olsson

November 20, 2020

City of Lee's Summit Development Services 220 SW Green Street Lee's Summit, MO, 64063

RE: Hawthorn Ridge 3rd Plat Olsson Project #019-1605

To Whom It May Concern:

Hawthron 3rd plat is a proposed 19.00-acre residential development in Lee's Summit, Jackson County, Missouri. The residential development includes 45 single family homes. The property is located within the Hawthron Ridge Development and bounded by SW Hook Road to the north, and between undeveloped private property to the east and west, between SW Pryor Road and SW Ward Road.

The impacts from the development of Hawthron Ridge 3rd plat have been previously analyzed with the Hawthron Ridge Macro and First Plat Micro Drainage Study, revised March 8, 2018. No changes to the overall development have been made since this study was prepared and approved. The approved Hawthron Ridge Marcro and First Plat Micro Drainage Study has been included with this memo, for reference. Since the overall plan has not changed from the previously approved study, we are requesting approval of this memo to satisfy stormwater drainage requirements for Hawthorn Ridge 3rd Plat development.

Should you have any questions regarding this submittal, or the plan moving forward, please do not hesitate to reach out to me for discussion at (816) 422-6044, or jsellers@olsson.com.

Sincerely,	OF MISSO
Jacké Al	
Julie E. Sellers, P.E Olsson Project Engi	© PE-2017000367 SP

HAWTHORN RIDGE MACRO AND

FIRST PLAT MICRO DRAINAGE STUDY

Submitted: March 3, 2017 Revised: March 8, 2018

Proposed Residential Development located in: NW ¼ Section 25, Township 47N, Range 32W Lee's Summit, Jackson County, Missouri

Cedar Creek Watershed, Little Blue River Watershed

Prepared For: Clayton Group Properties, Inc. d/b/a Summit Custom Homes 120 SE 30th Street Lee's Summit, MO 64082 Phone: 816.246.6700 Contact Person: David Price

1301 Burlington #100 North Kansas City, MO 64116 816.587.4320 816.587.1393 fax www.olssonassociates.com

Table of Contents

Section 1.) General Information	Page No. 2
2.) Methodology	3
3.) Existing Conditions Analysis	3
4.) Proposed Conditions Analysis	5
5.) Summary	7
6.) Conclusions	7
Figures and Maps	

- Figure 1 Hawthorn Ridge Vicinity Map
- Figure 2 Floodplain Map
- Figure 3 Soils Map
- Figure 4 Existing Conditions Drainage Area Map
- Figure 5 Proposed & Future Conditions Drainage Area Map
- 7.) Supporting Calculations:
 - 7.1) Existing Conditions
 - 7.2) Proposed Conditions
 - 7.3) Future Conditions

1.) General Information:

Hawthorn Ridge is proposed as a 203-lot single family residential subdivision on the south side of SW Hook Rd approximately 1,300 feet east of SW Pryor Road. The first Plat of Hawthorn Ridge consists of 100 single family residential lots, two detention basins and club house. The site is bounded by SW Hook Rd to the north, estate lot residential on the west and east, and undeveloped land to the south. This locates the project in the NW ¼ of Section 25, Township 47 N, Range 32 W, Lee's Summit, Jackson County, Missouri.

Stormwater runoff from Hawthorn Ridge is conveyed into the Mouse Creek watershed, via several discharge points from the site. The majority of the site is discharged to the west, to an unnamed tributary to Mouse Creek. This drainage study will evaluate the hydrologic impact generated by the construction of the Hawthorn Ridge First Plat (Proposed Conditions). This study will also evaluate the future conditions which includes the full build-out of the Hawthorn Ridge property and includes the First and Second Plats.

Figure 1. Hawthorn Ridge Vicinity Map

1.1) FEMA Floodplain Classification:

FEMA Flood Boundary and Floodway Map Community Panel Number 29095C 0406F classifies the Hawthorn Ridge property as a "Zone X" Area. Zone X is the FEMA flood insurance rate zone that corresponds to "areas determined to be outside the 0.2% annual chance flood."

1.2) Soil Classifications

Soil Maps published on the NRCS Web Soil Survey, categorize soils on the Hawthorn Ridge property as:

Symbol	Name	Slopes	HSG
10000	Arisburg silt loam	1-5%	D
10082	Arisburg-Urban land complex	1-5%	D
10117	Sampsel silty clay loam	5-9%	C/D
10128	Sharpsburg-Urban land complex	2-5%	D

2.) Methodology

This drainage study has been prepared to evaluate the hydrologic impact generated by development of Hawthorn Ridge First Plat and full build-out conditions. The base data for the models prepared for this report has been obtained from available online maps and aerial imagery. This study was prepared in conformance with the "Hawthorn Ridge Preliminary Stormwater Drainage Study" submitted October 17, 2016.

The following methods were used in this study to model Existing, Proposed and Future Conditions for stormwater runoff:

- Haestad Methods, Inc. "PondPack" v8i
 - TR-55 Unit Hydrograph Method
 - 2-year, 10-year and 100-year Return Frequency storms
 - AMC II Soil Moisture conditions
 - 24-Hour SCS Type II Rainfall Distribution
 - SCS Runoff Curve Numbers per SCS TR-55 (Tables 2-2a 2-2c)
 - SCS TR-55 Methods for determination of Time of Concentration and Travel Time. Where specific data pertaining to channel geometry is not available, "length & velocity" estimates for channel-flow Travel Time is utilized per Section 5600, Kansas City APWA Standard Specifications and Design Criteria.

3.) Existing Conditions Analysis

This section of the drainage study has been prepared to evaluate the Existing Conditions related to stormwater runoff. Section 4 will evaluate the site under Proposed Conditions. Section 5 will evaluate the site under Future Conditions. The purpose of this report is to evaluate the Proposed and Future Conditions stormwater discharge from the property and to ensure that there are no adverse conditions generated by the development. To quantify the effects of development of this project, the following areas and points of interest have been used for both Existing, Proposed and Future Conditions analyses.

Watershed A discharges to the north via an 18-inch culvert under NW Hook Road. Total modeled area within Watershed A is 7.62 acres under Existing Conditions, all of which is onsite. Small portions of the adjacent onsite watersheds will be redirected to Watershed A, increasing the total size of the watershed to 9.75 acres under Proposed and Future Conditions. A new detention facility will be constructed within Watershed A for the First Plat, which will be referred to in this report as *Basin A1*.

Watershed B lies directly west of Watershed A, and discharges to the north via a 24-inch culvert under NW Hood Rd. Total modeled area within Watershed B is 2.11 acres under Existing Conditions, 2.03 acres of which is onsite. A portion of Watershed B will be redirected to Watershed A, and a portion of Watershed C will be redirected to Watershed B under Proposed and Future Conditions. This will cause an overall increase in the area within Watershed B to 2.31 acres.

Watershed C lies directly south of Watershed C, and discharges to the west into a small existing farm pond. Total modeled area with Watershed C is 6.86 acres under Existing Conditions, 3.44 acres of which is onsite. Portions of Watershed C will be redirected to Watersheds B and D under Proposed and Future Conditions, reducing the modeled area to 5.52 acres.

Watershed D incorporates the majority of the Arborwalk Site, and discharges to the west to an unnamed tributary to Mouse Creek. The watershed has been divided into two subareas. Total modeled area within Watershed D is 83.76 acres under Existing Conditions, 64.52 acres of which is onsite. A portion of Watershed D will be redirected to Watershed A, and a portion of Watershed C will be redirected to Watershed D, resulting in a net decrease of area to 83.63 acres under Proposed and Future Conditions. Watershed D incorporates an additional point of interest **Point D2** at the western edge of the Hawthorn Ridge property. A new detention facility will be constructed with the First Plat within Subarea D2, which will be referred to in this report as **Basin D2**.

The following tables summarize the results of the Existing Conditions analysis. The intent of this report is to evaluate the hydrologic impact created by construction of Hawthorn Ridge. The Proposed and Future Conditions discharge data will be compared to these Existing Conditions results. The Existing Conditions stormwater runoff model simulates the 2, 10 and 100-year design storm events. Refer to the Existing Conditions Drainage Area Map (Exhibit 8-3.1) for subarea locations. Refer to Section 7.1 for output from the Existing Conditions model. The following tables contain input data and summarize the computed results from the PondPack model for Hawthorn Ridge Existing Conditions.

Subarea:	Area (ac.):	Composite CN	T _c (hr.)
A1	7.62	84	0.181
B1	2.11	84	0.181
C1	6.86	85	0.190
D1	24.79	81	0.169
D2	58.96	85	0.313

Table 3-1 Hawthorn Ridge Existing Conditions Subarea Data

Table 3-2 Hawthorn Ridge Existing Conditions Runoff Data: Subarea Peak Discharge Rates

Subarea:	Q ₂ (cfs)	Q ₁₀ (cfs)	Q ₁₀₀ (cfs)
A1	20.58	35.54	58.64
B1	5.72	9.88	16.29
C1	18.99	32.40	53.01
D1	60.44	108.66	184.34
D2	133.67	229.89	378.62

Table 3-3 Hawthorn Ridge Existing Conditions Runoff Data: Point of Interest Peak Discharge Rates

Point of Interest:	Q ₂ (cfs)	Q ₁₀ (cfs)	Q ₁₀₀ (cfs)
Point A1	20.58	35.54	58.64
Point B1	5.72	9.88	16.29
Point C1	18.99	32.4	53.01
Point D1	175.98	308.32	513.94
Point D2	133.67	229.89	378.62

Per APWA Section 5608.4 and City of Lee's Summit criteria, the performance criteria for detention is to provide detention to limit peak flow rates at downstream points of interest to maximum release rates:

- 50% storm peak rate less than or equal to 0.5 cfs per site acre
- 10% storm peak rate less than or equal to 2.0 cfs per site acre
- 1% storm peak rate less than or equal to 3.0 cfs per site acre

Allowable release rates were calculated for the points of interest, allowing that offsite peak discharges would be permitted to bypass the detention. Offsite bypass peak flow rates were calculated as a percentage of the existing conditions, relating to the percentage of offsite area flowing to each point. The release rates for the proposed development on the development site were calculated based on the detention criteria. The development release rates were added to the bypass peak flow rates to calculate an allowable peak flow rate for each point of interest as follows.

Table 4-5 Hawtholli Muge	i onit of interest offsite Are	u	
Point of Interest:	Total Area (ac)	Onsite Area (ac)	Percent Onsite
Point A1	7.62	7.62	100.0%
Point B1	2.11	2.03	96.1%
Point C1	6.86	3.44	50.1%
Point D1	83.76	64.52	77.0%
Point D2	58.96	55.90	94.8%

Table 4-5 Hawthorn Ridge Point of Interest Offsite Area

Table 4-6 Hawthorn Ridge Point of Interest Allowable Peak Flow Rates

Point of Interest:	Allowable Q ₂ (cfs)	Allowable Q ₁₀ (cfs)	Allowable Q ₁₀₀ (cfs)
Point A1	3.81	15.25	22.87
Point B1	1.24	4.44	6.72
Point C1	11.19	23.03	36.74
Point D1	72.68	199.86	311.60
Point D2	34.90	123.75	187.38

4.) Proposed Conditions

The Proposed Conditions section of analysis assumes completion of only Hawthorn Ridge First Plat, including construction of two new detention facilities in Watersheds A and D. The difference between the Existing Conditions model and the Proposed Conditions model is a direct result of the construction of Hawthorn Ridge First Plat.

As in the Existing Conditions section, this Proposed Conditions stormwater runoff model was created and run for the 2, 10 and 100-year design storm events. Refer to Section 7.2 for output from the Proposed Conditions model. The following tables contain input data and summarize the computed results from the PondPack model for Proposed Conditions. After the results of this Proposed Conditions model are presented, they will be compared to the Existing Conditions results. Any variation in computed discharge rates from Existing to Proposed Conditions will be a direct result of construction of Hawthorn Ridge First Plat.

Table 4-1 Hawthorn	Ridao	Pronosad	Conditions	Subarea Data
Table 4-1 nawilloin	Riuge	Floposeu	Contaitions	Subarea Dala

Subarea:	Area (ac.):	Composite CN	T _c (hr.)
A1	6.95	85	0.123
A1a	2.31	84	0.112
B1	1.43	82	0.174
C1	5.52	84	0.173
D1	17.88	79	0.169
D2	64.67	83	0.275
D2a	1.54	79	0.141

Table 4-2 Hawthorn Ridge Proposed Conditions Runoff Data: Subarea Peak Discharge Rates			
Subarea:	Q ₂ (cfs)	Q ₁₀ (cfs)	Q ₁₀₀ (cfs)
A1	21.34	36 43	59.61

Subarea.			Q100 (CIS)
A1	21.34	36.43	59.61
A1a	6.92	11.94	19.68
B1	3.61	6.41	10.77
C1	15.07	25.98	42.80
D1	39.98	74.12	128.45
D2	146.03	257.11	430.06
D2a	3.53	6.92	11.94

Table 4-3 Hawthorn Ridge Proposed Conditions Runoff Data: Point of Interest Peak Discharge Rates

Point of Interest:	Q ₂ (cfs)	Q ₁₀ (cfs)	Q ₁₀₀ (cfs)
Point A1	7.15	12.30	20.60
Point B1	3.61	6.41	10.77
Point C1	15.07	25.98	42.80
Point D1	44.57	117.14	240.05
Point D2	31.76	103.41	162.07

Table 4-4 Proposed Conditions Detention Basin Data

	Peak Q In (cfs)	T _P In (hr.)	Peak Q Out (cfs)	T _P Out (hr.)	V _R (ac-ft)	Peak W.S.E.	Max. Storage Volume (ac-ft)
			Ba	asin A1			
2-Year	21.34	11.95	0.40	17.90	1.22	1,023.09	0.87
10-Year	36.43	11.95	1.12	14.65	2.11	1,023.79	1.47
100-Year	59.61	11.95	7.76	12.35	3.54	1,024.38	2.00
			Ba	asin D2			
2-Year	146.03	12.05	31.29	12.45	10.47	1,001.85	4.77
10-Year	257.11	12.05	102.31	12.30	18.57	1,003.43	7.70
100-Year	430.06	12.05	160.24	12.30	31.69	1,005.34	12.57

All storm events, will see a decrease in flow rates from existing to proposed as a result of drainage area shifts and the construction of two new detention facilities. The following tables provide a comparison of runoff data between Existing and Proposed Conditions for Hawthorn Ridge First Plat. At Points B1 and C1, rates do not meet detention criteria but are kept at less than the Existing Conditions rates without detention as was outlined in the preliminary drainage study; therefore, additional detention facilities in those watersheds were not considered to be necessary. Where detention facilities are required, rates are reduced to less than the allowable peak flow rates, as shown in table 4-6, with the exception of the 2-year event at Point A1. However, that peak flow rate is drastically reduced from the Existing Conditions rate, so there will be no adverse effects on downstream systems.

		Q ₂ (cfs)	Q ₁₀ (cfs)	Q ₁₀₀ (cfs)
	Proposed	7.15	12.3	20.6
	Existing:	20.58	35.54	58.64
Point A1	Difference:	-13.43	-23.24	-38.04
	Allowable:	3.81	15.25	22.87
	Difference:	3.34	-2.95	-2.27
	Proposed	3.61	6.41	10.77
	Existing:	5.72	9.88	16.29
Point B1	Difference:	-2.11	-3.47	-5.52
	Allowable	1.24	4.44	6.72
	Difference:	2.37	1.97	4.05
	Proposed	15.07	25.98	42.8
	Existing:	18.99	32.4	53.01
Point C1	Difference:	-3.92	-6.42	-10.21
	Allowable:	11.19	23.03	36.74
	Difference:	3.88	2.95	6.06
	Proposed	44.57	117.14	240.05
	Existing:	175.98	308.32	513.94
Point D1	Difference:	-131.41	-191.18	-273.89
	Allowable:	72.68	199.86	311.6
	Difference:	-28.11	-82.72	-71.55
	Proposed	31.76	103.41	162.07
	Existing:	133.67	229.89	378.62
Point D2	Difference:	-101.91	-126.48	-216.55
	Allowable:	34.9	123.75	187.38
	Difference:	-3.14	-20.34	-25.31

Table 4-5 Hawthorn Ridge Point of Interest Discharge Comparison

In addition to mitigation of peak flow rates, APWA Section 5608.4 also requires 40 hour extended detention of runoff from the local 90% mean annual event (1.37"/24-hour rainfall). The two detention facilities will release the water quality event over a period of 40-72 hours. See Section 7.2 for the Time vs. Volume graph for the water quality event. The Water Quality Volume is released in approximately 57 hours from Basin A1 and approximately 40 hours from Basin D2.

5.) Future Conditions

The Future Conditions section of analysis assumes completion of Hawthorn Ridge First Plat and Second Plat, including construction of two new detention facilities in Watersheds A and D. The difference between the Existing Conditions model and the Proposed Conditions model is a direct result of the construction of Hawthorn Ridge First Plat.

As in the Existing Conditions section, this Future Conditions stormwater runoff model was created and run for the 2, 10 and 100-year design storm events. Refer to Section 7.3 for output from the Future Conditions model. The following tables contain input data and summarize the computed results from the PondPack model for Future Conditions. After the results of this Future Conditions model are presented, they will be compared to the Existing Conditions results. Any variation in computed discharge rates from Existing to Future Conditions will be a direct result of construction of Hawthorn Ridge.

Subarea:	Area (ac.):	Composite CN	T _c (hr.)
A1	6.95	85	0.123
A1a	2.31	84	0.112
B1	1.43	82	0.174
C1	5.52	84	0.173
D1	17.88	79	0.169
D2	64.67	86	0.275
D2a	1.54	79	0.141

Table 5-1 Hawthorn Ridge Future Conditions Subarea Data

Table 5-2 Hawthorn Ridge Future Conditions Runoff Data: Subarea Peak Discharge Rates

Subarea:	Q ₂ (cfs)	Q ₁₀ (cfs)	Q ₁₀₀ (cfs)
A1	21.34	36.43	59.61
A1a	6.92	11.94	19.68
B1	3.61	6.41	10.77
C1	15.07	25.98	42.8
D1	39.98	74.12	128.45
D2	164.03	276.78	449.52
D2a	3.53	6.62	11.58

 Table 5-3 Hawthorn Ridge Future Conditions Runoff Data: Point of Interest Peak Discharge Rates

Point of Interest:	Q ₂ (cfs)	Q ₁₀ (cfs)	Q ₁₀₀ (cfs)
Point A1	7.15	12.3	20.6
Point B1	3.61	6.41	10.77
Point C1	15.07	25.98	42.8
Point D1	44.62	131.25	247.98
Point D2	37.06	115.37	167.66

Table 5-4 Future Conditions Detention Basin Data

	Peak Q In	T _P In	Peak Q	T _P Out	V _R	Peak	Max. Storage
	(cfs)	(hr.)	Out (cfs)	(hr.)	(ac-ft)	W.S.E.	Volume (ac-ft)
			Ba	asin A1			
2-Year	21.34	11.95	0.40	17.90	1.22	1,023.09	0.87
10-Year	36.43	11.95	1.12	14.65	2.11	1,023.79	1.47
100-Year	59.61	11.95	7.76	12.35	3.54	1,024.38	2.00
			Ba	asin D2			
2-Year	164.03	12.05	36.58	12.45	11.79	1,002.26	5.44
10-Year	276.78	12.05	114.15	12.30	20.20	1,003.71	8.32
100-Year	449.52	12.05	165.84	12.30	33.61	1,005.57	13.28

All storm events, will see a decrease in flow rates as a result of drainage area shifts and the construction of two new detention facilities. The following tables provide a comparison of runoff data between Existing and Future Conditions for Hawthorn Ridge First and Second Plats. At Points B1 and C1, rates do not meet detention criteria but are kept at less than the Existing Conditions rates without detention as was outlined in the preliminary drainage study; rates are kept at less than the Existing Conditions rates without detention; therefore, additional detention facilities in those watersheds were not considered to be necessary. Where detention facilities are required, rates are reduced to less than the allowable peak flow rates, as shown in table 4-6, with the exception of the 2-year event at Point A1. However, that peak flow rate is drastically reduced from the Existing Conditions rate, so there will be no adverse effects on downstream systems.

Waivers are requested for the exceptions to the standard requirements.

		Q ₂ (cfs)	Q ₁₀ (cfs)	Q ₁₀₀ (cfs)
	Future	7.15	12.3	20.6
	Existing:	20.58	35.54	58.64
Point A1	Difference:	-13.43	-23.24	-38.04
	Allowable:	3.81	15.25	22.87
	Difference:	3.34	-2.95	-2.27
	Future	3.61	6.41	10.77
	Existing:	5.72	9.88	16.29
Point B1	Difference:	-2.11	-3.47	-5.52
	Allowable:	1.24	4.44	6.72
	Difference:	2.37	1.97	4.05
	Future	15.07	25.98	42.8
	Existing:	18.99	32.4	53.01
Point C1	Difference:	-3.92	-6.42	-10.21
	Allowable:	11.19	23.03	36.74
	Difference:	3.88	2.95	6.06
	Future	44.62	131.25	247.98
	Existing:	175.98	308.32	513.94
Point D1	Difference:	-131.36	-177.07	-265.96
	Allowable:	72.68	199.86	311.6
	Difference:	-28.06	-68.61	-63.62
	Future	37.06	115.37	167.66
	Existing:	133.67	229.89	378.62
Point D2	Difference:	-96.61	-114.52	-210.96
	Allowable:	34.9	123.75	187.38
	Difference:	2.16	-8.38	-19.72

Table 5-5 Hawthorn Ridge Point of Interest Discharge Comparison

In addition to mitigation of peak flow rates, APWA Section 5608.4 also requires 40 hour extended detention of runoff from the local 90% mean annual event (1.37"/24-hour rainfall). The two detention facilities will release the water quality event over a period of 40-72 hours. See Section 7.3 for the Time vs. Volume graph for the water quality event. The Water Quality Volume is released in approximately 57 hours from Basin A1 and approximately 47 hours from Basin D2.

6.) <u>Summary</u>

This Stormwater drainage study has been prepared to evaluate the hydrologic impact generated by the proposed development of Hawthorn Ridge First Plat and future development of Hawthorn Ridge First and Second Plat. Section 3 of this report determined the baseline conditions reflecting the Existing Conditions for the project site. Section 4 analyzes the site with the construction of the First Plat and the two detention facilities in Watersheds A and D. Section 5 analyzes the site under fully developed conditions. The results of these models were compared to evaluate the hydrologic impact generated by the project. Proposed and Future Conditions flow rates were also compared to the allowable maximum release rates per APWA Section 5600.

7.) Conclusions

Hawthorn Ridge is proposed as a 203-lot single family residential subdivision on the south side of SW Hook Rd approximately 1,300 feet east of SW Pryor Road. This report has been prepared to evaluate the development to ensure that stormwater discharge from the site will not increase with development. Two detention facilities will be constructed in conjunction with development of Hawthorn Ridge First Plat to reduce peak discharge rates.

In conclusion, all points of interest exhibit Proposed Conditions peak discharges for all events that are at or below the Existing Conditions rates and/or allowable release rates. Waivers are requested for the exceptions to the standard requirements.

It is therefore requested that Lee's Summit, Missouri approve this "Hawthorn Ridge First Plat Drainage Study."

Web Soil Survey National Cooperative Soil Survey

Conservation Service

Soil Map—Jackson County, Missouri Figure 3 - Soils Map	
---	--

MAP INFORMATIO	The soil surveys that comprise your AOI were may	Warning: Soil Map may not be valid at this scale.	Enlargement of maps beyond the scale of mapping	placement. The maps do not show the small areas	soils that could have been shown at a more detailed	Please rely on the bar scale on each map sheet for	measurements.	Source of Map: Natural Resources Conservation	Web Soil Survey URL: http://websoilsurvey.nrcs.u Coordinate System: Web Mercator (EPSG:3857)	Maps from the Web Soil Survey are based on the W	projection, which preserves direction and shape but	Albers equal-area conic projection, should be used if	calculations of distance or area are required.	This product is generated from the USDA-NRCS certi the version data(s) listed below		soil survey Area: Jackson County, Missouri Survey Area Data: Version 15, Sep 11, 2015	Soil map units are labeled (as space allows) for map sc	or larger.	Date(s) aerial images were photographed: Feb 19,	29, 2012	The orthophoto or other base map on which the soil li compiled and digitized probably differs from the back	imagery displayed on these maps. As a result, some	or map unit poundaries may be evident.			
GEND	Spoil Area	Stony Spot	Very Story Spot				Water Features		rransportation +++ Rails	Interstate Highways	US Routes	Major Roads	Local Roads	Background	Aerial Photography											
MAP LE	erest (AOI)	Area of Interest (AUI)	Soil Map Unit Polygons	Soil Map Unit Lines	Soil Map Unit Points	Point Features	Blowout	Borrow Pit	Clay Spot	Closed Depression	Gravel Pit	Gravelly Spot	Landfill	Lava Flow	Marsh or swamp	Mine or Quarry	Miscellaneous Water	Perennial Water	Rock Outcrop	Saline Spot	Sandy Spot	Severely Eroded Spot	Sinkhole	Slide or Slip	Sodic Spot	
	Area of Int	Soile		\$		Special I	Э	X	ж	\$	⊁	***	0	\checkmark	÷	¢<	0	0	>	+	0 0 0 0	Ŵ	\$	æ	Ø	

9/15/2016 Page 2 of 3

٦

Web Soil Survey National Cooperative Soil Survey

Natural Resources Conservation Service

NSDA

Map Unit Legend

	Jackson County,	Missouri (MO095)	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
10000	Arisburg silt loam, 1 to 5 percent slopes	32.9	39.4%
10082	Arisburg-Urban land complex, 1 to 5 percent slopes	11.4	13.7%
10117	Sampsel silty clay loam, 5 to 9 percent slopes	37.3	44.7%
10128	Sharpsburg-Urban land complex, 2 to 5 percent slopes	1.8	2.1%
Totals for Area of Interest		83.4	100.0%

Project Summary	
Title	Arborwalk
Engineer	MGD
Company	Olsson Associates
Date	9/14/2016
Notes	

Existing Conditions.ppc 9/14/2016

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 1 of 18

Table of Contents

	Master Network Summary	2
Subarea A1		
	Time of Concentration Calculations, 2 years	3
Subarea B1		
	Time of Concentration Calculations, 2 years	5
Subarea C1		
	Time of Concentration Calculations, 2 years	7
Subarea D1		
	Time of Concentration Calculations, 2 years	9
Subarea D2		
Subaroa A1	Time of Concentration Calculations, 2 years	11
Subarea AI	Runoff (N-Area 2 years	13
Subarea B1		15
	Runoff CN-Area, 2 years	14
Subarea C1		
	Runoff CN-Area, 2 years	15
Subarea D1		
	Runoff CN-Area, 2 years	16
Subarea D2		
	Runoff CN-Area, 2 years	17

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft ³ /s)
Subarea A1	2-Year	2	1.281	12.000	20.58
Subarea A1	10-Year	10	2.246	12.000	35.54
Subarea A1	100-Year	100	3.801	12.000	58.64
Subarea B1	2-Year	2	0.355	12.000	5.72
Subarea B1	10-Year	10	0.622	12.000	9.88
Subarea B1	100-Year	100	1.053	12.000	16.29
Subarea C1	2-Year	2	1.200	12.000	18.99
Subarea C1	10-Year	10	2.080	12.000	32.40
Subarea C1	100-Year	100	3.489	12.000	53.01
Subarea D1	2-Year	2	3.689	12.000	60.44
Subarea D1	10-Year	10	6.704	12.000	108.66
Subarea D1	100-Year	100	11.645	12.000	184.34
Subarea D2	2-Year	2	10.291	12.100	133.67
Subarea D2	10-Year	10	17.845	12.050	229.89
Subarea D2	100-Year	100	29.945	12.050	378.62

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
Point A1	2-Year	2	1.281	12.000	20.58
Point A1	10-Year	10	2.246	12.000	35.54
Point A1	100-Year	100	3.801	12.000	58.64
Point B1	2-Year	2	0.355	12.000	5.72
Point B1	10-Year	10	0.622	12.000	9.88
Point B1	100-Year	100	1.053	12.000	16.29
Point C1	2-Year	2	1.200	12.000	18.99
Point C1	10-Year	10	2.080	12.000	32.40
Point C1	100-Year	100	3.489	12.000	53.01
Point D1	2-Year	2	13.971	12.050	175.98
Point D1	10-Year	10	24.535	12.050	308.32
Point D1	100-Year	100	41.570	12.050	513.94
Point D2	2-Year	2	10.291	12.100	133.67
Point D2	10-Year	10	17.845	12.050	229.89
Point D2	100-Year	100	29.945	12.050	378.62

Existing Conditions.ppc 9/14/2016

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 2 of 18

Subsection: Time of Concentration Calculations Label: Subarea A1

Return Event: 2 years Storm Event: 2-YEAR

Time of Concentration Results

Segment #1: TR-55 Sheet Flow	
Hydraulic Length	100.00 ft
Manning's n	0.150
Slope	0.020 ft/ft
2 Year 24 Hour Depth	3.6 in
Average Velocity	0.18 ft/s
Segment Time of Concentration	0.154 hours
Segment #2: TR-55 Shallow Co	ncentrated Flow
Hydraulic Length	285.00 ft
Is Paved?	False
Slope	0.055 ft/ft
Average Velocity	3.78 ft/s
Segment Time of Concentration	0.021 hours
Segment #3: Length and Velocit	ty
Hydraulic Length	230.00 ft
Velocity	10.00 ft/s
Segment Time of Concentration	0.006 hours
Time of Concentration (Composi	te)
Time of Concentration (Composite)	0.181 hours

Existing Conditions.ppc 9/14/2016

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 3 of 18

Subsection: Time of Concentration Calculations Label: Subarea A1 Return Event: 2 years Storm Event: 2-YEAR

==== User Defined Length & Velocity

Tc =	(Lf / V) / 3600
Where:	Tc= Time of concentration, hours
	Lf= Flow length, feet
	V= Velocity, ft/sec

= Qa / Wp

==== SCS Channel Flow

Tc =	R
	V

Where:

(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours

= (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc =	Unpaved surface: V = 16.1345 * (Sf**0.5)
	Paved Surface: V = 20.3282 * (Sf**0.5)
Where:	(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 4 of 18

Subsection: Time of Concentration Calculations Label: Subarea B1

Return Event: 2 years Storm Event: 2-YEAR

Time of Concentration Results

Segment #1: TR-55 Sheet Flow	
Hydraulic Length	100.00 ft
Manning's n	0.150
Slope	0.020 ft/ft
2 Year 24 Hour Depth	3.6 in
Average Velocity	0.18 ft/s
Segment Time of Concentration	0.154 hours
Segment #2: TR-55 Shallow Co	ncentrated Flow
Hydraulic Length	180.00 ft
Is Paved?	False
Slope	0.030 ft/ft
Average Velocity	2.79 ft/s
Segment Time of Concentration	0.018 hours
Segment #3: Length and Veloci	ty
Hydraulic Length	330.00 ft
Velocity	10.00 ft/s
Segment Time of Concentration	0.009 hours
Time of Concentration (Compace	ita)
Time of Concentration (Composite)	0.181 hours

Existing Conditions.ppc 9/14/2016

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 5 of 18

Subsection: Time of Concentration Calculations Label: Subarea B1 Return Event: 2 years Storm Event: 2-YEAR

==== User Defined Length & Velocity

Tc =	(Lf / V) / 3600
Where:	Tc= Time of concentration, hours
	Lf= Flow length, feet
	V= Velocity, ft/sec

==== SCS Channel Flow

Tc =	R = Qa / Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

Where:

(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours

Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc =	Unpaved surface: V = 16.1345 * (Sf**0.5)
	Paved Surface: V = 20.3282 * (Sf**0.5)
Where:	(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

Subsection: Time of Concentration Calculations Label: Subarea C1

Return Event: 2 years Storm Event: 2-YEAR

Time of Concentration Results

Segment #1: TR-55 Sheet Flow	
Hydraulic Length	100.00 ft
Manning's n	0.150
Slope	0.020 ft/ft
2 Year 24 Hour Depth	3.6 in
Average Velocity	0.18 ft/s
Segment Time of Concentration	0.154 hours
Segment #2: TR-55 Shallow Co	ncentrated Flow
Hydraulic Length	410.00 ft
Is Paved?	False
Slope	0.050 ft/ft
Average Velocity	3.61 ft/s
Segment Time of Concentration	0.032 hours
Segment #3: Length and Veloci	ty
Hydraulic Length	150.00 ft
Velocity	10.00 ft/s
Segment Time of Concentration	0.004 hours
Time of Concentration (Compared	ito)
	lie)
Time of Concentration (Composite)	0.190 hours

Existing Conditions.ppc 9/14/2016

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 7 of 18

Subsection: Time of Concentration Calculations Label: Subarea C1

Return Event: 2 years Storm Event: 2-YEAR

==== User Defined Length & Velocity

Tc =	(Lf / V) / 3600
Where:	Tc= Time of concentration, hours
	Lf= Flow length, feet
	V= Velocity, ft/sec

= Qa / Wp

==== SCS Channel Flow

Tc =	R
	V

Where:

(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours

= (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc =	Unpaved surface: V = 16.1345 * (Sf**0.5)
	Paved Surface: V = 20.3282 * (Sf**0.5)
Where:	(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

Existing Conditions.ppc 9/14/2016

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 8 of 18

Subsection: Time of Concentration Calculations Label: Subarea D1

Return Event: 2 years Storm Event: 2-YEAR

Time of Concentration Results

Segment #1: TR-55 Sheet Flow	1			
Hydraulic Length	100.00 ft			
Manning's n	0.150			
Slope	0.050 ft/ft			
2 Year 24 Hour Depth	3.6 in			
Average Velocity	0.26 ft/s			
Segment Time of Concentration	0.107 hours			
Segment #2: TR-55 Shallow Concentrated Flow				
Hydraulic Length	560.00 ft			
Is Paved?	False			
Slope	0.070 ft/ft			
Average Velocity	4.27 ft/s			
Segment Time of Concentration	0.036 hours			
Segment #3: Length and Veloci	ty			
Hydraulic Length	945.00 ft			
Velocity	10.00 ft/s			
Segment Time of Concentration	0.026 hours			
Time of Concentration (Concentration	:+-)			
Time of Concentration (Compos	ite)			
Time of Concentration (Composite)	0.169 hours			

Existing Conditions.ppc 9/14/2016

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 9 of 18

Subsection: Time of Concentration Calculations Label: Subarea D1

Return Event: 2 years Storm Event: 2-YEAR

==== User Defined Length & Velocity

Tc =	(Lf / V) / 3600
Where:	Tc= Time of concentration, hours
	Lf= Flow length, feet
	V= Velocity, ft/sec

= Qa / Wp

==== SCS Channel Flow

Tc =	R
	V

Where:

(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours

= (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc =	Unpaved surface: V = 16.1345 * (Sf**0.5)
	Paved Surface: V = 20.3282 * (Sf**0.5)
Where:	(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

Existing Conditions.ppc 9/14/2016

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 10 of 18

Subsection: Time of Concentration Calculations Label: Subarea D2

Return Event: 2 years Storm Event: 2-YEAR

Time of Concentration Results

Segment #1: TR-55 Sheet Flow				
Hydraulic Length	100.00 ft			
Manning's n	0.150			
Slope	0.015 ft/ft			
2 Year 24 Hour Depth	3.6 in			
Average Velocity	0.16 ft/s			
Segment Time of Concentration	0.173 hours			
Segment #2: TR-55 Shallow Concentrated Flow				
Hydraulic Length	560.00 ft			
Is Paved?	False			
Slope	0.010 ft/ft			
Average Velocity	1.61 ft/s			
Segment Time of	0.096 hours			
Concentration				
Segment #3: Length and Velocity				
Hydraulic Length	1,590.00 ft			
Velocity	10.00 ft/s			
Segment Time of	0.044 hours			
Concentration	0.01110013			
Time of Concentration (Composite)				
Time of Concentration	0.313 hours			

Existing Conditions.ppc 9/14/2016

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 11 of 18

Subsection: Time of Concentration Calculations Label: Subarea D2 Return Event: 2 years Storm Event: 2-YEAR

==== User Defined Length & Velocity

Tc =	(Lf / V) / 3600
Where:	Tc= Time of concentration, hours
	Lf= Flow length, feet
	V= Velocity, ft/sec

==== SCS Channel Flow

Tc =	R = Qa / Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

Where:

(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc =	Unpaved surface: V = 16.1345 * (Sf**0.5)
	Paved Surface: V = 20.3282 * (Sf**0.5)
Where:	(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 12 of 18

Subsection: Runoff CN-Area Label: Subarea A1 Return Event: 2 years Storm Event: 2-YEAR

Runoff Curve Number Data

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Row crop Contoured HSG D	88.000	4.090	0.0	0.0	88.000
Meadow HSG D	78.000	3.280	0.0	0.0	78.000
Impervious	98.000	0.250	0.0	0.0	98.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	7.620	(N/A)	(N/A)	84.024

Existing Conditions.ppc 9/14/2016

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 13 of 18

Subsection: Runoff CN-Area Label: Subarea B1 Return Event: 2 years Storm Event: 2-YEAR

Runoff Curve Number Data

Soil/Surface Description	CN	Area	С	UC	Adjusted CN
		(acres)	(%)	(%)	
Row crop Contoured HSG D	88.000	0.750	0.0	0.0	88.000
Meadow HSG D	78.000	1.050	0.0	0.0	78.000
Impervious	98.000	0.230	0.0	0.0	98.000
Offsite Meadow HSG D	78.000	0.070	0.0	0.0	78.000
Offsite Impervious	98.000	0.010	0.0	0.0	98.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	2.110	(N/A)	(N/A)	83.829

Existing Conditions.ppc 9/14/2016

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 14 of 18

Subsection: Runoff CN-Area Label: Subarea C1 Return Event: 2 years Storm Event: 2-YEAR

Runoff Curve Number Data

Soil/Surface Description	CN	Area	С	UC	Adjusted CN
		(acres)	(%)	(%)	
Row crop Contoured HSG D	88.000	2.360	0.0	0.0	88.000
Meadow HSG D	78.000	1.030	0.0	0.0	78.000
Impervious	98.000	0.050	0.0	0.0	98.000
Offsite Meadow HSG D	78.000	2.280	0.0	0.0	78.000
Offsite Impervious	98.000	1.140	0.0	0.0	98.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	6.860	(N/A)	(N/A)	84.910

Existing Conditions.ppc 9/14/2016

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 15 of 18

Subsection: Runoff CN-Area Label: Subarea D1 Return Event: 2 years Storm Event: 2-YEAR

Runoff Curve Number Data

Soil/Surface Description	CN	Area	C	UC	Adjusted CN
		(acres)	(%)	(%)	
Row crop Contoured HSG D	88.000	7.040	0.0	0.0	88.000
Meadow HSG D	78.000	1.490	0.0	0.0	78.000
Impervious	98.000	0.090	0.0	0.0	98.000
Offsite Meadow HSG D	78.000	15.690	0.0	0.0	78.000
Offsite Impervious	98.000	0.480	0.0	0.0	98.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	24.790	(N/A)	(N/A)	81.300

Existing Conditions.ppc 9/14/2016

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 16 of 18

Subsection: Runoff CN-Area Label: Subarea D2 Return Event: 2 years Storm Event: 2-YEAR

Runoff Curve Number Data

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Daw was Contained LICC D	00.000	(0.0. 00)	(,	()	00.000
Row crop Contoured HSG D	88.000	42.710	0.0	0.0	88.000
Meadow HSG D	78.000	13.190	0.0	0.0	78.000
Offsite Meadow HSG D	78.000	3.020	0.0	0.0	78.000
Offsite Impervious	98.000	0.040	0.0	0.0	98.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	58.960	(N/A)	(N/A)	85.257

Existing Conditions.ppc 9/14/2016

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 17 of 18
Section 7.1 Existing Conditions Model Summary

Index

М

Master Network Summary...2

S

- Subarea A1 (Runoff CN-Area, 2 years)...13
- Subarea A1 (Time of Concentration Calculations, 2 years)...3, 4
- Subarea B1 (Runoff CN-Area, 2 years)...14
- Subarea B1 (Time of Concentration Calculations, 2 years)...5, 6
- Subarea C1 (Runoff CN-Area, 2 years)...15
- Subarea C1 (Time of Concentration Calculations, 2 years)...7, 8
- Subarea D1 (Runoff CN-Area, 2 years)...16
- Subarea D1 (Time of Concentration Calculations, 2 years)...9, 10
- Subarea D2 (Runoff CN-Area, 2 years)...17
- Subarea D2 (Time of Concentration Calculations, 2 years)...11, 12

Project Summary		
Title	Hawthorn Ridge	
Engineer	MGD	
Company	Olsson Associates	
Date	3/8/2018	
Notes		

Proposed Conditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 1 of 33

Table of Contents

	Master Network Summary	2
Subarea A1		
	Time of Concentration Calculations, 2 years	4
Subarea A1a		
	Time of Concentration Calculations, 2 years	6
Subarea B1		
	Time of Concentration Calculations, 2 years	8
Subarea C1		
	Time of Concentration Calculations, 2 years	10
Subarea D1		
	Time of Concentration Calculations, 2 years	12
Subarea D2		
	Time of Concentration Calculations, 2 years	14
Subarea D2a		
	Time of Concentration Calculations, 2 years	16
Subarea A1		
	Runoff CN-Area, 2 years	18
Subarea A1a		
	Runoff CN-Area, 2 years	19
Subarea B1		
	Runoff CN-Area, 2 years	20
Subarea C1		
	Runoff CN-Area, 2 years	21
Subarea D1		
	Runoff CN-Area, 2 years	22
Subarea D2		
	Runoff CN-Area, 2 years	23
Subarea D2a		
	Runoff CN-Area. 2 years	24
Basin A1	, ,	
	Elevation-Area Volume Curve, 2 years	25
Basin D2		25
	Elevation-Area Volume Curve 2 years	26
		20

Table of Contents

Basin A1		
	Outlet Input Data, 2 years	27
Basin D2		
	Outlet Input Data, 2 years	30

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
Subarea A1	2-Year	2	1.219	11.950	21.34
Subarea A1	10-Year	10	2.112	11.950	36.43
Subarea A1	100-Year	100	3.543	11.950	59.61
Subarea B1	2-Year	2	0.222	12.000	3.61
Subarea B1	10-Year	10	0.399	12.000	6.41
Subarea B1	100-Year	100	0.687	12.000	10.77
Subarea C1	2-Year	2	0.930	12.000	15.07
Subarea C1	10-Year	10	1.630	12.000	25.98
Subarea C1	100-Year	100	2.759	12.000	42.80
Subarea D1	2-Year	2	2.448	12.000	39.98
Subarea D1	10-Year	10	4.559	12.000	74.12
Subarea D1	100-Year	100	8.064	12.000	128.45
Subarea D2	2-Year	2	10.469	12.050	146.03
Subarea D2	10-Year	10	18.572	12.050	257.11
Subarea D2	100-Year	100	31.694	12.050	430.06
Subarea D2a	2-Year	2	0.211	12.000	3.53
Subarea D2a	10-Year	10	0.393	11.950	6.62
Subarea D2a	100-Year	100	0.695	11.950	11.58
Subarea A1a	2-Year	2	0.389	11.950	6.92
Subarea A1a	10-Year	10	0.682	11.950	11.94
Subarea A1a	100-Year	100	1.154	11.950	19.68

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft ³ /s)
Point A1	2-Year	2	1.529	11.950	7.15
Point A1	10-Year	10	2.621	11.950	12.30
Point A1	100-Year	100	4.515	12.000	20.60
Point B1	2-Year	2	0.222	12.000	3.61
Point B1	10-Year	10	0.399	12.000	6.41
Point B1	100-Year	100	0.687	12.000	10.77
Point C1	2-Year	2	0.930	12.000	15.07
Point C1	10-Year	10	1.630	12.000	25.98
Point C1	100-Year	100	2.759	12.000	42.80
Point D1	2-Year	2	13.129	12.000	44.57
Point D1	10-Year	10	23.525	12.300	117.14
Point D1	100-Year	100	40.453	12.050	240.05
Point D2	2-Year	2	10.680	12.450	31.76
Point D2	10-Year	10	18.965	12.300	103.41
Point D2	100-Year	100	32.389	12.300	162.07

Proposed Conditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 2 of 33

Subsection: Master Network Summary

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
Basin D2 (IN)	2-Year	2	10.469	12.050	146.03	(N/A)	(N/A)
Basin D2 (OUT)	2-Year	2	10.469	12.450	31.29	1,001.85	4.766
Basin D2 (IN)	10-Year	10	18.572	12.050	257.11	(N/A)	(N/A)
Basin D2 (OUT)	10-Year	10	18.572	12.300	102.31	1,003.43	7.700
Basin D2 (IN)	100-Year	100	31.694	12.050	430.06	(N/A)	(N/A)
Basin D2 (OUT)	100-Year	100	31.694	12.300	160.24	1,005.34	12.573
Basin A1 (IN)	2-Year	2	1.219	11.950	21.34	(N/A)	(N/A)
Basin A1 (OUT)	2-Year	2	1.140	17.900	0.40	1,023.09	0.870
Basin A1 (IN)	10-Year	10	2.112	11.950	36.43	(N/A)	(N/A)
Basin A1 (OUT)	10-Year	10	1.938	14.650	1.12	1,023.79	1.474
Basin A1 (IN)	100-Year	100	3.543	11.950	59.61	(N/A)	(N/A)
Basin A1 (OUT)	100-Year	100	3.360	12.350	7.76	1,024.38	1.999

Proposed Conditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 3 of 33

Subsection: Time of Concentration Calculations Label: Subarea A1

Return Event: 2 years Storm Event: 2-YEAR

Time of Concentration Results

Segment #1: TR-55 Sheet Flow	
Hydraulic Length	60.00 ft
Manning's n	0.150
Slope	0.020 ft/ft
2 Year 24 Hour Depth	3.6 in
Average Velocity	0.16 ft/s
Segment Time of Concentration	0.102 hours
Segment #2: TR-55 Shallow Con	centrated Flow
Hydraulic Length	250.00 ft
Is Paved?	True
Slope	0.040 ft/ft
Average Velocity	4.07 ft/s
Segment Time of Concentration	0.017 hours
Segment #3: Length and Velocity	
Hydraulic Length	140.00 ft
Velocity	10.00 ft/s
Segment Time of Concentration	0.004 hours
Time of Concentration (Composite	
	5)
Time of Concentration (Composite)	0.123 hours

Proposed Conditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 4 of 33

Subsection: Time of Concentration Calculations Label: Subarea A1 Return Event: 2 years Storm Event: 2-YEAR

==== User Defined Length & Velocity

Tc =	(Lf / V) / 3600
Where:	Tc= Time of concentration, hours
	Lf= Flow length, feet
	V= Velocity, ft/sec

==== SCS Channel Flow

Tc =			

Where:

R = Qa / Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n (Lf / V) / 3600

R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc =	Unpaved surface: V = 16.1345 * (Sf**0.5)
	Paved Surface: V = 20.3282 * (Sf**0.5)
Where:	(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

Subsection: Time of Concentration Calculations Label: Subarea A1a Return Event: 2 years Storm Event: 2-YEAR

Time of Concentration Results

Segment #1: TR-55 Sheet Flow	
Hydraulic Length	50.00 ft
Manning's n	0.150
Slope	0.020 ft/ft
2 Year 24 Hour Depth	3.6 in
Average Velocity	0.16 ft/s
Segment Time of Concentration	0.088 hours
Segment #2: TR-55 Shallow Co	ncentrated Flow
Hydraulic Length	205.00 ft
Is Paved?	True
Slope	0.060 ft/ft
Average Velocity	4.98 ft/s
Segment Time of Concentration	0.011 hours
Cogmont #2: Longth and Valasit	
Segment #3. Length and velocit	у
Hydraulic Length	420.00 ft
Velocity	10.00 ft/s
Segment Time of Concentration	0.012 hours
Time of Concentration (Composi	te)
Time of Concentration (Composite)	0.112 hours

Proposed Conditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 6 of 33

Subsection: Time of Concentration Calculations Label: Subarea A1a Return Event: 2 years Storm Event: 2-YEAR

==== User Defined Length & Velocity

Tc =	(Lf / V) / 3600
Where:	Tc= Time of concentration, hours
	Lf= Flow length, feet
	V= Velocity, ft/sec

==== SCS Channel Flow

Tc =			

Where:

(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc =	Unpaved surface: V = 16.1345 * (Sf**0.5)
	Paved Surface: V = 20.3282 * (Sf**0.5)
Where:	(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 7 of 33

Subsection: Time of Concentration Calculations Label: Subarea B1

Return Event: 2 years Storm Event: 2-YEAR

Time of Concentration Results

Segment #1: TR-55 Sheet Flow	1		
Hydraulic Length	100.00 ft		
Manning's n	0.150		
Slope	0.020 ft/ft		
2 Year 24 Hour Depth	3.6 in		
Average Velocity	0.18 ft/s		
Segment Time of Concentration	0.154 hours		
Segment #2: TR-55 Shallow Concentrated Flow			
Hydraulic Length	180.00 ft		
Is Paved?	False		
Slope	0.030 ft/ft		
Average Velocity	2.79 ft/s		
Segment Time of Concentration	0.018 hours		
Segment #3: Length and Veloc	ity		
Hydraulic Length	65.00 ft		
Velocity	10.00 ft/s		
Segment Time of Concentration	0.002 hours		
Time of Concentration (Compos	ite)		
Time of Concentration (Composite)	0.174 hours		

Proposed Conditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 8 of 33

Subsection: Time of Concentration Calculations Label: Subarea B1 Return Event: 2 years Storm Event: 2-YEAR

==== User Defined Length & Velocity

Tc =	(Lf / V) / 3600
Where:	Tc= Time of concentration, hours
	Lf= Flow length, feet
	V= Velocity, ft/sec

==== SCS Channel Flow

Where:

V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n (Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet

Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc =	Unpaved surface: V = 16.1345 * (Sf**0.5)
	Paved Surface: V = 20.3282 * (Sf**0.5)
Where:	(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 9 of 33

Subsection: Time of Concentration Calculations Label: Subarea C1

Return Event: 2 years Storm Event: 2-YEAR

Time of Concentration Results

Segment #1: TR-55 Sheet Flow			
Hydraulic Length	100.00 ft		
Manning's n	0.150		
Slope	0.020 ft/ft		
2 Year 24 Hour Depth	3.6 in		
Average Velocity	0.18 ft/s		
Segment Time of Concentration	0.154 hours		
Segment #2: TR-55 Shallow Concentrated Flow			
Hydraulic Length	180.00 ft		
Is Paved?	False		
Slope	0.050 ft/ft		
Average Velocity	3.61 ft/s		
Segment Time of Concentration	0.014 hours		
Segment #3: Length and Velocit	у		
Hydraulic Length	195.00 ft		
Velocity	10.00 ft/s		
Segment Time of Concentration	0.005 hours		
Time of Concentration (Composit			
Time of Concentration (Composite)	0.173 hours		

Proposed Conditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 10 of 33

Subsection: Time of Concentration Calculations Label: Subarea C1

Return Event: 2 years Storm Event: 2-YEAR

==== User Defined Length & Velocity

ours

==== SCS Channel Flow

Tc =			

Where:

R = Qa / Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc =	Unpaved surface: V = 16.1345 * (Sf**0.5)
	Paved Surface: V = 20.3282 * (Sf**0.5)
Where:	(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

Proposed Conditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 11 of 33

Subsection: Time of Concentration Calculations Label: Subarea D1

Return Event: 2 years Storm Event: 2-YEAR

Time of Concentration Results

Segment #1: TR-55 Sheet Flow			
Hydraulic Length 100.00 ft			
Manning's n	0.150		
Slope	0.050 ft/ft		
2 Year 24 Hour Depth	3.6 in		
Average Velocity	0.26 ft/s		
Segment Time of Concentration	0.107 hours		
Segment #2: TR-55 Shallow Concentrated Flow			
Hydraulic Length	560.00 ft		
Is Paved?	False		
Slope	0.070 ft/ft		
Average Velocity	4.27 ft/s		
Segment Time of Concentration	0.036 hours		
Segment #3: Length and Veloci	ty		
Hydraulic Length	945.00 ft		
Velocity	10.00 ft/s		
Segment Time of Concentration	0.026 hours		
Time of Concentration (Compos	ite)		
Time of Concentration (Composite)	0.169 hours		

Proposed Conditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 12 of 33

Subsection: Time of Concentration Calculations Label: Subarea D1

Return Event: 2 years Storm Event: 2-YEAR

==== User Defined Length & Velocity

(Lf / V) / 3600
Tc= Time of concentration, hours
Lf= Flow length, feet
V= Velocity, ft/sec

==== SCS Channel Flow

Tc =			

Where:

R = Qa / Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc =	Unpaved surface: V = 16.1345 * (Sf**0.5)
	Paved Surface: V = 20.3282 * (Sf**0.5)
Where:	(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time of Concentration Calculations Label: Subarea D2

Return Event: 2 years Storm Event: 2-YEAR

Time of Concentration Results

Segment #1: TR-55 Sheet Flow	
Hydraulic Length	100.00 ft
Manning's n	0.150
Slope	0.015 ft/ft
2 Year 24 Hour Depth	3.6 in
Average Velocity	0.16 ft/s
Segment Time of Concentration	0.173 hours
Segment #2: TR-55 Shallow Co	ncentrated Flow
Hydraulic Length	615.00 ft
Is Paved?	False
Slope	0.050 ft/ft
Average Velocity	3.61 ft/s
Segment Time of Concentration	0.047 hours
Segment #3: TR-55 Shallow Co	ncentrated Flow
Hydraulic Length	335.00 ft
Is Paved?	True
Slope	0.040 ft/ft
Average Velocity	4.07 ft/s
Segment Time of Concentration	0.023 hours
Segment #4: Length and Veloci	ty
Hydraulic Length	1,135.00 ft
Velocity	10.00 ft/s
Segment Time of Concentration	0.032 hours
Time of Concentration (Composi	ite)
Time of Concentration (Composite)	0.275 hours

Subsection: Time of Concentration Calculations Label: Subarea D2 Return Event: 2 years Storm Event: 2-YEAR

==== User Defined Length & Velocity

Tc =	(Lf / V) / 3600
Where:	Tc= Time of concentration, hours
	Lf= Flow length, feet
	V= Velocity, ft/sec

==== SCS Channel Flow

Tc =		I
		,

Where:

R = Qa / Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n (Lf / V) / 3600

R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc =	Unpaved surface: V = 16.1345 * (Sf**0.5)
	Paved Surface: V = 20.3282 * (Sf**0.5)
Where:	(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time of Concentration Calculations Label: Subarea D2a

Return Event: 2 years Storm Event: 2-YEAR

Time of Concentration Results

Segment #1: TR-55 Sheet Flow	
Hydraulic Length	100.00 ft
Manning's n	0.150
Slope	0.050 ft/ft
2 Year 24 Hour Depth	3.6 in
Average Velocity	0.26 ft/s
Segment Time of Concentration	0.107 hours
Segment #2: TR-55 Shallow Co	ncentrated Flow
Hydraulic Length	400.00 ft
Is Paved?	False
Slope	0.050 ft/ft
Average Velocity	3.61 ft/s
Segment Time of Concentration	0.031 hours
Segment #3: Length and Veloci	ty
Hydraulic Length	125.00 ft
Velocity	10.00 ft/s
Segment Time of Concentration	0.003 hours
Time of Concentration (Compared	ito)
	lie)
Time of Concentration (Composite)	0.141 hours

Proposed Conditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 16 of 33

Subsection: Time of Concentration Calculations Label: Subarea D2a

Return Event: 2 years Storm Event: 2-YEAR

==== User Defined Length & Velocity

Tc =	(Lf / V) / 3600
Where:	Tc= Time of concentration, hours
	Lf= Flow length, feet
	V= Velocity, ft/sec

==== SCS Channel Flow

Tc =			

Where:

 $\begin{array}{l} \mathsf{R} \,=\, \mathsf{Qa} \; / \; \mathsf{Wp} \\ \mathsf{V} \,=\, (1.49 \, * \, (\mathsf{R}^{**}(2/3)) \, * \, (\mathsf{Sf}^{**}\text{-}0.5)) \; / \; \mathsf{n} \end{array}$

(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc =	Unpaved surface: V = 16.1345 * (Sf**0.5)
	Paved Surface: V = 20.3282 * (Sf**0.5)
Where:	(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

Subsection: Runoff CN-Area Label: Subarea A1 Return Event: 2 years Storm Event: 2-YEAR

Runoff Curve Number Data

Soil/Surface Description	CN	Area	С	UC	Adjusted CN
		(acres)	(%)	(%)	
SFR HSG D	87.000	4.957	0.0	0.0	87.000
Open Space HSG D	80.000	1.680	0.0	0.0	80.000
Offsite Meadow HSG D	78.000	0.310	0.0	0.0	78.000
Offsite Impervious	98.000	0.002	0.0	0.0	98.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	6.949	(N/A)	(N/A)	84.909

Proposed Conditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 18 of 33

Subsection: Runoff CN-Area Label: Subarea A1a Return Event: 2 years Storm Event: 2-YEAR

Runoff Curve Number Data

Soil/Surface Description	CN	Area	С	UC	Adjusted CN
		(acres)	(%)	(%)	
SFR HSG D	87.000	1.349	0.0	0.0	87.000
Open Space HSG D	80.000	0.960	0.0	0.0	80.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	2.309	(N/A)	(N/A)	84.090

Proposed Conditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 19 of 33

Subsection: Runoff CN-Area Label: Subarea B1 Return Event: 2 years Storm Event: 2-YEAR

Runoff Curve Number Data

Soil/Surface Description	CN	Area	С	UC	Adjusted CN
		(acres)	(%)	(%)	
SFR HSG D	87.000	0.400	0.0	0.0	87.000
Established Native Vegetation HSG D	78.000	0.840	0.0	0.0	78.000
Impervious	98.000	0.110	0.0	0.0	98.000
Offsite Meadow HSG D	78.000	0.070	0.0	0.0	78.000
Offsite Impervious	98.000	0.010	0.0	0.0	98.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	1.430	(N/A)	(N/A)	82.196

Proposed Conditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 20 of 33

Subsection: Runoff CN-Area Label: Subarea C1 Return Event: 2 years Storm Event: 2-YEAR

Runoff Curve Number Data

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
SFR HSG D	87.000	1.080	0.0	0.0	87.000
Established Native Vegetation HSG D	78.000	1.020	0.0	0.0	78.000
Offsite Meadow HSG D	78.000	2.280	0.0	0.0	78.000
Offsite Impervious	98.000	1.140	0.0	0.0	98.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	5.520	(N/A)	(N/A)	83.891

Proposed Conditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 21 of 33

Subsection: Runoff CN-Area Label: Subarea D1 Return Event: 2 years Storm Event: 2-YEAR

Runoff Curve Number Data

Soil/Surface Description	CN	Area	С	UC	Adjusted CN
		(acres)	(%)	(%)	
SFR HSG D	87.000	0.830	0.0	0.0	87.000
Open Space HSG D	80.000	0.870	0.0	0.0	80.000
Offsite Meadow HSG D	78.000	15.690	0.0	0.0	78.000
Offsite Impervious	98.000	0.480	0.0	0.0	98.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	17.870	(N/A)	(N/A)	79.053

Proposed Conditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 22 of 33

Subsection: Runoff CN-Area Label: Subarea D2 Return Event: 2 years Storm Event: 2-YEAR

Runoff Curve Number Data

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
SFR HSG D	87.000	23.890	0.0	0.0	87.000
Open Space HSG D	80.000	39.270	0.0	0.0	80.000
Offsite Meadow HSG D	78.000	1.506	0.0	0.0	78.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	64.666	(N/A)	(N/A)	82.539

Proposed Conditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 23 of 33

Subsection: Runoff CN-Area Label: Subarea D2a Return Event: 2 years Storm Event: 2-YEAR

Runoff Curve Number Data

Soil/Surface Description	CN	Area	С	UC	Adjusted CN
		(acres)	(%)	(%)	
Open Space HSG D	80.000	0.620	0.0	0.0	80.000
Offsite Meadow HSG D	78.000	0.920	0.0	0.0	78.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	1.540	(N/A)	(N/A)	78.805

Proposed Conditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 24 of 33

Subsection: Elevation-Area Volume Curve Label: Basin A1 Return Event: 2 years Storm Event: 2-YEAR

Elevation (ft)	Planimeter (ft²)	Area (acres)	A1+A2+sqr(A1*A 2) (acres)	Volume (ac-ft)	Volume (Total) (ac-ft)
1,022.00	0.0	0.767	0.000	0.000	0.000
1,024.00	0.0	0.892	2.486	1.657	1.657
1,026.00	0.0	1.020	2.866	1.911	3.568

Proposed Conditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 25 of 33

Subsection: Elevation-Area Volume Curve Label: Basin D2 Return Event: 2 years Storm Event: 2-YEAR

Elevation (ft)	Planimeter (ft²)	Area (acres)	A1+A2+sqr(A1*A 2) (acres)	Volume (ac-ft)	Volume (Total) (ac-ft)
992.50	0.0	0.007	0.000	0.000	0.000
994.00	0.0	0.033	0.055	0.028	0.028
996.00	0.0	0.212	0.329	0.219	0.247
998.00	0.0	0.546	1.098	0.732	0.979
1,000.00	0.0	0.956	2.224	1.483	2.462
1,002.00	0.0	1.616	3.815	2.543	5.005
1,004.00	0.0	2.395	5.978	3.986	8.991
1,006.00	0.0	3.270	8.464	5.642	14.633
1,008.00	0.0	3.806	10.604	7.069	21.702

Proposed Conditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 26 of 33

Subsection: Outlet Input Data Label: Basin A1 Return Event: 2 years Storm Event: 2-YEAR

Requested Pond Water Surfa	ace Elevations
Minimum (Headwater)	1,022.00 ft
Increment (Headwater)	0.50 ft
Maximum (Headwater)	1,026.00 ft

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Orifico Circular	Orifico 2	Forward	Culvort 1	1 022 00	1 026 00
	Office - Z	Forward	Culvert - 1	1,022.00	1,020.00
Orifice-Area	Orifice - 1	Forward	Cuivert - 1	1,023.75	1,026.00
Culvert-Circular	Culvert - 1	Forward	TW	1,012.00	1,026.00
Tailwater Settings	Tailwater			(N/A)	(N/A)

Proposed Conditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 27 of 33

Subsection: Outlet Input Data Label: Basin A1

Return Event: 2 years Storm Event: 2-YEAR

Structure ID: Culvert - 1 Structure Type: Culvert-Circular	
Number of Barrels	1
Diameter	15.0 in
Length	100.00 ft
Length (Computed Barrel)	100.02 ft
Slope (Computed)	0.020 ft/ft
Outlet Control Data	
Manning's n	0.013
Ке	0.500
Kb	0.023
Kr	0.000
Convergence Tolerance	0.00 ft
Inlet Control Data	
Equation Form	Form 1
К	0.0098
М	2.0000
С	0.0398
Y	0.6700
T1 ratio (HW/D)	0.000
T2 ratio (HW/D)	1.297
Slope Correction Factor	-0.500

Use unsubmerged inlet control 0 equation below T1 elevation. Use submerged inlet control 0 equation above T2

elevation

In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2...

T1 Elevation	1,012.00 ft	T1 Flow	4.80 ft ³ /s
T2 Elevation	1,013.62 ft	T2 Flow	5.49 ft ³ /s

Subsection: Outlet Input Data Label: Basin A1

Return Event: 2 years Storm Event: 2-YEAR

Structure ID: Orifice - 1 Structure Type: Orifice-Area	
Number of Openings	1
Elevation	1,023.75 ft
Orifice Area	2.0 ft ²
Top Elevation	1,024.25 ft
Datum Elevation	1,023.75 ft
Orifice Coefficient	0.600
Structure ID: Orifice - 2 Structure Type: Orifice-Circular	
Number of Openings	1
Elevation	1,022.00 ft
Orifice Diameter	4.0 in
Orifice Coefficient	0.600
Structure ID: TW Structure Type: TW Setup, DS 0	Channel
Structure ID: TW Structure Type: TW Setup, DS C Tailwater Type	Channel Free Outfall
Structure ID: TW Structure Type: TW Setup, DS C Tailwater Type	Channel Free Outfall
Structure ID: TW Structure Type: TW Setup, DS C Tailwater Type Convergence Tolerances	Channel Free Outfall
Structure ID: TW Structure Type: TW Setup, DS C Tailwater Type Convergence Tolerances Maximum Iterations	Channel Free Outfall 30
Structure ID: TW Structure Type: TW Setup, DS C Tailwater Type Convergence Tolerances Maximum Iterations Tailwater Tolerance (Minimum)	Channel Free Outfall 30 0.01 ft
Structure ID: TW Structure Type: TW Setup, DS C Tailwater Type Convergence Tolerances Maximum Iterations Tailwater Tolerance (Minimum) Tailwater Tolerance (Maximum)	Channel Free Outfall 30 0.01 ft 0.50 ft
Structure ID: TW Structure Type: TW Setup, DS C Tailwater Type Convergence Tolerances Maximum Iterations Tailwater Tolerance (Minimum) Tailwater Tolerance (Maximum) Headwater Tolerance (Minimum)	Channel Free Outfall 30 0.01 ft 0.50 ft 0.01 ft
Structure ID: TW Structure Type: TW Setup, DS C Tailwater Type Convergence Tolerances Maximum Iterations Tailwater Tolerance (Minimum) Tailwater Tolerance (Maximum) Headwater Tolerance (Minimum) Headwater Tolerance (Minimum)	Channel Free Outfall 30 0.01 ft 0.50 ft 0.01 ft 0.50 ft
Structure ID: TW Structure Type: TW Setup, DS C Tailwater Type Convergence Tolerances Maximum Iterations Tailwater Tolerance (Minimum) Tailwater Tolerance (Maximum) Headwater Tolerance (Minimum) Headwater Tolerance (Maximum) Flow Tolerance (Minimum)	Channel Free Outfall 30 0.01 ft 0.50 ft 0.01 ft 0.50 ft 0.50 ft 0.50 ft

Proposed Conditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 29 of 33

Subsection: Outlet Input Data Label: Basin D2 Return Event: 2 years Storm Event: 2-YEAR

Requested Pond Water Surface Elevations		
Minimum (Headwater)	992.50 ft	
Increment (Headwater)	0.50 ft	
Maximum (Headwater)	1,008.00 ft	

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1	E2
_	_			(ft)	(ft)
Orifice-Circular	Orifice - 3	Forward	Culvert - 1	992.50	1,008.00
Orifice-Area	Orifice - 1	Forward	Culvert - 1	1,000.75	1,008.00
Orifice-Area	Orifice - 2	Forward	Culvert - 1	1,002.50	1,008.00
Culvert-Circular	Culvert - 1	Forward	TW	991.28	1,008.00
Tailwater Settings	Tailwater			(N/A)	(N/A)

Proposed Conditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 30 of 33

Subsection: Outlet Input Data Label: Basin D2

Return Event: 2 years Storm Event: 2-YEAR

Structure ID: Culvert - 1 Structure Type: Culvert-Circular	
Number of Barrels	1
Diameter	60.0 in
Length	101.84 ft
Length (Computed Barrel)	101.85 ft
Slope (Computed)	0.010 ft/ft
Outlet Control Data	
Manning's n	0.013
Ке	0.500
Kb	0.004
Kr	0.000
Convergence Tolerance	0.00 ft
Inlet Control Data	
Equation Form	Form 1
К	0.0098
М	2.0000
С	0.0398
Υ	0.6700
T1 ratio (HW/D)	1.155
T2 ratio (HW/D)	1.302
Slope Correction Factor	-0.500

Use unsubmerged inlet control 0 equation below T1 elevation. Use submerged inlet control 0 equation above T2

elevation In transition zone between unsubmerged and submerged

inlet control, interpolate between flows at T1 & T2...

T1 Elevation	997.06 ft	T1 Flow	153.67 ft ³ /s
T2 Elevation	997.79 ft	T2 Flow	175.62 ft ³ /s

Subsection: Outlet Input Data Label: Basin D2

Return Event: 2 years Storm Event: 2-YEAR

Structure ID: Orifice - 1 Structure Type: Orifice-Area		
Number of Openings	3	
Elevation	1,000.75 ft	
Orifice Area	2.0 ft ²	
Top Elevation	1,001.25 ft	
Datum Elevation	1,000.75 ft	
Orifice Coefficient	0.600	
Structure ID: Orifice - 2 Structure Type: Orifice-Area		
Number of Openings	3	
Elevation	1,002.50 ft	
Orifice Area	4.0 ft ²	
Top Elevation	1,003.50 ft	
Datum Elevation	1,002.50 ft	
Orifice Coefficient	0.600	
Structure ID: Orifice - 3 Structure Type: Orifice-Circular	r	
Number of Openings	1	
Elevation	992.50 ft	
Orifice Diameter	4.0 in	
Orifice Coefficient	0.600	
Structure ID: TW Structure Type: TW Setup, DS	Channel	
Tailwater Type	Free Outfall	
Convergence Tolerances		
Maximum Iterations	30	
Tailwater Tolerance (Minimum)	0.01 ft	
Tailwater Tolerance (Maximum)	0.50 ft	
Headwater Tolerance (Minimum)	0.01 ft	
Headwater Tolerance (Maximum)	0.50 ft	
Flow Tolerance (Minimum)	0.001 ft ³ /s	
Flow Tolerance (Maximum)	10.000 ft ³ /s	

Proposed Conditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 32 of 33

Index

В

Basin A1 (Elevation-Area Volume Curve, 2 years)...25 Basin A1 (Outlet Input Data, 2 years)...27, 28, 29 Basin D2 (Elevation-Area Volume Curve, 2 years)...26 Basin D2 (Outlet Input Data, 2 years)...30, 31, 32 М Master Network Summary...2, 3 S Subarea A1 (Runoff CN-Area, 2 years)...18 Subarea A1 (Time of Concentration Calculations, 2 years)...4, 5 Subarea A1a (Runoff CN-Area, 2 years)...19 Subarea A1a (Time of Concentration Calculations, 2 years)...6, 7 Subarea B1 (Runoff CN-Area, 2 years)...20 Subarea B1 (Time of Concentration Calculations, 2 years)...8, 9 Subarea C1 (Runoff CN-Area, 2 years)...21 Subarea C1 (Time of Concentration Calculations, 2 years)...10, 11 Subarea D1 (Runoff CN-Area, 2 years)...22 Subarea D1 (Time of Concentration Calculations, 2 years)...12, 13 Subarea D2 (Runoff CN-Area, 2 years)...23 Subarea D2 (Time of Concentration Calculations, 2 years)...14, 15 Subarea D2a (Runoff CN-Area, 2 years)...24 Subarea D2a (Time of Concentration Calculations, 2 years)...16, 17

Proposed Conditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 33 of 33
Project Summary	
Title	Hawthorn Ridge
Engineer	MGD
Company	Olsson Associates
Date	3/8/2018
Notes	

FutureConditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 1 of 33

Table of Contents

	Master Network Summary	2
Subarea A1		
	Time of Concentration Calculations, 2 years	4
Subarea A1a		
	Time of Concentration Calculations, 2 years	6
Subarea B1		
	Time of Concentration Calculations, 2 years	8
Subarea C1		
	Time of Concentration Calculations, 2 years	10
Subarea D1		
	Time of Concentration Calculations, 2 years	12
Subarea D2		
	Time of Concentration Calculations, 2 years	14
Subarea D2a		
	Time of Concentration Calculations, 2 years	16
Subarea A1		
	Runoff CN-Area, 2 years	18
Subarea A1a		
	Runoff CN-Area, 2 years	19
Subarea B1		
	Runoff CN-Area, 2 years	20
Subarea C1		
	Runoff CN-Area, 2 years	21
Subarea D1		
	Runoff CN-Area, 2 years	22
Subarea D2		
	Runoff CN-Area, 2 years	23
Subarea D2a		
	Runoff CN-Area. 2 years	24
Basin A1	, ,	
	Elevation-Area Volume Curve, 2 years	25
Basin D2		25
	Elevation-Area Volume Curve 2 years	26
		20

Table of Contents

Basin A1		
	Outlet Input Data, 2 years	27
Basin D2		
	Outlet Input Data, 2 years	30

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft ³ /s)
Subarea A1	2-Year	2	1.219	11.950	21.34
Subarea A1	10-Year	10	2.112	11.950	36.43
Subarea A1	100-Year	100	3.543	11.950	59.61
Subarea B1	2-Year	2	0.222	12.000	3.61
Subarea B1	10-Year	10	0.399	12.000	6.41
Subarea B1	100-Year	100	0.687	12.000	10.77
Subarea C1	2-Year	2	0.930	12.000	15.07
Subarea C1	10-Year	10	1.630	12.000	25.98
Subarea C1	100-Year	100	2.759	12.000	42.80
Subarea D1	2-Year	2	2.448	12.000	39.98
Subarea D1	10-Year	10	4.559	12.000	74.12
Subarea D1	100-Year	100	8.064	12.000	128.45
Subarea D2	2-Year	2	11.790	12.050	164.03
Subarea D2	10-Year	10	20.204	12.050	276.78
Subarea D2	100-Year	100	33.609	12.050	449.52
Subarea D2a	2-Year	2	0.211	12.000	3.53
Subarea D2a	10-Year	10	0.393	11.950	6.62
Subarea D2a	100-Year	100	0.695	11.950	11.58
Subarea A1a	2-Year	2	0.389	11.950	6.92
Subarea A1a	10-Year	10	0.682	11.950	11.94
Subarea A1a	100-Year	100	1.154	11.950	19.68

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft ³ /s)
Point A1	2-Year	2	1.529	11.950	7.15
Point A1	10-Year	10	2.621	11.950	12.30
Point A1	100-Year	100	4.515	12.000	20.60
Point B1	2-Year	2	0.222	12.000	3.61
Point B1	10-Year	10	0.399	12.000	6.41
Point B1	100-Year	100	0.687	12.000	10.77
Point C1	2-Year	2	0.930	12.000	15.07
Point C1	10-Year	10	1.630	12.000	25.98
Point C1	100-Year	100	2.759	12.000	42.80
Point D1	2-Year	2	14.449	12.000	44.62
Point D1	10-Year	10	25.157	12.200	131.25
Point D1	100-Year	100	42.368	12.050	247.98
Point D2	2-Year	2	12.001	12.450	37.06
Point D2	10-Year	10	20.597	12.250	115.37
Point D2	100-Year	100	34.304	12.300	167.66

FutureConditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 2 of 33

Subsection: Master Network Summary

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
Basin D2 (IN)	2-Year	2	11.790	12.050	164.03	(N/A)	(N/A)
Basin D2 (OUT)	2-Year	2	11.790	12.450	36.58	1,002.26	5.438
Basin D2 (IN)	10-Year	10	20.204	12.050	276.78	(N/A)	(N/A)
Basin D2 (OUT)	10-Year	10	20.204	12.300	114.15	1,003.71	8.324
Basin D2 (IN)	100-Year	100	33.609	12.050	449.52	(N/A)	(N/A)
Basin D2 (OUT)	100-Year	100	33.609	12.300	165.84	1,005.57	13.284
Basin A1 (IN)	2-Year	2	1.219	11.950	21.34	(N/A)	(N/A)
Basin A1 (OUT)	2-Year	2	1.140	17.900	0.40	1,023.09	0.870
Basin A1 (IN)	10-Year	10	2.112	11.950	36.43	(N/A)	(N/A)
Basin A1 (OUT)	10-Year	10	1.938	14.650	1.12	1,023.79	1.474
Basin A1 (IN)	100-Year	100	3.543	11.950	59.61	(N/A)	(N/A)
Basin A1 (OUT)	100-Year	100	3.360	12.350	7.76	1,024.38	1.999

FutureConditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 3 of 33

Subsection: Time of Concentration Calculations Label: Subarea A1

Return Event: 2 years Storm Event: 2-YEAR

Time of Concentration Results

Segment #1: TR-55 Sheet Flow	
Hydraulic Length	60.00 ft
Manning's n	0.150
Slope	0.020 ft/ft
2 Year 24 Hour Depth	3.6 in
Average Velocity	0.16 ft/s
Segment Time of Concentration	0.102 hours
Segment #2: TR-55 Shallow Con	centrated Flow
Hydraulic Length	250.00 ft
Is Paved?	True
Slope	0.040 ft/ft
Average Velocity 4.07 ft/s	
Segment Time of Concentration	0.017 hours
Segment #3: Length and Velocity	,
Hydraulic Length	140.00 ft
Velocity	10.00 ft/s
Segment Time of Concentration	0.004 hours
Time of Concentration (Composite	2)
	=)
Time of Concentration (Composite)	0.123 hours

FutureConditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 4 of 33

Subsection: Time of Concentration Calculations Label: Subarea A1 Return Event: 2 years Storm Event: 2-YEAR

==== User Defined Length & Velocity

Tc =	(Lf / V) / 3600
Where:	Tc= Time of concentration, hours
	Lf= Flow length, feet
	V= Velocity, ft/sec

==== SCS Channel Flow

Tc =	R = Qa / Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

Where:

(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc =	Unpaved surface: V = 16.1345 * (Sf**0.5)
	Paved Surface: V = 20.3282 * (Sf**0.5)
Where:	(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

Subsection: Time of Concentration Calculations Label: Subarea A1a Return Event: 2 years Storm Event: 2-YEAR

Time of Concentration Results

Segment #1: TR-55 Sheet Flow	
Hydraulic Length	50.00 ft
Manning's n	0.150
Slope	0.020 ft/ft
2 Year 24 Hour Depth	3.6 in
Average Velocity	0.16 ft/s
Segment Time of Concentration	0.088 hours
Segment #2: TR-55 Shallow Cor	ncentrated Flow
Hydraulic Length	205.00 ft
Is Paved?	True
Slope	0.060 ft/ft
Average Velocity 4.98 ft/s	
Segment Time of Concentration	0.011 hours
Segment #3: Length and Velocit	W
	y (20.00.6
Hydraulic Length	420.00 ft
Velocity	10.00 ft/s
Concentration	0.012 hours
Time of Concentration (Composit	to)
	le)
Time of Concentration (Composite)	0.112 hours

FutureConditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 6 of 33

Subsection: Time of Concentration Calculations Label: Subarea A1a

Return Event: 2 years Storm Event: 2-YEAR

==== User Defined Length & Velocity

Tc =	(Lf / V) / 3600
Where:	Tc= Time of concentration, hours
	Lf= Flow length, feet
	V= Velocity, ft/sec

==== SCS Channel Flow

Tc =	R = Qa / Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

Where:

(Lf / V) / 3600 R= Hydraulic radius Aq = Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc =	Unpaved surface: V = 16.1345 * (Sf**0.5)
	Paved Surface: V = 20.3282 * (Sf**0.5)
Where:	(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

FutureConditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 7 of 33

Subsection: Time of Concentration Calculations Label: Subarea B1

Return Event: 2 years Storm Event: 2-YEAR

Time of Concentration Results

Segment #1: TR-55 Sheet Flow		
Hydraulic Length	100.00 ft	
Manning's n	0.150	
Slope	0.020 ft/ft	
2 Year 24 Hour Depth	3.6 in	
Average Velocity	0.18 ft/s	
Segment Time of Concentration	0.154 hours	
Segment #2: TR-55 Shallow Concentrated Flow		
Hydraulic Length	180.00 ft	
Is Paved?	False	
Slope	0.030 ft/ft	
Average Velocity	2.79 ft/s	
Segment Time of Concentration	0.018 hours	
Segment #3: Length and Velocit	ty .	
Hydraulic Length	65.00 ft	
Velocity	10.00 ft/s	
Segment Time of Concentration	0.002 hours	
	1	
Time of Concentration (Composi	te)	
Time of Concentration (Composite)	0.174 hours	

FutureConditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 8 of 33

Subsection: Time of Concentration Calculations Label: Subarea B1 Return Event: 2 years Storm Event: 2-YEAR

==== User Defined Length & Velocity

Tc =	(Lf / V) / 3600
Where:	Tc= Time of concentration, hours
	Lf= Flow length, feet
	V= Velocity, ft/sec

==== SCS Channel Flow

Tc =	R = Qa / Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

Where:

(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc =	Unpaved surface: V = 16.1345 * (Sf**0.5)
	Paved Surface: V = 20.3282 * (Sf**0.5)
Where:	(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 9 of 33

Subsection: Time of Concentration Calculations Label: Subarea C1

Return Event: 2 years Storm Event: 2-YEAR

Time of Concentration Results

Segment #1: TR-55 Sheet Flow		
Hydraulic Length	100.00 ft	
Manning's n	0.150	
Slope	0.020 ft/ft	
2 Year 24 Hour Depth	3.6 in	
Average Velocity	0.18 ft/s	
Segment Time of Concentration	0.154 hours	
Segment #2: TR-55 Shallow Concentrated Flow		
Hydraulic Length	180.00 ft	
Is Paved?	False	
Slope	0.050 ft/ft	
Average Velocity	3.61 ft/s	
Segment Time of	0.014 hours	
Concentration	0.011110015	
Segment #3: Length and Velocity	1	
Hydraulic Length	195.00 ft	
Velocity	10.00 ft/s	
Segment Time of	0.005 hours	
Concentration		
Time of Concentration (Composite	e)	
Time of Concentration		
(Composite)	0.173 hours	

FutureConditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 10 of 33

Subsection: Time of Concentration Calculations Label: Subarea C1

Return Event: 2 years Storm Event: 2-YEAR

==== User Defined Length & Velocity

Tc =	(Lf / V) / 3600
Where:	Tc= Time of concentration, hours
	Lf= Flow length, feet
	V= Velocity, ft/sec

==== SCS Channel Flow

Tc =	R = Qa / Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

Where:

(Lf / V) / 3600 R= Hydraulic radius Aq = Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc =	Unpaved surface: V = 16.1345 * (Sf**0.5)
	Paved Surface: V = 20.3282 * (Sf**0.5)
Where:	(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 11 of 33

Subsection: Time of Concentration Calculations Label: Subarea D1

Return Event: 2 years Storm Event: 2-YEAR

Time of Concentration Results

Segment #1: TR-55 Sheet Flow		
Hydraulic Length	100.00 ft	
Manning's n	0.150	
Slope	0.050 ft/ft	
2 Year 24 Hour Depth	3.6 in	
Average Velocity	0.26 ft/s	
Segment Time of Concentration	0.107 hours	
Segment #2: TR-55 Shallow Concentrated Flow		
Hydraulic Length	560.00 ft	
Is Paved?	False	
Slope	0.070 ft/ft	
Average Velocity	4.27 ft/s	
Segment Time of Concentration	0.036 hours	
Segment #3: Length and Velocity		
Hydraulic Length	945.00 ft	
Velocity	10.00 ft/s	
Segment Time of Concentration	0.026 hours	
Time of Concentration (Compari	to)	
Time of Concentration (Composite)	0.169 hours	

FutureConditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 12 of 33

Subsection: Time of Concentration Calculations Label: Subarea D1

Return Event: 2 years Storm Event: 2-YEAR

==== User Defined Length & Velocity

Tc =	(Lf / V) / 3600
Where:	Tc= Time of concentration, hours
	Lf= Flow length, feet
	V= Velocity, ft/sec

==== SCS Channel Flow

Tc =	R = Qa / Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

Where:

(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc =	Unpaved surface: V = 16.1345 * (Sf**0.5)
	Paved Surface: V = 20.3282 * (Sf**0.5)
Where:	(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

FutureConditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 13 of 33

Subsection: Time of Concentration Calculations Label: Subarea D2

Return Event: 2 years Storm Event: 2-YEAR

Time of Concentration Results

Segment #1: TR-55 Sheet Flor	N
Hydraulic Length	100.00 ft
Manning's n	0.150
Slope	0.015 ft/ft
2 Year 24 Hour Depth	3.6 in
Average Velocity	0.16 ft/s
Segment Time of Concentration	0.173 hours
Segment #2: TR-55 Shallow C	oncentrated Flow
Hydraulic Length	615.00 ft
Is Paved?	False
Slope	0.050 ft/ft
Average Velocity	3.61 ft/s
Segment Time of Concentration	0.047 hours
Segment #2: TR 55 Shellow C	opportrated Flow
Segment #3. TR-55 Shallow C	
Hydraulic Length	335.00 ft
Is Paved?	True
Slope	0.040 ft/ft
Average Velocity	4.07 ft/s
Segment Time of Concentration	0.023 hours
Segment #4: Length and Veloc	bity
Hydraulic Length	1,135.00 ft
Velocity	10.00 ft/s
Segment Time of Concentration	0.032 hours
Time of Concentration (Compo	site)
Time of Concentration (Composite)	0.275 hours

Subsection: Time of Concentration Calculations Label: Subarea D2 Return Event: 2 years Storm Event: 2-YEAR

==== User Defined Length & Velocity

Tc =	(Lf / V) / 3600
Where:	Tc= Time of concentration, hours
	Lf= Flow length, feet
	V= Velocity, ft/sec

==== SCS Channel Flow

Tc =	R = Qa / Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

Where:

(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc =	Unpaved surface: V = 16.1345 * (Sf**0.5)
	Paved Surface: V = 20.3282 * (Sf**0.5)
Where:	(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 15 of 33

Subsection: Time of Concentration Calculations Label: Subarea D2a

Return Event: 2 years Storm Event: 2-YEAR

Time of Concentration Results

Segment #1: TR-55 Sheet Flow				
Hydraulic Length	100.00 ft			
Manning's n	0.150			
Slope	0.050 ft/ft			
2 Year 24 Hour Depth	3.6 in			
Average Velocity	0.26 ft/s			
Segment Time of Concentration	0.107 hours			
Segment #2: TR-55 Shallow Co	ncentrated Flow			
Hydraulic Length	400.00 ft			
Is Paved?	False			
Slope	0.050 ft/ft			
Average Velocity	3.61 ft/s			
Segment Time of	0.031 hours			
Concentration				
Segment #3: Length and Velocit	у			
Hydraulic Length	125.00 ft			
Velocity	10.00 ft/s			
Segment Time of	0.003 hours			
Time of Concentration (Composi	te)			
Time of Concentration (Composite)	0.141 hours			

FutureConditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 16 of 33

Subsection: Time of Concentration Calculations Label: Subarea D2a Return Event: 2 years Storm Event: 2-YEAR

==== User Defined Length & Velocity

Tc =	(Lf / V) / 3600
Where:	Tc= Time of concentration, hours
	Lf= Flow length, feet
	V= Velocity, ft/sec

==== SCS Channel Flow

Tc =	R = Qa / Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

Where:

(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc =	Unpaved surface: V = 16.1345 * (Sf**0.5)
	Paved Surface: V = 20.3282 * (Sf**0.5)
Where:	(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

FutureConditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 17 of 33

Subsection: Runoff CN-Area Label: Subarea A1 Return Event: 2 years Storm Event: 2-YEAR

Runoff Curve Number Data

Soil/Surface Description	CN	Area	С	UC	Adjusted CN
		(acres)	(%)	(%)	
SFR HSG D	87.000	4.957	0.0	0.0	87.000
Open Space HSG D	80.000	1.680	0.0	0.0	80.000
Offsite Meadow HSG D	78.000	0.310	0.0	0.0	78.000
Offsite Impervious	98.000	0.002	0.0	0.0	98.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	6.949	(N/A)	(N/A)	84.909

FutureConditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 18 of 33

Subsection: Runoff CN-Area Label: Subarea A1a Return Event: 2 years Storm Event: 2-YEAR

Runoff Curve Number Data

Soil/Surface Description	CN	Area	С	UC	Adjusted CN
		(acres)	(%)	(%)	
SFR HSG D	87.000	1.349	0.0	0.0	87.000
Open Space HSG D	80.000	0.960	0.0	0.0	80.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	2.309	(N/A)	(N/A)	84.090

FutureConditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 19 of 33

Subsection: Runoff CN-Area Label: Subarea B1 Return Event: 2 years Storm Event: 2-YEAR

Runoff Curve Number Data

Soil/Surface Description	CN	Area	С	UC	Adjusted CN
		(acres)	(%)	(%)	
SFR HSG D	87.000	0.400	0.0	0.0	87.000
Established Native Vegetation HSG D	78.000	0.840	0.0	0.0	78.000
Impervious	98.000	0.110	0.0	0.0	98.000
Offsite Meadow HSG D	78.000	0.070	0.0	0.0	78.000
Offsite Impervious	98.000	0.010	0.0	0.0	98.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	1.430	(N/A)	(N/A)	82.196

FutureConditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 20 of 33

Subsection: Runoff CN-Area Label: Subarea C1 Return Event: 2 years Storm Event: 2-YEAR

Runoff Curve Number Data

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
SFR HSG D	87.000	1.080	0.0	0.0	87.000
Offsite Meadow HSG D	78.000	2.280	0.0	0.0	78.000
Offsite Impervious	98.000	1.140	0.0	0.0	98.000
Established Native Vegetation HSG D	78.000	1.020	0.0	0.0	78.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	5.520	(N/A)	(N/A)	83.891

FutureConditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 21 of 33

Subsection: Runoff CN-Area Label: Subarea D1 Return Event: 2 years Storm Event: 2-YEAR

Runoff Curve Number Data

Soil/Surface Description	CN	Area	С	UC	Adjusted CN
		(acres)	(%)	(%)	
SFR HSG D	87.000	0.830	0.0	0.0	87.000
Open Space HSG D	80.000	0.870	0.0	0.0	80.000
Offsite Meadow HSG D	78.000	15.690	0.0	0.0	78.000
Offsite Impervious	98.000	0.480	0.0	0.0	98.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	17.870	(N/A)	(N/A)	79.053

FutureConditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 22 of 33

Subsection: Runoff CN-Area Label: Subarea D2 Return Event: 2 years Storm Event: 2-YEAR

Runoff Curve Number Data

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
SFR HSG D	87.000	56.860	0.0	0.0	87.000
Open Space HSG D	80.000	6.330	0.0	0.0	80.000
Offsite Meadow HSG D	78.000	1.506	0.0	0.0	78.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	64.696	(N/A)	(N/A)	86.106

FutureConditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 23 of 33

Subsection: Runoff CN-Area Label: Subarea D2a Return Event: 2 years Storm Event: 2-YEAR

Runoff Curve Number Data

Soil/Surface Description	CN	Area	С	UC	Adjusted CN
		(acres)	(%)	(%)	
Open Space HSG D	80.000	0.620	0.0	0.0	80.000
Offsite Meadow HSG D	78.000	0.920	0.0	0.0	78.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	1.540	(N/A)	(N/A)	78.805

FutureConditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 24 of 33

Subsection: Elevation-Area Volume Curve Label: Basin A1

Return Event: 2 years Storm Event: 2-YEAR

Elevation (ft)	Planimeter (ft²)	Area (acres)	A1+A2+sqr(A1*A 2) (acres)	Volume (ac-ft)	Volume (Total) (ac-ft)
1,022.00	0.0	0.767	0.000	0.000	0.000
1,024.00	0.0	0.892	2.486	1.657	1.657
1,026.00	0.0	1.020	2.866	1.911	3.568

FutureConditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 25 of 33

Subsection: Elevation-Area Volume Curve Label: Basin D2 Return Event: 2 years Storm Event: 2-YEAR

Elevation (ft)	Planimeter (ft²)	Area (acres)	A1+A2+sqr(A1*A 2) (acres)	Volume (ac-ft)	Volume (Total) (ac-ft)
992.50	0.0	0.007	0.000	0.000	0.000
994.00	0.0	0.033	0.055	0.028	0.028
996.00	0.0	0.212	0.329	0.219	0.247
998.00	0.0	0.546	1.098	0.732	0.979
1,000.00	0.0	0.956	2.224	1.483	2.462
1,002.00	0.0	1.616	3.815	2.543	5.005
1,004.00	0.0	2.395	5.978	3.986	8.991
1,006.00	0.0	3.270	8.464	5.642	14.633
1,008.00	0.0	3.806	10.604	7.069	21.702

FutureConditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 26 of 33

Subsection: Outlet Input Data Label: Basin A1 Return Event: 2 years Storm Event: 2-YEAR

Requested Pond Water Surfa	ace Elevations
Minimum (Headwater)	1,022.00 ft
Increment (Headwater)	0.50 ft
Maximum (Headwater)	1,026.00 ft

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1	E2
				(ft)	(ft)
Orifice-Circular	Orifice - 2	Forward	Culvert - 1	1,022.00	1,026.00
Orifice-Area	Orifice - 1	Forward	Culvert - 1	1,023.75	1,026.00
Culvert-Circular	Culvert - 1	Forward	TW	1,012.00	1,026.00
Tailwater Settings	Tailwater			(N/A)	(N/A)

FutureConditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 27 of 33

Subsection: Outlet Input Data Label: Basin A1 Return Event: 2 years Storm Event: 2-YEAR

Structure ID: Culvert - 1 Structure Type: Culvert-Circular	
Number of Barrels	1
Diameter	15.0 in
Length	100.00 ft
Length (Computed Barrel)	100.02 ft
Slope (Computed)	0.020 ft/ft
Outlet Control Data	
Manning's n	0.013
Ке	0.500
Kb	0.023
Kr	0.000
Convergence Tolerance	0.00 ft
Inlet Control Data	
Equation Form	Form 1
К	0.0098
М	2.0000
С	0.0398
Y	0.6700
T1 ratio (HW/D)	0.000
T2 ratio (HW/D)	1.297
Slope Correction Factor	-0.500

Use unsubmerged inlet control 0 equation below T1 elevation. Use submerged inlet control 0 equation above T2

elevation

In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2...

T1 Elevation	1,012.00 ft	T1 Flow	4.80 ft ³ /s
T2 Elevation	1,013.62 ft	T2 Flow	5.49 ft ³ /s

Subsection: Outlet Input Data Label: Basin A1

Return Event: 2 years Storm Event: 2-YEAR

Structure ID: Orifice - 1 Structure Type: Orifice-Area		
Number of Openings	1	
	1 1 000 75 0	
Elevation	1,023.75 π	
	2.0 ft ²	
l op Elevation	1,024.25 ft	
Datum Elevation	1,023.75 ft	
Orifice Coefficient	0.600	
Structure ID: Orifice 2		
Structure Type: Orifice-Circular		
Number of Openings	1	
Elevation	1,022.00 ft	
Orifice Diameter	4.0 in	
Orifice Coefficient	0.600	
Structure ID: TW Structure Type: TW Setup, DS C	Channel	
Structure ID: TW Structure Type: TW Setup, DS C Tailwater Type	Channel Free Outfall	
Structure ID: TW Structure Type: TW Setup, DS C Tailwater Type	Channel Free Outfall	
Structure ID: TW Structure Type: TW Setup, DS C Tailwater Type Convergence Tolerances	Channel Free Outfall	
Structure ID: TW Structure Type: TW Setup, DS C Tailwater Type Convergence Tolerances Maximum Iterations	Channel Free Outfall 30	
Structure ID: TW Structure Type: TW Setup, DS C Tailwater Type Convergence Tolerances Maximum Iterations Tailwater Tolerance	Channel Free Outfall 30 0.01.ft	
Structure ID: TW Structure Type: TW Setup, DS C Tailwater Type Convergence Tolerances Maximum Iterations Tailwater Tolerance (Minimum)	Channel Free Outfall 30 0.01 ft	
Structure ID: TW Structure Type: TW Setup, DS C Tailwater Type Convergence Tolerances Maximum Iterations Tailwater Tolerance (Minimum) Tailwater Tolerance (Maximum)	Channel Free Outfall 30 0.01 ft 0.50 ft	
Structure ID: TW Structure Type: TW Setup, DS C Tailwater Type Convergence Tolerances Maximum Iterations Tailwater Tolerance (Minimum) Tailwater Tolerance (Maximum) Headwater Tolerance (Minimum)	Channel Free Outfall 30 0.01 ft 0.50 ft 0.01 ft	
Structure ID: TW Structure Type: TW Setup, DS C Tailwater Type Convergence Tolerances Maximum Iterations Tailwater Tolerance (Minimum) Tailwater Tolerance (Maximum) Headwater Tolerance (Minimum)	Channel Free Outfall 30 0.01 ft 0.50 ft 0.01 ft	
Structure ID: TW Structure Type: TW Setup, DS C Tailwater Type Convergence Tolerances Maximum Iterations Tailwater Tolerance (Minimum) Tailwater Tolerance (Maximum) Headwater Tolerance (Minimum) Headwater Tolerance (Minimum) Headwater Tolerance (Maximum)	Channel Free Outfall 30 0.01 ft 0.50 ft 0.01 ft 0.50 ft	
Structure ID: TW Structure Type: TW Setup, DS C Tailwater Type Convergence Tolerances Maximum Iterations Tailwater Tolerance (Minimum) Tailwater Tolerance (Maximum) Headwater Tolerance (Minimum) Headwater Tolerance (Minimum) Flow Tolerance (Minimum)	Channel Free Outfall 30 0.01 ft 0.50 ft 0.01 ft 0.50 ft 0.50 ft 0.001 ft ³ /s	

FutureConditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 29 of 33

Subsection: Outlet Input Data Label: Basin D2

Return Event: 2 years Storm Event: 2-YEAR

Requested Pond Water Surface Elevations	
Minimum (Headwater)	992.50 ft
Increment (Headwater)	0.50 ft
Maximum (Headwater)	1,008.00 ft

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1	E2
	-			(it)	(11)
Orifice-Circular	Orifice - 3	Forward	Culvert - 1	992.50	1,008.00
Orifice-Area	Orifice - 1	Forward	Culvert - 1	1,000.75	1,008.00
Orifice-Area	Orifice - 2	Forward	Culvert - 1	1,002.50	1,008.00
Culvert-Circular	Culvert - 1	Forward	TW	991.28	1,008.00
Tailwater Settings	Tailwater			(N/A)	(N/A)

FutureConditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 30 of 33

Subsection: Outlet Input Data Label: Basin D2 Return Event: 2 years Storm Event: 2-YEAR

Structure ID: Culvert - 1 Structure Type: Culvert-Circular	
Number of Barrels	1
Diameter	60.0 in
Length	101.84 ft
Length (Computed Barrel)	101.85 ft
Slope (Computed)	0.010 ft/ft
Outlet Control Data	
Manning's n	0.013
Ke	0.500
Kb	0.004
Kr	0.000
Convergence Tolerance	0.00 ft
Inlet Control Data	
Equation Form	Form 1
К	0.0098
М	2.0000
С	0.0398
Υ	0.6700
T1 ratio (HW/D)	1.155
T2 ratio (HW/D)	1.302
Slope Correction Factor	-0.500

Use unsubmerged inlet control 0 equation below T1 elevation. Use submerged inlet control 0 equation above T2

elevation

In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2...

T1 Elevation	997.06 ft	T1 Flow	153.67 ft ³ /s
T2 Elevation	997.79 ft	T2 Flow	175.62 ft ³ /s

Subsection: Outlet Input Data Label: Basin D2

Return Event: 2 years Storm Event: 2-YEAR

Structure ID: Orifice - 1 Structure Type: Orifice-Area	
Number of Openings	3
Elevation	1,000.75 ft
Orifice Area	2.0 ft ²
Top Elevation	1,001.25 ft
Datum Elevation	1,000.75 ft
Orifice Coefficient	0.600
Structure ID: Orifice - 2	
Structure Type: Onlice-Area	
Number of Openings	3
Elevation	1,002.50 ft
Orifice Area	4.0 ft ²
Top Elevation	1,003.50 ft
Datum Elevation	1,002.50 ft
Orifice Coefficient	0.600
Structure ID: Orifice - 3 Structure Type: Orifice-Circula	r
Number of Openings	1
Elevation	992.50 ft
Orifice Diameter	4.0 in
Orifice Coefficient	0.600
Structure ID: TW Structure Type: TW Setup, DS	Channel
Tailwater Type	Free Outfall
Convergence Tolerances	
Maximum Iterations	30
Tailwater Tolerance (Minimum)	0.01 ft
Tailwater Tolerance (Maximum)	0.50 ft
Headwater Tolerance (Minimum)	0.01 ft
Headwater Tolerance (Maximum)	0.50 ft
Flow Tolerance (Minimum)	0.001 ft ³ /s
Flow Tolerance (Maximum)	10.000 ft ³ /s

FutureConditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 32 of 33

Index

В Basin A1 (Elevation-Area Volume Curve, 2 years)...25 Basin A1 (Outlet Input Data, 2 years)...27, 28, 29 Basin D2 (Elevation-Area Volume Curve, 2 years)...26 Basin D2 (Outlet Input Data, 2 years)...30, 31, 32 Μ Master Network Summary...2, 3 S Subarea A1 (Runoff CN-Area, 2 years)...18 Subarea A1 (Time of Concentration Calculations, 2 years)...4, 5 Subarea A1a (Runoff CN-Area, 2 years)...19 Subarea A1a (Time of Concentration Calculations, 2 years)...6, 7 Subarea B1 (Runoff CN-Area, 2 years)...20 Subarea B1 (Time of Concentration Calculations, 2 years)...8, 9 Subarea C1 (Runoff CN-Area, 2 years)...21 Subarea C1 (Time of Concentration Calculations, 2 years)...10, 11 Subarea D1 (Runoff CN-Area, 2 years)...22 Subarea D1 (Time of Concentration Calculations, 2 years)...12, 13 Subarea D2 (Runoff CN-Area, 2 years)...23 Subarea D2 (Time of Concentration Calculations, 2 years)...14, 15 Subarea D2a (Runoff CN-Area, 2 years)...24 Subarea D2a (Time of Concentration Calculations, 2 years)...16, 17

FutureConditions.ppc 3/8/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 33 of 33