	COND
	0.0 0.0
	0.0 0.0 0.0
	0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	0.1 + 0.0 + 0.0 + 0.0
	0.1 + 0.0 + 0.0 + 0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c} \hline \mathbf{CO4E} \\ \bullet \\ $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{bmatrix} 0.0 & 0.0 & 0.1 \\ 0.0 & 0.0 & 0.1 \\ 0.0 & 0.0 & 0.1 \\ 0.0 & 0.0 & 0.1 \\ 0.0 & 0.0 & 0.1 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
+0.0 +0.0 +0.1 +0.5 +3.5 +7.3	
	0.1 + 0.0 + 0.0 + 0.0 + 0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0
+0.0 +0.0 +0.0 +0.0 +0.0 +0.1 +0.3 +0.4 +0.4 +0.4 +0.4 +0.5 +0.7 +1.0 +0.1 +0.3 +0.1 +0.1 +0.1 +0.1 +0.1 +0.1 +0.1 +0.1	0.1 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1 +0.1 +0.1 +0.1 +0.0 +0.0 +0.0 +0.0
+0.0 $+0.0$	0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.0 + 0.0 + 0.0
+0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0	0.2 + 0.2 + 0.2 + 0.1 + 0.1 + 0.1 + 0.0 + 0.0
+0.0 + 0.0	0.4 + 0.4 + 0.3 + 0.2 + 0.2 + 0.1 + 0.1 + 0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\
$+0.0$ $+0.1$ $+0.1$ $+0.2$ $+0.6$ $+3.6$ $+3.6$ $+3.4$ $+2.8$ $+2.5$ $+2.7$ $+3.1$ $+3.8$ $+4.9$ $+6.6$ $+8.9$ $+11.6$ $+14.1$ $+12.3$ $+9.6$ $+7.1$ $+5.2$ $+3.9$ $+3.1$ $+2.6$ $+2.2$ $+1.9$ $+1.8$ $+2.0$ $+2.3$ $+2.6$ $+2.7$ $+2.4$ $+2.0$ $+1.4$ $+1.0^{2}$ $+0.8$ $+0.1$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.9 +0.8 +0.6 +0.5 +0.3 +0.2 +0.1 +0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.1 _0.9 _0.7 _0.5 _0.3 _0.1 _0.1 _0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
+0.0 +0.1 +0.1 +0.1 +0.1 +0.1 +0.1 +0.1	1.4 +1.0 0.7 +0.3 +0.1 +0.0 +0.0 +0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.2 0.8 0.4 0.1 0.0 0.0 0.0 0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 +0.4 +0.1 +0.1 +0.0 +0.0 +0.0 +0.0
	0.5 +0.2 +0.1 +0.0 +0.0 +0.0 +0.0
$ \begin{array}{c} 0.0 \\ + 0.0 \\ $	0.2 +0.1 +0.0 +0.0 +0.0 +0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1 +0.0 +0.0 +0.0 +0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1 +0.0 +0.0 +0.0
	0.0, 0.0, 0.0,
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1	0.0 +0.0
+0.0 $+0.0$	0.0
+0.0 + 0.0	
+0.0 + 0.0	EXTE
$\begin{array}{c} 0.0 \\ +$	PROVIDE EMERGENCY BALLAST WITH INTERNAL TEST SWITCH FOR 90 MINU COORDINATE INSTALLATION HEIGHT WITH ARCHITECT.
$0.0^{+}, 0.0^{-}, 0.0^{-}, 0.0^{-}, 0.0^{-}, 0.0^{-}, 0.1^{-}, 0.1^{-}, 0.1^{-}, 0.1^{-}, 0.0^{-}, 0$	4. FIXTURE SHALL BE RATED FOR OUTDOOR USE. P MANUFACTURER MODEL NUMBER
	C04 HE WILLIAMS 6DR-TL-L70/840-DIM-UNV-LW-OF-CS-WET/CC-N-F1 C04E HE WILLIAMS 6DR-TL-L70/840-EM/10W-DIM-UNV-LW-OF-CS-WET/CC-I PL01 GARDCO SIGNIFY ECF-S-64L-1A-NW-G2-XX-2-208-DD-XXX PL02 GARDCO SIGNIFY ECF-S-64L-1A-NW-G2-XX-3-208-DD-XXX
1 " = 20'-0"	PL02 GARDCO SIGNIFY ECF-S-64L-1A-NW-G2-XX-3-208-DD-XXX PL03 GARDCO SIGNIFY ECF-S-64L-1A-NW-G2-XX-3-208-DD-XXX PL03-HIS GARDCO SIGNIFY ECF-S-64L-1A-NW-G2-XX-3-208-DD-HIS-XXX W01 LIGMAN UVK-30003-37W-T4-W40-XX-120/277V
	W01 LIGHAN OVE 50003-57W-14-W40-XX-120/277V-EMR W01E LIGMAN UVK-30003-37W-T4-W40-XX-120/277V-EMR

2021024 PDP RESUBMITTAL FEB 23, 2021 (NO REVISIONS TO THESE SHEETS)

NEW CONSTRUCTION AND REMODEL

FEATURES

Trim**Lock***

- Innovative TrimLock reflector retention system ensures trim remains flush with ceiling plane
- Available on QuickShip

SPECIFICATIONS

- HOUSING Die-cast aluminum trim housing with forged aluminum heat sink. Galvanized steel splice compartment with driver mounting plate/enclosure. Swingout mounting arms field adjust for ceiling thickness from $1/2'' - 2 \cdot 1/4''$.
- TRIMLOCK Innovative TrimLock reflector retention system ensures the trim remains flush with the ceiling plane.
- OPEN REFLECTOR Low-iridescent anodized aluminum. Clear semi-specular finish standard.
- LENSED TRIM Die-cast aluminum frame with micro-prismatic, tempered glass lens.
- ELECTRICAL High-performance Class 2 C.O.B. LED array. Modular quick-connect plug for easy field-connection of LED light assembly to driver. Reported L70>55,000 hours. Reported L90>55,000 hours. Estimated L70 = 200,000 hours.
- MOUNTING Recessed. 20 ga. galvanized steel mounting pan for new construction or IC-rated enclosure. Remodel kit option includes receiver bracket hardware. Minimum 24" O.C marked spacing required for L60 - L80 lumen packages.
- LISTINGS cCSAus conforms to UL STD 1598; Certified to CAN/CSA STD C22.2 No. 250.0 for damp locations. LED light assembly conforms to UL 2108 for remote installation.
- Suitable for wet location under covered ceiling when specified with WET/CC or TD options.
- ENERGY STAR[®] certified in select
- configurations, see www.energystar.gov IC-rated for direct contact with insulation when specified with I Mounting Type.
- City of Chicago Environmental Air approved when specified with CP option.
- Complies with ASTM-E283 when specified with ATH option.
- RoHS compliant.
- Title 24 (JA8) compliant in select configurations, see
- www.cacertappliances.energy.ca.gov. WARRANTY - 5-year limited warranty, see hew.com/warranty

Available with BIOS® consult factory

CATALOG

TYPE:

PROJECT:

ORDERING EXAMPLE: 6DR - TL - L20/835 - OPTIONS - DIM - UNV - OW - OF - CS - TRIM OPTIONS N - F1 HOUSING -____TRIM ___ MOUNT. HOUSING

SERIES	LUMENS ^[1]	CRI	ССТ	OPTIONS		CONTROL ^[2]	VOLTAGE
6DR - TL TrimLock	L10 1,000lm ^[3] L15 1,500lm L20 2,000lm L30 3,000lm L40 4,000lm L50 5,000lm L60 6,000lm L70 7,000lm L80 8,000lm	8 80 9 90 ^[4]	27 2700K 30 3000K 35 3500K 40 4000K 50 5000K	SCA ATH F EM/7W EM/10W	Sloped ceiling adapter ^[5] Airtight construction Fuse 7-watt emergency batt 10-watt emergency ba S 10-watt emergency ba Chicago plenum (CCEF Stepdown transformer	DIM Dimming driver, 0-10V DIM1 1% Dimming driver, 0-10V tery ^[7] ttery ^[8] ttery with regressed te	UNV 120-277V 347 347V ^[6]

TRIM [12]

TRIM TYPE	DISTRIBUTION [^{13]} FLANGE TYPE	REFLECTOR FINISH	TRIM O	PTIONS
O Open reflector L Flush lens R Regressed lens A Angled lens ^[14] S Non-conductive flush lens for shower applications ^[15]	 W Wide 65° Open 55° Flush 55° Regress M Medium ^{(16]} 35° Open 35° Flush 35° Regress N Narrow ^{(17]} 10° Open 25° Flush 25° Regress WW Wall wash ⁽¹⁵⁾ 	ed	Open trim types CS Clear semi-specular anodize GD Gold anodize CG Champagne gold anodize PW Pewter anodize SPC Clear specular anodize RG Rose gold anodize WH White texture powder coat BL Black texture powder coat Lens trim types CS Clear semi-specular powdei WH White texture powder coat BL Black texture powder coat	AM r coat	Textured white trim flange ^[20] IP65 rated trim ^[21] Diffuse acrylic lens ^[22] Diffuse 1/8" polycarbonate lens ^[23] Diffuse polycarbonate lens media at top of open reflector ^[24] Wet location, covered ceiling listed ^[25] Anti-microbial ^[26]

MOUNTING TYPE [28]

- N Open pan for new construction
- IC-rated enclosure for new construction [30]
- R Remodel kit^[31]

NOTES

- Lumen output based on O trim type, W distribution and CS finish, 3500K/80CRI. Actual lumens may vary +/-5%.See page 2 for FIXTURE PERFORMANCE DATA.
- See page 4 for ADDITIONAL CONTROL OPTIONS.
- Not available with EM/10W emergency batteries. Extended lead times may apply. Consult 4
- factory for availability. 11-1/2" aperture, specify degrees of slope in 5° increments, 05°-30°. See page 4 for SLOPED CEILING ADAPTOR DETAILS. Not available with ATH option. N Mounting Type only. Not available with WET/CC. Not available with EM batteries or DMX
- controls.
- N and R Mounting Types only. N and R Mounting Types only. Not available with WET/CC, ATH or IP options. N and R Mounting Types only. See page 5 for EM/10W/RTS DETAILS.
- ¹⁰ I Mounting Type required.

- ¹¹ May be required for 347V, see product builder at hew.com/product-builder. 12
- ¹⁵ W Distribution, OF Flange Type and WH Reflector Finish only. Standard with AD diffuse acrylic lens. IP and Market Standard With AD
- WET/CC options standard. Not available with lumen stops L50 and higher when specified with flush or
- regressed trim types. Not available with lumen stops L50 and 17 higher when specified with flush or
- only, supplied with mud flange installation kit. See page 5 for FLANGE TYPE DETAILS. Not available with ATH or IP
- options. 20 Not available with WH Reflector Finish, L or S Trim Types.

²¹ L and R trim types only. 22

Integral 2-position fixed pan bracket, universal bar hanger included [32]

Adjustable caterpillar pan bracket, universal bar hanger included [34]

Adjustable butterfly pan bracket, bar hanger not included [33]

- Not available with O trim type. W distribution only. Not available with O trim type. W 23
- 24
- distribution only. O Trim Type only. WET/CC standard. L50 lumen package max.
- ²⁵ L50 lumen package max with 0 Trim Type.
 ²⁶ WH and BL Reflector Finishes only. Not available with S Trim Type.
- ²⁷ R Trim Type only. Not available with MWT. ²⁸ Mounting hardware required (N and I only), ordered separately, see MOUNTING HARDWARE ordering info. See page 5 for MOUNTING TYPE DETAILS.
- ²⁹ Additional mounting hardware options available. See page 6 for MOUNTING HARDWARE DETAILS.
- ³⁰ L30 lumen package max.
- ³¹ Also used in new construction sheetrock ceilings. N and I Mounting Types only. I Mounting
- requires external brackets. ³³ N Mounting Type only. ³⁴ N Mounting Type only.

H.E. Williams, Inc. Carthage, Missouri www.hew.com 417-358-4065 Information contained herein is subject to change without notice

Designed and Manufactured in the USA HEW 70700 LA REV 12/11/20

 Trim ships separately.
 Beam angle based on CS or WH reflector finish. See page 2 for FIXTURE PERFORMANCE DATA. Available with WW Distribution only.

MOUNTING HARDWARE [29]

F1

BA1

CA1

- regressed trim types. ¹⁸ O and A Trim Types only. ¹⁹ For use with mud-in plaster construction

FIXTURE PERFORMANCE DATA

OPEN REFLECTOR TRIM TYPE

	DIST. DELIVERED LUMENS WATTAGE EFFICACY (Im/W					
	W	1014	8.7	116.9		
2	M	982	8.7	113.2		
_	N	1003	8.7	115.7		
	W	1497	13.8	108.6		
L15	М	1495	13.8	108.4		
	Ν	1528	13.8	110.8		
	W	1988	19.0	104.6		
L20	М	1983	19.1	103.8		
	Ν	2026	19.1	106.1		
	W	3062	26.9	114.0		
L30	М	3003	26.9	111.8		
	Ν	3000	26.9	111.7		
L40	W	4094	36.5	112.2		
	М	4016	36.4	110.3		
	Ν	4011	36.4	110.2		
_	W	5014	43.9	114.1		
L50	М	4935	43.9	112.3		
	Ν	5047	43.9	114.9		
	W	6043	54.0	111.9		
L60	М	5948	54.0	110.1		
	Ν	6083	54.0	112.6		
	W	7008	67.8	103.3		
12	М	6898	67.8	101.7		
	Ν	7055	67.8	104.0		
	W	8018	79.8	100.5		
L80	М	7891	79.8	98.9		
	Ν	8071	79.8	101.2		

FLUSH LENS TRIM TYPE					
	DIST.	DELIVERED LUMENS	WATTAGE	EFFICACY (Im/W)	
	W	774	8.7	89.2	
L10	М	910	8.7	104.9	
	N	909	8.7	104.8	
2	W	1178	13.8	85.4	
L15	М	1385	13.8	100.4	
	Ν	1384	13.8	100.4	
	W	1562	19.5	80.1	
L20	М	1837	19.1	96.1	
	Ν	1836	19.5	94.2	
	W	2335	26.9	86.9	
L30	М	2782	26.9	103.6	
	Ν	2718	26.9	101.2	
L40	W	3122	36.5	85.5	
	М	3720	36.4	102.2	
	N	3635	36.4	99.9	
	W	3824	43.9	87.0	
L50	М	-	-	-	
	N	-	-	-	
	W	4609	54.0	85.4	
L60	М	-	-	_	
	N	-	-	-	
	W	5345	67.8	78.8	
12	М	-	-	-	
	N	-	-	_	
_	W	6115	79.8	76.7	
L80	М	-	-	-	
	Ν	-	-	-	

DECDESSED I ENS TDIM TVDE

REGRESSED LENS TRIM TYPE					
	DIST.	DELIVERED LUMENS	WATTAGE	EFFICACY (Im/W)	
	W	716	8.7	82.5	
19	М	883	8.7	101.7	
	Ν	897	8.7	103.4	
	W	1090	13.8	79.0	
L15	М	1344	13.8	97.4	
5	Ν	1366	13.8	99.1	
	W	1445	19.5	74.1	
L20	М	1782	19.1	93.3	
	Ν	1812	19.5	92.9	
	W	2160	26.9	80.4	
L30	М	2699	26.9	100.5	
	Ν	2683	26.9	99.9	
	W	2889	36.5	79.1	
5	М	3609	36.4	99.1	
	Ν	3587	36.4	98.6	
	W	3537	43.9	80.5	
L50	М	-	-	-	
	Ν	-	-	-	
	W	4264	54.0	79.0	
160	М	_	-	_	
	Ν	_	_	_	
	W	4945	67.8	72.9	
L70	М	-	-	-	
	Ν	-	-	-	
	W	5657	79.8	70.9	
L80	М	_	-	_	
	Ν	_	-	_	

MULTIPLIER TABLES

	COLOR TEMPERATURE			
	ССТ	CONVERSION FACTOR		
	2700K	0.92		
~	3000K	0.98		
80 CRI	3500K	1.00		
õ	4000K	1.01		
	5000K	1.02		
	2700K	0.76		
~	3000K	0.79		
90 CRI	3500K	0.82		
6	4000K	0.84		
	5000K	0.88		

	REFLECTOR FINISH			
	CATALOG NUMBER	CONVERSION FACTOR		
	CS	1.00		
	SG ¹	0.92		
	GD	0.93		
Σ	CG	0.96		
O TRIM	PW	0.86		
0	SPC	1.02		
	RG	0.88		
	WH ¹	0.89		
	BL ¹	0.47		
Σ	WH	1.00		
R TRIM	CS	0.98		
2	BL	0.79		

1	Distribution wi	ll also be af	fected, c	onsult factory.
2				

Use multiplier when specified with 0 Trim Type. Photometrics tested in accordance with IESNA LM-79. Results shown are based on 25°C ambient temperature. ÷

Wattage shown is based on 120V input. Results based on 3500K, 80 CRI, actual lumens may vary +/-5% Use multiplier tables to calculate additional options. .

.

PHOTOMETRY

6DR-TL-L20/835-DIM-UNV-OW-OF-CS Report #: 20687; 12/12/18 | Total Luminaire Output: 1988 lumens; 19.0 Watts | Efficacy: 104.6 lm/W | 82.9 CRI; 3457K CCT

TRIM

CATALOG CONVERSION NUMBER FACTOR

S

AD

PD TD

WET/CC²

0.85

0.85

0.85

0.75

0.85

	VERTICAL ANGLE	HORIZONTAL ANGLE	ZONAL LUMENS
-			
Ó	0	1672	
۲ ۲	5	1579	151
E	15	1735	492
CANDLEPOWER DISTRIBUTION	25	1982	917
Ř	35	604	380
N	45	46	36
Ē.	55	13	12
Ī	65	2	2
CA	75	0	0
	85	0	0
	90	0	

LUMEN SUMMARY	ZONE	LUMENS	% FIXTURE
M	0 - 40	1939	98
NS	0 - 60	1987	100
Ψ	0 - 90	1988	100
3	0 - 180	1988	100

6DR-TL-L20/835-DIM-UNV-OM-OF-CS Report #: 12326812.04; 05/01/18 | Total Luminaire Output: 1983 lumens; 19.1 Watts | Efficacy: 103.8 lm/W | 82.7 CRI; 3579K CCT

	VERTICAL ANGLE	HORIZONTAL ANGLE	ZONAL LUMENS
	VERTICAL ANGLE	0°	ZUNAL LUMENS
CANDLEPOWER DISTRIBUTION	0	4013	
5	5	3972	249
E	15	2325	347
SS	25	1412	68
ä	35	396	68
N	45	46	15
Ĕ.	55	14	5
Ā	65	4	2
G	75	1	0
	85	0	0
	90	0	

SUMMARY	ZONE	LUMENS	% FIXTURE
Š	0 - 40	1924	97
NS	0 - 60	1977	100
LUMEN	0 - 90	1983	100
3	0 - 180	1983	100

6DR-TL-L20/835-DIM-UNV-ON-OF-CS Report #: 12326812.05; 06/06/18 | Total Luminaire Output: 2026 lumens; 19.1 Watts | Efficacy: 106.1 lm/W | 82.6 CRI; 3578K CCT

	VERTICAL ANGLE	HORIZONTAL ANGLE	ZONAL LUMENS
	VERTICAL ARGEE	0°	LONAL COMENS
S	0	22000	
5	5	9830	397
E	15	2032	290
SIS	25	1021	214
CANDLEPOWER DISTRIBUTION	35	242	24
N	45	13	4
Ĕ.	55	4	1
Ā	65	1	1
G	75	0	0
	85	0	0
	90	0	

LUMEN SUMMARY	ZONE	LUMENS	% FIXTURE		
MN	0 - 40	2010	99		
NS	0 - 60	2024	100		
IME	0 - 90	2026	100		
2	0 - 180	2026	100		

6DR-TL-L20/835-DIM-UNV-OWW-OF-CS Report #: 12326812.06; 06/28/18 | Total Luminaire Output: 1009 lumens; 19.1 Watts | Efficacy: 52.8 lm/W | 82.6 CRI; 3568K CCT

	HORIZONTAL ANGLE						
ANGLE	0°	45°	90°	135°	180°	ZONAL LUMENS	
0	772	772	772	772	772		
5	873	843	805	494	403	48	
15	891	872	1128	275	292	108	
25	1552	925	1051	240	274	194	
35	539	400	375	206	235	58	
45	43	36	88	166	185	37	
55	21	20	54	116	122	27	
65	16	14	32	70	72	18	
75	7	5	15	39	39	9	
85	0	0	3	10	8	1	
90	0	0	0	0	0		
	0 5 15 25 35 45 55 65 75 85	ANGLE 0° 0 772 5 873 15 891 25 1552 35 539 45 43 55 21 65 16 75 7 85 0	ANGLE 0° 45° 0 772 772 5 873 843 15 891 872 25 1552 925 35 539 400 45 43 36 55 21 20 65 16 14 75 7 5 85 0 0	ANGLE 0° 45° 90° 0 772 772 772 5 873 843 805 15 891 872 1128 25 1552 925 1051 35 539 400 375 45 43 36 88 55 21 20 54 65 16 14 32 75 7 5 15 85 0 0 3	ANGLE 0° 45° 90° 135° 0 772 772 772 772 5 873 843 805 494 15 891 872 1128 275 25 1552 925 1051 240 35 539 400 375 206 45 43 36 88 166 55 21 20 54 116 65 16 14 32 70 75 7 5 15 39 85 0 0 3 10	ANGLE 0° 45° 90° 135° 180° 0 772 772 772 772 772 772 5 873 843 805 494 403 15 891 872 1128 275 292 25 1552 925 1051 240 274 35 539 400 375 206 235 45 43 36 88 166 185 55 21 20 54 116 122 65 16 14 32 70 72 75 7 5 15 39 39 85 0 0 3 10 8	

LUMEN SUMMARY	ZONE	LUMENS	% FIXTURE
N S	0 - 40	804	80
NS	0 - 60	941	93
벌	0 - 90	1009	100
	0 - 180	1009	100

6DR-TL-L20/835-DIM-UNV-LM-OF-WH Report #: 12326812.09; 06/05/18 | Total Luminaire Output: 1837 lumens; 19.1 Watts | Efficacy: 96.1 lm/W | 82.6 CRI; 3549K CCT

	VERTICAL ANGLE	HORIZONTAL ANGLE	ZONAL LUMENS	
	VERTICAL ANGLE	0°	ZUNAL LUMENS	
CANDLEPOWER DISTRIBUTION	0	4338		
5	5	4168	281	
RIB	15	2728	354	
ISI	25	847	153	
E I	35	222	56	
N	45	89	31	
Đ,	55	53	22	
g	65	32	14	
CA	75	16	7	
	85	4	1	
	90	0		

LUMEN SUMMARY	ZONE	LUMENS	% FIXTURE		
₹	0 - 40	1667	91		
NS	0 - 60	1785	97		
Ξ	0 - 90	1837	100		
1	0 - 180	1837	100		

6DR-TL-L20/835-DIM-UNV-RM-OF-WH Report #: 12326812.14; 06/06/18 | Total Luminaire Output: 1782 lumens; 19.1 Watts | Efficacy: 93.3 lm/W | 82.7 CRI; 3546K CCT

	VERTICAL ANGLE	HORIZONTAL ANGLE	ZONAL LUMENS		
	VERTICAL ANGLE	0°	ZUNAL LUMENS		
CANDLEPOWER DISTRIBUTION	0	4313			
5	5	4131	277		
2	15	2669	346		
S	25	846	155		
2	35	225	55		
<u>N</u>	45	76	26		
Ĕ.	55	41	17		
Ē	65	23	10		
R	75	10	4		
	85	3	1		
	90	0			

LUMEN SUMMARY	ZONE	LUMENS	% FIXTURE		
M	0 - 40	1648	93		
NS	0 - 60	1746	98		
E E	0 - 90	1782	100		
	0 - 180	1782	100		

ADDITIONAL CONTROL OPTIONS

Lumen restrictions apply: L40 max for DMX driver, L40 max for Lutron drivers, L50 max for ELDO drivers, L60 max for DIM LINE driver. R Mounting Type only available with DIM, DIM1, and DIM LINE controls. 347V may require stepdown transformer, see product builder at hew.com/product-builder.

CATALOG NUMBER	DESCRIPTION
DIM	Dimming driver prewired for 0-10V low voltage applications
DIM1	1% dimming driver prewired for 0-10V low voltage applications
DIM LINE	Line voltage dimming driver (TRIAC and ELV compatible at 120V only)
DMX	0.1% dimming driver for DMX controls
LTE LINE	Lutron Hi-lume 1% 2-wire dimming driver forward phase line voltage controls (120V only)
LDE1	Lutron Hi-lume 1% EcoSystem dimming LED driver
LDE5	Lutron 5-Series 5% EcoSystem dimming LED driver
VRF/DSR	Lutron Vive integral fixture control, RF only (DFCSJ-OEM-RF) and sensor-ready driver
VRF/DBI/LDE1	Lutron Vive integral fixture control, RF only (DFCSJ-OEM-RF), Lutron Hi-lume 1% EcoSystem dimming LED driver, and digital link interface
VRF/DBI/LDE5	Lutron Vive integral fixture control, RF only (DFCSJ-OEM-RF), Lutron 5-Series 5% EcoSystem dimming LED driver, and digital link interface
FCJS/DIM	Lutron Vive PowPak wireless fixture control with dimming driver
FCJS/DIM1	Lutron Vive PowPak wireless fixture control with 1% dimming driver
ELDO SOLOB	EldoLED Solodrive, 0.1% dimming driver for 0-10V controls
ELDO SOLOB DALI	EldoLED Solodrive, 0.1% dimming driver for DALI controls
ELDO ECO1	EldoLED Ecodrive, 1% dimming driver for 0-10V controls
ELDO ECO1 DALI	EldoLED Ecodrive, 1% dimming driver for DALI controls

TRIMLOCK DETAILS

SLOPED CEILING ADAPTOR DETAILS

		A (HEIGHT)					
LUMENS	5°	10°	15°	20°	25°	30°	HEIGHT
L10 - L40	10-11/16″	10-7/8″	10-15/16"	10-7/8″	10-13/16"	10-5/8″	11-1/4″
L50 - L80	11-7/16″	11-9/16"	11-5/8″	11-5/8″	11-1/2″	11-1/4″	12″
15° Shown							

TRIM TYPE DETAILS

FLANGE TYPE DETAILS

REFLECTOR FINISH DETAILS

SPC Clear specular	SG Satin-glow	PW Pewter	GD Gold	CG Champagne gold	RG Rose gold	CS Clear semi-specula	WH ar White	BL Black
				and the second se		and the second second		

MOUNTING TYPE DETAILS

	LENGTH					
LUMENS	A	В	С	D	E	F
L10 - L20	15-3/16″	16″	6-3/8″	12-1/8″	9-1/2″	6-1/16″
L30	16-5/8″	17-1/2″	7-7/8″	14″	10-1/4″	7″

Receiver Bracket

EM/10W/RTS DETAILS

RTS trim

MOUNTING HARDWARE DETAILS

P

F1 with I Mounting Type

NEW CONSTRUCTION AND REMODEL

FEATURES

Trim**Lock***

- Innovative TrimLock reflector retention system ensures trim remains flush with ceiling plane
- Available on QuickShip

SPECIFICATIONS

- HOUSING Die-cast aluminum trim housing with forged aluminum heat sink. Galvanized steel splice compartment with driver mounting plate/enclosure. Swing-out mounting arms field adjust for ceiling thickness from 1/2'' - 2-1/4''.
- TRIMLOCK Innovative TrimLock reflector retention system ensures the trim remains flush with the ceiling plane.
- OPEN REFLECTOR Low-iridescent anodized aluminum. Clear semi-specular finish standard.
- LENSED TRIM Die-cast aluminum frame with micro-prismatic, tempered glass lens.
- ELECTRICAL High-performance Class 2 C.O.B. LED array. Modular quick-connect plug for easy field-connection of LED light assembly to driver. Reported L70>55,000 hours. Reported L90>55,000 hours. Estimated L70 = 200,000 hours.
- MOUNTING Recessed. 20 ga. galvanized steel mounting pan for new construction or IC-rated enclosure. Remodel kit option includes receiver bracket hardware. Minimum 24" O.C marked spacing required for L60 - L80 lumen packages.
- LISTINGS cCSAus conforms to UL STD 1598; Certified to CAN/CSA STD C22.2 No. 250.0 for damp locations. LED light assembly conforms to UL 2108 for remote installation.
- Suitable for wet location under covered ceiling when specified with WET/CC or TD options.
- ENERGY STAR[®] certified in select
- configurations, see www.energystar.gov IC-rated for direct contact with insulation
- when specified with I Mounting Type. City of Chicago Environmental Air approved when specified with CP option.
- Complies with ASTM-E283 when specified with ATH option.
- RoHS compliant.
- Title 24 (JA8) compliant in select configurations, see
- www.cacertappliances.energy.ca.gov. WARRANTY - 5-year limited warranty, see hew.com/warranty

Available with BIOS® consult factory

CATALOG

TYPE:

PROJECT:

ORDERING EXAMPLE: 6DR - TL - L20/835 - OPTIONS - DIM - UNV - OW - OF - CS - TRIM OPTIONS N - F1 - HOUSING -

TRIM ____ MOUNT.

HOUSING							
SERIES	LUMENS ^[1]	CRI	ССТ	OPTIONS		CONTROL ^[2]	VOLTAGE
6DR - TL TrimLock	L10 1,000lm ⁽³⁾ L15 1,500lm L20 2,000lm L30 3,000lm L40 4,000lm L50 5,000lm L60 6,000lm L60 8,000lm L60 8,000lm	8 80 9 90 ^[4]	27 2700K 30 3000K 35 3500K 40 4000K 50 5000K	SCA ATH F EM/7W EM/10W EM/10W/RT CP SDT	Sloped ceiling adapter ^[5] Airtight construction Fuse 7-watt emergency bat 10-watt emergency ba \$ 10-watt emergency ba Chicago plenum (CCE/ Stepdown transformer	httery ^[8] httery with regressed te A) ^[10]	UNV 120-277V 347 347V ^[6]

TRIM [12]

TRIM TYPE	DIST	RIBUTION [13]	FLANGE TYPE	REFLE	CTOR FINISH	TRIM O	PTIONS
O Open reflector L Flush lens R Regressed lens A Angled lens ^[14] S Non-conductive flush lens for shower applications ^[15]	M	Wide 65° Open 55° Flush 55° Regressed Medium ^{(16]} 35° Open 35° Flush 35° Regressed Narrow ^{(17]} 10° Open 25° Flush 25° Regressed Wall wash ^[18]	OF 1/2" standard flange SF 1/4" mud-in flange ^[19]	CS SG GD CG PW SPC RG WH BL	trim types Clear semi-specular anodize Satin-glow anodize Gold anodize Champagne gold anodize Pewter anodize Clear specular anodize Rose gold anodize White texture powder coat Black texture powder coat rim types Clear semi-specular powder c White texture powder coat Black texture powder coat Black texture powder coat Black texture powder coat Black texture splay with white	AM oat	Textured white trim flange ^[20] IP65 rated trim ^[21] Diffuse acrylic lens ^[22] Diffuse 1/8" polycarbonate lens ^[23] Diffuse polycarbonate lens media at top of open reflector ^[24] Wet location, covered ceiling listed ^[25] Anti-microbial ^[26]

MOUNTING TYPE [28]

- N Open pan for new construction
- IC-rated enclosure for new construction [30]
- R Remodel kit^[31]

NOTES

- Lumen output based on O trim type, W distribution and CS finish, 3500K/80CRI. Actual lumens may vary +/-5%.See page 2 for FIXTURE PERFORMANCE DATA.
- See page 4 for ADDITIONAL CONTROL OPTIONS.
- Not available with EM/10W emergency batteries. Extended lead times may apply. Consult 4
- factory for availability. 11-1/2" aperture, specify degrees of slope in 5° increments, 05°-30°. See page 4 for SLOPED CEILING ADAPTOR DETAILS. Not
- available with ATH option. N Mounting Type only. Not available with WET/CC. Not available with EM batteries or DMX controls.
- N and R Mounting Types only. N and R Mounting Types only. Not available with WET/CC, ATH or IP options. N and R Mounting Types only. See page 5 for EM/10W/RTS DETAILS.
- ¹⁰ I Mounting Type required.

¹¹ May be required for 347V, see product builder at hew.com/product-builder. 12

MOUNTING HARDWARE [29]

F1

BA1

CA1

- Trim ships separately.
 Beam angle based on CS or WH reflector finish. See page 2 for FIXTURE PERFORMANCE DATA. Available with WW Distribution only.
- ¹⁵ W Distribution, OF Flange Type and WH Reflector Finish only. Standard with AD diffuse acrylic lens. IP and Market Standard With AD
- WET/CC options standard. Not available with lumen stops L50 and higher when specified with flush or
- regressed trim types. Not available with lumen stops L50 and 17 higher when specified with flush or
- regressed trim types. ¹⁸ O and A Trim Types only. ¹⁹ For use with mud-in plaster construction only, supplied with mud flange installation kit. See page 5 for FLANGE TYPE DETAILS. Not available with ATH or IP options.
- 20 Not available with WH Reflector Finish, L or S Trim Types.

²¹ L and R trim types only. 22

Integral 2-position fixed pan bracket, universal bar hanger included [32]

Adjustable caterpillar pan bracket, universal bar hanger included [34]

Adjustable butterfly pan bracket, bar hanger not included [33]

- Not available with O trim type. W distribution only. Not available with O trim type. W 23
- 24
- distribution only. O Trim Type only. WET/CC standard. L50 lumen package max.
- ²⁵ L50 lumen package max with 0 Trim Type.
 ²⁶ WH and BL Reflector Finishes only. Not available with S Trim Type.
- ²⁷ R Trim Type only. Not available with MWT.
 ²⁸ Mounting hardware required (N and I only), ordered separately, see MOUNTING
 ²⁸ MOUNTING HARDWARE ordering info. See page 5 for MOUNTING TYPE DETAILS.
- ²⁹ Additional mounting hardware options available. See page 6 for MOUNTING HARDWARE DETAILS.
- ³⁰ L30 lumen package max.
- ³¹ Also used in new construction sheetrock ceilings. N and I Mounting Types only. I Mounting
- requires external brackets. ³³ N Mounting Type only. ³⁴ N Mounting Type only.

H.E. Williams, Inc. Carthage, Missouri www.hew.com 417-358-4065 Information contained herein is subject to change without notice

FIXTURE PERFORMANCE DATA

OPEN REFLECTOR TRIM TYPE

_	DIST.	DELIVERED LUMENS	WATTAGE	EFFICACY (Im/W)		
_	W	1014	8.7	116.9		
5	М	982	8.7	113.2		
	Ν	1003	8.7	115.7		
	W	1497	13.8	108.6		
L15	М	1495	13.8	108.4		
	Ν	1528	13.8	110.8		
_	W	1988	19.0	104.6		
L20	М	1983	19.1	103.8		
	Ν	2026	19.1	106.1		
	W	3062	26.9	114.0		
L30	М	3003	26.9	111.8		
	Ν	3000	26.9	111.7		
	W	4094	36.5	112.2		
5	М	4016	36.4	110.3		
	Ν	4011	36.4	110.2		
	W	5014	43.9	114.1		
L50	М	4935	43.9	112.3		
	Ν	5047	43.9	114.9		
	W	6043	54.0	111.9		
L60	М	5948	54.0	110.1		
	Ν	6083	54.0	112.6		
	W	7008	67.8	103.3		
L70	М	6898	67.8	101.7		
	Ν	7055	67.8	104.0		
	W	8018	79.8	100.5		
L80	М	7891	79.8	98.9		
	Ν	8071	79.8	101.2		

(**0 TRIM** P S

BL

0.79

R TRIM

FLUSH LENS TRIM TYPE					
	DIST.	DELIVERED LUMENS	WATTAGE	EFFICACY (Im/W)	
	W	774	8.7	89.2	
19	М	910	8.7	104.9	
	N	909	8.7	104.8	
	W	1178	13.8	85.4	
L15	М	1385	13.8	100.4	
	N	1384	13.8	100.4	
	W	1562	19.5	80.1	
L20	М	1837	19.1	96.1	
	N	1836	19.5	94.2	
	W	2335	26.9	86.9	
L30	М	2782	26.9	103.6	
	N	2718	26.9	101.2	
	W	3122	36.5	85.5	
L4	M	3720	36.4	102.2	
	N	3635	36.4	99.9	
_	W	3824	43.9	87.0	
L50	M	-	-	-	
	N		-	_	
	W	4609	54.0	85.4	
160	M	_	-	_	
	N	-	-	_	
_	W	5345	67.8	78.8	
L70	М	-	-	-	
	N	-	-	_	
_	W	6115	79.8	76.7	
L80	М	-	-	-	
	N	_	-	_	

REGRESSED LENS TRIM TYPE DIST. DELIVERED LUMENS WATTAGE EFFICACY (Im/W) 8.7 82.5 716 W 2 М 883 8.7 101.7 8.7 Ν 897 103.4 W 1090 13.8 79.0 5 М 1344 13.8 97.4 Ν 1366 13.8 99.1 W 1445 19.5 74.1 L20 19.1 М 1782 93.3 Ν 1812 19.5 92.9 2160 26.9 80.4 W Г3 М 2699 26.9 100.5 Ν 2683 26.9 99.9 W 2889 36.5 79.1 5 М 3609 36.4 99.1 Ν 3587 36.4 98.6 W 3537 43.9 80.5 L50 М -Ν W 4264 54.0 79.0 L60 М _ _ _ Ν 4945 67.8 72.9 W L70 М -_ -Ν _ _ _ W 5657 79.8 70.9 L80 М _ _ _ Ν

MULTIPLIER TABLES

	COLOR TEMPERATURE				
	ССТ	CONVERSION FACTOR			
	2700K	0.92			
≂	3000K	0.98			
CRI S	3500K	100			
80	4000K	1.01			
	5000K	1.02			
	2700K	0.76			
≂	3000K	0.79			
90 CRI	3500K	0.82			
6	4000K	0.84			
	5000K	0.88			

	REFLECTOR FINISH				т	RIM
	CATALOG NUMBER	CONVERSION FACTOR			ATALOG	CONVERSION FACTOR
	CS	1.00			S	0.85
	SG 1	0.92			AD	0.85
	GD	0.93			PD	0.85
	CG	0.96			TD	0.75
	PW	0.86		W	/ET/CC ²	0.85
	SPC	1.02				
	RG	0.88				
	WH 1	0.89				
	BL ¹	0.47				
	WH	1.00				
ĺ	CS	0.98				

- 1 Distribution will also be affected, consult factory. 2
- Use multiplier when specified with O Trim Type. Photometrics tested in accordance with IESNA LM-79. Results shown are based on 25°C ambient . temperature. .
- Wattage shown is based on 120V input. Results based on 3500K, 80 CRI, actual lumens may vary +/-5% Use multiplier tables to calculate additional options. .

PHOTOMETRY

6DR-TL-L20/835-DIM-UNV-OW-OF-CS Report #: 20687; 12/12/18 | Total Luminaire Output: 1988 lumens; 19.0 Watts | Efficacy: 104.6 lm/W | 82.9 CRI; 3457K CCT

	VERTICAL ANGLE	HORIZONTAL ANGLE	ZONAL LUMENS
No	0	1672	
CANDLEPOWER DISTRIBUTION	5	1579	151
E	15	1735	492
SI	25	1982	917
8	35	604	380
N N	45	46	36
Ē.	55	13	12
Ē	65	2	2
G	75	0	0
	85	0	0
	90	0	

LUMEN SUMMARY	ZONE	LUMENS	% FIXTURE
₹	0 - 40	1939	98
NS	0 - 60	1987	100
۳	0 - 90	1988	100
3	0 - 180	1988	100

6DR-TL-L20/835-DIM-UNV-OM-OF-CS Report #: 12326812.04; 05/01/18 | Total Luminaire Output: 1983 lumens; 19.1 Watts | Efficacy: 103.8 lm/W | 82.7 CRI; 3579K CCT

	VERTICAL ANGLE	HORIZONTAL ANGLE	ZONAL LUMENS
	VERTICAL ANGLE	0°	ZUNAL LUMENS
CANDLEPOWER DISTRIBUTION	0	4013	
5	5	3972	249
E	15	2325	347
SIS	25	1412	68
ä	35	396	68
N	45	46	15
Ĕ.	55	14	5
Ā	65	4	2
G	75	1	0
	85	0	0
	90	0	

SUMMARY	ZONE	LUMENS	% FIXTURE
Š	0 - 40	1924	97
NS	0 - 60	1977	100
LUMEN	0 - 90	1983	100
3	0 - 180	1983	100

6DR-TL-L20/835-DIM-UNV-ON-OF-CS Report #: 12326812.05; 06/06/18 | Total Luminaire Output: 2026 lumens; 19.1 Watts | Efficacy: 106.1 lm/W | 82.6 CRI; 3578K CCT

	VERTICAL ANGLE	RTICAL ANGLE HORIZONTAL ANGLE	
	VERTICAL ARGEE	0°	ZONAL LUMENS
S	0	22000	
5	5	9830	397
E	15	2032	290
SIS	25	1021	214
CANDLEPOWER DISTRIBUTION	35	242	24
N	45	13	4
Ĕ.	55	4	1
Ā	65	1	1
G	75	0	0
	85	0	0
	90	0	

LUMEN SUMMARY	ZONE	LUMENS	% FIXTURE
MN	0 - 40	2010	99
NS	0 - 60	2024	100
IME	0 - 90	2026	100
2	0 - 180	2026	100

6DR-TL-L20/835-DIM-UNV-OWW-OF-CS Report #: 12326812.06; 06/28/18 | Total Luminaire Output: 1009 lumens; 19.1 Watts | Efficacy: 52.8 lm/W | 82.6 CRI; 3568K CCT

		ZONAL				
ANGLE	0°	45°	90°	135°	180°	LUMENS
0	772	772	772	772	772	
5	873	843	805	494	403	48
15	891	872	1128	275	292	108
25	1552	925	1051	240	274	194
35	539	400	375	206	235	58
45	43	36	88	166	185	37
55	21	20	54	116	122	27
65	16	14	32	70	72	18
75	7	5	15	39	39	9
85	0	0	3	10	8	1
90	0	0	0	0	0	
	0 5 15 25 35 45 55 65 75 85	ANGLE 0° 0 772 5 873 15 891 25 1552 35 539 45 43 55 21 65 16 75 7 85 0	ANGLE 0° 45° 0 772 772 5 873 843 15 891 872 25 1552 925 35 539 400 45 43 36 55 21 20 65 16 14 75 7 5 85 0 0	ANGLE 0° 45° 90° 0 772 772 772 5 873 843 805 15 891 872 1128 25 1552 925 1051 35 539 400 375 45 43 36 88 55 21 20 54 65 16 14 32 75 7 5 15 85 0 0 3	ANGLE 0° 45° 90° 135° 0 772 772 772 772 5 873 843 805 494 15 891 872 1128 275 25 1552 925 1051 240 35 539 400 375 206 45 43 36 88 166 55 21 20 54 116 65 16 14 32 70 75 7 5 15 39 85 0 0 3 10	ANGLE 0° 45° 90° 135° 180° 0 772 772 772 772 772 772 5 873 843 805 494 403 15 891 872 1128 275 292 25 1552 925 1051 240 274 35 539 400 375 206 235 45 43 36 88 166 185 55 21 20 54 116 122 65 16 14 32 70 72 75 7 5 15 39 39 85 0 0 3 10 8

LUMEN SUMMARY	ZONE	LUMENS	% FIXTURE
N S	0 - 40	804	80
NS	0 - 60	941	93
벌	0 - 90	1009	100
	0 - 180	1009	100

6DR-TL-L20/835-DIM-UNV-LM-OF-WH Report #: 12326812.09; 06/05/18 | Total Luminaire Output: 1837 lumens; 19.1 Watts | Efficacy: 96.1 lm/W | 82.6 CRI; 3549K CCT

	VERTICAL ANGLE	HORIZONTAL ANGLE	ZONAL LUMENS
	VERTICAL ANGLE	0°	ZUNAL LUMENS
CANDLEPOWER DISTRIBUTION	0	4338	
5	5	4168	281
RIB	15	2728	354
ISI	25	847	153
E I	35	222	56
N	45	89	31
Đ,	55	53	22
g	65	32	14
CA	75	16	7
	85	4	1
	90	0	

LUMEN SUMMARY	ZONE	LUMENS	% FIXTURE
₹	0 - 40	1667	91
NS	0 - 60	1785	97
Ξ	0 - 90	1837	100
1	0 - 180	1837	100

6DR-TL-L20/835-DIM-UNV-RM-OF-WH Report #: 12326812.14; 06/06/18 | Total Luminaire Output: 1782 lumens; 19.1 Watts | Efficacy: 93.3 lm/W | 82.7 CRI; 3546K CCT

	VERTICAL ANGLE	HORIZONTAL ANGLE	ZONAL LUMENS
	VERTICAL ANGLE	0°	ZUNAL LUMENS
CANDLEPOWER DISTRIBUTION	0	4313	
5	5	4131	277
2	15	2669	346
S	25	846	155
2	35	225	55
<u>N</u>	45	76	26
Ĕ.	55	41	17
Ē	65	23	10
R	75	10	4
	85	3	1
	90	0	

LUMEN SUMMARY	ZONE	LUMENS	% FIXTURE
M	0 - 40	1648	93
NS	0 - 60	1746	98
E E	0 - 90	1782	100
	0 - 180	1782	100

ADDITIONAL CONTROL OPTIONS

Lumen restrictions apply: L40 max for DMX driver, L40 max for Lutron drivers, L50 max for ELDO drivers, L60 max for DIM LINE driver. R Mounting Type only available with DIM, DIM1, and DIM LINE controls. 347V may require stepdown transformer, see product builder at hew.com/product-builder.

CATALOG NUMBER	DESCRIPTION
DIM	Dimming driver prewired for 0-10V low voltage applications
DIM1	1% dimming driver prewired for 0-10V low voltage applications
DIM LINE	Line voltage dimming driver (TRIAC and ELV compatible at 120V only)
DMX	0.1% dimming driver for DMX controls
LTE LINE	Lutron Hi-lume 1% 2-wire dimming driver forward phase line voltage controls (120V only)
LDE1	Lutron Hi-lume 1% EcoSystem dimming LED driver
LDE5	Lutron 5-Series 5% EcoSystem dimming LED driver
VRF/DSR	Lutron Vive integral fixture control, RF only (DFCSJ-OEM-RF) and sensor-ready driver
VRF/DBI/LDE1	Lutron Vive integral fixture control, RF only (DFCSJ-OEM-RF), Lutron Hi-lume 1% EcoSystem dimming LED driver, and digital link interface
VRF/DBI/LDE5	Lutron Vive integral fixture control, RF only (DFCSJ-OEM-RF), Lutron 5-Series 5% EcoSystem dimming LED driver, and digital link interface
FCJS/DIM	Lutron Vive PowPak wireless fixture control with dimming driver
FCJS/DIM1	Lutron Vive PowPak wireless fixture control with 1% dimming driver
ELDO SOLOB	EldoLED Solodrive, 0.1% dimming driver for 0-10V controls
ELDO SOLOB DALI	EldoLED Solodrive, 0.1% dimming driver for DALI controls
ELDO ECO1	EldoLED Ecodrive, 1% dimming driver for 0-10V controls
ELDO ECO1 DALI	EldoLED Ecodrive, 1% dimming driver for DALI controls

TRIMLOCK DETAILS

SLOPED CEILING ADAPTOR DETAILS

		A (HEIGHT)					
LUMENS	5°	10°	15°	20°	25°	30°	HEIGHT
L10 - L40	10-11/16″	10-7/8″	10-15/16"	10-7/8″	10-13/16"	10-5/8″	11-1/4″
L50 - L80	11-7/16″	11-9/16"	11-5/8″	11-5/8″	11-1/2″	11-1/4″	12″
15° Shown							

TRIM TYPE DETAILS

FLANGE TYPE DETAILS

REFLECTOR FINISH DETAILS

SPC Clear specular	SG Satin-glow	PW Pewter	GD Gold	CG Champagne gold	RG Rose gold	CS Clear semi-specula	WH ar White	BL Black
				and the second se		and the second second		

MOUNTING TYPE DETAILS

	LENGTH						
LUMENS	A	В	С	D	E	F	
L10 - L20	15-3/16″	16″	6-3/8″	12-1/8″	9-1/2″	6-1/16″	
L30	16-5/8″	17-1/2″	7-7/8″	14″	10-1/4″	7″	

Receiver Bracket

EM/10W/RTS DETAILS

RTS trim

MOUNTING HARDWARE DETAILS

P

F1 with I Mounting Type

Site & Area

EcoForm

ECF-S small area light

Gardco EcoForm Gen-2 combines economy with performance in an LED area luminaire. Capable of delivering up to 27,800 lumens or more in a compact, low profile LED luminaire, EcoForm offers a new level of customer value. EcoForm features an innovative retrofit arm kit, simplifying site conversions to LED by eliminating the need to drill additional holes in most existing poles. Integral control systems available for further energy savings. Includes Service Tag, our innovative way to provide assistance throughout the life of the product.

oject:	

Project:		
Location:		
Cat.No:		
Туре:		
Lamps:	Qty:	
Notes:		

example: ECF-S-64L-900-NW-G2-AR-5-120-HIS-MGY

	PL01	GARDCO SIGNIFY	ECF-S-64L-1A-NW-G2-XX-2-208-DD-XXX
	PL02	GARDCO SIGNIFY	ECF-S-64L-1A-NW-G2-XX-3-208-DD-XXX
	PL03	GARDCO SIGNIFY	ECF-S-64L-1A-NW-G2-xx-4-208-DD-xxx
PL	_03-HIS	GARDCO SIGNIFY	ECF-S-64L-1A-NW-G2-XX-3-208-DD-HIS-XXX

Ordering guide

							Options					
Prefix ECF-S	Number of LEDs	Drive Current	LED Color - Generation	Mounting	Distribution	Voltage	Dimming controls	Motion sensing lens	Photo-sensing	Electrical	Luminaire	Finish
ECF-S EcoForm site and area, small	32L 32 LEDs (2 modules) 48L 48 LEDs (3 modules) 64L 64 LEDs (4 modules)	530 mA 700 700 mA 1A 1050 mA 1.2A 1200 mA 900 900 mA 1200 mA 900 900 mA	3000K, 70 CRI Generation 2 NW-G2 Neutral White 4000K, 70 CRI Generation 2 CW-G2 Cool White 5000K, 70 CRI Generation 2	The following	Type 2 2 Type 2 2 Type 2 2-90 Rotated left 90° 2-270 Rotated 270° Type 3 3-90 Rotated left 90° 3-270 Rotated right 270° Type 4 4-90 Rotated left 90° 4-270 Rotated right 270° Type 5 5 Type 5 5 W Type 5W AFR Auto Front Row, Rotated left 90° AFR-270 Auto Front Row, Rotated right 270°	120 120V 208 208V 240 240V 277 277V 347 347V 480 480V UNV 120-277V (50/60Hz) HVU 347-480V (50/60Hz)	 DD 0-10V External dimming (by others) ⁴ DCC Dual Circuit Control ^{45,4} FAWS Field Adjustable Wattage Selector ⁴⁵ SW Interface module for SiteWise ^{46,27} LLC Integral wireless module ^{46,837} BL Bi-level functionality^{14,17} DynaDimmer: Automatic Profile Dimming CSSO Safety 50% Dimming, 7 hours ⁴⁸ CM30 Median 50% Dimming 8 hours ⁴⁸ CM30 Median 30% Dimming 8 hours ⁴⁸ 		PCB Photocontrol Button ^{8,9} TLRD5 Twist Lock Receptacle 5 Pin ¹⁰ TLRD7 Twist Lock Receptacle 7 Pin ¹⁰ TLRPC Twist Lock Receptacle w/ Photocell ^{5,11}	Fusing F1 Single (120, 277, 347VAC) ⁹ F2 Double (208, 240, 480VAC) ¹ Pole Mount Fusing F1 Single (120, 277, 347VAC) ⁹ FP2 Double (208, 240, 480VAC) ¹ FP3 Canadian Double Pull (208, 240, 480VAC) ⁹ Surge Protection (10kA standard) SP2 SP2	(fits to 3"- 3.9" O.D. pole) ¹³ HIS Internal	Textured BK Black WH White BZ Bronze DGY Dark Gray MGYMedium Gray Customer specified RAL Specify optional color or RAL (ex: RAL7024) CC Custom color (Must supply color chip for required factory quote)

 BL-IMRI3/7 equipped with out-boarded sensor housing when voltage is HVU (347-480V)

2. Mounts to a 4" round pole with adapter included for square poles.

3. Limited to a maximum of 45 degrees aiming above horizontal.

 ${\rm 4.} \ \ {\rm Not\ available\ with\ other\ dimming\ control\ options.}$

5. Not available with motion sensor.

- 6. Not available with photocontrol.
- 7. Available only in 120 or 277V.

- 8. Not available in 347 or 480V
 9. Must specify input voltage.
- Instruction of the connected to NEMA receptacle if ordering with other control options.
- 11. Not available in 480V. Order photocell separately with TLRD5/7.

12. Not available with DCC.

- 13. Not available with SF and WS. RPAs provided with black finish
- standard.

14. HIS not available with Type 5 and 5W optics.

15. Not available with DD, DCC, and FAWS dimming control options. 16. Not available with DD, DCC, FAWS and LLC dimming control

options.

17. Must specify a motion sensor lens

Area luminaire

EcoForm Accessories (ordered separately, field installed)

Shielding Accessories

House Side shield

Standard op	tic orientation:
HIS-32-H 18	Internal House Side Shield for 32 LEDs (2 modules)
HIS-48-H ¹⁸	Internal House Side Shield for 48 LEDs (3 modules)
HIS-64-H ¹⁸	Internal House Side Shield for 64 LEDs (4 modules)
Optic at 90 a	or 270 orientation:
HIS-32-V 18	Internal House Side Shield for 32 LEDs (2 modules)
HIS-48-V ¹⁸	Internal House Side Shield for 48 LEDs (3 modules)
HIS-64-V 18	Internal House Side Shield for 64 LEDs (4 modules)

18. Not available with Type 5 or 5W optics

Luminaire Accessories

ECF-BD-G2 ECF-RAM-G2-(F) ECF-SF-G2-(F) ECF-WS-G2-(F)	Bird deterrent Retrofit Arm mount kit Slip Fitter Mount (fits to 2 3/8 Wall mount with surface con								
EcoForm PTF2 (pole top fitter fits 23/8-21/2	2" OD x 4" depth tenon)	EcoForm PTF3 (pole top fitter fits 3-31/2" C)D x 6" depth tenon)	EcoForm PTF4 (pole top fitter fits 31/2-4" (EcoForm PTF4 (pole top fitter fits 31/2-4" OD x 6" depth tenon)				
PTF2-ECF-S/L-1-90-(F)	1 luminaire at 90°	PTF3-ECF-S/L-1-90-(F)	1 luminaire at 90°	PTF4-ECF-S/L-1-90-(F)	1 luminaire at 90°				
PTF2-ECF-S/L-2-90-(F)	2 luminaires at 90°	PTF3-ECF-S/L-2-90-(F)	2 luminaires at 90°	PTF4-ECF-S/L-2-90-(F)	2 luminaires at 90°				
PTF2-ECF-S/L-2-180-(F)	2 luminaires at 180°	PTF3-ECF-S/L-2-180-(F)	2 luminaires at 180°	PTF4-ECF-S/L-2-180-(F)	2 luminaires at 180°				
PTF2-ECF-S/L-3-90-(F)	3 luminaires at 90°	PTF3-ECF-S/L-3-90-(F)	3 luminaires at 90°	PTF4-ECF-S/L-3-90-(F)	3 luminaires at 90°				
PTF2-ECF-S/L-4-90-(F)	4 luminaires at 90°	PTF3-ECF-S/L-4-90-(F)	4 luminaires at 90°	PTF4-ECF-S/L-4-90-(F)	4 luminaires at 90°				
PTF2-ECF-S/L-3-120-(F)	3 luminaires at 120°	PTF3-ECF-S/L-3-120-(F)	3 luminaires at 120°	PTF4-ECF-S/L-3-120-(F)	3 luminaires at 120°				

(F) = Specify finish

Predicted Lumen Depreciation Data

Predicted performance derived from LED manufacturer's data and engineering design estimates, based on IESNA LM-80 methodology. Actual experience may vary due to field application conditions. L_{70} is the predicted time when LED performance depreciates to 70% of initial lumen output. Calculated per IESNA TM21-11. Published L₇₀ hours limited to 6 times actual LED test hours

Ambient Temperature °C	Driver mA	Calculated L ₇₀ Hours	L ₇₀ per TM-21	Lumen Maintenance % at 60,000 hrs
25°C	up to 1200 mA	>100,000 hours	>60,000 hours	>88%

Optical distribution

Based on configuration ECF-S-48L-1A-NW-G2 (159W) mounted at 20ft.

Type 5W

Area luminaire

3000K LED Wattage and Lumen Values

	LED Av		Average		Type 2			Type 3			Type 4		
Ordering Code	Total LEDs	Current (mA)	Color Temp.	System Watts	Lumen Output	BUG Rating	Efficacy (LPW)	Lumen Output	BUG Rating	Efficacy (LPW)	Lumen Output	BUG Rating	Efficacy (LPW)
ECF-S-32L-365-WW-G2-x	32	365	3000	40	5,508	B1-U0-G1	138	5,428	B1-U0-G2	136	5,637	B1-U0-G2	141
ECF-S-32L-530-WW-G2-x	32	530	3000	56	7,159	B2-U0-G2	129	7,055	B1-U0-G2	127	7,327	B1-U0-G2	132
ECF-S-32L-700-WW-G2-x	32	700	3000	73	9,234	B2-U0-G2	127	9,034	B2-U0-G2	124	9,452	B2-U0-G2	130
ECF-S-32L-1A-WW-G2-x	32	1050	3000	106	13,001	B3-U0-G2	123	12,719	B2-U0-G2	120	13,306	B2-U0-G3	126
ECF-S-32L-1.2A-WW-G2-x	32	1200	3000	122	14,421	B3-U0-G3	119	14,108	B2-U0-G3	116	14,760	B2-U0-G3	121
ECF-S-48L-900-WW-G2-x	48	900	3000	135	17,115	B3-U0-G3	127	16,744	B3-U0-G3	124	17,518	B2-U0-G3	130
ECF-S-48L-1A-WW-G2-x	48	1050	3000	159	19,381	B3-U0-G3	122	18,960	B3-U0-G3	119	19,836	B3-U0-G4	125
ECF-S-48L-1.2A-WW-G2-x	48	1200	3000	183	21,515	B3-U0-G3	118	21,048	B3-U0-G4	115	22,020	B3-U0-G4	121
ECF-S-64L-900-WW-G2-x	64	900	3000	178	22,652	B3-U0-G3	127	22,161	B3-U0-G4	125	23,185	B3-U0-G4	130
ECF-S-64L-1A-WW-G2-x	64	1050	3000	206	25,520	B3-U0-G3	124	24,966	B3-U0-G4	121	26,120	B3-U0-G4	127

		LED		Average		Type AFR		Type 5			Type 5W		
Ordering Code	Total LEDs	Current (mA)	Color Temp.	System Watts	Lumen Output	BUG Rating	Efficacy (LPW)	Lumen Output	BUG Rating	Efficacy (LPW)	Lumen Output	BUG Rating	Efficacy (LPW)
ECF-S-32L-365-WW-G2-x	32	365	3000	40	5,706	B2-U0-G1	143	5,790	B3-U0-G1	145	5,604	B3-U0-G1	140
ECF-S-32L-530-WW-G2-x	32	530	3000	56	7,417	B2-U0-G1	133	7,526	B3-U0-G2	135	7,284	B3-U0-G2	131
ECF-S-32L-700-WW-G2-x	32	700	3000	73	9,567	B2-U0-G2	131	9,707	B4-U0-G2	133	9,395	B4-U0-G2	129
ECF-S-32L-1A-WW-G2-x	32	1050	3000	106	13,467	B3-U0-G2	128	13,665	B4-U0-G2	129	13,227	B4-U0-G2	125
ECF-S-32L-1.2A-WW-G2-x	32	1200	3000	122	14,939	B3-U0-G2	123	15,158	B4-U0-G2	125	14,671	B4-U0-G2	121
ECF-S-48L-900-WW-G2-x	48	900	3000	135	17,731	B3-U0-G2	131	17,990	B4-U0-G2	133	17,413	B5-U0-G3	129
ECF-S-48L-1A-WW-G2-x	48	1050	3000	159	20,076	B3-U0-G2	127	20,372	B5-U0-G3	128	19,717	B5-U0-G3	124
ECF-S-48L-1.2A-WW-G2-x	48	1200	3000	183	22,288	B3-U0-G2	122	22,616	B5-U0-G3	124	21,888	B5-U0-G3	120
ECF-S-64L-900-WW-G2-x	64	900	3000	178	23,465	B3-U0-G2	132	23,810	B5-U0-G3	134	23,045	B5-U0-G3	130
ECF-S-64L-1A-WW-G2-x	64	1050	3000	206	26,437	B4-U0-G3	128	26,150	B5-U0-G3	127	25,964	B5-U0-G4	126

4000K LED Wattage and Lumen Values

		LED		Average		Type 2			Type 3			Type 4	
Ordering Code	Total LEDs	Current (mA)	Color Temp.	System Watts	Lumen Output	BUG Rating	Efficacy (LPW)	Lumen Output	BUG Rating	Efficacy (LPW)	Lumen Output	BUG Rating	Efficacy (LPW)
ECF-S-32L-365-NW-G2-x	32	365	4000	40	5,798	B1-U0-G1	145	5,713	B1-U0-G2	143	5,934	B1-U0-G2	148
ECF-S-32L-530-NW-G2-x	32	530	4000	56	7,536	B2-U0-G2	135	7,426	B1-U0-G2	133	7,713	B1-U0-G2	138
ECF-S-32L-700-NW-G2-x	32	700	4000	73	9,720	B2-U0-G2	133	9,509	B2-U0-G2	130	9,949	B2-U0-G2	136
ECF-S-32L-1A-NW-G2-x	32	1050	4000	106	13,685	B3-U0-G2	130	13,388	B2-U0-G3	127	14,006	B2-U0-G3	133
ECF-S-32L-1.2A-NW-G2-x	32	1200	4000	122	15,180	B3-U0-G3	125	14,851	B2-U0-G3	122	15,537	B2-U0-G3	128
ECF-S-48L-900-NW-G2-x	48	900	4000	135	18,016	B3-U0-G3	133	17,625	B3-U0-G3	130	18,440	B3-U0-G3	136
ECF-S-48L-1A-NW-G2-x	48	1050	4000	159	20,401	B3-U0-G3	129	19,958	B3-U0-G4	126	20,880	B3-U0-G4	132
ECF-S-48L-1.2A-NW-G2-x	48	1200	4000	183	22,647	B3-U0-G3	124	22,156	B3-U0-G4	121	23,179	B3-U0-G4	127
ECF-S-64L-900-NW-G2-x	64	900	4000	178	23,844	B3-U0-G3	134	23,327	B3-U0-G4	131	24,405	B3-U0-G4	137
ECF-S-64L-1A-NW-G2-x	64	1050	4000	206	26,863	B3-U0-G3	130	26,280	B3-U0-G4	128	27,495	B3-U0-G4	134

		LED		Average		Type AFR		Type 5			Type 5W		
Ordering Code	Total LEDs	Current (mA)	Color Temp.	System Watts	Lumen Output	BUG Rating	Efficacy (LPW)	Lumen Output	BUG Rating	Efficacy (LPW)	Lumen Output	BUG Rating	Efficacy (LPW)
ECF-S-32L-365-NW-G2-x	32	365	4000	40	6,006	B2-U0-G1	150	6,094	B3-U0-G1	152	5,898	B3-U0-G2	147
ECF-S-32L-530-NW-G2-x	32	530	4000	56	7,807	B2-U0-G1	140	7,922	B3-U0-G2	142	7,667	B3-U0-G2	138
ECF-S-32L-700-NW-G2-x	32	700	4000	73	10,070	B2-U0-G2	138	10,218	B4-U0-G2	140	9,889	B4-U0-G2	136
ECF-S-32L-1A-NW-G2-x	32	1050	4000	106	14,176	B3-U0-G2	134	14,384	B4-U0-G2	136	13,923	B4-U0-G2	132
ECF-S-32L-1.2A-NW-G2-x	32	1200	4000	122	15,725	B3-U0-G2	129	15,956	B4-U0-G2	131	15,443	B4-U0-G2	127
ECF-S-48L-900-NW-G2-x	48	900	4000	135	18664,	B3-U0-G2	138	18,937	B4-U0-G3	140	18,329	B5-U0-G3	136
ECF-S-48L-1A-NW-G2-x	48	1050	4000	159	21,133	B3-U0-G2	133	21,444	B5-U0-G3	135	20,755	B5-U0-G3	131
ECF-S-48L-1.2A-NW-G2-x	48	1200	4000	183	23,461	B3-U0-G2	128	23,806	B5-U0-G3	130	23,040	B5-U0-G3	126
ECF-S-64L-900-NW-G2-x	64	900	4000	178	24,700	B3-U0-G2	139	25,063	B5-U0-G3	141	24,258	B5-U0-G4	136
ECF-S-64L-1A-NW-G2-x	64	1050	4000	206	27,828	B4-U0-G3	135	27,526	B5-U0-G3	134	27,330	B5-U0-G4	133

Area luminaire

5000K LED Wattage and Lumen Values

	LED Av			Average		Type 2			Type 3		Type 4			
Ordering Code	Total LEDs	Current (mA)	Color Temp.	System Watts	Lumen Output	BUG Rating	Efficacy (LPW)	Lumen Output	BUG Rating	Efficacy (LPW)	Lumen Output	BUG Rating	Efficacy (LPW)	
ECF-S-32L-365-CW-G2-x	32	365	5000	40	5,798	B1-U0-G1	145	5,713	B1-U0-G2	143	5,934	B1-U0-G2	148	
ECF-S-32L-530-CW-G2-x	32	530	5000	56	75,36	B2-U0-G2	135	7,426	B1-U0-G2	133	7,713	B1-U0-G2	138	
ECF-S-32L-700-CW-G2-x	32	700	5000	73	9,720	B2-U0-G2	133	9,509	B2-U0-G2	130	9,949	B2-U0-G2	136	
ECF-S-32L-1A-CW-G2-x	32	1050	5000	106	13,685	B3-U0-G2	130	13,388	B2-U0-G3	127	14,006	B2-U0-G3	133	
ECF-S-32L-1.2A-CW-G2-x	32	1200	5000	122	15,180	B3-U0-G3	125	14,851	B2-U0-G3	122	15,537	B2-U0-G3	128	
ECF-S-48L-900-CW-G2-x	48	900	5000	135	18,016	B3-U0-G3	133	17,625	B3-U0-G3	130	18,440	B3-U0-G3	136	
ECF-S-48L-1A-CW-G2-x	48	1050	5000	159	20,401	B3-U0-G3	129	19,958	B3-U0-G4	126	20,880	B3-U0-G4	132	
ECF-S-48L-1.2A-CW-G2-x	48	1200	5000	183	22,647	B3-U0-G3	124	22,156	B3-U0-G4	121	23,179	B3-U0-G4	127	
ECF-S-64L-900-CW-G2-x	64	900	5000	178	23,844	B3-U0-G3	134	23,327	B3-U0-G4	131	24,405	B3-U0-G4	137	
ECF-S-64L-1A-CW-G2-x	64	1050	5000	206	26,863	B3-U0-G3	130	26,280	B3-U0-G4	128	27,495	B3-U0-G4	134	

		LED		Average		Type AFR			Type 5		Type 5W		
Ordering Code	Total LEDs	Current (mA)	Color Temp.	System Watts	Lumen Output	BUG Rating	Efficacy (LPW)	Lumen Output	BUG Rating	Efficacy (LPW)	Lumen Output	BUG Rating	Efficacy (LPW)
ECF-S-32L-365-CW-G2-x	32	365	5000	40	6,006	B2-U0-G1	150	6,094	B3-U0-G1	152	5,898	B3-U0-G2	147
ECF-S-32L-530-CW-G2-x	32	530	5000	56	7,807	B2-U0-G1	140	7,922	B3-U0-G2	142	7,667	B3-U0-G2	138
ECF-S-32L-700-CW-G2-x	32	700	5000	73	10,070	B2-U0-G2	138	10,218	B4-U0-G2	140	9,889	B4-U0-G2	136
ECF-S-32L-1A-CW-G2-x	32	1050	5000	106	14,176	B3-U0-G2	134	14,384	B4-U0-G2	136	13,923	B4-U0-G2	132
ECF-S-32L-1.2A-CW-G2-x	32	1200	5000	122	15,725	B3-U0-G2	129	15,956	B4-U0-G2	131	15,443	B4-U0-G2	127
ECF-S-48L-900-CW-G2-x	48	900	5000	135	18,664	B3-U0-G2	138	18,937	B4-U0-G3	140	18,329	B5-U0-G3	136
ECF-S-48L-1A-CW-G2-x	48	1050	5000	159	21,133	B3-U0-G2	133	21,444	B5-U0-G3	135	20,755	B5-U0-G3	131
ECF-S-48L-1.2A-CW-G2-x	48	1200	5000	183	23,461	B3-U0-G2	128	23,806	B5-U0-G3	130	23,040	B5-U0-G3	126
ECF-S-64L-900-CW-G2-x	64	900	5000	178	24700	B3-U0-G2	139	25063	B5-U0-G3	141	24258	B5-U0-G4	136
ECF-S-64L-1A-CW-G2-x	64	1050	5000	206	27828	B4-U0-G3	135	27526	B5-U0-G3	134	27330	B5-U0-G4	133

Area luminaire

Dimensions

Retrofit Arm (RAM) Weight: 24 Lbs (10.9 Kg) EPA: 0.24ft² (.022m²)

Outboard IMR-HVU sensor

Wall (WS)

Weight: 27 Lbs. (12. 2Kg)EPA: 0.27ft² (.025m²)

Slip fitter (SF) Weight: 27 Lbs (12.2 Kg) EPA: 0.33ft² (.031m²)

Standard Arm (**AR**) drill pattern

Retrofit Arm (**RAM**) drill pattern

Area luminaire

Optical Orientation Information

Standard Optic Position

Luminaires ordered with asymmetric optical systems in the standard optic position will have the optical system oriented as shown below:

Optic Rotated Left (90°) Optic Position

Luminaires ordered with optical systems in the Optic Rotated Left (90°) optic position will have the optical system oriented as shown below (Type 5 and 5W optics are not available with factory set rotatable optics):

Note: The hand hole will normally be located on the pole at the 0° point.

Optic Rotated Right (270°) Optic Position

Luminaires ordered with optical systems in the Optic Rotated Right (270°) optic position will have the optical system oriented as shown below (Type 5 and 5W optics are not available with factory set rotatable optics):

Note: The hand hole will normally be located on the pole at the 0° point.

Note: The hand hole will normally be located on the pole at the 0° point.

Twin Luminaire Assemblies with Type-90/Type-270 Rotated Optical Systems

Twin luminaire assemblies installed with rotated optical systems are an excellent way to direct light toward the interior of the site (Street Side) without additional equipment. It is important, however, that care be exercised to insure that luminaires are installed in the proper location.

Note: The hand hole location will depend on the drilling configuration ordered for the pole.

Area luminaire

Specifications

Housing

One-piece die cast aluminum housing with integral arm and separate, selfretained hinged, one-piece die cast door frame. Luminaire housing rated to IP66_tested in accordance to Section 9 of IEC 60598-1

Vibration resistance

Luminaire is tested and rated 3G over 100,000 cycles conforming to standards set forth by ANSI C136.31-2010. Testing includes vibration in three axes, all performed on the same luminaire.

Light engine

Light engine comprises of a module of 16-LED aluminum metal clad board fully sealed with optics offered in multiples of 2, 3, and 4 modules or 32, 48, and 64 LEDs. Module is RoHS compliant. Color temperatures: 3000K +/-125K, 4000K, 5000K +/- 200K. Minimum CRI of 70. LED light engine is rated IP66 in accordance to Section 9 of IEC 60598-1.

Energy saving benefits

System efficacy up to 133 lms/W with significant energy savings over Pulse Start Metal Halide luminaires. Optional control options provide added energy savings during unoccupied periods.

Optical systems

Type 2, 3, 4, 5, 5W, and AFR distributions available. Internal Shield option mounts to LED optics and is available with Type 2, 3, 4, and AFR distributions. Types 2, 3, 4, and AFR when specified and used as rotated, are factory set only. Performance tested per LM-79 and TM-15 (IESNA) certifying its photometric performance. Luminaire designed with 0% uplight (U0 per IESNA TM-15).

Mounting

Standard luminaire arm mounts to 4" O.D. round poles. Can also be used with 5" O.D. poles. Square pole adapter included with every luminaire. Round Pole Adapter (RPA) required for 3-3.9" poles. EcoForm features a retrofit arm kit. When specified with the retrofit arm (RAM) option, EcoForm seamlessly simplifies site conversions to LED by eliminating the need for additional pole drilling on most existing poles. RAM will be boxed separately. Also optional are slipfitter and wall mounting accessories. Note that only fixed mounts (AR, RAM, WS) are required to meet IDA compliance. SF mounting will not meet IDA

Control options

0-10V dimming (DD): Access to 0-10V dimming leads supplied through back of luminaire (for secondary dimming controls by others). Cannot be used with other control options.

Dual Circuit Control (DCC): Luminaire equipped with the ability to have two separate circuits controlling drivers and light engines independently. Permits separate switching of separate modules controlled by use of two sets of leads, one for each circuit. Not recommended to be used with other control options, motion response, or photocells.

SiteWise (SW): SiteWise system includes a controller fully integrated in the luminaire that enables the luminaires to communicate with a dimming signal transmitter cabinet located on site using patented central dimming technology. A locally accessible mobile app allows users to access the system and set functionalities such as ON/OFF, dimming levels and scheduling SiteWise is available with motion response options in order to bring the light back to 100% when motion is detected. Cannot be used with other control options or photocell options. Additional functionalities are available such as communication with indoor lighting and connection to BMS systems Complete information on the control system can be found on the SiteWise website at philips.com/sitewise.

Automatic Profile Dimming (CS/CM/CE/CA): Standard dimming profiles provide flexibility towards energy savings goals while optimizing light levels during specific dark hours. Dimming profiles include two dimming settings including dim to 30% or 50% of the total lumen output. When used in combination with not programmed motion response it overrides the controller's schedule when motion is detected. After 5 minutes with no motion, it will return to the automatic diming profile schedule. Automatic dimming profile scheduled with the following settings:

- CS50/CS30: Security for 7 hours night duration (Ex., 11 PM 6 AM)
- CM50/CM30: Median for 8 hours night duration (Ex., 10 PM 6 AM)

All above profiles are calculated from mid point of the night. Dimming is set for 6 hours after the mid point and 1 or 2 hours before depending of the duration of dimming. Cannot be used with other dimming control options.

Field Adjustable Wattage Selector (FAWS): Luminaire equipped with the ability to manually adjust the wattage in the field to reduce total luminaire lumen output and light levels. Comes pre-set to the highest position at the lumen output selected. Use chart below to estimate reduction in lumen output desired. Cannot be used with other control options or motion response.

FAWS Position	Percent of Typical Lumen Output
1	25%
2	50%
3	55%
4	65%
5	75%
6	80%
7	85%
8	90%
9	95%
10	100%

Note: Typical value accuracy +/- 5%

Wireless system (LLC): Optional wireless controller integral to luminaire ready to be connected to a Limelight system (sold by others). The system allows you to wirelessly manage the entire site, independent lighting groups or individual luminaires while on-site or remotely. Based on a high-density mesh network with an easy to use web-based portal, you can conveniently access, monitor and manage your lighting network remotely. Wireless controls can be combined with site and area, pedestrian, and parking garage luminaires as well, for a completely connected outdoor solution. Equipped with motion response with #3 lens for 8-25' mounting heights. Also available with remote pod accessory where pod is mounted separate from luminaire to pole or wall.

LLC wireless controller with #3 lens

Motion response options

Bi-Level Infrared Motion Response (BL-IMRI): Motion Response module is mounted integral to luminaire factory pre-programmed to 50% dimming when not ordered with other control options. BL-IMRI is set/operates in the following fashion: The motion sensor is set to a constant 50%. When motion is detected by the PIR sensor, the luminaire returns to full power/light output. Dimming on low is factory set to 50% with 5 minutes default in "full power" prior to dimming back to low. When no motion is detected for 5 minutes, the motion response system reduces the wattage by 50%, to 50% of the normal constant wattage reducing the light level. Other dimming settings can be provided if different dimming levels are required. This can also be done with FSIR-100 Wireless Remote Programming Tool (contact Technical Support for details).

Area luminaire

Specifications

Infrared Motion Response with Other Controls: When used in combination with other controls (Automatic Dimming Profile and SiteWise), motion response device will simply override controller's schedule with the added benefits of a combined dimming profile and sensor detection. In this configuration, the motion response device cannot be re-programmed with FSIR-100 Wireless Remote Programming Tool. The profile can only be re-programmed via the controller.

Infrared Motion Response Lenses (IMRI3/IMRI7): Infrared Motion Response Integral module is available with two different sensor lens types to accommodate various mounting heights and occupancy detection ranges. Lens #3 (IMRI3) is designed for mounting heights up to 20' with a 40' diameter coverage area. Lens #7 is designed for higher mounting heights up to 40' with larger coverage areas up to 100' diameter coverage area. See charts for approximate detection patterns:

IMRI3 Luminaire or remote mount controller with #3 lens

IMRI7 Luminaire or remote mount controller with #7 lens

Electrical

Twist-Lock Receptacle (TLRD5/TLRD7/ TLRPC): Twist Lock Receptacle with 5 pins enabling dimming or with 7 pins with additional functionality (by others) can be used with a twistlock photoelectric cell or a shorting cap. Dimming Receptacle Type B (5-pin) and Type D-24 (7-pin) in accordance to ANSI C136.41. Can be used with third-party control system. Receptacle located on top of luminaire housing. When specifying receptacle with twistlock photoelectric cell, voltage must be specified. When ordering Twist-lock receptacle (TLRD5 or TLRD7), photocell or shorting cap is not included. TLRPC is shipped standard with 5 pin.

Driver: Driver efficiency (>90% standard). 120-480V available (restrictions apply). Open/short circuit protection. Optional 0-10V dimming to 10% power. RoHS compliant.

Button Photocontrol (PCB): Button style design for internal luminaires mounting applications. The photocontrol is constructed of a high impact UV stabilized polycarbonate housing. Rated voltage of 120V or 208-277V with a load rating of 1000 VA. The photocell will turn on with 1-4Fc of ambient light. **Surge protection (SP1/SP2):** Surge protection device tested in accordance

with ANSI/IEEE C62.45 per ANSI/IEEE C62.41.2 Scenario I Category C High Exposure 10kV/10kA waveforms for Line-Ground, Line-Neutral and Neutral-Ground, and in accordance with DOE MSSLC Model Specification for LED Roadway Luminaires Appendix D Electrical Immunity High test level 10kV/10kA. 20kV / 10kA surge protection device that provides extra protection beyond the SP1 10kV/10kA level.

Listings

UL/cUL wet location listed to the UL 1598 standard, suitable for use in ambient temperatures from -40° to 40°C (-40° to 104°F). Most EcoForm configurations are qualified under Premium and Standard DesignLights Consortium® categories. Consult DLC Qualified Products list to confirm your specific luminaire selection is approved. CCTs 3000K and warmer are Dark Sky Approved.

Finish

Each standard color luminaire receives a fade and abrasion resistant, electrostatically applied, thermally cured, triglycidal isocyanurate (TGIC) textured polyester powdercoat finish. Standard colors include bronze (BZ), black (BK), white (WH), dark gray (DGY), and medium gray (MGY). Consult factory for specs on optional or custom colors.

Service Tag

Each individual luminaire is uniquely identifiable, thanks to the Service tag application. With a simple scan of a QR code, placed on the inside of the mast door, you gain instant access to the luminaire configuration, making installation and maintenance operations faster and easier, no matter what stage of the luminaire's lifetime. Just download the APP and register your product right away. For more details visit: signify.com

Warranty

EcoForm luminaires feature a 5-year limited warranty See signify.com/warranties for complete details and exclusions.

Signify

© 2020 Signify Holding. All rights reserved. The information provided herein is subject to change, without notice. Signify does not give any representation or warranty as to the accuracy or completeness of the information included herein and shall not be liable for any action in reliance thereon. The information presented in this document is not intended as any commercial offer and does not form part of any quotation or contract, unless otherwise agreed by Signify. Signify North America Corporation 200 Franklin Square Drive, Somerset, NJ 08873 Telephone 855-486-2216 Signify Canada Ltd. 281 Hillmount Road, Markham, ON, Canada L6C 2S3 Felephone 800-668-9008

All trademarks are owned by Signify Holding or their respective owner

37w LED 5073 Lumens **IP65** • Suitable For Wet Locations IK08 • Impact Resistant (Vandal Resistant) Weight 10.8 lbs

9.9"

Ligman's micro Variable Optical System provides the ability to interchange, mix & rotate optics to provide specific light distributions for optimized spacing and uniformity

The variable optic system allows for the designer to create hybrid distributions for precise lighting requirements.

Construction

Aluminum Less than 0.1% copper content – Marine Grade 6060 extruded & LM6 Aluminum High Pressure die casting provides excellent mechanical strength , clean detailed product lines and excellent heat dissipation.

Pre paint

A step degrease and phosphate process that includes deoxidizing and etching as well as a zinc and nickel phosphate process before product painting.

Memory Retentive -Silicon Gasket

Memory Retentive -Silcon Casket Provided with special injection molded "fit for purpose" long life high temperature memory retentive silicon gaskets. Maintains the gaskets exact profile and seal over years of use and compression.

Thermal management

I M6 Aluminum is used for its excellent mechanical strength and LWb Aluminum is used for its excellent mechanical strength and thermal dissipation properties in low and high ambient temperatures. The superior thermal heat sink design by Ligman used in conjunction with the driver, controls thermals below critical temperature range to ensure maximum luminous flux output, as well as providing long LED service life and ensuring less than 10% lumen depreciation at 50,000 hours.

Standard 10kv surge suppressor provided with all fixtures.

BUG Rating B3 - U0 - G0

Finishing

All Ligman products go through an extensive finishing process that includes fettling to improve paint adherence.

Paint

UV Stabilized 4.9Mil thick powder coat paint and baked at 200 Deg C. This process ensures that Lignan products can ithstand harsh environments. Rated for use in natatoriums.

Inspired by Nature Finishes

The Inspired by nature Finishing is a unique system of decorative powder coating. Our metal decoration process can easily transform the appearance of metal or aluminum product into a wood grain finish

This patented technology enables the simulation of wood grain, and even marble or granite finish through the use of decorative powder coating.

The wood grain finish is so realistic that it's almost undistinguishable from real wood, even from a close visual inspection. The system of coating permeates the entire thickness of the coat and as a result, the coating cannot be removed by normal rubbing, chipping, or scratching.

The Coating Process After pre-treatment the prepared parts are powder coated with a specially formulated polyurethane powder. This powder provides protection against wear, abrasion, impact and corrosion and acts as the relief base color for the finalized metal decoration

The component is then wrapped with a sheet of non-porous film with the selected decoration pattern printed on it using special high temperature inks.

This printed film transfer is vacuum-sealed to the surface for a complete thermo print and then transferred into a customized owen. The oven transforms the ink into different forms within the paint layer before it becomes solid. Finally, the film is removed, and a vivid timber look on aluminum remains.

Wood grain coating can create beautiful wood-looking products of any sort. There are over 300 combinations of designs currently in use. Wood grains can be made with different colors, designs, etc.

Our powder coatings are certified for indoor and outdoor applications and are backed by a comprehensive warranty. These coatings rise to the highest conceivable standard of performance excellence and design innovation.

Added Benefits

 Resistance to salt-acid room, accelerated aging Boiling water, lime and condensed water resistant Anti-Graffiti, Anti-Slip, Anti-Microbial, Anti-Scratch Super durable (UV resistant) TGIC free (non-toxic)

Hardware Provided Hardware is Marine grade 316 Stainless steel.

Anti Seize Screw Holes

Tapped holes are infused with a special anti seize compound designed to prevent seizure of threaded connections, due to electrolysis from heat, corrosive atmospheres and moisture.

Crystal Clear Low Iron Glass Lens

Provided with tempered, impact resistant crystal clear low iron glass ensuring no green glass tinge.

Optics & LED

Precise optic design provides exceptional light control and precise distribution of light. LED CRI > 80

Lumen - Maintenance Life L80 /B10 at 50,000 hours (This means that at least 90% of the LED still achieve 80% of their original flux)

luminaires. Sleek, angular, technical and powerful professional lighting solutions.

Flexible wall-mounted floodlighting and area

A wedge shaped range of small profile wall mounted luminaires, with no visible external hardware for use in uplight or downlight applications. This product is provided with a range of high powered LEDs with a selection of optics.

The Vekter is unique as it is available with Type II, III, IV & V light distribution options that facilitates wider spacing and even light distribution between the light fixtures. Wide spacings of up to 40' on center can be achieved using a type II optic with uniformity that complies to path of egress requirements. This provides higher energy saving and reduced installation costs. The Vekter can be manufactured using different type beam optics to achieve custom distribution, e.g using type II and type IV optics inside the same luminaire.

Integral electronic control gear is housed in a special waterproof box that can be detached from the optical chamber for easy installation. Mounting plate for 3" and 4" junction box is provided with the fixture. Matching surface mount conduit boxes are available as an option.

The Vekter is suitable for lighting footpaths, building facades, building entrances and parking areas around buildings.

This luminaire can be mounted in downward or upward positions.

Additional Options (Consult Factory For Pricing)

SCDT Surface Conduit Decorative Trim

Ligman Lighting USA reserves the right to change specifications without prior notice, please contact factory for latest information. Due to the continual improvements in LED technology data and components may change without notice

UVK-30003

Vekter 2 Large Surface

