PRELIMINARY STORMWATER MANAGEMENT FACILITIES REPORT FOR

Site Address:

250 NW McNary Court Lee's Summit, MO 64086

Developer: TM Crowley 501 Pennsylvania Parkway Suite 160 Indianapolis, IN 46280

Prepared By:

Dated: August 10, 2020

STORMWATER FACILITIES MANAGEMENT REPORT Table of Contents

Introduction	3
Project Narrative	3
Methodology	3
Existing Condition Analysis	3
Site Area Calculations	3
Worksheet 1 – Required Level of Service – Undeveloped Site	4
Worksheet 2 – Develop Mitigation Package(s) That Meets the Required Level of Service	5
Differential Runoff Table	6
Proposed Development Analysis	6
Conclusions and Recommendations	6
40 Hour Extended Detention/Channel Protection Calculations	7
Appendix A HydroCAD Hydrographs Report	. 10

Introduction

The proposed improvements that are depicted on the Preliminary Development Plan provides the design for the proposed development for Petsuites located at 250 NW McNary court. The development will increase the impervious area of the site therefore changing the characteristics of the stormwater runoff. The information supplied in this report will provide evidence that the Post Developed Stormwater Runoff has been mitigated appropriately with the Best Management Practices proposed for this development.

Project Narrative

TM Crowley is developing the subject property for Petsuites of America. . The property size is ±2.11 acres and is located at the west end of the cul-de-sac on McNary Court. The proposed building will consist of a veterinary clinic and PetSuites for a total of 14,100 sq. ft.

Methodology

The methodology used for the project is Hydro CAD 10.10-3a for determination of SCS hydrographs. The hydraulics for the project were determined using Autodesk Civil 3D 2020 Storm Sewer Analysis. To determine the Storm Intensity and Frequency the overall project pre-development condition and post development condition was determined by the SCS method using NOAA's precipitation intensity data from their website.

Existing Condition Analysis

The site is an open field with a wooded area to the west. It is surrounded by commercial properties except the west which is railroad right of way. The existing runoff drains to the west.

Site Area Calculations	
Property Size	2.11 Acres
Pre-Development Condition	
2.11 Acres of Grass	CN=74
Post-Development Condition	
0.69 Acres of Impervious Area (Buildings and Pavement)	CN=98
1.42 Acres of Pervious Area	CN=74
"C" Value Weighted Average	CN=82

WORKSHEET 1 REQUIRED LEVEL OF SERVICE-UNDEVELOPED SITE

Project:	PetSuites	By:	M. Fogarty
Location:	Lee's Summit, MO	Date:	8/12/2020

1. Runoff Curve Number

A. Predevelopment CN

Cover Description	Soil HSG	CN from Table 1	Area (ac.)	Product of CN x Area	
Grass	С	80	2.11	168.8]
				0	
				0	
		Totals:	2.11	168.80]
Area-Weighted CN = total	product/te	otal area =		80	(Round to integer)
B. Postdevelopment CN					
Cover Description	Soil HSG	CN from Table 1	Area (ac.)	Product of CN x Area	
Building	С	98	0.32	31.36	
Pavement	С	98	0.4	39.2	
Green Space	С	80	1.39	111.2	
		Totals:	2.11	181.76	
					_
Area-Weighted CN = total	product/te	otal area =		86	(Round to integer)
					-
C. Level of Service (LS) Calcul	ation			Change in CN	LS
				17+	8
Predevelopment CN:		80		7 to 16	7
				4 to 6	6
Postdevelopment CN:		86		1 to 3	5
				0	4
Difference:		6		-7 to -1	3
				-8 to -17	2
LS Required:		6		-18 to -21	1

0

-22 -

WORKSHEET 2: DEVELOP MITIGATION PACKAGE(S) THAT MEETS THE REQUIRED LS

Project:	PetSuites	By:	M. Fogarty
Location:	Lee's Summit, MO	Date:	8/6/2020

1. Required LS (New Development, Wksht 1) or Total VR (Redevelopment, Worksheet 1)

Note: Various BMP's may alter CN of proposed development, and LS, recalculate both if applicable.

2. Proposed BMP Option Package No. 1

	VR from	
Treatment Area	Table 4.4	Product of
(ac)	or 4.6 ¹	VR X Area
1.32	6	7.92
		0.00
1.32	Total:	7.92
*Weighte	d VR:	6.00
	Treatment Area (ac) 1.32 1.32 *Weighte	VR fromTreatment AreaTable 4.4(ac)or 4.6 ¹ 1.3261.32Total:*Weighted VR:

¹ VR calculated for final BMP only in treatment train.

² Total treatment area cannot exceed 100 percent of the actual site area.

Yes

* Blank in Redevelopment

Meets Required LS (Yes/No)

(If no, or additional options are being tested preceed below)

6

Differential Runoff Table

	<u>Existing</u> Conditions	Post Developed Condition (No Detention) (c.f.s.)	Allowable release rate (c.f.s.)	Post Developed Routed through Detention (c.f.s.)	<u>Bypass</u> <u>Areas</u> (c.f.s.)	Post Developed Condition Final Routing (c.f.s.)	Differential Runoff Post Developed to Existing	Increase or Reduction for Runoff from Existing to Proposed Condition
1 Year WQv	0.14	0.96	N/A	0.08	0.13	<mark>0.21</mark>	0.07	Minor Increase
2 Year	3.90	6.76	1.06	0.75	1.53	<mark>2.28</mark>	-1.62	Reduction
10 Year	8.33	12.44	4.22	2.64	3.03	<mark>5.67</mark>	-2.66	Reduction
100 Year	14.76	20.17	6.33	5.37	5.13	<mark>10.50</mark>	-4.26	Reduction

Proposed Development Analysis

The proposed project will change the existing stormwater runoff by the increase of impervious area. The bypass areas have been mitigated to the maximum extent practical and the detention has accommodated for such areas. There is an overall reduction in the total runoff based on the proposed conditions as referenced in the Differential Runoff Table. The table was derived per the event tables from HydroCAD.

The proposed project will increase the impervious surface however it will reduce the runoff for the overall disturbed area per APWA 5600. This project proposes that areas that will route through the detention will meet the allowable release rate. The bypass areas consist of existing woodlands that will remain in place therefore to meet the requirements we would have to remove the existing vegetation in place.

Due to the orifice size for the WQv event designed at 1.5" the full water volume design can not be obtained unless the orifice size is reduced to 0.67". Most municipalities in the Midwest with extended detention or channel protection requirements do not allow an orifice size less than 1.5". While we have a larger orifice size than the calculations state for the 40 hour extended detention, we meet the release rate within 0.07 cfs.

Conclusions and Recommendations

Impacts to downstream sewers and streams have been mitigated to the maximum extent practical. This project provides filters via catch basin inserts and a vegetated basin for water quality which meets the KC APWA MARC Manual. This project will meet the requirements that were being set forth by the governing jurisdiction.

40 Hour Extended Detention/Channel Protection Calculations

Project: PetSuites - Lee's Summit, MO F

PCE Project # 2008920

COMPUTATIONS FOR CP_V PROPOSED:

lm	perviou	<u>s Area</u>		Pe	rcent Im	pervious
	0.69	Ac.			32.7	%
	0.36	Ac.				
=	0.33	Ac.				
=	0.69	Ac.				
=	1.42	Ac.	Soil Type	=	С	
=	1.42	Ac.				
	<u>Im</u> = = =	Imperviou 0.69 = 0.36 = 0.33 = 0.69 = 1.42 = 1.42	Impervious Area 0.69 Ac. = 0.36 Ac. = 0.33 Ac. = 0.69 Ac. = 1.42 Ac. = 1.42 Ac.	Impervious Area 0.69 Ac. = 0.36 Ac. = 0.33 Ac. = 0.69 Ac. = 1.42 Ac. = 1.42 Ac.	Impervious Area Pervious Area 0.69 Ac. = 0.36 Ac. = 0.33 Ac. = 0.69 Ac. = 1.42 Ac. = 1.42 Ac.	Impervious Area Percent Im 0.69 Ac. $=$ 0.36 Ac. $=$ 0.33 Ac. $=$ 0.69 Ac. $=$ 0.69 Ac. $=$ 1.42 Ac. $=$ 1.42 Ac.

The following computational procedure follows the methodology detailed in Appendix D.11 of the Maryland Stormwater Design Manual.

⁵1. Compute the time of concentration (tc) and the one year post-development runoff depth (Q_a) in inches.

From TR-55 T_c = 0.10 hours

2. Determine the curve number (See Hydrograph Report)

CN= 82

3. Determine the intial abstraction (Ia):

Calculate la/P: For this method, the value of la/P must be in the range of:
0.1<=la/P=0.5. If la/P is less than 0.1 then set la/P to 0.1
If la/P is>0.5, then set la/P to 0.5

P=Channel Protection Storm Event Depth = 1.37 " la/P = 0.44 / 1.37 = 0.320 Therefore use 0.10

5. Determine Qa (Runoff depth in watershed inches)

$$Q_{a} = \frac{(P - I_{a})^{2}}{(P - I_{a}) + S}$$

$$Q_{a} = \frac{(1.37 - 0.44)^{2}}{(1.37 - 0.44) + 2.20}$$

$$Q_{a} = 0.28 \text{ cfs}$$

⁶6. With T_c and I_a/P known, find the unit peak factor (q_u) using Figure D.11.1 (attached).

 $T_{c} = 0.1$ $l_a/P = 0.10$ $q_{u} = 990$

7. Compute the one year post-development peak discharge q_i.

A = 2.11 Ac. A= 0.00329688 sq. miles $q_i = (q_u) ($ A) (Q_a) $q_i = (990) (0.003296875) (0.28)$ $q_i = 0.90$ cfs

8. Find q_o/q_i from MARYLAND Stormwater Design Maunual Appendix D-11, Figur (Ratio of outflow to inflow)

 $q_{\rm u} = 990$ csm/in T = 24 hours Peak outflow discharge/peak inflow discharge q₀/q_i=

0.02

9. Compute the peak outflow discharge

 $q_o = q_{o/}q_i x q_i$ $q_o = (0.02) \times 0.90$ $q_0 = 0.02 \text{ cfs}$

10. Compute V_s/V_r ; for type II rainfall distirbution (Ratio of storage to runoff volume)

 V_{s}/V_{r} = 0.683 - 1.43 (q_{o}/q_{i}) + 1.64 (q_{o}/q_{i})² - 0.804 (q_{o}/q_{i})³ $V_s/V_r = 0.683 - 1.43 (0.02) + 1.64 (0.02)^2 - 0.804 (0.02)^3$ $V_{s}/V_{r} = 0.655$

11. Compute the extended detention storage volume

 $V_s = V_s/V_r$ (Q_a) (1 / 12) (Ac) = ac-ft $V_s = 0.655 (0.28) (1 / 12) (2.11) = ac-ft$ V, = 0.03193 ac-ft 1,391 cf Required =

12. Define the CP_v Release Rate:

_

Known QI = 0.90 cfs $q_o = (q_0/q_i) q_i$ $q_o = (0.02 / 0.90) 0.90$ $q_o = 0.018 cfs$

13. Compute the Channel Protection oriface size:

 $D_o = 0.0551$ ft = 0.661 in > 1.5 in

Appendix A HydroCAD Hydrographs Report

TABLE OF CONTENTS

Project Reports

- 13 Routing Diagram
- 14 Area Listing (all nodes)
- 15 Pipe Listing (all nodes)

1-Year WQv Event

- 16 Node Listing
- 18 Subcat 1S: EXISTING CONDITIONS
- 19 Subcat 3S: AREA 1
- 20 Subcat 4S: AREA 5
- 21 Subcat 5S: AREA 2
- 22 Subcat 6S: AREA 6
- 23 Subcat 7S: AREA 3
- 24 Subcat 8S: AREA 7
- 25 Subcat 10S: AREA 4
- 26 Subcat 20S: OFFSITE TO BMP
- 27 Subcat 22S: OFFSITE TO CI 12
- 28 Subcat 25S: AREA TO AI 11
- 29 Subcat 28S: PROPOSED CONDITIONS
- 30 Pond 3P: ROOF DRAINS TO BASIN
- 32 Pond 4R: 302-301
- 34 Pond 6P: 301-300
- 36 Pond 10P: BASIN REACH
- 38 Pond 12P: DETENTION BASIN
- 41 Pond 24P: 12-11
- 43 Pond 26P: 11 100 MH
- 45 Pond 27P: 11-10
- 47 Link 29L: BYPASS AREAS

2-Year Event

- 48 Node Listing
- 50 Subcat 1S: EXISTING CONDITIONS
- 51 Subcat 3S: AREA 1
- 52 Subcat 4S: AREA 5
- 53 Subcat 5S: AREA 2
- 54 Subcat 6S: AREA 6
- 55 Subcat 7S: AREA 3
- 56 Subcat 8S: AREA 7
- 57 Subcat 10S: AREA 4
- 58 Subcat 20S: OFFSITE TO BMP
- 59 Subcat 22S: OFFSITE TO CI 12
- 60 Subcat 25S: AREA TO AI 11
- 61 Subcat 28S: PROPOSED CONDITIONS
- 62 Pond 3P: ROOF DRAINS TO BASIN
- 64 Pond 4R: 302-301
- 66 Pond 6P: 301-300
- 68 Pond 10P: BASIN REACH
- 70 Pond 12P: DETENTION BASIN
- 73 Pond 24P: 12-11
- 75 Pond 26P: 11 100 MH
- 77 Pond 27P: 11-10
- 79 Link 29L: BYPASS AREAS

2020-08-01 BASIN DESIGN

Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

10-Year Event

- 80 Node Listing
- 82 Subcat 1S: EXISTING CONDITIONS
- 83 Subcat 3S: AREA 1
- 84 Subcat 4S: AREA 5
- 85 Subcat 5S: AREA 2
- 86 Subcat 6S: AREA 6
- 87 Subcat 7S: AREA 3
- 88 Subcat 8S: AREA 7
- 89 Subcat 10S: AREA 4
- 90 Subcat 20S: OFFSITE TO BMP
- 91 Subcat 22S: OFFSITE TO CI 12
- 92 Subcat 25S: AREA TO AI 11
- 93 Subcat 28S: PROPOSED CONDITIONS
- 94 Pond 3P: ROOF DRAINS TO BASIN
- 96 Pond 4R: 302-301
- 98 Pond 6P: 301-300
- 100 Pond 10P: BASIN REACH
- 102 Pond 12P: DETENTION BASIN
- 105 Pond 24P: 12-11
- 107 Pond 26P: 11 100 MH
- 109 Pond 27P: 11-10
- 111 Link 29L: BYPASS AREAS

100-Year Event

- 112 Node Listing
- 114 Subcat 1S: EXISTING CONDITIONS
- 115 Subcat 3S: AREA 1
- 116 Subcat 4S: AREA 5
- 117 Subcat 5S: AREA 2
- 118 Subcat 6S: AREA 6
- 119 Subcat 7S: AREA 3
- 120 Subcat 8S: AREA 7
- 121 Subcat 10S: AREA 4
- 122 Subcat 20S: OFFSITE TO BMP
- 123 Subcat 22S: OFFSITE TO CI 12
- 124 Subcat 25S: AREA TO AI 11
- 125 Subcat 28S: PROPOSED CONDITIONS
- 126 Pond 3P: ROOF DRAINS TO BASIN
- 128 Pond 4R: 302-301
- 130 Pond 6P: 301-300
- 132 Pond 10P: BASIN REACH
- 134 Pond 12P: DETENTION BASIN
- 137 Pond 24P: 12-11
- 139 Pond 26P: 11 100 MH
- 141 Pond 27P: 11-10
- 143 Link 29L: BYPASS AREAS

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
4.490	74	>75% Grass cover, Good, HSG C (1S, 3S, 4S, 5S, 6S, 7S, 8S, 25S, 28S)
0.030	74	>75% Grass cover, Good, HSG C OFFSITE TO ONSITE (5S)
1.140	98	Paved parking, HSG C (4S, 5S, 6S, 7S, 8S, 28S)
0.150	98	Paved parking, HSG D (3S)
0.330	98	Roofs, HSG C (10S)
3.340	94	Urban commercial, 85% imp, HSG C (20S, 22S)
9.480	85	TOTAL AREA

2020-08-01 BASIN DESIGN Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

Line	# N N	lode Iumber	In-Invert (feet)	Out-Inve (fee	ert L et)	ength. (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
	1 3	Р	994.54	994.	11	21.7	0.0198	0.012	6.0	0.0	0.0
	2 4	R	994.94	994.	11	165.3	0.0050	0.012	15.0	0.0	0.0
	36	Р	994.01	993.	00	201.5	0.0050	0.012	12.0	0.0	0.0
	4 1	OP	994.25	993.	00	31.2	0.0401	0.012	6.0	0.0	0.0
	5 1	2P	988.04	987.	00	50.1	0.0208	0.012	18.0	0.0	0.0
	6 2	4P	994.87	989.	91	181.2	0.0274	0.013	18.0	0.0	0.0
	7 2	6P	988.71	985.	04	123.4	0.0297	0.012	18.0	0.0	0.0
	8 2	7P	985.04	982.	83	76.1	0.0290	0.012	18.0	0.0	0.0

Pipe Listing (all nodes)

Time span=1.00-48.00 hrs, dt=0.05 hrs, 941 points x 2 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: EXISTING CONDITIONS	Runoff Area=2.110 ac 0.00% Impervious Runoff Depth=0.11" Tc=10.0 min CN=74 Runoff=0.14 cfs 0.019 af
Subcatchment 3S: AREA 1	Runoff Area=0.210 ac 71.43% Impervious Runoff Depth=0.64" Tc=5.0 min CN=91 Runoff=0.24 cfs 0.011 af
Subcatchment 4S: AREA 5	Runoff Area=0.100 ac 50.00% Impervious Runoff Depth=0.41" Tc=5.0 min CN=86 Runoff=0.07 cfs 0.003 af
Subcatchment 5S: AREA 2	Runoff Area=0.240 ac 66.67% Impervious Runoff Depth=0.58" Tc=5.0 min CN=90 Runoff=0.25 cfs 0.012 af
Subcatchment 6S: AREA 6	Runoff Area=0.510 ac 11.76% Impervious Runoff Depth=0.16" Tc=5.0 min CN=77 Runoff=0.11 cfs 0.007 af
Subcatchment 7S: AREA 3	Runoff Area=0.440 ac 36.36% Impervious Runoff Depth=0.31" Tc=5.0 min CN=83 Runoff=0.23 cfs 0.011 af
Subcatchment 8S: AREA 7	Runoff Area=0.070 ac 28.57% Impervious Runoff Depth=0.25" Tc=5.0 min CN=81 Runoff=0.03 cfs 0.001 af
Subcatchment 10S: AREA 4	Runoff Area=0.330 ac 100.00% Impervious Runoff Depth=1.15" Tc=5.0 min CN=98 Runoff=0.62 cfs 0.032 af
Subcatchment 20S: OFFSITE TO BMP	Runoff Area=1.170 ac 85.00% Impervious Runoff Depth=0.82" Tc=30.0 min CN=94 Runoff=0.83 cfs 0.080 af
Subcatchment 22S: OFFSITE TO CI 12	Runoff Area=2.170 ac 85.00% Impervious Runoff Depth=0.82" Tc=20.0 min CN=94 Runoff=1.97 cfs 0.148 af
Subcatchment 25S: AREA TO AI 11	Runoff Area=0.020 ac 0.00% Impervious Runoff Depth=0.11" Tc=5.0 min CN=74 Runoff=0.00 cfs 0.000 af
Subcatchment 28S: PROPOSED CONDITIONS	Runoff Area=2.110 ac 32.70% Impervious Runoff Depth=0.28" Tc=5.0 min CN=82 Runoff=0.96 cfs 0.049 af
Pond 3P: ROOF DRAINS TO BASIN	Peak Elev=995.28' Inflow=0.69 cfs 0.035 af 6.0" Round Culvert n=0.012 L=21.7' S=0.0198'/' Outflow=0.69 cfs 0.035 af
Pond 4R: 302-301	Peak Elev=995.20' Inflow=0.24 cfs 0.011 af 15.0'' Round Culvert n=0.012 L=165.3' S=0.0050'/' Outflow=0.24 cfs 0.011 af
Pond 6P: 301-300	Peak Elev=994.45' Inflow=0.49 cfs 0.023 af 12.0'' Round Culvert n=0.012 L=201.5' S=0.0050'/' Outflow=0.49 cfs 0.023 af
Pond 10P: BASIN REACH	Peak Elev=994.79' Inflow=0.69 cfs 0.035 af 6.0" Round Culvert n=0.012 L=31.2' S=0.0401 '/' Outflow=0.69 cfs 0.035 af
Pond 12P: DETENTION BASIN	Peak Elev=994.14' Storage=1,296 cf Inflow=1.40 cfs 0.069 af Outflow=0.08 cfs 0.069 af
Pond 24P: 12-11	Peak Elev=995.51' Inflow=1.97 cfs 0.148 af 18.0" Round Culvert n=0.013 L=181.2' S=0.0274'/' Outflow=1.97 cfs 0.148 af
Pond 26P: 11 - 100 MH	Peak Elev=989.40' Inflow=2.77 cfs 0.298 af 18.0" Round Culvert n=0.012 L=123.4' S=0.0297 '/' Outflow=2.77 cfs 0.298 af

2020-08-01 BASIN DESIGN

Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

Pond 27P: 11-10

Peak Elev=985.73' Inflow=2.77 cfs 0.298 af 18.0" Round Culvert n=0.012 L=76.1' S=0.0290 '/' Outflow=2.77 cfs 0.298 af

Link 29L: BYPASS AREAS

Inflow=0.13 cfs 0.008 af Primary=0.13 cfs 0.008 af

Total Runoff Area = 9.480 acRunoff Volume = 0.373 afAverage Runoff Depth = 0.47"52.96% Pervious = 5.021 ac47.04% Impervious = 4.459 ac

Summary for Subcatchment 1S: EXISTING CONDITIONS

Runoff = 0.14 cfs @ 12.07 hrs, Volume= 0.019 af, Depth= 0.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 1-Year WQv Rainfall=1.37"

Area	(ac)	CN	Desc	ription		
2	2.110	74	>75%	Grass cov	/er, Good, H	HSG C
2	2.110		100.0	0% Pervio	us Area	
Tc (min)	Leną (fe	gth et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description

10.0

Direct Entry, Assumed TC of 10 Minutes used for Pre-Developed Condition

Subcatchment 1S: EXISTING CONDITIONS

Summary for Subcatchment 3S: AREA 1

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.24 cfs @ 11.96 hrs, Volume= 0.011 af, Depth= 0.64"

Area (ac) CN	l De	escrip	otion																				
0.150) 98) 74	B Pc	aved	park	king,	, HSC	G D			\sim														
0.210 0.210 0.060 0.150) 74) 91))	We 28 71	eigh .57% .43%	ted A Perv Imp	Aver vious ervio	age s Are ous	ea ea Arec	<u>а</u>	13.6	<u> </u>														
Tc Le (min)	ength (feet)	Slop (ft/t	be \ ft)	√eloc (ft/se	city ec)	Сс	paq (city cfs)	De	scrip	otion	1												
5.0									Dire	ect E	ntry	',												
								S	ubo	cato	:hm	nent	3S:	AR	EA	1								
									Hy	ydro	grap	ph												
0.26			<u>-</u>		ጉ 1	 1 0	6 h		 	 	 		 	 	 	 				 	 	 		Runoff
0.24						1.3			L 	+ 	L 		' 	R	lun	off=	=0.2	24 c	fs (@1	1.9	6 h	rs	
0.22		 	 				 	 	 	 	 		 	 	 	 	 	 	T	ур	€ II :	24-	hr	
0.2		 	 				 	 	 	 	 		 		1-\	Yea	rW	Qv	Ra	infa	all=	1.3	7"	
0.18		 	 				 	 	 	 	 		 	 	 	F	Run	off	Are	ea=	0.2 [,]	10 a	ac	
0.16		 	- 				 	T = 	T — — - I I	T — — - I I	T — — - I I		 	 	 	Ru	IOT Ri		olur ff Γ	ne=	10.U th=	111 0 6	ат и''	
້ຍັ _{0.14}										 			 	 	 					Тс	=5.0) m	in	l.
õ <u><u></u> 0.12</u>		 	 				 	 +	 +	 +	 +		 	 	 	 	 			 +	С	N=9	91	l.
0.1		 					' 		+	, , , +	 +		' 	 	' 	 	' 	 			' +	' +		L
0.08		i i 						 +	 	 +	 		 		 	i i i– – –	 				+	 +	 	
0.06		 	i _	 	K		 		 	 	 		 	 	 	 	 	 	 		 	i i i		
0.04							1	 	I I	 	 		 	 	 	1	 	1	1	1	 	 		
0.02					X								 	 	 	 	 	 	 	 	 	 		
-0 -	2 4	6	8	10	-1 12	14	16	18	20	22 Tim	24 ie (h	26 ours)	28	30	32	34	36	38	40	42	44	46	48	

Summary for Subcatchment 4S: AREA 5

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.07 cfs @ 11.97 hrs, Volume= 0.003 af, Depth= 0.41"

Summary for Subcatchment 5S: AREA 2

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.25 cfs @ 11.96 hrs, Volume= 0.012 af, Depth= 0.58"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 1-Year WQv Rainfall=1.37"

	Area (ac)	CN	Description
	0.160	98	Paved parking, HSG C
	0.050	74	>75% Grass cover, Good, HSG C
*	0.030	74	>75% Grass cover, Good, HSG C OFFSITE TO ONSITE
	0.240	90	Weighted Average
	0.080		33.33% Pervious Area
	0.160		66.67% Impervious Area
	Tc Len (min) (fe	gth eet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)

5.0

Direct Entry,

Subcatchment 5S: AREA 2

Summary for Subcatchment 6S: AREA 6

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.11 cfs @ 11.99 hrs, Volume= 0.007 af, Depth= 0.16"

Summary for Subcatchment 7S: AREA 3

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.23 cfs @ 11.97 hrs, Volume= 0.011 af, Depth= 0.31"

Area (ac) CN Description		
0.160 98 Paved parking, HSG C 0.280 74 >75% Grass cover, Good, H	d, HSG C	
0.44083Weighted Average0.28063.64% Pervious Area0.16036.36% Impervious Area		
Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs)	ty Description fs)	
5.0	Direct Entry,	
\$	Subcatchment 7S: AREA 3	
	Hydrograph	
0.25 0.24 0.23 cfs @ 11.97 hrs		lunoff
	Runoff=0.23 cfs @ 11.97 hrs	
0.21		
0.18	Runoff Area=0.440 ac	
	Runoff Volume=0.011 af	
	Runoff Denth=0.31"	
0.04		
0.01		
2 4 6 8 10 12 14 16 18	18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hours)	

Summary for Subcatchment 8S: AREA 7

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.03 cfs @ 11.98 hrs, Volume= 0.001 af, Depth= 0.25"

Area (ac)	CN	Descri	ption																			
0.020	98 74	Paved >75% (l park Grass	ing, H cove	ISG C er. Go	; od, F	isg (2														
0.070 0.050 0.020	81	Weigh 71.43% 28.57%	ted A S Perv S Impe	ious / erviou	ge Area Js Are	a																
Tc Le (min) (1	ngth S eet)	Slope (ft/ft)	Veloc (ft/se	:ity (ec)	Capa	city (cfs)	Des	cript	tion													
5.0							Dire	ect Er	ntry,													
						S	Subc	atc	hm	ent	8 S:	AR	EA 7	7								
							Ну	drog	grap	h												
0.03		0.03	cfs (່ ລີ11	1.98	hrs						 +	 		 	 	 		Runoff			
0.028		0.00			1.00]; 			i I		R	und	off=	0.0	3 c	fs (@ 1	1.9	8 h	rs	
0.026					 				 	T = - ' 	 	 		т — — - I I	 	 	T	vpe	e II	24-	hr	
0.024										·		 	1-Y	'ea	r W	Qv	Ra	infa	all=	1.3	7"	
0.022			· _		 		 		L 	+ ·		L 	 	F	lun	off	Δrc	a=	0 0	70 :	ac	
0.02	<pre>/</pre>	-	· -			-			· 	+ · 		+ · 	F	Rur	hoff	Vo	Jun	no=	-0.0	01	af	
a 0.018		-ii I I			 I		- i		- 	- 	- 	<u> </u>	<u>-</u> ∎ 		R	ino		lon	th=	0.2	5"	
້ <u>ອ</u> ິ້ 0.016	×		· _		· 	_ 	- 		↓ I I	+ 	⊨ · I I	↓ · 	+ 	+ 				Тс	-5 (0.2.	in l	
NO 0 014-			· -		·	- ·			+ ·	+	·	+ ·	+	+ ·	† — — - !	† — — - !	1 !	10:	-0.1	V_111 NI—9	01 01	
0.012	/ /	-'' 	· -' 	-	 	_ 	- ! 		<u> </u> 	<u> </u> 	<u> </u> 	<u> </u> · 	<u> </u> 	<u> </u> 	<u> </u> 	! 	! 	! 		11=0	0-I	
0.01-	/		· -		 	_	- 	⊢ – – + 	+ · 	+	⊨ · 	+ ·	+	+	+	+ 	 	- — — – 		- 	- — — — 	
0.008-	/	-i				- ·	 !		- !	+	·	- !	+ !	† – – . !	- !	; ;	i !	i	i	i !	-i !	
0.000	/ /		· -		 		-		<u> </u> 	<u> </u> 	<u> </u> 	<u> </u> 	<u> </u> 	<u> </u> 	<u> </u> 	! ! !	¦ 	¦	 	¦ 		
0.000	/					-	- 	⊢ – – + 	+ ·	+	+ ·	+	+	+	+	+ 				- 	- 	
0.002	/ / !	-ii						г I	г — — I	·	- 	- - -		T — — ·	T — — - !	; — — - !	i !	i	i	i		
0-						<u>, , , , , , , , , , , , , , , , , , , </u>	<u>///</u>	<u>////</u>	<u> </u>													
	2 4	68	10	12	14 16	18	20	22 Tim	24 e (h	26 ours)	28	30	32	34	36	38	40	42	44	46	48	

Summary for Subcatchment 10S: AREA 4

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.62 cfs @ 11.95 hrs, Volume= 0.032 af, Depth= 1.15"

Area (ac	2)	CN	De	escrip	otion	1																			
0.33	0	98	Rc	ofs,	hsg	С																			
0.33	0		10	0.00	% Im	per	vious	s Are	ea																
Tc Lo (min)	eng (fe	gth et)	Slop (ft/t	be ` ft)	√elo (ft/s	city ec)	Сс	apac ((city cfs)	De	scrip	otion	1												
5.0		- 1				1			1	Dire	ect E	Intry	',												
													1	100											
									2	UDC	arc	nm	ent	102	: AI	KEA	4								
										H	ydro	gra	oh												
	Δ			1	1	 		 	1	1	1	1	1		1	1	1	1	 	 	l l	1	1		Dunoff
0.65	1	1	0.	62 d	cfs (a) 1	1.9	5 h	rs	1	1	1	1		1		1	1	 	 	I I	1	1	1	
0.6-	/	!		-'	' <u></u> 			<u></u> 	<u></u> - 	<u> </u> 	1 1 1	 	! ! !		F	lun	off	=0.6	52 c	fs (@1	1.9	5 h	rs	
0.55	/		-	-		-		<u> </u>	$\frac{1}{1} = -$	<u> </u>	$\frac{1}{1}$	<u> </u>	<u> </u>							- T	ур	e-11	24-	hr	
0.55				-				<u> </u>	<u> </u> 	<u> </u> 	 	 	 			1-1	Yea	r W	Qv	Ra	infa	all=	1.3	7''	
0.5-	ĺ		 _	 _!	 	! !		 	 	 	 	 	 	 	 	 	 -	Run	off	Are	₽a=	0.3	30-a	ac-	
0.45	ľ			 _		i.		L		 		 	' 	 			Ru	hof	E V c	blur	ne=	0.0	32	af	
ر م 0.4					 			1 1 1	1	1	 	1	 		1	1	 	Rι	ino	ff C) ep [.]	th=	1.1	5"	
<u>ড</u> 0.35-	/1				 			 		 	 	 	 				 	 	 		Tc	=5.0) m	in	
6 1 1 1	/] 	_! ! !	-!	! ! !			L	1 	L	1	 	1 		! ! !	-! 	I 	I	L 	L 	L = = . 	С	N=9	98	
0 25-	/		- 	-! ! !	 			 	<u> </u> 	<u> </u> 	<u> </u> 	 	<u> </u> 		! ! !	 	 	 	L 	L 	<u> </u> 	 	 		
0.20	/			-				<u> </u>	$\frac{1}{1} = -$	<u> </u>	$\frac{1}{1}$	<u> </u>	<u> </u>							<u> </u>	<u> </u>	<u> </u> ·	<u> </u>		
0.2								<u> </u>	$\frac{1}{1}$	<u> </u>	<u> </u>		<u> </u>							 	<u> </u>	<u> </u>		<u> </u>	
0.15-	Ĺ				 	\mathbb{V}		 - 	 - 	 	 	 	 		 	 	 	 	 	 	 	 	 	<u> </u>	
0.1	ŕ				!	K	_	i L	i <u>↓</u>	i <u>i</u>	i 4	i 1	i 4		i !	i !			 	 	i <u> </u>	i 4	i 4	i 1	
0.05	ľ.		1			X		m			 		 		 	1 1 1	1 1 1	 	 	 	 	 	 		
0	4	////		Щ	<u> </u>	<u>/</u>		<u>///</u>				4	////	Щ	///	////	////	///	///	<u>///</u>	///	///	///		
	2	4	6	8	10	12	14	16	18	20	22 Tim	24 1e (h	26 ours)	28	30	32	34	36	38	40	42	44	46	48	

Summary for Subcatchment 20S: OFFSITE TO BMP

Runoff = 0.83 cfs @ 12.24 hrs, Volume= 0.080 af, Depth= 0.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 1-Year WQv Rainfall=1.37"

Area (ac) CN	Desc	ription						
1.17) 94	Urba	n commer	cial, 85% im	p, HSG C				
0.17	5	15.00	% Pervious	s Area					
0.994	4	85.00	% Impervio	ous Area					
Tc Le (min) (ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
30.0					Direct Entry,				

Subcatchment 20S: OFFSITE TO BMP

Summary for Subcatchment 22S: OFFSITE TO CI 12

Runoff = 1.97 cfs @ 12.13 hrs, Volume= 0.148 af, Depth= 0.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 1-Year WQv Rainfall=1.37"

Area (ad	c) CN	Desc	ription			
2.17	0 94	Urba	n commer	cial, 85% im	p, HSG C	
0.32	5	15.00	% Perviou	s Area		
1.84	4	85.00)% Impervi	ous Area		
TC L	ength	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
20.0					Direct Entry,	

Subcatchment 22S: OFFSITE TO CI 12

Summary for Subcatchment 25S: AREA TO AI 11

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.00 cfs @ 12.01 hrs, Volume= 0.000 af, Depth= 0.11"

Area	(ac)	CN	Desc	ription						
0	.020	74	>75%	Grass cov	ver, Good, H	ISG C				
0	.020		100.0	0% Perviou	us Area					
Tc (min)	Ler (fe	ngth eet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
5.0						Direct Entry,				
	Subcatchment 25S: AREA TO AI 11									

Summary for Subcatchment 28S: PROPOSED CONDITIONS

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.96 cfs @ 11.98 hrs, Volume= 0.049 af, Depth= 0.28"

Area (ac)	CN	Description
0.690	98	Paved parking, HSG C
1.420	74	>75% Grass cover, Good, HSG C
2.110	82	Weighted Average
1.420		67.30% Pervious Area
0.690		32.70% Impervious Area
Tc Len	gth	Slope Velocity Capacity Description
(min) (fe	et)	(ft/ft) (ft/sec) (cfs)
5.0		Direct Entry,

Summary for Pond 3P: ROOF DRAINS TO BASIN

Inflow Arec	a =	0.430 ac,	88.37% Imper	rvious, Ir	nflow Depth =	0.98"	for 1-	Year WQv event
Inflow	=	0.69 cfs @	11.95 hrs, Vo	olume=	0.035 at	-		
Outflow	=	0.69 cfs @	11.95 hrs, Vo	olume=	0.035 at	f, Atter	ו= 0%,	Lag= 0.0 min
Primary	=	0.69 cfs @	11.95 hrs, Vo	olume=	0.035 at	-		

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 995.28' @ 11.95 hrs Flood Elev= 1,000.93'

Device	Routing	Invert	Outlet Devices
#1	Primary	994.54'	6.0" Round Culvert L= 21.7' RCP, rounded edge headwall, Ke= 0.100 Inlet / Outlet Invert= 994.54' / 994.11' S= 0.0198 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.20 sf

Primary OutFlow Max=0.69 cfs @ 11.95 hrs HW=995.27' TW=994.78' (Dynamic Tailwater) ↓1=Culvert (Outlet Controls 0.69 cfs @ 3.49 fps)

Pond 3P: ROOF DRAINS TO BASIN

2020-08-01 BASIN DESIGN

Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

Pond 3P: ROOF DRAINS TO BASIN

Summary for Pond 4R: 302-301

[58] Hint: Peaked 0.26' above defined flood level

Inflow Arec	1 =	0.210 ac,	71.43% Imp	pervious,	Inflow Depth =	0.64"	for 1-	Year WQv event
Inflow	=	0.24 cfs @	11.96 hrs,	Volume=	= 0.011 c	af		
Outflow	=	0.24 cfs @	11.96 hrs,	Volume=	= 0.011 c	af, Atte	n= 0%,	Lag= 0.0 min
Primary	=	0.24 cfs @	11.96 hrs,	Volume=	= 0.011 c	af		

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 995.20' @ 11.96 hrs Flood Elev= 994.94'

Device	Routing	Invert	Outlet Devices
#1	Primary	994.94'	15.0" Round Culvert L= 165.3' RCP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 994.94' / 994.11' S= 0.0050 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf

Primary OutFlow Max=0.23 cfs @ 11.96 hrs HW=995.20' TW=994.44' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.23 cfs @ 1.90 fps)

Pond 4R: 302-301

2020-08-01 BASIN DESIGN

Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

Pond 4R: 302-301

Summary for Pond 6P: 301-300

Inflow Area	1 =	0.450 ac,	68.89% Impervious,	Inflow Depth =	0.61" for	1-Year WQv event
Inflow	=	0.49 cfs @	11.96 hrs, Volume=	= 0.023 af		
Outflow	=	0.49 cfs @	11.96 hrs, Volume=	= 0.023 af	, Atten= 0	%, Lag= 0.0 min
Primary	=	0.49 cfs @	11.96 hrs, Volume=	= 0.023 af		

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 994.45' @ 11.98 hrs Flood Elev= 998.82'

Device	Routing	Invert	Outlet Devices
#1	Primary	994.01'	12.0" Round 202-201 L= 201.5' CPP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 994.01' / 993.00' S= 0.0050'/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.48 cfs @ 11.96 hrs HW=994.44' TW=993.68' (Dynamic Tailwater) **1=202-201** (Outlet Controls 0.48 cfs @ 2.22 fps)

Pond 6P: 301-300

2020-08-01 BASIN DESIGN

Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

Pond 6P: 301-300

Summary for Pond 10P: BASIN REACH

Inflow Arec	= c	0.430 ac,	88.37% Imperviou	s, Inflow Depth =	0.98"	for 1-	Year WQv event
Inflow	=	0.69 cfs @	11.95 hrs, Volum	e= 0.035 c	f		
Outflow	=	0.69 cfs @	11.95 hrs, Volum	e= 0.035 c	f, Atter	ו= 0%,	Lag= 0.0 min
Primary	=	0.69 cfs @	11.95 hrs, Volum	e= 0.035 c	f		

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 994.79' @ 11.95 hrs Flood Elev= 1,000.67'

Device	Routing	Invert	Outlet Devices
#1	Primary	994.25'	6.0" Round Culvert L= 31.2' RCP, rounded edge headwall, Ke= 0.100
			Inlet / Outlet Invert= 994.25' / 993.00' S= 0.0401 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.20 sf

Primary OutFlow Max=0.68 cfs @ 11.95 hrs HW=994.78' TW=993.65' (Dynamic Tailwater) ↓1=Culvert (Inlet Controls 0.68 cfs @ 3.48 fps)

Pond 10P: BASIN REACH
2020-08-01 BASIN DESIGN

Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

Pond 10P: BASIN REACH

Summary for Pond 12P: DETENTION BASIN

Inflow Arec	= c	1.320 ac,	64.39% Imp	ervious,	Inflow	Depth =	0.63"	for	I-Year WQ	v event
Inflow	=	1.40 cfs @	11.96 hrs,	Volume=	=	0.069 a	f			
Outflow	=	0.08 cfs @	12.91 hrs,	Volume=	=	0.069 a	f, Atte	n= 949	%, Lag= 57	7.2 min
Primary	=	0.08 cfs @	12.91 hrs,	Volume=	=	0.069 a	f			

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 994.14'@ 12.91 hrs Surf.Area= 1,471 sf Storage= 1,296 cf Flood Elev= 999.00' Surf.Area= 6,484 sf Storage= 19,812 cf

Plug-Flow detention time= 148.4 min calculated for 0.069 af (100% of inflow) Center-of-Mass det. time= 147.6 min (964.1 - 816.5)

Volume	Invert	Avail.Store	age Storag	e Description		
#1	992.10'	19,81	2 cf Custor	m Stage Data (Pyr	amidal) Listed b	pelow (Recalc)
Elevation	n Surf.	.Area	Inc.Store	Cum.Store	Wet.Area	
(feet	t) ((sq-ft) (c	ubic-feet)	(cubic-feet)	(sq-ft)	
992.10	0	4	0	0	4	
993.00	0	539	177	177	541	
994.00	0	1,359	918	1,095	1,370	
995.00	0	2,235	1,779	2,874	2,262	
996.00	0	3,166	2,687	5,561	3,215	
997.00	0	4,169	3,656	9,217	4,247	
998.00	0	5,290	4,718	13,935	5,401	
999.00	0	6,484	5,877	19,812	6,634	
Deries	Deulise	Law and		•		
Device	Routing	Invert	Outlet Dev	lices		
#1	Primary	988.04'	18.0" Roun	d Culvert L= 50.1	l' RCP, groove	end projecting, Ke= 0.200
			Inlet / Outl	et Invert= 988.04'	/ 98/.00' S= 0.0	208'/' CC= 0.900
			n=0.012 C	Corrugated PP, sm	ooth interior, He	ow Area= 1.// st
#2	Device 1	992.10	1.5" Vert. C	Prifice/Grate C=	0.600 Limited t	o weir flow at low heads
#3	Device 1	994.25'	4.0" W x 4.0)" H Vert. Orifice/0	Grate C= 0.600) Limited to weir flow at low heads
#4	Device 1	996.00'	12.0" W x 6	.0" H Vert. Orifice/	'Grate C= 0.60	00 Limited to weir flow at low heads
#5	Device 1	997.50'	4.0' long Sh	narp-Crested Rect	angular Weir 2	End Contraction(s)
Primany		1x=0.08 cfc @) 1291 hrs 비	W=991 11' TW-98	898' (Dynamic	Tailwater
Tunner A v				,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

1=Culvert (Passes 0.08 cfs of 22.89 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.08 cfs @ 6.78 fps)

-3=Orifice/Grate (Controls 0.00 cfs)

-4=Orifice/Grate (Controls 0.00 cfs)

-5=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 12P: DETENTION BASIN

Pond 12P: DETENTION BASIN

Pond 12P: DETENTION BASIN

Summary for Pond 24P: 12-11

[58] Hint: Peaked 2.21' above defined flood level

Inflow Arec	1 =	2.170 ac,	85.00% Imp	ervious,	Inflow Dept	h =	0.82"	for 1	-Year WQ	v event
Inflow	=	1.97 cfs @	12.13 hrs, `	Volume=	= 0.14	48 af				
Outflow	=	1.97 cfs @	12.13 hrs, `	Volume=	= 0.14	48 af	, Atter	ו= 0%,	Lag= 0.0	min
Primary	=	1.97 cfs @	12.13 hrs, `	Volume=	= 0.14	48 af				

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 995.51' @ 12.13 hrs Flood Elev= 993.30'

Device	Routing	Invert	Outlet Devices
#1	Primary	994.87'	18.0" Round Culvert L= 181.2' RCP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 994.87' / 989.91' S= 0.0274 '/' Cc= 0.900 n= 0.013 Concrete pipe, bends & connections, Flow Area= 1.77 sf

Primary OutFlow Max=1.94 cfs @ 12.13 hrs HW=995.51' TW=989.39' (Dynamic Tailwater) ↓1=Culvert (Inlet Controls 1.94 cfs @ 2.72 fps)

Pond 24P: 12-11

995-

Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

0 Storage (acre-feet)

Summary for Pond 26P: 11 - 100 MH

Inflow Area	= c	4.680 ac,	78.82% Impervious,	Inflow Depth =	0.76"	for 1-Year WQv event
Inflow	=	2.77 cfs @	12.15 hrs, Volume	= 0.298 a	f	
Outflow	=	2.77 cfs @	12.15 hrs, Volume	= 0.298 a	f, Atten:	= 0%, Lag= 0.0 min
Primary	=	2.77 cfs @	12.15 hrs, Volume	= 0.298 a	f	

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 989.40' @ 12.15 hrs Flood Elev= 995.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	988.71'	18.0" Round Culvert L= 123.4' RCP, groove end projecting, Ke= 0.200 Inlet / Outlet Invert= 988.71' / 985.04' S= 0.0297 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=2.77 cfs @ 12.15 hrs HW=989.39' TW=985.72' (Dynamic Tailwater) ↓1=Culvert (Inlet Controls 2.77 cfs @ 3.52 fps)

Pond 26P: 11 - 100 MH

Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

Pond 26P: 11 - 100 MH

Summary for Pond 27P: 11-10

Inflow Area	a =	4.680 ac,	78.82% Impe	ervious,	Inflow Depth =	0.76"	for 1-	Year WQv event
Inflow	=	2.77 cfs @	12.15 hrs, V	olume=	0.298 a	f		
Outflow	=	2.77 cfs @	12.15 hrs, V	olume=	0.298 a	f, Atter	า= 0%,	Lag= 0.0 min
Primary	=	2.77 cfs @	12.15 hrs, V	/olume=	0.298 a	f		

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 985.73' @ 12.15 hrs Flood Elev= 995.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	985.04'	18.0" Round Culvert L= 76.1' RCP, groove end projecting, Ke= 0.200
			Inlet / Outlet Invert= 985.04' / 982.83' S= 0.0290 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=2.77 cfs @ 12.15 hrs HW=985.72' (Free Discharge) **1=Culvert** (Inlet Controls 2.77 cfs @ 3.52 fps)

Pond 27P: 11-10

2020-08-01 BASIN DESIGN

Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

Summary for Link 29L: BYPASS AREAS

Inflow.	Area	=	0.580 ac,	13.79% lm	pervious,	Inflow Depth =	0.	.17" for 1-	Year WQ	v event
Inflow	=	=	0.13 cfs @	11.99 hrs,	Volume=	= 0.008 c	þ			
Primar	y =	=	0.13 cfs @	11.99 hrs,	Volume=	= 0.008 c	af, J	Atten= 0%,	Lag= 0.0	min

Primary outflow = Inflow, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs

Link 29L: BYPASS AREAS

Time span=1.00-48.00 hrs, dt=0.05 hrs, 941 points x 2 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: EXISTING CONDITIONS	Runoff Area=2.110 ac 0.00% Impervious Runoff Depth=1.24" Tc=10.0 min CN=74 Runoff=3.90 cfs 0.218 af
Subcatchment 3S: AREA 1	Runoff Area=0.210 ac 71.43% Impervious Runoff Depth=2.54" Tc=5.0 min CN=91 Runoff=0.91 cfs 0.044 af
Subcatchment 4S: AREA 5	Runoff Area=0.100 ac 50.00% Impervious Runoff Depth=2.10" Tc=5.0 min CN=86 Runoff=0.37 cfs 0.017 af
Subcatchment 5S: AREA 2	Runoff Area=0.240 ac 66.67% Impervious Runoff Depth=2.45" Tc=5.0 min CN=90 Runoff=1.02 cfs 0.049 af
Subcatchment 6S: AREA 6	Runoff Area=0.510 ac 11.76% Impervious Runoff Depth=1.43" Tc=5.0 min CN=77 Runoff=1.31 cfs 0.061 af
Subcatchment 7S: AREA 3	Runoff Area=0.440 ac 36.36% Impervious Runoff Depth=1.86" Tc=5.0 min CN=83 Runoff=1.47 cfs 0.068 af
Subcatchment 8S: AREA 7	Runoff Area=0.070 ac 28.57% Impervious Runoff Depth=1.71" Tc=5.0 min CN=81 Runoff=0.22 cfs 0.010 af
Subcatchment 10S: AREA 4	Runoff Area=0.330 ac 100.00% Impervious Runoff Depth=3.27" Tc=5.0 min CN=98 Runoff=1.65 cfs 0.090 af
Subcatchment 20S: OFFSITE TO BMP	Runoff Area=1.170 ac 85.00% Impervious Runoff Depth=2.84" Tc=30.0 min CN=94 Runoff=2.78 cfs 0.276 af
Subcatchment 22S: OFFSITE TO CI 12	Runoff Area=2.170 ac 85.00% Impervious Runoff Depth=2.84" Tc=20.0 min CN=94 Runoff=6.52 cfs 0.513 af
Subcatchment 25S: AREA TO AI 11	Runoff Area=0.020 ac 0.00% Impervious Runoff Depth=1.24" Tc=5.0 min CN=74 Runoff=0.04 cfs 0.002 af
Subcatchment 28S: PROPOSED CONDITIONS	Runoff Area=2.110 ac 32.70% Impervious Runoff Depth=1.78" Tc=5.0 min CN=82 Runoff=6.76 cfs 0.313 af
Pond 3P: ROOF DRAINS TO BASIN	Peak Elev=1,004.48' Inflow=2.02 cfs 0.107 af 6.0" Round Culvert n=0.012 L=21.7' S=0.0198 '/' Outflow=2.02 cfs 0.107 af
Pond 4R: 302-301	Peak Elev=995.86' Inflow=0.91 cfs 0.044 af 15.0" Round Culvert n=0.012 L=165.3' S=0.0050 '/' Outflow=0.91 cfs 0.044 af
Pond 6P: 301-300	Peak Elev=996.05' Inflow=1.93 cfs 0.093 af 12.0" Round Culvert n=0.012 L=201.5' S=0.0050 '/' Outflow=1.93 cfs 0.093 af
Pond 10P: BASIN REACH	Peak Elev=1,000.59' Inflow=2.02 cfs 0.107 af 6.0" Round Culvert n=0.012 L=31.2' S=0.0401 '/' Outflow=2.02 cfs 0.107 af
Pond 12P: DETENTION BASIN	Peak Elev=995.85' Storage=5,093 cf Inflow=5.42 cfs 0.269 af Outflow=0.75 cfs 0.269 af
Pond 24P: 12-11	Peak Elev=996.20' Inflow=6.52 cfs 0.513 af 18.0" Round Culvert n=0.013 L=181.2' S=0.0274'/' Outflow=6.52 cfs 0.513 af
Pond 26P: 11 - 100 MH	Peak Elev=990.29' Inflow=9.70 cfs 1.060 af 18.0" Round Culvert n=0.012 L=123.4' S=0.0297'/' Outflow=9.70 cfs 1.060 af

2020-08-01 BASIN DESIGN

Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

Pond 27P: 11-10

Peak Elev=986.62' Inflow=9.70 cfs 1.060 af 18.0" Round Culvert n=0.012 L=76.1' S=0.0290 '/' Outflow=9.70 cfs 1.060 af

Link 29L: BYPASS AREAS

Inflow=1.53 cfs 0.071 af Primary=1.53 cfs 0.071 af

Total Runoff Area = 9.480 acRunoff Volume = 1.662 afAverage Runoff Depth = 2.10"52.96% Pervious = 5.021 ac47.04% Impervious = 4.459 ac

Summary for Subcatchment 1S: EXISTING CONDITIONS

Runoff = 3.90 cfs @ 12.02 hrs, Volume= 0.218 af, Depth= 1.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 2-Year Rainfall=3.50"

Area (ac)	CN	Description											
2.110	74	>75% Grass cov	ver, Good, I	ISG C									
2.110		100.00% Pervio	us Area									 	
Tc Len (min) (fe	gth eet)	Slope Velocity (ft/ft) (ft/sec)	Capacity (cfs)	Description									

10.0

Direct Entry, Assumed TC of 10 Minutes used for Pre-Developed Condition

Subcatchment 1S: EXISTING CONDITIONS

Summary for Subcatchment 3S: AREA 1

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.91 cfs @ 11.95 hrs, Volume= 0.044 af, Depth= 2.54"

Summary for Subcatchment 4S: AREA 5

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.37 cfs @ 11.96 hrs, Volume= 0.017 af, Depth= 2.10"

Area (ac) CN	Description				
0.050 98	Paved parking, HSG C				
0.050 74 2	>/5% Grass cover, Good, F Weighted Average	ISG C			
0.050	50.00% Pervious Area				
0.050	50.00% Impervious Area				
Tc Length Sl	ope Velocity Capacity	Description			
(min) (feet) (f	ft/ft) (ft/sec) (cfs)				
5.0		Direct Entry,			
	S	ubcatchment 4S:	AREA 5		
		Hydrograph			
1					Dunoff
0.4	0.37 cfs @ 11.96 hrs	$\frac{1}{1}$ $ \frac{1}{1}$			
0.36		+ + + + + + + + + + + _ +	Runoff=0.37 cfs @	⊉ 11.96 hrs	
0.34		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		/pe_ll 24-hr	
0.32		$\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1}$	2-Year Rai	nfall=3.50"	
0.28		+ + + + + + + + + + + + _	Runoff Are	a=0.100 ac	
0.26		· · · · · · · · · · · · · · · · · · ·	Runoff Volum	ie=0.017 af	
(s) 0.24	·	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	Runoff D	epth=2.10"	
≥ 0.22		+ + + + + + + + + + + + + _ +		Гс=5.0 min	
e 0.18		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		CN=86	
0.16					
0.12		÷ ÷ ÷ ÷ ; ; • • • - • • • • • • • • • • • • • •			
0.1		$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
0.08					
0.04		+ + + + + + + + + + + _ +			
0.02					
	6 8 10 12 14 16 18	20 22 24 26 28	30 32 34 36 38 40	42 44 46 48	
		Time (hours)			

Summary for Subcatchment 5S: AREA 2

Runoff = 1.02 cfs @ 11.95 hrs, Volume= 0.049 af, Depth= 2.45"

Summary for Subcatchment 6S: AREA 6

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.31 cfs @ 11.96 hrs, Volume= 0.061 af, Depth= 1.43"

Summary for Subcatchment 7S: AREA 3

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.47 cfs @ 11.96 hrs, Volume= 0.068 af, Depth= 1.86"

Summary for Subcatchment 8S: AREA 7

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.22 cfs @ 11.96 hrs, Volume= 0.010 af, Depth= 1.71"

Area (ac) CN Description	
0.020 98 Paved parking, HSG C 0.050 74 >75% Grass cover, Good, H	HSG C
0.07081Weighted Average0.05071.43% Pervious Area0.02028.57% Impervious Area	
Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs)	y Description)
5.0	Direct Entry,
\$	Subcatchment 8S: AREA 7
	Hydrograph
0.24 0.23 0.22 cfs @ 11.96 hrs	
	Runoff=0.22 cfs @ 11.96 hrs
0.2	
	2-Year Rainfall=3.50"
0.17	Runoff Area=0.070 ac
	Runoff Volume=0.010 af
6 0.14	Runoff Depth=1.71
	-+++++++++++++-
0.05	
0.02	
0.01	
2 4 6 8 10 12 14 16 18	3 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hours)

2020-08-01 BASIN DESIGN

Summary for Subcatchment 10S: AREA 4

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.65 cfs @ 11.95 hrs, Volume= 0.090 af, Depth= 3.27"

Area (ac) CN Description			
0.330 98 Roofs, HSG C			
0.330 100.00% Impervious Area			
Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs)	Description		
5.0	Direct Entry,		
S	ubcatchment 10S: A	AREA 4	
	Hydrograph		
1 65 cfs @ 11 95 hrs			Runoff
		Runoff=1.65 cfs @ 11.95 h	rs
		Type II 24-I	hr
		2-Year Rainfall=3.50)"
		Runoff Area=0.330 a	IC
		Runoff Volume=0.090	af
		Runoff Depth=3.27	7**
		Tc=5.0 m	in
		CN=9	8
	20 22 24 26 28 20		48
2 4 0 0 10 12 14 10 10	Time (hours)	32 34 30 30 40 42 44 40	+0

Summary for Subcatchment 20S: OFFSITE TO BMP

Runoff = 2.78 cfs @ 12.23 hrs, Volume= 0.276 af, Depth= 2.84"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 2-Year Rainfall=3.50"

Area (ac)	CN	Description						
1.170	94	Urban commercial, 85% imp, HSG C						
0.175		15.00% Pervious Area						
0.994		85.00% Impervious Area						
Tc Len (min) (fe	gth eet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)						
30.0		Direct Entry,						

Subcatchment 20S: OFFSITE TO BMP

Summary for Subcatchment 22S: OFFSITE TO CI 12

Runoff = 6.52 cfs @ 12.12 hrs, Volume= 0.513 af, Depth= 2.84"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 2-Year Rainfall=3.50"

Area (ad	c) C	N Des	cription					
2.17	70 9	4 Urb	Urban commercial, 85% imp, HSG C					
0.32	25	15.0	15.00% Pervious Area					
1.84	14	85.0	85.00% Impervious Area					
Tc L (min)	ength (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description			
20.0					Direct Entry,			

Subcatchment 22S: OFFSITE TO CI 12

Summary for Subcatchment 25S: AREA TO AI 11

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.04 cfs @ 11.96 hrs, Volume= 0.002 af, Depth= 1.24"

Area	(ac)	CN	Desc	ription					
0.	.020	74	>75%	Grass cov	ver, Good, H	ISG C			
0.020 100.00% Pervious Area									
Tc (min)	Len (fe	gth et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
5.0						Direct Entry,			
Subcatchment 25S: AREA TO AI 11									
						Hydrograph			

Summary for Subcatchment 28S: PROPOSED CONDITIONS

[49] Hint: Tc<2dt may require smaller dt

Runoff = 6.76 cfs @ 11.96 hrs, Volume= 0.313 af, Depth= 1.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 2-Year Rainfall=3.50"

Area (ac)	CN	Description
0.690	98	Paved parking, HSG C
1.420	74	>75% Grass cover, Good, HSG C
2.110	82	Weighted Average
1.420		67.30% Pervious Area
0.690		32.70% Impervious Area
Tc Leng (min) (fe	gth eet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)
5.0		Direct Entry,

Subcatchment 28S: PROPOSED CONDITIONS

Summary for Pond 3P: ROOF DRAINS TO BASIN

[58] Hint: Peaked 3.55' above defined flood level

Inflow Arec	1 =	0.430 ac,	88.37% Imp	pervious,	Inflow	Depth =	2.99"	for 2-'	Year event	
Inflow	=	2.02 cfs @	11.95 hrs,	Volume=	-	0.107 a	f			
Outflow	=	2.02 cfs @	11.95 hrs,	Volume=	-	0.107 a	f, Atter	า= 0%,	Lag= 0.0 mir	ſ
Primary	=	2.02 cfs @	11.95 hrs,	Volume=	-	0.107 a	f			

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 1,004.48' @ 11.95 hrs Flood Elev= 1,000.93'

Device	Routing	Invert	Outlet Devices
#1	Primary	994.54'	6.0" Round Culvert L= 21.7' RCP, rounded edge headwall, Ke= 0.100 Inlet / Outlet Invert= 994.54' / 994.11' S= 0.0198 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.20 sf

Primary OutFlow Max=1.94 cfs @ 11.95 hrs HW=1,004.41' TW=1,000.54' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.94 cfs @ 9.86 fps)

Pond 3P: ROOF DRAINS TO BASIN

Stage-Discharge Primary 1,004 1,003 1,002 1,001 Elevation (feet) 1,000 999 998 997 996 995 Culvert 2 ġ. 0 Discharge (cfs) Pond 3P: ROOF DRAINS TO BASIN Stage-Area-Storage Storage 1,004 1,003 1,002-Flood Elevation 1,001 Elevation (feet) 1,000 999 998 997 996 995 0

Pond 3P: ROOF DRAINS TO BASIN

Storage (acre-feet)

Summary for Pond 4R: 302-301

[58] Hint: Peaked 0.92' above defined flood level

Inflow Arec	=	0.210 ac,	71.43% Imp	pervious,	Inflow Depth	= 2.54	4" for 2-`	Year event
Inflow	=	0.91 cfs @	11.95 hrs,	Volume=	• 0.044	l af		
Outflow	=	0.91 cfs @	11.95 hrs,	Volume=	• 0.044	1 af, At	ten= 0%,	Lag= 0.0 min
Primary	=	0.91 cfs @	11.95 hrs,	Volume=	• 0.044	l af		

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 995.86' @ 12.22 hrs Flood Elev= 994.94'

Device	Routing	Invert	Outlet Devices
#1	Primary	994.94'	15.0" Round Culvert L= 165.3' RCP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 994.94' / 994.11' S= 0.0050 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf

Primary OutFlow Max=0.00 cfs @ 11.95 hrs HW=995.77′ TW=995.94′ (Dynamic Tailwater) ↓1=Culvert (Controls 0.00 cfs)

Pond 4R: 302-301

Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 6P: 301-300

[80] Warning: Exceeded Pond 4R by 0.20' @ 12.00 hrs (1.51 cfs 0.019 af)

Inflow Arec	a =	0.450 ac,	68.89% Impervious,	Inflow Depth = 2	.49" for 2-Year event
Inflow	=	1.93 cfs @	11.95 hrs, Volume	= 0.093 af	
Outflow	=	1.93 cfs @	11.95 hrs, Volume	= 0.093 af,	Atten= 0%, Lag= 0.0 min
Primary	=	1.93 cfs @	11.95 hrs, Volume	= 0.093 af	

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 996.05' @ 12.00 hrs Flood Elev= 998.82'

Device	Routing	Invert	Outlet Devices
#1	Primary	994.01'	12.0" Round 202-201 L= 201.5' CPP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 994.01' / 993.00' S= 0.0050 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.91 cfs @ 11.95 hrs HW=995.94' TW=995.30' (Dynamic Tailwater) **1=202-201** (Outlet Controls 1.91 cfs @ 2.43 fps)

Pond 6P: 301-300

2020-08-01 BASIN DESIGN

Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

Pond 6P: 301-300

Summary for Pond 10P: BASIN REACH

Inflow Area =		0.430 ac,	88.37% Imperviou	us, Inflow	Depth =	2.99"	for 2-Year event
Inflow	=	2.02 cfs @	11.95 hrs, Volum	ne=	0.107 at	-	
Outflow	=	2.02 cfs @	11.95 hrs, Volum	ne=	0.107 at	i, Atter	n= 0%, Lag= 0.0 min
Primary	=	2.02 cfs @	11.95 hrs, Volum	ne=	0.107 at	-	

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 1,000.59' @ 11.96 hrs Flood Elev= 1,000.67'

Device	Routing	Invert	Outlet Devices
#1	Primary	994.25'	6.0" Round Culvert L= 31.2' RCP, rounded edge headwall, Ke= 0.100 Inlet / Outlet Invert= 994.25' / 993.00' S= 0.0401 '/' Cc= 0.900 n= 0.012 Corrugated PP smooth interior Flow Area= 0.20 sf

Primary OutFlow Max=2.02 cfs @ 11.95 hrs HW=1,000.54' TW=995.29' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 2.02 cfs @ 10.28 fps)

Pond 10P: BASIN REACH

2020-08-01 BASIN DESIGN

Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

Pond 10P: BASIN REACH

Summary for Pond 12P: DETENTION BASIN

Inflow Area	a =	1.320 ac,	64.39% Impervious,	Inflow Depth = 2	2.44" for 2-Yearevent
Inflow	=	5.42 cfs @	11.95 hrs, Volume	= 0.269 af	
Outflow	=	0.75 cfs @	12.19 hrs, Volume	= 0.269 af,	Atten= 86%, Lag= 13.9 min
Primary	=	0.75 cfs @	12.19 hrs, Volume	= 0.269 af	

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 995.85'@ 12.19 hrs Surf.Area= 3,015 sf Storage= 5,093 cf Flood Elev= 999.00' Surf.Area= 6,484 sf Storage= 19,812 cf

Plug-Flow detention time= 135.0 min calculated for 0.269 af (100% of inflow) Center-of-Mass det. time= 135.1 min (924.6 - 789.5)

Volume	Invert	Avail.Store	age Storag	ge Description			
#1	992.10'	19,812	2 cf Custo	m Stage Data (Py	ramidal) Listed	below (Recalc)	
Elevatio	n Surf	.Area	Inc.Store	Cum.Store	Wet.Area		
(feet	t)	(sq-ft) (cu	ubic-feet)	(cubic-feet)	(sq-ft)		
992.1	0	4	0	0	4		
993.0	0	539	177	177	541		
994.0	0	1,359	918	1,095	1,370		
995.0	0	2,235	1,779	2,874	2,262		
996.0	0	3,166	2,687	5,561	3,215		
997.0	0	4,169	3,656	9,217	4,247		
998.0	998.00 5,290		4,718	13,935	5,401		
999.0	0	6,484	5,877	19,812	6,634		
Device	Routing	Invert	Outlet Dev	vices			
#1	Primary	988.04'	18.0" Rour	nd Culvert L= 50	.1' RCP, groove	end projecting, Ke= 0.200	
			Inlet / Out	let Invert= 988.04	'/987.00' S= 0.0	0208 '/' Cc= 0.900	
	n= 0.012 Corrugated PP, smooth interior, Flow Area= 1.77 sf						
#2	Device 1	992.10'	1.5" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads				
#3	Device 1	994.25'	4.0" W x 4.0" H Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads				
#4	Device 1	996.00'	12.0" W x 6.0" H Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads				
#5	Device 1	997.50'	4.0' long Sl	harp-Crested Rec	tangular Weir	2 End Contraction(s)	
Primary OutFlow Max=0.75 cfs @ 12.19 hrs HW=995.85' TW=990.23' (Dynamic Tailwater)							

-2=Orifice/Grate (Orifice Controls 0.11 cfs @ 9.24 fps)

-3=Orifice/Grate (Orifice Controls 0.64 cfs @ 5.76 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

-5=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 12P: DETENTION BASIN

Pond 12P: DETENTION BASIN

Summary for Pond 24P: 12-11

[58] Hint: Peaked 2.90' above defined flood level

Inflow Arec	1 =	2.170 ac,	85.00% Imp	ervious, I	nflow D)epth =	2.84"	for 2-	lear event	
Inflow	=	6.52 cfs @	12.12 hrs, \	/olume=		0.513 af				
Outflow	=	6.52 cfs @	12.12 hrs, \	/olume=		0.513 af	, Atter	n= 0%,	Lag= 0.0 m	nin
Primary	=	6.52 cfs @	12.12 hrs, \	/olume=		0.513 af				

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 996.20' @ 12.12 hrs Flood Elev= 993.30'

Device	Routing	Invert	Outlet Devices
#1	Primary	994.87'	18.0" Round Culvert L= 181.2' RCP, end-section conforming to fill, Ke= 0.500
			Inlet / Outlet Invert= 994.87' / 989.91' S= 0.0274 '/' Cc= 0.900
			n= 0.013 Concrete pipe, bends & connections, Flow Area= 1.77 sf

Primary OutFlow Max=6.44 cfs @ 12.12 hrs HW=996.19' TW=990.26' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 6.44 cfs @ 3.91 fps)

Pond 24P: 12-11

Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 26P: 11 - 100 MH

Inflow Arec	= c	4.680 ac,	78.82% Impe	ervious, I	nflow D)epth =	2.72"	for 2-Year event
Inflow	=	9.70 cfs @	12.14 hrs, V	/olume=		1.060 af		
Outflow	=	9.70 cfs @	12.14 hrs, V	/olume=		1.060 af	, Atter	n= 0%, Lag= 0.0 min
Primary	=	9.70 cfs @	12.14 hrs, V	/olume=		1.060 af		

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 990.29' @ 12.14 hrs Flood Elev= 995.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	988.71'	18.0" Round Culvert L= 123.4' RCP, groove end projecting, Ke= 0.200 Inlet / Outlet Invert= $988.71' / 985.04'$ S= $0.0297' / Cc= 0.900$ n= 0.012 Corrugated PP, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=9.65 cfs @ 12.14 hrs HW=990.28' TW=986.61' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 9.65 cfs @ 5.46 fps)

Pond 26P: 11 - 100 MH

Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 27P: 11-10

Inflow Arec	= c	4.680 ac,	78.82% Imp	pervious,	Inflow	Depth =	2.72"	for 2-Yec	ar event
Inflow	=	9.70 cfs @	12.14 hrs,	Volume=	:	1.060 af			
Outflow	=	9.70 cfs @	12.14 hrs,	Volume=	:	1.060 af	, Atter	n= 0%, Lag	g= 0.0 min
Primary	=	9.70 cfs @	12.14 hrs,	Volume=	-	1.060 af	:		

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 986.62' @ 12.14 hrs Flood Elev= 995.00'

- ··

Device	Routing	Invert	Outlet Devices
#1	Primary	985.04'	18.0" Round Culvert L= 76.1' RCP, groove end projecting, Ke= 0.200
			Inlet / Outlet Invert= 985.04' / 982.83' S= 0.0290 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=9.65 cfs @ 12.14 hrs HW=986.61' (Free Discharge) **1=Culvert** (Inlet Controls 9.65 cfs @ 5.46 fps)

Pond 27P: 11-10

Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

Summary for Link 29L: BYPASS AREAS

Inflow A	Area =	0.580 ac,	13.79% Impervious,	Inflow Depth = 1	.46" for 2-	Year event
Inflow	=	1.53 cfs @	11.96 hrs, Volume=	= 0.071 af		
Primary	/ =	1.53 cfs @	11.96 hrs, Volume=	= 0.071 af,	Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs

Link 29L: BYPASS AREAS

Time span=1.00-48.00 hrs, dt=0.05 hrs, 941 points x 2 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: EXISTING CONDITIONS	Runoff Area=2.110 ac 0.00% Impervious Runoff Depth=2.61" Tc=10.0 min CN=74 Runoff=8.33 cfs 0.458 af
Subcatchment 3S: AREA 1	Runoff Area=0.210 ac 71.43% Impervious Runoff Depth=4.27" Tc=5.0 min CN=91 Runoff=1.49 cfs 0.075 af
Subcatchment 4S: AREA 5	Runoff Area=0.100 ac 50.00% Impervious Runoff Depth=3.75" Tc=5.0 min CN=86 Runoff=0.65 cfs 0.031 af
Subcatchment 5S: AREA 2	Runoff Area=0.240 ac 66.67% Impervious Runoff Depth=4.17" Tc=5.0 min CN=90 Runoff=1.67 cfs 0.083 af
Subcatchment 6S: AREA 6	Runoff Area=0.510 ac 11.76% Impervious Runoff Depth=2.88" Tc=5.0 min CN=77 Runoff=2.63 cfs 0.122 af
Subcatchment 7S: AREA 3	Runoff Area=0.440 ac 36.36% Impervious Runoff Depth=3.45" Tc=5.0 min CN=83 Runoff=2.66 cfs 0.126 af
Subcatchment 8S: AREA 7	Runoff Area=0.070 ac 28.57% Impervious Runoff Depth=3.25" Tc=5.0 min CN=81 Runoff=0.40 cfs 0.019 af
Subcatchment 10S: AREA 4	Runoff Area=0.330 ac 100.00% Impervious Runoff Depth>5.06" Tc=5.0 min CN=98 Runoff=2.52 cfs 0.139 af
Subcatchment 20S: OFFSITE TO BMP	Runoff Area=1.170 ac 85.00% Impervious Runoff Depth=4.60" Tc=30.0 min CN=94 Runoff=4.40 cfs 0.449 af
Subcatchment 22S: OFFSITE TO CI 12	Runoff Area=2.170 ac 85.00% Impervious Runoff Depth=4.60" Tc=20.0 min CN=94 Runoff=10.31 cfs 0.833 af
Subcatchment 25S: AREA TO AI 11	Runoff Area=0.020 ac 0.00% Impervious Runoff Depth=2.61" Tc=5.0 min CN=74 Runoff=0.09 cfs 0.004 af
Subcatchment 28S: PROPOSED CONDITIONS	Runoff Area=2.110 ac 32.70% Impervious Runoff Depth=3.35" Tc=5.0 min CN=82 Runoff=12.44 cfs 0.589 af
Pond 3P: ROOF DRAINS TO BASIN	Peak Elev=1,019.09' Inflow=3.16 cfs 0.170 af 6.0" Round Culvert n=0.012 L=21.7' S=0.0198 '/' Outflow=3.16 cfs 0.170 af
Pond 4R: 302-301	Peak Elev=997.77' Inflow=1.49 cfs 0.075 af 15.0" Round Culvert n=0.012 L=165.3' S=0.0050 '/' Outflow=1.49 cfs 0.075 af
Pond 6P: 301-300	Peak Elev=998.05' Inflow=3.16 cfs 0.158 af 12.0" Round Culvert n=0.012 L=201.5' S=0.0050 '/' Outflow=3.16 cfs 0.158 af
Pond 10P: BASIN REACH	Peak Elev=1,009.17' Inflow=3.16 cfs 0.170 af 6.0" Round Culvert n=0.012 L=31.2' S=0.0401 '/' Outflow=3.16 cfs 0.170 af
Pond 12P: DETENTION BASIN	Peak Elev=996.76' Storage=8,239 cf Inflow=8.98 cfs 0.455 af Outflow=2.64 cfs 0.455 af
Pond 24P: 12-11	Peak Elev=997.09' Inflow=10.31 cfs 0.833 af 18.0" Round Culvert n=0.013 L=181.2' S=0.0274 '/' Outflow=10.31 cfs 0.833 af
Pond 26P: 11 - 100 MH	Peak Elev=992.63' Inflow=16.76 cfs 1.741 af 18.0" Round Culvert n=0.012 L=123.4' S=0.0297 '/' Outflow=16.76 cfs 1.741 af

2020-08-01 BASIN DESIGN

Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

Pond 27P: 11-10

Peak Elev=988.27' Inflow=16.76 cfs 1.741 af 18.0" Round Culvert n=0.012 L=76.1' S=0.0290 '/' Outflow=16.76 cfs 1.741 af

Link 29L: BYPASS AREAS

Inflow=3.03 cfs 0.141 af Primary=3.03 cfs 0.141 af

Total Runoff Area = 9.480 acRunoff Volume = 2.929 afAverage Runoff Depth = 3.71"52.96% Pervious = 5.021 ac47.04% Impervious = 4.459 ac

Summary for Subcatchment 1S: EXISTING CONDITIONS

Runoff = 8.33 cfs @ 12.02 hrs, Volume= 0.458 af, Depth= 2.61"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 10-Year Rainfall=5.30"

Are	ea (ac)	CN	Desc	ription		
	2.110	74	>75%	Grass cov	ver, Good, H	HSG C
	2.110		100.0	0% Pervio	us Area	
(m	Tc Ler in) (f	ngth eet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description

10.0

Direct Entry, Assumed TC of 10 Minutes used for Pre-Developed Condition

Subcatchment 1S: EXISTING CONDITIONS

Summary for Subcatchment 3S: AREA 1

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.49 cfs @ 11.95 hrs, Volume= 0.075 af, Depth= 4.27"

Summary for Subcatchment 4S: AREA 5

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.65 cfs @ 11.95 hrs, Volume= 0.031 af, Depth= 3.75"

Summary for Subcatchment 5S: AREA 2

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.67 cfs @ 11.95 hrs, Volume= 0.083 af, Depth= 4.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 10-Year Rainfall=5.30"

Time (hours)

Summary for Subcatchment 6S: AREA 6

[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.63 cfs @ 11.96 hrs, Volume= 0.122 af, Depth= 2.88"

Summary for Subcatchment 7S: AREA 3

[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.66 cfs @ 11.95 hrs, Volume= 0.126 af, Depth= 3.45"

Summary for Subcatchment 8S: AREA 7

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.40 cfs @ 11.96 hrs, Volume= 0.019 af, Depth= 3.25"

Area (ac) CN Description		
0.020 98 Paved parking, HSG C		
0.050 74 >75% Grass cover, Good, H	HSG C	
0.070 81 Weighted Average		
0.050 71.43% Pervious Area		
0.020 28.57% Impervious Area		
(min) (fact) (ft (ft) (ft (sac)) (of)	/ Description	
) Direct Entry	
5.0	Direct Entry,	
	Subcatchment 85: APEA 7	
5	Subculchimeni US. AREA /	
	Hydrograph	
0.44		Runoff
0.36	Type II 24-hr	
0.34	-+++	
0.32		
0.3	Bunoff Volumer 0.040 of	
	Runoff Depth=3.25"	
≥ 0.22 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×	Tc=5.0 min	
	-+++++++++++++-	
0.18		
0.16		
0.08		
0.06		
0.04		
0.02		
2 7 0 0 10 12 14 10 10	Time (hours)	

2020-08-01 BASIN DESIGN

Summary for Subcatchment 10S: AREA 4

[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.52 cfs @ 11.95 hrs, Volume= 0.139 af, Depth> 5.06"

Area (a	IC) CN	l Desc	ription																			
0.3	30 98	8 Roof	s, HSG (2																		
0.3	30	100.0	00% Imp	ervi	ous Ar	ea																
Tc l (min)	Length (feet)	Slope (ft/ft)	Veloc (ft/se	ity c)	Capa (city cfs)	De	escrip	otior	٦												
5.0							Dir	ect	Entry	1,												
						S	ubo	cato	:hm	nent	105	5: A	REA	4								
							н	lydro	ogra	ph												
-								 	 	 	 	 		 	 	 	 	 	 	 		Runoff
-		2.52	CIS @	11.	.95 N	rs		I I	l L	 	 		Żun	off		- 	fe	<u></u> 1	1 a	5 h	re	
-								i I I	i I I	1	1	•	l			, 2 (י פוק ד	e Ivn	ין יו.ס ם 11	24-	hr	
-									l I	1	- 	- 	1	1	0_Y	ear	Ra	yp linf:	ب all=	53	0"	
2-					- -	1 - - - - 		1	 	 	 	· 	 		Run	off	Δr	ea=	0.3	30 :	ac	
-								 	 	 	 	 	1	Ru	nof	fVa	blur	ne=	=0.1	39	af	
(s								I I					1		R	uno	ff C)ep	th>	5.0	6"	
(cf								l I	l I	1	, 	 	1	l I				Тс	=5.0	0 m	in	
Flow						 		 	 	 	 	 	1	 	 	 	 		C	N=9	98	
		$-\frac{1}{1}$ - $-\frac{1}{1}$		/ -	$-\frac{1}{1}$				[<u> </u>	<u> </u> 	$\frac{1}{1}$	<u> </u>								
1-								I I	l I	1	1	1	1	1	1	1	1	1	I I	1		
-						 		 	 	 	 	 	1	 	 	 	 	 	 	 		
-								I I	l l	 	 	I I	1	1	 	 	I I	1	 	 		
-								i I I	i I I	1	 	 	i I	i I I	i I I	 	 	 	i I			
-																		' 		 		
0-	<u> </u>				···· í···											44			///			
	2 4	68	10 12	2 14	16	18	20	Tim	24 1e (h	26 ours)	28	30	32	34	36	38	40	42	44	46	48	

Summary for Subcatchment 20S: OFFSITE TO BMP

Runoff = 4.40 cfs @ 12.23 hrs, Volume= 0.449 af, Depth= 4.60"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 10-Year Rainfall=5.30"

Area (c	ac)	CN	Desc	ription						
1.1	70	94	Urba	n commer	cial, 85% im	np, HSG C				
0.1	75		15.00% Pervious Area							
0.9	94		85.00% Impervious Area							
Tc (min)	Leng (fe	gth et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
30.0						Direct Entry,				

Subcatchment 20S: OFFSITE TO BMP

Summary for Subcatchment 22S: OFFSITE TO CI 12

Runoff = 10.31 cfs @ 12.12 hrs, Volume= 0.833 af, Depth= 4.60"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 10-Year Rainfall=5.30"

Area (ac) CN	Desc	ription				
2.170) 94	Urba	n commer	cial, 85% im	p, HSG C		
0.325	0.325 15.00% Pervious Area						
1.844	844 85.00% Impervious Area						
Tc Le (min) (ngth feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
20.0				•••	Direct Entry,		

Subcatchment 22S: OFFSITE TO CI 12

Summary for Subcatchment 25S: AREA TO AI 11

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.09 cfs @ 11.96 hrs, Volume= 0.004 af, Depth= 2.61"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 10-Year Rainfall=5.30"

Area	(ac)	CN	Desc	ription						
0	.020	74	>75%	Grass cov	ver, Good, H	ISG C				
0	.020		100.0	0% Perviou	us Area					
Tc (min)	Len (fe	gth eet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
5.0						Direct Entry,				

Subcatchment 25S: AREA TO AI 11

Summary for Subcatchment 28S: PROPOSED CONDITIONS

[49] Hint: Tc<2dt may require smaller dt

Runoff = 12.44 cfs @ 11.95 hrs, Volume= 0.589 af, Depth= 3.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 10-Year Rainfall=5.30"

Area (ac)	CN	Description
0.690	98	Paved parking, HSG C
1.420	74	>75% Grass cover, Good, HSG C
2.110	82	Weighted Average
1.420		67.30% Pervious Area
0.690		32.70% Impervious Area
Tc Len	gth	Slope Velocity Capacity Description
(min) (fe	eet)	(ft/ft) (ft/sec) (cfs)
5.0		Direct Entry,

Subcatchment 28S: PROPOSED CONDITIONS

Summary for Pond 3P: ROOF DRAINS TO BASIN

[58] Hint: Peaked 18.16' above defined flood level

Inflow Arec	a =	0.430 ac,	88.37% Imp	pervious,	Inflow	Depth >	4.76"	for 10)-Year event	
Inflow	=	3.16 cfs @	11.95 hrs,	Volume=	=	0.170 af				
Outflow	=	3.16 cfs @	11.95 hrs,	Volume=	=	0.170 af	, Atter	า= 0%,	Lag= 0.0 mir	ſ
Primary	=	3.16 cfs @	11.95 hrs,	Volume=	=	0.170 af				

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 1,019.09' @ 11.95 hrs Flood Elev= 1,000.93'

Device	Routing	Invert	Outlet Devices
#1	Primary	994.54'	6.0" Round Culvert L= 21.7' RCP, rounded edge headwall, Ke= 0.100 Inlet / Outlet Invert= 994.54' / 994.11' S= 0.0198 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.20 sf

Primary OutFlow Max=3.10 cfs @ 11.95 hrs HW=1,019.00' TW=1,009.11' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 3.10 cfs @ 15.76 fps)

Pond 3P: ROOF DRAINS TO BASIN

Pond 3P: ROOF DRAINS TO BASIN

Storage (acre-feet)

Summary for Pond 4R: 302-301

[58] Hint: Peaked 2.83' above defined flood level

Inflow Arec	a =	0.210 ac,	71.43% Imp	pervious,	Inflow D)epth =	4.27"	for 10)-Year event	
Inflow	=	1.49 cfs @	11.95 hrs,	Volume=	=	0.075 af				
Outflow	=	1.49 cfs @	11.95 hrs,	Volume=	=	0.075 af	, Atter	ר= 0%,	Lag= 0.0 mir	ſ
Primary	=	1.49 cfs @	11.95 hrs,	Volume=	=	0.075 af				

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 997.77' @ 11.97 hrs Flood Elev= 994.94'

Device	Routing	Invert	Outlet Devices
#1	Primary	994.94'	15.0" Round Culvert L= 165.3' RCP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 994.94' / 994.11' S= 0.0050 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf

Primary OutFlow Max=0.00 cfs @ 11.95 hrs HW=997.69' TW=997.97' (Dynamic Tailwater) ↓1=Culvert (Controls 0.00 cfs)

Pond 4R: 302-301

Pond 4R: 302-301

Summary for Pond 6P: 301-300

[80] Warning: Exceeded Pond 4R by 0.29' @ 11.95 hrs (2.37 cfs 0.044 af)

Inflow Arec	a =	0.450 ac,	68.89% Impervio	ous, Inflow	Depth =	4.22"	for 10	-Year event
Inflow	=	3.16 cfs @	11.95 hrs, Volu	me=	0.158 af			
Outflow	=	3.16 cfs @	11.95 hrs, Volu	me=	0.158 af	, Atter	n= 0%,	Lag= 0.0 min
Primary	=	3.16 cfs @	11.95 hrs, Volu	me=	0.158 af			

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 998.05' @ 11.97 hrs Flood Elev= 998.82'

Device	Routing	Invert	Outlet Devices
#1	Primary	994.01'	12.0" Round 202-201 L= 201.5' CPP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 994.01' / 993.00' S= 0.0050 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=3.14 cfs @ 11.95 hrs HW=997.97' TW=996.26' (Dynamic Tailwater) **1=202-201** (Outlet Controls 3.14 cfs @ 4.00 fps)

Pond 6P: 301-300

2020-08-01 BASIN DESIGN

Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

Pond 6P: 301-300

Summary for Pond 10P: BASIN REACH

[58] Hint: Peaked 8.50' above defined flood level

Inflow Arec	a =	0.430 ac,	88.37% Imperviou	, Inflow Depth >	4.76" for	10-Year event
Inflow	=	3.16 cfs @	11.95 hrs, Volum	e= 0.170 a	f	
Outflow	=	3.16 cfs @	11.95 hrs, Volum	e= 0.170 a	f, Atten=0	1%, Lag= 0.0 min
Primary	=	3.16 cfs @	11.95 hrs, Volum	e= 0.170 a	f	

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 1,009.17' @ 11.95 hrs Flood Elev= 1,000.67'

Device	Routing	Invert	Outlet Devices
#1	Primary	994.25'	6.0" Round Culvert L= 31.2' RCP, rounded edge headwall, Ke= 0.100 Inlet / Outlet Invert= 994.25' / 993.00' S= 0.0401 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.20 sf

Primary OutFlow Max=3.16 cfs @ 11.95 hrs HW=1,009.11' TW=996.25' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 3.16 cfs @ 16.08 fps)

Pond 10P: BASIN REACH

2020-08-01 BASIN DESIGN

Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

Pond 10P: BASIN REACH

Summary for Pond 12P: DETENTION BASIN

[80] Warning: Exceeded Pond 6P by 0.16' @ 24.35 hrs (0.03 cfs 0.001 af)

Inflow Arec	x =	1.320 ac,	64.39% Impervious,	Inflow Depth >	4.14" for 10-	Year event
Inflow	=	8.98 cfs @	11.95 hrs, Volume	= 0.455 af		
Outflow	=	2.64 cfs @	12.09 hrs, Volume	= 0.455 af,	Atten= 71%,	Lag= 8.2 min
Primary	=	2.64 cfs @	12.09 hrs, Volume	= 0.455 af		

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 996.76' @ 12.09 hrs Surf.Area= 3,914 sf Storage= 8,239 cf Flood Elev= 999.00' Surf.Area= 6,484 sf Storage= 19,812 cf

Plug-Flow detention time= 116.8 min calculated for 0.455 af (100% of inflow) Center-of-Mass det. time= 116.2 min (894.3 - 778.1)

Volume	Invert	Avail.Store	age Storag	ge Description		
#1	992.10'	19,812	2 cf Custor	n Stage Data (Pyr	amidal) Listed b	elow (Recalc)
Elevation	n Surf.	Area	Inc.Store	Cum.Store	Wet.Area	
(teet		sq-tt) (Cl	JDIC-TEET)	(CUDIC-TEET)	(sq-tt)	
992.10	C	4	0	0	4	
993.00	C	539	177	177	541	
994.00	C	1,359	918	1,095	1,370	
995.00) 2	2,235	1,779	2,874	2,262	
996.00) (3,166	2,687	5,561	3,215	
997.00) 4	4,169	3,656	9,217	4,247	
998.00	C .	5,290	4,718	13,935	5,401	
999.00) (6,484	5,877	19,812	6,634	
Device	Routing	Invert	Outlet Dev	rices		
#1	Primary	988.04'	18.0" Rour Inlet / Outl n= 0.012 (et Invert= 988.04'	' RCP, groove (/ 987.00' S= 0.02	end projecting, Ke= 0.200 208 '/' Cc= 0.900 208 Areg= 1.77 sf
#2	Device 1	992.10'	1.5" Vert. C)rifice/Grate C=	0.600 Limited to	o weir flow at low heads
#3	Device 1	994.25'	4.0" W x 4.0" H Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads			
#4	Device 1	996.00'	12.0" W x 6	.0" H Vert. Orifice/	Grate C= 0.60	0 Limited to weir flow at low heads
#5	Device 1	997.50'	4.0' long Sh	narp-Crested Rect	angular Weir 2	End Contraction(s)
			•	-	-	• •

Primary OutFlow Max=2.63 cfs @ 12.09 hrs HW=996.75' TW=992.19' (Dynamic Tailwater)

1=Culvert (Passes 2.63 cfs of 21.53 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.13 cfs @ 10.29 fps)

-3=Orifice/Grate (Orifice Controls 0.82 cfs @ 7.36 fps)

-4=Orifice/Grate (Orifice Controls 1.69 cfs @ 3.38 fps)

-5=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 12P: DETENTION BASIN

Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

Pond 12P: DETENTION BASIN

Summary for Pond 24P: 12-11

[58] Hint: Peaked 3.79' above defined flood level

Inflow Arec	a =	2.170 ac,	85.00% Imper	vious, Inflow	Depth =	4.60" fe	or 10-Year event
Inflow	=	10.31 cfs @	12.12 hrs, Vc	olume=	0.833 af		
Outflow	=	10.31 cfs @	12.12 hrs, Vc	olume=	0.833 af	Atten=	: 0%, Lag= 0.0 min
Primary	=	10.31 cfs @	12.12 hrs, Vc	olume=	0.833 af		

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 997.09' @ 12.12 hrs Flood Elev= 993.30'

Device	Routing	Invert	Outlet Devices
#1	Primary	994.87'	18.0" Round Culvert L= 181.2' RCP, end-section conforming to fill, Ke= 0.500
			Inlet / Outlet Invert= 994.8/1 / 989.911 S= 0.02/4 /1 Cc= 0.900
			n= 0.013 Concrete pipe, bends & connections, Flow Area= 1.77 sf

Primary OutFlow Max=10.19 cfs @ 12.12 hrs HW=997.05′ TW=992.46′ (Dynamic Tailwater) ←1=Culvert (Inlet Controls 10.19 cfs @ 5.77 fps)

Pond 24P: 12-11

2020-08-01 BASIN DESIGN

Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

Pond 24P: 12-11

Summary for Pond 26P: 11 - 100 MH

Inflow Area	a =	4.680 ac,	78.82% Imperviou	s, Inflow Depth	ı > 4.46"	for 10-Year event
Inflow	=	16.76 cfs @	12.13 hrs, Volum	e= 1.74	1 af	
Outflow	=	16.76 cfs @	12.13 hrs, Volum	e= 1.74	1 af, Atte	n= 0%, Lag= 0.0 min
Primary	=	16.76 cfs @	12.13 hrs, Volum	e= 1.74	1 af	

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 992.63' @ 12.13 hrs Flood Elev= 995.00'

..

Device	Routing	Invert	Outlet Devices
#1	Primary	988.71'	18.0" Round Culvert L= 123.4' RCP, groove end projecting, Ke= 0.200 Inlet / Outlet Invert= $988.71' / 985.04'$ S= $0.0297' / Cc= 0.900$ n= 0.012 Corrugated PP, smooth interior. Flow Areg= 1.77 sf

Primary OutFlow Max=16.63 cfs @ 12.13 hrs HW=992.53' TW=988.24' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 16.63 cfs @ 9.41 fps)

Pond 26P: 11 - 100 MH

Summary for Pond 27P: 11-10

Inflow Arec	= c	4.680 ac,	78.82% Impe	ervious, Ir	nflow D	epth >	4.46"	for 1	0-Year event	
Inflow	=	16.76 cfs @	12.13 hrs, V	/olume=		1.741 af				
Outflow	=	16.76 cfs @	12.13 hrs, V	/olume=		1.741 af	, Atter	n= 0%	, Lag= 0.0 min	
Primary	=	16.76 cfs @	12.13 hrs, V	/olume=		1.741 af				

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 988.27' @ 12.13 hrs Flood Elev= 995.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	985.04'	18.0" Round Culvert L= 76.1' RCP, groove end projecting, Ke= 0.200 Inlet / Outlet Invert= 985.04' / 982.83' S= 0.0290 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=16.63 cfs @ 12.13 hrs HW=988.24′ (Free Discharge) ←1=Culvert (Inlet Controls 16.63 cfs @ 9.41 fps)

Pond 27P: 11-10

Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

Pond 27P: 11-10

Summary for Link 29L: BYPASS AREAS

Inflow A	\rea =	0.580 ac,	13.79% Impervious,	Inflow Depth = 2.9	2" for 10-Year event
Inflow	=	3.03 cfs @	11.96 hrs, Volume=	0.141 af	
Primary	=	3.03 cfs @	11.96 hrs, Volume=	• 0.141 af, A	tten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs

Link 29L: BYPASS AREAS

Time span=1.00-48.00 hrs, dt=0.05 hrs, 941 points x 2 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: EXISTING CONDITIONS	Runoff Area=2.110 ac 0.00% Impervious Runoff Depth=4.66" Tc=10.0 min CN=74 Runoff=14.76 cfs 0.819 af
Subcatchment 3S: AREA 1	Runoff Area=0.210 ac 71.43% Impervious Runoff Depth=6.63" Tc=5.0 min CN=91 Runoff=2.24 cfs 0.116 af
Subcatchment 4S: AREA 5	Runoff Area=0.100 ac 50.00% Impervious Runoff Depth=6.04" Tc=5.0 min CN=86 Runoff=1.01 cfs 0.050 af
Subcatchment 5S: AREA 2	Runoff Area=0.240 ac 66.67% Impervious Runoff Depth=6.51" Tc=5.0 min CN=90 Runoff=2.54 cfs 0.130 af
Subcatchment 6S: AREA 6	Runoff Area=0.510 ac 11.76% Impervious Runoff Depth=5.00" Tc=5.0 min CN=77 Runoff=4.47 cfs 0.212 af
Subcatchment 7S: AREA 3	Runoff Area=0.440 ac 36.36% Impervious Runoff Depth=5.69" Tc=5.0 min CN=83 Runoff=4.27 cfs 0.209 af
Subcatchment 8S: AREA 7	Runoff Area=0.070 ac 28.57% Impervious Runoff Depth=5.46" Tc=5.0 min CN=81 Runoff=0.66 cfs 0.032 af
Subcatchment 10S: AREA 4	Runoff Area=0.330 ac 100.00% Impervious Runoff Depth>7.46" Tc=5.0 min CN=98 Runoff=3.67 cfs 0.205 af
Subcatchment 20S: OFFSITE TO BMP	Runoff Area=1.170 ac 85.00% Impervious Runoff Depth=6.98" Tc=30.0 min CN=94 Runoff=6.54 cfs 0.681 af
Subcatchment 22S: OFFSITE TO CI 12	Runoff Area=2.170 ac 85.00% Impervious Runoff Depth=6.98" Tc=20.0 min CN=94 Runoff=15.31 cfs 1.263 af
Subcatchment 25S: AREA TO AI 11	Runoff Area=0.020 ac 0.00% Impervious Runoff Depth=4.66" Tc=5.0 min CN=74 Runoff=0.17 cfs 0.008 af
Subcatchment 28S: PROPOSED CONDITIONS	Runoff Area=2.110 ac 32.70% Impervious Runoff Depth=5.58" Tc=5.0 min CN=82 Runoff=20.17 cfs 0.980 af
Pond 3P: ROOF DRAINS TO BASIN	Peak Elev=1,047.46' Inflow=4.68 cfs 0.255 af 6.0" Round Culvert n=0.012 L=21.7' S=0.0198 '/' Outflow=4.68 cfs 0.255 af
Pond 4R: 302-301	Peak Elev=1,000.90' Inflow=2.24 cfs 0.116 af 15.0" Round Culvert n=0.012 L=165.3' S=0.0050 '/' Outflow=2.24 cfs 0.116 af
Pond 6P: 301-300	Peak Elev=1,001.08' Inflow=4.78 cfs 0.246 af 12.0" Round Culvert n=0.012 L=201.5' S=0.0050 '/' Outflow=4.78 cfs 0.246 af
Pond 10P: BASIN REACH	Peak Elev=1,025.31' Inflow=4.68 cfs 0.255 af 6.0" Round Culvert n=0.012 L=31.2' S=0.0401 '/' Outflow=4.68 cfs 0.255 af
Pond 12P: DETENTION BASIN	Peak Elev=997.79' Storage=12,847 cf Inflow=13.73 cfs 0.710 af Outflow=5.71 cfs 0.710 af
Pond 24P: 12-11	Peak Elev=1,003.48' Inflow=15.31 cfs 1.263 af 18.0" Round Culvert n=0.013 L=181.2' S=0.0274 '/' Outflow=15.31 cfs 1.263 af
Pond 26P: 11 - 100 MH	Peak Elev=1,000.34' Inflow=24.21 cfs 2.680 af 18.0" Round Culvert n=0.012 L=123.4' S=0.0297 '/' Outflow=24.21 cfs 2.680 af

Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

Pond 27P: 11-10

Peak Elev=991.28' Inflow=24.21 cfs 2.680 af 18.0" Round Culvert n=0.012 L=76.1' S=0.0290 '/' Outflow=24.21 cfs 2.680 af

Link 29L: BYPASS AREAS

Inflow=5.13 cfs 0.244 af Primary=5.13 cfs 0.244 af

Total Runoff Area = 9.480 acRunoff Volume = 4.706 afAverage Runoff Depth = 5.96"52.96% Pervious = 5.021 ac47.04% Impervious = 4.459 ac

Summary for Subcatchment 1S: EXISTING CONDITIONS

Runoff = 14.76 cfs @ 12.01 hrs, Volume= 0.819 af, Depth= 4.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Year Rainfall=7.70"

Area (ac)	CN	Description					
2.110	74	>75% Grass cover	r, Good, H	SG C			
2.110		100.00% Pervious	Area				
Tc Len (min) (fe	gth eet)	Slope Velocity C	Capacity	Description			

10.0

Direct Entry, Assumed TC of 10 Minutes used for Pre-Developed Condition

Subcatchment 1S: EXISTING CONDITIONS

Summary for Subcatchment 3S: AREA 1

[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.24 cfs @ 11.95 hrs, Volume= 0.116 af, Depth= 6.63"

Area	(ac)	CN	De	əscri	ptio	n																			
C	0.150	98	Pc	avec	l pai	rking	g, HS	SGD)		_														
	0.060	74	. >7	7 <u>5% (</u>	<u>Gras</u>	s cc	over	, Go	od, l	HSG	С														
).210	91	W 20	eigh	ted	Ave	erag	le rog																	
C C) 1.50		20 71	2.37 439	s r ei Z Imr	nerv	JS A Vious	s Are	n																
			, ,	. 10 /	• • • • •	0011	1000	,,,,,																	
Tc	Ler	ngth	Slop	се	Velc	ocity	́ С	apa	icity	De	escri	ptio	n												
(min)	(fe	eet)	(ft/	ft)	(ft/s	sec)			(cfs)																
5.0										Dir	ect	Entry	y ,												
									:	Sub	cat	chr	nen	t 3S	: AR	EA	1								
										н	ydro	ogra	ph												
	$\left(\right)$		1			 	 	 			 			 	1	 		 	 						Runoff
		-	2.2	24 c	sfs (@1	1.9	95 h	rs		i I	 	l I	1											
	-		1					1	1		1		1	1	¦ F	Run	off	=2.2	24 c	cfs (@1	1.9	5 h	rs	
	2-1		-! ! !		+ 			+			 	·			+ 	+ 	+ 	 	·! 	T	Гуре	e 11 i	24-	hr	
	-	-	i I	I I	i I		1	i I	i I		i I	i I	i I	i I	i I	I	10	0-Y	ear	Ra	infa	all=	7.7	D"	
	-	-	1					l L	1		l l	l l	1	1	1	l		Run	off	Ar	ea=	0.2 ⁻	10 a	ac	
	-	-							1		 	1		1	1	1	Ru	nof	fV	hur	mo=	:0 1	16	af	
~		-	i I	, , , , ,				i I	i i		i I	 		1	i I	 				FF F		6. i	6 6'	5"	
(cfs	-	-	1					1	1		l I		1	1	1	l I	1		unc !		Jep	un-	0.0		
Ň	-	-						1	1		 	1		1	1	1	1	 	1	1		=5.() m	in	
Η			-i	 	†			+ ·			i i			 I	+ 1	- 	 	1 I		 		- C	N=9)1	
	1-1	I.	I I		1			l I	1		I I		1	1	I I	l I	I I	l I	1	1	I I				
	-										l l			1	1	1	1	l l	1	1					
	_		1					i I	1		1 	1	1	1	1	1	 	l I	 	1	1				
		-	1			V	1	1	1		l I		1	1	1	1	1	l l	1	1	1				
	-	-						 			 	1	1	1	1	 	 	l l l	1	1					
	-	I I	i I		i	X			1		I.	l l	l I	i I	1	l I	i I	l I	1	l I	1				
				TI I	Ŵ		Ų	///	////																
	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	
											Im	ne (h	ours)												

Summary for Subcatchment 4S: AREA 5

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.01 cfs @ 11.95 hrs, Volume= 0.050 af, Depth= 6.04"

Summary for Subcatchment 5S: AREA 2

[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.54 cfs @ 11.95 hrs, Volume= 0.130 af, Depth= 6.51"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Year Rainfall=7.70"

	Area (ac)	CN	Description											
	0.160	98	Paved parking, HSG C											
	0.050	74	>75% Grass cover, Good, HSG C											
*	0.030	74	>75% Grass cover, Good, HSG C OFFSITE TO ONSITE											
	0.240	90	vighted Average											
	0.080		3.33% Pervious Area											
	0.160		66.67% Impervious Area											
	Tc Lei (min) (f	ngth eet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)											

5.0

Direct Entry,

Subcatchment 5S: AREA 2

Summary for Subcatchment 6S: AREA 6

[49] Hint: Tc<2dt may require smaller dt

Runoff = 4.47 cfs @ 11.95 hrs, Volume= 0.212 af, Depth= 5.00"

Summary for Subcatchment 7S: AREA 3

[49] Hint: Tc<2dt may require smaller dt

Runoff = 4.27 cfs @ 11.95 hrs, Volume= 0.209 af, Depth= 5.69"

Summary for Subcatchment 8S: AREA 7

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.66 cfs @ 11.95 hrs, Volume= 0.032 af, Depth= 5.46"

Arec	a (ac	:)	C٢	I D	esci	riptio	n																			
	0.02 0.05	0 0	98 74	3 P 4 >	ave 75%	d pa Gra	rking ss co	g, HS over,	G C Goo	od, H	ISG	С														
	0.07 0.05 0.02	0 0 0	81	₩ 7 2	/eig 1.43 8.57	hted % Pe % Im	Ave rvio perv	erag us Ai vious	e rea : Are	a																
To (min	c L€)	eng (fe	gth et)	Slo (ft	pe /ft)	Velo (ft/	ocity 'sec	/ C)	apa (city cfs)	De	scrip	otior	١												
5.0	C										Dir	ect	Entry	Ι,												
										S	Sub	cate	chn	nent	8S:	AR	EA	7								
											Н	ydro	ogra	ph					1					1		
	0.7		 	0	.66	cfs	<u>@</u>	 11.9	95 h	rs	 + 	- + 	; + 	- -+ 	- - 	- 	 	- 	 	 	 	 	 + 	 	- 	Runoff
(0.65	~	 	- 1 <mark></mark> 	i	i			i	i i	+ 	+ 	T — — · 	 	-1 	R	lun	off	=0.6	66 c	fs (@ 1	1.9	5 h	rs	
	0.6	<		<u> </u> 							T = = = 	 		 	 	 	 		 	 	T	ур	e II :	24-	hr	
(0.55	<	- <u>-</u>						 	 	 	 		 	 		' 	10	0-Y	ear	Ra	infa	all=	7.7	0"	
	0.5	<		 					 	+ 	+ !	+ 		 	-1 		 	F	Run	off	Are	ea=	0.0	70 a	ac	
(0.45	<i>(</i>		 			- - 		- + 	+	+ 	+ 	+ ·	 	- 		 	Ru	nof	fVo	blur	ne=	0.0	32	af	
cfs)	0.4	<	- · 	 	· -	-			 	+ 	+ 	+ 	+ · 	-1 	-1 	- 	 	 	R	ino	ff C)ep	th=	5.4	6"	
Ň	0.35	<´`		, I	·				 I I		T I I	T		 	 		 		 		 	Tc	=5.0	0 m	in	
Ē	0.3	<i>,</i>		 						 		 	·	 		 	 		 	 	 	 	С	N=8	81	
(0.25	<´`		 							 	1	 									 		 		
	0.2	<´`		 					 	+ 	+ 	+ 		 	- 	 	 		 	 	L 	+ · 	+ 	 	 	
(0.15	<1		 	· - 				- 	+ 	+ 	+	+ · 	+ 	- 	- 	 	 	 	 	+ 	+ · 	+ 	+ — — - 	 	
	0.1	<1	 	 	· -	-1			 	т — — I I	+ 	+ 	т — — · 	 	-1 	 	 	 	 	 	 	· 	+ 	1 — — - 	 	
(0.05	<	 	,	·			$\langle \rangle$			⊤ − − ∣	T		 	 		 	·	 	 	 	· 	T — — - I I	 	 	
	10		///						<u> </u>				<u> </u>		///		///	///	////	Щ		///		Щ.		
		2	4	6	8	10	12	14	16	18	20	22 Tin	24 1 e (h	26 I ours)	28	30	32	34	36	38	40	42	44	46	48	

Summary for Subcatchment 10S: AREA 4

[49] Hint: Tc<2dt may require smaller dt

Runoff = 3.67 cfs @ 11.95 hrs, Volume= 0.205 af, Depth> 7.46"

Arec	a (a	C)	C	1 [Desc	cript	tion																				
	0.3	30	98	8 F	200	fs, H	ISG	С																			
	0.3	30			100.	00%	Im	per	vio	us A	rea																
To (min	c L)	en (fe	gth eet)	Slo (f	ope t/ft)	• V(eloo ft/s	city ec)	C	Capo	acity (cfs)	De	escr	iptio	n												
5.0	C											Di	rect	Entr	y ,												
											:	Sub	cat	chn	nent	10	5: A	REA	4								
												H	lydr	ogra	ph												
	4-		 		67			 ስ 1	1 C	 			- 	- 	- 		 	+ 	 	 		 	 	 	 	- +	Runoff
	-				.07		<u>,</u>	ľ	1.8					t t t	t t t	 	F	Run	off	=3.0	67 c	fs	@1	1.9	5 h	rs	
	-						1				1	1	1			1	 	1	 	1	1	ר	ур	e II	24-	hr	
	3-	<i>,</i> ^		-1	-		+	\land		+	+		-i	-	 	+ 	+ 	+	10	0-Y	ear	Ra	inf	all=	7.7	0"	
	-						l					1				1	1	1	ł	Run	off	Ar	ea=	0.3	30 a	ac	
	-						I			 	1	 	I I		1	 	 	 	Ru	nof	f Vo	plui	ne=	=0.2	205	af	
cfs)	_					 	 			 +	 	 	 _	 _	 -	 	 	 +	 	R	unc	off C)ер	th>	7.4	6"	
) M	2-	, í				1	I I			1		1	1		1	1	1	1	1	1	1	1	Тс	=5.0	0 m	in	
Ε	-					I I	I			 		I I				1	1	 	 	 	1	1	 	С	N=9	98	
	-									 	1	 	1			 	 	1	1	 	 	 	 	 	 		
	-	,-	 _	 _	 _!	 l	 L 			 	 _	 	 _	 _!	 	 	 	 	 	 	 .	 	 	 	 	 	
	1-	ć				i I	i I I				1	i I	i I			 	- 	1	 		 	- 		i I I		1	
	-					i					i	i	i			1			1	- 	1		I I		- 		
	-					i I		X			i I	I I	I I			1	1	1	l I	I I	1	1	1	I I	I I		
	0_				111			_ X	4	///]]]]	////															I
	0	2	4	6	8	1	0	12	14	16	18	20	22 Tir	24 me (h	26 iours	28	30	32	34	36	38	40	42	44	46	48	

Summary for Subcatchment 20S: OFFSITE TO BMP

Runoff = 6.54 cfs @ 12.23 hrs, Volume= 0.681 af, Depth= 6.98"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Year Rainfall=7.70"

Area (ac)	CN	Desc	ription								
1.	170	94	Urba	n commer	cial, 85% im	p, HSG C						
0.	175		15.00	% Pervious	s Area							
0.	994	94 85.00% Impervious Area										
Tc (min)	Lenç (fe	gth et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description						
30.0						Direct Entry,						

Subcatchment 20S: OFFSITE TO BMP

Summary for Subcatchment 22S: OFFSITE TO CI 12

Runoff = 15.31 cfs @ 12.12 hrs, Volume= 1.263 af, Depth= 6.98"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Year Rainfall=7.70"

Area (ac)	CN	Description										
2.170	94	Urban commercial, 85% imp, HSG C										
0.325 1.844		15.00% Perviou 85.00% Impervi	is Area ious Area									
Tc Lenç (min) (fe	gth et)	Slope Velocity (ft/ft) (ft/sec)	Capacity (cfs)	Description								
20.0				Direct Entry,								

Subcatchment 22S: OFFSITE TO CI 12

Summary for Subcatchment 25S: AREA TO AI 11

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.17 cfs @ 11.96 hrs, Volume= 0.008 af, Depth= 4.66"

Area (c	ac)	CN	Desc	ription			
0.0	020	74	>75%	Grass cov	ver, Good, H	ISG C	
0.0	020		100.0	0% Pervio	us Area		
Tc (min)	Leng (fee	gth ət)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
5.0						Direct Entry,	
					Subc	atchment 2	5S: AREA TO AI 11

Summary for Subcatchment 28S: PROPOSED CONDITIONS

[49] Hint: Tc<2dt may require smaller dt

Runoff = 20.17 cfs @ 11.95 hrs, Volume= 0.980 af, Depth= 5.58"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Year Rainfall=7.70"

Area (ac)	CN	Description					
0.690	98	Paved parking, HSG C					
1.420	74	>75% Grass cover, Good, HSG C					
2.110	82	Weighted Average					
1.420	1.420 67.30% Pervious Area						
0.690		32.70% Impervious Area					
Tc Len (min) (fe	gth eet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)					
5.0		Direct Entry,					

Subcatchment 28S: PROPOSED CONDITIONS

Summary for Pond 3P: ROOF DRAINS TO BASIN

[82] Warning: Early inflow requires earlier time span [58] Hint: Peaked 46.53' above defined flood level 0.430 ac, 88.37% Impervious, Inflow Depth > 7.13" for 100-Year event Inflow Area = Inflow = 4.68 cfs @ 11.95 hrs, Volume= 0.255 af Outflow = 4.68 cfs @ 11.95 hrs, Volume= 0.255 af, Atten= 0%, Lag= 0.0 min Primary = 4.68 cfs @ 11.95 hrs, Volume= 0.255 af Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 1,047.46' @ 11.95 hrs Flood Elev= 1,000.93' Device Routing Invert Outlet Devices #1 Primary 994.54' 6.0" Round Culvert L= 21.7' RCP, rounded edge headwall, Ke= 0.100 Inlet / Outlet Invert= 994.54' / 994.11' S= 0.0198 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.20 sf

Primary OutFlow Max=4.63 cfs @ 11.95 hrs HW=1,047.36' TW=1,025.25' (Dynamic Tailwater) 1=Culvert (Outlet Controls 4.63 cfs @ 23.57 fps)

Hydrograph Inflow 4 68 cfs @ 11 95 hrs Primary 5 4.68 cfs @ 11.95 hrs Inflow Area=0.430 ac Inflow=4.68 cfs @ 11.95 hrs Primary=4.68 cfs @ 11.95 hrs 4 Peak Elev=1.047.46' 6.0" Round Culvert 3 n=0.012 Flow (cfs) L=21.7' S=0.0198 '/' 2-1 0 12 14 2 4 6 8 10 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hours)

Pond 3P: ROOF DRAINS TO BASIN

Pond 3P: ROOF DRAINS TO BASIN

Summary for Pond 4R: 302-301

[58] Hint: Peaked 5.96' above defined flood level

Inflow Arec	a =	0.210 ac,	71.43% Imp	pervious,	Inflow	Depth =	6.63"	for	100-Year event
Inflow	=	2.24 cfs @	11.95 hrs,	Volume=	-	0.116 af			
Outflow	=	2.24 cfs @	11.95 hrs,	Volume=	:	0.116 af	, Atter	n= 0%	6, Lag= 0.0 min
Primary	=	2.24 cfs @	11.95 hrs,	Volume=	:	0.116 af			

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 1,000.90' @ 11.96 hrs Flood Elev= 994.94'

Device	Routing	Invert	Outlet Devices
#1	Primary	994.94'	15.0" Round Culvert L= 165.3' RCP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 994.94' / 994.11' S= 0.0050 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf

Primary OutFlow Max=0.00 cfs @ 11.95 hrs HW=1,000.85' TW=1,001.03' (Dynamic Tailwater) ↓1=Culvert (Controls 0.00 cfs)

Pond 4R: 302-301

Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

Pond 4R: 302-301

Summary for Pond 6P: 301-300

[58] Hint: Peaked 2.26' above defined flood level[80] Warning: Exceeded Pond 4R by 0.25' @ 11.85 hrs (2.20 cfs 0.068 af)

Inflow Are	ea =	0.450 ac, 68.89% Impervious, Inflow Depth = 6.57" for 100-Year event	
Inflow	=	4.78 cfs @ 11.95 hrs, Volume= 0.246 af	
Outflow	=	4.78 cfs @ 11.95 hrs, Volume= 0.246 af, Atten= 0%, Lag= 0.0 min	
Primary	=	4.78 cfs @ 11.95 hrs, Volume= 0.246 af	

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 1,001.08' @ 11.96 hrs Flood Elev= 998.82'

 Device
 Routing
 Invert
 Outlet Devices

 #1
 Primary
 994.01'
 12.0" Round 202-201 L= 201.5' CPP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 994.01' / 993.00' S= 0.0050 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=4.77 cfs @ 11.95 hrs HW=1,001.02' TW=997.08' (Dynamic Tailwater) **1=202-201** (Outlet Controls 4.77 cfs @ 6.07 fps)

Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 10P: BASIN REACH

[82] Warr	ning: Early	inflow require	s earlier time span					
[58] Hint:	Peaked 2	24.64' above d	efined flood level					
Inflow Are	= DS	0.430 ac, 88.	37% Impervious, Inflow	Depth > 7.13" for 100-Year event				
Inflow	=	4.68 cfs @ 11	.95 hrs, Volume=	0.255 af				
Outflow	=	4.68 cfs @ 11	.95 hrs, Volume=	0.255 af, Atten= 0%, Lag= 0.0 min				
Primary	=	4.68 cfs @ 11	.95 hrs, Volume=	0.255 af				
Routing k	Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2							
Peak Elev	Peak Elev= 1,025.31' @ 11.95 hrs							
Flood Ele	Flood Elev= 1,000.67'							
Device	Routing	Invert	Outlet Devices					
#1	Primary	994.25'	6.0" Round Culvert L Inlet / Outlet Invert= 9 n= 0.012 Corrugated	= 31.2' RCP, rounded edge headwall, Ke= 0.100 94.25' / 993.00' S= 0.0401 '/' Cc= 0.900 PP, smooth interior, Flow Area= 0.20 sf				

Primary OutFlow Max=4.67 cfs @ 11.95 hrs HW=1,025.25' TW=997.08' (Dynamic Tailwater) 1=Culvert (Outlet Controls 4.67 cfs @ 23.80 fps)

Pond 10P: BASIN REACH

Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

Pond 10P: BASIN REACH

Summary for Pond 12P: DETENTION BASIN

[80] Warning: Exceeded Pond 6P by 0.28' @ 24.30 hrs (0.13 cfs 0.004 af) [80] Warning: Exceeded Pond 10P by 0.04' @ 24.25 hrs (0.00 cfs 0.000 af)

Inflow Area	a =	1.320 ac,	64.39% Impervious,	Inflow Depth > e	5.46" for 100-Year event
Inflow	=	13.73 cfs @	11.95 hrs, Volume=	= 0.710 af	
Outflow	=	5.71 cfs @	12.27 hrs, Volume=	= 0.710 af,	Atten= 58%, Lag= 18.9 min
Primary	=	5.37 cfs @	12.25 hrs, Volume=	= 0.729 af	

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 997.79' @ 12.21 hrs Surf.Area= 5,043 sf Storage= 12,847 cf Flood Elev= 999.00' Surf.Area= 6,484 sf Storage= 19,812 cf

Plug-Flow detention time= 99.0 min calculated for 0.710 af (100% of inflow) Center-of-Mass det. time= 99.3 min (867.9 - 768.6)

Volume	Invert	Avail.Store	age Storc	ige Description		
#1	992.10'	19,81	2 cf Custo	om Stage Data (Py	ramidal) Listed b	pelow (Recalc)
		•				
Elevatio	n Surf	.Area	Inc.Store	Cum.Store	Wet.Area	
(feet	t)	(sq-ft) (c	ubic-feet)	(cubic-feet)	(sq-ft)	
992.1	0	4	0	0	4	
993.0	0	539	177	177	541	
994.0	0	1,359	918	1,095	1,370	
995.0	0	2,235	1,779	2,874	2,262	
996.0	0	3,166	2,687	5,561	3,215	
997.0	0	4,169	3,656	9,217	4,247	
998.0	0	5,290	4,718	13,935	5,401	
999.0	0	6,484	5,877	19,812	6,634	
Device		المرب بر مرا				
Device	Routing	Invert	Outlet De	evices		
#1	Primary	988.04'	18.0" Rou	ind Culvert L= 50	.1' RCP, groove	end projecting, Ke= 0.200
			Inlet / Ou	tlet Invert= 988.04	'/987.00' S= 0.0)208 '/' Cc= 0.900
			n= 0.012	Corrugated PP, sr	nooth interior, F	ow Area= 1.77 sf
#2	Device 1	992.10'	1.5" Vert.	Orifice/Grate C	= 0.600 Limited	to weir flow at low heads
#3	Device 1	994.25'	4.0" W x 4	.0" H Vert. Orifice/	Grate C= 0.60	0 Limited to weir flow at low heads
#4	Device 1	996.00'	12.0" W x	6.0" H Vert. Orifice	e/Grate C= 0.6	00 Limited to weir flow at low heads
#5	Device 1	997.50'	4.0' long \$	Sharp-Crested Rec	tangular Weir 🛛	2 End Contraction(s)

Primary OutFlow Max=4.69 cfs @ 12.25 hrs HW=997.75' TW=996.73' (Dynamic Tailwater)

1=Culvert (Passes 4.69 cfs of 10.21 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.06 cfs @ 4.88 fps)

-3=Orifice/Grate (Orifice Controls 0.54 cfs @ 4.88 fps)

-4=Orifice/Grate (Orifice Controls 2.44 cfs @ 4.88 fps)

-5=Sharp-Crested Rectangular Weir (Weir Controls 1.65 cfs @ 1.65 fps)

Pond 12P: DETENTION BASIN

Hydrograph

Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

Pond 12P: DETENTION BASIN

Summary for Pond 24P: 12-11

[58] Hint: Peaked 10.18' above defined flood level

Inflow Arec	1 =	2.170 ac,	85.00% Imp	pervious,	Inflow	Depth =	6.98"	for 1	00-Year event
Inflow	=	15.31 cfs @	12.12 hrs,	Volume=	=	1.263 af			
Outflow	=	15.31 cfs @	12.12 hrs,	Volume=	=	1.263 af	, Atter	า= 0%,	Lag= 0.0 min
Primary	=	15.31 cfs @	12.12 hrs,	Volume=	=	1.263 af			

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 1,003.48' @ 12.16 hrs Flood Elev= 993.30'

Device	Routing	Invert	Outlet Devices
#1	Primary	994.87'	18.0" Round Culvert L= 181.2' RCP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 994.87' / 989.91' S= 0.0274 '/' Cc= 0.900
			n= 0.013 Concrete pipe, benas & connections, Flow Area= 1.77 st

Primary OutFlow Max=13.91 cfs @ 12.12 hrs HW=1,002.83' TW=998.20' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 13.91 cfs @ 7.87 fps)

Pond 24P: 12-11

Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

Pond 24P: 12-11

Summary for Pond 26P: 11 - 100 MH

[58] Hint: Peaked 5.34' above defined flood level[80] Warning: Exceeded Pond 12P by 2.55' @ 12.20 hrs (16.08 cfs 0.121 af)

Inflow Arec	1 =	4.680 ac,	78.82% Impervious,	Inflow Depth > 6.87" for 100-Year event
Inflow	=	24.21 cfs @	12.10 hrs, Volume=	= 2.680 af
Outflow	=	24.21 cfs @	12.10 hrs, Volume=	= 2.680 af, Atten= 0%, Lag= 0.0 min
Primary	=	24.21 cfs @	12.10 hrs, Volume=	= 2.680 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 1,000.34' @ 12.20 hrs Flood Elev= 995.00'

 Device
 Routing
 Invert
 Outlet Devices

 #1
 Primary
 988.71'
 18.0" Round Culvert L= 123.4'
 RCP, groove end projecting, Ke= 0.200

 Inlet / Outlet Invert=
 988.71'
 985.04'
 S= 0.0297 '/'
 Cc= 0.900

 n=
 0.012
 Corrugated PP, smooth interior, Flow Area=
 1.77 sf

Primary OutFlow Max=22.20 cfs @ 12.10 hrs HW=998.93' TW=991.28' (Dynamic Tailwater) 1=Culvert (Outlet Controls 22.20 cfs @ 12.56 fps)

Pond 26P: 11 - 100 MH

Prepared by Premier Design Group HydroCAD® 10.10-3a s/n 10347 © 2020 HydroCAD Software Solutions LLC

Pond 26P: 11 - 100 MH

Summary for Pond 27P: 11-10

Inflow Arec	= c	4.680 ac,	78.82% Impervi	ous, Inflow	Depth >	6.87''	for	100-Year event
Inflow	=	24.21 cfs @	12.10 hrs, Volu	ime=	2.680 af			
Outflow	=	24.21 cfs @	12.10 hrs, Volu	ime=	2.680 af	Atten	= 0%	5, Lag= 0.0 min
Primary	=	24.21 cfs @	12.10 hrs, Volu	ime=	2.680 af			

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 991.28' @ 12.10 hrs Flood Elev= 995.00'

Device Routing Invert Outlet Devices	
#1 Primary 985.04' 18.0" Round Culvert L= 76.1' RCP, groove end projecting, Ke Inlet / Outlet Invert= 985.04' / 982.83' S= 0.0290 '/' Cc= 0.900	e= 0.200

Primary OutFlow Max=24.21 cfs @ 12.10 hrs HW=991.28' (Free Discharge) ←1=Culvert (Barrel Controls 24.21 cfs @ 13.70 fps)

Pond 27P: 11-10

Summary for Link 29L: BYPASS AREAS

Inflow A	\rea =	0.580 ac,	13.79% Impervious,	Inflow Depth = 5	5.06" for 100-Year event
Inflow	=	5.13 cfs @	11.95 hrs, Volume=	= 0.244 af	
Primary	=	5.13 cfs @	11.95 hrs, Volume=	= 0.244 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs

Link 29L: BYPASS AREAS