UPON REQUEST BY JURISDICTIONAL AGENCIES. 16. IF ANY EXISTING STRUCTURES, FACILITIES, OR IMPROVEMENTS (PUBLIC OR PRIVATE) TO REMAIN ARE DAMAGED DURING CONSTRUCTION, IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO

REFERENCE THE SWPPP INCLUDED IN THIS PLAN SET AND IN THE PROJECT SPECIFICATIONS FOR THIS PROJECT.

18. CONTRACTOR SHALL REFERENCE ARCHITECT AND ELECTRICAL PLANS AND PROVIDE CONDUIT NEEDED FOR LOT LIGHTING AND SIGNAGE PRIOR TO SITE PAVING.

19. PAVING LINE AND GRADE SHALL "FLUSHOUT" ALONG ALL CONNECTIONS TO EXISTING PAVING

20. ALL BENDS LESS THAN 42" DIAMETER MUST BE FACTORY MANUFACTURED BENDS.

21. ALL WORK SHALL BE DONE IN COMPLIANCE WITH THE PROJECT GEOTECHNICAL SERVICE REPORT FOR THIS SITE.

22. PAVING CONTRACTOR IS RESPONSIBLE FOR ALL LAY DOWN CURBS AT INTERSECTIONS WHERE BARRIER FREE RAMPS ARE TO BE CONSTRUCTED.

23. REFERENCE DETAIL SHEETS FOR PAVEMENT JOINT SPACING AND REQUIREMENTS. ALL SAWCUT AND JOINT LOCATIONS WILL BE AS REQUIRED BY THE CITY OF LEE'S SUMMIT INSPECTOR.

25. ALL ELEVATIONS SHOWN ON THE GRADING PLAN ARE TO TOP OF PAVEMENT OR FINISHED GROUND UNLESS NOTED OTHERWISE. ELEVATIONS TO POINTS OTHER THAN THE TOP OF PAVEMENT

GRND=FINISHED GROUND AT YARD DRAINS, TOP OF FINISHED GRADE IN NON-PAVEMENT AREAS

1. THE CONTRACTOR SHALL RESTORE OFFSITE CONSTRUCTION AREAS TO AN EQUAL OR BETTER CONDITION THAN EXISTED PRIOR TO COMMENCEMENT OF CONSTRUCTION.

2. ALL GRADES SHALL BE WITHIN 0.1 FEET MORE OR LESS OF THOSE SHOWN ON THE GRADING PLAN.

NO SLOPE SHALL BE GREATER THAN 3:1 AND SHALL BE EITHER SODDED OR SEEDED AND MULCHED UNLESS OTHERWISE NOTED OR DETAILED THE CONTRACTOR SHALL FIELD INVESTIGATE THE ENTIRE SITE PRIOR TO HIS BID SUBMITTAL NOTING THE EXISTING VEGETATION, PAVEMENT AREAS, BUILDING MATERIALS, BUILDING MATERIAL TYPES, PARKING LIGHTING, UTILITIES AND TREES. THE REMOVAL AND DISPOSAL OF ALL ITEMS SHALL BE INCLUDED IN THE BID.

NO AREA SHALL BE CLEARED WITHOUT PERMISSION OF THE OWNER/DEVELOPER. SILTATION CONTROL WILL BE PROVIDED AS REQUIRED TO PREVENT RUN-OFF. REFER TO THE EROSION CONTROL PLAN(S)

ALL TRASH, DEBRIS, ORGANIC MATERIAL, REFUSE, FROZEN EARTH, ETC., SHALL BE REMOVED FROM FILL AREAS PRIOR TO THE PLACEMENT OF CONTROLLED FILL. ALL FILLS AND BACKFILLS SHALL BE MADE OF SELECTED EARTH MATERIALS, FREE FROM BROKEN MASONRY, ROCK, FROZEN EARTH, RUBBISH, ORGANIC MATERIAL AND DEBRIS.

THE CONTRACTOR SHALL PROVIDE EROSION CONTROL PER THE EROSION CONTROL PLAN(S) AND MAY BE REQUIRED TO PROVIDE ADDITIONAL MEASURES AS REQUESTED BY THE CITY OF LEE'S SUMMIT,

CARE SHALL BE EXERCISED IN COMPACTION OF BACKFILL MATERIALS OVER THE TOP OF STRUCTURES OR PIPES IN ORDER TO PREVENT DAMAGE TO THE WATERPROOFING MEMBRANES, JOINTS, SEALS AND/OR THE PIPES AND STRUCTURES THEMSELVES. COMPACTION AND PLACING OF BACKFILL AND FILL MATERIALS SHALL BE PERFORMED UNDER THE CONTINUOUS SUPERVISION OF AN APPROVED TESTING LABORATORY. FILL SHALL NOT BE PLACED ON FROZEN GROUND, NOR SHALL FILLING OPERATIONS CONTINUE WHEN THE TEMPERATURE IS SUCH AS TO PERMIT THE LAYER UNDER PLACEMENT TO

9. ALL CITY, COUNTY, AND STATE ROADS SHALL BE KEPT FREE OF DIRT DAILY.

10. FINAL GRADES SHALL MATCH EXISTING ELEVATIONS AT THE LAND DISTURBANCE LIMITS UNLESS OTHERWISE SHOWN.

11. THE DEVELOPER IS REQUIRED TO PROVIDE ADEQUATE STORM WATER SYSTEMS IN ACCORDANCE WITH THE CITY OF LEE'S SUMMIT AND EPA STANDARDS.

12. ALL GRADING AND DRAINAGE TO BE IN CONFORMANCE WITH THE CITY OF LEES SUMMIT AND EPA STANDARDS.

14. ANY LAND DISTURBANCE ACTIVITY INVOLVING ONE (1) ACRE OR MORE OF LAND IS A MAJOR LAND DISTURBANCE (MLD) AND A LAND DISTURBANCE FOR THE MLD MUST BE OBTAINED FROM THE DEPARTMENT OF PUBLIC WORKS. ANY LAND DISTURBANCE ACTIVITY INVOLVING LESS THAN ONE (1) ACRE IS AN ORDINARY LAND DISTURBANCE AND THE APPROPRIATE PERMIT(S) MUST BE OBTAINED FROM THE DEPARTMENT OF PUBLIC WORKS.

15. G.C. TO BE AWARE THAT A LAND DISTURBANCE PERMIT WILL BE REQUIRED. SITE PLAN/PLAT APPROVAL IS NOT TO BE CONSTRUED AS APPROVAL OF A LAND DISTURBANCE PERMIT

16. ALL WORK SHALL BE IN COMPLIANCE WITH THE PROJECT GEOTECHNICAL SERVICES REPORT FOR THIS PROJECT.

17. ANY DISTURBED SIDEWALK OR CONCRETE PAVEMENT AREAS SHALL BE REPAIRED BY FULL SLAB REPLACEMENT UNLESS SPECIFICALLY AUTHORIZED BY THE DEVELOPER OR MUNICIPALITY HAVING JURISDICTION. 18. ALL UTILITY SPOILS SHALL BE INCLUDED IN THE GENERAL CONTRACTOR'S BID. GENERAL CONTRACTOR SHALL COORDINATE WITH THE EXCAVATOR AND UTILITY INSTALLER.

1. CONTRACTOR SHALL CONFIRM ALL EXISTING SLOPES FOR ACCESSIBLE ROUTES AS WELL AS THE ACCESSIBLE PARKING STALLS AND ACCESSIBLE AISLES WITH A SLOPE METER TO CONFIRM MAXIMUM

2. CONTRACTOR IS REQUIRED TO PROVIDE AS-BUILT SPOT ELEVATIONS ALONG THE ACCESSIBLE ROUTES SHOWN ON THIS PLAN EVERY 10 FEET IN ORDER TO CONFIRM MAXIMUM (2%) CROSS-SLOPE AND MAXIMUM (5%) SLOPES IN THE DIRECTION OF TRAVEL. IN ADDITION. SPOT ELEVATIONS ARE REQUIRED ON ALL CORNERS AND MIDPOINTS OF ACCESSIBLE PARKING STALLS AND ACCESSIBLE AISLES TO CONFIRM MAXIMUM 2% SLOPES ARE NOT EXCEEDED IN ALL DIRECTIONS. THIS INFORMATION SHALL BE PROVIDED, A MINIMUM OF 2 WEEKS BEFORE STORE TURNOVER.

3. THE GENERAL AND CONCRETE CONTRACTOR SHALL FIELD VERIFY ADA SLOPES DURING CONCRETE POUR. A 2' SMART LEVEL WITH AN ACCURACY TO .029 PERCENT SHALL BE USED FOR VERIFYING SLOPES. ANY SLOPES IN THE ADA AREAS THAT EXCEED A 2% CROSS SLOPE ALONG THE BUILDING, ADA STALLS AND/OR SIDEWALK, 5% RUNNING SLOPE FOR SIDEWALKS AWAY FROM THE PROPOSED PETSUITES BUILDING, AND EXCEED 8.3% ON RAMPS SHALL BE REMOVED AND REPLACED AT THE CONCRETE CONTRACTOR'S EXPENSE. THE SURVEYOR FOR STAKING CAN PROVIDE A REFERENCE FOR ELEVATION HOWEVER CONFIRMATION IS REQUIRED BY SLOPE LEVEL DURING CONSTRUCTION.

AREA INLET (OPEN 4 SIDES UNLESS NOTED OTHERWISE) DAI...... DOUBLE AREA INLET (OPEN 6 SIDES UNLESS NOTED OTHERWISE.

GRATE INLET WITH SIDE INTAKE. (ELEVATION OF INLET TOP IS TO THE TOP OF GRATE, ADD 0.50' FOR TOP OF SIDE INTAKE.) 2 GRATE INLET WITH SIDE INTAKE. (ELEVATION OF INLET TOP IS TO THE TOP OF GRATE, ADD 0.50' FOR TOP OF SIDE INTAKE.)

DENOTES HYDRAULIC GRADE JUMP

GENERAL NOTES:

- MOST STRINGENT SPECIFICATION SHALL APPLY.
- MIGHT BE WHICH ARE MADE DURING THE BIDDING PHASE WILL HAVE NO BEARING ON THE DECISION.
- CONDITIONS
- THE METHOD TO USE FOR SUCH WORK.
- INTENDED TO LIMIT THE UTILITY COMPANIES WHICH THE CONTRACTOR MAY WISH TO NOTIFY. 6. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL REQUIRED CONSTRUCTION PERMITS, 3-WAY CONTRACTS, AND BONDS PRIOR TO CONSTRUCTIONS.
- ANY REQUIRED CONSTRUCTION PERMITS, AND EROSION CONTROL PLANS AND INSPECTION REPORTS (SWPPP).
- DIRECTLY FROM THE TESTING AGENCY.
- 10. THE CONTRACTOR SHALL BE RESPONSIBLE FOR SUBMITTING TO THE CIVIL ENGINEER AND TO CITY A CERTIFIED RECORD SURVEY SIGNED AND SEALED BY A PROFESSIONAL LAND SURVEYOR
- CERTIFICATION PROCESS. ALL SURVEY COSTS WILL BE THE CONTRACTORS RESPONSIBILITY.
- 12. CONTRACTORS SHALL VERIFY BENCHMARKS AND DATUMS PRIOR TO COMMENCING CONSTRUCTION OR STAKING OF IMPROVEMENTS
- ENGINEER SHALL BE NOTIFIED OF ANY DISCREPANCY PRIOR TO COMMENCING WITH CONSTRUCTION
- 14. CONTRACTOR SHALL REFER TO THE ARCHITECTURAL PLANS FOR EXACT LOCATIONS AND DIMENSIONS OF VESTIBULES, SLOPE PAVING, SIDEWALKS, EXIT PORCHES, TRUCK DOCKS, PRECISE BUILDING DIMENSIONS, AND EXACT BUILDING UTILITY ENTRANCE LOCATIONS
- THREE TO FIVE FEET BEHIND THE NEAREST BACK OF CURB UNLESS INDICATED OTHERWISE ON PLANS. SIGN HEIGHT, LOCATION, AND STRUCTURE SHALL BE SUCH THAT THE SIGNS POSE NO THREAT TO PUBLIC SAFETY.
- ADJUSTMENTS OF LOCATION AND ORIENTATION OF THE SIGNS ARE TO BE MADE TO ACCOMPLISH THIS.
- 19. CONTRACTOR SHALL REPLACE ANY FENCING, CURBING, ETC. THAT IS DESTROYED OR DAMAGED DUE TO THE CONSTRUCTION ACTIVITIES.
- 20. CONTRACTOR IS RESPONSIBLE FOR TRAFFIC CONTROL DEVICES AND PLANS FOR ANY STREET WORK
- THEREFROM SHALL BE CONTRACTOR'S RESPONSIBILITY TO REPAIR.
- 23. LIGHT POLES AND SIGNS SHALL NOT BE PLACED IN ADA ACCESSIBLE ROUTES, ACCESSIBLE ACCESS AISLES, AND/OR REINFORCED ZONES BEHIND RETAINING WALLS.
- FROM THE RESIDENTIAL NEIGHBORS AS POSSIBLE
- 25. CONTRACTOR SHALL KEEP THE CONSTRUCTION SITE SECURE FROM TRESPASSERS AT ALL TIMES.
- 27. CONTRACTOR IS RESPONSIBLE FOR OBTAINING ANY NECESSARY FENCE OR WALL PERMITS FROM THE CITY.
- 28. CONTRACTOR IS RESPONSIBLE FOR PROVIDING ADEQUATE TRAFFIC CONTROL PER CITY OF LEE'S SUMMIT STANDARDS.
- REQUIRE DEVELOPER APPROVAL FOR EACH ITEM.

UTILITY PLAN NOTES:

	III FLAN NOTES.
1.	ALL FILL MATERIAL SHALL BE IN PLACE AND COMPACTED BEFORE INSTALLATION OF PROPO
2.	CONTRACTOR SHALL NOTIFY THE UTILITY AUTHORITIES INSPECTORS 72 HOURS BEFORE CON
3.	CONTRACTOR SHALL MAINTAIN A MINIMUM OF 3'-6' COVER ON ALL WATERLINES AND 3-6
4.	CONNECTION FROM THE METER TO SITE UTILITY LINES SHALL BE MADE BY BUILDING CONTR
5.	EXISTING UTILITIES SHALL BE VERIFIED IN FIELD PRIOR TO INSTALLATION OF ANY NEW LINES.
6.	REFER TO MECHANICAL, ELECTRIC AND PLUMBING DRAWINGS FOR ACTUAL TIE-IN LOCAT
7.	THE CONTRACTOR IS SPECIFICALLY CAUTIONED THAT THE LOCATION AND/OR ELEVATION COMPANIES, AND WHERE POSSIBLE, MEASUREMENTS TAKEN IN THE FIELD. THE INFORMATIC APPROPRIATE UTILITY COMPANIES AT LEAST 72 HOURS BEFORE ANY EXCAVATION TO REQU ALL EXISTING UTILITIES WHICH CONFLICT WITH THE PROPOSED IMPROVEMENTS SHOWN ON
8.	ALL NECESSARY INSPECTIONS AND/OR CERTIFICATIONS REQUIRED BY CODES AND/OR UTI
9.	ALL UTILITY SEWER TRENCH BACKFILL SHALL HAVE GRANULAR BACKFILL AND BE MECHANI
10.	THE CONTRACTOR SHALL VERIFY THE LOCATION, CONDITION AND ELEVATION OF ALL PROWOULD INTERFERE WITH THE PROPOSED SEWER DESIGN SHALL IMMEDIATELY BE BROUGHT
11.	ALL PERMIT FEES AND COSTS ASSOCIATED WITH BRINGING UTILITY, SEWER AND WATER SER INCLUDED IN THE CONTRACTORS BID.
12.	G.C. IS TO PROVIDE TRENCH, WIRE, AND CONDUIT FOR TELEPHONE AND ELECTRICAL SERV
13.	G.C. SHALL BE RESPONSIBLE FOR ANY TAPS TO BE MADE UNDER THE SUPERVISION OF THE G
14.	ANY DISTURBED SIDEWALK SHALL BE FULL SLAB REPLACEMENT.
15.	EXISTING SANITARY SEWER AND WATER SERVICE SHALL NOT BE INTERRUPTED.
16.	THE CONTRACTOR SHALL INCLUDE THE COST ESTIMATE PROVIDED BY EVERGY IN HIS/HER E
17.	THE REMOVAL AND REPLACEMENT, OR REHABILITATION OF THE EXISTING STRUCTURE(S) WI STRUCTURE IS DETERMINED TO REMAIN IN PLACE, THEN THE TOP SHALL BE ADJUSTED TO GR
18.	ALL STORM SEWER CONSTRUCTION AND MATERIALS SHALL BE IN ACCORDANCE WITH THE
19.	ALL LATERAL SEWER CONSTRUCTION METHODS TO CONFORM TO LATEST STANDARDS AND DETAILS.
20.	ALL CONNECTIONS TO PUBLIC WATER SHALL BE AS REQUIRED BY THE CITY OF LEE'S SUMMI
21.	CONNECTION TO PUBLIC SEWER MAINS SHALL BE AS REQUIRED BY THE CITY OF LEE'S SUMM CONNECTION TO PUBLIC SEWERS.
22.	ALL TRENCHES UNDER AREAS TO BE PAVED AND UNDER EXISTING PAVING SHALL BE GRAN WITH CITY OF LEE'S SUMMIT STANDARDS.
23.	TYPE "C" BEDDING PER CITY OF LEE'S SUMMIT STANDARDS REQUIRED FOR PIPES IN ROCK.
24.	ALL TRENCH BACKFILLS UNDER PAVEMENT WITHIN PUBLIC RIGHT-OF-WAY SHALL BE GRANU GRANULAR BACKFILL IN LIEU OF THE EARTH BACKFILL COMPACTED TO 90 PERCENT OF THE
25.	ALL CONCRETE PIPE SHALL BE REINFORCED, AND CONFORM TO A.S.T.M. DESIGNATION C
26.	ALL DIMENSIONS ARE TO THE CENTERLINE OF STRUCTURE EXCEPT FOR END OF PIPES OR FL SECTIONS PER PROPOSED TYPE OF FLARED END SUBMITTED. REFER TO THE CORRESPONDI
27.	PLUMBING CONTRACTOR AND SURVEYOR SHALL CONFIRM STRUCTURES PROPOSED ON TH LOCATIONS DEPENDING ON THE STRUCTURE AND TYPE, THE PLUMBING CONTRACTOR SHA ON THESE PLANS. GENERAL CONTRACTOR SHALL REIMBURSE CIVIL ENGINEER FOR ANY TH TO REDUCE OVERALL CONSTRUCTION COSTS.
28.	STANDARDS AND DETAILS FROMCITY OF LEE'S SUMMIT STANDARDS PLANS SHALL SUPERCE

ALL CONSTRUCTION SHALL BE IN ACCORDANCE WITH THE CITY OF LEE'S SUMMIT SPECIFICATIONS, CITY OF LEE'S SUMMIT "STANDARD DETAILS", LATEST EDITION, THE PROJECT SPECIFICATIONS BOOK, AND THESE CONSTRUCTION PLANS. IN CASE OF CONFLICTING SPECIFICATIONS FOR DETAILS, THE CIVIL ENGINEER SHALL BE CONTACTED PRIOR TO CONSTRUCTION, GENERALLY, THE

2. DURING THE CONSTRUCTION OF THESE IMPROVEMENTS, ANY INTERPRETATION OF THE STANDARD SPECIFICATIONS, AND ANY MATTER WHICH REQUIRES THE APPROVAL OF THE OWNER, MUST BE APPROVED BY THE CITY OF LEE'S SUMMIT DEVELOPMENT ENGINEER BEFORE ANY CONSTRUCTION INVOLVING THAT DECISION COMMENCES. ASSUMPTIONS ABOUT WHAT THESE DECISIONS

3. THE CONTRACTOR SHALL BE RESPONSIBLE FOR FURNISHING ALL MATERIAL AND LABOR TO CONSTRUCT THE FACILITY AS SHOWN AND DESCRIBED IN THE CONSTRUCTION DOCUMENTS IN ACCORDANCE WITH THE APPROPRIATE APPROVING AUTHORITIES, SPECIFICATIONS AND REQUIREMENTS. CONTRACTOR SHALL VISIT THE SITE PRIOR TO BIDDING TO DETERMINE EXISTING

4. ALL EXISTING UTILITIES SHOWN ARE LOCATED ACCORDING TO THE INFORMATION AVAILABLE TO THE ENGINEER AT THE TIME THE DRAWINGS WERE PREPARED AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THE OWNER OR THE ENGINEER. GUARANTEE IS NOT MADE THAT ALL EXISTING UNDERGROUND UTILITIES ARE SHOWN OR THAT THE LOCATION OF THOSE SHOWN ARI ACCURATE. THE LOCATIONS SHOWN ARE FOR BIDDING PURPOSES ONLY. FINDING THE ACTUAL LOCATION OF ANY EXISTING UTILITIES IS THE CONTRACTOR'S RESPONSIBILITY AND SHALL BE DONE BEFORE HE COMMENCES ANY WORK (INCLUDING ORDERING OF MATERIALS) IN THE VICINITY. FURTHERMORE, THE CONTRACTOR SHALL BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES DUE TO THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES. THE OWNER OR CEC WILL ASSUME NO LIABILITY FOR ANY DAMAGES SUSTAINED OR COST INCURRED BECAUSE OF THE OPERATIONS IN THE VICINITY OF EXISTING UTILITIES OR STRUCTURES, NOR FOR TEMPORARY BRACING AND SHORING OF SAME. IF IT IS NECESSARY TO SHORE, BRACE, SWING OR RELOCATE A UTILITY, THE UTILITY COMPANY OR DEPARTMENT AFFECTED SHALL BE CONTACTED BY THE CONTRACTOR AND THEIR PERMISSION OBTAINED REGARDING

IT IS THE CONTRACTOR'S RESPONSIBILITY TO CONTACT THE VARIOUS UTILITY COMPANIES WHICH MAY HAVE BURIED OR AERIAL UTILITIES WITHIN OR NEAR THE CONSTRUCTION AREA BEFORE COMMENCING WORK. THE CONTRACTOR SHALL PROVIDE 72 HOURS MINIMUM NOTICE TO ALL UTILITY COMPANIES PRIOR TO BEGINNING CONSTRUCTION. A LIST OF THE UTILITY COMPANIES WHICH THE CONTRACTOR MUST CALL BEFORE COMMENCING WORK IS PROVIDED ON THE COVER SHEET OF THESE CONSTRUCTION PLANS. THIS LIST SERVES AS A GUIDE ONLY AND IS NOT

THE CONTRACTOR SHALL HAVE AVAILABLE AT THE JOB SITE AT ALL TIMES ONE COPY OF THE CONTRACT DOCUMENTS INCLUDING PLANS, SPECIFICATIONS AND SPECIAL CONDITIONS, COPIES OF

ANY DISCREPANCIES ON THE DRAWINGS SHALL BE IMMEDIATELY BROUGHT TO THE ATTENTION OF THE OWNER & CIVIL ENGINEER BEFORE COMMENCING WORK. NO FIELD CHANGES OR DEVIATIONS FROM DESIGN ARE TO BE MADE WITHOUT PRIOR APPROVAL TO THE OWNER AND NOTIFICATION TO THE ENGINEER. NO CONSIDERATION WILL BE GIVEN TO CHANGE ORDERS FOR WHICH THE OWNER AND CIVIL ENGINEER WERE NOT CONTACTED PRIOR TO CONSTRUCTION OF THE AFFECTED ITEM.

9. ALL COPIES OF COMPACTION, CONCRETE AND OTHER REQUIRED TEST RESULTS ARE TO BE SENT TO THE CIVIL ENGINEER OF RECORD AND THE CITY OF LEE'S SUMMIT DEVELOPMENT ENGINEER

REGISTERED IN THE STATE OF MISSOURI DEPICTING THE ACTUAL FILED LOCATION OF ALL CONSTRUCTED IMPROVEMENTS THAT ARE REQUIRED BY THE JURISDICTIONAL AGENCIES FOR THE

11. ALL NECESSARY INSPECTIONS AND/OR CERTIFICATIONS REQUIRED BY CODES, JURISDICTIONAL AGENCIES AND/OR UTILITY SERVICE COMPANIES SHALL BE PERFORMED PRIOR TO ANNOUNCED BUILDING POSSESSION AND THE FINAL CONNECTION OF SERVICES.

13. CONTRACTOR SHALL THOROUGHLY CHECK COORDINATION OF CIVIL, LANDSCAPE, MEP, ARCHITECTURAL, AND OTHER PLANS PRIOR TO COMMENCING CONSTRUCTION. OWNER AND CIVIL

15. ALL DIMENSIONS GIVEN ARE TO FACE OF CURB AND/OR BUILDING. DIMENSIONS FOR PIPES AND STRUCTURES ARE TO THE CENTERLINE, UNLESS OTHERWISE NOTED ON PLANS.

16. THE CONTRACTOR IS RESPONSIBLE FOR COORDINATING RELOCATIONS AND INSTALLATIONS OF FRANCHISE UTILITIES NECESSARY FOR ON- AND OFF-SITE CONSTRUCTION. 17. ON-SITE AND PERIMETER TRUCK ROUTE AND OTHER DIRECTIONAL SIGNAGE SHALL BE LOCATED OUT OF THE PEDESTRIAN, AUTOMOBILE, AND TRUCK ROUTES AND SHALL BE LOCATED BETWEEN

18. ON-SITE AND PERIMETER TRUCK ROUTE AND OTHER DIRECTIONAL SIGNS SHALL BE ORIENTED SO THEY ARE READILY VISIBLE TO THE ONCOMING TRAFFIC FOR WHICH THEY ARE INTENDED. FIELD

21. ALL CONTRACTORS MUST CONFINE THEIR ACTIVITIES TO THE WORK AREA. NO ENCROACHMENTS ONTO DEVELOPED OR UNDEVELOPED AREAS WILL BE ALLOWED. ANY DAMAGE RESULTING

22. THE CONTRACTOR SHALL BE RESPONSIBLE FOR SUBMITTING A TRENCH SAFETY PLAN TO THE DEVELOPER AT THE TIME OF THE PRE-CONSTRUCTION MEETING, OR PRIOR TO BEGINNING CONSTRUCTION OF THESE IMPROVEMENTS. CONTRACTOR SHALL BE RESPONSIBLE FOR MAINTAINING TRENCH SAFETY REQUIREMENTS IN ACCORDANCE WITH MISSOURI STATE LAW AND O.S.H.A. STANDARDS FOR ALL EXCAVATION IN EXCESS OF FIVE FEET IN DEPTH. NO OPEN TRENCHES WILL BE ALLOWED OVERNIGHT. ONSITE SAFETY IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR.

24. TO THE MAXIMUM EXTENT PRACTICAL, CONSTRUCTION STAGING, WORKER PARKING, AND ANY OTHER POTENTIALLY NOISY OR OFFENSIVE CONSTRUCTION ACTIVITY SHOULD BE LOCATED AS FAR

26. CONTRACTOR SHALL CONTACT CITY BUILDING OFFICIAL TO LEARN OF ANY UNUSUAL CONSTRUCTION SEQUENCING REQUIREMENTS THAT THE CITY MAY REQUIRE. THE CONTRACTOR IS CAUTIONED THAT THIS AND PERHAPS OTHER SUCH REQUIREMENTS MAY EXIST AND IT IS THE CONTRACTOR'S RESPONSIBILITY TO INVESTIGATE AND COMPLY WITH THEM.

29. CONTRACTOR SHALL INCLUDE ALL ITEMS THAT ARE LISTED FROM THE EXHIBIT B WORK LETTER BETWEEN THE DEVELOPER AND PETSUITES IN THEIR BID. ANY DEVIATIONS FROM THE WORK LETTER WILL

INSTALLATION OF PROPOSED UTILITIES

S 72 HOURS BEFORE CONNECTING TO ANY EXISTING LINE

ALL WATERLINES AND 3'-6' ON ALL SANITARY SEWER LINES.

ADE BY BUILDING CONTRACTOR. ON OF ANY NEW LINES.

OR ACTUAL TIE-IN LOCATIONS FOR UTILITIES.

on and/or elevation of existing utilities as shown on these plans is based on records of the various utility FIELD. THE INFORMATION IS NOT TO BE RELIED ON AS BEING EXACT OR COMPLETE. THE CONTRACTOR MUST CALL THE

Y EXCAVATION TO REQUEST EXACT FIELD LOCATION OF UTILITIES. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO LOCATE OVEMENTS SHOWN ON THE PLANS.

BY CODES AND/OR UTILITY SERVICE COMPANIES SHALL BE PERFORMED PRIOR TO THE FINAL CONNECTION OF SERVICE. CKFILL AND BE MECHANICALLY COMPACTED.

ELEVATION OF ALL PROPOSED SEWER CONNECTION POINTS PRIOR TO THE START OF CONSTRUCTION. ANY DISCREPANCIES THAT EDIATELY BE BROUGHT TO THE ATTENTION OF THE ENGINEER.

SEWER AND WATER SERVICES TO THE BUILDING SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR. ALL FEES AND COSTS SHALL BE

E AND ELECTRICAL SERVICES, BACKFILL AND GRADE SMOOTH FOR A COMPLETE TELEPHONE AND ELECTRIC INSTALLATION.

HE SUPERVISION OF THE CITY WATER DIVISION.

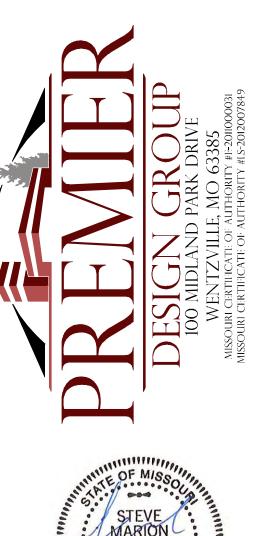
BY EVERGY IN HIS/HER BID FOR THE RELOCATION/REMOVAL OF ANY OVERHEAD ELECTRIC OR GUY WIRES. ISTING STRUCTURE(S) WILL BE DETERMINED BY THE CITY OF LEE'S SUMMIT DEVELOPMENT ENGINEER FIELD INSPECTOR. IF THE

ALL BE ADJUSTED TO GRADE, IF NEEDED. accordance with the city of lee's summit standard specifications and construction details.

LATEST STANDARDS AND SPECIFICATIONS FOR THE CITY OF LEE'S SUMMIT SEWER STANDARD SPECIFICATIONS AND CONSTRUCTION

THE CITY OF LEE'S SUMMIT WATER UTILITIES.

THE CITY OF LEE'S SUMMIT SEWER SANITARY. CONTRACTOR SHALL BE RESPONSIBLE FOR CONTACTING THE PROVIDER PRIOR TO

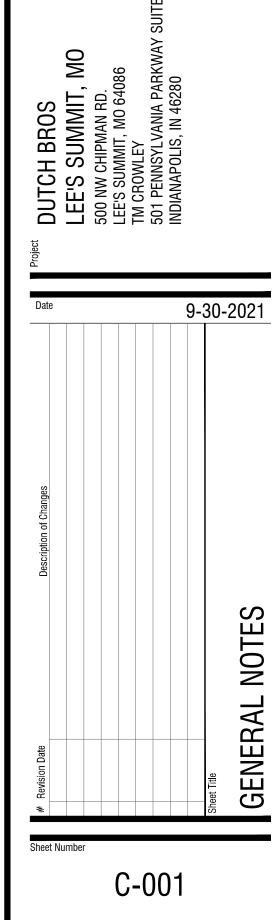

PAVING SHALL BE GRANULARLY FILLED WITH 3/4" MINUS CRUSHED LIMESTONE ONLY. BACKFILL SHALL BE PLACED IN ACCORDANCE

F-WAY SHALL BE GRANULAR BACKFILLED. TRENCH BACKFILLS UNDER PAVED AREAS, OUTSIDE OF PUBLIC RIGHT-OF-WAY SHALL BE D TO 90 PERCENT OF THE STANDARD AASHTO T-180 COMPACTION TEST A.S.T.M. D-1557.

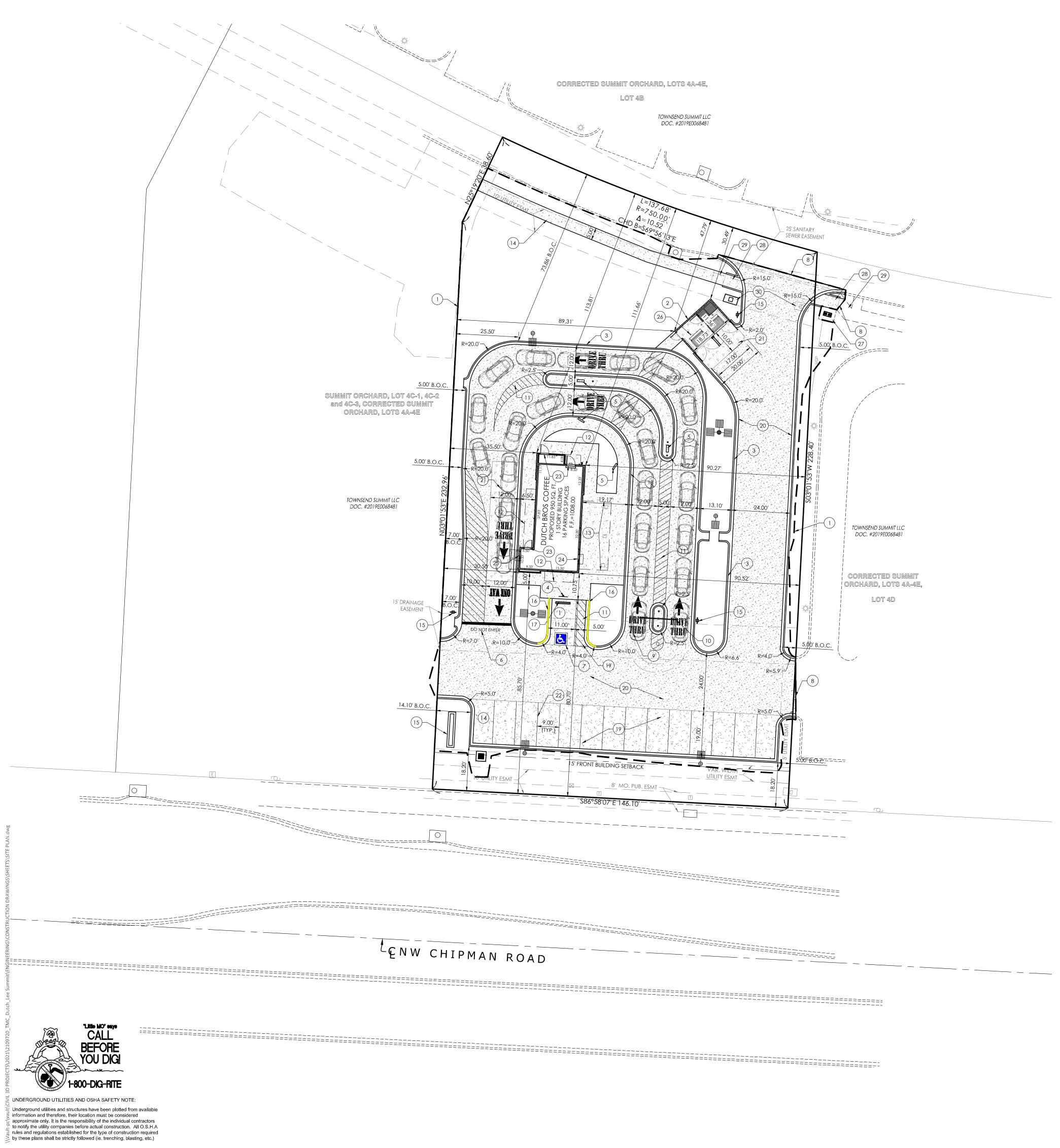
.S.T.M. DESIGNATION C76-80 CLASS III UNLESS OTHERWISE NOTED. OR END OF PIPES OR FLARED ENDS. FLARED END DIMENSIONS VARY. CONTRACTOR SHALL VERIFY LENGTHS FOR FLARED END TO THE CORRESPONDING SEWER PROFILE SHEET FOR EXACT DIMENSIONS IF APPLICABLE.

TURES PROPOSED ON THESE PLANS MATCH THE PROPOSED STRUCTURES THAT ARE ONSITE. DUE TO CHANGE OF ELEVATIONS, AND sing contractor shall be responsible for any issues for proposing a different type of structure or pipe than what is L ENGINEER FOR ANY TIME AND MATERIALS TO ADDRESS CHANGES TO STRUCTURES OR DESIGN FROM WHAT HAS BEEN APPROVED

PLANS SHALL SUPERCEDE THESE REQUIREMENTS


and date hereunder attached. Responsibility is disclaimed for all ot

engineering plans involved in this project and specifically excludes


STEVEN D. MARION P.E

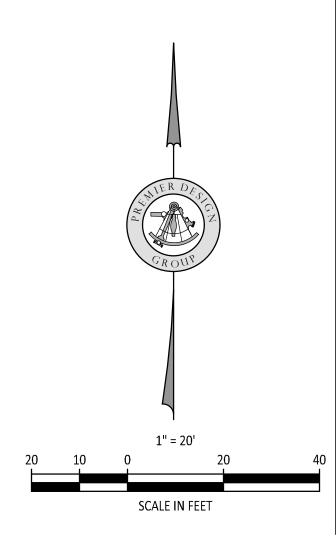
PROFESSIONAL ENGINEER

PE 2006007195

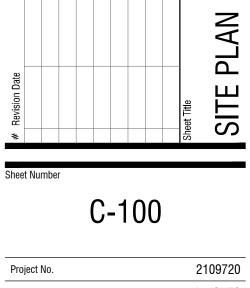
Project No.	2109720
Drawn By	A. JONES
Checked By	M. FOGARTY

	REFERENCE NOTES SCHEDULE	
CODE	DESCRIPTION	DETAIL
1	LAND DISTURBANCE LIMITS	
2	PROPOSED DUMPSTER ENCLOSURE. REFER TO ARCHITECTURAL PLANS FOR DESIGN AND DETAILS	
3	PROPOSED CG-1 CONCRETE CURB AND GUTTER (TYPICAL)	10/C-600
4	PROPOSED VAN ACCESSIBLE PARKING SIGN	15/C-600
5	PROPOSED MENU BOARD. REFER TO ARCHITECTURAL PLANS FOR DETAILS	
6	PROPOSED "DO NOT ENTER" STRIPING	14/C-600
7	PROPOSED PAINTED INTERNATIONAL SYMBOL OF ACCESSIBILITY	17/C-600
8	SAW CUT AND MATCH EXISTING CURB AND/OR PAVEMENT ELEVATION AT NEAREST JOINT	
9	PROPOSED DRIVE-THRU PAVEMENT MARKING	14/C-600
10	PROPOSED DRIVE-THRU CLEARANCE BAR. REFER TO ARCHITECTURAL PLANS FOR DETAILS	
11	PROPOSED CROSS STRIPING	16/C-600
12	PROPOSED CANOPY. REFER TO ARCHITECTURAL PLANS FOR DETAIL.	
13	PROPOSED AWNING. REFER TO ARCHITECTURAL PLANS FOR DETAIL.	
14	PROPOSED CONCRETE SIDEWALK	7/C-600
15	PROPOSED SIGN, REFER TO ARCHITECTURAL PLANS FOR TYPE AND SIZE.	
16	TRANSITION CURB FROM 6" TALL TO FLUSH CURB	13/C-600
17	PROPOSED WHEEL STOP	9/C-600
18	PROPOSED INTEGRAL CONCRETE CURB AND SIDEWALK	11/C-600
19	LIGHT DUTY ASPHALT PAVEMENT	6/C-600
20	MEDIUM DUTY ASPHALT PAVEMENT	5/C-600
21	HEAVY DUTY CONCRETE PAVEMENT	4/C-600
22	PROPOSED 4" DOUBLE ROLLED STRIPE, PAINTED WHITE (TYPICAL)	
23	INGRESS/EGRESS DOOR LOCATION	
24	PICK-UP WINDOW LOCATION	
25	DRIVE-THRU WINDOW LOCATION	
26	PROPOSED 4" BOLLARD(S)	
27	EXISTING TRANSFORMER (PROTECT)	
28	PROPOSED ADA ACCESSIBLE RAMP. RAMP SHALL NOT EXCEED 2% CROSS SLOPE AND 8.33% LONGITUDAL SLOPE.	
29	PROPOSED ACCESSIBLE LANDING. LANDING SHALL BE 5'X5' AT THE TOP OF THE RAMP.	
30	PROPOSED LOCATION OF EXISTING TRANSFORMER TO BE RELOCATED	

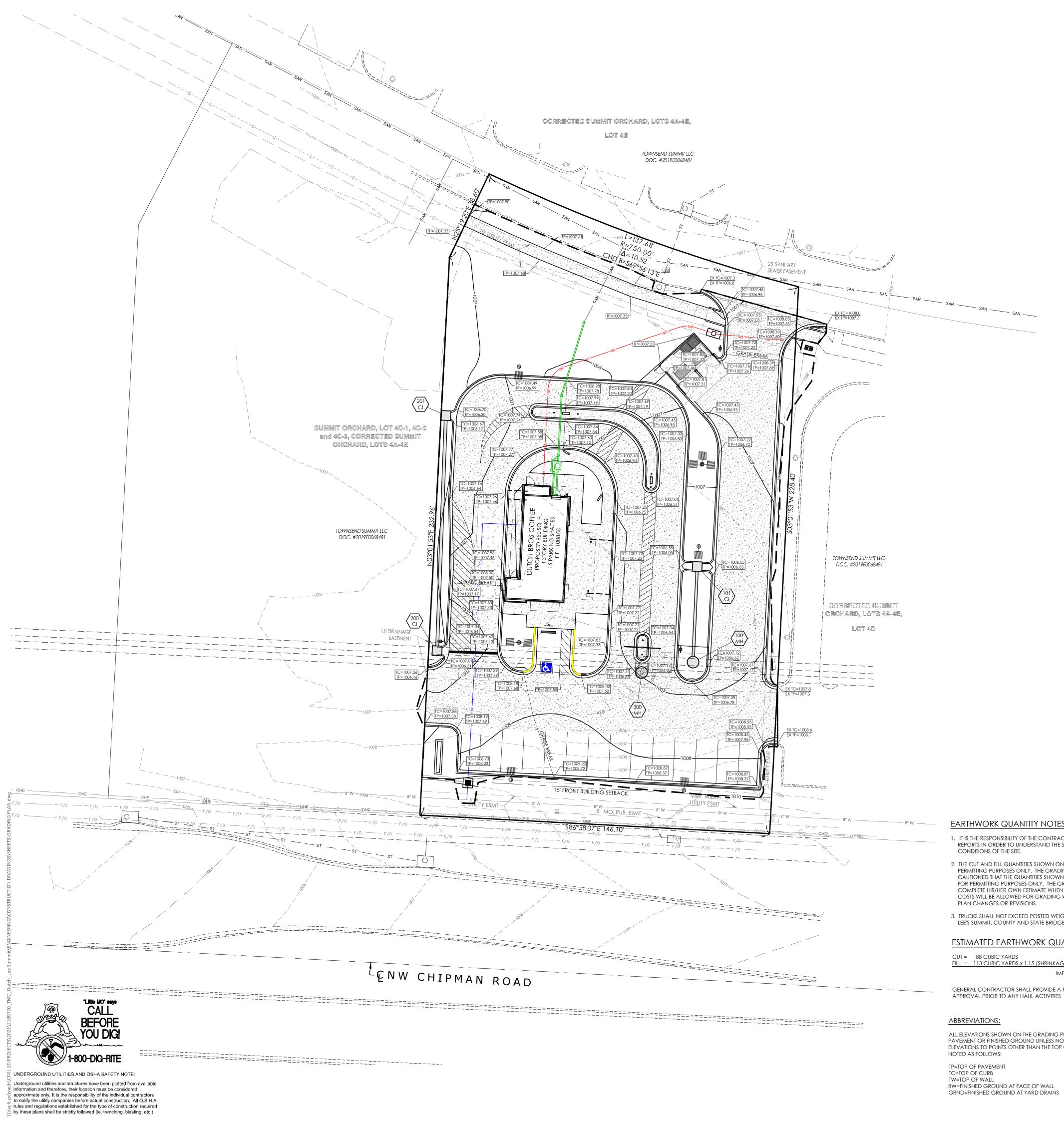
PROJECT NOTES:


- BASIS OF BEARINGS: THIS SURVEY WAS ADOPTED FROM THE MISSOURI STATE PLANE COORDINATE SYSTEM, NAD 1983 WEST ZONE
- 2. CURRENT ZONING: PMIX PLANNED MIXED USE
- 3. SURROUNDING ZONING: PMIX PLANNED MIXED USE
- 4. SITE AREA = ± 0.828 ACRES 5. PROPOSED USE - COFFEE SHOP
- 6. PROPOSED BUILDING HEIGHT REFER TO ARCHITECTURAL PLANS
- 7. PARKING SETBACK:
- NONE PER RECORDED PLAT 8. BUILDING SETBACKS:

FRONT BUILDING SETBACK: 15' ALONG NW CHIPMAN ROAD SIDE BUILDING SETBACK: NONE PER RECORDED PLAT REAR BUILDING SETBACK: NONE PER RECORDED PLAT


- 9. FLOOR AREA RATIO 950/36,068 = 0.026 FAR
- 10. IMPERVIOUS COVERAGE SITE = 67.75%
- 11. PARKING AND LOADING REQUIREMENTS REQUIRED PARKING: TWO PLUS 1 PER EMPLOYEE ON MAX. SHIFT 2 + 10 EMPLOYEES = 12 PARKING SPACE REQUIRED
- PROVIDED PARKING= 15 PARKING SPACES
- 12. PER FEMA FIRM PANEL #29095C0417G, EFFECTIVE ON 01/20/2017 THE PROPERTY IS ZONE X (UNSHADED), AREAS DETERMINED TO BE OUTSIDE THE 0.2% ANNUAL CHANCE FLOODPLAIN.
- 13. THIS PROPERTY IS LOCATED WITHIN THE LITTLE CEDAR CREEK WATERSHED. 14. OIL AND GAS WELL LOCATIONS: BASED ON MIODNR STATE OIL AND GAS COUNCIL, THERE ARE NO ACTIVE WELLS AS OF JUNE 2, 2020. ALL EXISTING OIL AND GAS WELLS FOR THIS SECTION-TOWNSHIP-RANGE HAVE BEEN ABANDONED OR PLUGGED.

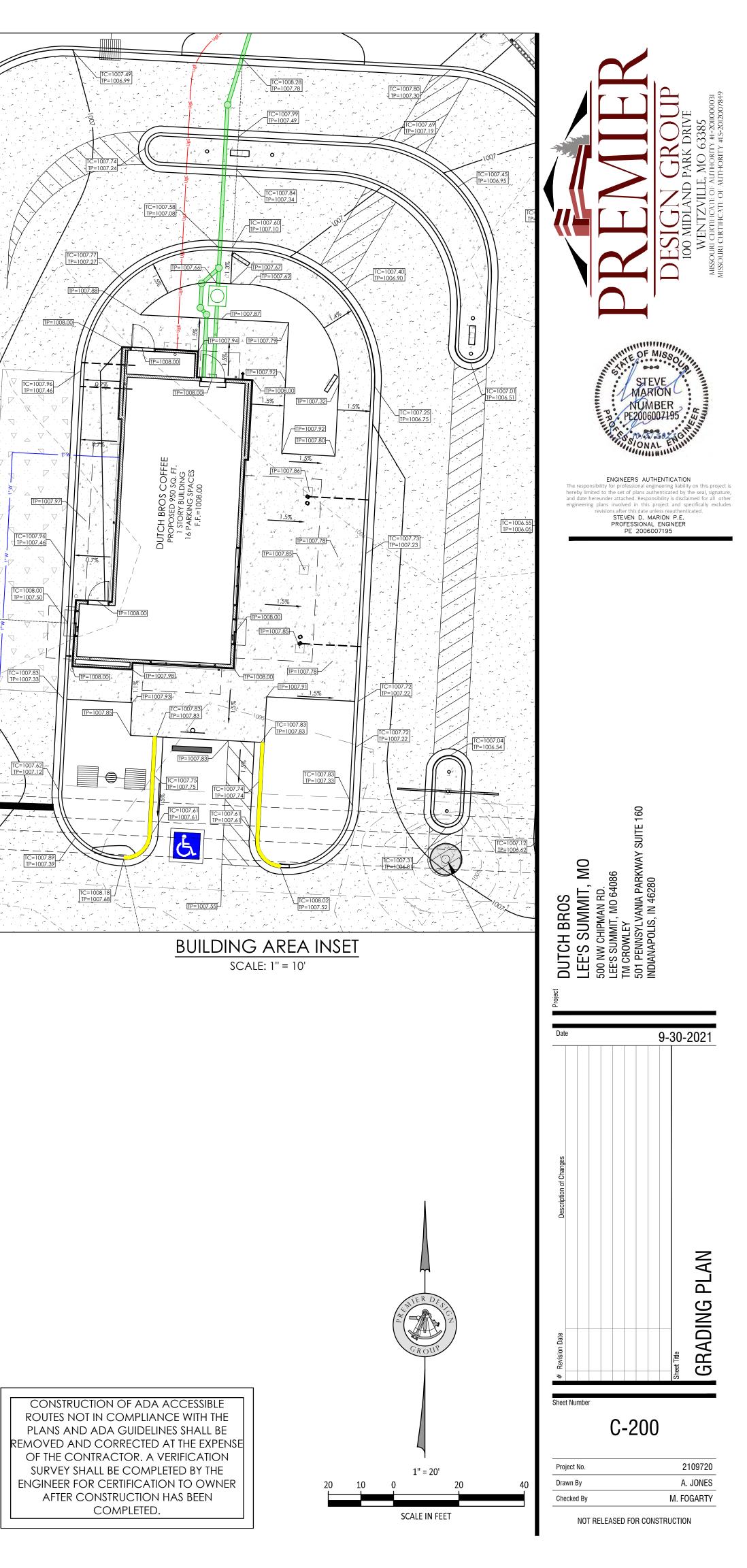
PAVEMENT NOTES

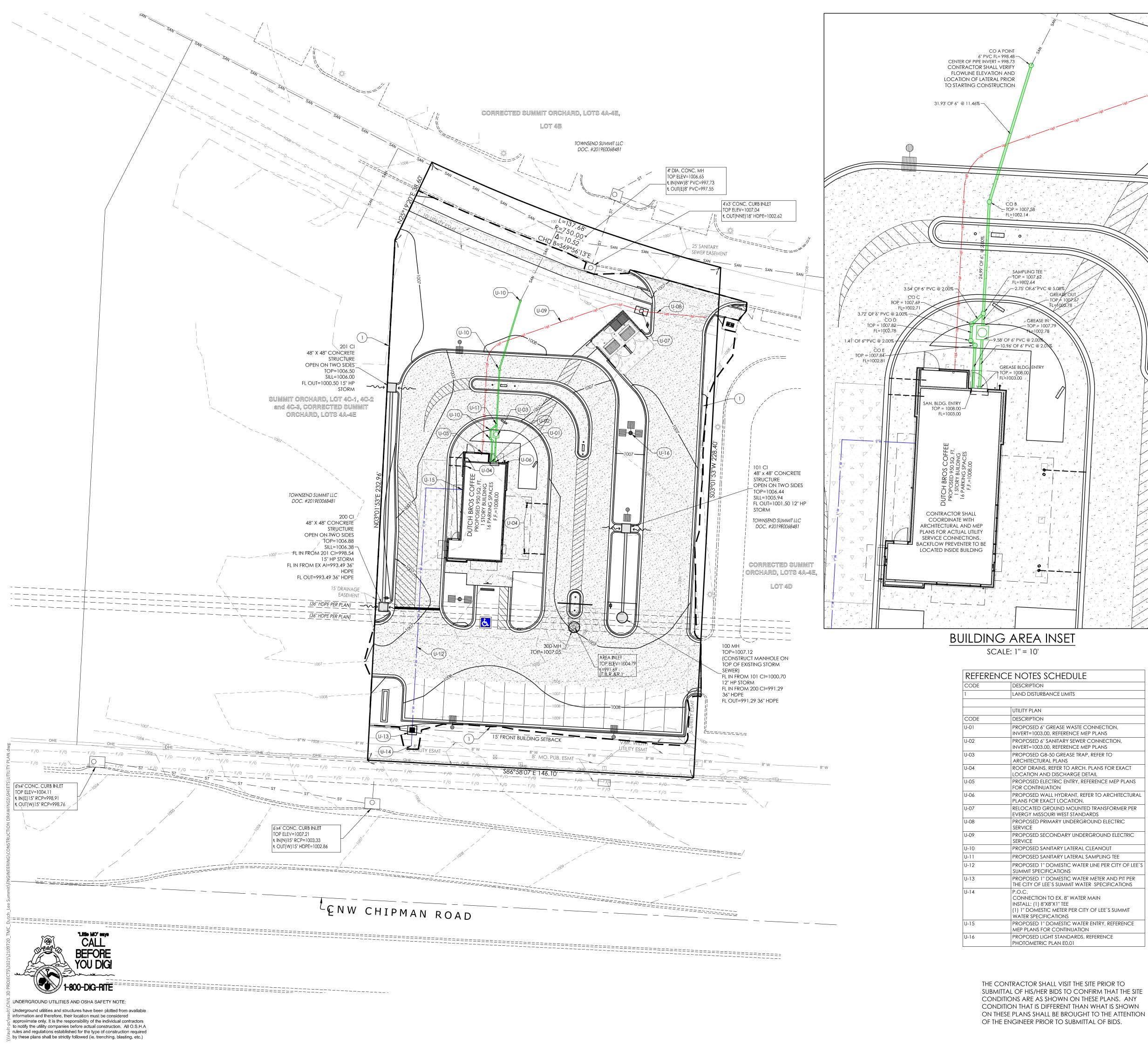

1.	PAVEMENT THICKNESS SHALL BE AS FOLLOWS: (UNLESS NOTED OTHERWISE ON PLAN)
	LIGHT DUTY ASPHALT PAVEMENT 1.5" TYPE "2.01" ASPHALT SURFACE COURSE 4" TYPE "2.01" ASPHALT BASE COURSE 6" MODOT TYPE 5 AGGREGATE WITH GEOGRID OR/ 6" MODOT TYPE 5 AGGREGATE WITH 6" STABILIZED BASE
	MEDIUM DUTY ASPHALT PAVEMENT (DRIVE AISLE) 2" TYPE "2.01" ASPHALT SURFACE COURSE 7.5" TYPE "2.01" ASPHALT BASE COURSE 12" MODOT TYPE 5 AGGREGATE WITH GEOGRID OR/ 6" MODOT TYPE 5 AGGREGATE WITH 9" STABILIZED BASE
	HEAVY DUTY CONCRETE PAVEMENT (TRASH ENCLOSURE PAD & DRIVE-THRU PAD) 8" NON-REINFORCED PORTLAND CEMENT CONCRETE 4" MODOT TYPE 5 AGGREGATE BASE
	<u>CONCRETE SIDEWALKS</u> 4" PORTLAND CEMENT CONCRETE 4" MODOT TYPE 5 AGGREGATE BASE

A. JONES Drawn By M. FOGARTY Checked By

EARTHWORK QUANTITY NOTES:

- 1. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO READ ALL APPLICABLE REPORTS IN ORDER TO UNDERSTAND THE SOIL AND GROUNDWATER CONDITIONS OF THE SITE.
- 2. THE CUT AND FILL QUANTITIES SHOWN ON THIS PLAN ARE FOR PERMITTING PURPOSES ONLY. THE GRADING CONTRACTOR IS CAUTIONED THAT THE QUANTITIES SHOWN ARE THE ENGINEER'S ESTIMATE FOR PERMITTING PURPOSES ONLY. THE GRADING CONTRACTOR SHALL COMPLETE HIS/HER OWN ESTIMATE WHEN BIDDING. NO ADDITIONAL COSTS WILL BE ALLOWED FOR GRADING WITHOUT JUSTIFICATION DUE TO PLAN CHANGES OR REVISIONS.
- 3. TRUCKS SHALL NOT EXCEED POSTED WEIGHT LIMITS FOR THE CITY OF LEE'S SUMMIT, COUNTY AND STATE BRIDGES DURING HAUL OPERATIONS.

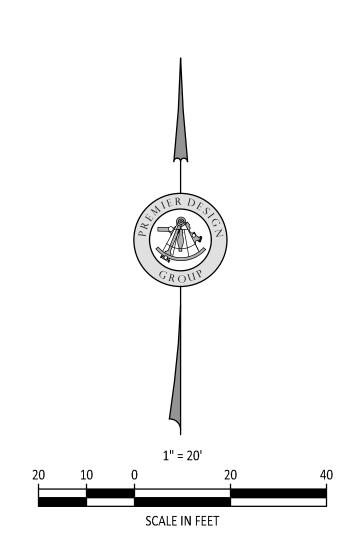

ESTIMATED EARTHWORK QUANTITIES:

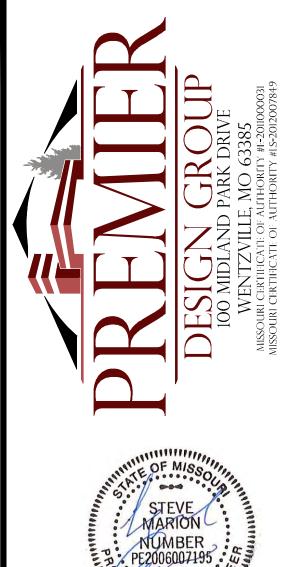

CUT = 88 CUBIC YARDS FILL = 113 CUBIC YARDS x 1.15 (SHRINKAGE) = 130 CUBIC YARDS IMPORT = 42 CUBIC YARDS

GENERAL CONTRACTOR SHALL PROVIDE A PROPOSED HAUL ROUTE FOR

ALL ELEVATIONS SHOWN ON THE GRADING PLAN ARE TO TOP OF PAVEMENT OR FINISHED GROUND UNLESS NOTED OTHERWISE. ELEVATIONS TO POINTS OTHER THAN THE TOP OF PAVEMENT ARE

BW=FINISHED GROUND AT FACE OF WALL GRND=FINISHED GROUND AT YARD DRAINS


UTILITY PLAN NOTES:


3'-6' ON ALL SANITARY SEWER LINES.

- ALL FILL MATERIAL IS TO BE IN PLACE AND COMPACTED BEFORE INSTALLATION OF PROPOSED UTILITIES.
- CONTRACTOR SHALL NOTIFY THE UTILITY AUTHORITIES INSPECTORS 72 HOURS BEFORE CONNECTING TO ANY EXISTING LINE. 3. CONTRACTOR SHALL MAINTAIN A MINIMUM OF 3'-6' COVER ON ALL WATERLINES AND
- CONTRACTOR SHALL COORDINATE WITH BUILDING ARCHITECT AND TELEPHONE COMPANY FOR EXACT LOCATIONS OF TELEPHONE ENTRY TO THE BUILDING. CONTRACTOR SHALL BE RESPONSIBLE FOR ANY CONDUITS, PULL WIRES, TRENCHING, BACKFILL, ETC. REQUIRED BY TELEPHONE COMPANY.
- 5. CONNECTION FROM THE METER TO SITE UTILITY LINES SHALL BE MADE BY BUILDING CONTRACTOR. EXISTING UTILITIES SHALL BE VERIFIED IN FIELD PRIOR TO INSTALLATION OF ANY NEW
- REFER TO INTERIOR MECHANICAL, ELECTRIC AND PLUMBING DRAWINGS FOR TIE-IN OF ALL UTILITIES.
- THE CONTRACTOR IS SPECIFICALLY CAUTIONED THAT THE LOCATION AND/OR ELEVATION OF EXISTING UTILITIES AS SHOWN ON THESE PLANS IS BASED ON RECORDS OF THE VARIOUS UTILITY COMPANIES, AND WHERE POSSIBLE, MEASUREMENTS TAKEN IN THE FIELD. THE INFORMATION IS NOT TO BE RELIED ON AS BEING EXACT OR COMPLETE. THE CONTRACTOR MUST CALL THE APPROPRIATE UTILITY COMPANIES AT LEAST 72 HOURS BEFORE ANY EXCAVATION TO REQUEST EXACT FIELD LOCATION OF UTILITIES. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO LOCATE ALL EXISTING UTILITIES WHICH CONFLICT WITH THE PROPOSED IMPROVEMENTS SHOWN ON THE PLANS.
- ALL NECESSARY INSPECTIONS AND/OR CERTIFICATIONS REQUIRED BY CODES AND/OR UTILITY SERVICE COMPANIES SHALL BE PERFORMED PRIOR TO ANNOUNCED BUILDING POSSESSION AND THE FINAL CONNECTION OF SERVICE.
- 10. CONTRACTOR SHALL COORDINATE WITH BUILDING ARCHITECT AND SPIRE FOR EXACT LOCATION OF GAS ENTRY. G.C. TO INCLUDE IN BID FOR CONTRACTOR ANY GAS PIPING, CONDUITS, TRENCHING, BACKFILLING, ETC. REQUIRED BY SPIRE .
- 11. CONTRACTOR SHALL COORDINATE WITH BUILDING ARCHITECT AND EVERGY FOR EXACT LOCATION OF ELECTRIC ENTRY. CONTRACTOR SHALL BE RESPONSIBLE FOR ANY CONDUITS, TRENCHING, BACKFILLING, CABLES, ETC. REQUIRED BY ELECTRIC COMPANY.
- 12. REFER TO MEP PLANS FOR GAS SERVICE SIZING. 13. ALL UTILITY SEWER TRENCH BACKFILL SHALL HAVE GRANULAR BACKFILL AND BE
- MECHANICALLY COMPACTED.
- 14. THE CONTRACTOR SHALL VERIFY THE LOCATION, CONDITION AND ELEVATION OF ALL PROPOSED SEWER CONNECTION POINTS PRIOR TO THE START OF CONSTRUCTION. ANY DISCREPANCIES THAT WOULD INTERFERE WITH THE PROPOSED SEWER DESIGN SHALL IMMEDIATELY BE BROUGHT TO THE ATTENTION OF THE ENGINEER.
- 15. ALL PERMIT FEES AND COSTS ASSOCIATED WITH BRINGING UTILITY, SEWER AND WATER SERVICES TO THE BUILDING SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR. ALL FEES AND COSTS SHALL BE INCLUDED IN THE CONTRACTORS BID.
- 16. ALL CONSTRUCTION MATERIALS USED SHALL CONFORM TO THE CURRENT VERSION OF THE CITY OF LEE'S SUMMIT AND STATE OF MISSOURI SPECIFICATIONS. 17. G.C. IS TO PROVIDE TRENCH PULL WIRE AND CONDUIT FOR TELEPHONE AND ELECTRICAL SERVICES, BACKFILL AND GRADE SMOOTH FOR A COMPLETE TELEPHONE
- AND ELECTRIC INSTALLATION SHALL BE BY THE GENERAL CONTRACTOR. 18. GENERAL CONTRACTOR IS TO PROVIDE TRENCH, BACKFILL AND GRADE SMOOTH FOR
- A COMPLETE WATER LINE INSTALLATION. 19. ANY DISTURBED SIDEWALK OR CONCRETE PAVEMENT SHALL BE FULL SLAB
- REPLACEMENT.
- 20. EXISTING SANITARY SEWER SERVICE SHALL NOT BE INTERRUPTED.
- 21. ALL WATER LINES GREATER THAN 3" SHALL BE C-900 PVC PIPE. WATER LINES SMALLER THAN 3" SHALL BE TYPE "K" COPPER.
- 22. ALL CONNECTIONS TO PUBLIC WATER SHALL BE AS REQUIRED BY CITY OF LEE'S SUMMIT WATER CODES. WATER TAP AND METERS UNDER 2" SHALL BE INSTALLED BY CITY OF LEE'S SUMMIT WATER UP TO THE RIGHT-OF-WAY LINES. WATER TAP AND METERS OVER 2" SHALL BE INSTALLED BY THE CONTRACTOR. CONTRACTOR SHALL BE RESPONSIBLE FOR CONTACTING CITY OF LEE'S SUMMIT TO SCHEDULE CONNECTION TO PUBLIC WATER.
- 23. SANITARY LINES SHALL BE PVC MEETING ASTM D-3034 SDR 26 EXCEPT FOR PIPES THAT CROSS ABOVE WATER MAINS, THIS PIPE SHALL BE AWA C900 UNLESS WATER MAIN IS CASED. CONTRACTOR SHALL BE RESPONSIBLE FOR CONTACTING CITY OF LEE'S SUMMIT VECTION TO PUBLIC SEWER
- 24. CONTRACTOR SHALL COORDINATE WITH ADJACENT PROPERTY OWNERS FOR ANY DISRUPTIONS TO EXISTING UTILITY SERVICES.
- 25. CONTRACTOR IS RESPONSIBLE FOR PAVEMENT REPAIR AND REPLACEMENT REQUIRED FOR ALL UTILITY CONNECTIONS AND INSTALLATIONS. 26. THE OWNER/DEVELOPER WILL BE RESPONSIBLE FOR ANY AND ALL
- APPLICABLE TAP AND SERVICE FEES AS LISTED IN THE MOST CURRENT EDITION OF CITY OF LEE'S SUMMIT RULES AND REGULATIONS FOR CUSTOMER SERVICE
- COORDINATION WITH THE ELECTRIC, TELEPHONE AND CATV COMPANIES SHALL BE THE RESPONSIBILITY OF THE ELECTRICAL CONTRACTOR AND SHALL BE CONDUCTED IN A MANNER THAT RESULTS IN AN EFFICIENT AND TIMELY RELOCATION AND REMOVAL OF THE EXISTING FACILITIES.

"PRIVATE".

- 28. GROUND ELEVATIONS SHALL BE WITHIN 6" OF THE FINAL PROPOSED ELEVATIONS PRIOR THE START OF ELECTRIC, TELEPHONE AND CATV RELOCATIONS OR INSTALLATIONS OF NEW SERVICE.
- 29. CONTRACTOR SHALL REFERENCE ELECTRICAL PLANS FOR FURTHER INFORMATION AND FOR CONDUIT ROUTING TO LIGHT STANDARDS AND ANY GROUND MOUNTED SIGNS. 30. ALL UTILITY IMPROVEMENTS (SERVICES, EXTENSIONS, CONNECTIONS, ETC.) TO BE
- 31. BUILDING SEWER STUBS BEING DISCONNECTED FROM THE SEWER MAIN SHALL BE DISCONNECTED BY THE WATER UTILITIES DEPARTMENT, AFTER THE CONTRACTOR HAS PROVIDED ACCESS TO THE SEWER MAIN VIA AN OSHA COMPLIANT EXCAVATION WITH PROPER SHORING AS NECESSARY. WATER UTILITIES STAFF RESERVE THE RIGHT TO NOT ENTER ANY TRENCH DETERMINED TO BE UNSAFE.

ENGINEERS AUTHENTICATION

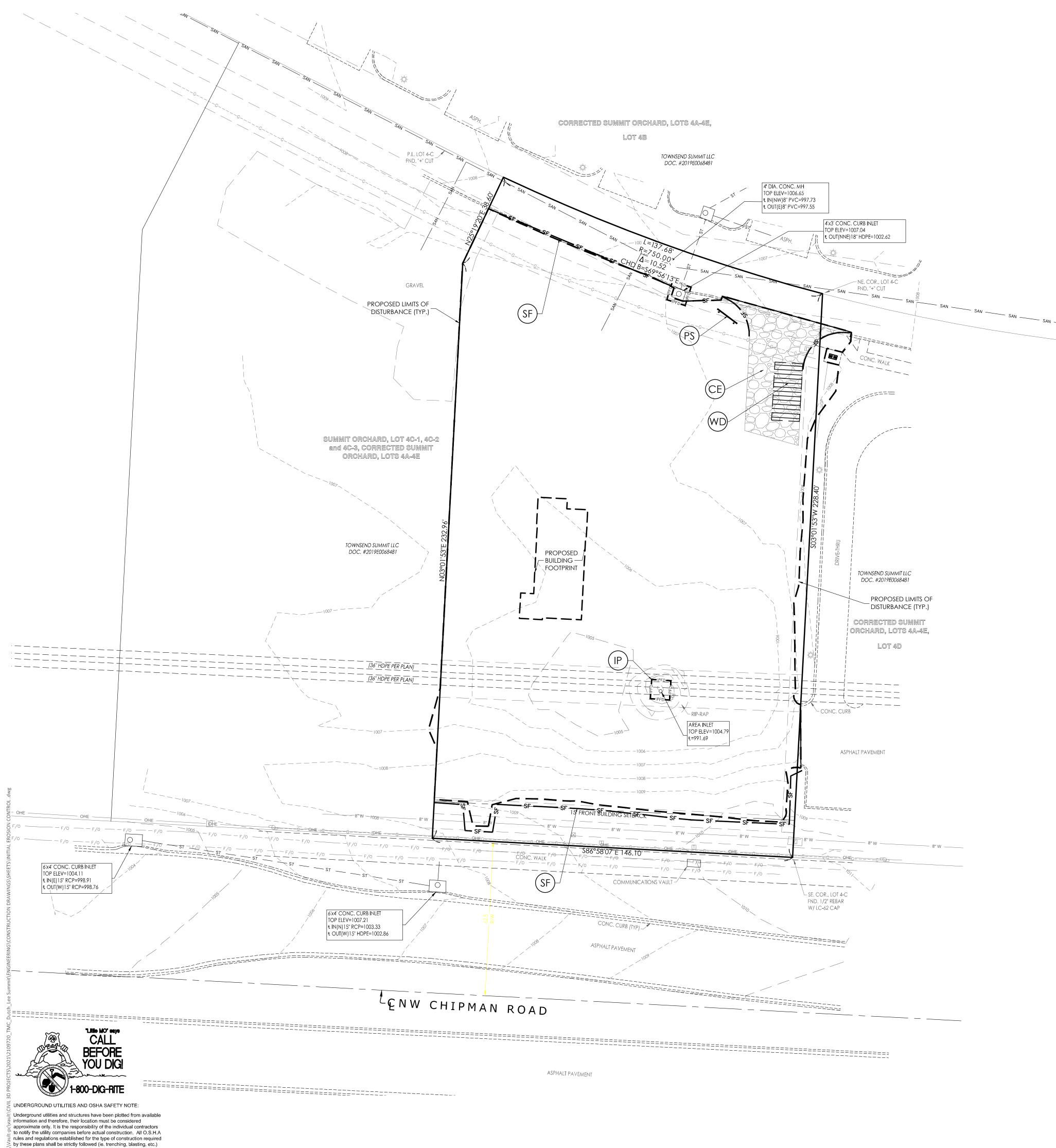
eby limited to the set of plans authenticated by the seal, sign

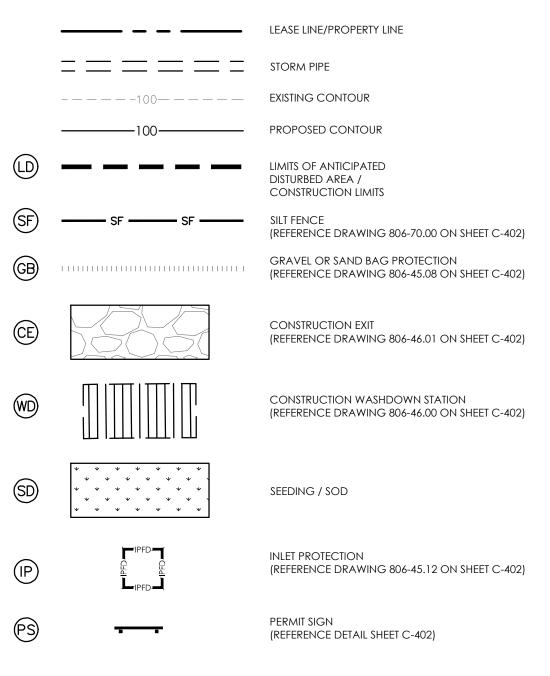

ind date hereunder attached. Responsibility is disclaimed for all oth

engineering plans involved in this project and specifically excludes

STEVEN D. MARION P.E.

PROFESSIONAL ENGINEER


PE 2006007195

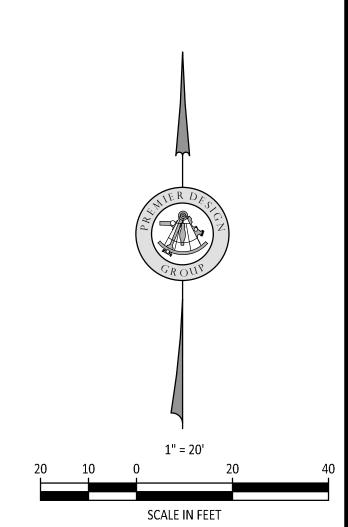

NOT RELEASED FOR CONSTRUCTION

Checked By

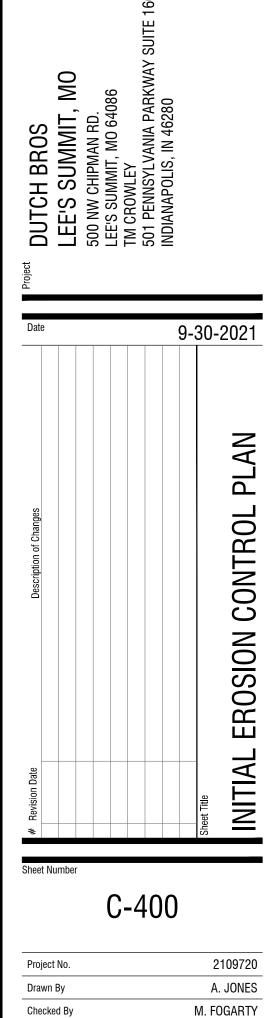
M. FOGARTY

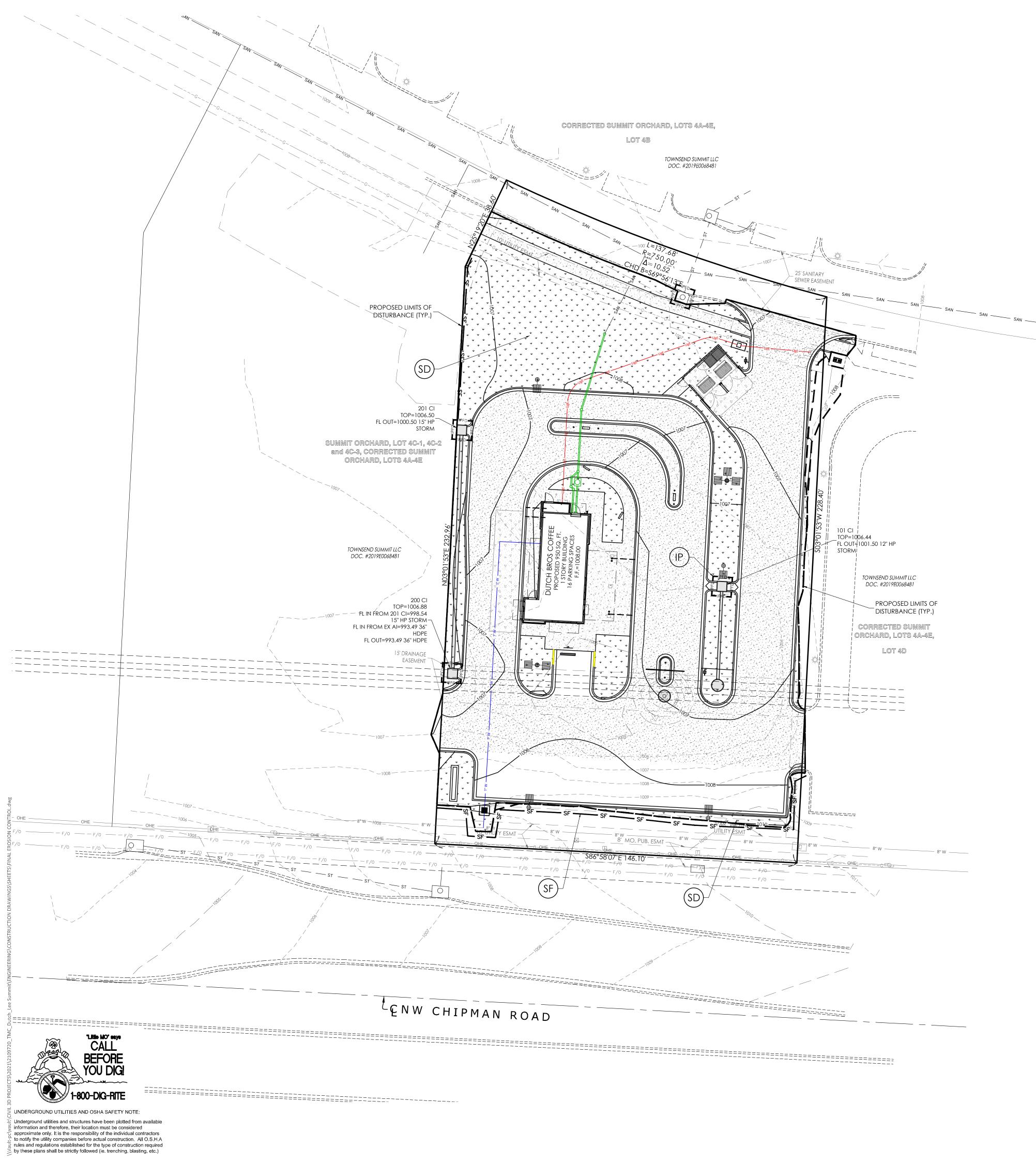
EROSION CONTROL SYMBOL LEGEND

CONSTRUCTION SEQUENCING ACTIVITIES:

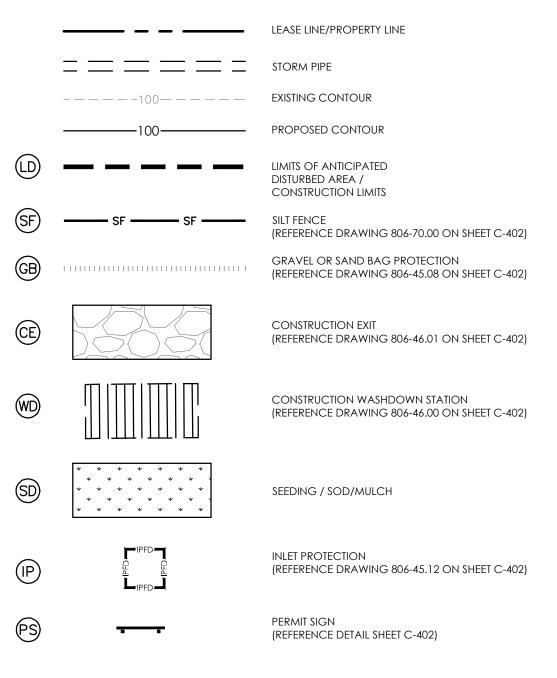

- INSTALL PROJECT SIGN & POST PERMITS
- INSTALL SILT & CONSTRUCTION FENCING
- INSTALL INLET PROTECTION INSTALL CONSTRUCTION ENTRANCE / EXIT
- INSTALL VEHICULAR WASH DOWN AREA
- BEGIN EXCAVATION & SITE DEMOLITION
- BEGIN BUILDING FOOTINGS & FOUNDATIONS BEGIN UTILITY TRENCHING & EXCAVATION
- PARKING & DRIVE AREA PAVING
- FINISHED GRADING & LANDSCAPING
- SEEDING & SOD WORK REMOVAL OF EROSION CONTROL AND OTHER BMP's

NOTES:


- 1. REFER TO THE EROSION CONTROL DETAIL SHEET & STORMWATER POLLUTION PREVENTION NARRATIVE FOR ADDITIONAL NOTES AND REQUIREMENTS.
- 2. THE GENERAL CONTRACTOR SHALL OBTAIN A COPY OF THE NPDES PERMIT ISSUED FOR THE SITE AND POST IT AT THE PROJECT SITE PRIOR TO ANY LAND DISTURBING ACTIVITIES. REFER TO SITE SIGN DETAIL ON THE EROSION CONTROL DETAIL SHEET.
- 3. CONTRACTOR SHALL INSTALL BMP'S NOTED ON THIS PLAN PRIOR TO BEGINNING ANY LAND DISTURBING, DEMOLITION, OR TREE REMOVAL ACTIVITIES.
- 4. THE CONTRACTOR SHALL INSTALL CONSTRUCTION ENTRANCE/EXIT AND MAINTAIN THESE ENTRANCES DURING CONSTRUCTION.
- 5. THE JOB SITE TRAILER, DUMPSTER, FUELING AREA, STORAGE & LAY-DOWN AREA SHALL BE LOCATED BY THE GENERAL CONTRACTOR AT THE START OF CONSTRUCTION. THESE ITEMS MUST BE NOTED BY THE CONTRACTOR ON THE SWPPP DRAWINGS.
- 6. SOIL STOCKPILES AND DEMOLITION DEBRIS STOCKPILES SHALL HAVE SILT FENCES INSTALLED IF LEFT ON SITE & UNDISTURBED FOR MORE THAN 13 DAYS.


ALL PROJECT SITES ARE REQUIRED TO COMPLY WITH REQUIREMENTS OF THE "CLEAN WATER ACT" ESTABLISHED BY THE US ENVIRONMENTAL PROTECTION AGENCY.

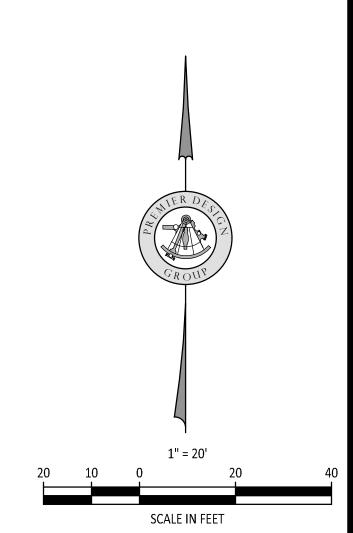
THE EPA'S NATIONAL POLLUTION DISCHARGE ELIMINATION SYSTEM (NPDES) PROGRAM REQUIRES PERMITS TO BE ISSUED BY REGULATORY AGENCIES WHEN PROJECT SITES DISTURB 1 ACRE OR MORE.

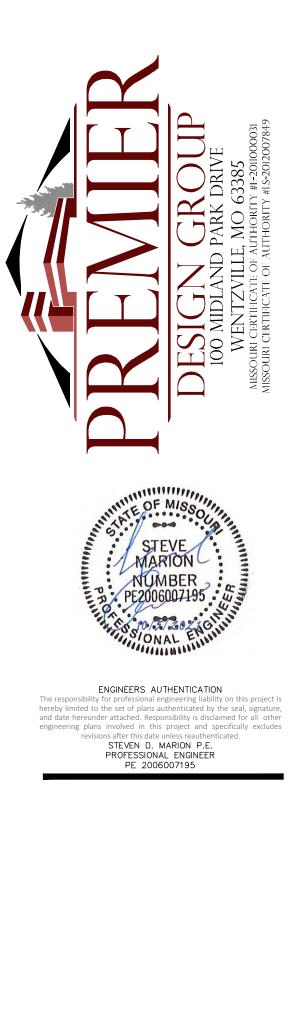


ARION UMBER ENGINEERS AUTHENTICATION The resi hereby limited to the set of plans authenticated by the seal, signature and date hereunder attached. Responsibility is disclaimed for all other engineering plans involved in this project and specifically excludes STEVEN D. MARION P.E. PROFESSIONAL ENGINEER PE 2006007195

EROSION CONTROL SYMBOL LEGEND

CONSTRUCTION SEQUENCING ACTIVITIES:


- INSTALL PROJECT SIGN & POST PERMITS
- INSTALL SILT & CONSTRUCTION FENCING INSTALL INLET PROTECTION
- INSTALL CONSTRUCTION ENTRANCE / EXIT
- INSTALL VEHICULAR WASH DOWN AREA
- BEGIN EXCAVATION & SITE DEMOLITION
- BEGIN BUILDING FOOTINGS & FOUNDATIONS BEGIN UTILITY TRENCHING & EXCAVATION
- PARKING & DRIVE AREA PAVING
- FINISHED GRADING & LANDSCAPING SEEDING & SOD WORK
- REMOVAL OF EROSION CONTROL AND OTHER BMP's


NOTES:

- 1. REFER TO THE EROSION CONTROL DETAIL SHEET & STORMWATER POLLUTION PREVENTION NARRATIVE FOR ADDITIONAL NOTES AND REQUIREMENTS.
- 2. THE GENERAL CONTRACTOR SHALL OBTAIN A COPY OF THE NPDES PERMIT ISSUED FOR THE SITE AND POST IT AT THE PROJECT SITE PRIOR TO ANY LAND DISTURBING ACTIVITIES. REFER TO SITE SIGN DETAIL ON THE EROSION CONTROL DETAIL SHEET.
- 3. CONTRACTOR SHALL INSTALL BMP'S NOTED ON THIS PLAN PRIOR TO BEGINNING ANY LAND DISTURBING, DEMOLITION, OR TREE REMOVAL ACTIVITIES.
- 4. THE CONTRACTOR SHALL INSTALL CONSTRUCTION ENTRANCE/EXIT AND MAINTAIN THESE ENTRANCES DURING CONSTRUCTION.
- 5. THE JOB SITE TRAILER, DUMPSTER, FUELING AREA, STORAGE & LAY-DOWN AREA SHALL BE LOCATED BY THE GENERAL CONTRACTOR AT THE START OF CONSTRUCTION. THESE ITEMS MUST BE NOTED BY THE CONTRACTOR ON THE SWPPP DRAWINGS.
- 6. SOIL STOCKPILES AND DEMOLITION DEBRIS STOCKPILES SHALL HAVE SILT FENCES INSTALLED IF LEFT ON SITE & UNDISTURBED FOR MORE THAN 13 DAYS.

ALL PROJECT SITES ARE REQUIRED TO COMPLY WITH REQUIREMENTS OF THE "CLEAN WATER ACT" ESTABLISHED BY THE US ENVIRONMENTAL PROTECTION AGENCY.

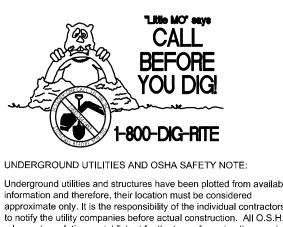
THE EPA'S NATIONAL POLLUTION DISCHARGE ELIMINATION SYSTEM (NPDES) PROGRAM REQUIRES PERMITS TO BE ISSUED BY REGULATORY AGENCIES WHEN PROJECT SITES DISTURB 1 ACRE OR MORE.

NOT RELEASED FOR CONSTRUCTION

Checked By

GENERAL EROSION AND SEDIMENTATION CONTROL NOTES:

- 1. THE CONTRACTOR IS RESPONSIBLE FOR OBTAINING A COPY OF THE LAND DISTURBANCE PERMIT FOR THIS SITE PRIOR TO THE START OF CONSTRUCTION. A LAND DISTURBANCE PERMIT FROM THE MISSOURI DEPARTMENT OF NATURAL RESOURCES WILL BE REQUIRED. A GRADING PERMIT FROM THE CITY OF CITY OF LEE'S SUMMIT WILL BE REQUIRED
- 2. THE CONTRACTOR SHALL KEEP & MAINTAIN A COPY OF THE LAND DISTURBANCE PERMIT(S), EROSION CONTROL PLANS, AND STORMWATER POLLUTION PREVENTION PLAN (SWPPP) AT THE PROJECT SITE DURING CONSTRUCTION.
- 3. ALL EROSION CONTROL MEASURES MUST MEET LOCAL REQUIREMENTS AND THE "PROTECTING WATER QUALITY, A FIELD GUIDE TO EROSION, SEDIMENT AND STORM WATER BEST MANAGEMENT PRACTICES FOR DEVELOPMENT SITES IN MISSOURI AND KANSAS". THE DOCUMENT IS AVAILABLE FROM THE MISSOURI DEPARTMENT OF NATURAL RESOURCES AND CAN BE DOWNLOADED FROM THE DNR WEBSITE AT HTTP:/WWW.DNR.MO.GOV/ENV/WPP/WPCP-GUIDE.HTM.
- 4. PRIOR TO THE START OF ANY LAND DISTURBING ACTIVITIES, EROSION AND SEDIMENT CONTROL MEASURES AND APPLICABLE BMPS SHALL BE INSTALLED.
- 5. THE CONTRACTOR SHALL NOTIFY THE CITY ENGINEER A MINIMUM OF 48 HOURS PRIOR TO THE START OF GRADING SO THAT SITE BMPS CAN BE VERIFIED.
- 6. THE GENERAL CONTRACTOR SHALL HAVE ULTIMATE CONTROL OF THE SITE AND REQUIRE THAT ALL SUBCONTRACTORS, UTILITY COMPANIES, AND ANY PERSON PERFORMING LAND DISTURBING ACTIVITIES. CONFORM TO THE REQUIREMENTS OF THE PERMITS ISSUED FOR THE SITE. THIS INCLUDES CONFORMANCE TO THE STORM WATER POLLUTION PLAN PREPARED & MAINTAINED FOR THE SITE.
- 7. THE CONTRACTOR IS RESPONSIBLE FOR MANAGING STORM WATER RUNOFF AND EROSION THROUGHOUT CONSTRUCTION.
- 8. THIS EROSION CONTROL PLAN HAS BEEN PREPARED AS A BEGINNING POINT AND SHOULD EVOLVE AS SITE CONDITIONS WARRANT. THE GENERAL CONTRACTOR SHALL IMPLEMENT ADDITIONAL BMPS AS DEEMED NECESSARY TO ADEQUATELY RETAIN SEDIMENT ON-SITE.
- 9. THE CONTRACTOR SHALL MAINTAIN AND PROTECT EXISTING TREES AND VEGETATION.
- 10. CONSTRUCTION MATERIAL STORAGE AND LAY-DOWN AREAS ARE TO BE AWAY FROM DRAINAGE COURSES AND LOW AREAS. 11. PROVIDE CONTAINERS FOR THE DISPOSAL OF WASTE PAINTS, SOLVENTS, CLEANING COMPOUNDS, ETC.
- 12. PROVIDE TRASH CONTAINERS ONSITE AND PERFORM REGULAR SITE CLEAN UP FOR PROPER DISPOSAL OF SOLID WASTE. SOLID WASTE SHALL INCLUDE, BUT NOT BE LIMITED TO, SCRAP BUILDING MATERIALS, PRODUCT/MATERIAL PACKAGING, FOOD AND DRINK CONTAINERS.
- 13. THE CONTRACTOR SHALL INSTALL CONTAINMENT BERMS & DRIP PANS AT PETROLEUM PRODUCT & LIQUID STORAGE TANK AREAS
- 14. THE CONTRACTOR SHALL PROVIDE CONCRETE WASH OUT AREAS. CONCRETE TRUCKS SHALL NOT DISCHARGE SURPLUS CONCRETE OR WASH WATER ON THE GROUND OR INTO DITCHES. CONCRETE WASH-OUT AREAS SHALL BE DESIGNED TO ENSURE CONCRETE PARTICLES WILL NOT BE RELEASED FROM THE CONSTRUCTION SITE.
- 15. THE CONTRACTOR SHALL IMPLEMENT DUST CONTROL MEASURES IF CONDITIONS WARRANT. DUST CONTROL MAY INCLUDE WATERING/IRRIGATION, WIND BARRIERS, SPRAY ON ADHESIVES, TILLING, OR CHEMICAL TREATMENT. ANY CLEANUP TO ADJACENT PROPERTIES DUE TO INADEQUATE DUST CONTROL WILL BE THE CONTRACTOR'S RESPONSIBILITY.
- 16. THE CONTRACTOR SHALL PROVIDE FOR SOLID WASTE/TRASH COLLECTION. THE CONSTRUCTION SITE SHALL BE KEPT CLEAN AND ORDERLY.
- 17. THE CONTRACTOR SHALL PROVIDE FOR SANITARY WASTE COLLECTION DURING CONSTRUCTION. PORTA POTTIES SHALL BE LOCATED BY THE CONTRACTOR AND NOTED ON THE DRAWINGS. CONSTRUCTION SWPPP LOG
- 1. THE CONTRACTOR SHALL DEVELOP A CONSTRUCTION SWPPP LOG AT THE START OF CONSTRUCTION. THE CONSTRUCTION SWPPP LOG SHALL INCLUDE INSTALLATION DATES OF BMP'S, MAINTENANCE RECORDS, RAINFALL RECORDS, AND ANY ITEM THAT ADDRESSES THE MANAGEMENT OF STORM WATER POLLUTION PREVENTION MEASURES AT THE PROJECT SITE.
- 2. REFER TO THE SWPPP DOCUMENT/NARRATIVE FOR FORMS AND OTHER DETAILED INFORMATION REGARDING STORM WATER POLLUTION PREVENTION PRACTICES.
- 3. THE SWPPP LOG SHALL BE KEPT ON THE JOB SITE AND SHALL BE MADE AVAILABLE FOR REVIEW AT THE REQUEST OF APPLICABLE GOVERNING AUTHORITIES.
- 4. BMP'S SHALL BE INSPECTED ONCE A WEEK AND WITHIN 24 HRS OF RAIN EVENTS OF 1/2" OR GREATER. INSPECTIONS ARE TO BE DOCUMENTED IN THE SWPPP LOG. REPAIR AND MAINTENANCE TO BMP'S SHALL BE DONE IMMEDIATELY
- 5. THE CONTRACTOR SHALL SUBMIT AN INSPECTION REPORT WITHIN 72 HOURS AFTER EVERY STORM EVENT TO THE CITY ENGINEER.
- 6. THE CONTRACTOR SHALL ENSURE THE SITE CONFORMS TO THE REQUIREMENTS OF THE LAND DISTURBANCE PERMIT
- AND INSTALL ADDITIONAL BMP'S SHOULD SITE CONDITIONS WARRANT. 7. AFTER CONSTRUCTION, THE CONSTRUCTION SWPPP LOG SHALL BE RETAINED BY THE CONTRACTOR FOR A


MINIMUM OF 3 YEARS. FINAL SITE STABILIZATION

- 1. ONCE GRADED AREAS ARE CONSTRUCTED TO FINAL GRADES, PERMANENT STABILIZATION SHALL BE ESTABLISHED.
- 2. THE CONTRACTOR SHALL RESTORE OFF-SITE AREAS DAMAGED BY CONSTRUCTION TO A CONDITION, EQUAL TO, OR BETTER THAN THE CONDITION PRIOR TO THE COMMENCEMENT OF CONSTRUCTION.
- 3. ALL EROSION CONTROL BMP'S SHALL REMAIN IN PLACE UNTIL THE SITE HAS BEEN PERMANENTLY STABILIZED.
- 4. ONCE THE SITE HAS REACH FINAL STABILIZATION, THE CONTRACTOR IS TO CLEAN AND REMOVE DEBRIS FROM BMP'S AND STORM WATER COLLECTION AREAS. BMP'S ARE THEN TO BE REMOVED. POTENTIAL POLLUTANTS THAT MAY BE FOUND ON SITE DURING CONSTRUCTION:

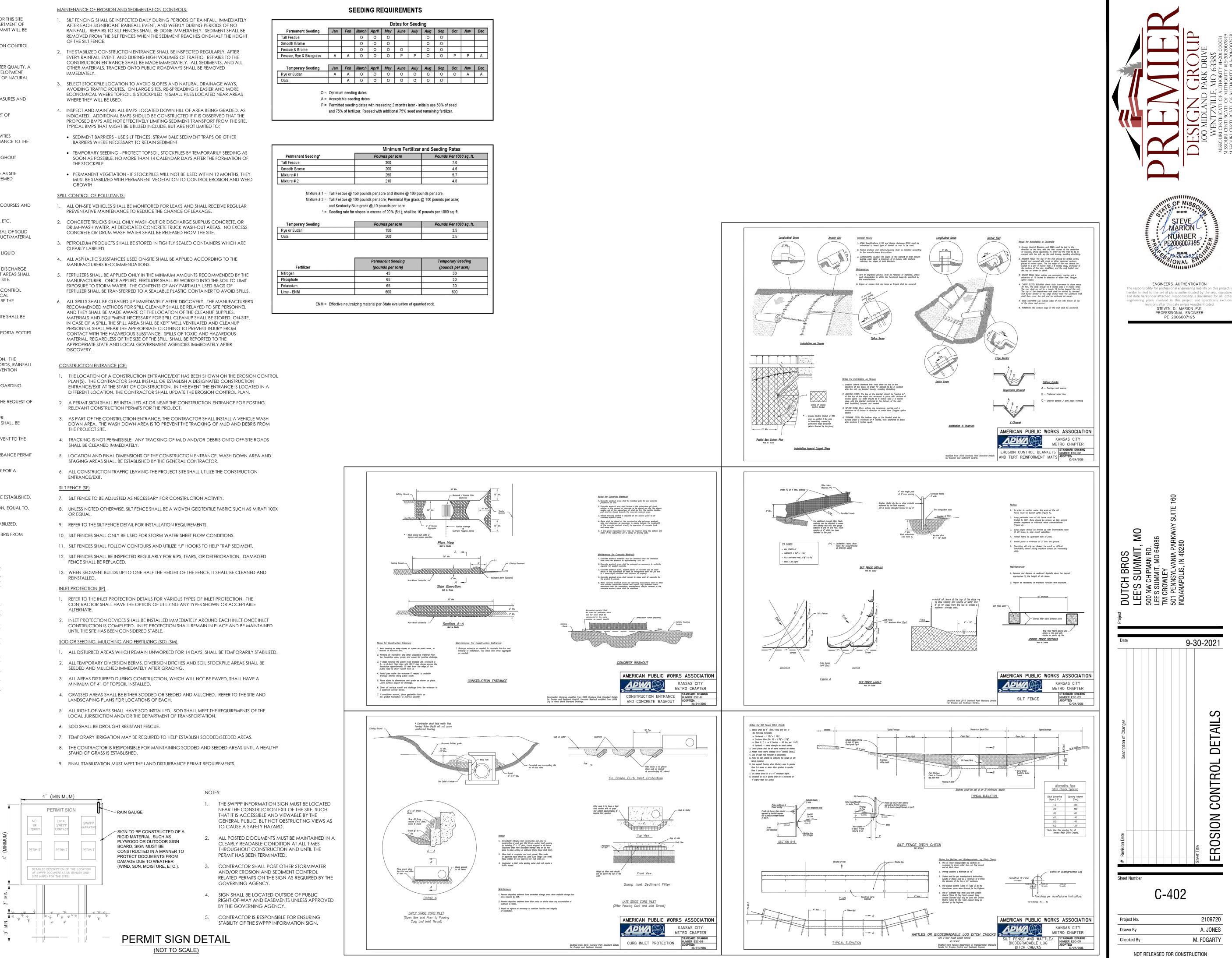
Material Trade Name	Chemical/Physical Description	Storm Water Pollutants					
Erosion	Solid Particles	Soil, sediment					
Fertilizer	Liquid or solid grains	Nitrogen, phosphorus					
Pesticides (insecticides, fungicides, herbicides, rodenticides)	Various colored to colorless liquid, powder, pellets, or grains	Chlorinated hydrocarbons, organophosphates, carbonates, arsenic					
Asphalt	Black solid	Oil, petroleum distillates					
Concrete	White solid	Limestone, sand					
Plaster	White granules or powder	Calcium Sulphate, calcium carbonate, sulfuric acid					
Glue, adhesives	White or yellow liquid	Polymers, epoxies					
Paints	Various colored liquid	Metal oxides, Stoddard solvent, talc, calcium carbonate, arsenic					
Curing compounds	Creamy white liquid	Naphtha					
Wood preservatives	Clear amber or dark brown liquid	Stoddard solvent, petroleum distillates, arsenic, copper, chromium.					
Hydraulic oil/fluids	Brown oily petroleum hydrocarbon	Mineral oil					
Gasoline	Colorless, pale brown or pink petroleum hydrocarbon	Benzene, ethyl benzene, toluene, xylene, MTBE					
Diesel Fuel	Clear, blue-green to yellow liquid	Petroleum distillate, oil & grease, naphthalene, xylenes					
Antifreeze/coolant	Clear green/yellow liquid	Ethylene glycol, propylene glycol, heavy metals (copper, lead, zinc)					

MATERIALS STORED ON SITE:

- 1. ALL MATERIALS STORED ON-SITE SHALL BE STORED IN A NEAT, ORDERLY MANNER IN THEIR APPROPRIATE CONTAINERS. IF POSSIBLE, MATERIALS SHALL BE STORED UNDER A ROOF OR OTHER ENCLOSURE.
- 2. PRODUCTS SHALL BE KEPT IN THEIR ORIGINAL CONTAINERS WITH THE MANUFACTURER'S LABEL. SUBSTANCES SHALL NOT BE MIXED WITH ONE ANOTHER UNLESS RECOMMENDED BY THE MANUFACTURER. WHENEVER POSSIBLE, ALL OF THE PRODUCT SHALL BE USED UP BEFORE DISPOSING OF THE CONTAINER. THE MANUFACTURER'S RECOMMENDATIONS FOR THE PROPER USE AND DISPOSAL OF THEIR PRODUCTS SHALL BE FOLLOWED. THE CONSTRUCTION MANGER SHALL INSPECT THE ON-SITE MATERIALS DAILY TO ENSURE THE PROPER USE AND DISPOSAL.
- 3. HAZARDOUS PRODUCTS SHALL BE KEPT IN RESEALABLE CONTAINERS. ORIGINAL LABELS AND MATERIAL SAFETY DATA SHALL BE RETAINED. ALL FEDERAL, STATE AND CITY REGULATIONS SHALL BE FOLLOWED WHEN DISPOSING OF ANY HAZARDOUS WASTE.

MAINTENANCE OF EROSION AND SEDIMENTATION CONTROLS:

- AFTER EACH SIGNIFICANT RAINFALL EVENT, AND WEEKLY DURING PERIODS OF NO RAINFALL, REPAIRS TO SILT FENCES SHALL BE DONE IMMEDIATELY, SEDIMENT SHALL BE REMOVED FROM THE SILT FENCES WHEN THE SEDIMENT REACHES ONE-HALF THE HEIGHT OF THE SILT FENCE.
- EVERY RAINFALL EVENT, AND DURING HIGH VOLUMES OF TRAFFIC. REPAIRS TO THE OTHER MATERIALS, TRACKED ONTO PUBLIC ROADWAYS SHALL BE REMOVED IMMEDIATELY.
- 3. SELECT STOCKPILE LOCATION TO AVOID SLOPES AND NATURAL DRAINAGE WAYS, AVOIDING TRAFFIC ROUTES. ON LARGE SITES, RE-SPREADING IS EASIER AND MORE WHERE THEY WILL BE USED.
- INDICATED. ADDITIONAL BMPS SHOULD BE CONSTRUCTED IF IT IS OBSERVED THAT THE TYPICAL BMPS THAT MIGHT BE UTILIZED INCLUDE, BUT ARE NOT LIMITED TO:
- BARRIERS WHERE NECESSARY TO RETAIN SEDIMENT
- GROWTH


- PREVENTATIVE MAINTENANCE TO REDUCE THE CHANCE OF LEAKAGE.
- CONCRETE OR DRUM WASH WATER SHALL BE RELEASED FROM THE SITE.
- CLEARLY LABELED.
- MANUFACTURERS RECOMMENDATIONS.
- MANUFACTURER. ONCE APPLIED, FERTILIZER SHALL BE WORKED INTO THE SOIL TO LIMIT EXPOSURE TO STORM WATER. THE CONTENTS OF ANY PARTIALLY USED BAGS OF
- RECOMMENDED METHODS FOR SPILL CLEANUP SHALL BE RELAYED TO SITE PERSONNEL AND THEY SHALL BE MADE AWARE OF THE LOCATION OF THE CLEANUP SUPPLIES. MATERIALS AND EQUIPMENT NECESSARY FOR SPILL CLEANUP SHALL BE STORED ON-SITE. IN CASE OF A SPILL. THE SPILL AREA SHALL BE KEPT WELL VENTILATED AND CLEANUP PERSONNEL SHALL WEAR THE APPROPRIATE CLOTHING TO PREVENT INJURY FROM CONTACT WITH THE HAZARDOUS SUBSTANCE. SPILLS OF TOXIC AND HAZARDOUS MATERIAL, REGARDLESS OF THE SIZE OF THE SPILL, SHALL BE REPORTED TO THE APPROPRIATE STATE AND LOCAL GOVERNMENT AGENCIES IMMEDIATELY AFTER

- PLAN(S). THE CONTRACTOR SHALL INSTALL OR ESTABLISH A DESIGNATED CONSTRUCTION DIFFERENT LOCATION, THE CONTRACTOR SHALL UPDATE THE EROSION CONTROL PLAN.
- RELEVANT CONSTRUCTION PERMITS FOR THE PROJECT.
- THE PROJECT SITE
- SHALL BE CLEANED IMMEDIATELY.

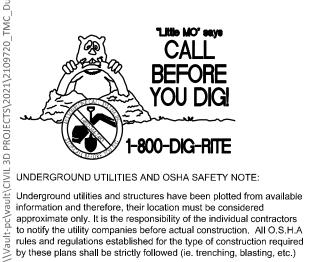
- OR EQUAL.

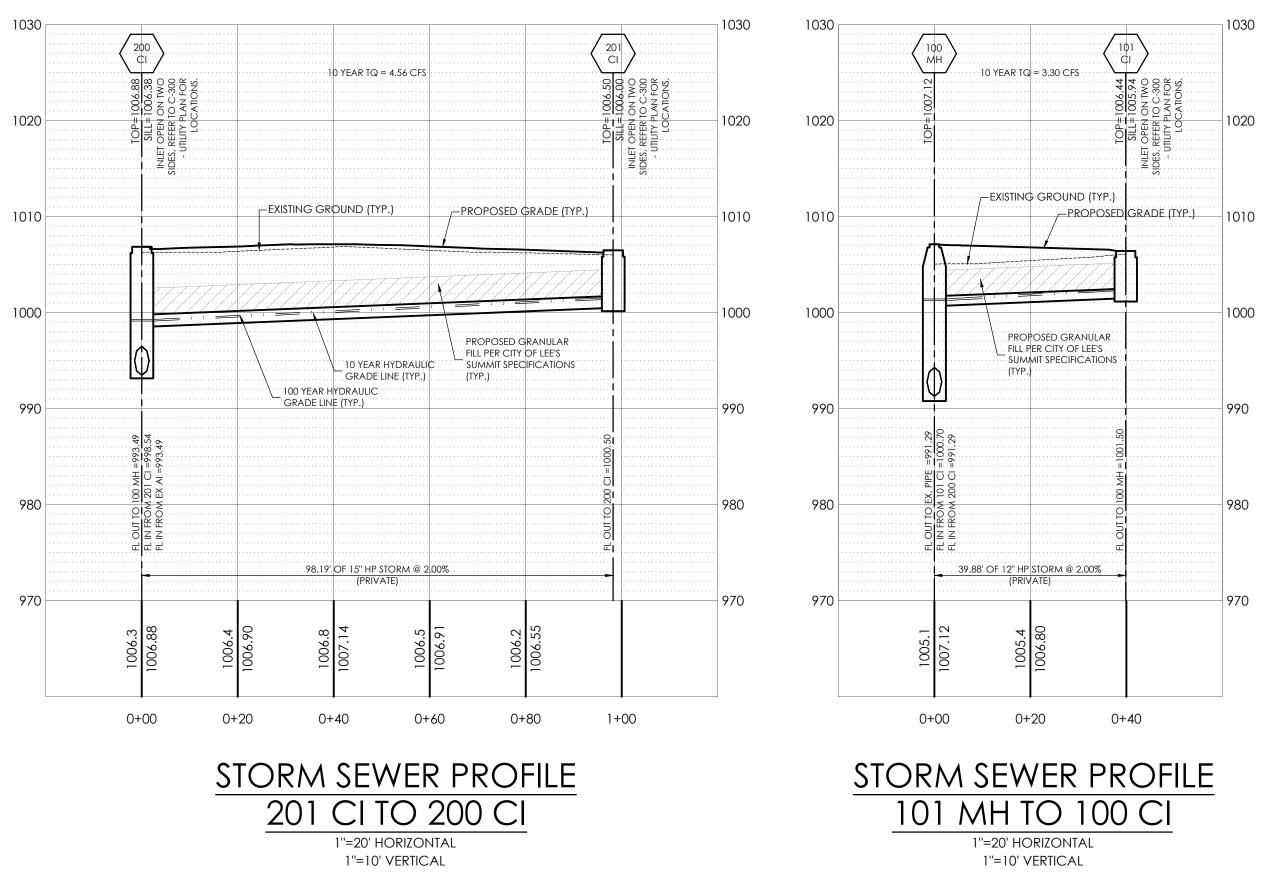
- REINSTALLED.

- ALTERNATE.
- UNTIL THE SITE HAS BEEN CONSIDERED STABLE.
- SOD OR SEEDING, MULCHING AND FERTILIZING (SD) (SM)
- SEEDED AND MULCHED IMMEDIATELY AFTER GRADING.
- MINIMUM OF 4" OF TOPSOIL INSTALLED.
- LANDSCAPING PLANS FOR LOCATIONS OF EACH.

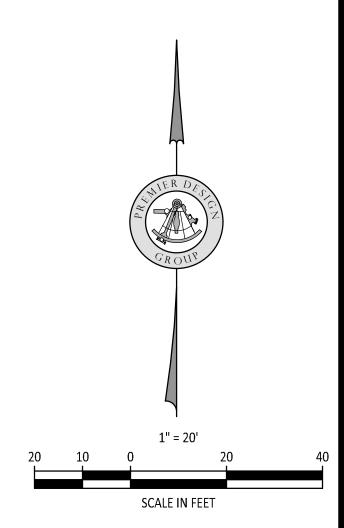
- Underground utilities and structures have been plotted from available

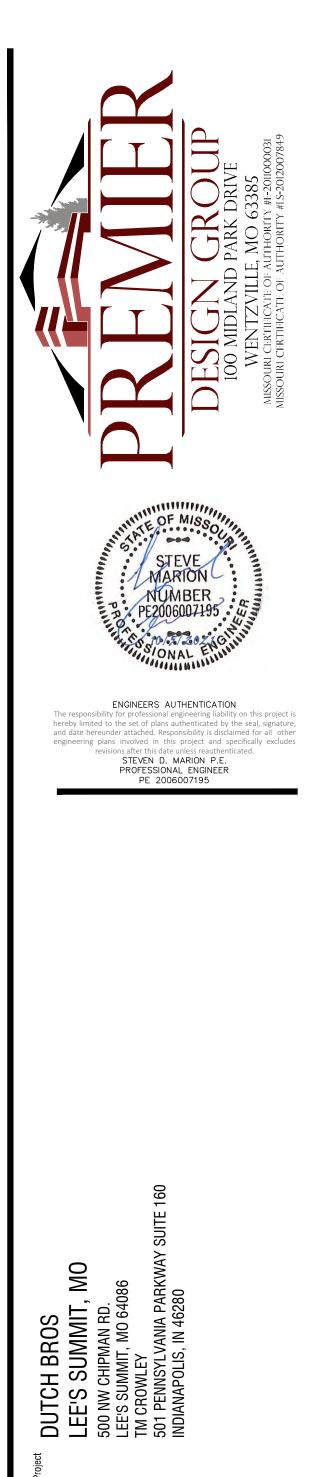
to notify the utility companies before actual construction. All O.S.H.A rules and regulations established for the type of construction required by these plans shall be strictly followed (ie. trenching, blasting, etc.)

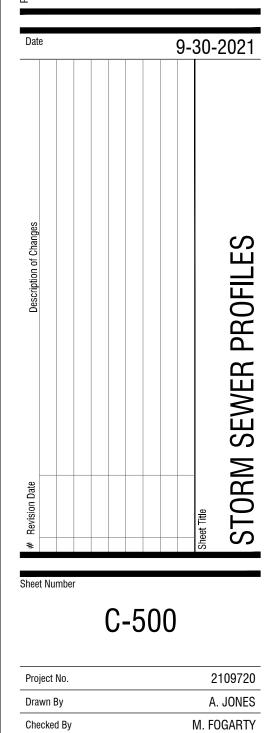

	Dates for Seeding													
Permanent Seeding	Jan	Feb	March	April	May	June	July	Aug	Sep	Oct	Nov	Dec		
Tall Fescue			0	0	0			0	0					
Smooth Brome			0	0	0			0	0					
Fescue & Brome			0	0	0	0		0	0					
Fescue, Rye & Bluegrass	Α	А	0	0	0	Р	Р	0	0	Р	Р	A		
Temporary Seeding	Jan	Feb	March	April	May	June	July	Aug	Sep	Oct	Nov	De		
					-									
Temporary Seeding Rye or Sudan	Jan A	Feb A	March	April O	May O	June O	July O	Aug O	Sep O	Oct O	Nov A	Dee		

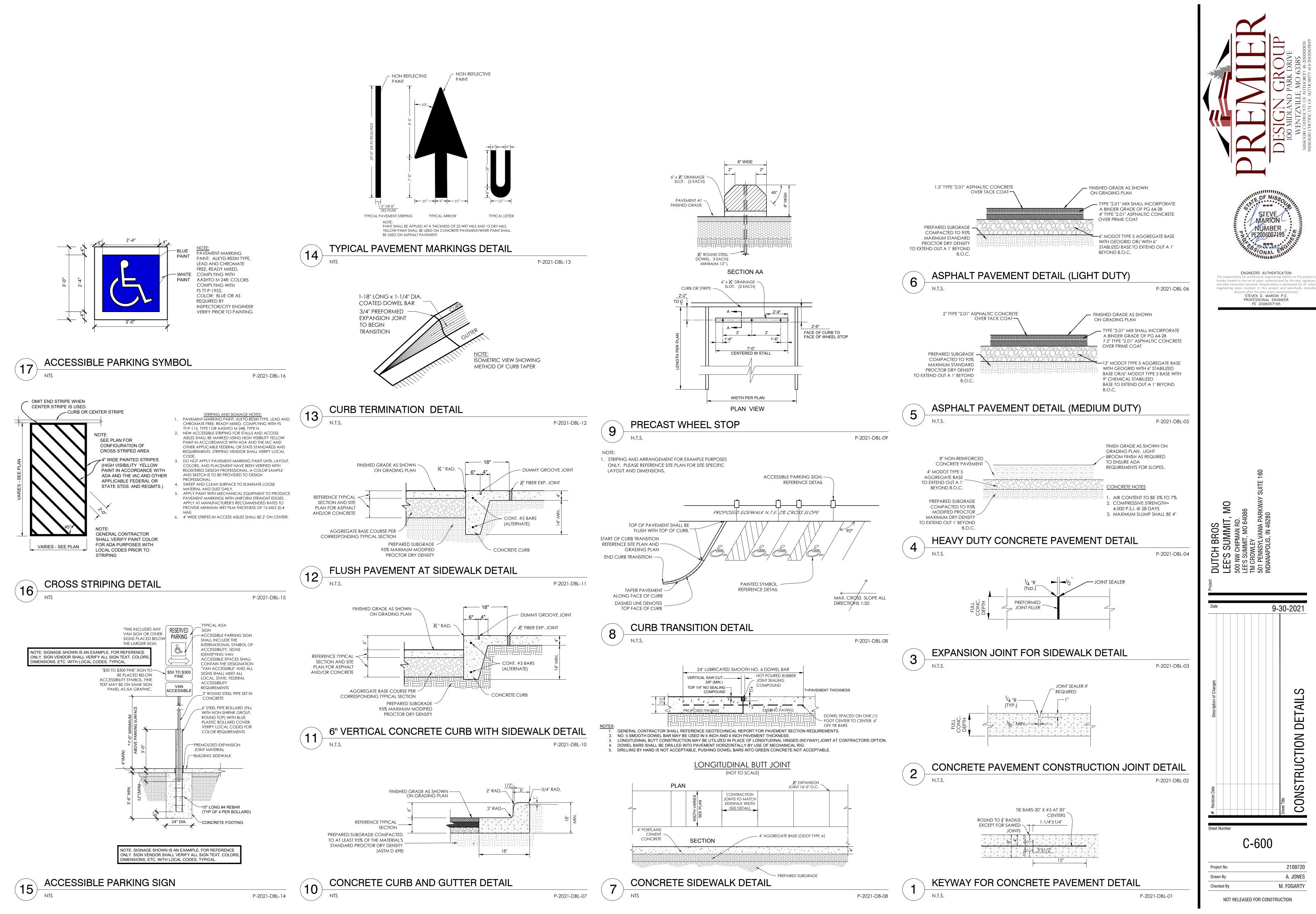

Permanent Seeding*	Pounds per acre	Pounds Per 1000 sq. ft				
Tall Fescue	300	7.0				
Smooth Brome	200	4.6				
Mixture # 1	250	5.7				
Mixture # 2	210	4.8				
* = Seeding rate	e for slopes in excess of 20% (5.1) shall be 1) nounds per 1000 sq ft				
* = Seeding rat	e for slopes in excess of 20% (5:1), shall be 1) pounds per 1000 sq. ft.				
, e	1 , 22					
* = Seeding rat	e for slopes in excess of 20% (5:1), shall be 1 Pounds per acre 150					
Temporary Seeding	Pounds per acre	Pounds Per 1000 sq. ft				
Temporary Seeding Rye or Sudan	Pounds per acre 150	Pounds Per 1000 sq. ft 3.5				
Temporary Seeding Rye or Sudan Oats	Pounds per acre 150 200 Permanent Seeding	Pounds Per 1000 sq. ft 3.5 2.5 Temporary Seeding				
Temporary Seeding Rye or Sudan Oats Fertilizer	Pounds per acre 150 200 Permanent Seeding (pounds per acre)	Pounds Per 1000 sq. ft 3.5 2.5 Temporary Seeding (pounds per acre)				
Temporary Seeding Rye or Sudan Oats Fertilizer Nitrogen	Pounds per acre 150 200 Permanent Seeding (pounds per acre) 45	Pounds Per 1000 sq. ft 3.5 2.5 Temporary Seeding (pounds per acre) 30				

	10 YEAR S	STORM HYDI	AULICS																									
LineNo.	Linell	D InletI	LineLength	LineSize	InvertUp	InvertDn	LineSlope	Grnd/RimElev Up	Grnd/RimElev Dn	DepthUp	HGLUp	HGLDn	Rim-Hw	Defl.Angle	VelDn	VelHd Dn	J-LossCoeff	EnergyLoss	MinorLoss	CapacityFull	KnownQ	FlowRate	CrossSl ope, Sx	InletEff	QCaptured	QBypass	QCarryover	BypassDepth
			(ft)	(in)	(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(Deg)	(ft/s)	(ft)		(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft/ft)	(%)	(cfs)	(cfs)	(cfs)	(ft)
1	101-10	00 101 C	39.877	12	1001.5	1000.7	2	1006.44	1007.12	0.78**	1002.28	1001.26	4.16	-87.458	7.28	0.39	1.00 z	0	n/a	5.46	3.3	3.3	0.02	100	3.3	0	0	n/a
2	104-10	03 104 C	98.19	15	1000.5	998.54	2	1006.5	1006.88	0.86**	1001.37	999.14	5.14	-87.844	7.89	0.39	1.00 z	0	0.39	9.88	4.56	4.56	0.02	100	4.56	0	0	n/a

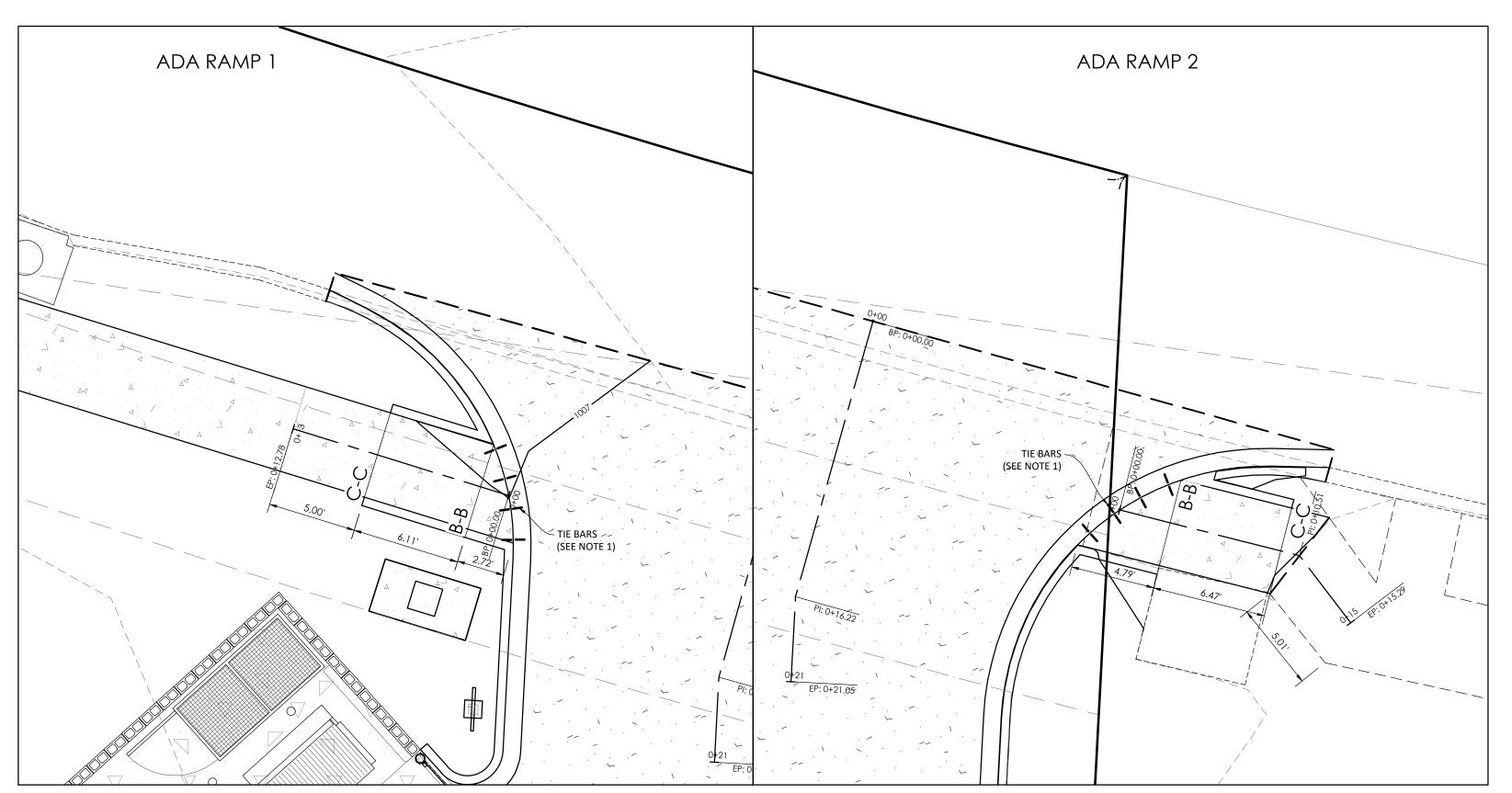

1	00 YEAR STORM HYDRUALICS

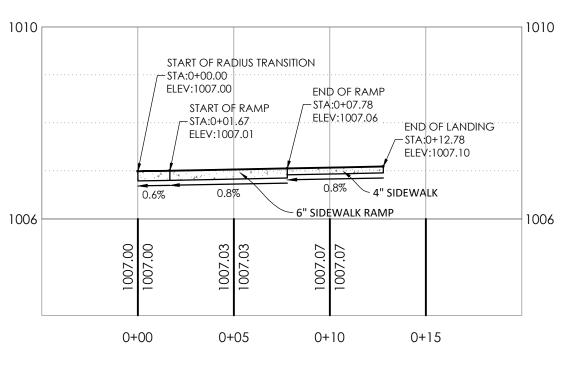

LineNo.	LinelD	InletID	LineLength	LineSize	InvertUp	InvertDn	LineSlope	Grnd/RimElev Up	Grnd/RimElev Dn	DepthUp	HGLUp	HGLDn	Rim-Hw	Defl.Angle	VelDn	VelHd Dn	J-LossCoeff	EnergyLoss	MinorLoss	CapacityFull	KnownQ	FlowRate	CrossSl ope, Sx	InletEff	QCaptured	QBypass	QCarryover	BypassDepth
			(ft)	(in)	(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(Deg)	(ft/s)	(ft)		(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft/ft)	(%)	(cfs)	(cfs)	(cfs)	(ft)
1	101-100	101 CI	39.877	12	1001.5	1000.7	2	1006.44	1007.12	0.91**	1002.41	1001.45	4.03	-87.458	7.88	0.67	1.00 z	0	n/a	5.46	4.95	4.95	0.02	100	4.95	0	0	n/a
2	104-103	104 CI	98.19	15	1000.5	998.54	2	1006.5	1006.88	1.05**	1001.55	999.3	4.95	-87.844	8.69	0.6	1.00 z	0	n/a	9.88	6.84	6.84	0.02	100	6.84	0	0	n/a

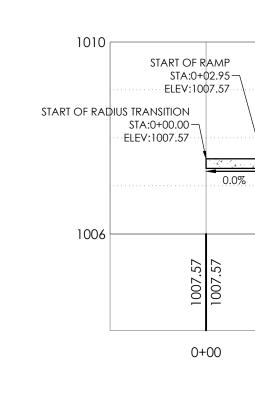


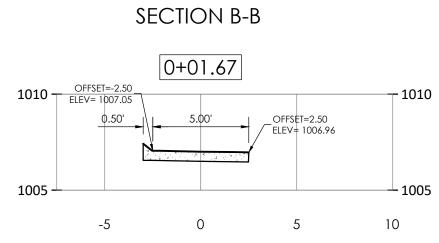


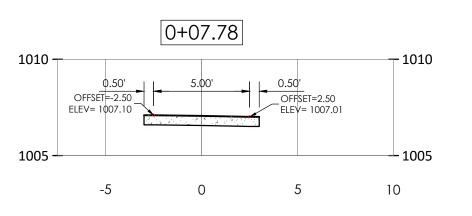
1''=20' HORIZONTAL 1''=10' VERTICAL

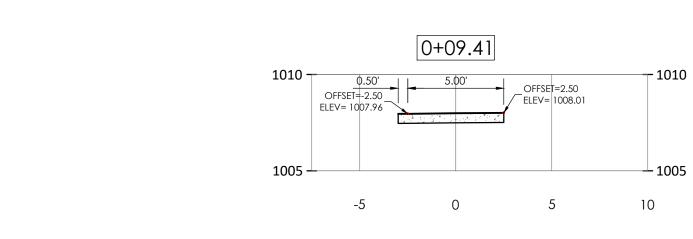


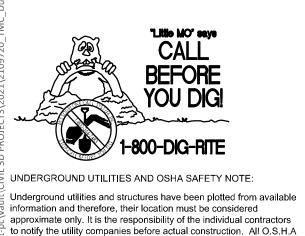


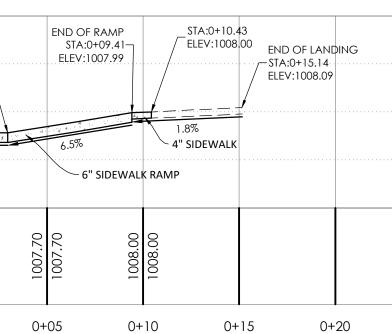


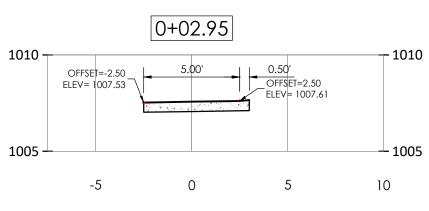



SECTION A-A

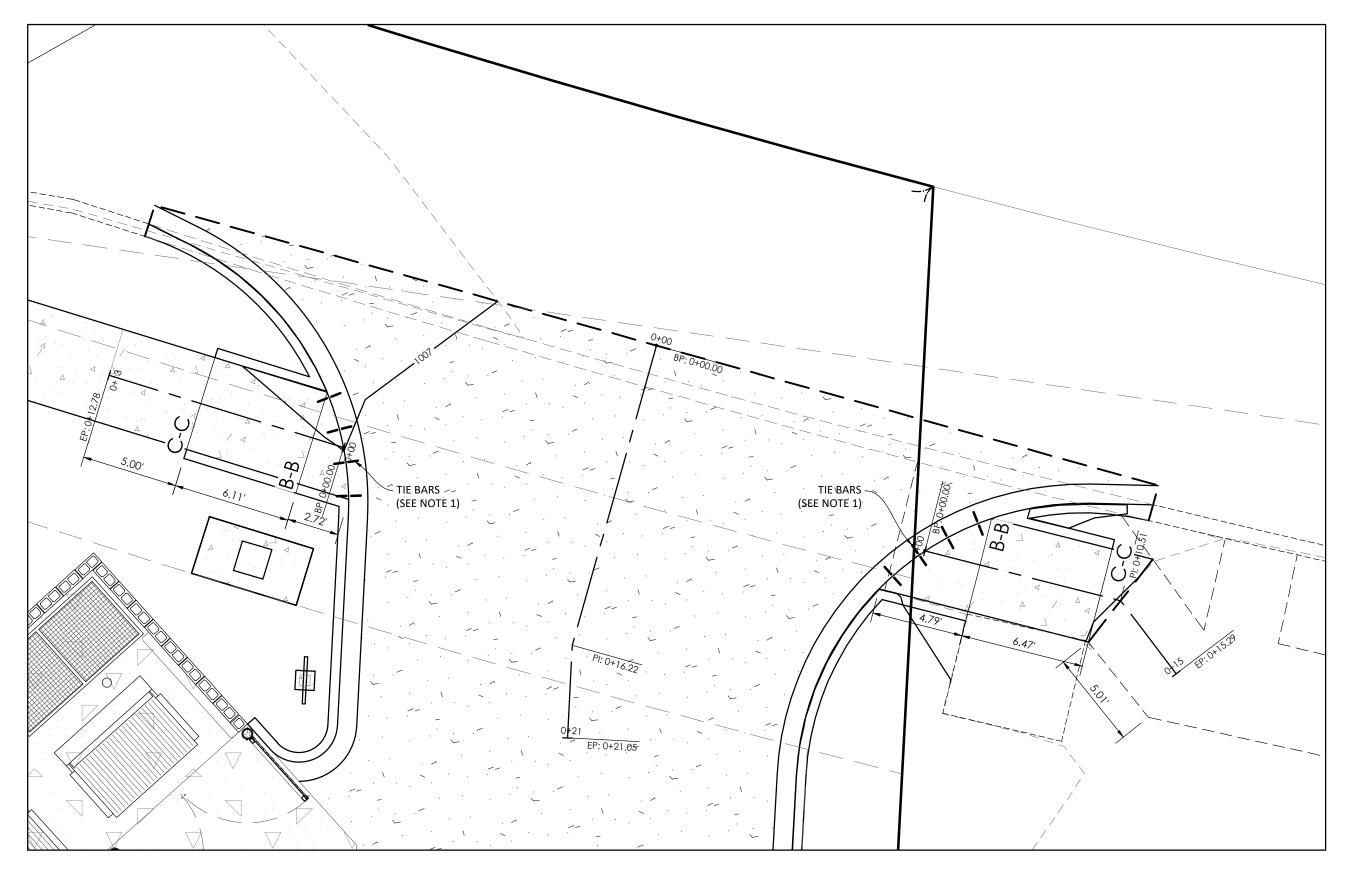


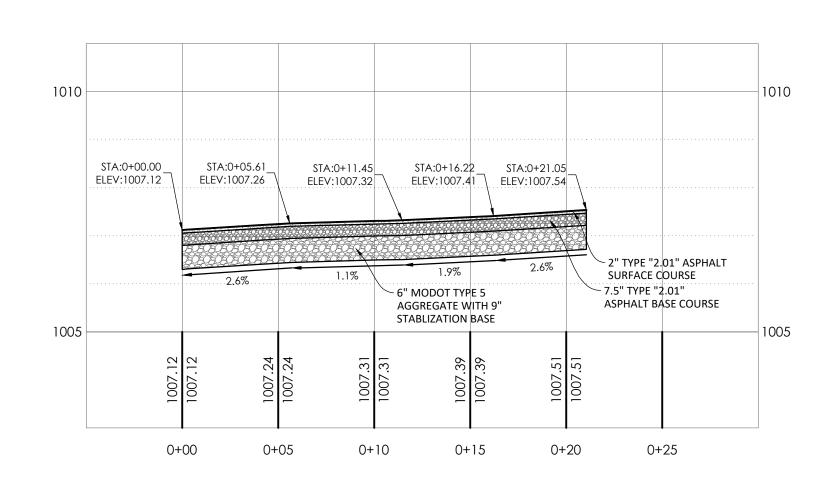




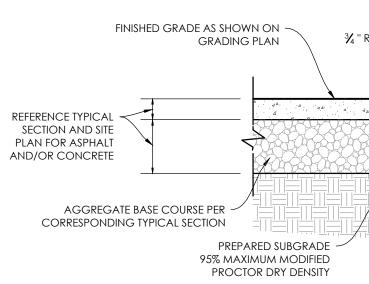

by these plans shall be strictly followed (ie. trenching, blasting, etc.)

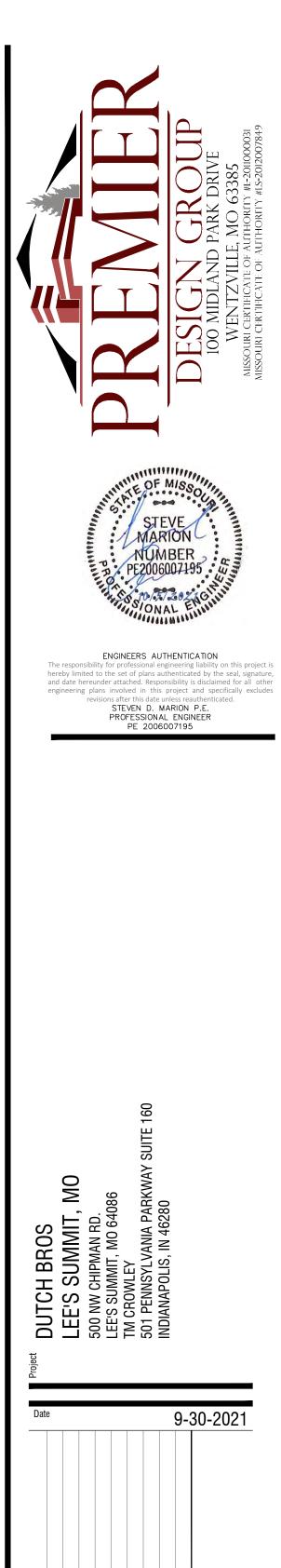
SECTION A-A

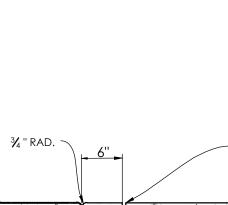



1006

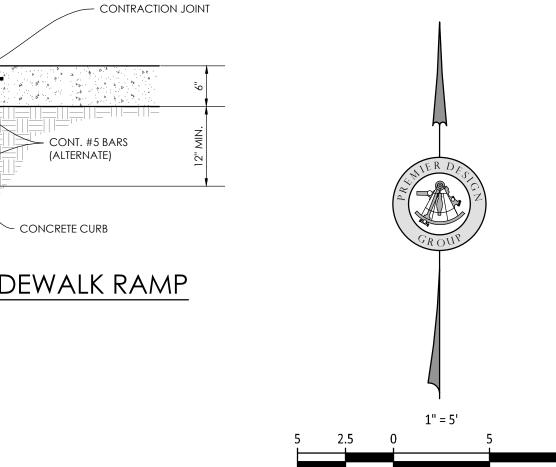
SECTION B-B

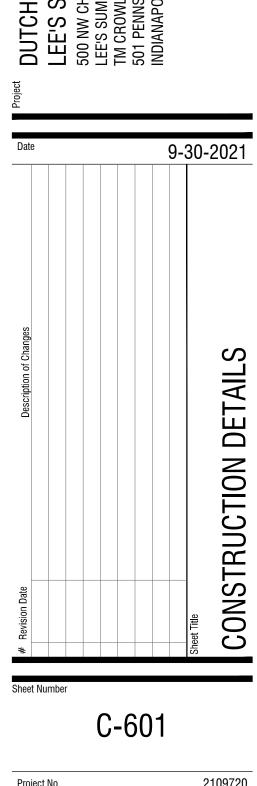

SECTION C-C

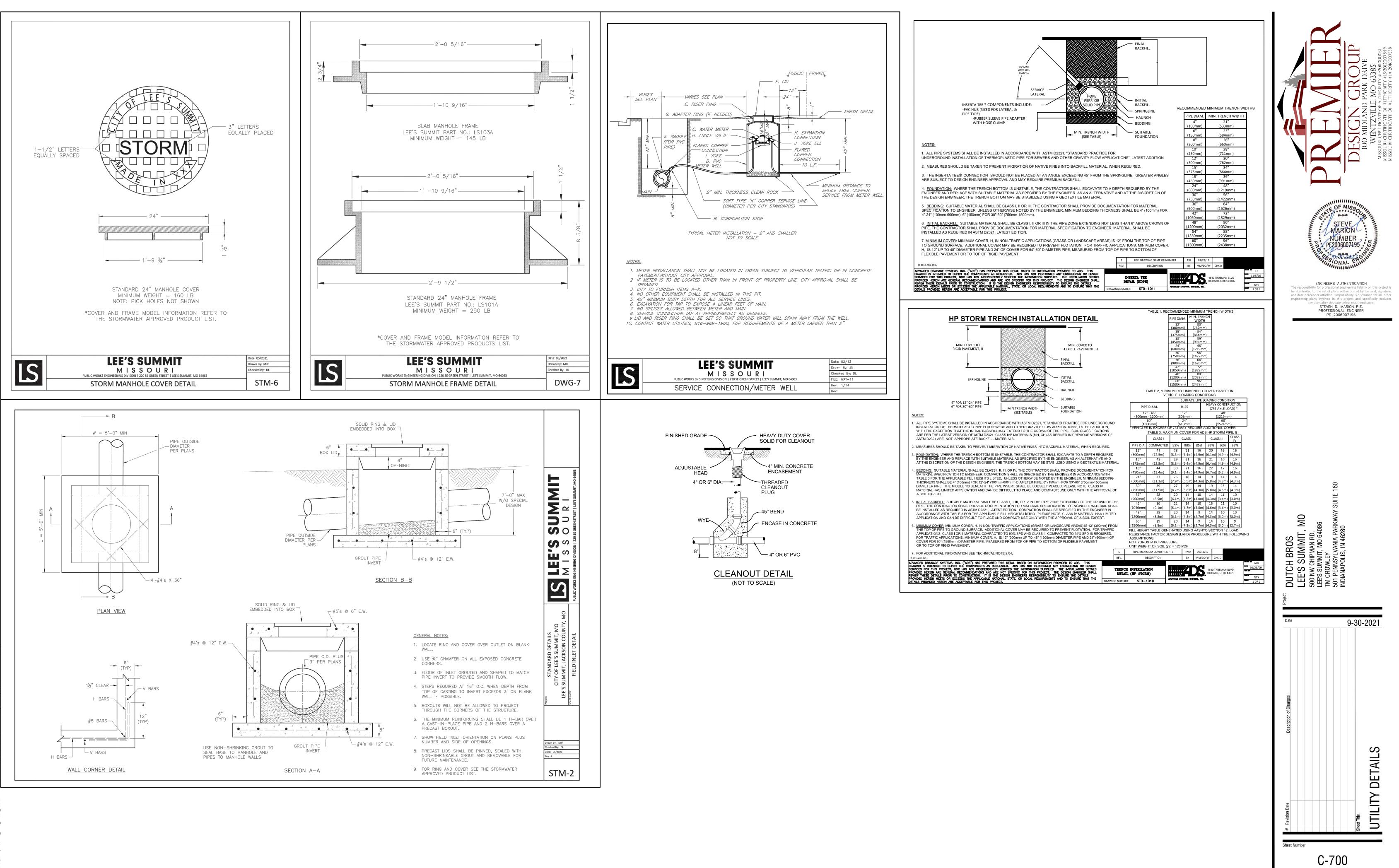


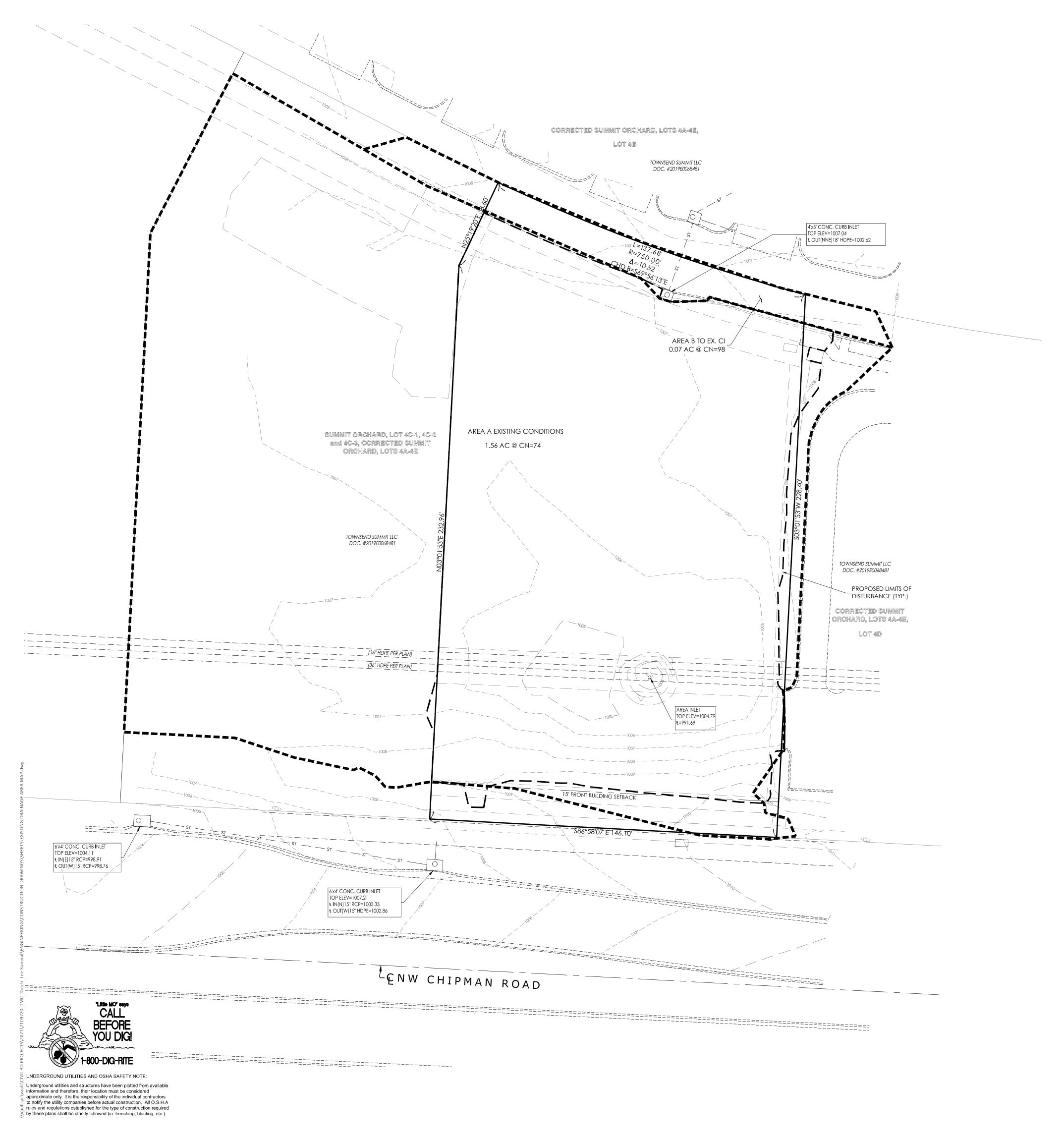

SIDEWALK/SHARED-USE PATH & SIDEWALK/SHARED-USE RAMP NOTES:

USE 18" LONG #4 EPOXY COATED TIE BARS @ 24" O.C. EMBED TIE BARS 9" IN EACH DIRECTION 2. ADA MAXIMUM RAMP SLOPE = 8.33% 3. ADA MAXIMUM CROSS SLOPE = 2.0%




FLUSH PAVEMENT AT SIDEWALK RAMP

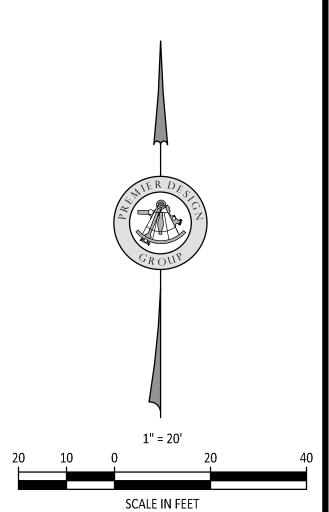

N.T.S.

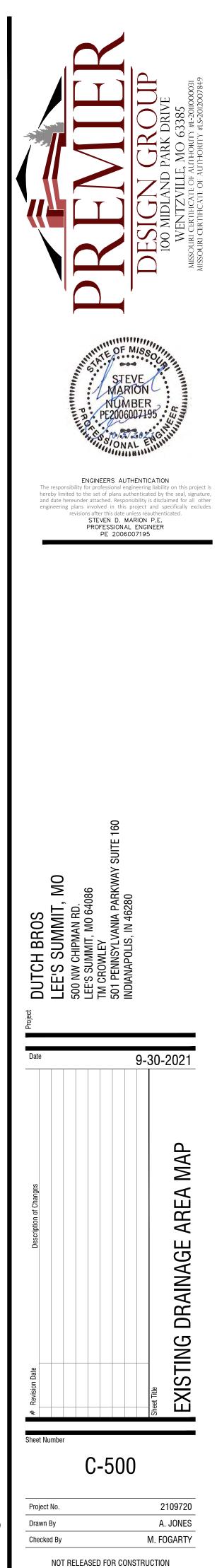


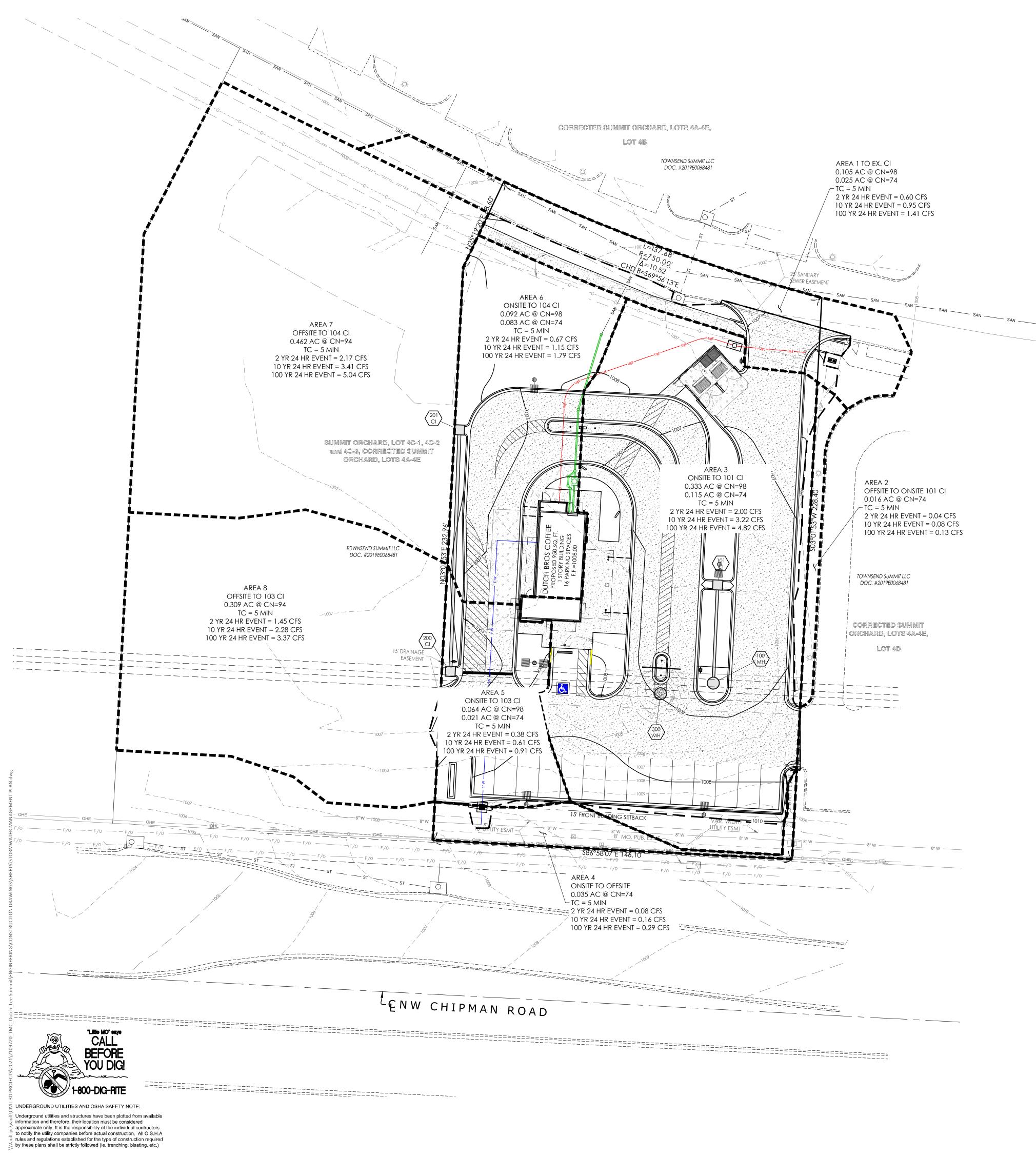
Project No.	2109720
Drawn By	A. JONES
Checked By	M. FOGARTY

SCALE IN FEET

Project No.	2109720
Drawn By	A. JONES
Checked By	M. FOGARTY
NOT RELEASED FOR CO	ONSTRUCTION

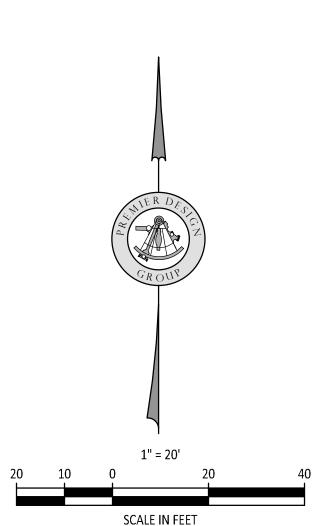

EX ID AREA A 2-Year 10-Year 100-Year 2-Year 10-Year 100-Year THIS PLAN IS FOR DRAINAGE PURPOSES AND REFERENCE ONLY. DO NOT USE FOR CONSTRUCTION. MINIMUM TIME OF CONCENTRATION = 5 MINUTES EXISTING SOILS TYPE = C CN PVMT = 98 CN GRASS = 74 CN COMMERCIAL AREAS = 94


MASTER DRAINAGE PLAN NOTES


- 1. MBOE (MINIMUM BUILDING OPENING ELEVATION) ELEV = 1008.00
- 2. THE INDIVIDUAL LOT OWNER(S) SHALL NOT CHANGE OR OBSTRUCT THE OVERALL DRAINAGE FLOW LINES OR PATHS ON THE LOT AS SHOWN ON THE MASTER DRAINAGE PLAN, UNLESS SPECIFIC APPLICATION IS MADE AND APPROVED BY THE CITY ENGINEER.

EXISTING RUNOFF TABLE

	EXISTING Q (CFS)
	3.46
-	7.31
ar	12.87
	0.39
•	0.59
ar	0.86


Row Labels	Peak Runoff (cfs)	Impervious Area	Pervious Area	Total Area	Composite CN	Т
AREA 1						
2-Year	0.60	0.105	0.025	0.13	93	5
10-Year	0.95	0.105	0.025	0.13	93	5
100-Year	1.41	0.105	0.025	0.13	93	5
AREA 2						
2-Year	0.04	0	0.016	0.016	74	5
10-Year	0.08	0	0.016	0.016	74	5
100-Year	0.13	0	0.016	0.016	74	5
AREA 3						
2-Year	2.00	0.333	0.115	0.448	92	5
10-Year	3.22	0.333	0.115	0.448	92	5
100-Year	4.82	0.333	0.115	0.448	92	5
AREA 4						
2-Year	0.08	0	0.035	0.035	74	5
LO-Year	0.16	0	0.035	0.035	74	5
100-Year	0.29	0	0.035	0.035	74	5
AREA 5						
2-Year	0.38	0.064	0.021	0.085	92	5
10-Year	0.61	0.064	0.021	0.085	92	5
100-Year	0.91	0.064	0.021	0.085	92	5
AREA 6						
2-Year	0.67	0.092	0.083	0.175	87	5
LO-Year	1.15	0.092	0.083	0.175	87	5
100-Year	1.79	0.092	0.083	0.175	87	5
AREA 7						
2-Year	2.17	0.462	0	0.462	94	5
10-Year	3.41	0.462	0	0.462	94	5
100-Year	5.04	0.462	0	0.462	94	5
AREA 8						
2-Year	1.45	0.309	0	0.309	94	5
10-Year	2.28	0.309	0	0.309	94	5
100-Year	3.37	0.309	0	0.309	94	5

MINIMUM TIME OF CONCENTRATION = 5 MINUTES EXISTING SOILS TYPE = C CN PVMT = 98 CN GRASS = 74 CN COMMERCIAL AREAS = 94

MASTER DRAINAGE PLAN NOTES 1. MBOE - (MINIMUM BUILDING OPENING ELEVATION)

ELEV = 1008.00

2. THE INDIVIDUAL LOT OWNER(S) SHALL NOT CHANGE OR OBSTRUCT THE OVERALL DRAINAGE FLOW LINES OR PATHS ON THE LOT AS SHOWN ON THE MASTER DRAINAGE PLAN, UNLESS SPECIFIC APPLICATION IS MADE AND APPROVED BY THE CITY ENGINEER.

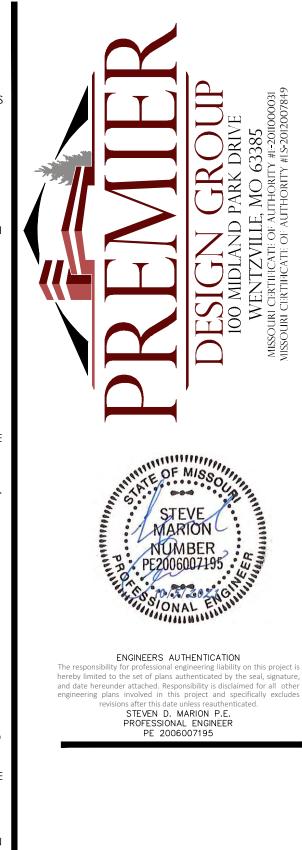
ARION UMBER ENGINEERS AUTHENTICATION The responsibility for professional engineering liability on this project is hereby limited to the set of plans authenticated by the seal, signature, and date hereunder attached. Responsibility is disclaimed for all other engineering plans involved in this project and specifically excludes STEVEN D. MARION P.E. PROFESSIONAL ENGINEER PE 2006007195 MO ROS ΑB ന ၂ လ 9-30-2021 Date PLAN **ORMWATER MANAGEMENT** S Sheet Number C-801 2109720 Project No. A. JONES Drawn By M. FOGARTY Checked By

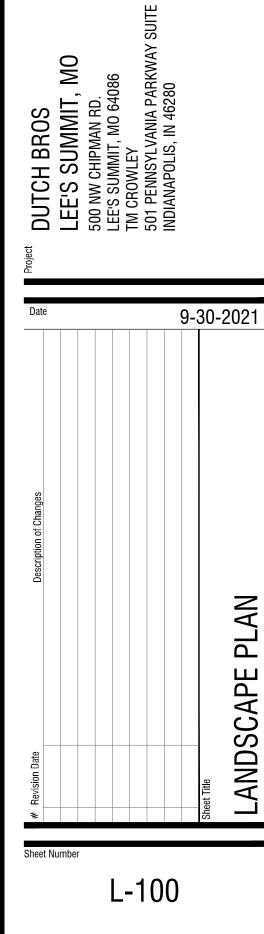
UBS	QTY	BOTANICAL NAME
	6	BUXUS X `GREEN MOUND`
	27	CALAMAGROSTIS X ACUTIFLORA `KAR
	7	EUONYMUS ALATUS `COMPACTUS`
	2	PHYSOCARPUS OPULIFOLIUS `DIABLO`
	10	RHUS AROMATICA `GRO-LOW`

ENE	RAL:
	ALL LANDSCAPE MATERIAL SHALL CONFORM TO THE CITY OF LEE'S SUMMIT STANDARDS. ALL NATURAL VEGETATION SHALL BE MAINTAINED WHERE IT DOES NOT INTERFERE WITH CONSTRUCTION OR THE PERMANENT PLAN OF OPERATION. EVERY EFFORT POSSIBLE SHALL BE MADE TO PROTECT EXISTING VEGETATION OR STRUCTURES FROM DAMAGE DUE TO EQUIPMENT USAGE. CONTRACTOR SHALL AT ALL TIMES PROTECT ALL MATERIALS AND WORK AGAINST INJURY TO THE PUBLIC.
3.	THE LANDSCAPE CONTRACTOR SHALL BE RESPONSIBLE FOR ANY COORDINATION WITH OTHER SITE RELATED WORK BEING PERFORMED BY OTHER CONTRACTORS. REFER TO ARCHITECTURAL DRAWINGS FOR FURTHER COORDINATION OF WORK TO BE DONE.
4.	UNDERGROUND FACILITIES, STRUCTURES AND UTILITIES MUST BE CONSIDERED APPROXIMATE ONLY. THERE MAY BE OTHERS NOT PRESENTLY SHOWN OR KNOWN. IT SHALL BE THE LANDSCAPE CONTRACTOR'S RESPONSIBILITY TO DETERMINE OR VERIFY THE EXISTENCE OF AND EXACT LOCATION OF ALL UTILITIES. (CALL
5.	MISSOURI ONE CALL, 1-800-DIG-RITE) PLANT MATERIAL ARE TO BE PLANTED IN THE SAME RELATIONSHIP TO GRADE AS WAS GROWN IN NURSERY CONDITIONS. ALL PLANTING BEDS SHALL BE CULTIVATED TO A DEPTH OF 6" MINIMUM AND GRADED SMOOTH IMMEDIATELY BEFORE PLANTING OF PLANTS. PLANT GROUNDCOVER TO WITHIN 12" OF TRUNK OF TREES OR
6.	SHRUBS PLANTED WITHIN THE AREA. IT SHALL BE THE LANDSCAPE CONTRACTOR'S RESPONSIBILITY TO: A. VERIFY ALL EXISTING AND PROPOSED FEATURES SHOWN ON THE DRAWINGS PRIOR TO COMMENCEMENT. B. REPORT ALL DISCREPANCIES FOUND WITH REGARD TO EXISTING CONDITIONS OR PROPOSED DESIGN TO
	THE ENGINEER OF RECORD IMMEDIATELY FOR A DECISION. C. STAKE THE LOCATIONS OF ALL PROPOSED PLANT MATERIAL AND OBTAIN THE APPROVAL OF THE OWNER'S REPRESENTATIVE OR LANDSCAPE ARCHITECT PRIOR TO INSTALLATION.
7.	ITEMS SHOWN ON THIS DRAWING TAKE PRECEDENCE OVER THE MATERIAL LIST. IT SHALL BE THE LANDSCAPE CONTRACTOR'S RESPONSIBILITY TO VERIFY ALL QUANTITIES AND CONDITIONS PRIOR TO IMPLEMENTATION OF THIS PLAN. NO SUBSTITUTIONS OF TYPES OR SIZE OF PLANT MATERIALS WILL BE ACCEPTED WITHOUT WRITTEN APPROVAL FROM THE LANDSCAPE ARCHITECT.
8. 9.	PROVIDE SINGLE-STEM TREES UNLESS OTHERWISE NOTED IN PLANT SCHEDULE. ALL PLANT MATERIAL SHALL COMPLY WITH THE RECOMMENDATIONS AND REQUIREMENTS OF ANSI Z60.1 "AMERICAN STANDARDS FOR NURSERY STOCK".
11.	IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO PROVIDE FOR INSPECTION OF THE PLANT MATERIAL BY THE LANDSCAPE ARCHITECT PRIOR TO ACCEPTANCE. PLANTS NOT CONFORMING EXACTLY TO THE PLANT LIST WILL NOT BE ACCEPTED AND SHALL BE REPLACED AT THE LANDSCAPE CONTRACTOR'S EXPENSE. ALL BIDS ARE TO HAVE UNIT PRICES LISTED. THE OWNER HAS THE OPTION TO DELETE ANY PORTION OF THE CONTRACT PRIOR TO SIGNING THE CONTRACT OR BEGINNING WORK. THIS WILL BE A UNIT PRICE CONTRACT. ALL PLANT MATERIAL TO BE TRANSPLANTED SHALL BE IN ACCORDANCE TO GUIDELINES SET BY AAN
NSUF 1.	STANDARDS. TRANSPLANTED MATERIAL WILL NOT BE GUARANTEED BY THE LANDSCAPE CONTRACTOR. PANCE: THE LANDSCAPE CONTRACTOR SHALL SUBMIT CERTIFICATES OF INSURANCE FOR WORKMAN'S COMPENSATION AND GENERAL LIABILITY.
	ALL MULCH TO BE SHREDDED OAK BARK MULCH AT 3" DEPTH AFTER COMPACTION (UNLESS OTHERWISE NOTED). MULCH SHALL BE CLEAN AND FREE OF ALL FOREIGN MATERIALS, INCLUDING WEEDS, MOLD, DELETERIOUS MATERIALS, ETC. PROVIDE 4' DIAMETER MULCH RING AROUND ALL NEW TREES WITH MIN. 3" DEPTH OF SHREDDED OAK BARK MULCH. MIRAFI FABRIC SHALL BE USED BENEATH ALL GRAVEL MULCH BEDS.
۱AIN	LANDSCAPE BEDS NOT BORDERED BY CONCRETE CURBING OR WALKS SHALL BE SPADE CUT EDGE. ITENANCE: LANDSCAPE CONTRACTOR SHALL PROVIDE A SEPARATE PROPOSAL TO MAINTAIN ALL PLANTS, SHRUBS, GROUNDCOVER, PERENNIALS AND ANNUALS FOR A PERIOD OF 12 MONTHS AFTER ACCEPTANCE.
2.	CONTRACTOR SHALL ENSURE THAT ONLY COMPETENT AND TRAINED PERSONNEL SHALL PROVIDE SUCH SERVICES AND THAT SUCH SERVICES BE PROVIDED IN A TIMELY MANNER. OIL:
1. 2.	TOPSOIL MIX FOR ALL PROPOSED LANDSCAPE PLANTINGS SHALL BE FIVE (5) PARTS WELL-DRAINED SCREENED ORGANIC TOPSOIL TO ONE (1) PART CANADIAN SPHAGNUM PEAT MOSS AS PER PLANTING DETAILS. ROTO-TILL TOPSOIL MIX TO A DEPTH OF 6" MINIMUM AND GRADE SMOOTH. PROVIDE A SOIL ANALYSIS, AS REQUESTED, MADE BY AN INDEPENDENT SOIL-TESTING AGENCY OUTLINING THE PERCENTAGE (%) OF ORGANIC MATTER, INORGANIC MATTER, DELETERIOUS MATERIAL, PH AND MINERAL
	CONTENT. ANY FOREIGN TOPSOIL USED SHALL BE FREE OF ROOTS, STUMPS, WEEDS, BRUSH, STONES (LARGER THAN 1"), LITTER OR ANY OTHER EXTRANEOUS OR TOXIC MATERIAL. LANDSCAPE CONTRACTOR TO APPLY PRE-EMERGENT HERBICIDE TO ALL PLANTING BEDS UPON COMPLETION
	OF PLANTING OPERATIONS AND BEFORE APPLICATION OF SHREDDED OAK BARK MULCH. MISC. MATERIAL:
1.	ALL DISTURBED LAWN AREAS TO BE SODDED UNLESS NOTED OTHERWISE WITH A TURF-TYPE KENTUCKY BLUE GRASS-FESCUE MIX. LAWN AREAS SHALL BE UNCONDITIONALLY WARRANTED FOR A PERIOD OF 90 DAYS FROM DATE OF FINAL ACCEPTANCE.
2. 3.	ANY POINTS CARRYING CONCENTRATED WATER LOADS AND ALL SLOPES OF 4:1 OR GREATER SHALL BE SODDED AND THE SOD SHALL HAVE STAKES PLACED. ALL SOD SHALL BE PLACED A MAXIMUM OF 24 HOURS AFTER HARVESTING.
4. 5.	RECONDITION EXISTING LAWN AREAS DAMAGED BY CONTRACTOR'S OPERATIONS INCLUDING EQUIPMENT/ MATERIAL STORAGE AND MOVEMENT OF VEHICLES. SOD CONTRACTOR TO ENSURE SOD IS PLACED BELOW SIDEWALK AND ALL PAVED AREA ELEVATIONS TO
6.	ALLOW FOR PROPER DRAINAGE. OFF-SITE LAND DISTURBED SHALL BE SODDED AND RESTORED TO A CONDITION BETTER THAN EXISTING. I TRIANGLES:
1.	NO LANDSCAPE MATERIAL OR OTHER OBSTRUCTIONS SHALL BE PLACED OR BE MAINTAINED WITHIN THE SIGHT DISTANCE AREA SO AS NOT TO IMPEDE THE VISION BETWEEN A HEIGHT OF THIRTY INCHES (30") AND TEN FEET (10') ABOVE THE ADJACENT STREET OR PAVING SURFACES.
2. 3.	THE TRIANGLE ADJACENT TO STREET INTERSECTIONS SHALL BE FORMED BY MEASURING FROM THE POINT OF INTERSECTION OF THE FRONT AND SIDE LOT LINES A DISTANCE OF 20' MINIMUM ALONG SAID FRONT AND SIDE LOT LINES AND CONNECTING THE POINTS SO ESTABLISHED TO FORM THE SIGHT TRIANGLE AREA. SIGHT TRIANGLES AT THE INTERSECTION OF A PUBLIC STREET AND A PRIVATE ACCESS WAY (EXCEPT FOR
/AR 1.	SINGLE FAMILY RESIDENCES) SHALL ALSO BE FORMED AS OUTLINED IN NOTE #2 ABOVE. RANTY: ALL PLANT MATERIAL (EXCLUDING GROUND COVER, PERENNIALS AND ANNUALS) ARE TO BE WARRANTED FOR A PERIOD OF 12 MONTHS AFTER INSTALLATION AT 100% OF THE INSTALLED PRICE.
	ANY PLANT MATERIAL FOUND TO BE DEFECTIVE SHALL BE REMOVED AND REPLACED WITHIN 30 DAYS OF NOTIFICATION OR IN GROWTH SEASON DETERMINED TO BE BEST FOR THE PLANT. ONLY ONE REPLACEMENT PER TREE OR SHRUB SHALL BE REQUIRED AT THE END OF THE WARRANTY PERIOD,
4.	UNLESS LOSS IS DUE TO FAILURE TO COMPLY WITH WARRANTY. LAWN ESTABLISHMENT PERIOD WILL BE IN EFFECT ONCE THE LAWN HAS BEEN MOWED THREE TIMES. PLANT ESTABLISHMENT PERIOD SHALL COMMENCE ON THE DATE OF ACCEPTANCE AND 100% COMPLETION.
<u>A</u>	NDSCAPE PLAN REQUIREMENTS
	REQUIRED FRONT YARD LANDSCAPING
	A. ONE TREE SHALL BE PLANTED FOR EACH 30 FEET OF STREET FRONTAGE

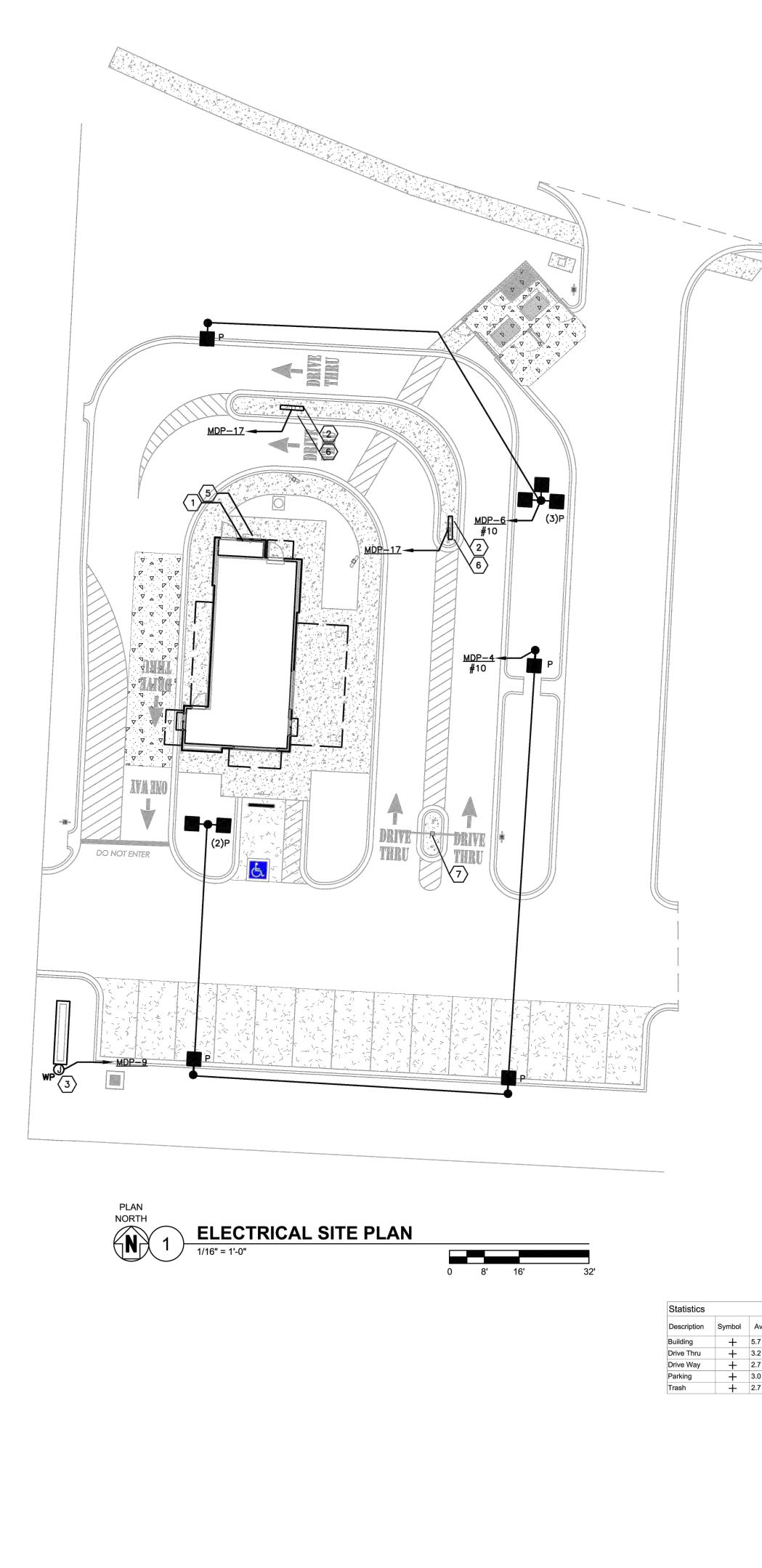
- A. ONE TREE SHALL BE PLANTED FOR EACH 30 FEET OF STREET FRONTAGE B. ONE SHRUB REQUIRED FOR EACH 20 FEET OF STREET FRONTAGE
- 2. REQUIRED OPEN YARD LANDSCAPING
- A. ONE TREE FOR EVERY 5,000 SQ. FT. OF LOT AREA NOT COVERED BY BUILDINGS/STRUCTURES B. TWO SHRUBS PER 5,000 SQ. FT. OF TOTAL LOT AREA
- 3. REQUIRED TRASH STORAGE CONTAINER LANDSCAPING A. REFER TO LANDSCAPE PLAN FOR SCREENING OF TRASH ENCLOSURE.
- 1. PROVIDED FRONT YARD LANDSCAPING A. TREES PROVIDED - 283.78' OF STREET FRONTAGE / 30 FEET = 10 TREES
- B. SHRUBS PROVIDED- 283.78' OF STREET FRONTAGE / 20 FEET = 14 SHRUBS 2. PROVIDED OPEN YARD LANDSCAPING
- A. TREES PROVIDED- 36,068 SQ. FT. 950 BLDG SQ. FT. = 35,118 SQ. FT. / 5,000 SQ. FT. = 7 TREES B. SHRUBS PROVIDED- 36,068 SQ. FT. / 5,000 SQ. FT = 7.2 x 2 = 15 SHRUBS
- 3. REQUIRED TRASH STORAGE CONTAINER LANDSCAPING A. REFER TO LANDSCAPE PLAN - 7 EMERALD ARBORVITAE PROVIDED

SEED AND MULCH WITH GUARANTEE FOR ESTABLISHMENT OF GRASS WTIHIN 3-6 MONTHS.

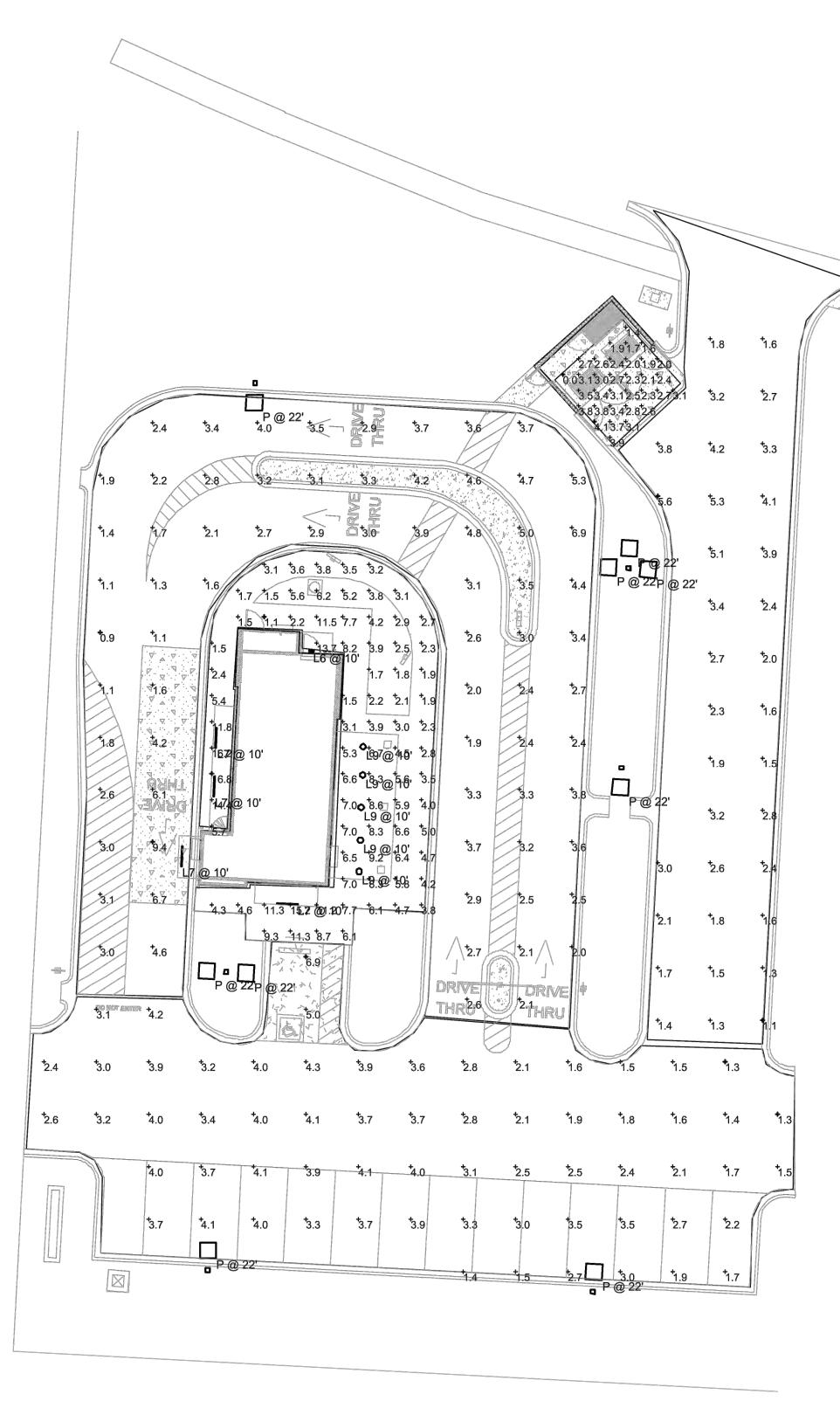

<u>COMMON NAME</u> COLUMNAR EUROPEAN HORNBEAM EMERALD ARBORVITAE LITTLELEAF LINDEN	<u>CONT</u> B & B 15 GAL B & B	<u>CAL.</u> 3"CAL 3"CAL	<u>SIZE</u> 6` TALL MIN. 6` TALL MIN. 6` TALL MIN.
<u>COMMON NAME</u> GREEN MOUND BOXWOOD FEATHER REED GRASS COMPACT BURNING BUSH DIABLO NINEBARK GRO-LOW FRAGRANT SUMAC	<u>SIZE</u> 3 GAL 3 GAL 3 GAL 3 GAL 3 GAL		


DWARF KOREAN LILAC

KOREAN SPICE VIBURNUM


3 GAL

3 GAL



Project No.	2109720
Drawn By	A. JONES
Checked By	M. FOGARTY

wang fike: kt/2021/Correlic Architecture/Dutch Brothers/COR-MO-03-21 - Dutch Bros - MO0102-500MF Chipman Rosel/cormo03 state bro

SITE PHOTOMETRIC PLAN 1/16" = 1'-0"

0	8'	16'	32'

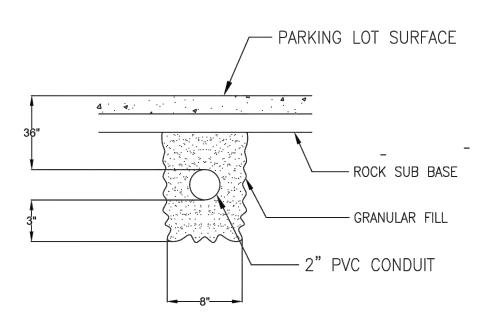
Avg	Max	Min	Max/Min	Avg/Min
i.7 fc	16.8 fc	1.1 fc	15.3:1	5.2:1
3.2 fc	9.4 fc	0.9 fc	10.4:1	3.6:1
2.7 fc	5.6 fc	1.1 fc	5.1:1	2.5:1
.0 fc	6.9 fc	1.3 fc	5.3:1	2.3:1
.7 fc	4.1 fc	0.0 fc	N/A	N/A

Schedule									
Symbol	Label	Quantity	Manufacturer	Catalog Number	Description	Number Lamps	Lumens Per Lamp	Light Loss Factor	Wattage
	L6	1	RAB LIGHTING INC.	WPLED26-WPLED26/D10 (WALLPACK) - ALED26- ALED26/D10 (AREA LIGHTER)	CAST FINNED METAL HOUSING, MACHINED METAL HEAT SINK, 1 CIRCUIT BOARD WITH 1 LED, MOLDED PLASTIC REFLECTOR WITH SEMI-SPECULAR FINISH, CLEAR FLAT GLASS LENS IN CAST BROWN PAINTED METAL FRAME.	1	3474	0.92	30
I	L7	4	Self	WPLED26-WPLED26/D10 (WALLPACK) - ALED26- ALED26/D10 (AREA LIGHTER)	CROWN-L90-277V 830_BA110	1	4200	0.92	40
\bigcirc	L9	5	DMF LIGHTING	DRD5S-4R-10930	DRD5S-4R-10930	1	1015	0.92	11.8
•	Р	9	NLS Lighting	NV-1-T4-48L-1-40K-UNV- HSS	T4 OPTICS WITH BLACK HSS	1	9674	0.92	156

	KEYED NOTES
$\langle 1 \rangle$	LOCATION OF UTILITY METER DISCONNET SWITCH AND CT CABINET. REFER TO "RISER DIAGRAM" ON SHEET E3.01.
2	PROVIDE 120V ELECTRICAL CONNECTION WITH (2)#8 & (1)#8G. IN 2" PVC ROUTED BELOW GRADE FOR DRIVE-THRU BACKLIT MENU BOARD PER MANUFACTURER'S INSTRUCTIONS. CONDUIT SHALL COME UP IN CENTER OF POST. SIGN COMPANY REPRESENTATIVE TO GIVE EXACT LOCATIONS/DIMENSIONS FOR GC TO MATCH. CONTRACTOR SHALL REPAIR EXISTING PARKING SURFACES FROM TRENCHING TO MATCH PREVIOUS CONDITIONS.
3	PROVIDE 120V ELECTRICAL CONNECTION WITH (2)#8 & (1)#8G. IN 2" PVC ROUTED BELOW GRADE FOR NEW MONUMENT SIGN PER REPRESENTATIVE PRIOR TO ROUGH-IN. CONTRACTOR SHALL REPAIR EXISTING PARKING SURFACES FROM TRENCHING TO MATCH PREVIOUS CONDITIONS.
4	NOT USED.
(5)	LOCATION OF CABLE INTERNET DEMARC
6	PROVIDE 2" CONDUIT W/ PULL STRING 24" BEHIND MENU BOARD TO CHRISTY BOX FOR FUTURE DIGITAL MENU BOARD UPGRADE . COORDINATE W/ SIGN MANUFACTURER.
$\langle 7 \rangle$	PROVIDE 2" CONDUIT W/ PULL STRING TO CHRISTY BOX BETWEEN "CHOOSE LANE" DIRECTIONAL SIGNAGE AND CLEARANCE BAR FOR FUTURE DRIVE THRU

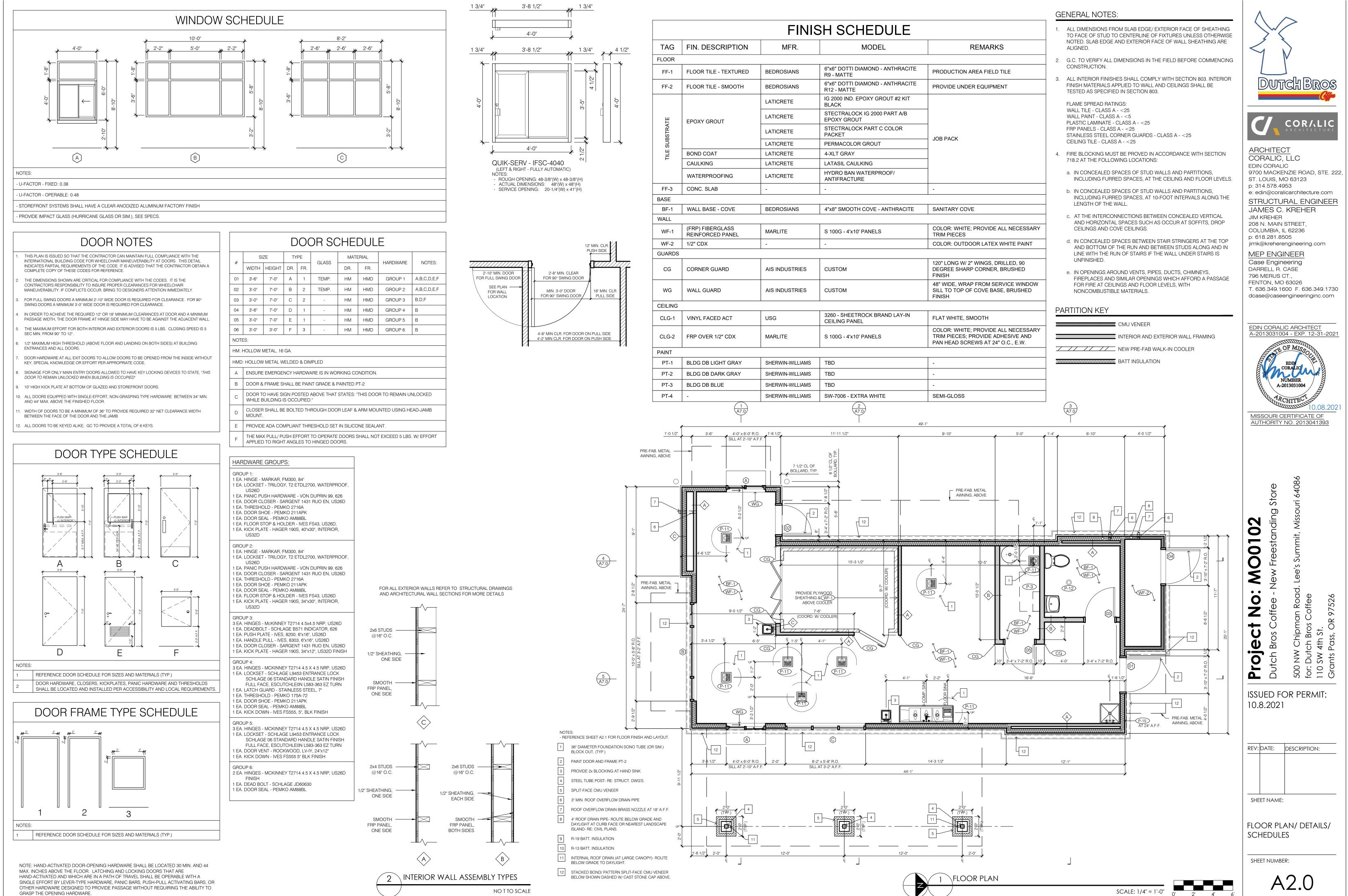
MIN. DUTCH BROS REQUIREMENTS: -5FTC AT BUILDING -3FTC AT SITE/PARKING -5FTC AT TRASH ENCLOSURE

SEE S1.4 FOR POLE BASE DETAIL

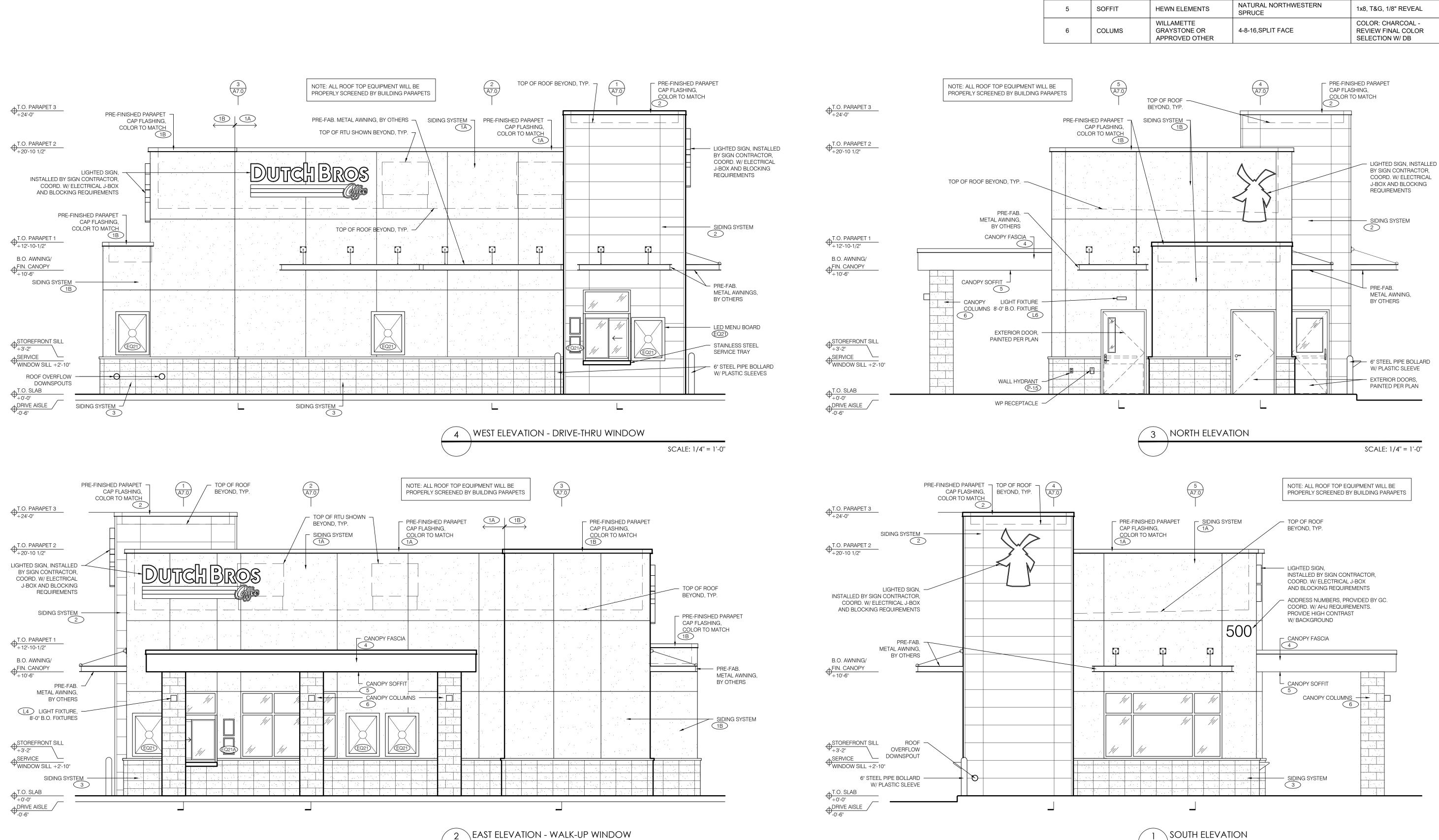

GENERAL NOTES

SENSORS.

- 1. FOR UTILITY TRANSFORMER, TELEPHONE SERVICE, GAS, WATER, AND SANITARY SEWER LOCATIONS; SEE CIVIL SITE PLAN.
- 2. THE ELECTRICAL CONTRACTOR IS RESPONSIBLE FOR COORDINATION AND COMPLIANCE WITH ALL UTILITY COMPANIES REQUIREMENTS. INCOMING POWER AND TELEPHONE SERVICES IS EXISTING TO REMAIN. VERIFY REQUIREMENTS WITH UTILITIES PRIOR TO INSTALLATION.


SITE NOTES

WATER LINES, CONDUITS FOR ELECTRICAL, OR OTHER UTILITIES SHALL BE LOCATED SO AS TO NOT CONFLICT WITH REQUIRED TREE LOCATIONS FOR STREETS AND PARKING LOTS.



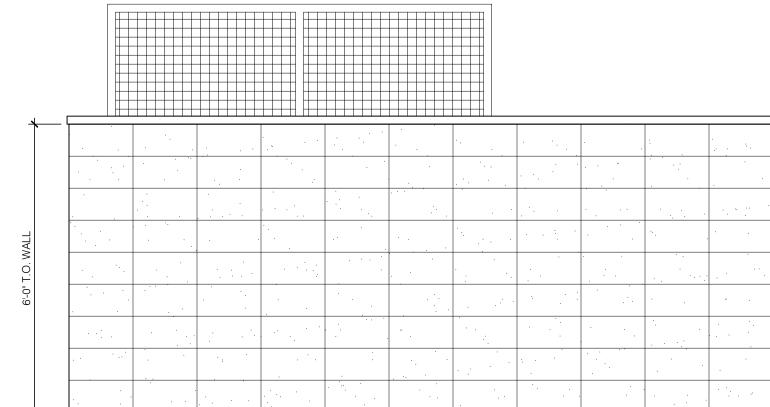
ACCHITECT CORALIC, LLC CORALIC, LLC CORALIC, LLC CORALIC, LLC CORALIC, LLC CORALIC, LLC CORALIC, LLC CORALIC, LLC 2643 CAROUSEL DRIVE, ST. LOUIS, MO 63125 p: 314.578.4953 edin@coralicarchitecture.com STRUCTURAL ENGINEER JAMES C. KREHER 208 N. MAIN STREET, COLUMBIA, IL 62236 p: 618.281.8505 jimk@kreherengineering.com MEP ENGINEER Case Engineering DARRELL R. CASE 796 MERUS CT., FINTON, MO 63026 T. 636.349.1600 F. 636.349.1730 dcase@caseengineeringinc.com
In the second se
REV: DATE: DESCRIPTION: BIEET NAME: ELECTRICAL SITE & PHOTOMETRIC PLAN SHEET NUMBER: EO.01

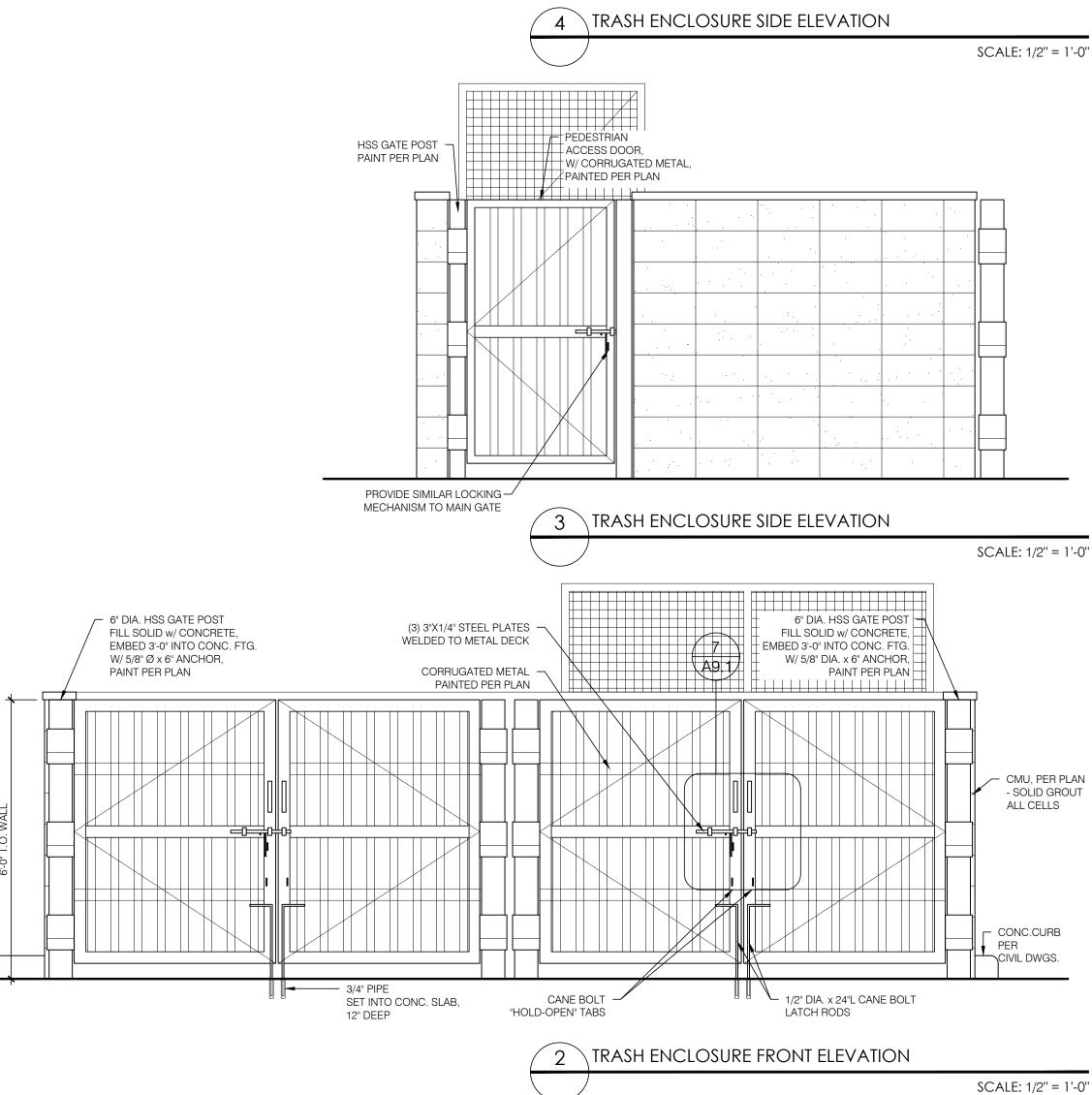
© 2020 DB Franchising USA, LLC

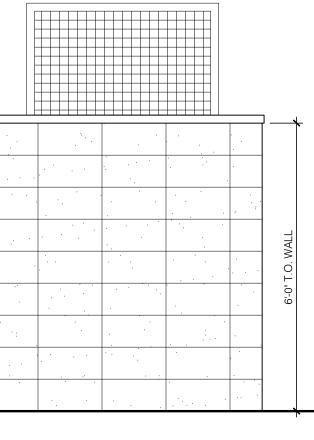
SIDING SCHEDULE - ALTERNATE w/ CANOPY						
ID TAG	MATERIAL	MANUFACTURER	MODEL	REMARKS		
ZONE 1 (BOD	Y)					
1A	EIFS	BASF/ SENERGY	CHANNELED ADHESIVE CI DESIGN SYSTEM	COLOR: BLDG DB DARK GRAY		
1B	EIFS	BASF/ SENERGY	CHANNELED ADHESIVE CI DESIGN SYSTEM	COLOR: BLDG DB LIGHT GRAY		
ZONE 2 (TOW	/ER)					
2	FIBER CEMENT SIDING	NICHIHA	ILLUMINATION, AWP 1818 w/ FACTORY OUTSIDE CORNERS	COLOR: BLDG DB BLUE		
ZONE 3 (BAS	E)					
3	CMU VENEER AND SILL	WILLAMETTE GRAYSTONE OR APPROVED OTHER	4-8-16,SPLIT FACE	COLOR: CHARCOAL - REVIEW FINAL COLOR SELECTION W/ DB		
ZONE 4 (FRA	MED CANOPY)					
4	FASCIA	-	METAL FASCIA; FLAT	3 SIDES; COLOR: BLDG DB DARK GRAY		
5	SOFFIT	HEWN ELEMENTS	NATURAL NORTHWESTERN SPRUCE	1x8, T&G, 1/8" REVEAL		
6	COLUMS	WILLAMETTE GRAYSTONE OR APPROVED OTHER	4-8-16,SPLIT FACE	COLOR: CHARCOAL - REVIEW FINAL COLOR SELECTION W/ DB		

EAST ELEVATION - WALK-UP WINDOW

 \setminus SOUTH ELEVATION

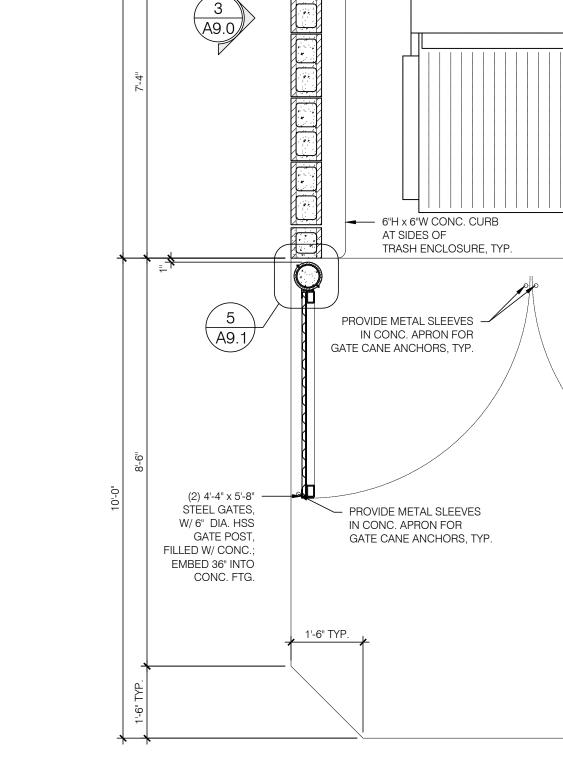

SCALE: 1/4" = 1'-0"




© 2020 DB Franchising USA, LLC

1. L.	•	. :	and the		
			· .		
	a A ta	· ·			·
	· · · ·				
		<u> </u>	· · · ·		
	· · ·		· . · · ·	· · ·	
	·	· ·			
•					
		· · ·			
					; ; .

5 TRASH ENCLOSURE SIDE ELEVATION


SCALE: 1/2" = 1'-0"

	a ser en		· .
		N	· .
	• • •		
		· · ·	
	·. · · ·		
		· .	· · · · · · · · · · · · · · · · · · ·
· · · .			
			· · · · · · · · · · · · · · · · · · ·
 		· . ·	
• • •	· ·.	н. н. 1911 - 1911 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 -	· :

SCALE: 1/2" = 1'-0"

	···		•.	
·				<u> </u>
	·. · · .	· · · ·		<u> </u>
. •		· . · ·		
•••	· · ·		· · ·	
				L

	•	•			
			· · .		
V	íoita'	V			
				SCALE: 1/2" = 1'-0"	

SIM. A9.1

3'-1" x 5'-8" PEDESTRIAN

ACCESS GATE,

CONC. FTG.

CMU WALLS

3

W/ 4" HSS POSTS,

FILLED W/ CONC. EMBED 36" INTO

A9.1

2'-0"

- FLUSH MOUNTED WALL HYDRANT,

AT TRASH ENCLOSURE INTERIOR,

AT 30" A.F.F., COORD. W/ PLUMBING

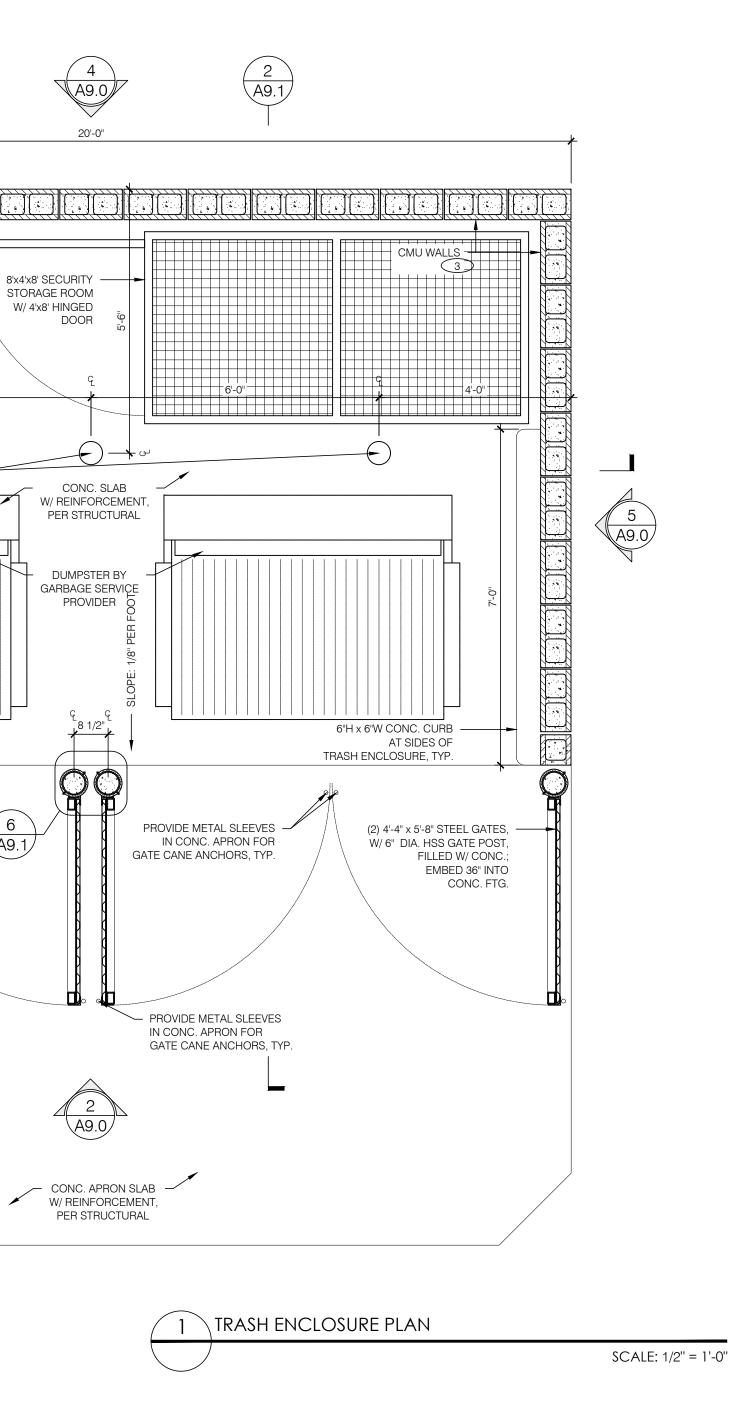
6'-0"

6

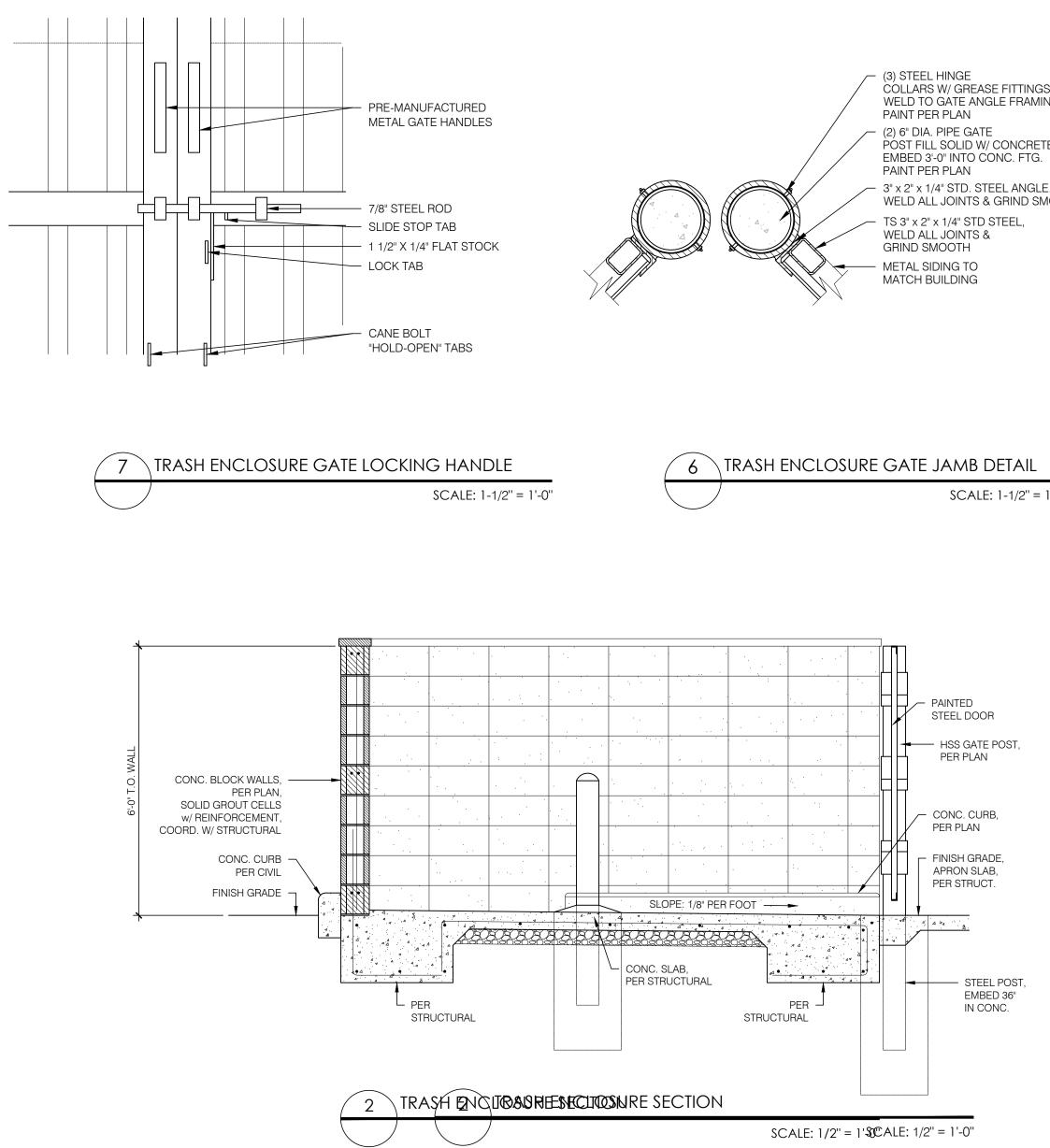
A9.1

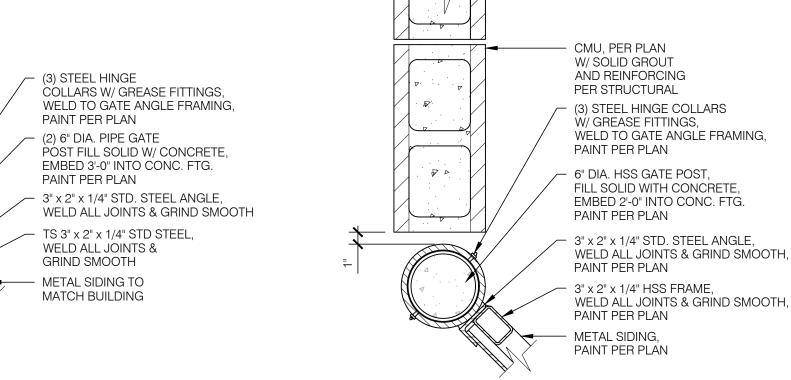
6" METAL BOLLARD -

FILLED W/ CONC.

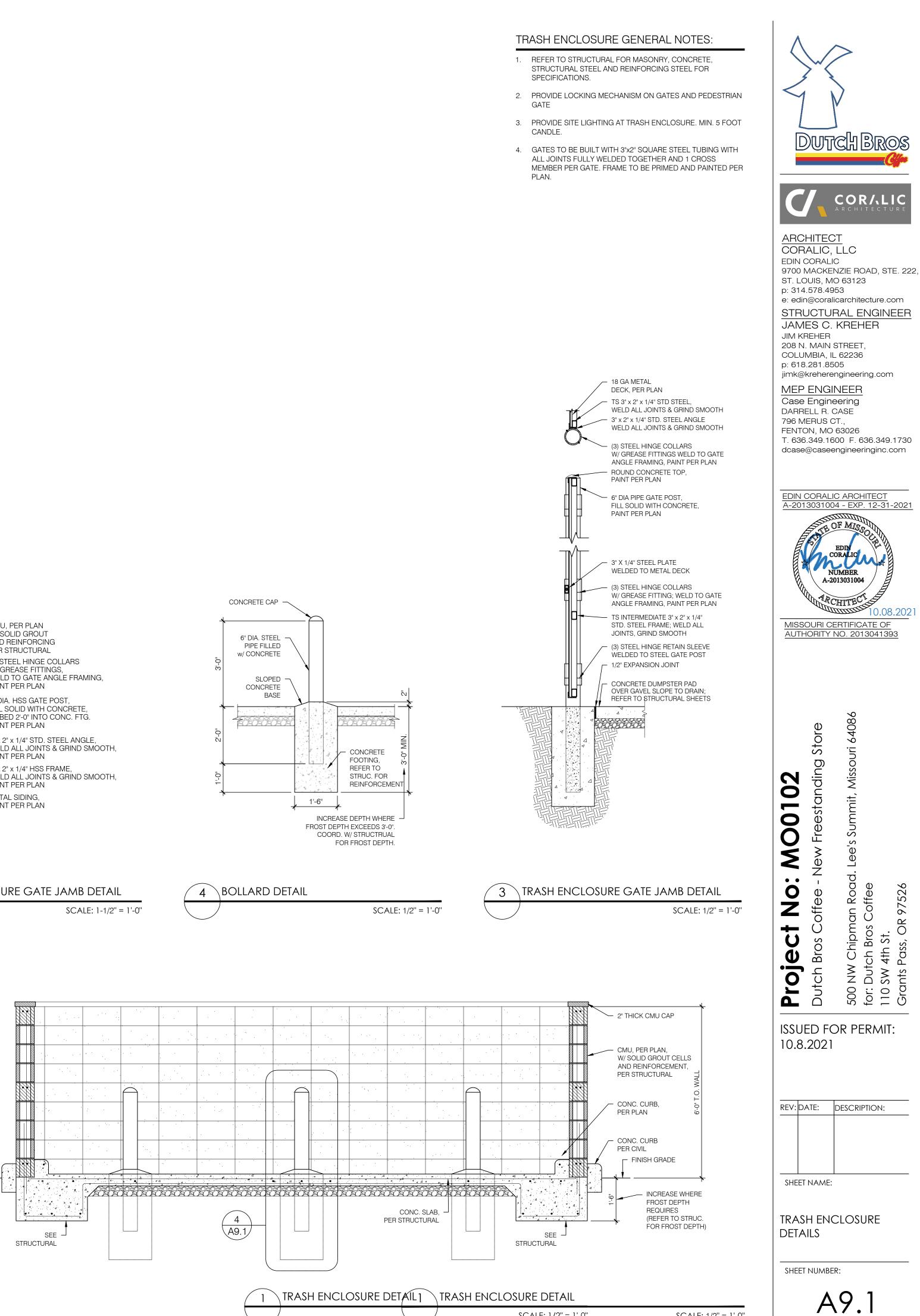

SCALE: 1/2" = 1'-0"

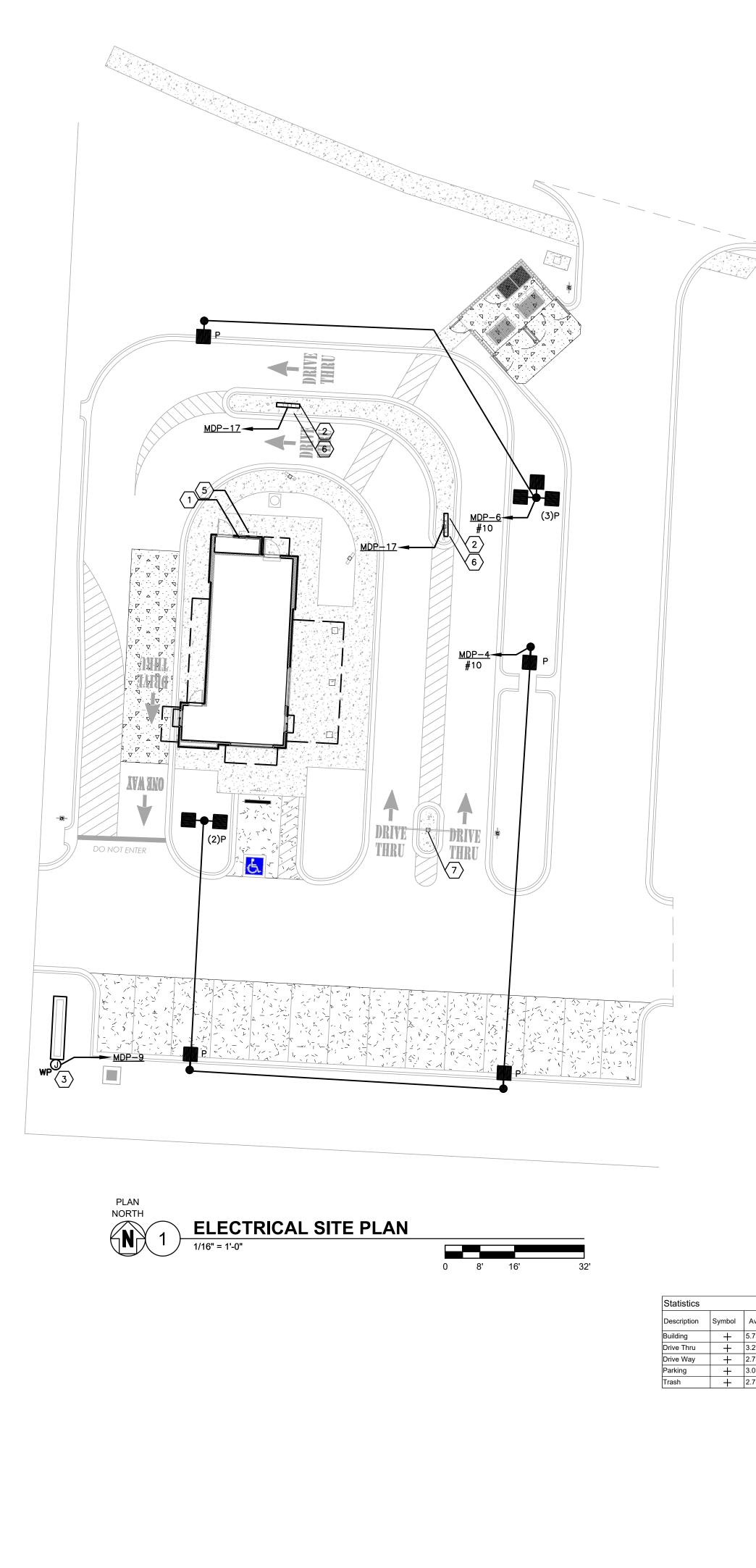
TRASH ENCLOSURE GENERAL NOTES:


1. REFER TO STRUCTURAL FOR MASONRY, CONCRETE, STRUCTURAL STEEL AND REINFORCING STEEL FOR SPECIFICATIONS.

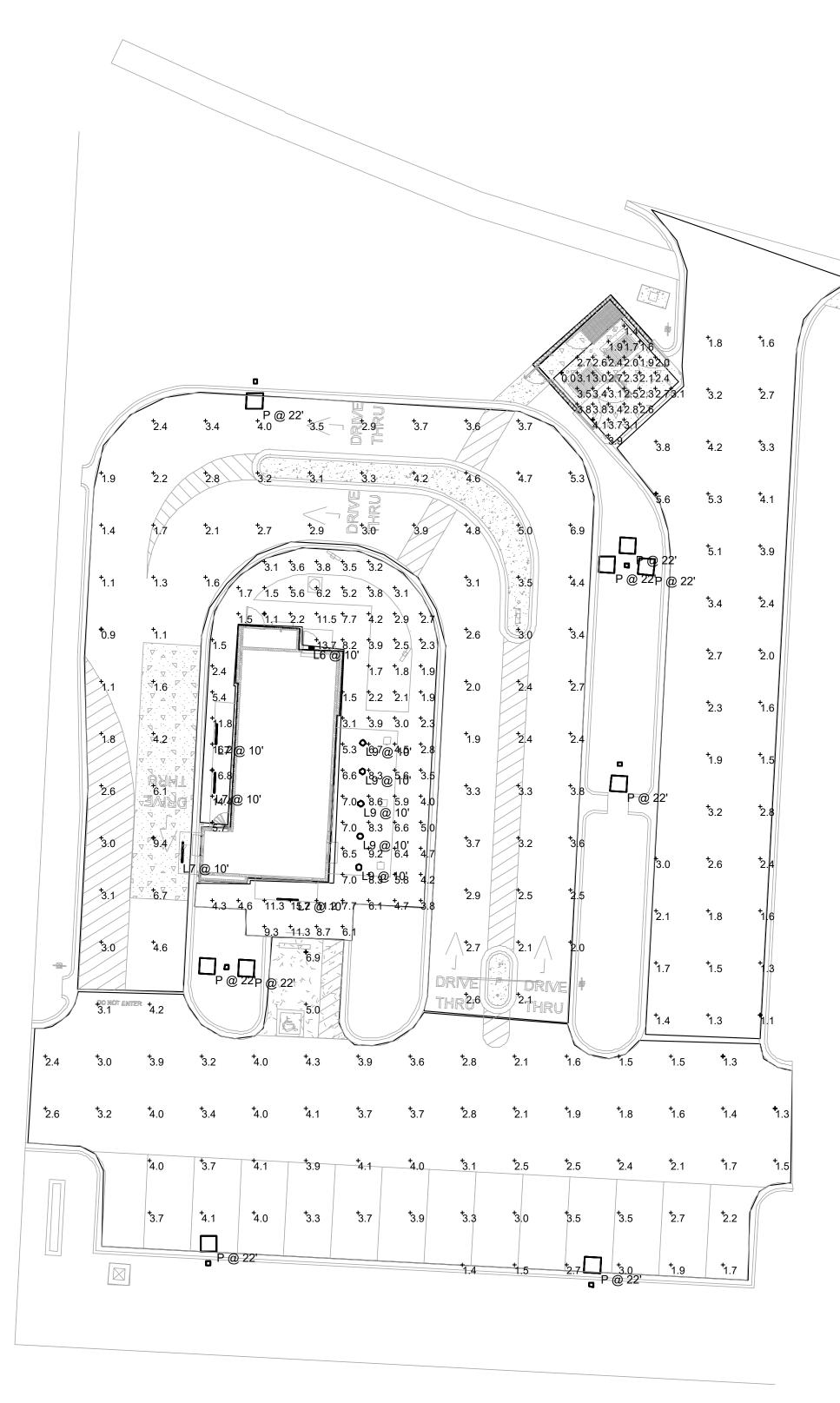

- 2. PROVIDE LOCKING MECHANISM ON GATES AND PEDESTRIAN GATE
- 3. PROVIDE SITE LIGHTING AT TRASH ENCLOSURE. MIN. 5 FOOT CANDLE.
- 4. GATES TO BE BUILT WITH 3"x2" SQUARE STEEL TUBING WITH ALL JOINTS FULLY WELDED TOGETHER AND 1 CROSS MEMBER PER GATE. FRAME TO BE PRIMED AND PAINTED PER PLAN.

TRASH ENCLOSURE MATERIALS					
	ID	MATERIAL	MANUFACTURER	COLOR	NOTES
	3	CMU BLOCK	WILLAMETTE-GRAYSTONE	CHARCOAL	SPLIT FACE, 8x16x8; 8x8x8 AS NECESARY
	3	CMU CAP	WILLAMETTE-GRAYSTONE	CHARCOAL	12x16x2
	PT-2	PAINT	SHERWIN-WILLIAMS	-	BLDG DB DARK GRAY, GATES BODY
	PT-3	PAINT	SHERWIN-WILLIAMS	-	BLDG DB BLUE, GATE FRAMES & POSTS




SCALE: 1-1/2" = 1'-0"

5 TRASH ENCLOSURE GATE JAMB DETAIL



© 2020 DB Franchising USA, LLC

ng fike: Nr, 2021/Correlic Architecture/Dutch Brothere/COR-NO-03-21 - Dutch Bree - NOO102-500MM Chipmon Road/cormo03 - E.de ad by: brodiki

SITE PHOTOMETRIC PLAN

			_
0	8' 1	6'	_ 32'

Avg	Max	Min	Max/Min	Avg/Min
5.7 fc	16.8 fc	1.1 fc	15.3:1	5.2:1
3.2 fc	9.4 fc	0.9 fc	10.4:1	3.6:1
2.7 fc	5.6 fc	1.1 fc	5.1:1	2.5:1
3.0 fc	6.9 fc	1.3 fc	5.3:1	2.3:1
2.7 fc	4.1 fc	0.0 fc	N/A	N/A

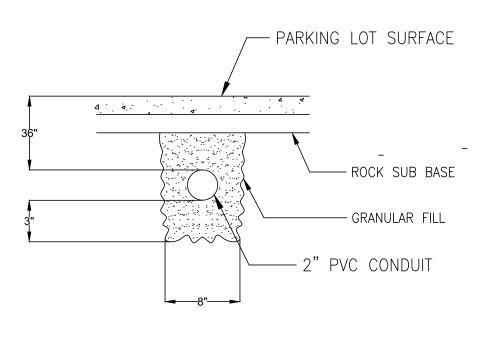
Schedule									
Symbol	Label	Quantity	Manufacturer	Catalog Number	Description	Number Lamps	Lumens Per Lamp	Light Loss Factor	Wattage
	L6	1	RAB LIGHTING INC.	WPLED26-WPLED26/D10 (WALLPACK) - ALED26- ALED26/D10 (AREA LIGHTER)	CAST FINNED METAL HOUSING, MACHINED METAL HEAT SINK, 1 CIRCUIT BOARD WITH 1 LED, MOLDED PLASTIC REFLECTOR WITH SEMI-SPECULAR FINISH, CLEAR FLAT GLASS LENS IN CAST BROWN PAINTED METAL FRAME.	1	3474	0.92	30
	L7	4	Self	WPLED26-WPLED26/D10 (WALLPACK) - ALED26- ALED26/D10 (AREA LIGHTER)	CROWN-L90-277V 830_BA110	1	4200	0.92	40
0	L9	5	DMF LIGHTING	DRD5S-4R-10930	DRD5S-4R-10930	1	1015	0.92	11.8
•	Р	9	NLS Lighting	NV-1-T4-48L-1-40K-UNV- HSS	T4 OPTICS WITH BLACK HSS	1	9674	0.92	156

	KEYED NOTES
$\langle 1 \rangle$	LOCATION OF UTILITY METER DISCONNET SWITCH AND CT CABINET. REFER TO "RISER DIAGRAM" ON SHEET E3.01.
2	PROVIDE 120V ELECTRICAL CONNECTION WITH (2)#8 & (1)#8G. IN 2" PVC ROUTED BELOW GRADE FOR DRIVE-THRU BACKLIT MENU BOARD PER MANUFACTURER'S INSTRUCTIONS. CONDUIT SHALL COME UP IN CENTER OF POST. SIGN COMPANY REPRESENTATIVE TO GIVE EXACT LOCATIONS/DIMENSIONS FOR GC TO MATCH. CONTRACTOR SHALL REPAIR EXISTING PARKING SURFACES FROM TRENCHING TO MATCH PREVIOUS CONDITIONS.
3	PROVIDE 120V ELECTRICAL CONNECTION WITH (2)#8 & (1)#8G. IN 2" PVC ROUTED BELOW GRADE FOR NEW MONUMENT SIGN PER REPRESENTATIVE PRIOR TO ROUGH-IN. CONTRACTOR SHALL REPAIR EXISTING PARKING SURFACES FROM TRENCHING TO MATCH PREVIOUS CONDITIONS.
$\langle 4 \rangle$	NOT USED.
5	LOCATION OF CABLE INTERNET DEMARC
6	PROVIDE 2" CONDUIT W/ PULL STRING 24" BEHIND MENU BOARD TO CHRISTY BOX FOR FUTURE DIGITAL MENU BOARD UPGRADE . COORDINATE W/ SIGN MANUFACTURER.
$\langle 7 \rangle$	PROVIDE 2" CONDUIT W/ PULL STRING TO CHRISTY BOX BETWEEN "CHOOSE

LANE" DIRECTIONAL SIGNAGE AND CLEARANCE BAR FOR FUTURE DRIVE THRU

MIN. DUTCH BROS REQUIREMENTS: -5FTC AT BUILDING -3FTC AT SITE/PARKING -5FTC AT TRASH ENCLOSURE

SEE S1.4 FOR POLE BASE DETAIL


GENERAL NOTES

SENSORS.

- 1. FOR UTILITY TRANSFORMER, TELEPHONE SERVICE, GAS, WATER, AND SANITARY SEWER LOCATIONS; SEE CIVIL SITE PLAN.
- 2. THE ELECTRICAL CONTRACTOR IS RESPONSIBLE FOR COORDINATION AND COMPLIANCE WITH ALL UTILITY COMPANIES REQUIREMENTS. INCOMING POWER AND TELEPHONE SERVICES IS EXISTING TO REMAIN. VERIFY REQUIREMENTS WITH UTILITIES PRIOR TO INSTALLATION.

SITE NOTES

WATER LINES, CONDUITS FOR ELECTRICAL, OR OTHER UTILITIES SHALL BE LOCATED SO AS TO NOT CONFLICT WITH REQUIRED TREE LOCATIONS FOR STREETS AND PARKING LOTS.

Dute	> ABROS
ARCHITECT CORALIC, L EDIN CORALIC 2643 CAROUSE ST. LOUIS, MO p: 314.578.4953 edin@coralicard STRUCTUR JAMES C. K JIM KREHER 208 N. MAIN ST COLUMBIA, IL (p: 618.281.8503 jimk@krehereng MEP ENGIN Case Engines DARRELL R. CA 796 MERUS CT FENTON, MO 6 T. 636.349.1600	LC LDRIVE, 63125 whitecture.com AL ENGINEER REHER REET, 52236 5 gineering.com <u>EER</u> wring ASE
XX.)	<x.xx< td=""></x.xx<>
Project No: MO0102 Dutch Bros Coffee - New Freestanding Store	 500 NW Chipman Road. Lee's Summit, Missouri 64086 for: Dutch Bros Coffee 110 SW 4th St. Grants Pass, OR 97526
10.8.2021 REV: DATE: DI SHEET NAME: ELECTRICA SITE & PHC PLAN	
SHEET NUMBER:).01

FORM AND FUNCTION

- Sleek, low profile housing
- Spec grade performance
- Engineered for optimum thermal management
- Low depreciation rate
- Reduces energy consumption and costs up to 65%
- Exceeds IES foot candle levels utilizing the least number of poles and fixtures per project
- Optical system designed for:
 - Parking Lots
 - Auto Dealerships
 - General Area Lighting

CONSTRUCTION

- Die Cast Aluminum
- External cooling fins, Finite Element Analysis (FEA) designed
- Corrosion resistant external hardware
- One-piece silicone gasket ensures IP-65 seal for electronics compartment
- One-piece Optics Plate[™] mounting silicone Micro Optics
- Two-piece silicone Micro Optic system ensures IP-67 level seal around each PCB
- Grade 2 Clear Anodized Optics Plate[™] standard

FINISH

- 3-5 mils electrostatic powder coat.
- NLS' standard high-quality finishes prevent corrosion protects against and extreme environmental conditions

WARRANTY

Five-year limited warranty for drivers and LEDs.

NV-1

LISTINGS

- Certified to UL 1598
- UL 8750
- CSA C22.2 No. 250.0
- DesignLights Consortium® (DLC)
- DesignLights Consortium Premium® (DLCP)
- IP65/ IP67 Rated
- 3G Vibration Rated per ANSI C136.31-2010

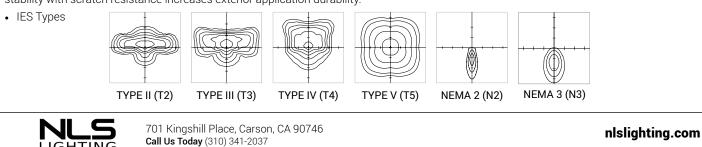
					LE	D WATTAGE CHART		
	16		48	L	64L			
	illiamps 18		-		-			
	illiamps 28 illiamps 36		- v 104	w 1	- 136w			
	nilliamps 56				205w			
-	ct Name:				1	1	Туре	
Cat #	Light Dist.	No. of LEDs	Milliamps	Kelvin	Volts	Mounting	Color	Options
NV Size 1 (NV-1)	Type 2 (T2) Type 3 (T3) Type 4 (T4) Type 5 (T5) 24° Narrow Beam (N2) Nema 3 30° Narrow Beam (N3)	16 (16L) 32 (32L) 48 (48L) 64 (64L)	350 (35) 530 (53) 700 (7) 1050 (1)	3000K (30K) 4000K (40K) 5000K (50K)	120-277 (UNV) 347-480 (HV)	Direct Pole Single, D180 3" (DPS3) D90, T90, T120, QD 7" (DPS7) Knuckle Mount (KM) Wall Mount (WM) Trunnion Mount (TM) *Standard finish is stainless steel. Can be painted to match fixture Tennis Arm (TA) *See next page for Arm Configurations *For Round Pole, please specify RPA4 or RPA5	Bronze (BRZ) White (WHT) Silver (SVR) Black (BLK) Graphite (GPH) Grey (GRY) Custom (CS)	Bird Deterrant (BD) Marine Grade Finish (MGF) Optic Plate Painted to Match Fixture (OPP) Nema 7-Pin Receptacle (PE7) Photocell + Receptacle (PCR) Receptacle + Shorting Cap (PER) FSP-211 with Motion Sensor (UNV Voltage) (FSP-20) *20" Heights (FSP-20) *21'40' Heights Quick Mount Bracket (QMB) Retrofit Mount Bracket (RQMB) Round Pole Adaptor 3"- 4" Pole (RPA4) Round Pole Adaptor 5"- 6" Pole (RPA5) Rotated Optic Left (ROL) Rotated Optic Left (ROL) Rotated Optic Right (ROR) Automotive House Side Shield (AHS) House Side Shield (HSS) *HSS not applicable with N2 - NEMA 24" Optics *HSS not applicable with N3 - NEMA 30" Optics

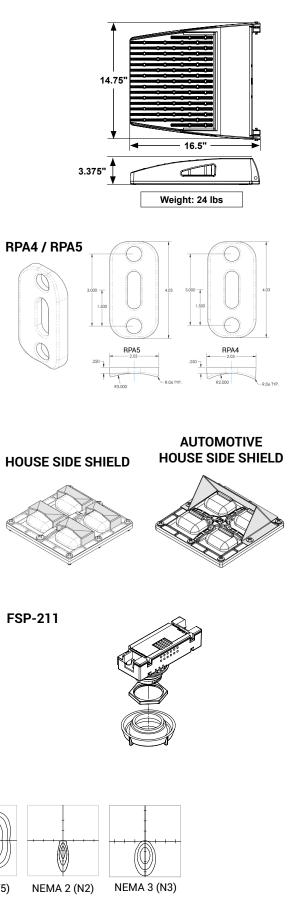
Ρ

ELECTRICAL

- 120-277 Volts (UNV) or 347-480 Volts (HV)
- 0-10V dimming driver by Philips Advance
- Driver power factor at maximum load is \geq .95, THD maximum load is 15%
- All internal wiring UL certified for 600 VAC and 105°C
- All drivers, controls, and sensors housed in enclosed IP-65 compartment
- Lumileds Luxeon MX LED's
- CRI >70
- Color temperatures: 3000K, 4000K, 5000K
- Surge Protection: 20KVA supplies as standard.

OPTIONS


- **BIRD DETERRANT (BD)**—offers effective and humane deterrent for larger bird species and provides cost-effective long-term solution to nuisance bird infestations and protect your property.
- **MARINE GRADE FINISH (MGF)**—A multi-step process creating protective finishing coat against harsh environments.
 - · Chemically washed in a 5 stage cleaning system.
 - Pre-baked
 - Powder coated 3-5 mils of Zinc Rich Super Durable Polyester Primer.
 - 1-2 feet inside pole coverage top and bottom.
 - Oven Baked.
 - Finished Powder Coating of Super Durable Polyester Powder Coat 3-5 mil thickness.
- **SHIELDS (HSS, AHS)**—House Side Shield (HSS) is designed for full property line cut-off. Automotive House Side Shield (AHS) is a single-sided shield allowing partial cut-off on either side or front of luminaire.
- **ROUND POLE ADAPTER (RPA)** When using round poles, specify Round Pole Adapter (RPA). Specify RPA4 when installing on 3"-4" round poles, and RPA5 when installing on 5"-6" round poles.


CONTROLS

- **FSP-211 (FSP-X)**—Passive infrared (PIR) sensor providing multi-level control based on motion/daylight contribution.
 - All control parameters adjustable via wireless configuration remote storing and transmitting sensor profiles.
 - FSP-20 mounting heights 9-20 feet
 - FSP-40 mounting heights 21-40 feet.
 - Includes 5 dimming event cycles, 0-10V dimming with motion sensing, reprogrammable in the field.
- NEMA 7-PIN RECEPTACLE (PE7)—An ANSI C136.41-2013 receptacle provides electrical and mechanical interconnection between photo control cell and luminaire. Dimming receptacle available two or four dimming contacts supports 0-10 VDC dimming methods or Digital Addressable Lighting Interface (DALI), providing reliable power interconnect.

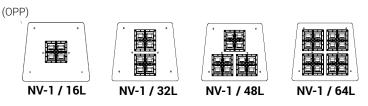
OPTICS

Silicone optics high photothermal stability and light output provides higher powered LEDs with minimized lumen depreciation LED life. UV and thermal stability with scratch resistance increases exterior application durability.

LUMEN	S																						
PART NUMBER	N2	LM/W	N3	LM/W	T2	LM/W	DLC	тз	LM/W	DLC	тз нѕѕ	LM/W	T4	LM/W	DLC	T4 AHS	LM/W	T4 HSS	LM/W	T5	LM/W	DLC	w
NV-1-16L-35-30K	1944	108	2016	112	2106	117	Р	2106	117	Р	1134	63	2187	116	Р	1296	72	1116	62	2231	118	Р	18
NV-1-16L-35-40K	2016	112	2088	116	2268	126	Р	2286	127	Р	1206	67	2250	125	Р	1368	76	1188	66	2304	128	Р	18
NV-1-16L-35-50K	2088	116	2160	120	2376	132	Р	2394	133	Р	1278	71	2358	131	Р	1440	80	1260	70	2412	134	Р	18
NV-1-16L-53-30K	3024	108	3136	112	3192	114	Р	3220	115	Р	1764	63	3119	113	Р	2016	72	1736	62	3248	116	Р	28
NV-1-16L-53-40K	3136	112	3248	116	3472	124	Р	3472	124	Р	1876	67	3444	123	Р	2128	76	1848	66	3500	125	Р	28
NV-1-16L-53-50K	3248	116	3360	120	3612	129	Р	3640	130	Р	1988	71	3584	128	Р	2240	80	1960	70	3668	131	Р	28
NV-1-16L-7-30K	3888	108	4032	112	3960	110	Р	3960	110	Р	2268	63	3973	109	Р	2592	72	2232	62	3996	111	Р	36
NV-1-16L-7-40K	4032	112	4176	116	4428	123	Р	4284	119	Р	2412	67	4212	117	Р	2736	76	2376	66	4320	120	Р	36
NV-1-16L-7-50K	4176	116	4320	120	4644	129	Р	4500	125	Р	2556	71	4428	123	Р	2880	80	2520	70	4500	125	Р	36
NV-1-16L-1-30K	6048	108	6272	112	6160	110	S	6384	114	Р	3528	63	6232	112	Р	4032	72	3472	62	6440	115	Р	56
NV-1-16L-1-40K	6272	112	6496	116	6832	122	Р	6888	123	Р	3752	67	6776	121	Р	4256	76	3696	66	6944	124	Р	56
NV-1-16L-1-50K	6496	116	6720	120	7168	128	Р	7224	129	Р	3976	71	7112	127	Р	4480	80	3920	70	7280	130	Р	56
NV-1-32L-7-30K	7668	108	7952	112	7810	110	S	7810	110	S	4473	63	7739	109	S	5112	72	4402	62	7881	111	S	71
NV-1-32L-7-40K	7952	112	8236	116	9017	127	Р	8449	119	Р	4757	67	8307	117	Р	5396	76	4686	66	8520	120	Р	71
NV-1-32L-7-50K	8236	116	8520	120	9159	129	Р	8875	125	Р	5041	71	8733	123	Р	5680	80	4970	70	8946	126	Р	71
NV-1-32L-1-30K	11448	108	11872	112	11660	110	S	12084	114	S	6678	63	11820	112	S	7632	72	6572	62	12190	115	S	106
NV-1-32L-1-40K	11872	112	12296	116	12932	122	Р	13038	123	Р	7102	67	12826	121	Р	8056	76	6996	66	13144	124	Р	106
NV-1-32L-1-50K	12296	116	12720	120	13568	128	Р	13674	129	Р	7526	71	13462	127	Р	8480	80	7420	70	13780	130	Р	106
NV-1-48L-7-30K	11232	108	11648	112	11440	110	S	11440	110	S	6552	63	11336	109	S	7488	72	6448	62	11544	111	S	104
NV-1-48L-7-40K	11648	112	12064	116	13208	127	Р	12376	119	Р	6968	67	12168	117	Р	7904	76	6864	66	12480	120	Р	104
NV-1-48L-7-50K	12064	116	12480	120	13520	130	Р	13000	125	Р	7384	71	12792	123	Р	8320	80	7280	70	13104	126	Р	104
NV-1-48L-1-30K	16848	108	17472	112	17160	110	S	17784	114	S	9828	63	17472	112	S	11232	72	9672	62	17940	115	S	156
NV-1-48L-1-40K	17472	112	18096	116	19032	122	Р	19188	123	Р	10452	67	18876	121	Р	11856	76	10296	66	19344	124	Р	156
NV-1-48L-1-50K	18096	116	18720	120	19968	128	Р	20124	129	Р	11076	71	19812	127	Р	12480	80	10920	70	20280	130	Р	156
NV-1-64L-7-30K	14688	108	15232	112	14960	110	S	14960	110	S	8568	63	14824	109	S	9792	72	8432	62	15096	111	S	136
NV-1-64L-7-40K	15232	112	15776	116	17272	127	Р	16184	119	Р	9112	67	15912	117	Р	10336	76	8976	66	16320	120	Р	136
NV-1-64L-7-50K	15776	116	16320	120	17680	130	Р	17000	125	Р	9656	71	16728	123	Р	10880	80	9520	70	17136	126	Р	136
NV-1-64L-1-30K	22140	108	22960	112	22550	110	S	23370	114	S	12915	63	22960	112	S	14760	72	12710	62	23575	115	S	205
NV-1-64L-1-40K	22960	112	23780	116	25010	122	Р	25215	123	Р	13735	67	24805	121	Р	15580	76	13530	66	25420	124	Р	205
NV-1-64L-1-50K	23780	116	24600	120	26240	128	Р	26445	129	Р	14555	71	26035	127	Р	16400	80	14350	70	26650	130	Р	205

Г

*DLC S= Standard 😳 P= Premium 🏥


BUG RAT	INGS						
PART NUMBER	N2	T2	тз	T3 HSS	Т4	T4 HSS	Т5
NV-1-16L-35-30K	B2-U0-G0	B1-U0-G1	B1-U0-G1	B0-U0-G0	B1-U0-G1	B0-U0-G0	B2-U0-G0
NV-1-16L-35-40K	B2-U0-G0	B1-U0-G1	B1-U0-G1	B0-U0-G0	B1-U0-G1	B0-U0-G0	B2-U0-G0
NV-1-16L-35-50K	B2-U0-G0	B1-U0-G1	B1-U0-G1	B0-U0-G0	B1-U0-G1	B0-U0-G0	B2-U0-G2
NV-1-16L-53-30K	B3-U0-G1	B1-U0-G1	B1-U0-G1	B0-U0-G1	B1-U0-G1	B0-U0-G1	B2-U0-G1
NV-1-16L-53-40K	B3-U0-G1	B1-U0-G1	B1-U0-G1	B0-U0-G1	B1-U0-G1	B0-U0-G1	B2-U0-G1
NV-1-16L-53-50K	B2-U0-G1	B1-U0-G1	B1-U0-G1	B0-U0-G1	B1-U0-G1	B0-U0-G1	B2-U0-G1
NV-1-16L-7-30K	B3-U0-G1	B1-U0-G1	B1-U0-G1	B0-U0-G1	B1-U0-G1	B0-U0-G1	B3-U0-G1
NV-1-16L-7-40K	B3-U0-G1	B1-U0-G1	B1-U0-G1	B0-U0-G1	B1-U0-G1	B0-U0-G1	B3-U0-G1
NV-1-16L-7-50K	B3-U0-G1	B1-U0-G1	B1-U0-G1	B0-U0-G1	B1-U0-G1	B0-U0-G1	B3-U0-G1
NV-1-16L-1-30K	B3-U0-G1	B1-U0-G1	B1-U0-G1	B0-U0-G1	B1-U0-G1	B0-U0-G1	B3-U0-G1
NV-1-16L-1-40K	B3-U0-G1	B1-U0-G1	B2-U0-G2	B0-U0-G1	B2-U0-G2	B0-U0-G1	B3-U0-G2
NV-1-16L-1-50K	B4-U0-G1	B1-U0-G2	B2-U0-G2	B0-U0-G1	B2-U0-G2	B0-U0-G1	B3-U0-G2
NV-1-32L-7-30K	B4-U0-G1	B1-U0-G2	B2-U0-G2	B0-U0-G1	B2-U0-G2	B0-U0-G1	B3-U0-G2
NV-1-32L-7-40K	B4-U0-G1	B1-U0-G2	B2-U0-G2	B0-U0-G1	B2-U0-G2	B0-U0-G2	B3-U0-G2
NV-1-32L-7-50K	B4-U0-G1	B2-U0-G2	B2-U0-G2	B0-U0-G2	B2-U0-G2	B0-U0-G2	B3-U0-G2
NV-1-32L-1-30K	B4-U0-G1	B2-U0-G2	B2-U0-G2	B0-U0-G2	B2-U0-G2	B0-U0-G2	B4-U0-G2
NV-1-32L-1-40K	B4-U0-G1	B2-U0-G2	B2-U0-G2	B0-U0-G2	B3-U0-G2	B0-U0-G2	B4-U0-G2
NV-1-32L-1-50K	B4-U0-G1	B2-U0-G2	B3-U0-G3	B0-U0-G2	B3-U0-G3	B0-U0-G2	B4-U0-G2
NV-1-48L-7-30K	B4-U0-G1	B2-U0-G2	B2-U0-G2	B0-U0-G2	B2-U0-G2	B0-U0-G2	B4-U0-G2
NV-1-48L-7-40K	B4-U0-G1	B2-U0-G2	B2-U0-G2	B0-U0-G2	B2-U0-G2	B0-U0-G2	B4-U0-G2
NV-1-48L-7-50K	B4-U0-G1	B2-U0-G2	B3-U0-G3	B0-U0-G2	B2-U0-G2	B0-U0-G2	B4-U0-G2
NV-1-48L-1-30K	B5-U0-G1	B3-U0-G3	B3-U0-G3	B1-U0-G2	B3-U0-G3	B1-U0-G2	B4-U0-G2
NV-1-48L-1-40K	B5-U0-G1	B3-U0-G3	B3-U0-G3	B1-U0-G2	B3-U0-G3	B1-U0-G2	B5-U0-G3
NV-1-48L-1-50K	B5-U0-G1	B3-U0-G3	B3-U0-G3	B1-U0-G2	B3-U0-G3	B1-U0-G2	B5-U0-G3
NV-1-64L-7-30K	B5-U0-G1	B2-U0-G2	B3-U0-G3	B0-U0-G2	B3-U0-G3	B1-U0-G2	B4-U0-G2
NV-1-64L-7-40K	B5-U0-G1	B3-U0-G3	B3-U0-G3	B0-U0-G2	B3-U0-G3	B1-U0-G2	B4-U0-G2
NV-1-64L-7-50K	B5-U0-G1	B3-U0-G3	B3-U0-G3	B1-U0-G2	B3-U0-G3	B1-U0-G2	B4-U0-G2
NV-1-64L-1-30K	B5-U0-G1	B3-U0-G3	B3-U0-G3	B1-U0-G2	B3-U0-G3	B1-U0-G3	B5-U0-G3
NV-1-64L-1-40K	B5-U0-G1	B3-U0-G3	B3-U0-G3	B1-U0-G3	B3-U0-G4	B1-U0-G3	B5-U0-G3
NV-1-64L-1-50K	B5-U0-G1	B3-U0-G3	B3-U0-G3	B1-U0-G3	B3-U0-G4	B1-U0-G3	B5-U0-G3

nlslighting.com

OPTICAL CONFIGURATIONS

Rotatable Optics (ROR) Rotated Right, (ROL) Rotated Left options available. Optics field and factory rotatable.

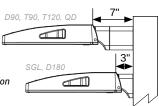
* OPTIC PLATE PAINTED TO MATCH FIXTURE FINISH (OPP) – Optic Plate standard clear anodized, Grade 2. When (OPP) specified, Optic Plate finish will match fixture finish.

EPA

EPA	SGL	D90	D180	Т90	T120	QD
NV-1-DP	0.46	1.14	0.92	1.34	1.37	1.34
NV-1-KM	0.54	N/A	1.08	N/A	N/A	N/A
NV-1-ASA	0.75	1.29	1.50	1.99	2.05	1.99

L70/L90 DATA

TEMP	NV	/-1
TEMP.	L70 (64L-1050mA)	L90 (64L-1050mA)
25°C	483,000	160,000

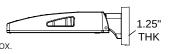

DPX ARM LENGTH

DPX ARM LENGTH	SGL 🗇	D90 📲	D180 🕬	Т90 "ु	T120	QD 📲
NV-1	3"	7"	3"	7"	7"	7"

MOUNTING OPTIONS

DIRECT POLE (DP)

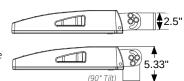
Standard mounting arm is extruded aluminum in lengths of 3" and 7". *Arm lengths may vary depending on configuration

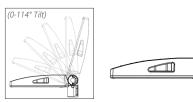


TENNIS ARM (TA)

Steel fitter slips over 3.5" x 1.5" rectangular arm. *See Tennis Arm Spec Sheet for details

WALL MOUNT (WM)

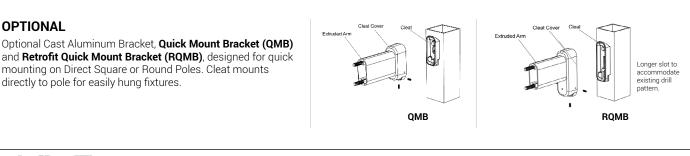

Cast Aluminum Plate for direct wall mount. 3" extruded aluminum arm mounts directly to a cast wall mount box.



TRUNNION MOUNT (TM)

Steel, bolt-on-mounting for adjustable installation with a maximum uplift of 90 degrees.

*Unpainted stainless steel is standard



KNUCKLE MOUNT (KM)

Die Cast Knuckle great for adjustable installation on 2-3/8" OD vertical or horizontal tenon.

- Max Uptilt of 114 degrees
- · Adjustable in 6 degree increments

701 Kingshill Place, Carson, CA 90746 **Call Us Today** (310) 341-2037

nlslighting.com

*Visit techlighting.com for specific warranty limitations and details. Ships with optional acrylic cover for protection against outdoor debris.

LENGTH

4 4"

SHIPS WITH OPTIONAL ACRYLIC COVER FOR PROTECTION AGAINST OUTDOOR DEBRIS.

FINISH

H CHARCOAL

7 BRONZE

W WHITE B BLACK

ORDERING INFORMATION

927 90 CRI, 2700K

930 90 CRI 3000K

940 90 CRI, 4000K

CRI/CCT

PRODUCT

7000WVEX

techlighting.com	

echlighting.com	

UPLIGHT AND DOWNLIGHT

FUNCTION

DO DOWNLIGHT ONLY

VOLTAGE	Universal 120V - 277V
DIMMING	0-10V, ELV, TRAC, CL
LIGHT DISTRIBUTION	Symmetric or Asymmetric depending on barn doors position
MOUNTING OPTIONS	Wall
OPTICS	Adjustable beam spread
сст	2700K, 3000K or 4000K
CRI	90+
COLOR BINNING	3-Step
BUG RATING	B0-U3-G0
DARK SKY	Non-Compliant
WET LISTED	IP65
GENERAL LISTING	ETL, ADA
CALIFORNIA TITLE 24	Can be used to comply with CEC 2019 Title 24 Part 6 for outdoor use. Registration with CEC Appliance Database not required.
START TEMP	-30°C
FIELD SERVICEABLE LED	Yes
CONSTRUCTION	Aluminum
HARDWARE	Stainless Steel
FINISH	Powder Coat
LED LIFETIME	L70; >60,000 Hours
WARRANTY*	5 years
WEIGHT	2.4 lbs.

VFX shown in black

VEX shown in charcoal

INPUT VOLTAGE

UNV UNV 120V-277V

VFX shown in bronze

VEX shown in white

The Vex Outdoor LED Wall Sconce is a minimalist profile featuring up and down lighting and delivers a wide range of optical control and illumination options. Independently controlled beam angles range from 10° - 120° achieved with a simple tool-free adjustment. Beams are lockable and can be set symmetric or asymmetric in both directions. Angle markers ensure consistency and precision from fixture to fixture. Vex is ideal for indoor or outdoor accent lighting, ambient lighting and wayfinding where beam angle is critical.

Key features

- Tool-free, independent, up/down beam angle adjustment 10° 120°
- Asymmetric or Symmetric Beam Shaping
- Lockable

WATTS

• Angle markers for consistent and precise aiming

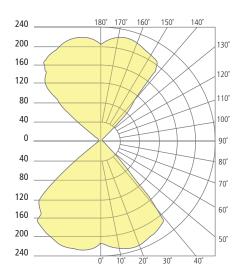
554.3

18 7

SPECIFICATIONS

DELIVERED LUMENS

TECH LIGHTING


*For latest photometrics, please visit www.techlighting.com/OUTDOOR

Vex Wall Sconce

PHOTOMETRICS*

VEX	
Total Lumen Output:	554.3
Total Power:	18.7
Luminaire Efficacy:	29.6
Color Temp:	3000K
CRI:	90+
BUG Rating:	B0-U3-G0

PROJECT INFO

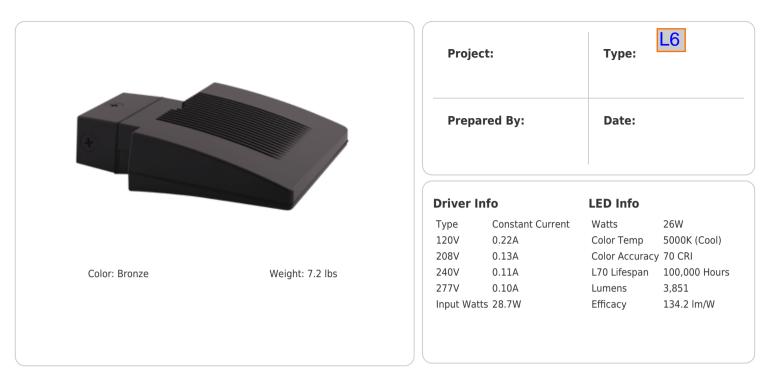
FIXTURE TYPE & QUANTITY

(I) us

JOB NAME & INFO

NOTES

TECH LIGHTING


Visual Comfort & Co.

© 2021 Tech Lighting, L.L.C. All rights reserved. The "Tech Lighting" graphic is a registered trademark. Tech Lighting reserves the right to change specifications for product improvements without notification.

7400 Linder Avenue, Skokie, Illinois 60077 T 847.410.4400

WPLED26

RAB

Technical Specifications

Compliance

UL Listed:

Suitable for wet locations. Suitable for mounting within 1.2m (4ft) of the ground.

DLC Listed:

This product is listed by Design Lights Consortium (DLC) as an ultra-efficient premium product that qualifies for the highest tier of rebates from DLC Member Utilities. Designed to meet DLC 5.1 requirements. DLC Product Code: P00001701

Performance

Lifespan:

100,000-Hour LED lifespan based on IES LM-80 results and TM-21 calculations

Construction

IP Rating:

Ingress protection rating of IP66 for dust and water

Finish:

Formulated for high durability and long-lasting color

Ambient Temperature:

Suitable for use in up to 40°C (104°F)

Cold Weather Starting:

Minimum starting temperature is -40°C (-40°F)

Green Technology:

Mercury and UV free. RoHS-compliant components.

Electrical

Driver:

Constant Current, Class 2, 120-277V, 50/60Hz, 120V: 0.22A, 208V: 0.13A, 240V: 0.11A, 277V 0.10A

Dimming Driver:

Driver includes dimming control wiring for 0-10V dimming systems. Requires separate 0-10V DC dimming circuit. Dims down to 10%.

THD:

10.68% at 120V, 10.68% at 277V

Power Factor:

95.4% at 120V, 95.4% at 277V

LED Characteristics

Color Consistency:

7-step MacAdam Ellipse binning to achieve consistent fixture-to-fixture color

Color Stability:

LED color temperature is warrantied to shift no more than 200K in color temperature over a 5-year period

Technical Specifications (continued)

LED Characteristics

Color Uniformity:

RAB's range of Correlated Color Temperature follows the guidelines of the American National Standard for Specifications for the Chromaticity of Solid State Lighting (SSL) Products, ANSI C78.377-2017.

Other

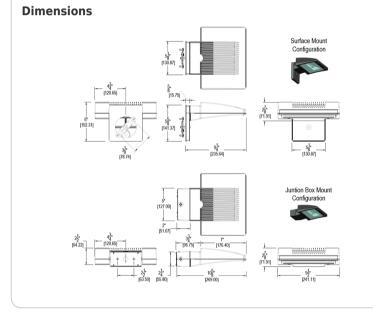
Patents:

The WPLED design is protected by U.S. Pat. D634878, Canada Pat 134878, China Pat. CN301649064S.

Equivalent to 150W Metal Halide

Buy American Act Compliance:

RAB values USA manufacturing! Upon request, RAB may be able to manufacture this product to be compliant with the Buy American Act (BAA). Please contact customer service to request a quote for the product to be made BAA compliant.

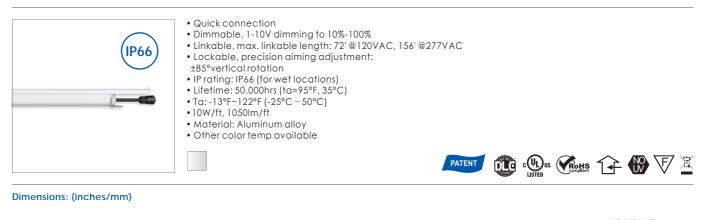

Optical

BUG Rating:


B1 U0 G0

Features

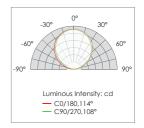
Maintains 70% of initial lumens at 100,000-hours Weatherproof high temperature silicone gaskets Superior heat sinking with die cast aluminum housing and external fins 100 up to 277 Volts 5-Year, No-Compromise Warranty



Outdoor Cove Lighting CROWN

L7

Outdoor Cove Lighting CROWN



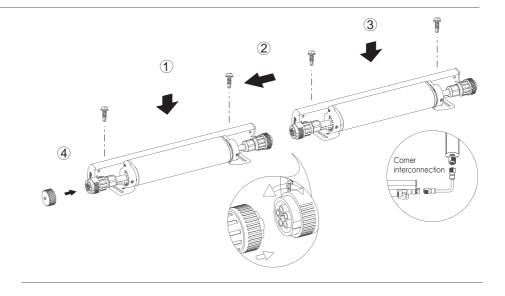
How to order using our catalog numbers Example: CROWN-1230K110SS

Series	Length	CCT (K)	Beam Angle	Finish	Installation	
CROWN	12 - 11.8" (300mm) ROWN 47 - 47" (1120mm) 70 - 70" (1778mm)		110 - 110°	S - Silver	S - Screw Mounting	
Specifications						
Catalog No.	Model	Rateo (VAC	d Input Ra	Power (W)	Luminous flux (TYP@4000K)Im	
CROWN-1230K1						
CROWN-1240K1	CROWN-L24-277V 10SS	120-	277 85	10	1050	
CROWN-4730K1						
CROWN-4740K1	CROWN-L90-277V	120-	277 85	40	4200	
CROWN-7030K1		,				
CROWN-7040K1	CROWN-L144-277	v 120-	277 85	60	6300	

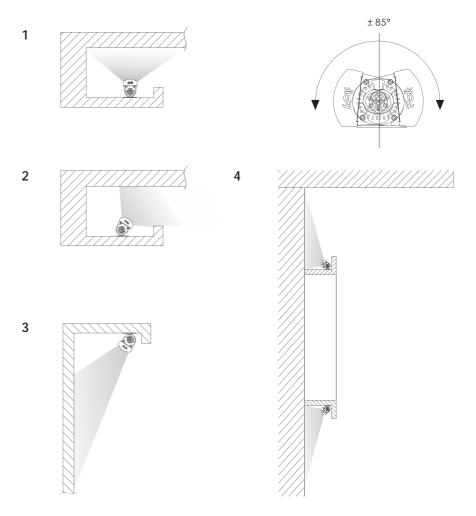
* Included: 1 pc LED fixture, 2pcs screws, 1pc cable end cap.

Photometrics

Outdoor Cove Lighting CROWN/CROWN NARROW


Wiring Diagram

AC connection : Black: " L " White: " N " Yellow/green: "@ " Dimming connection : Violet: " + " _____ Gray: " - "


Accessories	Catalog No.	Description	Length (inch)	
	IC-CROWN-59		59"	
		Inputcable		
Accessories(optional)	Catalog No.	Description	Length (inch)	
	SC-CROWN-12	0)D	12"	
		Soft connector		

Outdoor Cove Lighting CROWN/CROWN NARROW

Installation

Application

Sef

DRD5S & SurfaceFrame

Surface Mount LED Downlight

New Construction DRDHNJO Octagonal Junction Box

Project:	Type: L9
Product Code:	Date:
	Spec Sheet V-09.23.21

•	Thinnest-in-class DRD5S delivers the pure,
	smooth light and the elegant look of a
	high-end recessed downlight

- Features multiple ratings to meet the demands of a wide range of situations
- Ultra-low profile allows it to install in as little as 2" of ceiling space when 5/8" drywall is used

Application New Construction		Aperture 4" Octagonal Junction Box				
Delivered Lumens 750 lm (9.0W), 1000 lm (12.0	W)	Color Quality 90+ CRI, < 3-step SDCM				
Color Temperature 2700K 3000K 3500K		Optics General				
Input Voltage 120/277V	Dimming TRIAC/ELV 5% 0-10V 1%	Emergency Lighting Optional Emergency LED Driver with integrated Test Switch for lighting up to 90 minutes in event of power failure				
Shape Round, Square		Finish Module Ratings White (<) UL Closet Ratin				
Housing Ratings Code compliant for use in appropriate fire-rated assemblies up to a maximum of 2-hours	Sound Rated	ASTM E283 IC (Insulation Certified Contact) Rated Air Tight	Compliant (750 Im onl			
Standards	Guarantee 50,000 hrs 5	years (7) Non-Con	Additional Options Mon-Conductive Dead Front			

DRD5S & SurfaceFrame

Surface Mount LED Downlight

General New Construction DRDHNJO Octagonal Junction Box

PRODUCT BUILDER

HOUSING

PRODUCT CODE	APPLICATION	APERTURE	OPTION
DRDH Housing	New Construction	JO SurfaceFrame Octagonal Junction	Box [Blank] Integrated Driver
			70SEM EM Driver ¹ , 0-10V, 750 lm
			100SEM EM Driver ¹ , 0-10V, 1000 lm

LED MODULE

PRODUC	T CODE	AP	PERTURE	SH	APE	LUM	IENS	CF	RI	ССТ	-	DRIVER	
DRD5S	Module	4	4" Aperture	R	Round	07	750 lm	9	90+ CRI	27	2700K	[Blank]	Integrated TRIAC/ELV
				S	Square	10	1000 lm			30	3000K	0	Integrated 0-10V
										35	3500K	DF	Integrated TRIAC/ELV, Non-Conductive ²
												ODF	Integrated 0-10V, Non-Conductive ²
												EM	Emergency ¹ w/ Test Switch

¹ EM option (housing) and Emergency driver (module) must be selected together

² Only available for Round shape, 750 lm, 2700K or 3000K CCT

HOUSING

DRD5S & SurfaceFrame

Surface Mount LED Downlight

General New Construction DRDHNJO Octagonal Junction Box

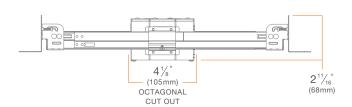
SurfaceFrame

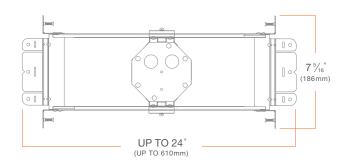
New Construction Octagonal Junction Box **DRDHNJO**

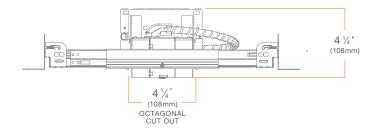
SUMMARY

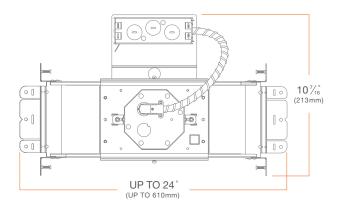
JUNCTION BOX: Equipped with (4) ¹/₂" trade size knockouts (two side, two top) to allow straight conduit runs. Approved for 6 (three in, three out) #12 AWG 70°C through wiring conductors.

MOUNTING: Pre-installed mounting brackets allow vertical adjustment of bar hangers up to 1"


CEILING: 1/2" up to 1 3/4"


CUTOUT: 4 1/8" (105mm) octagonal opening

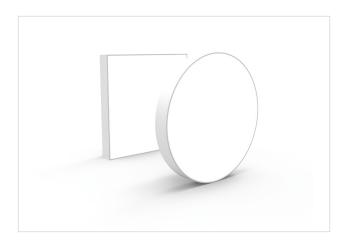

LISTINGS: Metallic outlet box certified UL514A, code compliant for use in appropriate fire-rated assemblies for up to 2-hours, STC/IIC Sound Rated, ASTM E283 certified Air Tight, IC (Insulation Contact) rated


WARRANTY: 5 year limited warranty

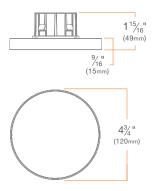
SurfaceFrame w/ Emergency Lighting DRDHNJO EM

SurfaceFrame

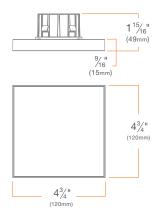
DRDHNJO



MODULE



Surface Mount LED Downlight


General New Construction DRDHNJO Octagonal Junction Box

4" Round DRD5S4R

4" Square DRD5S4S

DRD5S

Surface Mount LED Module DRD5S

SUMMARY

LED: Optimized LED array

SHAPE: 4" Round, 4" Square

MODULE LUMENS: 750 lm (9.0W), 1000 lm (12.0W)

COLOR QUALITY: 90+ CRI, less than 3-step SDCM

сст: 2700К, 3000К, 3500К

INPUT VOLTAGE: 120/277V

DIMMING: Down to less than 5% for TRIAC/ELV at 120V, 1% for 0-10V at 120/277V

MAX INPUT CURRENT (120V): 0.075 amps, 0.1047 amps

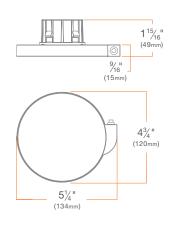
MAX INPUT CURRENT (277V): 0.034 amps, 0.047 amps

POWER FACTOR: Greater than 0.9

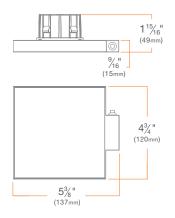
TOTAL HARMONIC DISTORTION: Less than 20%

AMBIENT OPERATING TEMPERATURE: -20°C to 40°C

EMERGENCY LIGHTING: Optional Emergency LED Driver with Integrated Test Switch for lighting up to 90 minutes in event of power failure


PHOTOMETRIC TESTING: Tested in accordance to IESNA LM-79-2008

LISTINGS: ENERGY STAR[®] qualified, California Title 24 2019 JA8 compliant, UL Listed for Wet Location, UL Closet Rating compliant (750 Im only), cULus Listed


LIFETIME: 50,000 hours at 70% lumen maintenance

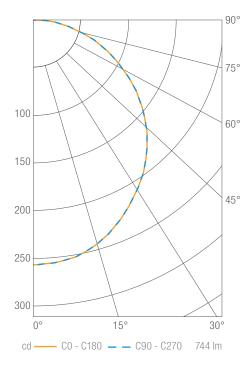
WARRANTY: 5 year limited warranty

4" Round w/ EM Test Switch DRD5S4R EM

4" Square w/ EM Test Switch DRD5S4S EM

DMF LIGHTING 1118 E. 223rd St. Carson, CA 90745 800.441.4422 dmflighting.com

© 2019 DMF Lighting. All Rights Reserved. Specifications subject to change without notice. See website for U.S. and international patent information.


DRD5S & SurfaceFrame

Surface Mount LED Downlight

General New Construction DRDHNJO Octagonal Junction Box

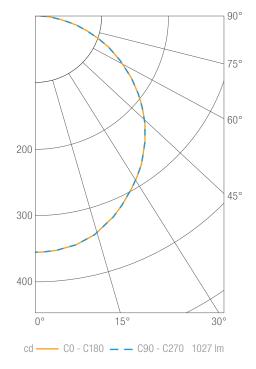
PHOTOMETRY

DRD5S 4" Round, 750 lm, 90 CRI, 3000K DRD5S4R07930

Gamma	C 0°
0°	258
5°	256
10°	253
15°	247
20°	237
25°	226
30°	213
35°	200
40°	185
45°	169
50°	151
55°	132
60°	113
65°	93
70°	73
75°	54
80°	35
85°	18
90°	6

Zonal Lumen Summary

Zone	Lumens	Luminaire %
0-30	199	27
0-40	324	44
0-60	573	77
0-90	744	100
0-180	744	100


Illuminance Chart

Distance from LED	Foot Candles	Diameter
3.0'	29	8.8'
6.0'	7	17.7'
9.0'	3	26.5'
12.0'	2	35.3'

Values in candela

Beam Angle: 70°

DRD5S 4" Round, 1000 lm, 90 CRI, 3000K DRD5S4R10930

Gamma	C 0°
0°	356
5°	354
10°	349
15°	340
20°	327
25°	312
30°	294
35°	276
40°	255
45°	233
50°	209
55°	183
60°	155
65°	128
70°	101
75°	74
80°	48
85°	25
90°	9

Zonal Lumen Summary

Zone	Lumens	Luminaire %
0-30	274	27
0-40	447	44
0-60	790	77
0-90	1027	100
0-180	1027	100

Illuminance Chart

Distance from LED	Foot Candles	Diameter
3.0'	40	8.8'
6.0'	10	17.7'
9.0'	4	26.5'
12.0'	2	35.3'

Beam Angle: 63°

DMF LIGHTING 1118 E. 223rd St. Carson, CA 90745 800.441.4422 dmflighting.com

DRD5S & SurfaceFrame

Surface Mount LED Downlight

General New Construction DRDHNJO Octagonal Junction Box

DIMMER COMPATIBILITY

Recommended Phase-control Dimmers (Dims down to 5% nominal measured light output)

Brand	Series	Model Number	Max Load 750lm DRD5S4R07	Max Load 1000lm DRD5S4R10
Cooper	Aspire	9573	29	23
Leviton	Vizia	VPE06	64	48
	CL Series	AYCL-253, DVCL-253	26	20
Lutron	Grafik Eye 3000	QSGR-3P, QSGR-6P	31	24
Lution	Grafik Sys / Homeworks	RPM-4U	44	35
	Maestro CL	MACL-153M, MSCL-0P153M, MSCL-VP153M	16	12

Compatible Phase-control Dimmers¹ (Dims down to 20% nominal measured light output)

Brand	Series	Model Number	Max Load 750lm DRD5S4R07	Max Load 1000lm DRD5S4R10
Cooper	Aspire	9573	29	23
Cooper	Decorator	DLC03P, DAL06P	29	23
Logrand	Adorne	ADTP703	48	38
Legrand	Digital Light Management	LMRC-221	250	195
	IllumaTech	IPE04	32	25
Leviton	Vizia	VPE04	42	32
	Vizia	VPE06	64	48
	CL Series	AYCL-153, CTCL-153, DVCL-153, LGCL-513, SCL-153, TGCL-513	15	11
	CL Series	AYCL-253, DVCL-253	26	20
	Grafik Eye 3000	QSGR-3P, QSGR-6P	31	24
Lutron	Grafik Sys / Homeworks	RPM-4U	44	35
Lutron	Maestro CL	MACL-153M, MSCL-0P153M, MSCL-VP153M	16	12
	Maestro Wireless	MRF2-6ELV, MRF2-6CL	15	12
	Radio RA	RRD-6NA, RRD-6CL, RRD-6D	15	12
	Skylark Contour CL	CTCL-153P	15	12

¹ Dimmer compatibility reflects performance compatibility only. Please reference your local codes for application.

DRD5S & SurfaceFrame

Surface Mount LED Downlight

General New Construction DRDHNJO Octagonal Junction Box

DIMMER COMPATIBILITY

Brand	Series	Model Number	Max Load 750lm DRD5S4R07	Max Load 1000lm DRD5S4R10
Legrand	Titan	CD4FB	200	150
Leviton	IllumaTech	IP710-DLZ	120	90
Lithonia	Synergy	ISD BC	120	90
	Diva	DVTV	100	75
	Nova	NFTV	200	150
Lutron	Nova	NTSTV-DV	100	75
	Vive-PowPak	RMJS-8T-DV-B	60	45
	Micro-Decorator	DCLV1	60	45
Watt Stopper	DLM	LMRC-211	100	75

SurfaceFrame Options

Shallow Recessed LED Downlight

DRD2 & SurfaceFrame DRDHNJO Octagonal Junction Box

DRD2 & SurfaceFrame Alt/EM

Alternate Dimming and/or Emergency Lighting DRDHNJO Octagonal Junction Box

Apex Series Shallow Recessed LED Downlight

DRD2X & SurfaceFrame DRDHNJO Octagonal Junction Box

DRD2X & SurfaceFrame Alt/EM Alternate Dimming and/or Emergency Lighting DRDHNJO Octagonal Junction Box

Surface Mount LED Downlight

DRD5S & SurfaceFrame DRDHNJO Octagonal Junction Box

SUMMARY DRAWING

SUMMARY - BUILDING SIGNS & MENUS

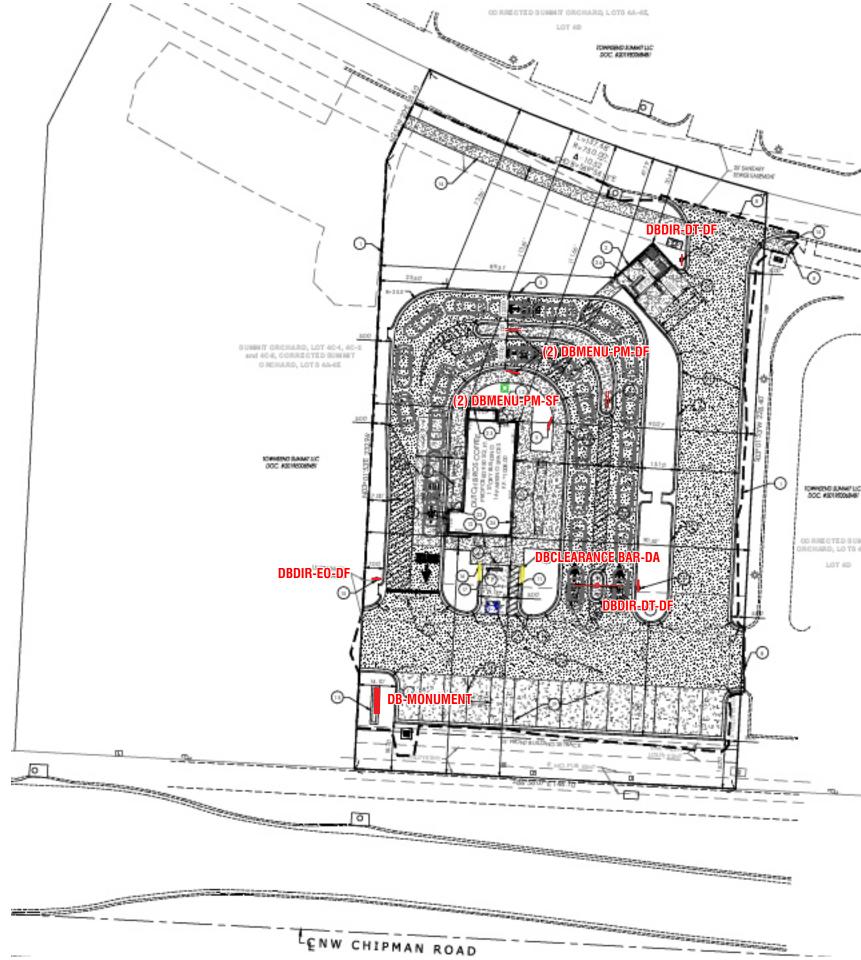
SUMMARY DRAWING

DRAWING #:

32956

<u>CLIENT:</u> DUTCH BROS - MOOIO2 CHIPMAN & WARD LEE'S SUMMIT, MO 64063

DATE OF SHOP DRAWING: 7/22/21


SHOP REVISIONS: 9.9.21 REMOVE WINDMILL OFF WEST & CL'S OFF SOUTH ELEVATION. MOVE DT'S BEHIND EASEMENT LINE. ADD MONUMENT SIGN. 9.17.21 UPDATED ELEVATIONS & SITE PLAN.

ES&A SIGN & AWNING 89975 PRAIRIE RD. EUGENE, OR 97402

P 541.485.5546 F 541.485.5813

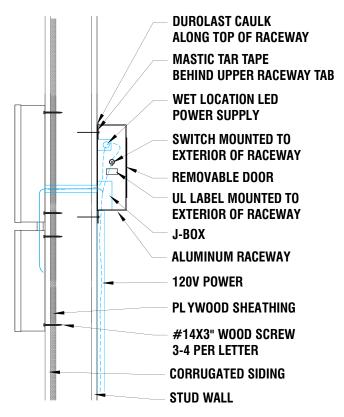
SUMMARY - FREESTANDING SIGNS & MENUS

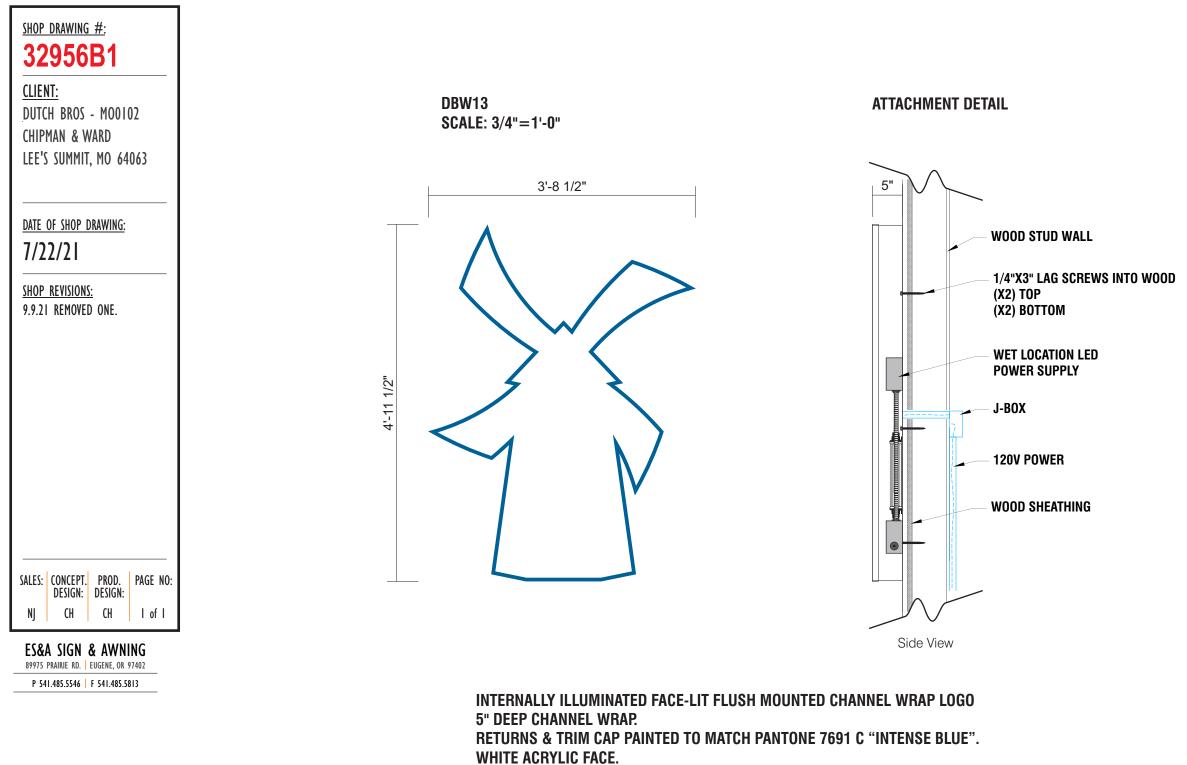
CORRECTED SUMMIT ORCHARD, LO TS 4A-4E,

LOT 4D

SURVEYED PROPERTY LOT 4C-3 36,000 Eq. FL 0.128 Annu S 00 ENV CHPMAN RD

SCOPE OF WORK: MANUFACTURE & INSTALL (2) SETS OF ILLUMINATED CHANNEL LETTERS WITH REMOTE RACEWAYS

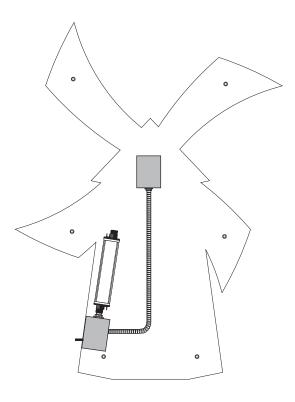


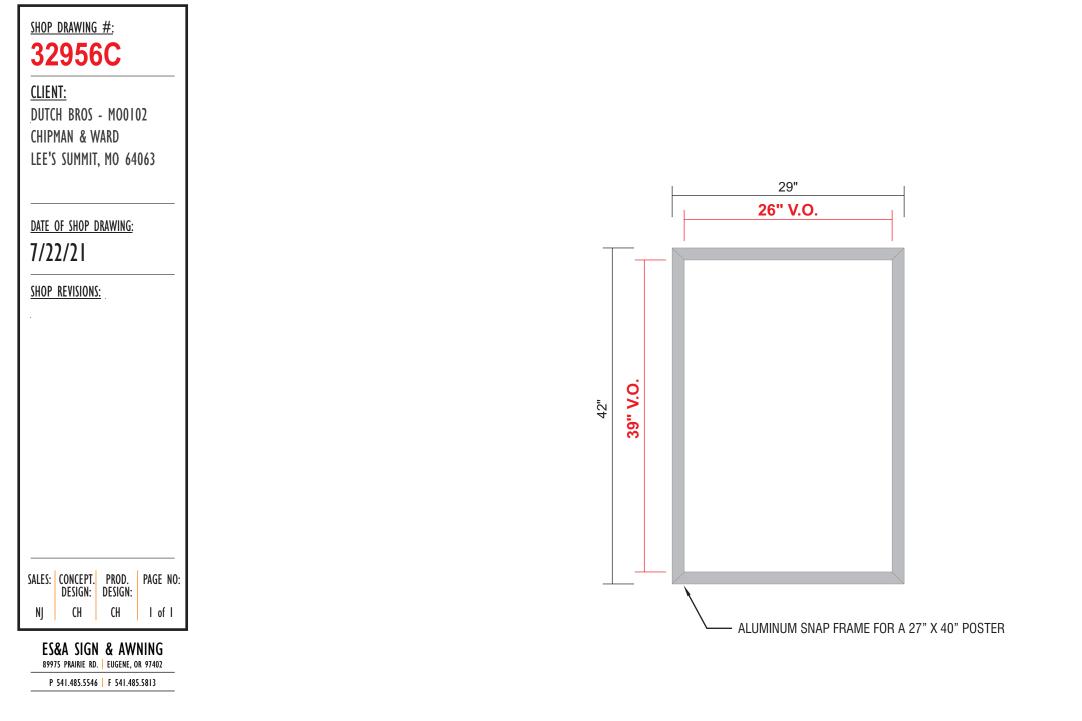

SIDE VIEW

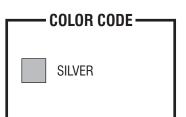
ATTACHMENT DETAIL

SCALE: 3/4"=1'-0" CHANNEL LETTERS WITH REMOTE RACEWAY

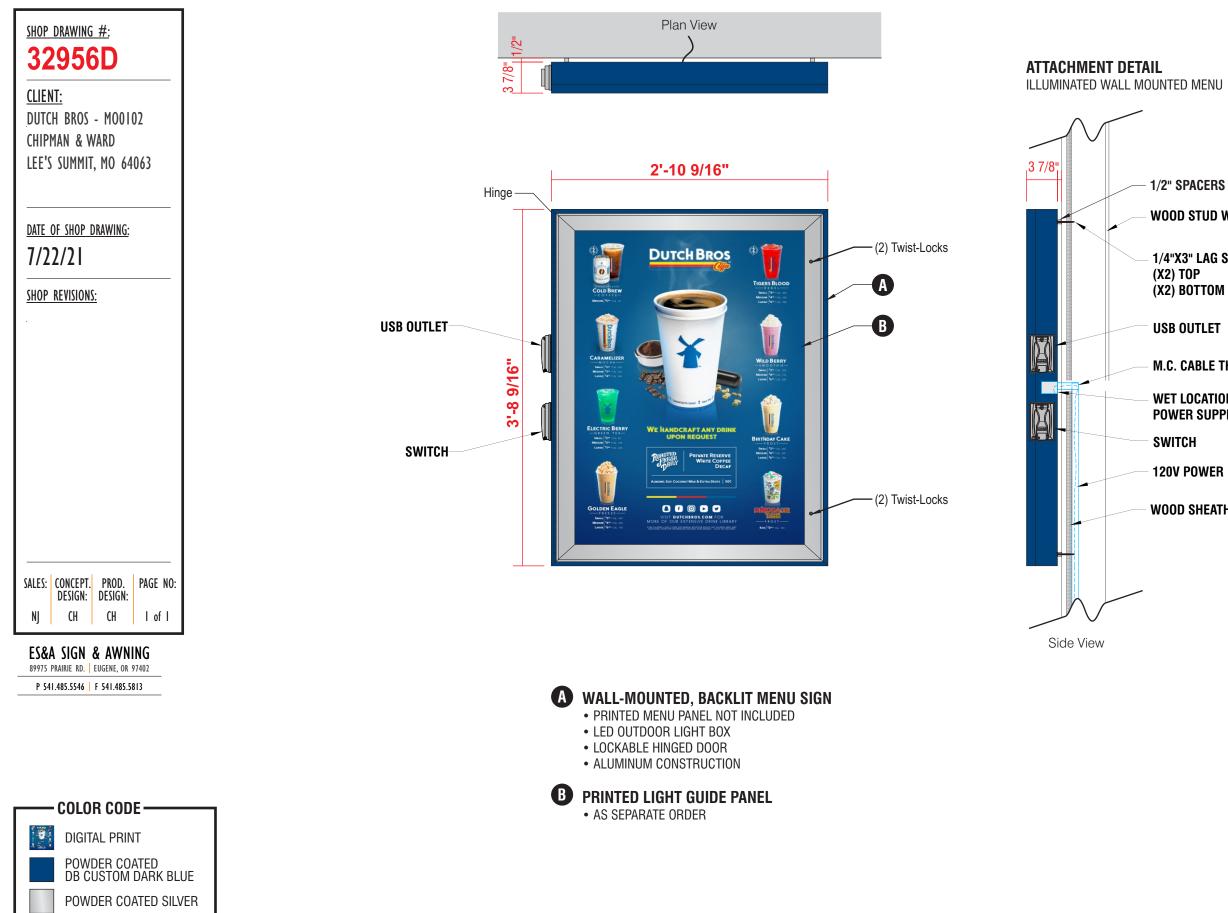
230-127 INTENSE BLUE PSV OUTLINE.


FLUSH MOUNTED SELF CONTAINED INSTALLATION.


LED ILLUMINATION.


COLOR CODE 230-127 INTENSE BLUE PSV WHITE

SELF CONTAINED CHANNEL LOGO


SCREW TO EXTERIOR WALL OF BUILDING

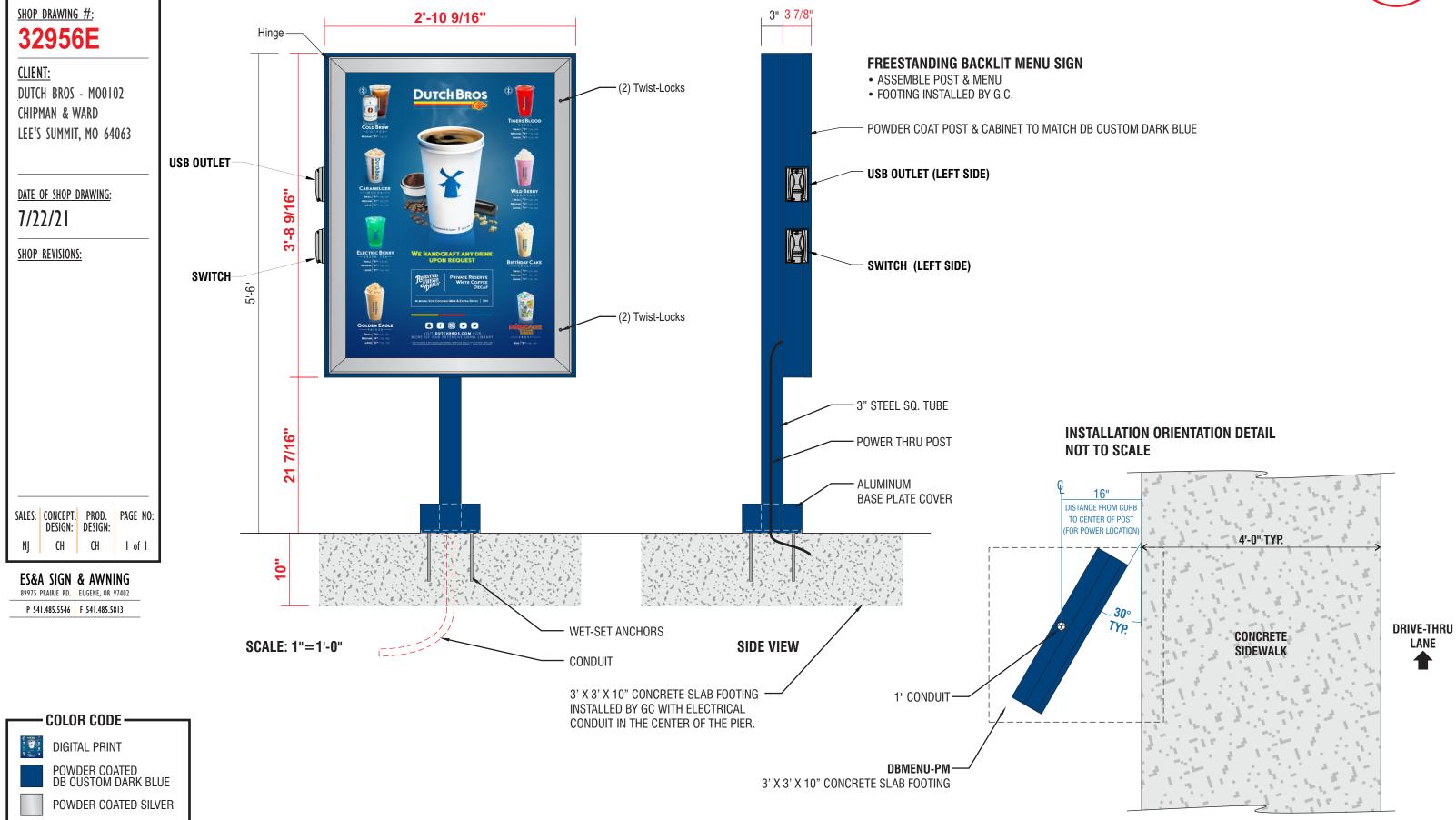
1 1⁄4"

Н

SCALE: 1"=1'-0"

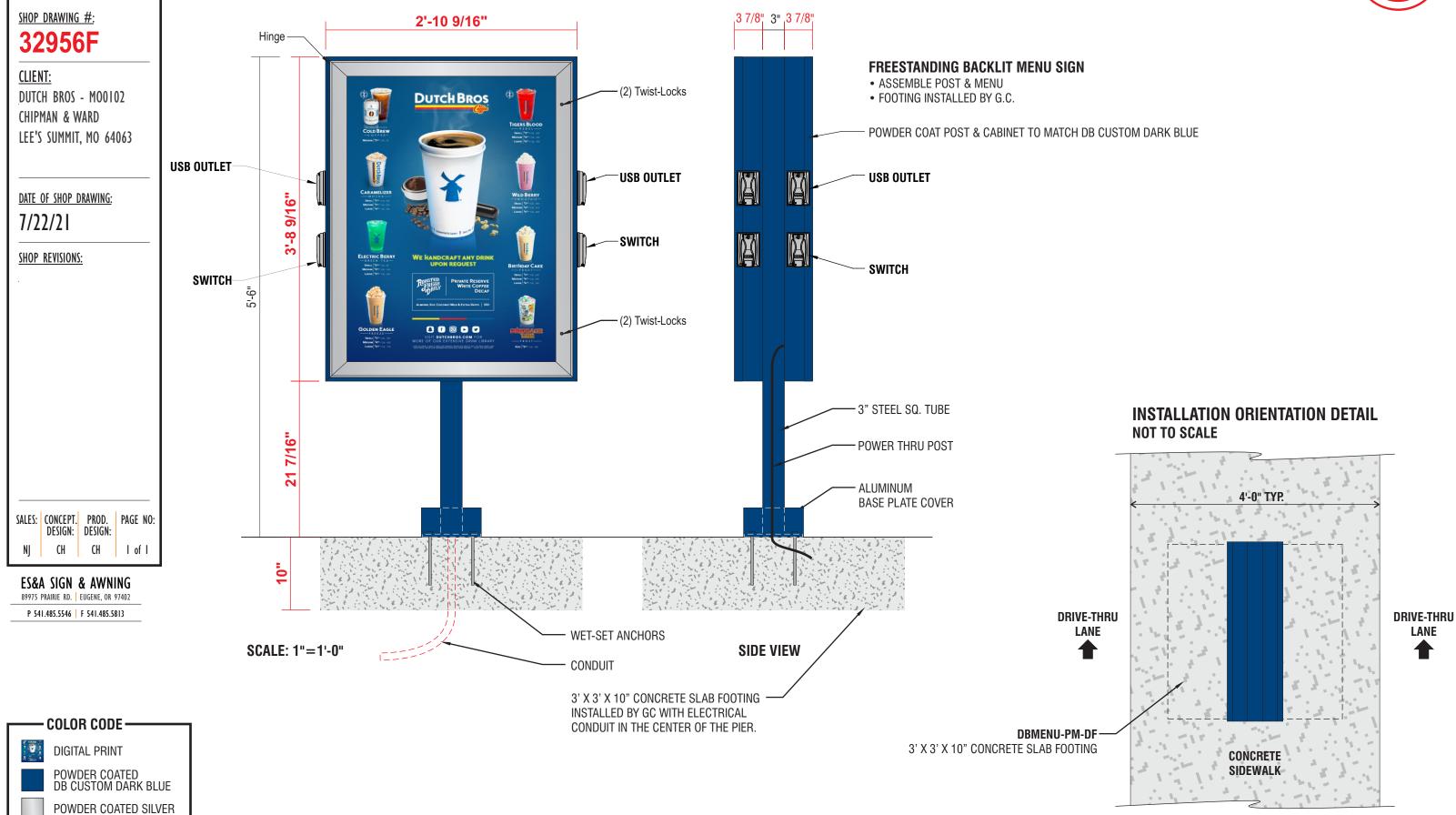
SCOPE OF WORK: PROVIDE (4) ILLUMINATED MENU SIGNS V5 - WALL-MOUNTED

WOOD STUD WALL

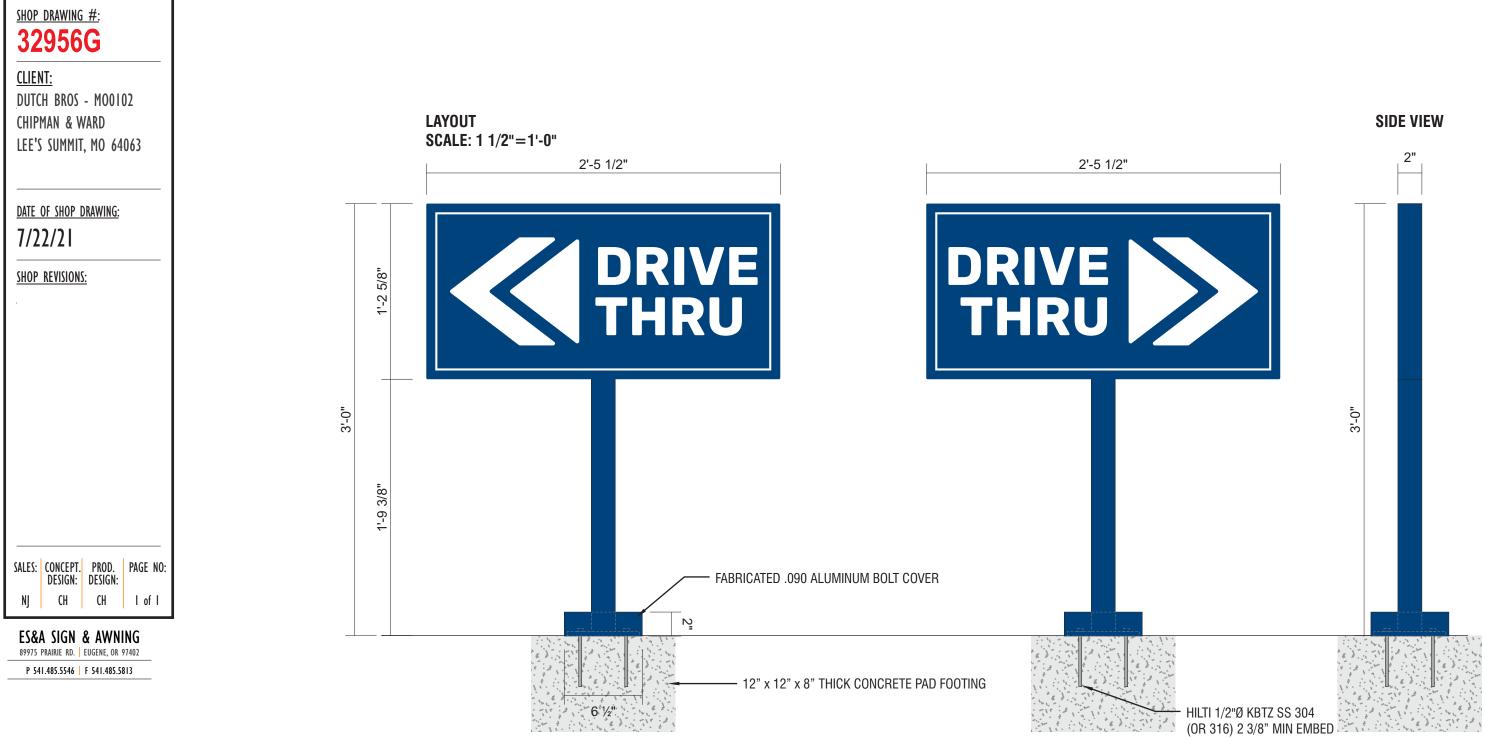

1/4"X3" LAG SCREWS INTO WOOD (X2) BOTTOM

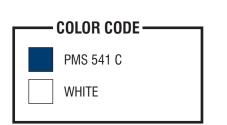
M.C. CABLE THRU WALL

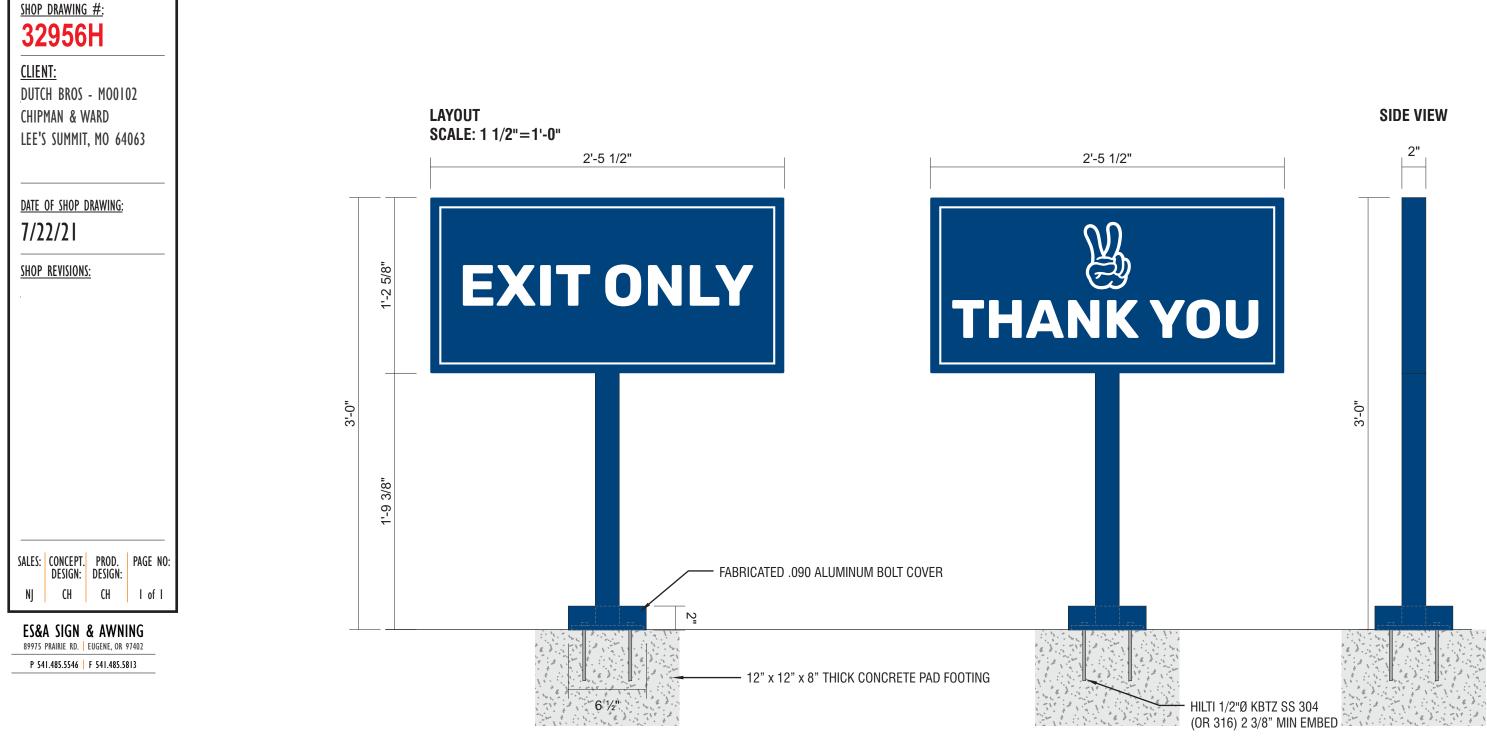
WET LOCATION LED **POWER SUPPLY**


WOOD SHEATHING

SCOPE OF WORK: PROVIDE (2) S/F ILLUMINATED MENU SIGNS V5 - PLATE-MOUNTED

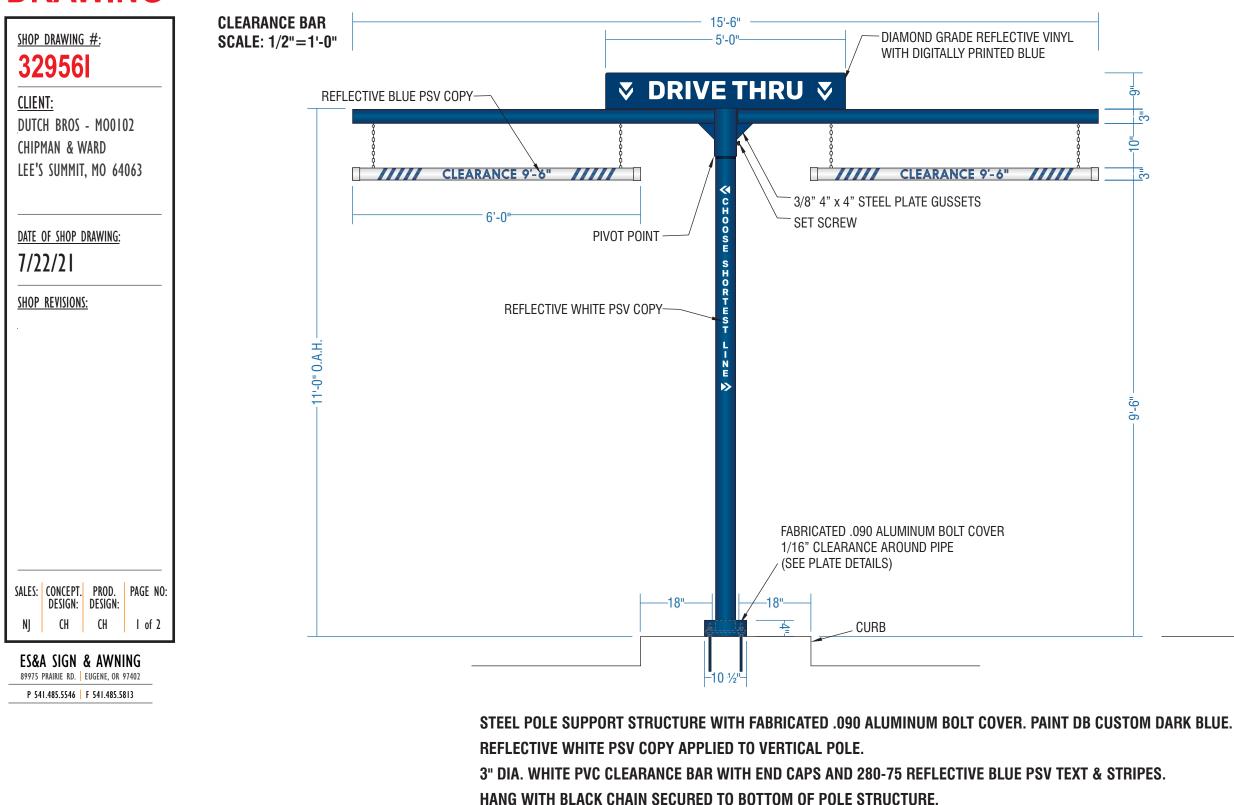



SCOPE OF WORK: PROVIDE (2) D/F ILLUMINATED MENU SIGNS V5 - PLATE-MOUNTED




DIAMOND GRADE REFLECTIVE WHITE VINYL WITH DIGITALLY PRINTED PMS 541 C BLUE BACKGROUND 2" X 2" SQUARE TUBE ALUMINUM FRAME & POST WITH ALUMINUM FACES & 3/8" X 6" X 6" PLATE **FABRICATED .090 ALUMINUM BOLT COVER** PAINT PMS 541 C **INSTALL PLATE-MOUNT SIGN WITH HILTI KWIK BOLTS** PAD FOOTING INSTALLED BY GC

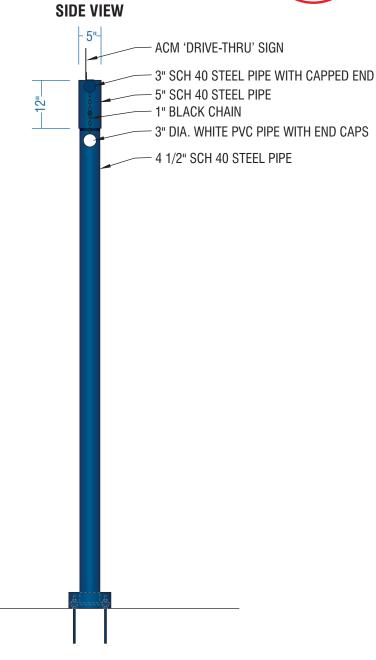
DIAMOND GRADE REFLECTIVE WHITE VINYL WITH DIGITALLY PRINTED PMS 541 C BLUE BACKGROUND 2" X 2" SQUARE TUBE ALUMINUM FRAME & POST WITH ALUMINUM FACES & 3/8" X 6" X 6" PLATE **FABRICATED .090 ALUMINUM BOLT COVER** PAINT PMS 541 C **INSTALL PLATE-MOUNT SIGN WITH HILTI KWIK BOLTS** PAD FOOTING INSTALLED BY GC

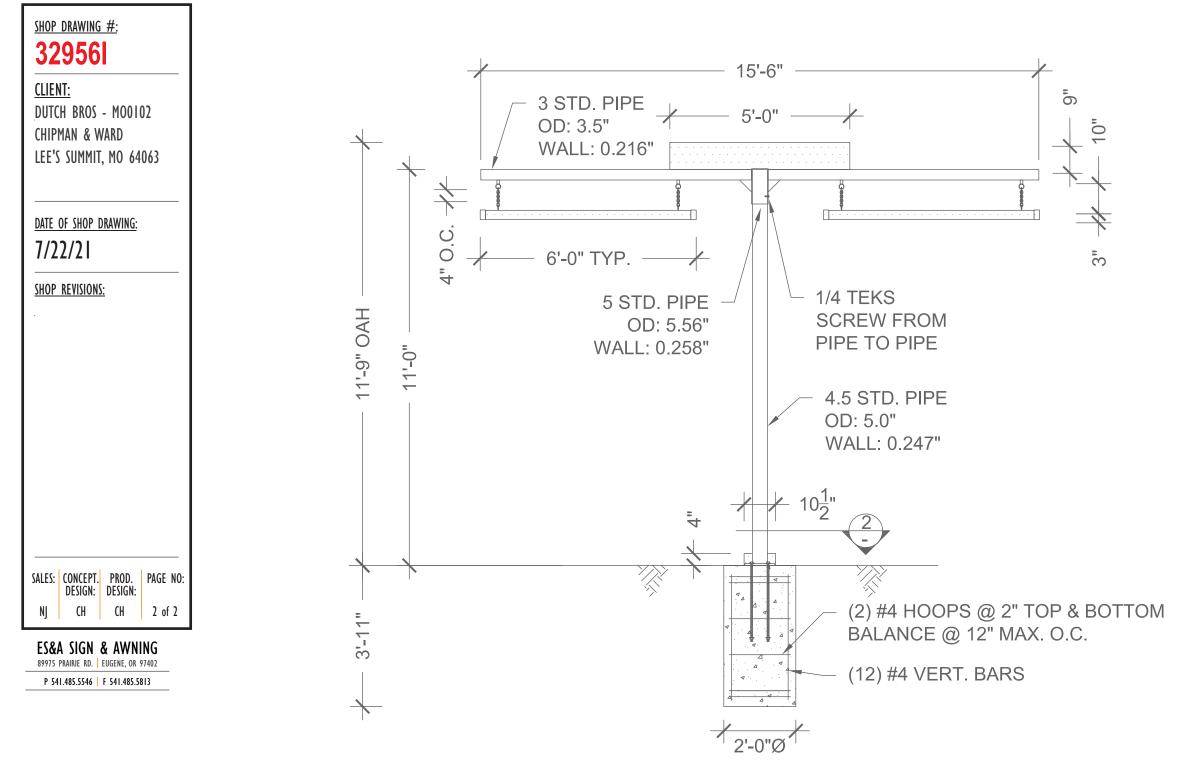

COLOR CODE

DB CUSTOM DARK BLUE

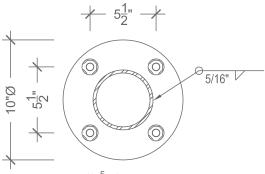
280-75 REFLECTIVE BLUE PSV

WHITE


SCOPE OF WORK: MANUFACTURE & INSTALL (1) S/F POST MOUNTED DOUBLE ARM CLEARANCE BAR WITH PIVOTING ARMS


INCLUDE ONE SHEET REFLECTIVE VINYL NUMBERS MASKED FOR FIELD INSTALLATION.

CLEARANCE NUMBERS TO BE FIELD MEASURED AND APPLIED. MEASURE FROM ASPHALT TO BOTTOM OF OVERHANG MINUS 6". ACM 'DRIVE-THRU' SIGN WITH DIAMOND GRADE REFLECTIVE VINYL WITH DIGITALLY PRINTED BLUE. DIAMOND GRADE REFLECTIVE WHITE VINYL WITH DIGITALLY PRINTED PMS 541 C BLUE BACKGROUND. INSTALL STEEL POLE PLATE-MOUNTED WITH LEVELING NUTS ONTO G.C. PROVIDED FOOTING.



ENGINEERING DETAILS

ELEVATION SCALE: 3/8"=1'-0"

 $10"Øx_8^{5"}$ STEEL PLATE W/ (4) $\frac{5}{8}$ "Ø THREADED ANCHOR RODS MIN EMBED. = 24" INTO CONCRETE W/NUT/WASHER/NUT @ EMBED. END

> BASE PLATE SCALE: 1 1/2"=1'-0"

NJ

230-015 YELLOW PSV

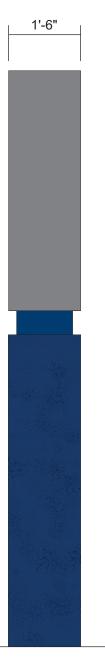
230-127 INTENSE BLUE PSV

230-33 RED PSV

DB CUSTOM GREY

DB CUSTOM DARK BLUE

WHITE

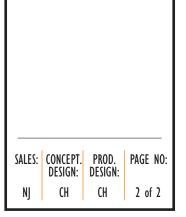

SCOPE OF WORK: MANUFACTURE & INSTALL (1) D/F ILLUMINATED MONUMENT SIGN

SHOP DRAWING #: **FRONT VIEW** 32956J SCALE: 1/2"=1'-0" **CLIENT:** 13'-0" DUTCH BROS - MOOIO2 CHIPMAN & WARD LEE'S SUMMIT, MO 64063 DUTCH BROS DATE OF SHOP DRAWING: 9/9/21 5'-0" SHOP REVISIONS: .0 12'-0" 6'-6" SALES: CONCEPT. PROD. PAGE NO: DESIGN: DESIGN: CH СН l of 2 ES&A SIGN & AWNING 89975 PRAIRIE RD. | EUGENE, OR 97402 P 541.485.5546 F 541.485.5813 COLOR CODE -

> FABRICATED ALUMINUM CABINET PAINTED DB CUSTOM GREY. **REVEAL PAINTED DB CUSTOM DARK BLUE. BACKED-UP WHITE ACRYLIC LETTERS.** 1ST SURFACE 230-015 YELLOW, 230-33 RED, & 230-127 INTENSE BLUE PSV. WHITE LED ILLUMINATION. FABRICATED ALUMINUM SKIRT PAINTED DB CUSTOM DARK BLUE WITH MEDIUM TEXTURE COAT.

SIDE VIEW SCALE: 1/2"=1'-0"

<u>SHOP DRAWING #:</u> 32956J

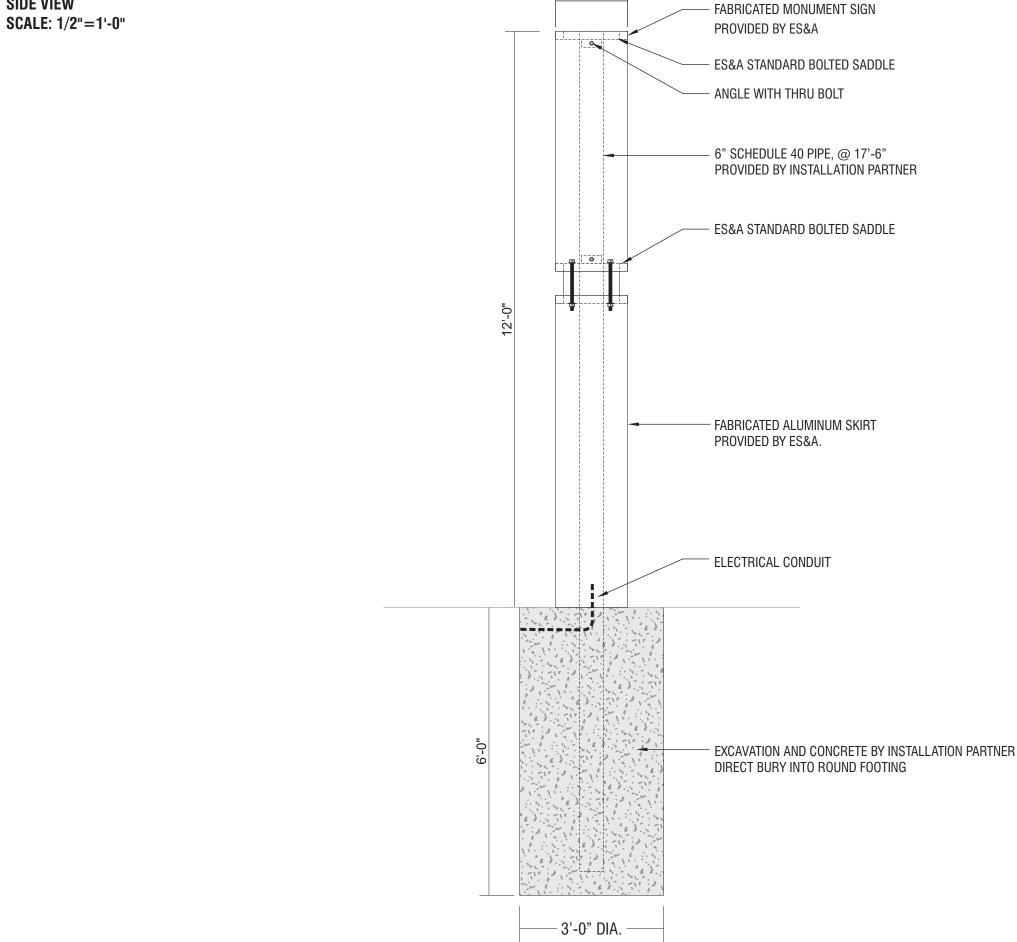

<u>CLIENT:</u>

DUTCH BROS - MOOIO2 CHIPMAN & WARD LEE'S SUMMIT, MO 64063

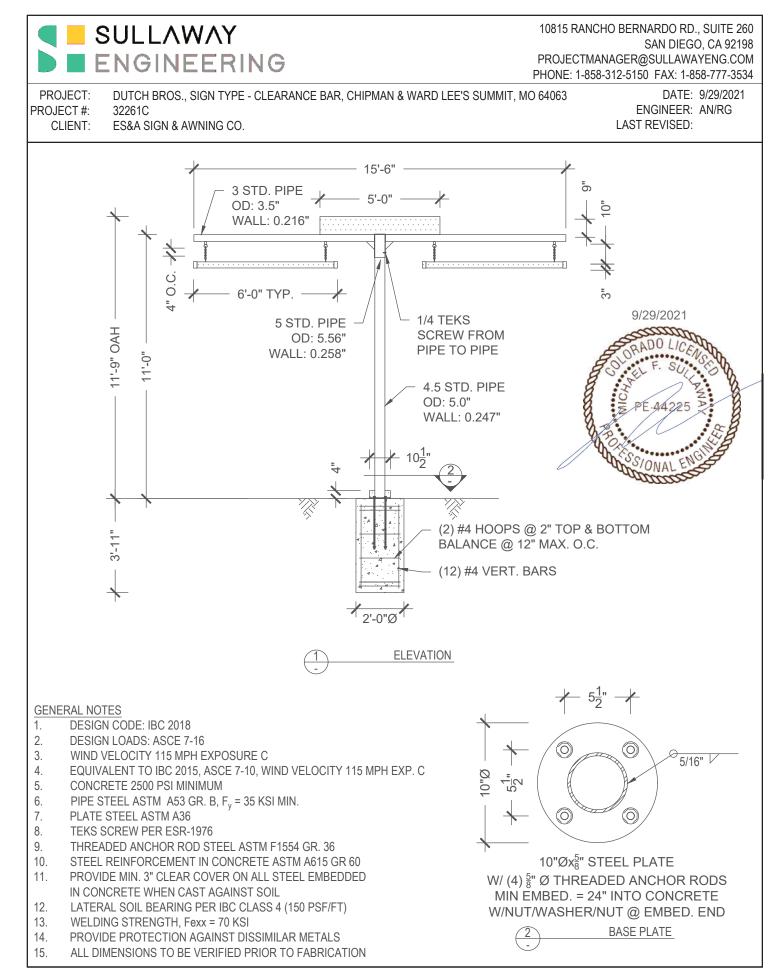
DATE OF SHOP DRAWING:

9/9/21

SHOP REVISIONS:



ES&A SIGN & AWNING 89975 PRAIRIE RD. EUGENE, OR 97402


P 541.485.5546 F 541.485.5813

ATTACHMENT DETAIL

SIDE VIEW

1'-6"

Page 2 of 12

OJECT: DJ. NO.: CLIENT: ind Loa l_z *G*C _f *A C _f = K _{zt} =	ES&A SIC ads; from f 1.850 1.0 from table 0.85 115 0.85 0.064 6.67 height at section c.g. 0.17 4.92	BROS. BROS. BN & AW m ASCI with q _z (Fig. 29. (26.8.2) (= 28.3-1 for signs mph (26.9)	NING C E 7-16 = 0.002 .3-1) =1.0 unles s (table q _z 24.5	256K _z K _{zt} K _d ss unusual la	ndscape) E: A _f	(29.3.2 & 1.00 (posure= weight= M _{DL} = shear	units; poun 29.4) C	ENGII ds, feet 0 r kips k-ft	DATE: NEER: unless r	
OJECT: DJ. NO.: CLIENT: ind Loa L_z *G*C _f *A C_f = K_z = K_z = K_d = V= G= S/h= B/s= tructure mponent 1 2	DUTCH B 32261C ES&A SIC ads; fro 1.850 1.0 from table 0.85 115 0.85 0.064 6.67 height at section c.g. 0.17 4.92	BROS. BROS. BN & AW m ASCI with q _z (Fig. 29. (26.8.2) (= 28.3-1 for signs mph (26.9) K _z 0.850	NING C E 7-16 = 0.002 .3-1) =1.0 unles s (table q _z 24.5	256K _z K _{zt} K _d ss unusual la 26.6-1) pressure q _z *G*C _f	ndscape) E: A _f	1.00 (posure= weight= M _{DL} =	units; poun 29.4) C 0.161 0.00 Wind	ENGII ds, feet 0 r kips k-ft	NEER: unless r	AN/RG
DJ. NO.: CLIENT: ind Loa L_z *G*C _f *A $C_f=$ $K_{zt}=$ $K_d=$ V= G= S/h= B/s= tructure mponent 1 2	32261C ES&A SIC ads; from f 1.850 1.0 from table 0.85 115 0.85 0.064 6.67 height at section c.g. 0.17 4.92	GN & AW m ASCI with q _z (Fig. 29. (26.8.2) (= 28.3-1 for signs mph (26.9) (26.9)	E 7-16 = 0.002 .3-1) =1.0 unles s (table q _z 24.5	256K _z K _{zt} K _d ss unusual la 26.6-1) pressure q _z *G*C _f	ndscape) E: A _f	1.00 (posure= weight= M _{DL} =	units; poun 29.4) C 0.161 0.00 Wind	ENGII ds, feet 0 r kips k-ft	NEER: unless r	AN/RG
CLIENT: Tind Loa C_{f} C_{f} K_{z} K_{z} K_{z} K_{d} V G S/h B/s tructure mponent 1 2	ES&A SIC ads; from f 1.850 1.0 from table 0.85 115 0.85 0.064 6.67 height at section c.g. 0.17 4.92	m ASCI with q _z (Fig. 29. (26.8.2) (= 28.3-1 for signs mph (26.9) . K _z 0.850	E 7-16 = 0.002 .3-1) =1.0 unles s (table q _z 24.5	256K _z K _{zt} K _d ss unusual la 26.6-1) pressure q _z *G*C _f	ndscape) E: A _f	1.00 (posure= weight= M _{DL} =	units; poun 29.4) C 0.161 0.00 Wind	ds, feet 0 r kips k-ft	unless r	noted otherwise
ind Loa I_z *G*Cf*A Cf= Kzt= Kz= Kd= V= G= s/h= B/s= tructure mponent 1 2	ads; from f 1.850 1.0 from table 0.85 115 0.85 0.064 6.67 height at section c.g. 0.17 4.92	m ASCI with q _z (Fig. 29. (26.8.2) (= 28.3-1 for signs mph (26.9) . K _z 0.850	E 7-16 = 0.002 .3-1) =1.0 unles s (table q _z 24.5	256K _z K _{zt} K _d ss unusual la 26.6-1) pressure q _z *G*C _f	ndscape) E: A _f	1.00 (posure= weight= M _{DL} =	c 0.161 0.00 Wind	0 r kips k-ft		
$\frac{1}{2} G^* C_f^* A$ $C_f^=$ $K_{zt}^=$ $K_d^=$ $V^=$ $G^=$ $B/s^=$ C_{zt}^{T} C_{zt}^{T}	f 1.850 1.0 from table 0.85 115 0.85 0.064 6.67 height at section c.g. 0.17 4.92	with q _z (Fig. 29. (26.8.2) (= 28.3-1 for signs mph (26.9) . K _z 0.850	= 0.002 .3-1) =1.0 unles s (table q _z 24.5	256K _z K _{zt} K _d ss unusual la 26.6-1) pressure q _z *G*C _f	ndscape) E: A _f	1.00 (posure= weight= M _{DL} =	c 0.161 0.00 Wind	0 r kips k-ft		
$C_{f}=K_{z}=K_{z}=K_{d}=V=G=s/h=B/s=$	1.850 1.0 from table 0.85 115 0.85 0.064 6.67 height at section c.g. 0.17 4.92	(Fig. 29. (26.8.2) (= 28.3-1 for signs mph (26.9) . K _z 0.850	.3-1) =1.0 unles s (table q _z 24.5	pressure q _z *G*C _f	ndscape) E: A _f	1.00 (posure= weight= M _{DL} =	C 0.161 0.00 Wind	kips k-ft	nax. he	eight= 11.75
$K_{zt} = K_{z} = K_{d} = V = G = s/h = B/s = mponent$	1.0 from table 0.85 115 0.85 0.064 6.67 height at section c.g. 0.17 4.92	(26.8.2) (= 28.3-1 for signs mph (26.9) . K _z 0.850	etable s (table q _z 24.5	26.6-1) pressure q _z *G*C _f	Ex Ar	<posure= weight= M_{DL}=</posure= 	C 0.161 0.00 Wind	kips k-ft	nax. he	əight= 11.75
$K_z = K_d = V = G = s/h = B/s = tructure mponent 1 2$	from table 0.85 115 0.85 0.064 6.67 height at section c.g. 0.17 4.92	e 28.3-1 for signs mph (26.9) K _z 0.850	g _z q _z	26.6-1) pressure q _z *G*C _f	Ex Ar	weight= M _{DL} =	0.161 0.00 Wind	k-ft		
$K_{d} = V = G = S/h = B/s = $ tructure mponent 1	0.85 115 0.85 0.064 6.67 height at section c.g. 0.17 4.92	for signs mph (26.9) 	q _z 24.5	pressure q _z *G*C _f	A _f	weight= M _{DL} =	0.161 0.00 Wind	k-ft		
V= G= s/h= B/s= tructure mponent	115 0.85 0.064 6.67 height at section c.g. 0.17 4.92	mph (26.9) . K _z 0.850	q _z 24.5	pressure q _z *G*C _f	-	M _{DL} =	0.00 Wind	k-ft		
G= s/h= B/s= mponent 1 2	0.85 0.064 6.67 height at section c.g. 0.17 4.92	(26.9) K _z 0.850	24.5	q _z *G*C _f	-	M _{DL} =	0.00 Wind	k-ft		
s/h= B/s= tructure mponent	0.064 6.67 height at section c.g. 0.17 4.92	(26.9) K _z 0.850	24.5	q _z *G*C _f	-	M _{DL} =	0.00 Wind	k-ft		
B/s= mponent 1 2	6.67 height at section c.g. 0.17 4.92	0.850	24.5	q _z *G*C _f	-		Wind			
mponent 1 2	height at section c.g. 0.17 4.92	0.850	24.5	q _z *G*C _f	-	shear				
mponent 1 2	section c.g. 0.17 4.92	0.850	24.5	q _z *G*C _f	-	shear				
1 2	0.17 4.92	0.850	24.5		-	shear	Moment M_W			
2	4.92			38.46						
		0.850			0.29	11	2	_		
3			24.5	38.46	3.82	147	722			
~	10.63	0.850	24.5	38.46	11.95	460	4884			
				sums:	16.1	618	5.61	(M _w)	k-ft	arm= 9.1
sqrt(1.2M _{DI}	P _u = (2+1.0M _W ²) =		kip k-ft			M=	5.61	k-ft	M=sqrt	$(M_{DL}^{2}+M_{w}^{2})$
gn		section	; pipe							
$M_n = f_y Z$	f _y =	= 35	ksi	φ=	0.9					
Н	M _u (k-ft)	Z req	d. (in)	Size(in)	t (in)	Z	USE		_	
at grade	5.61	2.1	14	3	0.216	2.2	4.5 STD. PIF	PE, φMr	n=13.7 k-	-ft
esign			footp	rint: roun	d					
-ω=	1.3	IBC 1605.3.	.2	IBC Ta	ble 1806.2	sections 180	06.3.4, 1807.3.2	2	S=(1.3	x2x150 psf/ft)
P=	0.48	kip		S1 = S	6 x d / 3		A = 2.34 x P	/ (S1 x	b)	S= 400
S1=	517			d =0.5	ixA (1+ (1	+4.36x h/A)) ^.5)		IBC 18	07.3.2.1
A=	1.09									
				footing:	2' - 0	" dia.		3' -	- 11"	deep
	H at grade esign ω= P= S1=	H M _u (k-ft) at grade 5.61	H $M_u(k-ft)$ Z req' at grade 5.61 2.7 esign	H $M_u(k-ft)$ Z req'd. (in) at grade 5.61 2.14 esign footp ω = 1.3 IBC 1605.3.2 P= 0.48 kip S1= 517	H $M_u(k-ft)$ Z req'd. (in) Size(in) at grade 5.61 2.14 3 esign footprint: roun ω = 1.3 IBC 1605.3.2 IBC Ta P= 0.48 kip S1 = 5 S1= 517 d =0.5 A= 1.09 A	H M _u (k-ft) Z req'd. (in) Size(in) t (in) at grade 5.61 2.14 3 0.216 esign footprint: round ω = 1.3 IBC 1605.3.2 IBC Table 1806.2, P= 0.48 kip S1 = S x d / 3 S1 = 517 d =0.5xA (1+ (1) A= 1.09 IBC	H M _u (k-ft) Z req'd. (in) Size(in) t (in) Z at grade 5.61 2.14 3 0.216 2.2 esign footprint: round ω = 1.3 IBC 1605.3.2 IBC Table 1806.2, sections 180 P= 0.48 kip S1 = S x d / 3 S1 = 517 d =0.5xA (1+ (1+4.36x h/A))	H Mu(k-ft) Z req'd. (in) Size(in) t (in) Z USE at grade 5.61 2.14 3 0.216 2.2 4.5 STD. PH esign footprint: round ω = 1.3 IBC 1605.3.2 IBC Table 1806.2, sections 1806.3.4, 1807.3.2 P= 0.48 kip S1 = S x d / 3 A = 2.34 x P S1= 517 d =0.5xA (1+ (1+4.36x h/A) ^.5) A= A= 1.09 1.09 1.09 1.00	H M _u (k-ft) Z req'd. (in) Size(in) t (in) Z USE at grade 5.61 2.14 3 0.216 2.2 4.5 STD. PIPE, ϕ Mr esign footprint: round ω = 1.3 IBC 1605.3.2 IBC Table 1806.2, sections 1806.3.4, 1807.3.2 P= 0.48 kip S1 = S x d / 3 A = 2.34 x P / (S1 x d = 0.5xA (1+ (1+4.36x h/A) ^.5)) A= 1.09	H $M_u(k-ft)$ Z req'd. (in) Size(in) t (in) Z USE at grade 5.61 2.14 3 0.216 2.2 4.5 STD. PIPE, ϕ Mn=13.7 keesing esign footprint: round ω = 1.3 IBC 1605.3.2 IBC Table 1806.2, sections 1806.3.4, 1807.3.2 S=(1.3) P= 0.48 kip S1 = S x d / 3 A = 2.34 x P / (S1 x b) S1 = 517 A= 1.09 IBC 180 A= A A

SULLAWAY10815 Rancho Bernardo RD., SD, CA 92127
projectmanager@sullawayeng.com
Phone: 858-312-5150 Fax: 858-777-3534PROJECT: DUTCH BROS.DATE:9/29/2021PROJ. NO.: 32261CENGINEER:AN/RGCLIENT: ES&A SIGN & AWNING CO.CA 92127
projectmanager@sullawayeng.com

V5.5

units; pounds, feet unless noted otherwise

Check Buckling for Round HSS Section

ole Design-AISC		sectior	n; pipe			weight=	0.161	kips			
	F _y =	= 35	ksi	φ=	0.9			E=	29,000	ksi	
Н	M _u (k-ft)			Size(in)	t (in)	Z	S				
at grade	5.61	2.1	4	5	0.230	5	4		spec wt=	0.289	kcf
					r=				signage wt;	0.161	k
D/t= 2	1 8				A= h (L) =				pipe weight P=		k k
KL/r= 1					· (∟) -	- 11.00			P _r =	0.220	k
K= 2				F _{cr} =	10.44	for KL/r <s< td=""><td>qrt(E/f_v)</td><td></td><td>- 1</td><td>AISC</td><td></td></s<>	qrt(E/f _v)		- 1	AISC	
Fe= 1		ksi (E3-4)		10.62	for KL/r>s	,.				
4.71sqrt(E/f _y)= 1				use F _{cr} =			,.				
for D/t < 0.07 E/F	y section is	s compact		0.07 E/F _y =	58						
for D/t < 0.31 E/F	y section is	s non-com	pact	0.31 E/F _v =	257						
Section is C	-			,							
P _n =F _{cr} A _g =	36.6	k		P _c =∳Pn=	32.9	k					
I _n =(0.021E/(D/t) + F _y)S=	20.9	k (non-co	mpact)								(F8-2
M _n =F _y Z=	15.3	k-ft (com	pact)								
M _n =F _{cr} S=	3.5	k-ft (slend	der - slen	der sections N	NOT USE	D)					
use M _n =	15.3	k-ft		F	P _u / ϕ P _n =	0.00825					
$M_c = \phi M_n =$	13.7	k-ft		N	l _u /φM _n =	0.40839					
	P _r /P _c = P _r /2P _c =									AISC	Chap.
P _r /P _c + 8/ For P _r /P _c <0.2; P _r /2P _c	9 * M _r /M _c = + M _r /M _c = use	0.413									

SULLAWAY ENGINEERING

PROJECT: DUTCH BROS.

PROJ. NO.: 32261C

CLIENT: ES&A SIGN & AWNING CO.

10815 Rancho Bernardo RD., SD, CA 92127 projectmanager@sullawayeng.com Phone: 858-312-5150 Fax: 858-777-3534

> DATE: 9/29/2021 ENGINEER: AN/RG

Check 3 STD. PIPE (LRFD):

units; pounds, feet unless noted otherwise

Pnet= Tributary Area= Wind Load=	(See Page#2)= A _{Trib} = WL=Pnet*A _{Trib} =	38.46 psf 6.150 ft ² (From AutoCAD) 0.237 kips
Dead Load=	DL=1.2*10psf*A _{Trib} =	
arm=	=	57.25 in (From AutoCAD)
MWL=	WL*arm=	13.54 k-in
MDL=	DL*arm=	4.23 k-in
Total Moment=	Mu = MDL+MWL=	1.48 k-ft
Moment Capacity=	(Per AISC Manual) ϕ Mn=	5.75 k-ft
Check:	Mu/φMn=	0.26 OK

Torsion on 4.5 STD. PIPE (LRFD): :

Tr=

MWL*2 Clearance bars= 27.086 k-in (MWL = See Above)

Check 1/4" dia. Teks Screw

WL Shear = Va=	0.237k * 2 pipes = 0.6 * WL Shear =	0.473 kips (See Above) 0.284 kips
tcontact =	=	0.187 in
tnoncontact =	=	0.187 in
Vcap =	=	0.990 kips OK

SULLAWAY

PROJECT: DUTCH BROS.

10815 Rancho Bernardo RD., SD, CA 92127 projectmanager@sullawayeng.com Phone: 858-312-5150 Fax: 858-777-3534

DATE: 9 ENGINEER:

:: 9/292021 :: AN/RG

PROJ. NO.: 32261C CLIENT: ES&A SIGN & AWNING CO.

units; pounds, feet unless noted otherwise

Check Pipe4.5SCH40 for tors	(AISC 14 H3)		
Tr =	27.086 k-in	(See Page#3)	Fy = 35 ksi D = 5.00 in ³
Fcr = or	147.8933 ksi	(eq'n. H3-2a)	$t = 0.230 \text{ in}^3$ E = 29000 ksi
Fcr =	171.6667 ksi	(eq'n. H3-2b)	L = 132 in
but not greater than: 0.6 Fy =	21 ksi		$C = 7.95 \text{ in}^3$ $\phi = 0.9$
φTn = φ Fcr C =	150 k-in	ОК	
$Mu/\phi Mn + (Tr/\phi Tn)^2 =$	0.445 <1	ОК	(eq'n. H3-6)

Page 6 of 12

SULLAWAY	G		1	projectn	nardo RD., SD, CA 92127 nanager@sullawayeng.com 2-5150 Fax: 858-777-3534
PROJECT: DUTCH BROS. PROJ. NO.: 32261C CLIENT: ES&A SIGN & AWNING			EN	DATE: NGINEER:	9/29/2021 AN/RG
Check 10 Dia x 0.625" Steel Base Plate	, A36 (LF	RFD):	uni	ts; pounds, feet	t unless noted otherwise
n =2 arm =0.750 in Mplate = Z= \$\overline Mn =	b = 7.00 in	t = *n*arm = bt^2/4=	0.625 in 7.72 k-in (0.68 in ³ 22.15 k-in		5149.0 lb mpson's Report)
Check Vertical Rebar					
2*T per bolt/#bars # of bars (within embed. length): bar #:	2.06 k 5 4	(T = See A	Above)	fy = db = Ab = φ =	60 ksi 0.50 in 0.20 in ² 0.75
Tc = φ fy Ab =	8.84 k	OK		۲	

Page 7 of 12

Strong-Tie

Anchor Designer™ Software Version 2.9.7376.6

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place Material: AB Diameter (inch): 0.625 Effective Embedment depth, h_{ef} (inch): 24.000 Anchor category: -Anchor ductility: Yes h_{min} (inch): 26.13 C_{min} (inch): 3.75 S_{min} (inch): 3.75

Recommended Anchor

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB5 (5/8"Ø)

Company:Date:3/14/2020Engineer:Page:1/6Project:Address:Phone:E-mail:

Project description: Location: Fastening description:

Base Material

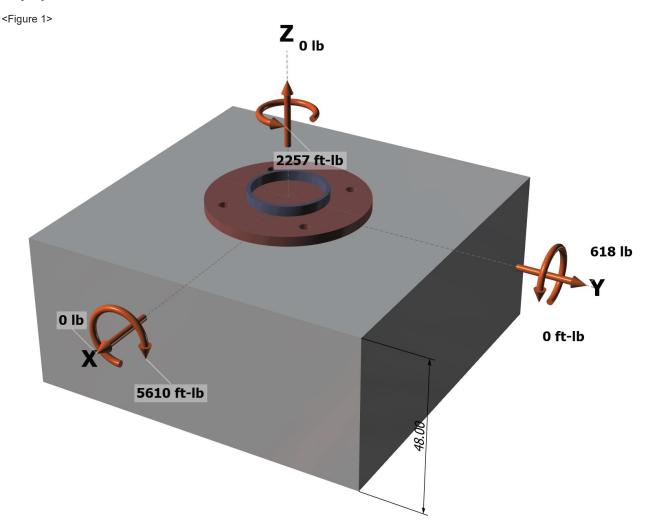
Concrete: Normal-weight Concrete thickness, h (inch): 48.00 State: Cracked Compressive strength, f_c (psi): 2500 $\Psi_{c,V}$: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No Ignore 6do requirement: No Build-up grout pad: No

Base Plate

Diameter x Thickness (inch): 10.00 x 0.63 Yield stress: 36000 psi

Profile type/size: HSS5X0.250

Page 8 of 12



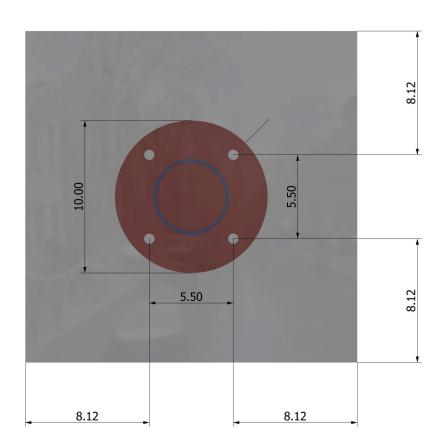
Company:	Date:	3/14/2020
Engineer:	Page:	2/6
Project:		
Address:		
Phone:		
E-mail:		

Load and Geometry Load factor source: ACI 318 Section 5.3 Load combination: not set Seismic design: No Anchors subjected to sustained tension: Not applicable Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Strength level loads:

N_{ua} [lb]: 0 V_{uax} [lb]: 0 V_{uay} [lb]: 618 M_{ux} [ft-lb]: -5610 M_{uy} [ft-lb]: 0 Muz [ft-lb]: 2257

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com


Page 9 of 12

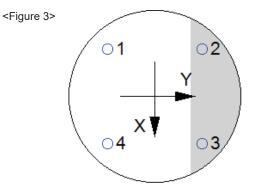
Anchor Designer™ Software Version 2.9.7376.6

Company:	Date:	3/14/2020
Engineer:	Page:	3/6
Project:		
Address:		
Phone:		
E-mail:		

<Figure 2>

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com Page 10 of 12

SIMPSON	Anchor Designer™
Strong-Tie	Software Version 2.9.7376.6
ß	


Л	Company:	Date:	3/14/2020
-	Engineer:	Page:	4/6
	Project:		
	Address:		
	Phone:		
	E-mail:		

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	5149.2	1231.1	-1076.6	1635.4
2	0.0	-1231.1	-1076.6	1635.4
3	0.0	-1231.1	1385.6	1853.4
4	5149.2	1231.1	1385.6	1853.4
Sum	10298.4	0.0	618.0	6977.6

Maximum concrete compression strain (‰): 0.31 Maximum concrete compression stress (psi): 1331 Resultant tension force (Ib): 0 Resultant compression force (Ib): 10298

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
13100	0.75	9825

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

$\phi N_{pn} = \phi \Psi$	$V_{c,P}N_p = \phi \Psi_{c,P} 8A_{brg} f$	"₀ (Sec. 17.3.1,	Eq. 17.4.3.	1 & 17.4.3.4)
$\Psi_{c,P}$	A_{brg} (in ²)	f'c (psi)	φ	ϕN_{pn} (lb)

10,1	, 15/g (11)	. c (poi)	φ	φι τρη (16)
1.0	2.10	2500	0.70	29372

Page 11 of 12

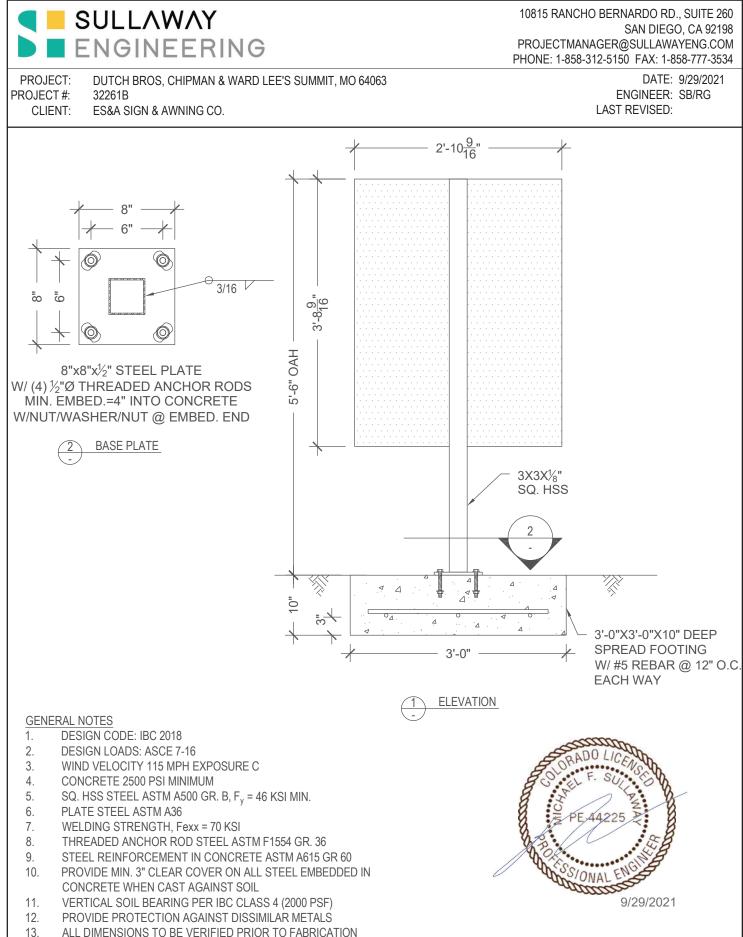
SIMPS		hor Doois	norTM	Company:			Date:	3/14/2020
		hor Desig		Engineer:			Page:	5/6
Strong		ware		Project:			;	·
2	R Versio	on 2.9.7376.6		Address:				
				Phone:				
				E-mail:				
		-	$\frac{(1+c_{a2}/c_{a1})/4}{A_{brg} (in^2)}$	$\frac{(Sec. 17.4.4)}{(160c_{a1}\sqrt{A_{br}})(160c_{a1}\sqrt{A_{br}})}}{\lambda_{a}}$	_g)λ√f′c (Sec. 17 f′c (psi) 2500	2.3.1, Eq. 17.4.4. φ 0.70	1 & 17.4.4.2)	
3. Steel Str	ength of Anch	nor in Shear	(Sec. 17.5.1)					
V _{sa} (lb)	φgrout	φ	φ _{grout} φV _{sa} (b)				
7865	1.0	0.65	5112	,				
	-							
. Concrete	e Breakout Str	enath of And	<u>chor in Shear (S</u>	ec. 17.5.2)				
	endicular to e	-						
				2.2a & Eq. 17.5.2.	2b)			
<i>l_e</i> (in)	d _a (in)	λα	<i>f'_c</i> (psi)	<i>c</i> _{a1} (in)	V _{bx} (lb)			
5.00	0.625	1.00	2500	13.62	21081			
$\delta V_{cbgx} = \phi (A$	Vc/Avco)Ψec.vΨ	$V_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{h,V}$	(Sec. 17.3.1 & E	Eq. 17.5.2.1b)				
Av_c (in ²)	A_{Vco} (in ²)	Ψ _{ec,V}	Ψed,V	Ψc,V	Ψ _{h,V}	V _{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
, ,	· /		0.819	1.000	1.000	21081	0.70	6432
Shear perp / _{by} = min 7(834.77 eendicular to e I _e / d _a) ^{0.2} √d _a λ _a √f d _a (in)		ection:	2.2a & Eq. 17.5.2. <i>c_{a1} (in)</i>				
S hear perp / _{by} = min 7(<i>i</i> / _e (in)	endicular to e l _e / d _a)º.2√d _a λ _a √f	edge in y-dire " _c Ca1 ^{1.5} ; 9λa√f'c	e ction: cca1 ^{1.5} (Eq. 17.5.2	2.2a & Eq. 17.5.2.	2b) <i>V_{by}</i> (lb)			
Shear perp V _{by} = min 7(<i>i</i> I _e (in) 5.00	pendicular to e $I_e / d_a)^{0.2} \sqrt{d_a \lambda_a} \sqrt{f}$ $\frac{d_a (in)}{0.625}$	edge in y-dire Γ _c c _{a1} 1.5; 9λ _a √f o λ _a 1.00	ection: c _{a1} ^{1.5} (Eq. 17.5.2 f'c (psi) 2500	2.2a & Eq. 17.5.2. <i>ca1</i> (in) 13.62	2b)			
Shear perp $J_{by} = \min 7(a) $ I_e (in) 5.00 $\phi V_{cbgy} = \phi$ (A)	pendicular to e $I_e / d_a)^{0.2} \sqrt{d_a \lambda_a} \sqrt{f}$ $\frac{d_a (in)}{0.625}$	edge in y-dire Γ _c c _{a1} 1.5; 9λ _a √f o λ _a 1.00	ection: cca1 ^{1.5} (Eq. 17.5.2 f'c (psi)	2.2a & Eq. 17.5.2. <i>ca1</i> (in) 13.62	2b) <i>V_{by}</i> (lb)		φ	<i>фV_{cbgy}</i> (lb)
Shear perp $J_{by} = \min 7(a) $ I_e (in) 5.00 $\phi V_{cbgy} = \phi$ (A)	endicular to e le / da) ^{0.2} √daλa√f da (in) 0.625 Avc / Avco) Ψec,v Ψ	$\frac{\partial dge \text{ in } y\text{-dire}}{\lambda_a}$ $\frac{\lambda_a}{1.00}$ $\frac{\partial \psi}{\partial c_v \Psi_{b,v} V_{b,v} V_{b,v}}$	ection: :c _{e1} ^{1.5} (Eq. 17.5.2 f'c (psi) 2500 (Sec. 17.3.1 & F	2.2a & Eq. 17.5.2. <i>ca</i> ₁ (in) 13.62 Eq. 17.5.2.1b)	2b) <i>V_{by}</i> (lb) 21081		φ 0.70	<i>фV_{сьду}</i> (Ib) 6432
Shear perp $l_{by} = \min[7(a_{le}(in) + b_{le}(in))]$ 5.00 $b_{Vcbgy} = \phi (A_{Vc}(in^2) + b_{le}(in^2))$ 444.15	pendicular to e $I_e / d_a)^{0.2} \sqrt{d_a \lambda_a} \sqrt{f}$ $\frac{d_a (in)}{0.625}$ $A_{Vco} / A_{Vco}) \Psi_{ec,V} \Psi$ $A_{Vco} (in^2)$ 834.77	$\frac{\partial dge \text{ in } y\text{-direc}}{\lambda_a}$ $\frac{\lambda_a}{1.00}$ $\frac{\psi_{ec,V}}{\psi_{ec,V}}$ $\frac{\psi_{ec,V}}{1.000}$	ection: cca1 ^{1.5} (Eq. 17.5.2 f'c (psi) 2500 c (Sec. 17.3.1 & E $\Psi_{ed,V}$	2.2a & Eq. 17.5.2. <i>c</i> a₁ (in) 13.62 Eq. 17.5.2.1b) <i>Ψ_{c,V}</i>	2b) <u>V_{by} (lb)</u> 21081 <i>Ψ_{h,V}</i>	V _{by} (lb)	φ 0.70	
Shear perp $l_{by} = \min[7(l_{e} (in) + 5.00])$ $bV_{cbgy} = \phi (A A_{Vc} (in^{2}) + 444.15]$ Shear para	pendicular to e $I_e / d_a)^{0.2} \sqrt{d_a \lambda_a} \sqrt{f} \frac{d_a (in)}{0.625}$ $A_{VC} / A_{Vco}) \Psi_{ec,V} \Psi \frac{A_{Vco} (in^2)}{834.77}$ Illel to edge in	edge in y-direction: $F_{cca1}^{1.5}$; $9\lambda_a\sqrt{f_{cca1}}^{1.5}$; 1000 ; $\lambda_a\sqrt{f_{cca1}}^{1.5}$; 1000 ; $\lambda_a\sqrt{f_{cca1}}^{1.5}}$; 1000 ; 1	ection: c _{a1} ^{1.5} (Eq. 17.5.2 f'c (psi) 2500 v (Sec. 17.3.1 & E <u>Y_{ed,V}</u> 0.819	2.2a & Eq. 17.5.2. c_{a1} (in) 13.62 Eq. 17.5.2.1b) $\frac{\psi_{c,V}}{1.000}$	2b) V _{by} (lb) 21081 <u>Ψ_{h,V}</u> 1.000	V _{by} (lb)	φ 0.70	
Shear perp $l_{by} = \min[7(a_{b})]$ 5.00 $bV_{cbgy} = \phi (A_{by})$ $Av_c (in^2)$ 444.15 Shear para $l_{by} = \min[7(a_{b})]$	pendicular to e $I_e / d_a)^{0.2} \sqrt{d_a \lambda_a} \sqrt{f} \frac{d_a}{d_a} (in)$ 0.625 $Avc / Avco) \Psi_{ec,v} \Psi$ $Avco} (in^2)$ 834.77 Ilel to edge in $I_e / d_a)^{0.2} \sqrt{d_a \lambda_a} \sqrt{f}$	$\frac{\partial \mathbf{dge in y-dire}}{\lambda_{a}}$ $\frac{\lambda_{a}}{1.00}$ $\frac{\psi_{ec,V} \psi_{h,V} \psi_{b}}{\psi_{ec,V}}$ $\frac{\psi_{ec,V}}{1.000}$ $\mathbf{x-direction:}$ $\mathbf{r}_{cca1}^{1.5}; 9\lambda_{a}\sqrt{t_{c}}$	$\frac{ection:}{c_{e1}^{1.5}}$ (Eq. 17.5.2) f'c (psi) 2500 ((Sec. 17.3.1 & E $\Psi_{ed,V}$ 0.819 $ec_{e1}^{1.5}$ (Eq. 17.5.2)	2.2a & Eq. 17.5.2. c_{a1} (in) 13.62 Eq. 17.5.2.1b) $\Psi_{c,V}$ 1.000 2.2a & Eq. 17.5.2.	2b) V_{by} (lb) 21081 $\Psi_{h,V}$ 1.000 2b)	V _{by} (lb)	φ 0.70	
Shear perp $J_{by} = \min 7(i, l_e (in)) $ 5.00 $\delta V_{cbgy} = \phi (A, A_{Ve} (in^2))$ 444.15 Shear para $J_{by} = \min 7(i, l_e (in)) $	pendicular to e $l_e / d_a)^{0.2} \sqrt{d_a \lambda_a} \sqrt{f}$ d_a (in) 0.625 $Avc / Avco) \Psi_{ec,V} \Psi$ Avco (in ²) 834.77 Ilel to edge in $l_e / d_a)^{0.2} \sqrt{d_a \lambda_a} \sqrt{f}$ d_a (in)	$\frac{\partial dge \text{ in } y \text{-dire}}{\lambda_a}$ $\frac{\lambda_a}{1.00}$ $\frac{\psi_{ec,V}}{\psi_{ec,V}}$ $\frac{\psi_{ec,V}}{1.000}$ $\frac{\psi_{ec,V}}{x\text{-direction:}}$ $r_c c_{a1}^{1.5}; 9\lambda_a \sqrt{r_0}$ λ_a	$\frac{ection:}{f'_{c} \text{ (psi)}}$ $\frac{f'_{c} \text{ (psi)}}{2500}$ $\frac{f'_{c} \text{ (psi)}}{2500}$ $\frac{\varphi_{ed,V}}{0.819}$ $\frac{\varphi_{ed,V}}{f'_{c} \text{ (psi)}}$	2.2a & Eq. 17.5.2. c_{a1} (in) 13.62 Eq. 17.5.2.1b) $\Psi_{c,V}$ 1.000 2.2a & Eq. 17.5.2. c_{a1} (in)	2b) <u>V_{by} (lb)</u> 21081 <u>Ψ_{h,V}</u> 1.000 2b) <u>V_{by} (lb)</u>	V _{by} (lb)	φ 0.70	
Shear perp $l_{by} = \min[7(a_{le}(in) + (in) + (in)$	pendicular to e $I_e / d_a)^{0.2} \sqrt{d_a \lambda_a} \sqrt{f}$ $\frac{d_a (in)}{0.625}$ $A_{VC} / A_{Vco}) \Psi_{ec,V} \Psi$ $A_{Vco} (in^2)$ 834.77 Ilel to edge in $I_e / d_a)^{0.2} \sqrt{d_a \lambda_a} \sqrt{f}$ $\frac{d_a (in)}{0.625}$	edge in y-direction: $F_{cCa1}^{1.5}$; $9\lambda_a\sqrt{f_a}$ 1.00 $\chi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bj}$ $\Psi_{ec,V}$ 1.000 x-direction: $F_{cCa1}^{1.5}$; $9\lambda_a\sqrt{f_a}$ λ_a 1.00	$\frac{ection:}{c_{a1}^{1.5}} (Eq. 17.5.2){f'_{c} (psi)} = \frac{f'_{c} (psi)}{2500}$ $\frac{f'_{c} (Sec. 17.3.1 \& E){\Psi_{ed,V}}}{0.819} = \frac{\Psi_{ed,V}}{c_{a1}^{1.5}} (Eq. 17.5.2){f'_{c} (psi)} = \frac{f'_{c} (psi)}{2500}$	2.2a & Eq. 17.5.2. c_{a1} (in) 13.62 Eq. 17.5.2.1b) $\Psi_{c,V}$ 1.000 2.2a & Eq. 17.5.2. c_{a1} (in) 8.12	2b) V_{by} (lb) 21081 $\Psi_{h,V}$ 1.000 2b) V_{by} (lb) 9704	V _{by} (lb)	φ 0.70	
Shear perp $/_{by} = \min[7(a, b]]$ 5.00 $bV_{cbgy} = \phi (A, Avc (in^2))$ 444.15 Shear para $/_{by} = \min[7(a, b]]$ $f_{c} (in)$ 5.00 $bV_{cbgx} = \phi (2, b)$	pendicular to e l_e/d_a (in) 0.625 Av_c/Av_{co} $\Psi_{ec,v}\Psi_{co}/\Phi_{co}$ Av_{co} (in ²) 834.77 Ilel to edge in l_e/d_a) ^{0.2} $\sqrt{d_a\lambda_a}\sqrt{t}$ d_a (in) 0.625 $O(Av_c/Av_{co})\Psi_{ec}$	$\frac{\partial \mathbf{dge in y-dire}}{\partial \lambda_{a}}$ $\frac{\lambda_{a}}{1.00}$ $\frac{\mathcal{V}_{ec,V} \mathcal{V}_{c,V} \mathcal{V}_{h,V} \mathcal{V}_{b}}{\mathcal{V}_{ec,V}}$ $\frac{\mathcal{V}_{ec,V}}{1.000}$ $\frac{\mathbf{x-direction:}}{\mathcal{F}_{c} c_{a1}^{1.5}; 9 \lambda_{a} \sqrt{f_{c}}}$ $\frac{\lambda_{a}}{1.00}$ $\mathbf{v} \mathcal{V}_{ed,V} \mathcal{V}_{c,V} \mathcal{V}_{h,V}$	ection: $C_{e1}^{1.5}$ (Eq. 17.5.2 f'_c (psi) 2500 f'_c (Sec. 17.3.1 & E $\Psi_{ed,V}$ 0.819 $C_{e1}^{1.5}$ (Eq. 17.5.2 f'_c (psi) 2500 V_{by} (Sec. 17.3.1,	2.2a & Eq. 17.5.2. c_{a1} (in) 13.62 Eq. 17.5.2.1b) $\Psi_{c,V}$ 1.000 2.2a & Eq. 17.5.2. c_{a1} (in) 8.12 17.5.2.1(c) & Eq.	2b) V_{by} (lb) 21081 $\Psi_{h,V}$ 1.000 2b) V_{by} (lb) 9704 17.5.2.1b)	V _{by} (lb) 21081		6432
Shear perp $l_{by} = min 7(l_{e}(in))$ 5.00 $bV_{cbgy} = \phi (A$ $Av_{c} (in^{2})$ 444.15 Shear para $l_{by} = min 7(l_{e}(in))$ 5.00 $bV_{cbgx} = \phi (2$ $Av_{c} (in^{2})$	Pendicular to e l_e/d_a ^{0.2} $\sqrt{d_a\lambda_a}\sqrt{f}$ d_a (in) 0.625 $Avc / Avco$) $\Psi_{ec,v}\Psi$ Avco (in ²) 834.77 Ilel to edge in l_e/d_a) ^{0.2} $\sqrt{d_a\lambda_a}\sqrt{f}$ d_a (in) 0.625 $P(Avc / Avco) \Psi_{ec}$ Avco (in ²)	$\frac{dge in y-dire}{\lambda_{a}}$ $\frac{\lambda_{a}}{1.00}$ $\frac{\chi_{ec,V}}{\chi_{ec,V}}$ $\frac{\psi_{ec,V}}{1.000}$ $\frac{\psi_{ec,V}}{1.000}$ $\frac{x-direction:}{\lambda_{a}}$ $\frac{\lambda_{a}}{1.00}$ $\sqrt{\psi_{ec,V}} \psi_{c,V} \psi_{h,V}$ $\frac{\psi_{ec,V}}{\psi_{ec,V}}$	ection: $C_{e1}^{1.5}$ (Eq. 17.5.2 f'_c (psi) 2500 V (Sec. 17.3.1 & E $\Psi_{ed,V}$ 0.819 $C_{e1}^{1.5}$ (Eq. 17.5.2 f'_c (psi) 2500 V_{by} (Sec. 17.3.1, $\Psi_{ed,V}$	2.2a & Eq. 17.5.2. c_{a1} (in) 13.62 Eq. 17.5.2.1b) $\Psi_{c,V}$ 1.000 2.2a & Eq. 17.5.2. c_{a1} (in) 8.12 17.5.2.1(c) & Eq. $\Psi_{c,V}$	2b) V_{by} (lb) 21081 $\Psi_{h,V}$ 1.000 2b) V_{by} (lb) 9704 17.5.2.1b) $\Psi_{h,V}$	V _{by} (lb) 21081	φ	6432 ¢V _{cbgx} (Ib)
$V_{by} = \min[7(n_{e} + m_{e})] = \min[7(n_{e} +$	pendicular to e l_e/d_a (in) 0.625 Av_c/Av_{co} $\Psi_{ec,v}\Psi_{co}/\Phi_{co}$ Av_{co} (in ²) 834.77 Ilel to edge in l_e/d_a) ^{0.2} $\sqrt{d_a\lambda_a}\sqrt{t}$ d_a (in) 0.625 $O(Av_c/Av_{co})\Psi_{ec}$	$\frac{\partial \mathbf{dge in y-dire}}{\partial \lambda_{a}}$ $\frac{\lambda_{a}}{1.00}$ $\frac{\mathcal{V}_{ec,V} \mathcal{V}_{c,V} \mathcal{V}_{h,V} \mathcal{V}_{b}}{\mathcal{V}_{ec,V}}$ $\frac{\mathcal{V}_{ec,V}}{1.000}$ $\frac{\mathbf{x-direction:}}{\mathcal{F}_{c} c_{a1}^{1.5}; 9 \lambda_{a} \sqrt{f_{c}}}$ $\frac{\lambda_{a}}{1.00}$ $\mathbf{v} \mathcal{V}_{ed,V} \mathcal{V}_{c,V} \mathcal{V}_{h,V}$	ection: $C_{e1}^{1.5}$ (Eq. 17.5.2 f'_c (psi) 2500 f'_c (Sec. 17.3.1 & E $\Psi_{ed,V}$ 0.819 $C_{e1}^{1.5}$ (Eq. 17.5.2 f'_c (psi) 2500 V_{by} (Sec. 17.3.1,	2.2a & Eq. 17.5.2. c_{a1} (in) 13.62 Eq. 17.5.2.1b) $\Psi_{c,V}$ 1.000 2.2a & Eq. 17.5.2. c_{a1} (in) 8.12 17.5.2.1(c) & Eq.	2b) V_{by} (lb) 21081 $\Psi_{h,V}$ 1.000 2b) V_{by} (lb) 9704 17.5.2.1b)	V _{by} (lb) 21081		6432
Shear perp $V_{by} = \min 7(i, \frac{l_e (in)}{5.00})$ $\phi V_{cbgy} = \phi (A, \frac{A_{Vc} (in^2)}{444.15})$ Shear para $V_{by} = \min 7(i, \frac{l_e (in)}{5.00})$ $\phi V_{cbgx} = \phi (2, \frac{A_{Vc} (in^2)}{264.79})$	pendicular to e l_e/d_a ^{0.2} $\sqrt{d_a\lambda_a}\sqrt{f}$ d_a (in) 0.625 $Avc/Avco$) $\Psi_{ec,V}\Psi$ Avco (in ²) 834.77 Ilel to edge in l_e/d_a) ^{0.2} $\sqrt{d_a\lambda_a}\sqrt{f}$ d_a (in) 0.625 $P(Avc/Avco)\Psi_{ec,Avco})\Psi_{ec,Avco}$ (in ²) 296.70	$\frac{\partial dge \text{ in } y - direc}{\lambda_a}$ $\frac{\lambda_a}{1.00}$ $\frac{\psi_{ec,V}}{\psi_{ec,V}} \psi_{h,V} V_{bj}$ $\frac{\psi_{ec,V}}{1.000}$ $\frac{x - direction:}{\lambda_a}$ $\frac{\lambda_a}{1.00}$ $v \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V}$ $\frac{\psi_{ec,V}}{1.000}$	ection: $C_{e1}^{1.5}$ (Eq. 17.5.2 f'_c (psi) 2500 V (Sec. 17.3.1 & E $\Psi_{ed,V}$ 0.819 $C_{e1}^{1.5}$ (Eq. 17.5.2 f'_c (psi) 2500 V_{by} (Sec. 17.3.1, $\Psi_{ed,V}$	2.2a & Eq. 17.5.2. c_{a1} (in) 13.62 Eq. 17.5.2.1b) $\Psi_{c,V}$ 1.000 2.2a & Eq. 17.5.2. c_{a1} (in) 8.12 17.5.2.1(c) & Eq. $\Psi_{c,V}$	2b) V_{by} (lb) 21081 $\Psi_{h,V}$ 1.000 2b) V_{by} (lb) 9704 17.5.2.1b) $\Psi_{h,V}$	V _{by} (lb) 21081	φ	6432 ¢V _{cbgx} (Ib)
Shear perp $l_{by} = \min 7(i $ $l_e (in)$ 5.00 $bV_{cbgy} = \phi (A$ $Avc (in^2)$ 444.15 Shear para $l_e (in)$ 5.00 $bV_{cbgx} = \phi (2$ $Avc (in^2)$ 264.79 Shear para	pendicular to e l_e/d_a) ^{0.2} $\sqrt{d_a\lambda_a}\sqrt{f}$ d_a (in) 0.625 $Avc / Avco$) $\Psi_{ec,V}\Psi$ Avco (in ²) 834.77 Ilel to edge in l_e/d_a) ^{0.2} $\sqrt{d_a\lambda_a}\sqrt{f}$ d_a (in) 0.625 $P(Avc / Avco) \Psi_{ec,}$ Avco (in ²) 296.70 Ilel to edge in	$\frac{\partial dge \text{ in } y - direction:}{\lambda_a}$ $\frac{\lambda_a}{1.00}$ $\frac{\lambda_{ed,v} \Psi_{c,v} \Psi_{h,v} V_{b,v}}{\Psi_{ec,v}}$ $\frac{\Psi_{ec,v}}{1.000}$ $\frac{x - direction:}{\lambda_a}$ $\frac{\lambda_a}{1.00}$ $v \Psi_{ed,v} \Psi_{c,v} \Psi_{h,v}$ $\frac{\Psi_{ec,v}}{1.000}$ $\frac{y - direction:}{y - direction:}$	$\frac{ection:}{f_{c} \text{ (psi)}}$ $\frac{f_{c} \text{ (psi)}}{2500}$ $\frac{2500}{r} \text{ (Sec. 17.3.1 & E)}$ $\frac{\Psi_{ed,V}}{0.819}$ $\frac{ect_{e1}^{1.5}}{f_{c} \text{ (psi)}}$ $\frac{2500}{2500}$ $\frac{V_{by} \text{ (Sec. 17.3.1, }}{\Psi_{ed,V}}$ 1.000	2.2a & Eq. 17.5.2. c_{a1} (in) 13.62 Eq. 17.5.2.1b) $\Psi_{c,V}$ 1.000 2.2a & Eq. 17.5.2. c_{a1} (in) 8.12 17.5.2.1(c) & Eq. $\Psi_{c,V}$ 1.000	2b) V_{by} (lb) 21081 $\Psi_{h,V}$ 1.000 2b) V_{by} (lb) 9704 17.5.2.1b) $\Psi_{h,V}$ 1.000	V _{by} (lb) 21081	φ	6432 ¢V _{cbgx} (Ib)
Shear perp $V_{by} = \min 7(i, \frac{l_e (in)}{5.00})$ $\frac{\delta V_{cbgy}}{\delta V_{cbgy}} = \phi (A - \frac{A_{Vc} (in^2)}{444.15})$ Shear para $V_{by} = \min 7(i, \frac{l_e (in)}{5.00})$ $\frac{\delta V_{cbgx}}{264.79} = \phi (2 - \frac{A_{Vc} (in^2)}{264.79})$ Shear para $V_{bx} = \min 7(i, \frac{A_{Vc} (in^2)}{264.79})$	pendicular to e l_e/d_a) ^{0.2} $\sqrt{d_a\lambda_a}\sqrt{f}$ d_a (in) 0.625 $Avc / Avco$) $\Psi_{ec,V}\Psi$ Avco (in ²) 834.77 Ilel to edge in l_e/d_a) ^{0.2} $\sqrt{d_a\lambda_a}\sqrt{f}$ d_a (in) 0.625 $P(Avc / Avco) \Psi_{ec,}$ Avco (in ²) 296.70 Ilel to edge in	$\frac{\partial \mathbf{ge} \text{ in } \mathbf{y} - \mathbf{dire}}{\partial \mathbf{z}}$ $\frac{\partial \mathbf{ge}}{\partial \mathbf{z}} = \frac{\partial \mathbf{y} - \mathbf{dire}}{\partial \mathbf{z}}$ $\frac{\partial \mathbf{z}}{\partial \mathbf{z}}$	ection: $c_{ef}^{1.5}$ (Eq. 17.5.2 f'_c (psi) 2500 c (Sec. 17.3.1 & E $\Psi_{ed,V}$ 0.819 $c_{ef}^{1.5}$ (Eq. 17.5.2 f'_c (psi) 2500 V_{by} (Sec. 17.3.1, $\Psi_{ed,V}$ 1.000 $c_{ef}^{1.5}$ (Eq. 17.5.2	2.2a & Eq. 17.5.2. c_{a1} (in) 13.62 Eq. 17.5.2.1b) $\Psi_{c,V}$ 1.000 2.2a & Eq. 17.5.2. c_{a1} (in) 8.12 17.5.2.1(c) & Eq. $\Psi_{c,V}$ 1.000 2.2a & Eq. 17.5.2.	2b) V_{by} (lb) 21081 $\Psi_{h,V}$ 1.000 2b) V_{by} (lb) 9704 17.5.2.1b) $\Psi_{h,V}$ 1.000	V _{by} (lb) 21081	φ	6432 ¢V _{cbgx} (Ib)
Shear perp $l_{by} = \min 7(i, l_e(in)) $ 5.00 $bV_{cbgy} = \phi(A, Ave (in^2))$ 444.15 Shear para $l_{by} = \min 7(i, l_e(in)) $ 5.00 $bV_{cbgx} = \phi(2, Ave (in^2))$ 264.79 Shear para $l_{bx} = \min 7(i, l_e(in)) $	Pendicular to e l_e/d_a (in) 0.625 l_{Vc}/A_{Vco} $\mathcal{Y}_{ec,V}\mathcal{Y}$ A_{Vco} (in ²) 834.77 <i>Ilel to edge in</i> l_e/d_a) ^{0.2} $\sqrt{d_a\lambda_a}\sqrt{f}$ d_a (in) 0.625 $P(A_{Vco}/A_{Vco})\mathcal{Y}_{ec,}$ A_{Vco} (in ²) 296.70 <i>Ilel to edge in</i> l_e/d_a) ^{0.2} $\sqrt{d_a\lambda_a}\sqrt{f}$	$\frac{\partial dge \text{ in } y - direction:}{\lambda_a}$ $\frac{\lambda_a}{1.00}$ $\frac{\lambda_{ed,v} \Psi_{c,v} \Psi_{h,v} V_{b,v}}{\Psi_{ec,v}}$ $\frac{\Psi_{ec,v}}{1.000}$ $\frac{x - direction:}{\lambda_a}$ $\frac{\lambda_a}{1.00}$ $v \Psi_{ed,v} \Psi_{c,v} \Psi_{h,v}$ $\frac{\Psi_{ec,v}}{1.000}$ $\frac{y - direction:}{y - direction:}$	$\frac{ection:}{f_{c} \text{ (psi)}}$ $\frac{f_{c} \text{ (psi)}}{2500}$ $\frac{2500}{r} \text{ (Sec. 17.3.1 & E)}$ $\frac{\Psi_{ed,V}}{0.819}$ $\frac{ect_{e1}^{1.5}}{f_{c} \text{ (psi)}}$ $\frac{2500}{2500}$ $\frac{V_{by} \text{ (Sec. 17.3.1, }}{\Psi_{ed,V}}$ 1.000	2.2a & Eq. 17.5.2. c_{a1} (in) 13.62 Eq. 17.5.2.1b) $\Psi_{c,V}$ 1.000 2.2a & Eq. 17.5.2. c_{a1} (in) 8.12 17.5.2.1(c) & Eq. $\Psi_{c,V}$ 1.000	2b) V_{by} (lb) 21081 $\Psi_{h,V}$ 1.000 2b) V_{by} (lb) 9704 17.5.2.1b) $\Psi_{h,V}$ 1.000 2b)	V _{by} (lb) 21081	φ	6432 ¢V _{cbgx} (Ib)
Shear perp $l_{by} = \min 7(i, l_e(in)) $ 5.00 $\delta V_{cbgy} = \phi(A, Avc (in^2))$ 444.15 Shear para $l_{by} = \min 7(i, l_e(in)) $ 5.00 $\delta V_{cbgx} = \phi(2, Avc (in^2)))$ 264.79 Shear para $l_{bx} = \min 7(i, l_e(in)) $ 5.00	pendicular to e l_e/d_a ^{0.2} $\sqrt{d_a\lambda_a}\sqrt{f}$ d_a (in) 0.625 $Avc/Avco$) $Y_{ec,V}\Psi$ Avco (in ²) 834.77 Ilel to edge in l_e/d_a) ^{0.2} $\sqrt{d_a\lambda_a}\sqrt{f}$ d_a (in) 0.625 $P(Avc/Avco)$ $Y_{ec,}$ Avco (in ²) 296.70 Ilel to edge in l_e/d_a) ^{0.2} $\sqrt{d_a\lambda_a}\sqrt{f}$ d_a (in) 0.625	$\frac{\partial dge \text{ in } y - direc}{\lambda_a}$ $\frac{\lambda_a}{1.00}$ $\frac{\lambda_a}{\sqrt{e_{c,V} \Psi_{h,V} V_{b,V}}}$ $\frac{\Psi_{ec,V}}{1.000}$ $\frac{x - direction:}{\sqrt{e_{c,V} \Psi_{h,V}}}$ $\frac{\lambda_a}{1.00}$ $\sqrt{\Psi_{ed,V} \Psi_{c,V} \Psi_{h,V}}$ $\frac{\Psi_{ec,V}}{1.000}$ $\frac{y - direction:}{\sqrt{e_{c,V} \Psi_{h,V}}}$ $\frac{\lambda_a}{1.00}$ $\frac{y - direction:}{\sqrt{e_{c,V} \Psi_{h,V}}}$ $\frac{\lambda_a}{1.00}$	$\frac{ection:}{c_{e1}^{1.5}} (Eq. 17.5.2) \\ \frac{f'_c (psi)}{2500} \\ \frac{2500}{r} (Sec. 17.3.1 \& E) \\ \frac{\Psi_{ed,V}}{0.819} \\ \frac{F'_{c} (psi)}{2500} \\ \frac{2500}{r} \\ \frac{\Psi_{ed,V}}{1.000} \\ \frac{\Psi_{ed,V}}{1.000} \\ \frac{F'_{c} (psi)}{2500} \\ \frac{F'_{c} (psi)}{250} \\ \frac{F'_{c} (psi)}{25$	2.2a & Eq. 17.5.2. c_{a1} (in) 13.62 Eq. 17.5.2.1b) $\Psi_{c,V}$ 1.000 2.2a & Eq. 17.5.2. c_{a1} (in) 8.12 17.5.2.1(c) & Eq. $\Psi_{c,V}$ 1.000 2.2a & Eq. 17.5.2. c_{a1} (in)		V _{by} (lb) 21081	φ	6432 ¢V _{cbgx} (Ib)
Shear perp $J_{by} = \min[7(a_{le}(in) + b_{le}(in) + b_{l$	pendicular to e l_e/d_a ^{0.2} $\sqrt{d_a\lambda_a}\sqrt{f}$ d_a (in) 0.625 $Avc/Avco$) $Y_{ec,V}\Psi$ Avco (in ²) 834.77 Ilel to edge in l_e/d_a) ^{0.2} $\sqrt{d_a\lambda_a}\sqrt{f}$ d_a (in) 0.625 $P(Avc/Avco)$ $Y_{ec,}$ Avco (in ²) 296.70 Ilel to edge in l_e/d_a) ^{0.2} $\sqrt{d_a\lambda_a}\sqrt{f}$ d_a (in) 0.625	$\frac{\partial dge \text{ in } y - direc}{\lambda_a}$ $\frac{\lambda_a}{1.00}$ $\frac{\lambda_a}{\sqrt{e_{c,V} \Psi_{h,V} V_{b,V}}}$ $\frac{\Psi_{ec,V}}{1.000}$ $\frac{x - direction:}{\sqrt{e_{c,V} \Psi_{h,V}}}$ $\frac{\lambda_a}{1.00}$ $\sqrt{\Psi_{ed,V} \Psi_{c,V} \Psi_{h,V}}$ $\frac{\Psi_{ec,V}}{1.000}$ $\frac{y - direction:}{\sqrt{e_{c,V} \Psi_{h,V}}}$ $\frac{\lambda_a}{1.00}$ $\frac{y - direction:}{\sqrt{e_{c,V} \Psi_{h,V}}}$ $\frac{\lambda_a}{1.00}$	$\frac{ection:}{c_{e1}^{1.5}} (Eq. 17.5.2) \\ \frac{f'_c (psi)}{2500} \\ \frac{2500}{r} (Sec. 17.3.1 \& E) \\ \frac{\Psi_{ed,V}}{0.819} \\ \frac{F'_{c} (psi)}{2500} \\ \frac{2500}{r} \\ \frac{\Psi_{ed,V}}{1.000} \\ \frac{\Psi_{ed,V}}{1.000} \\ \frac{F'_{c} (psi)}{2500} \\ \frac{F'_{c} (psi)}{250} \\ \frac{F'_{c} (psi)}{25$	2.2a & Eq. 17.5.2. c_{a1} (in) 13.62 Eq. 17.5.2.1b) $\Psi_{c,V}$ 1.000 2.2a & Eq. 17.5.2. c_{a1} (in) 8.12 17.5.2.1(c) & Eq. $\Psi_{c,V}$ 1.000 2.2a & Eq. 17.5.2. c_{a1} (in) 8.12		V _{by} (lb) 21081	φ	6432 ¢V _{cbgx} (lb)
Shear perp $J_{by} = min 7(i)$ $I_e (in)$ 5.00 $\delta V_{cbgy} = \phi (A$ $Avc (in^2)$ 444.15 Shear para $J_{by} = min 7(i)$ $I_e (in)$ 5.00 $\delta V_{cbgx} = \phi (2$ $Avc (in^2)$ 5.00 $\delta V_{cbgy} = \phi (2$ $Avc (in^2)$ 5.00 $\delta V_{cbgy} = \phi (2$ $Avc (in^2)$	pendicular to e l_e/d_a (in) 0.625 Avc/Avco $Yec, VYAvco$ (in ²) 834.77 Ilel to edge in l_e/d_a (in) 0.625 $P(Avco (in^2)$ 296.70 Ilel to edge in l_e/d_a (in) 0.625 $P(Avco (in^2)$ 296.70 Ilel to edge in l_e/d_a (in) 0.625 $P(Avco (in^2)$ 296.70 Ilel to edge in l_e/d_a (in) 0.625 $P(Avco (in^2)$ 296.70 $P(Avco (in^2)$ 296.70 $P(Avco (in^2)$ 296.70 $P(Avco (in^2)$ 296.70 $P(Avco (in^2)$ 296.70 $P(Avco (in^2)$ 296.70 $P(Avco (in^2)$ 296.70 $P(Avco (in^2)$ $P(Avco (in^2)$ P	$\begin{array}{c} \text{cdge in y-dire}\\ F_{c}c_{a1}^{1.5}; 9\lambda_{a}\sqrt{f_{o}}\\ \lambda_{a}\\ \hline 1.00\\ \ell_{ed,v}\Psi_{c,v}\Psi_{h,v}V_{b,v}\\ \Psi_{ec,v}\\ \hline 1.000\\ \textbf{x-direction:}\\ F_{c}c_{a1}^{1.5}; 9\lambda_{a}\sqrt{f_{o}}\\ \lambda_{a}\\ \hline 1.00\\ v\Psi_{ed,v}\Psi_{c,v}\Psi_{h,v}\\ \Psi_{ec,v}\\ \hline 1.000\\ \textbf{y-direction:}\\ F_{c}c_{a1}^{1.5}; 9\lambda_{a}\sqrt{f_{o}}\\ \lambda_{a}\\ \hline 1.00\\ v\Psi_{ed,v}\Psi_{c,v}\Psi_{h,v}\\ \mu_{ed,v}\Psi_{c,v}\Psi_{h,v}\\ \mu_{ed,v}\Psi_{d,v}\Psi_{d,v}\\ \mu_{ed,v}\Psi_{d,v}\Psi_{d,v}\\ \mu_{ed,v}\Psi_{d,v}\\ \mu_{ed,v}\Psi_{d,v}\\ \mu_{ed,v}\Psi_{d,v}\\ \mu_{ed,v}\Psi_{d,v}\\ \mu_{ed,v}\Psi_{d,v}\\ \mu_{ed,v}\Psi_{d,v}\\ \mu_{ed,v}\Psi_{d,v}\\ \mu_{ed,v}\Psi_{d,v}\\ \mu_{ed,v}\\ \mu_{ed,v}\Psi_{d,v}\\ \mu_{ed,v}\\ \mu_{ed,v}$	ection: $c_{e1}^{1.5}$ (Eq. 17.5.2 f_c (psi) 2500 r (Sec. 17.3.1 & E $\Psi_{ed,V}$ 0.819 $c_{e1}^{1.5}$ (Eq. 17.5.2 f_c (psi) 2500 V_{by} (Sec. 17.3.1, $\Psi_{ed,V}$ 1.000 $c_{e1}^{1.5}$ (Eq. 17.5.2 f_c (psi) 2500 V_{by} (Sec. 17.3.1,	2.2a & Eq. 17.5.2. c_{a1} (in) 13.62 Eq. 17.5.2.1b) $\Psi_{c,V}$ 1.000 2.2a & Eq. 17.5.2. c_{a1} (in) 8.12 17.5.2.1(c) & Eq. $\Psi_{c,V}$ 1.000 2.2a & Eq. 17.5.2. c_{a1} (in) 8.12 17.5.2.1(c) & Eq.	2b) V_{by} (lb) 21081 $\Psi_{h,V}$ 1.000 2b) V_{by} (lb) 9704 17.5.2.1b) $\Psi_{h,V}$ 1.000 2b) V_{bx} (lb) 9704 17.5.2.1b)	V _{by} (lb) 21081 V _{by} (lb) 9704	φ	6432 <i>φV_{cbgx}</i> (lb) 12125
Shear perp $l_{by} = \min[7(i]$ $l_e(in)$ 5.00 $bV_{cbgy} = \phi (A$ $Avc (in^2)$ 444.15 Shear para $l_{by} = \min[7(i]$ $bV_{cbgx} = \phi (2$ $Avc (in^2)$ Shear para $l_{bx} = \min[7(i]$ $l_e(in)$ 5.00 $bV_{cbgy} = \phi (2$ $Avc (in^2)$	pendicular to e l_e / d_a (in) 0.625 $Avc / Avco$) $\Psi_{ec,v} \Psi$ Avco (in ²) 834.77 Ilel to edge in l_e / d_a) ^{0.2} $\sqrt{d_a \lambda_a} \sqrt{t}$ d_a (in) 0.625 $P(Avco (in^2)$ 296.70 Ilel to edge in l_e / d_a) ^{0.2} $\sqrt{d_a \lambda_a} \sqrt{t}$ d_a (in) 0.625 $P(Avco / Avco) \Psi_{ec}$ Avco (in ²) $P(Avco / Avco) \Psi_{ec}$ Avco (in ²)	$\begin{array}{c} \text{adge in y-dire} \\ F_{c}c_{a1}^{1.5}; 9\lambda_{a}\sqrt{f_{o}} \\ \lambda_{a} \\ \hline 1.00 \\ \ell_{ed,v} \Psi_{c,v} \Psi_{h,v} V_{b,v} \\ \Psi_{ec,v} \\ \hline 1.000 \\ \textbf{x-direction:} \\ F_{c}c_{a1}^{1.5}; 9\lambda_{a}\sqrt{f_{o}} \\ \lambda_{a} \\ \hline 1.00 \\ v\Psi_{ed,v} \Psi_{c,v} \Psi_{h,v} \\ \Psi_{ec,v} \\ \hline 1.000 \\ \textbf{y-direction:} \\ F_{c}c_{a1}^{1.5}; 9\lambda_{a}\sqrt{f_{o}} \\ \lambda_{a} \\ \hline 1.00 \\ v\Psi_{ed,v} \Psi_{c,v} \Psi_{h,v} \\ \Psi_{ec,v} \\ \hline 1.00 \\ v\Psi_{ed,v} \Psi_{c,v} \Psi_{h,v} \\ \Psi_{ec,v} \\ \end{array}$	ection: $C_{e1}^{1.5}$ (Eq. 17.5.2 f'_c (psi) 2500 r (Sec. 17.3.1 & E $\Psi_{ed,V}$ 0.819 $C_{e1}^{1.5}$ (Eq. 17.5.2 f'_c (psi) 2500 V_{by} (Sec. 17.3.1, $\Psi_{ed,V}$ 1.000 $C_{e1}^{1.5}$ (Eq. 17.5.2 f'_c (psi) 2500 V_{bx} (Sec. 17.3.1, $\Psi_{ed,V}$	2.2a & Eq. 17.5.2. c_{a1} (in) 13.62 Eq. 17.5.2.1b) $\Psi_{c,V}$ 1.000 2.2a & Eq. 17.5.2. c_{a1} (in) 8.12 17.5.2.1(c) & Eq. $\Psi_{c,V}$ 1.000 2.2a & Eq. 17.5.2. c_{a1} (in) 8.12 17.5.2.1(c) & Eq. $\Psi_{c,V}$	2b) V_{by} (lb) 21081 $\Psi_{h,V}$ 1.000 2b) V_{by} (lb) 9704 17.5.2.1b) $\Psi_{h,V}$ 1.000 2b) V_{bx} (lb) 9704 17.5.2.1b) $\Psi_{h,V}$	V _{by} (lb) 21081 V _{by} (lb) 9704 V _{bx} (lb)	φ 0.70 φ	6432 <i>¢V_{cbgx}</i> (lb) 12125 <i>¢V_{cbgy}</i> (lb)
Shear perp /by = min 7(i, le (in)) 5.00 $bV_{cbgy} = \phi (A, Avc (in^2))$ 444.15 Shear para /by = min 7(i, le (in)) 5.00 $bV_{cbgx} = \phi (2, Avc (in^2))$ 264.79 Shear para /bx = min 7(i, le (in)) 5.00 $bV_{cbgy} = \phi (2, Avc (in^2))$ 264.79 $Avc (in^2)$ 264.79	pendicular to e $l_e/d_a)^{0.2}\sqrt{d_a\lambda_a}\sqrt{t}$ d_a (in) 0.625 $Avc/Avco) \Psi_{ec,V}\Psi$ Avco (in ²) 834.77 <i>llel to edge in</i> $l_e/d_a)^{0.2}\sqrt{d_a\lambda_a}\sqrt{t}$ d_a (in) 0.625 $P(Avc/Avco) \Psi_{ec,}$ Avco (in ²) 296.70 <i>llel to edge in</i> $l_e/d_a)^{0.2}\sqrt{d_a\lambda_a}\sqrt{t}$ d_a (in) 0.625 $P(Avc/Avco) \Psi_{ec,}$ Avco (in ²) 296.70	$\begin{array}{c} \text{adge in y-dire} \\ \text{c}_{cca1}^{1.5}; 9\lambda_{a}\sqrt{f_{c}} \\ \lambda_{a} \\ \hline 1.00 \\ \text{d}_{ed,V} \Psi_{c,V} \Psi_{h,V} \bigvee_{b_{i}} \\ \Psi_{ec,V} \\ \hline 1.000 \\ \textbf{x-direction:} \\ \text{f}_{cca1}^{1.5}; 9\lambda_{a}\sqrt{f_{c}} \\ \lambda_{a} \\ \hline 1.00 \\ \text{v} \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} \\ \Psi_{ec,V} \\ \hline 1.000 \\ \textbf{y-direction:} \\ \text{f}_{cca1}^{1.5}; 9\lambda_{a}\sqrt{f_{c}} \\ \lambda_{a} \\ \hline 1.00 \\ \text{v} \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} \\ \Psi_{ec,V} \\ \hline 1.000 \\ \text{v} \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} \\ \Psi_{ec,V} \\ \hline 1.000 \\ \end{array}$	ection: $C_{e1}^{1.5}$ (Eq. 17.5.2 f'_c (psi) 2500 r (Sec. 17.3.1 & E $\Psi_{ed,V}$ 0.819 $C_{e1}^{1.5}$ (Eq. 17.5.2 f'_c (psi) 2500 V_{by} (Sec. 17.3.1, $\Psi_{ed,V}$ 1.000 $C_{e1}^{1.5}$ (Eq. 17.5.2 f'_c (psi) 2500 V_{bx} (Sec. 17.3.1, $\Psi_{ed,V}$	2.2a & Eq. 17.5.2. c_{a1} (in) 13.62 Eq. 17.5.2.1b) $\Psi_{c,V}$ 1.000 2.2a & Eq. 17.5.2. c_{a1} (in) 8.12 17.5.2.1(c) & Eq. $\Psi_{c,V}$ 1.000 2.2a & Eq. 17.5.2. c_{a1} (in) 8.12 17.5.2.1(c) & Eq. $\Psi_{c,V}$ 1.000	2b) V_{by} (lb) 21081 $\Psi_{h,V}$ 1.000 2b) V_{by} (lb) 9704 17.5.2.1b) $\Psi_{h,V}$ 1.000 2b) V_{bx} (lb) 9704 17.5.2.1b) $\Psi_{h,V}$	V _{by} (lb) 21081 V _{by} (lb) 9704 V _{bx} (lb)	φ 0.70 φ	6432 <i>φV_{cbgx}</i> (lb) 12125 <i>φV_{cbgy}</i> (lb)
Shear perp $l_{by} = \min 7(i_{le}(in) $ $\overline{5.00}$ $bV_{cbgy} = \phi (A$ $Avc (in^2)$ 444.15 Shear para $l_{by} = \min 7(i_{le}(in) $ $\overline{5.00}$ $bV_{cbgx} = \phi (2$ $Avc (in^2)$ 264.79 Shear para $l_{bx} = \min 7(i_{le}(in) $ $\overline{5.00}$ $bV_{cbgy} = \phi (2$ $Avc (in^2)$ $\overline{264.79}$ $bV_{cbgy} = \phi (2$ $Avc (in^2)$ $\overline{264.79}$ $bV_{cbgy} = \phi (2$ $Avc (in^2)$ $\overline{264.79}$ $bV_{cbgy} = \phi (2$ $Avc (in^2)$ $\overline{264.79}$ $bV_{cbgy} = \phi (2$ $Avc (in^2)$ $\overline{264.79}$	pendicular to e l_e/d_a ^{0.2} $\sqrt{d_a\lambda_a}\sqrt{f}$ d_a (in) 0.625 $Avc/Avco$) $\mathcal{Y}_{ec,V}\mathcal{Y}$ Avco (in ²) 834.77 <i>Ilel to edge in</i> l_e/d_a) ^{0.2} $\sqrt{d_a\lambda_a}\sqrt{f}$ d_a (in) 0.625 $\mathcal{P}(Avc/Avco)\mathcal{Y}_{ec,}$ Avco (in ²) 296.70 <i>Ilel to edge in</i> l_e/d_a) ^{0.2} $\sqrt{d_a\lambda_a}\sqrt{f}$ d_a (in) 0.625 $\mathcal{P}(Avc/Avco)\mathcal{Y}_{ec,}$ Avco (in ²) 296.70 <i>Ilel to edge in</i> l_e/d_a) ^{0.2} $\sqrt{d_a\lambda_a}\sqrt{f}$ d_a (in) 0.625 $\mathcal{P}(Avc/Avco)\mathcal{Y}_{ec,}$ Avco (in ²) 296.70 te Pryout Stre	edge in y-dire $F_{cCa1}^{1.5}$; $9\lambda_{a}\sqrt{f_{cL}}$ λ_{a} 1.00 $\ell_{ed,V}\Psi_{c,V}\Psi_{h,V}V_{by}$ $\Psi_{ec,V}$ 1.000 <i>x-direction:</i> $F_{cCa1}^{1.5}$; $9\lambda_{a}\sqrt{f_{cL}}$ λ_{a} 1.00 $V\Psi_{ed,V}\Psi_{c,V}\Psi_{h,V}$ $\Psi_{ec,V}$ 1.000 <i>y-direction:</i> $F_{cCa1}^{1.5}$; $9\lambda_{a}\sqrt{f_{cL}}$ λ_{a} 1.00 $V\Psi_{ed,V}\Psi_{c,V}\Psi_{h,V}$ χ_{a} 1.00 $V\Psi_{ed,V}\Psi_{c,V}\Psi_{h,V}$ χ_{a} 1.00 $V\Psi_{ed,V}\Psi_{c,V}\Psi_{h,V}$ χ_{a} 1.00 $V\Psi_{ed,V}\Psi_{c,V}\Psi_{h,V}$ χ_{a} 1.000 $V\Psi_{ed,V}\Psi_{c,V}\Psi_{h,V}$ $\Psi_{ec,V}$ 1.000	ection: $C_{e1}^{1.5} $ (Eq. 17.5.2 f'_c (psi) 2500 V (Sec. 17.3.1 & E $\Psi_{ed,V}$ 0.819 $C_{e1}^{1.5} $ (Eq. 17.5.2 f'_c (psi) 2500 V_{by} (Sec. 17.3.1, $\Psi_{ed,V}$ 1.000 $C_{e1}^{1.5} $ (Eq. 17.5.2 f'_c (psi) 2500 V_{bx} (Sec. 17.3.1, $\Psi_{ed,V}$ 1.000 V_{bx} (Sec. 17.3.1, $\Psi_{ed,V}$ 1.000 V_{bx} (Sec. 17.3.1, $\Psi_{ed,V}$ 1.000	2.2a & Eq. 17.5.2. c_{a1} (in) 13.62 Eq. 17.5.2.1b) $\Psi_{c,V}$ 1.000 2.2a & Eq. 17.5.2. c_{a1} (in) 8.12 17.5.2.1(c) & Eq. $\Psi_{c,V}$ 1.000 2.2a & Eq. 17.5.2. c_{a1} (in) 8.12 17.5.2.1(c) & Eq. $\Psi_{c,V}$ 1.000	2b) V_{by} (lb) 21081 $\Psi_{h,V}$ 1.000 2b) V_{by} (lb) 9704 17.5.2.1b) $\Psi_{h,V}$ 1.000 2b) V_{bx} (lb) 9704 17.5.2.1b) $\Psi_{h,V}$ 1.000 2a)	V _{by} (lb) 21081 V _{by} (lb) 9704 V _{bx} (lb) 9704	φ 0.70 φ	6432 <i>φV_{cbgx}</i> (lb) 12125 <i>φV_{cbgy}</i> (lb)
Shear perp $V_{by} = \min 7(i, \frac{l_e (in)}{5.00})$ $\oint V_{cbgy} = \phi (A, \frac{A_{Vc} (in^2)}{444.15})$ Shear para $V_{by} = \min 7(i, \frac{l_e (in)}{5.00})$ $\oint V_{cbgy} = \phi (2, \frac{A_{Vc} (in^2)}{264.79})$ Shear para $V_{bx} = \min 7(i, \frac{l_e (in)}{5.00})$ $\oint V_{cbgy} = \phi (2, \frac{A_{Vc} (in^2)}{264.79})$ 10. Concret	pendicular to e l_e/d_a ^{0.2} $\sqrt{d_a\lambda_a}\sqrt{f}$ d_a (in) 0.625 $Avc/Avco$) $\mathcal{Y}_{ec,V}\mathcal{Y}$ Avco (in ²) 834.77 <i>Ilel to edge in</i> l_e/d_a) ^{0.2} $\sqrt{d_a\lambda_a}\sqrt{f}$ d_a (in) 0.625 $\mathcal{P}(Avc/Avco)\mathcal{Y}_{ec,}$ Avco (in ²) 296.70 <i>Ilel to edge in</i> l_e/d_a) ^{0.2} $\sqrt{d_a\lambda_a}\sqrt{f}$ d_a (in) 0.625 $\mathcal{P}(Avc/Avco)\mathcal{Y}_{ec,}$ Avco (in ²) 296.70 <i>Ilel to edge in</i> l_e/d_a) ^{0.2} $\sqrt{d_a\lambda_a}\sqrt{f}$ d_a (in) 0.625 $\mathcal{P}(Avc/Avco)\mathcal{Y}_{ec,}$ Avco (in ²) 296.70 te Pryout Stre	edge in y-dire $F_{cCa1}^{1.5}$; $9\lambda_{a}\sqrt{f_{cL}}$ λ_{a} 1.00 $\ell_{ed,V}\Psi_{c,V}\Psi_{h,V}V_{by}$ $\Psi_{ec,V}$ 1.000 <i>x-direction:</i> $F_{cCa1}^{1.5}$; $9\lambda_{a}\sqrt{f_{cL}}$ λ_{a} 1.00 $V\Psi_{ed,V}\Psi_{c,V}\Psi_{h,V}$ $\Psi_{ec,V}$ 1.000 <i>y-direction:</i> $F_{cCa1}^{1.5}$; $9\lambda_{a}\sqrt{f_{cL}}$ λ_{a} 1.00 $V\Psi_{ed,V}\Psi_{c,V}\Psi_{h,V}$ χ_{a} 1.00 $V\Psi_{ed,V}\Psi_{c,V}\Psi_{h,V}$ χ_{a} 1.00 $V\Psi_{ed,V}\Psi_{c,V}\Psi_{h,V}$ χ_{a} 1.00 $V\Psi_{ed,V}\Psi_{c,V}\Psi_{h,V}$ χ_{a} 1.000 $V\Psi_{ed,V}\Psi_{c,V}\Psi_{h,V}$ $\Psi_{ec,V}$ 1.000	ection: $c_{e1}^{1.5}$ (Eq. 17.5.2 f_c (psi) 2500 r (Sec. 17.3.1 & E $\Psi_{ed,V}$ 0.819 $c_{e1}^{1.5}$ (Eq. 17.5.2 f_c (psi) 2500 V_{by} (Sec. 17.3.1, $\Psi_{ed,V}$ 1.000 $c_{e1}^{1.5}$ (Eq. 17.5.2 f_c (psi) 2500 V_{bx} (Sec. 17.3.1, $\Psi_{ed,V}$ 1.000 hor in Shear (Se $\Psi_{ed,N}$	2.2a & Eq. 17.5.2. c_{a1} (in) 13.62 Eq. 17.5.2.1b) $\Psi_{c,V}$ 1.000 2.2a & Eq. 17.5.2. c_{a1} (in) 8.12 17.5.2.1(c) & Eq. $\Psi_{c,V}$ 1.000 2.2a & Eq. 17.5.2. c_{a1} (in) 8.12 17.5.2.1(c) & Eq. $\Psi_{c,V}$ 1.000 2.2a & Eq. 17.5.2. c_{a1} (in) 8.12 17.5.2.1(c) & Eq. $\Psi_{c,V}$ 1.000 2.2a & Eq. 17.5.2.	2b) V_{by} (lb) 21081 $\Psi_{h,V}$ 1.000 2b) V_{by} (lb) 9704 17.5.2.1b) $\Psi_{h,V}$ 1.000 2b) V_{bx} (lb) 9704 17.5.2.1b) $\Psi_{h,V}$ 1.000 2b) V_{bx} (lb) 9704 17.5.2.1b) $\Psi_{h,V}$ 1.000 2b) N_{bx} (lb) 9704 17.5.2.1b) $\Psi_{h,V}$ 1.000 2b) N_{bx} (lb) 9704 17.5.2.1b) $\Psi_{h,V}$ 1.000 2b) N_{bx} (lb) 9704 17.5.2.1b) $\Psi_{h,V}$ 1.000 2b) N_{bx} (lb) 9704 17.5.2.1b) $\Psi_{h,V}$ 1.000 2b) N_{bx} (lb) 9704 17.5.2.1b) $\Psi_{h,V}$ 1.000 2b) N_{bx} (lb) 9704 17.5.2.1b) $\Psi_{h,V}$ 1.000 N_{bx} (lb) 9704 17.5.2.1b) $\Psi_{h,V}$ 1.000 N_{bx} (lb) 9704 1.000 N_{bx} (lb) 9704 1.000 N_{bx} (lb) 9704 1.000 N_{bx} (lb) 9704 1.000 N_{bx} (lb) 9704 1.000 N_{bx} (lb) 9704 1.000 N_{bx} (lb)	 21081 уточ уточ 9704 9704 (lb) ф	φ 0.70 φ	6432 <i>φV_{cbgx}</i> (lb) 12125 <i>φV_{cbgy}</i> (lb) 12125

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com Page 12 of 12

Company:	Date:	3/14/2020
Engineer:	Page:	6/6
Project:		
Address:		
Phone:		
E-mail:		

11. Results

Interaction of Tensile and Shear Forces (Sec. R17.6)


Tension	Factored Load, Nua (It	b) Design Str	rength, øNn (lb)	Ratio	Status
Steel	5149	9825		0.52	Pass (Governs)
Pullout	5149	29372		0.18	Pass
Side-face blowout	10298	36650		0.28	Pass
Shear	Factored Load, Vua (Ik	o) Design Str	rength, øVn (lb)	Ratio	Status
Steel	1853	5112		0.36	Pass
T Concrete breakout x-	2462	6432		0.38	Pass
T Concrete breakout y+	2771	6432		0.43	Pass
Concrete breakout y+	2462	12125		0.20	Pass
Concrete breakout x+	2771	12125		0.23	Pass
Concrete breakout, combined	-	-		0.58	Pass (Governs)
Pryout	1853	6194		0.30	Pass
Interaction check (N	ua/ φN ua) ^{5/3} (Vua	∕φV _{ua}) ^{5/3}	Combined Ratio	Permissible	e Status
Sec. R17.6 0.3	34 0.40)	74.0%	1.0	Pass

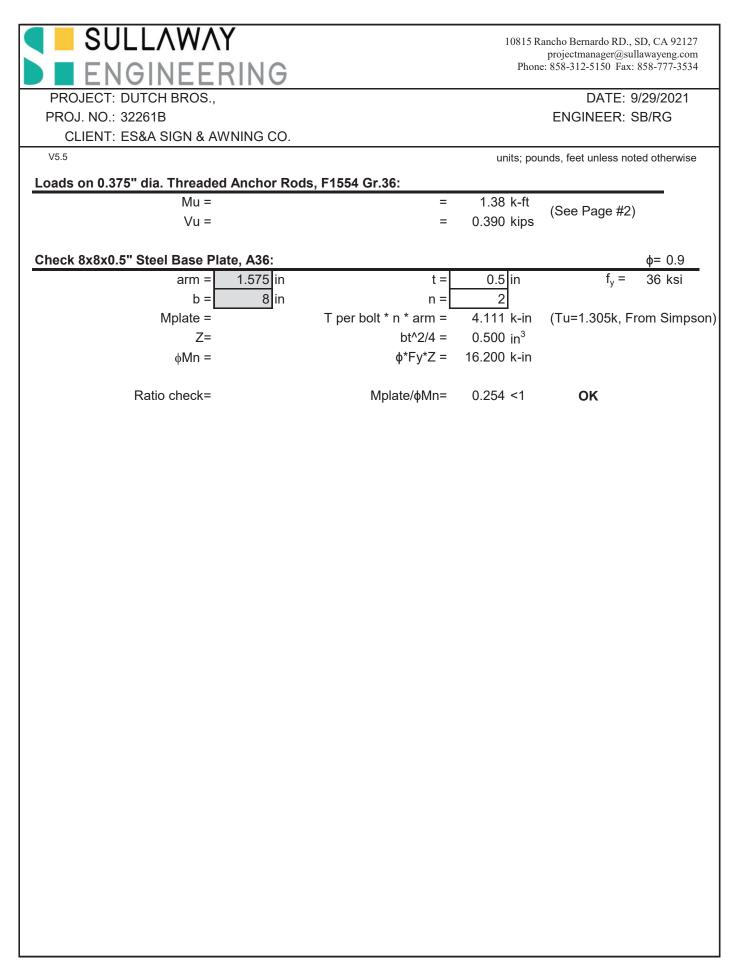
PAB5 (5/8"Ø) with hef = 24.000 inch meets the selected design criteria.

12. Warnings

- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.

- Designer must exercise own judgement to determine if this design is suitable.

BRICATION


Page 2 of 10

	SIII		ΝΛΥ	/					10815 F	Rancho Bernardo RD., SD, CA 9212
					~					projectmanager@sullawayeng.co e: 858-312-5150 Fax: 858-777-35
		SINE			フ					
	ROJECT:		BROS.,							DATE: 9/29/2021
PR	ROJ. NO.:				<u> </u>				ENGI	NEER: SB/RG
	CLIENT:	ESQA SI	IGN & A	WINING	00.					
V5.5			-					u	nits; pol	unds, feet unless noted otherwis
Applie	ed Wind					12	(00.0.0.0	00.4		
					256K _z K _{zt} K _d	V	(29.3.2 &	,		
		1.682		,						max. height= 5.500
					ss unusual lar					
		from tab				E	xposure=	С		
		0.85	-	s (table	26.6-1)					
	V=		mph							
	G=		(26.9)				weight=			
		0.675					M _{DL} =	0.00	k-ft	
	B/s=	0.78								
Pole	otructuro	baight at			Drocouro.			Wind		
	structure components	-	Kz	qz	pressure q _z *G*C _f	A _f	shear	Moment N	1	
Loaus	1	0.89	0.85	9z 24.46	34.97	0.45	16	14	••••	
	2	3.64	0.85	24.40	34.97	10.70	374	1363		
		0.01							(M _w)	k-ft arm= 3.5
					sums:	11.14	390	1.38		k-ft arm= 3.5 M=sort(Max ² +M ²)
M.=s		P _u =	0.13	kip				1.38		k-ft arm= 3.5 M=sqrt($M_{DL}^2+M_w^2$)
M _u =s	eqrt(1.2M _{DL} ² +	P _u =	0.13				390	1.38		
	sqrt(1.2M _{DL} ² +	P _u = 1.0M _W ²) =	0.13 1.38	kip k-ft			390	1.38		
Pole D		P _u = 1.0M _W ²) =	0.13 1.38 section	kip k-ft		11.14	390	1.38		
Pole D	sqrt(1.2M _{DL} ²+ Design	P _u = 1.0M _W ²) =	0.13 1.38 section	kip k-ft ; tube	sums:	11.14	390	1.38		
Pole D	sqrt(1.2M _{DL} ²+ Design	P _u = 1.0M _W ²) =	0.13 1.38 section	kip k-ft ; tube ksi	sums:	11.14	390 M=	1.38		
Pole D	$Sqrt(1.2M_{DL}^{2}+$ Design with $M_n = f$	P _u = 1.0M _W ²) = f _y =	0.13 1.38 section 46	kip k-ft ; tube ksi d. (in)	sums: ¢= (11.14 0.9	390 M= Z	1.38 1.38 Use	k-ft	
ole D	$Sqrt(1.2M_{DL}^{2}+$ Design with $M_n = f$ H	$P_{u}=$ $1.0M_{W}^{2}) =$ $f_{y}=$ $M_{u}(k-ft)$	0.13 1.38 section 46 Z req'	kip k-ft ; tube ksi d. (in)	sums: φ= (Size(in)	11.14 0.9 t (in)	390 M= Z	1.38 1.38 Use	k-ft	M=sqrt(M _{DL} ² +M _w ²)
ole D	$Sqrt(1.2M_{DL}^{2}+$ Design with $M_n = f$ H	$P_{u}=$ $1.0M_{W}^{2}) =$ $f_{y}=$ $M_{u}(k-ft)$	0.13 1.38 section 46 Z req'	kip k-ft ; tube ksi d. (in)	sums: φ= (Size(in)	11.14 0.9 t (in)	390 M= Z	1.38 1.38 Use	k-ft	M=sqrt(M _{DL} ² +M _w ²)
ole D	$Sqrt(1.2M_{DL}^{2}+$ Design with $M_n = f$ H	$P_{u}=$ $1.0M_{W}^{2}) =$ $f_{y}=$ $M_{u}(k-ft)$	0.13 1.38 section 46 Z req'	kip k-ft ; tube ksi d. (in)	sums: φ= (Size(in)	11.14 0.9 t (in)	390 M= Z	1.38 1.38 Use	k-ft	M=sqrt(M _{DL} ² +M _w ²)
ole D	$Sqrt(1.2M_{DL}^{2}+$ Design with $M_n = f$ H	$P_{u}=$ $1.0M_{W}^{2}) =$ $f_{y}=$ $M_{u}(k-ft)$	0.13 1.38 section 46 Z req'	kip k-ft ; tube ksi d. (in)	sums: φ= (Size(in)	11.14 0.9 t (in)	390 M= Z	1.38 1.38 Use	k-ft	M=sqrt(M _{DL} ² +M _w ²)
Pole D	$Sqrt(1.2M_{DL}^{2}+$ Design with $M_n = f$ H	$P_{u}=$ $1.0M_{W}^{2}) =$ $f_{y}=$ $M_{u}(k-ft)$	0.13 1.38 section 46 Z req'	kip k-ft ; tube ksi d. (in)	sums: φ= (Size(in)	11.14 0.9 t (in)	390 M= Z	1.38 1.38 Use	k-ft	M=sqrt(M _{DL} ² +M _w ²)
Pole D	$Sqrt(1.2M_{DL}^{2}+$ Design with $M_n = f$ H	$P_{u}=$ $1.0M_{W}^{2}) =$ $f_{y}=$ $M_{u}(k-ft)$	0.13 1.38 section 46 Z req'	kip k-ft ; tube ksi d. (in)	sums: φ= (Size(in)	11.14 0.9 t (in)	390 M= Z	1.38 1.38 Use	k-ft	M=sqrt(M _{DL} ² +M _w ²)
Pole D	$Sqrt(1.2M_{DL}^{2}+$ Design with $M_n = f$ H	$P_{u}=$ $1.0M_{W}^{2}) =$ $f_{y}=$ $M_{u}(k-ft)$	0.13 1.38 section 46 Z req'	kip k-ft ; tube ksi d. (in)	sums: φ= (Size(in)	11.14 0.9 t (in)	390 M= Z	1.38 1.38 Use	k-ft	M=sqrt(M _{DL} ² +M _w ²)
Pole D	$Sqrt(1.2M_{DL}^{2}+$ Design with $M_n = f$ H	$P_{u}=$ $1.0M_{W}^{2}) =$ $f_{y}=$ $M_{u}(k-ft)$	0.13 1.38 section 46 Z req'	kip k-ft ; tube ksi d. (in)	sums: φ= (Size(in)	11.14 0.9 t (in)	390 M= Z	1.38 1.38 Use	k-ft	M=sqrt(M _{DL} ² +M _w ²)
Pole D	$Sqrt(1.2M_{DL}^{2}+$ Design with $M_n = f$ H	$P_{u}=$ $1.0M_{W}^{2}) =$ $f_{y}=$ $M_{u}(k-ft)$	0.13 1.38 section 46 Z req'	kip k-ft ; tube ksi d. (in)	sums: φ= (Size(in)	11.14 0.9 t (in)	390 M= Z	1.38 1.38 Use	k-ft	M=sqrt(M _{DL} ² +M _w ²)

Page 3 of 10

SUL	LAWAY								mikesul	laway@g	CA 92198 mail.com
ENG	INEER	ING					Pho	one: 858-31	2-5150 H	Fax: 858-	777-3534
PROJECT:	DUTCH BROS.,							D	DATE:	9/29/20)21
PROJ. NO.:	32261B							ENGIN	IEER:	SB/RG	6
CLIENT:	ES&A SIGN & AV	NNING C	0.								
V5.5							units; p	ounds, fee	t unless	noted o	therwise
		Longitu	de Direc	tion							
	applied shear	· at grade	v=	0.244	kip	unfactor	ed load		0.390	k (factor	red)
	applied moment	t at grade	m=	0.86	kip-ft	unfactor	ed load		1.38	k-ft (fact	tored)
	depth of soil abov	/e footing	h _s =	0.00	ft						
	allowable so	il bearing	p=	2.000	ksf						
	Signag	je Weight	w =	0.111	k	(See Pre	evious P	age)			
Onwood Eastin	. Deeien										
Spread Footing	g Design										
moment m=	1.06 k-ft										
Footing size (ft)	b= 3.00	L=	3.00		h=	0.83		S= 4.5	5		
Footing Weight=	1.1 k			See A	bove ,w=	0.111	k	soil (0.00	total=	1.24
Overturning;	M _c = 1.85		M _c >1.5N	1	1.744						ok
soil pressure;	max= 0.429	ksf	-								ok
forces on concr	ete pad;	V=	1.15	k		V _r =	1.84	k (=	1.6V)		
	• •	M=	0.86	k-ft			1.38	``	,		
Check Slab;						I					
	φ=	= 0.9		f _v =	60	ksi	f _c =	2.5 ksi		150	lbs/ft3
Flexure	A _s = 0.150			d=		in					
$\phi M_n = \phi A_s f_v (d-a/2) =$	-	= 4.01	k-ft							M _r < ϕ M _n	ok
$a=A_sf_v/0.85f_cb=$	0.118 in	-									• • •
Check mi		A _{smin} =3sqr	t(f _c)bd/f _v =	0.54		200bd/fy=	0.72	or 1.3	333A _s =	0.20	in ²
ACI 10.3.1											
								Us	e A _s =	0.20	in ²
short direc	tion $\gamma_s=2/(\beta+1)$ =	= 0.8	with	β=	1.5	sh	ort direc	tion;	γA _s =	0.16	in ²
						ι	Jse #5@	@12" ea	ch dire	ection	

Page 4 of 10

Page 5 of 10

SIMPSON

Strong⁻

Anchor Designer™ Software Version 2.7.6990.14

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

 $\begin{array}{l} \mbox{Anchor type: Cast-in-place} \\ \mbox{Material: AB} \\ \mbox{Diameter (inch): 0.500} \\ \mbox{Effective Embedment depth, h_{ef} (inch): 4.000} \\ \mbox{Anchor category: -} \\ \mbox{Anchor ductility: Yes} \\ \mbox{h_{min}$ (inch): 5.88} \\ \mbox{Cmin (inch): 3.00} \\ \mbox{S_{min}$ (inch): 3.00} \end{array}$

Recommended Anchor

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB4 (1/2"Ø)

Project description: Location: Fastening description:

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 12.00 State: Cracked Compressive strength, f'c (psi): 2500 $\Psi_{c,V}$: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: No Build-up grout pad: No

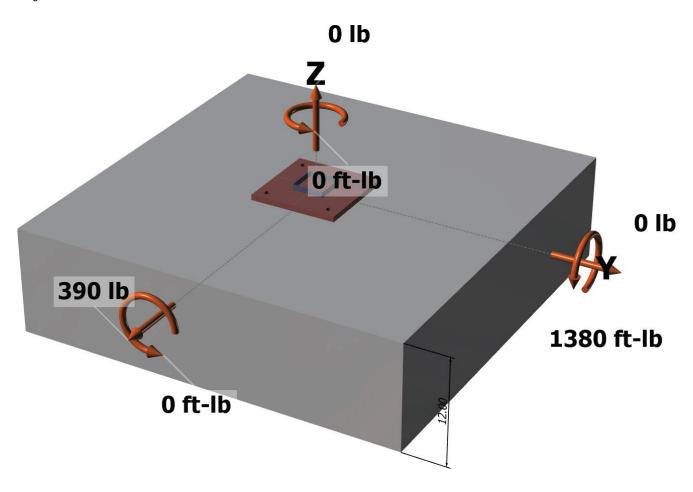
Base Plate

Length x Width x Thickness (inch): 8.00 x 8.00 x 0.50 Yield stress: 34084 psi

Profile type/size: HSS3X3X1/8

Page 6 of 10

Company:	Date:	9/7/2020
Engineer:	Page:	2/6
Project:		
Address:		
Phone:		
E-mail:		

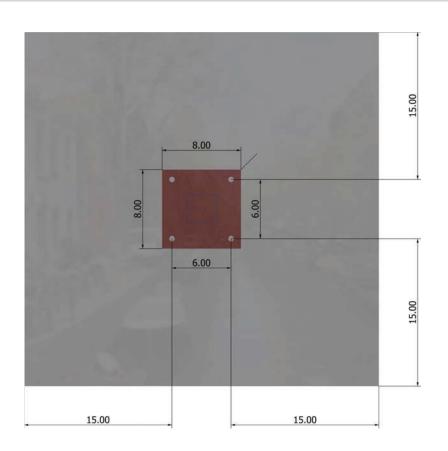

Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: not set Seismic design: No Anchors subjected to sustained tension: Not applicable Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Strength level loads:

 $\begin{array}{l} N_{ua} \; [lb]: \; 0 \\ V_{uax} \; [lb]: \; 390 \\ V_{uay} \; [lb]: \; 0 \\ M_{ux} \; [ft-lb]: \; 0 \\ M_{uy} \; [ft-lb]: \; 1380 \\ M_{uz} \; [ft-lb]: \; 0 \end{array}$

<Figure 1>

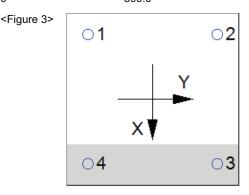

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com Page 7 of 10

Anchor Designer™ Software Version 2.7.6990.14

Company:	D	Date:	9/7/2020
Engineer:	P	Page:	3/6
Project:			
Address:			
Phone:			
E-mail:			

<Figure 2>

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com Page 8 of 10


SIMPSON Strong-Tie Anchor Designer™ Software Version 2.7.6990.14

1	Company:	Date:	9/7/2020
	Engineer:	Page:	4/6
	Project:		
	Address:		
	Phone:		
	E-mail:		

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	1302.0	97.5	0.0	97.5
2	1302.0	97.5	0.0	97.5
3	0.0	97.5	0.0	97.5
4	0.0	97.5	0.0	97.5
Sum	2604.1	390.0	0.0	390.0

Maximum concrete compression strain (‰): 0.08 Maximum concrete compression stress (psi): 340 Resultant tension force (lb): 2604 Resultant compression force (lb): 2604 Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

Nsa (lb)	ϕ	ϕN_{sa} (lb)
8235	0.75	6176

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)

<i>k</i> c	λa	f'c (psi)	hef (in)	Nb (lb)				
24.0	1.00	2500	4.000	960	0				
$\phi N_{cbg} = \phi (A$	Nc / ANco) Ψec,N S	$\Psi_{ed,N}\Psi_{c,N}\Psi_{cp,N}N$	(Sec. 17.3.1 &	& Eq. 17.4.2.	1b)				
A_{Nc} (in ²)	A_{Nco} (in ²)	c _{a,min} (in)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	ϕ	ϕN_{cbg} (Ib

$\phi N_{pn} = \phi \Psi$	$V_{c,P}N_{p} = \phi \Psi_{c,P} 8A_{brg}f$	°c (Sec. 17.3.1	, Eq. 17.4.3.1 8	. 17.4.3.4)
$\Psi_{c,P}$	A _{brg} (in ²)	f'c (psi)	ϕ	ϕN_{pn} (lb)
1.0	1.57	2500	0.70	21994

Page 9 of 10

Company:	Date:	9/7/2020
Engineer:	Page:	5/6
Project:		
Address:		
Phone:		
E-mail:		

8. Steel Strength of Anchor in Shear (Sec. 17.5.1)

V_{sa} (lb)	ϕ_{grout}	ϕ	$\phi_{grout}\phi V_{sa}$ (lb)
4940	1.0	0.65	3211

9. Concrete Breakout Strength of Anchor in Shear (Sec. 17.5.2)

Shear per	pendicular to	edge in x-dir	rection:		
$V_{bx} = \min 7$	$(I_e/d_a)^{0.2}\sqrt{d_a\lambda_a}$	f'c C a1 ^{1.5} ; 9λa√i	f′ _c c _{a1} 1.5 (Eq. 17.5.2.)	2a & Eq. 17.5.2	2.2b)
<i>l</i> e (in)	d _a (in)	λa	f'c (psi)	<i>c</i> a1 (in)	1

<i>I</i> e (in)	da (in)	λa	f'c (psi)	<i>c</i> a1 (in)	V _{bx} (lb)			
4.00	0.500	1.00	2500	10.00	11862			
$\phi V_{cbgx} = \phi (A$	Vc / Avco) Vec, V Ve	ed, V $\Psi_{c,V} \Psi_{h,V} V_{bx}$	(Sec. 17.3.1 & E	q. 17.5.2.1b)				
A_{Vc} (in ²)		$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cbgx} (lb)		
432.00	450.00	1.000	1.000	1.000	1.118	11862	0.70	8912

Shear parallel to edge in x-direction:

$V_{by} = \min[7($	$I_e / d_a)^{0.2} \sqrt{d_a \lambda_a} \sqrt{f}$	cca1 ^{1.5} ; 9λa√f'co	Ca1 ^{1.5} (Eq. 17.5.2	.2a & Eq. 17.5.2	2.2b)			
Ie (in)	da (in)	λa	f'c (psi)	<i>c</i> a1 (in)	V _{by} (lb)			
4.00	0.500	1.00	2500	10.00	11862			
$\phi V_{cbgx} = \phi$ (2)	e)(A _{Vc} /A _{Vco}) $\Psi_{ec,V}$	V Yed, V Yc, V Yh, V	/ _{by} (Sec. 17.3.1,	17.5.2.1(c) & Ec	q. 17.5.2.1b)			
A_{Vc} (in ²)	Avco (in²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbgx} (lb)
432.00	450.00	1.000	1.000	1.000	1.118	11862	0.70	17825

10. Concrete Pryout Strength of Anchor in Shear (Sec. 17.5.3)

$\phi V_{cpg} = \phi P$	$k_{cp}N_{cbg} = \phi k_{cp}(A_{NG})$	с / A _{Nco}) Ψес,N Ψе	d,N $\Psi_{c,N} \Psi_{cp,N} N$	♭(Sec. 17.3.1 8	ε Eq. 17.5.3.1t	o)				
K cp	A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	ϕ	ϕV_{cpg} (lb)	
2.0	380.25	144.00	1.000	1.000	1.000	1.000	9600	0.70	35490	-

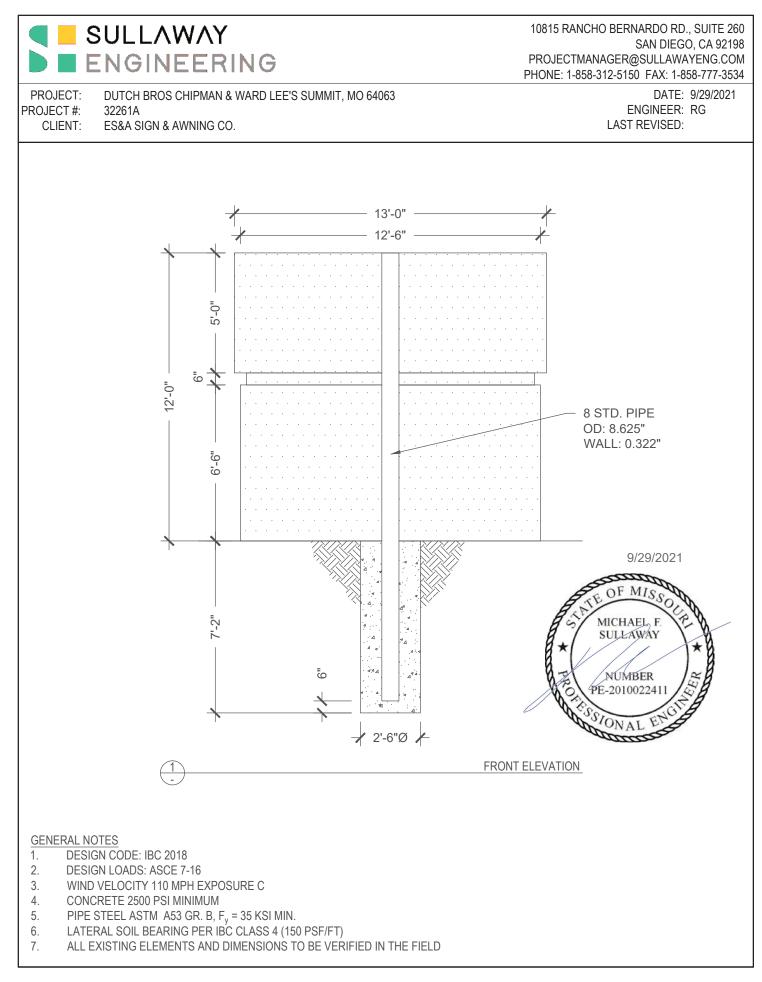
11. Results

Interaction of Tensile and Shear Forces (Sec. 17.6.)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1302	6176	0.21	Pass
Concrete breakout	2604	12285	0.21	Pass (Governs)
Pullout	1302	21994	0.06	Pass
Shear	Factored Load, V _{ua} (Ib)	Design Strength, øVn (lb)	Ratio	Status
Steel	98	3211	0.03	Pass
T Concrete breakout x+	390	8912	0.04	Pass (Governs)
Concrete breakout y-	195	17825	0.01	Pass (Governs)
Pryout	390	35490	0.01	Pass
Interaction check Nua/	∕φNn Vua∕φVn	Combined Rat	o Permissible	Status
Sec. 17.61 0.2	1 0.00	21.2%	1.0	Pass

PAB4 (1/2"Ø) with hef = 4.000 inch meets the selected design criteria.

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com Page 10 of 10



Company:	Date:	9/7/2020
Engineer:	Page:	6/6
Project:		
Address:		
Phone:		
E-mail:		

12. Warnings

- Designer must exercise own judgement to determine if this design is suitable.

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

	SULLAW	٧٨Y						10815 Ra				, CA 9212
	ENGINE	ERIN	G					Phone				vayeng.com 8-777-353
	PROJECT:									DATE	: 9/2	29/21
	PROJ. NO.:									NEER		RG
		ES&A SIG	SN & AW	NING C	0.							
V5.5								units; pour	nds, fee	et unless	s noted	otherwise
Applie	d Wind Loa	ads; fro	m ASC	E 7-16								_
	F=q _z *G*C _f *A	f	with q _z	= 0.002	256K _z K _{zt} K _d	V^2	(29.3.2 &	& 29.4)				-
	C _f =	1.683	(Fig. 29	.3-1)					r	nax. h	eight=	12.00
	K _{zt} =	1.0	(26.8.2) (=	=1.0 unles	s unusual la	ndscape)					s=	6.50
	K _z =	from table	28.3-1			Ex	posure=	c c				
	K _d =	0.85	for signs	s (table	26.6-1)							
	V=	110	mph									
	G=	0.85	(26.9)				weight=	1.523	kips			
	s/h=	0.542					M _{DL} =	0.00	k-ft			
	B/s=	1.92										
Pole	structure	height at			pressure			Wind				
Loads	component	section c.g.	K _z	q _z	q _z *G*C _f	A _f	shear	Moment M _W				
	1	3.3	0.850	22.4	32.02	81.3	2601	8454	_			
	2	6.75	0.850	22.4	32.02	6.0	192	1297				
	3	9.5	0.850	22.4	32.02	65.0	2081	19770				
					sums:	152.3	4874	29.52	(M _w)	-	arm=	
		P _u =		kip			M=	29.52	k-ft	M=sqr	rt(M _{DL} ² +	M _w ²)
	M _u =sqrt(1.2M _{DL}	$^{2}+1.0M_{W}^{2}) =$	29.52	k-ft								
Pole D	esign		section	; pipe								
M _u ≤ ¢M _n ∖	with $M_n = f_y Z$	f _y =	35	ksi	φ=	0.9						
	Н	M _u (k-ft)	Z req	d. (in)	Size(in)	t (in)	Z	USE				
	at grade	29.5	11.	25	8	0.322	20.8	8 STD PIPE	Ξ, ΦΜ	n= 54	.6 k-ft	
Feetin	a Deelan			. .	• .							
rooun	g Design	4.0		-	rint: roun							
			IBC 1605.3	.2			sections 18	06.3.4, 1807.3.2			S=(1.3	
		3.80	kip S1 = S x d / 3							,		400
	S1=	955 3.73			d =0.5xA (1+ (1+4.36x h/A)					IBC 18	807.3.2.	1
	A-	5.75			footing:	2' - 6	" dia		7' -	- 2"	deen	
					iooung.	0			/ -		ueep	