

TABLE OF CONTENTS

1.	Introduction	1
2.	Data Collection	3
3.	Existing Conditions	5
	3.1. Network Characteristics	5
	3.2. Existing Warrant Analysis	6
	3.3. Existing Capacity Analysis	8
4.	Existing Plus Proposed Development Conditions	13
	4.1. Proposed Development Trip Generation and Distribution	13
	4.2. Access Characteristics	14
	4.3. Existing Plus Proposed Development Conditions	20
	4.4. Existing Plus Proposed Development Capacity Analysis	21
	4.5. Future Access Considerations	25
5.	Summary	27
	5.1. Conclusions	27
	5.2. Recommendations	27

LIST OF FIGURES

FIGURE 1.	VICINITY MAP	2
FIGURE 2.	EXISTING PEAK HOUR VOLUMES	4
FIGURE 3.	EXISTING LANE CONFIGURATION AND TRAFFIC CONTROL	11
FIGURE 4.	EXISTING CAPACITY ANALYSIS	12
FIGURE 5.	SITE PLAN	17
FIGURE 6.	PROPOSED DEVELOPMENT TRIP DISTRIBUTION	18
FIGURE 7.	EXISTING PLUS PROPOSED DEVELOPMENT PEAK HOUR VOLUMES	19
FIGURE 8.	EXISTING PLUS PROPOSED DEVELOPMENT LANE CONFIGURATIONS & TRAFFIC CONTROL	
FIGURE 9.	EXISTING PLUS PROPOSED DEVELOPMENT CAPACITY ANALYSIS	24
LIST OF TA		
TABLE 1. EXISTING	S NETWORK SUMMARY	5
TABLE 2. INTERSE	CTION LOS CRITERIA.	8
TABLE 3. PROPOS	ED DEVELOPMENT TRIP GENERATION	. 13
	ED DEVELOPMENT TRIP DISTRIBUTION	
TABLE 5. ACCESS	CHARACTERISTICS	. 15

APPENDICES

Appendix A: Data Collection

Appendix B: Existing Conditions

Appendix C: Existing Plus Development Conditions

018-0330 iii

1. INTRODUCTION

This report studies traffic impacts associated with the Colbern Road Mid-Continent Public Library (MCPL) proposed expansion to the existing facility located north of Colbern Road between Rice Road and Ball Drive in Lee's Summit, Missouri.

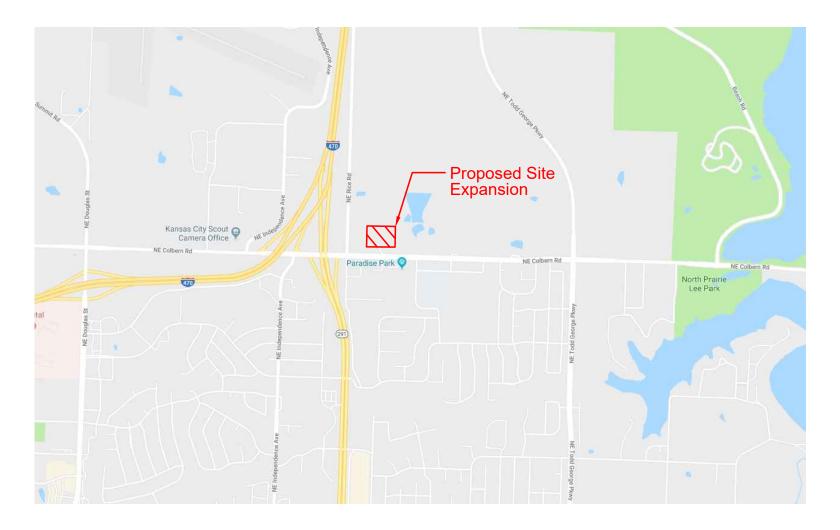
This report will review the impacts of the proposed expansion development on the existing roadway network and will recommend additional turn lanes, storage bays, and intersection control methods per the City of Lee's Summit *Access Management Code* and Missouri Department of Transportation's (MoDOT's) Engineering Policy Guide (EPG), as appropriate, for the following study intersections:

- Colbern Road and Northbound 291 Off-Ramp
- Colbern Road and Rice Road
- Colbern Road and Existing West Church Access (aligns with proposed MCPL access)
- Colbern Road and Existing Library/East Church Access
- Colbern Road and Ball Drive

For this study, the following scenarios were analyzed:

- Existing Conditions
- Existing Plus Proposed Development Conditions

In addition to the scenarios analyzed, a discussion of future access for the development will be provided considering public roadway plans adjacent to the site.


The approximate location of the proposed development is shown on Figure 1.

018-0330

Vicinity Map

Colbern Road MCPL Lee's Summit, MO

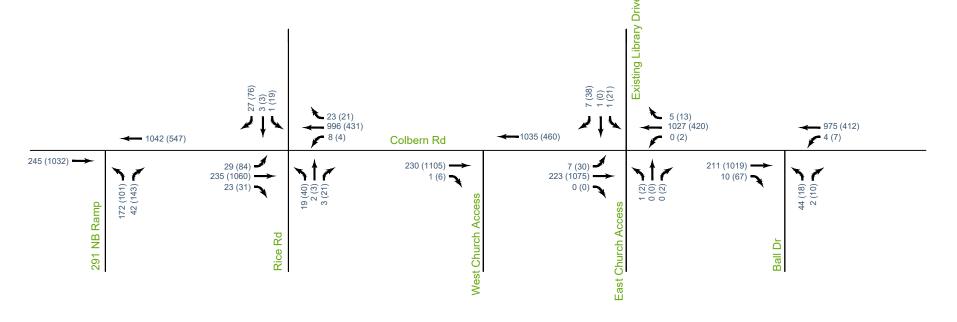
LEGEND

Proposed Site Expansion Source: Google Maps

2. DATA COLLECTION

The data collection effort included acquiring AM and PM peak hour turning movement counts and documentation of current roadway geometrics. Traffic counts were collected on Tuesday, July 23rd, 2019 at the study intersections listed in **Section 1.0**.

The counts were conducted during the typical weekday AM and PM peak periods from 7:00-9:00 AM and 4:00-6:00 PM. The AM peak hour period for the study intersections was determined to be from 7:00-8:00 AM. The PM peak hour period for the study intersections was determined to be from 4:45-5:45 PM. The existing peak hour volumes are illustrated in **Figure 1**. Count data for this study can be found in **Appendix A**.


The existing library is approximately 15,000 square feet. A comparison of actual trips to the site based on AM and PM peak hour data collection was compared to trip generation results for a 15,000 square foot library. Trip generation was conducted as discussed in **Section 4.1**. For reference, documentation of this comparison is provided in **Appendix A**. Reviewing actual traffic to expected traffic, the existing library site generates more actual trips during the AM peak hour period than expected through trip generation. The site generates fewer actual trips during the PM peak hour period than expected through trip generation.

Existing
Peak Hour Volumes

Colbern Road MCPL Lee's Summit, MO

Proposed Site Expansion

LEGEND

AM (PM)

Peak Hour Volume

Proposed Site Location

3. EXISTING CONDITIONS

Existing traffic conditions were evaluated to identify any existing deficiencies and to provide a baseline for comparative purposes.

3.1. Network Characteristics

Four roadways within the study area were considered during analysis: Colbern Road, Northbound 291 Off-Ramp, Rice Road, and Ball Drive. Referencing the City's 2019 Comprehensive Plan Land Use Map, current network characteristics are summarized in **Table 1**.

Table 1. Existing Network Summary.

Roadway	Functional Classification	Typical Section	Median Type	Posted Speed
Colbern Road	Major Arterial	4-Lane	Raised	40 mph
Northbound 291 Off-Ramp	Freeway	1-Lane Approach	Not Applicable	35 mph
Rice Road	Commercial Collector	2-Lane	None	45 mph north of Colbern Road/25 mph south of Colbern Road
Ball Drive	Residential Collector	2-Lane	None	25 mph

The intersection of Colbern Road and the Northbound 291 Off-Ramp is a signalized intersection. Pedestrian accommodations including marked crosswalks and pedestrian pushbuttons and signal heads are provided at the intersection.

The intersection of Colbern Road and Rice Road is unsignalized with stop-control provided for the minor street approaches (Rice Road). Marked crosswalks are provided along the north and south legs of the intersection for east/west pedestrian travel.

The intersection of Colbern Road and Ball Drive is a signalized intersection. Pedestrian accommodations including marked crosswalks and pedestrian pushbuttons and signal heads are provided at the intersection.

Sidewalk is provided along Colbern Road along both the north and south sides of the roadway. The existing sidewalk network along the north side of Colbern Road ends at the Northbound 291 Off-Ramp. The south sidewalk network is continuous throughout the project area.

3.2. Existing Warrant Analysis

Signal Warrants

A traffic signal may be justified if traffic conditions meet any of the applicable nine signal warrants described in the 2009 Manual on Uniform Traffic Control Devices (MUTCD). The MUTCD provides criteria for conducting an engineering study to determine whether a traffic signal is appropriate at any intersection.

For this study, based on the data available, the Four-Hour Vehicular Volume Warrant (Warrant 2) and the Peak Hour Signal Warrant (Warrant 3) were reviewed under existing conditions to determine if alternative control measures are warranted for the currently unsignalized intersections of Colbern Road with Rice Road and the Existing Library/Church Access. Based on available data, the intersections do not meet the necessary criteria to warrant a traffic signal.

Signal warrant analysis sheets can be found in **Appendix B**.

Turn Lane Warrants

City of Lee's Summit Access Management Code (AMC) guidelines were reviewed for turn lanes along study area roadways.

<u>Left-turn Lanes:</u> Based on the Lee's Summit AMC, left-turn lanes shall be provided on all approaches to intersections controlled by a signal. Turn lanes are provided as recommended at signalized intersections with the exception of the northbound approach of Ball Drive at Colbern Road. This is a T-intersection, serving northbound traffic approaching Colbern Road (left and right-turn movements). A dedicated left-turn lane is not provided; however, the approach does not service a through movement thus a turn lane may not be required for this situation. Capacity analysis and queuing will be reviewed to determine if a dedicated turn lane is recommended.

Based on the Lee's Summit AMC, left-turn lanes shall be provided on all arterial streets at the intersection with another arterial or collector street. On major arterial streets, left-turn lanes shall be provided at the intersection with all connectors (an exception may be granted for a singular, existing, residential lot). Turn lanes are provided as recommended along Colbern Road at the study intersections.

Per the AMC, left-turn lanes shall be provided on non-residential connectors intersecting with major arterial streets (where left-turn egress is permitted). Left-turn lanes should be provided on any connector at any location as recommended by a traffic study or where the left-turn lane provides design efficiencies desired by the owner/developer with exception of access associated with residential property. Dedicated left-turn lanes are not provided for northbound and southbound approaches at the intersection of Colbern Road and Rice Road. Capacity analysis and queuing will be reviewed to determine if a dedicated turn lane is recommended.

The existing library access has a single exit approach. Capacity analysis and queuing will be reviewed to determine if a dedicated turn lane is recommended.

Per the AMC, the minimum length of a left-turn lane should be 200 feet plus taper on an arterial street at non-arterial intersecting locations. The minimum length of a left-turn lane on collectors should be 150 feet plus taper. The minimum length of a left-turn lane on connectors should meet the driveway throat length requirements.

The eastbound left-turn lane at Colbern Road and Rice Road (60-feet), does not meet the recommended turn bay length for an arterial intersecting a collector. The ability to increase the eastbound left-turn lane is limited by the presence of the adjacent intersection of Colbern Road and the Northbound 291 Off-Ramp. Capacity analysis and queuing for the movement will be reviewed.

The existing eastbound left-turn lane at the library access (90-feet) does not meet the recommended minimum turn bay length. The ability to increase the turn bay length is limited by the presence of turn bays for adjacent access drives. Capacity analysis and queuing for the movement will be reviewed.

Right-turn Lanes: Based on the Lee's Summit AMC, right-turn lanes shall be provided on arterial streets for any movement with a volume of 30 vehicles in any hour at each intersecting street or driveway. Based on this criteria, the eastbound right-turn movement at the intersection of Colbern Road and Rice Road exceeds the criteria for a right-turn lane by one vehicle during the PM peak hour period (31 right-turning vehicles) based on existing volumes. Due to the proximity of the intersection to the signalized intersection of Colbern Road and the Northbound 291 Off-Ramp, the opportunity to construct an eastbound right-turn lane is limited. Capacity analysis and queuing for this movement will be reviewed.

The eastbound right-turn movement at the intersection of Colbern Road and Ball Drive exceeds the criteria for a right-turn lane (67 right-turning vehicles) during the PM peak hour period based on existing volumes. Capacity analysis and queuing for this movement will be reviewed to determine if a dedicated right turn lane is recommended at this location.

Existing locations that do not meet left or right-turn lane standards include:

- Dedicated left-turn lanes in northbound and southbound directions at Colbern Road and Rice Road are not provided
- Eastbound left-turn lane with reduced storage at Colbern Road and Rice Road
- Eastbound left-turn lane with reduced storage at Colbern Road and Existing Library/East Church Drive
- Dedicated eastbound right-turn lane at Colbern Road and Rice Road is not provided
- Dedicated eastbound right-turn lane at Colbern Road and Ball Drive is not provided

Project No. 018-0330

Capacity analysis is provided in **Section 3.3** to determine if additional turn lanes and/or storage length is recommended based on existing operations. Existing conditions lane configurations and traffic control for the study intersections are illustrated in **Figure 2**.

3.3. Existing Capacity Analysis

Capacity analysis was performed for the study intersections utilizing the existing lane configurations and traffic control. Analysis was conducted using Synchro, Version 10, based on the Highway Capacity Manual (HCM) delay methodologies. For simplicity, the amount of control delay is equated to a grade or Level of Service (LOS) based on thresholds of driver acceptance. The amount of delay is assigned a letter grade A through F, LOS A representing little or no delay and LOS F representing very high delay. **Table 2** shows the delays associated with each LOS grade for signalized and unsignalized intersections, respectively.

Table 2. Intersection LOS Criteria.

Level of	Average Control Delay (seconds)									
Service	Signalized	Unsignalized								
А	< 10	< 10								
В	> 10-20	> 10-15								
С	> 20-35	> 15-25								
D	> 35-55	> 25-35								
E	> 55-80	> 35-50								
F	> 80	> 50								
Highway Capacity Manual (HCM 6 th Edition)										

Queuing analysis was conducted using the 95th-percentile queue length. This represents the queue length that has a 5 percent probability of being exceeded during the peak hour period.

Results of the analysis indicate that the existing signalized study intersections are operating at an overall LOS B or better with individual movements operating at a LOS C or better during the AM and PM peak hour periods. The following operations were noted for existing analysis:

AM Peak Hour

- Colbern Road and Northbound 291 Off-Ramp
 - The westbound through movement 95th percentile queue may extend past the intersection of Colbern Road and Rice Road during portions of the AM peak hour period.

All movements at the unsignalized study intersections are operating at LOS D or better with acceptable queues during both the AM and PM peak hour periods with the following exceptions:

- Colbern Road and Rice Road
 - The southbound through movement is operating at a LOS E with a 95th percentile queue length of 78 feet during the PM peak hour period.
 - The northbound through movement is operating at a LOS F with a 95th percentile queue of 215 feet during the PM peak hour period.
 - Operations of this movement were observed via data collection video. Actual
 queuing of the northbound and southbound movements were not observed to
 exceed 3 to 4 vehicles.
- Colbern Road and Existing Library/East Church Access
 - The northbound movement is operating at a LOS E with a 95th percentile queue length of less than one vehicle.

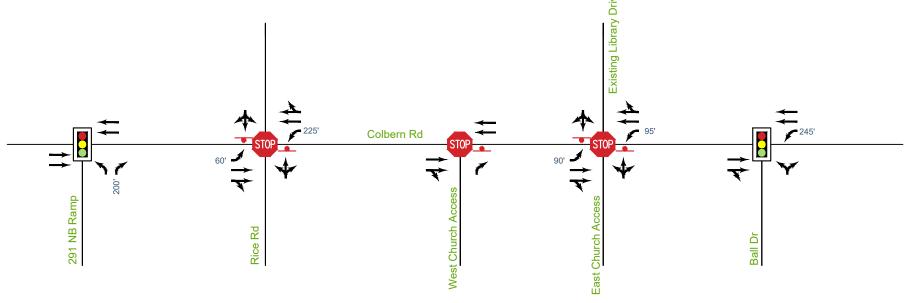
Referencing Section 20.7 of the HCM for Two-Way Stop-Controlled Intersections, minor street approaches with movements operating at a lower level of service during peak hour periods are not uncommon at an unsignalized intersection. This is more prevalent for stop-controlled left-turn movements in urban areas, as higher volumes on the main road are accommodated. The HCM suggests that performance measures in addition to delay, such as volume-to-capacity (v/c) ratios for individual movements and queue lengths, should also be considered when evaluating the overall performance at two-way stop-controlled intersections. At the unsignalized minor street approaches listed above, the v/c ratios and 95th-percentile queues are acceptable during the peak hour periods with the exception of the northbound movement at the intersection of Colbern Road and Rice Road during the PM peak hour period. As stated above, the queue and delay represented in the capacity analysis was not noted during field observations. Capacity analysis will be reviewed for existing plus development conditions to determine if the proposed development has a substantial impact on existing operations.

Several existing turn lane deficiencies were noted. Capacity and queuing analysis were reviewed for each movement.

- Dedicated left-turn lanes in northbound and southbound directions at Colbern Road and Rice Road are not provided.
 - As mentioned under review of operations, data collection video was reviewed for the northbound and southbound approaches. Based on this review of operations, queuing of approximately 3 to 4 vehicles southbound and northbound was observed. This is consistent with reported southbound queuing but a decrease of expected northbound queuing.

018-0330

Project No. 018-0330


- Utilities in the area and existing access/development located in the southeast quadrant of the intersection may limit the opportunity for improvement.
 Additionally, the City has future plans for limitation of movements of this intersection and relocation of the full access intersection.
- Capacity analysis will be reviewed for existing plus development conditions to determine if the proposed development has a substantial impact on existing operations.
- Eastbound left-turn lane with reduced storage at Colbern Road and Rice Road
 - Reviewing capacity analysis, the eastbound left-turn movement is operating at an acceptable level of service during both peak hour periods and 95th percentile queue lengths are not expected to exceed provided storage.
- Eastbound left-turn lane with reduced storage at Colbern Road and Existing Library/East Church Drive
 - Reviewing capacity analysis, the eastbound left-turn movement is operating at an acceptable level of service during both peak hour periods and 95th percentile queue lengths are not expected to exceed provided storage.
- Dedicated eastbound right-turn lane at Colbern Road and Rice Road is not provided
 - The limited intersection spacing between the Northbound 291 Off-Ramp and Rice Road limits the opportunity for an eastbound right-turn lane at this location.
 Volumes for the movement are low, and impact to the eastbound through movement is expected to be minimal.
- Dedicated eastbound right-turn lane at Colbern Road and Ball Drive is not provided
 - A longer through movement 95th percentile queue length (216') is noted during the PM peak hour period for the eastbound movement, although the queue is not indicated to extend to access for the business located west of the intersection. Capacity analysis will be reviewed for existing plus development conditions to determine if the proposed development has a substantial impact on existing operations.

018-0330

Existing
Lane Configuration and Traffic Control

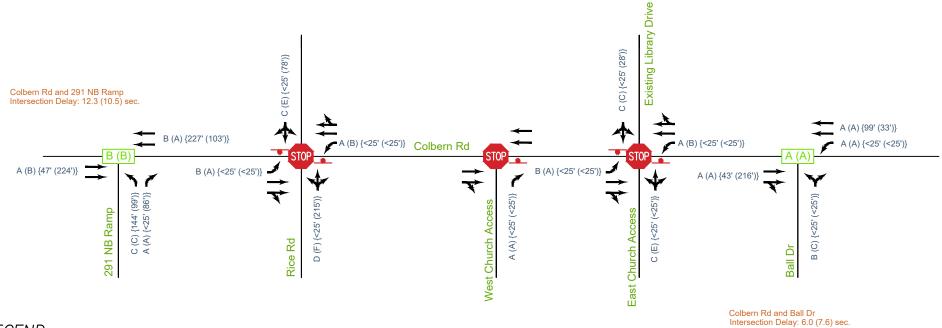
Colbern Road MCPL Lee's Summit, MO

LEGEND

Lane Configuration & Storage Length

Signalized Intersection

Stop Controlled Intersection



Stop Sign

Existing Level of Service

Colbern Road MCPL Lee's Summit, MO

LEGEND

AM (PM) {AM (PM)}

Movement LOS & {95th Percentile Queue}

Signalized Intersection LOS

Stop Controlled Intersection

Stop Sign

Lane Geometry

4. EXISTING PLUS PROPOSED DEVELOPMENT CONDITIONS

This scenario considers an expansion of the existing Mid-Continent Public Library located north of Colbern Road between Rice Road and Ball Drive. The proposed expansion consists of the addition of 20,000 square feet to the existing library (the current library square footage is approximately 15,000 square feet) for a total building square footage of 35,000 square feet. The site plan associated with the proposed development is illustrated in **Figure 5**.

The site plan illustrates proposed near-term access (considered during existing plus proposed development analysis) and a future access scenario. Proposed access dependent upon the existing and proposed roadway network will be discussed in detail in this section.

4.1. Proposed Development Trip Generation and Distribution

To determine the impact of potential site traffic on the roadway network, expected trips associated with the proposed expansion were generated and applied to the study network. The Institute of Transportation Engineers (ITE) provides methods for estimating traffic volumes of common land uses in the Trip Generation Manual (10th Edition). The land use that most resembles that which is planned for this site is Land Use Code 590 (Library).

Based on the *ITE Trip Generation Manual*, trip generation characteristics were developed for the proposed site. Trip generation characteristics expected for the site are shown in **Table 3**. Detailed ITE trip generation information can be found in **Appendix C**.

Table 3. Proposed Development Trip Generation.

		Average	AM	Peak Ho	our	PM Peak Hour			
Land Use	Size	Weekday	Total	Enter	Exit	Total	Enter	Exit	
Library	20,000 SF	1,403	21	15	6	170	82	88	

Trips were distributed through the network based on the anticipated land use, the surrounding area, and the existing distribution of trips associated with the existing library. Directional trip distribution percentages expected for the site are illustrated in **Table 4.**

018-0330

Direction	Trip Distribution					
Direction	ТО	FROM				
Colbern Road (West)	60%	45%				
Colbern Road (East)	30%	30%				
Ball Drive (South)	10%	10%				
Northbound 291 Off-Ramp	0%	15%				
TOTAL	100%	100%				

Table 4. Proposed Development Trip Distribution.

The City of Lee's Summit has indicated that a future roadway is planned west of the library site. At the writing of this report, conclusive plans regarding alignment, design, or funding for the future roadway were not available. However, access considerations for the library site considered this future roadway. For current development conditions, the existing full access library drive is proposed to remain. An additional right-in/right-out drive (Drive 1) is proposed approximately 200 feet west of the existing full access drive. The location of Drive 1 aligns with the anticipated location of the future roadway. A discussion of potential future access with construction of the roadway and how this may impact access to the library site is provided later in this report.

The expected trip distribution for the proposed development is shown in **Figure 5**. The resulting existing plus proposed development volumes are illustrated in **Figure 6**.

4.2. Access Characteristics

As discussed in **Section 4.1**, access is proposed to the site via the existing full access drive located along Colbern Road and via a proposed right-in/right-out (Drive 1) located west of the existing drive. The proposed right-in/right-out access aligns at the location of a proposed roadway extension. The use of the existing full access drive and Drive 1 are expected to be near-term solutions for access to the library. As the future roadway to the west of the site is constructed, alternative access considerations are proposed for the site and will be discussed later in the report.

Access Spacing

Drive 1 aligns with the location of a future roadway proposed to extend north from Colbern Road. As a right-in/right-out, Drive 1 does not meet spacing standards provided in the AMC as the drive is within the influence area of nearby drives serving adjacent development. However,

reviewing future plans for this roadway section and the drive location corresponding with a future roadway extension to the north, the location of Drive 1 incorporates future considerations. Discussion regarding access when the roadway is constructed north of Colbern Road is provided later in the report.

Drive 1 is located approximately 200 feet west of the existing library/east church drive (measured center to center). Drive 1 is located approximately 230 feet east of an existing full access drive located south of Colbern Road.

Table 5. Access Characteristics

Proposed Access	Public Roadway Intersected	Access Type	Proposed Throat Length	Proposed Width	Median Divided
Existing Library Access	Colbern Road	Full Access	Existing (48 feet)	Existing (26 feet)	No
Drive 1	Colbern Road	Right-In/ Right-Out	81 feet	28 feet	No

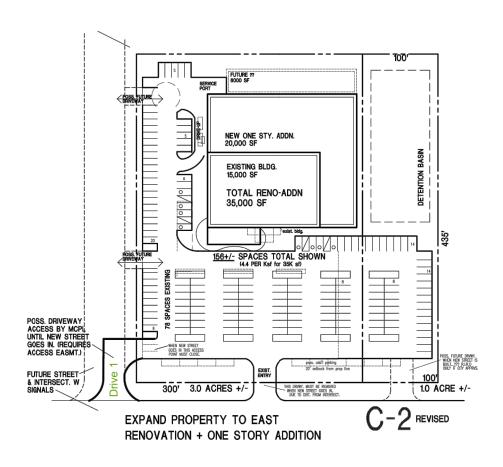
Drive 1 access is expected to be constructed as an access to the library; the drive will not be constructed to standards associated with the planned roadway expansion. Driveway standards were reviewed for drive width and throat length.

Trip generation completed in **Section 4.1** of this report projects that Drive 1 will service 30 vehicles during the highest peak hour period. Drive 1 has a proposed driveway width of 28 feet. Referencing *Table 18-1* of the AMC, driveways servicing less than 150 vehicles per hour (vph) during the peak hour period should have a driveway width between 28 feet and 42 feet for two-way access. The proposed width of Drive 1 meets City standards.

Throat length standards for Drive 1 is based on projected peak hour volumes, per the City of Lee's Summit AMC. Drive 1 has a proposed driveway throat length of 81 feet. Referencing *Table 18-2* of the AMC, driveways servicing between 10 to 50 vph during the peak hour period should have a minimum throat length of 50 feet adjacent to an arterial roadway. The proposed throat length of Drive 1 meets City standards.

The driveway geometrics of the existing drive were reviewed considering additional traffic associated with the proposed expansion. The existing drive has an existing width of 26 feet. Based on the expected volume of 242 vehicles during the highest peak hour period, the AMC states a driveway width between 28 feet and 42 feet for two-way access. Based on acceptable current operations and acknowledgement that this access is expected to be modified in the future, the existing driveway width is expected to be acceptable.

018-0330

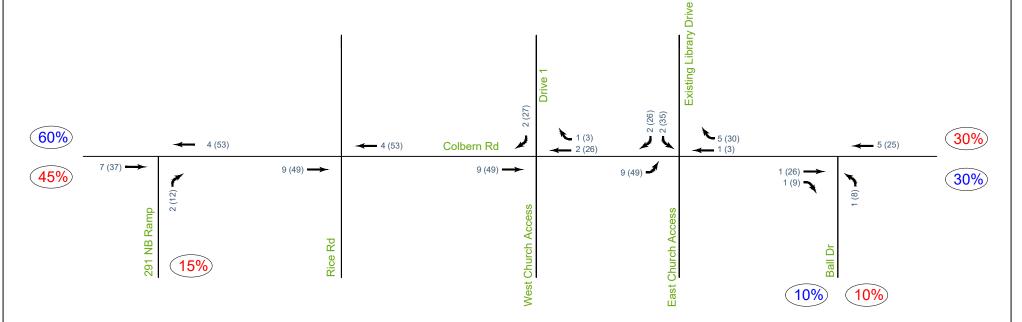

September 2019

The throat length of the existing drive is 45 feet. Based on the expected volume of 242 vehicles during the highest peak hour period, the AMC states the driveway throat should be a minimum of 125 feet. Acknowledging that this access is expected to be modified in the future, and that exiting vehicles can queue onto the site, the existing throat length is expected to be acceptable.

Site Plan

Colbern Road MCPL Lee's Summit, MO

PRELIMINARY


actual conditions may vary.

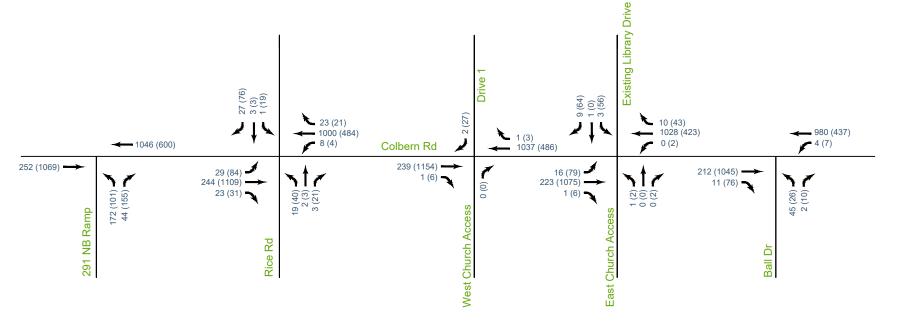
Trip Distribution

Colbern Road MCPL Lee's Summit, MO

LEGEND

AM (PM) Primary Peak Hour Trips

Primary Entering Trip Distribution Percentage



Primary Exiting Trip Distribution Percentage

Existing plus Development Peak Hour Volumes

Colbern Road MCPL Lee's Summit, MO

LEGEND

AM (PM) Peak Hour Volume

4.3. Existing Plus Proposed Development ConditionsSignal Warrants

Considering existing plus proposed development volumes, the intersection of Colbern Road with Rice Road is not expected to meet the criteria for signalization during either peak hour period based on Warrant 3 (Peak Hour Warrant). The intersection of Colbern Road and the Existing Library/Church Drive is on the threshold for warranting a signal based on PM peak hour volumes. Due to only being warranted during the PM peak hour period, and future removal of this as a full access location, signalization is not recommended.

Signal warrant analysis sheets can be found in **Appendix C**.

Turn Lane Warrants

As discussed in **Section 3.2**, the following turn lane deficiencies were noted in existing conditions.

- Dedicated left-turn lanes in northbound and southbound directions at Colbern Road and Rice Road are not provided
- Eastbound left-turn lane with reduced storage at Colbern Road and Rice Road
- Eastbound left-turn lane with reduced storage at Colbern Road and Existing Library/East Church Drive
- Dedicated eastbound right-turn lane at Colbern Road and Rice Road is not provided
- Dedicated eastbound right-turn lane at Colbern Road and Ball Drive is not provided

Capacity analysis is provided in **Section 4.4** to determine if additional turn lanes and/or storage length is recommended based on existing operations.

Based on the Lee's Summit AMC, right-turn lanes shall be provided on arterial streets for any movement with a volume of 30 vehicles in any hour at each intersecting street or driveway. Based on this criteria, the westbound right-turn movement at the intersection of Colbern Road and Existing Library/East Church Drive exceeds the criteria for a right-turn lane during the PM peak hour period (43 right-turning vehicles) based on expected existing plus development volumes. Due to the planned relocation of this drive and exceeding the threshold for one peak hour period, it is not recommended to construct a right-turn lane. Capacity analysis and queuing for this movement will be reviewed.

Existing plus proposed development conditions lane configurations and traffic control for the study network are illustrated in **Figure 8**.

4.4. Existing Plus Proposed Development Capacity Analysis

Capacity analysis was performed under existing plus proposed development conditions using the methodologies described in **Section 3.3**. The peak hour factors observed under existing conditions were utilized for this scenario except for movements which are expected to experience an increase in traffic with the proposed development. At these locations, the peak hour factors were conservatively adjusted considering the Synchro suggested values and expected traffic conditions after development.

Results of the capacity analysis indicate similar operations to existing conditions. Results of the analysis indicate that the existing signalized study intersections are expected to operate at an overall LOS B or better with individual movements operating at a LOS C or better during the AM and PM peak hour periods.

All movements at the unsignalized study intersections are operating at LOS D or better with acceptable queues during both the AM and PM peak hour periods with the following exceptions:

- Colbern Road and Rice Road
 - Similar to the existing conditions, the northbound and southbound movements are expected to operate at a lower level of service. Significant increases to delay or 95th percentile queue lengths are not expected due to the proposed library expansion.
- Colbern Road and Existing Library/East Church Access
 - Similar to existing conditions, the northbound movement is expected to operate at a lower level of service. Significant increases to delay or 95th percentile queue lengths are not expected due to the proposed library expansion.
 - The southbound movement is expected to operate at a level of service F during the PM peak hour period with a 95th percentile queue length of 133 feet.
 - Existing throat length of this approach is not expected to accommodate the PM peak hour southbound 95th percentile queue. However, adequate storage for this queue length is provided on site. The main entrance for the library is expected to be located along the west side of the building, northwest of this proposed access. Thus, queuing associated with the movement would not be expected to significantly impact ingress to the main entrance.
 - Considering the future relocation and limitation of this access, the existing throat and acknowledgement of potential southbound queuing onto the site is expected to be acceptable.

As discussed in **Section 3.3**, v/c ratios were reviewed following guidance provided in the HCM. At the unsignalized minor street approaches listed above, the v/c ratios and 95th-percentile queues are expected to be acceptable during the peak hour periods with the exception of the

northbound movement at the intersection of Colbern Road and Rice Road during the PM peak hour period. Comparing operations expected with development to existing conditions for this movement, the proposed development is expected to have a minimal impact on operations of this movement.

Several existing turn lane deficiencies were noted in **Section 3.2**. Capacity and queuing analysis were reviewed for each movement considering development conditions. After review of the analysis, it was determined that the proposed development is not expected to have a significant impact to existing operations. Operations specifically related to the existing library are further detailed below:

- Eastbound left-turn lane with reduced storage at Colbern Road and Existing Library/East Church Drive
 - Reviewing capacity analysis, the eastbound left-turn movement is operating at an acceptable level of service during both peak hour periods and 95th percentile queue lengths are not expected to exceed provided storage considering additional traffic associated with the proposed expansion.
- Dedicated westbound right-turn lane at Colbern Road and Existing Library/Church
 - Operations of the westbound movement are expected to be acceptable. Due to the full access location serving a near-term access need and the planned relocation of this drive in the future, construction of a westbound right-turn lane is not recommended.

The existing plus proposed development conditions capacity analysis summary is illustrated in **Figure 9**. Detailed results may be found in **Appendix C**.

Existing plus Development Lane Configuration and Traffic Control

Colbern Road MCPL Lee's Summit, MO

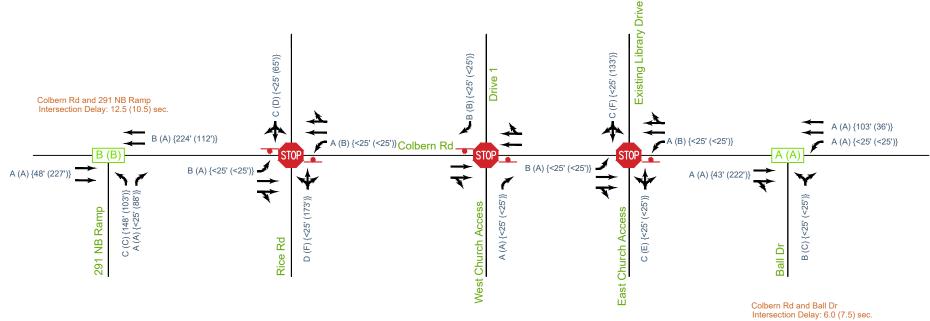
LEGEND

Lane Configuration & Storage Length

Proposed Lane Configuration & Storage Length

Signalized Intersection

Stop Controlled Intersection



Stop Sign

Existing plus Development Level of Service

Colbern Road MCPL Lee's Summit, MO

LEGEND

AM (PM) {AM (PM)}

Movement LOS & {95th Percentile Queue}

Signalized Intersection LOS

Stop Controlled Intersection

Stop Sign

Lane Geometry

4.5. Future Access Considerations

As discussed at the beginning of this section, this study presents a review of a near-term solution for access for the proposed MCPL library expansion. Utilization of an existing full access location is recommended, as well as the addition of a right-in/right-out that aligns with a future proposed roadway extension.

When the roadway extension occurs at the west side of the project property, current access should be modified. The right-in/right-out will be removed and replaced with a full access intersection. It is assumed that this full access intersection will align with the existing west church access (currently limited to a right-in/right-out) located south of Colbern Road.

It should be noted that future analysis was not conducted. Consideration of future development that may occur along the proposed roadway or re-distribution of trips to the proposed roadway was outside the scope of this project review. However, a high-level review of future access considerations is provided. Prior to making access modification or design decisions, it is recommended to conduct analysis reviewing proposed use of the future roadway.

When the future roadway is constructed, a review of access along the south side of Colbern Road in the vicinity of the roadway extension should be reviewed. In order to provide turn lanes as recommended in the AMC, modifications to existing full access locations along the south side of Colbern Road may be required.

Specifically reviewing the library site, with the construction of the proposed roadway the right-in/right-out access will be eliminated.

To provide for adequate spacing from the new intersection of Colbern Road and the proposed roadway, the existing full access library drive located east of the proposed roadway should be located to the east edge of the property and limited to a right-in/right-out. Review of existing operations and changes to trip distribution due to revisions to the roadway network should be considered, but a westbound right-turn lane at this location may not be needed. Specific location of the proposed roadway is unknown at the writing of this report, however it is anticipated that the right-in/right-out for the library, located along Colbern Road, could be approximately 350 feet east of the proposed intersection (measured center to center).

It is anticipated that full access to the library site will be provided via the proposed roadway due to the limitation of access along Colbern Road. This supports improved access management along the Colbern Road corridor by limiting access along the major arterial roadway and providing access along a lower classification route (assuming the proposed roadway will operate as a collector or minor arterial roadway consistent with the current designation of Rice Road).

Access to the library from the proposed roadway should be located outside of any turn lanes associated with the southbound approach. It is anticipated that this will result in location of full access for the library towards the north edge of the library property line. As future development along the proposed roadway is considered, opportunities for shared full access with adjacent property to the north may be considered.

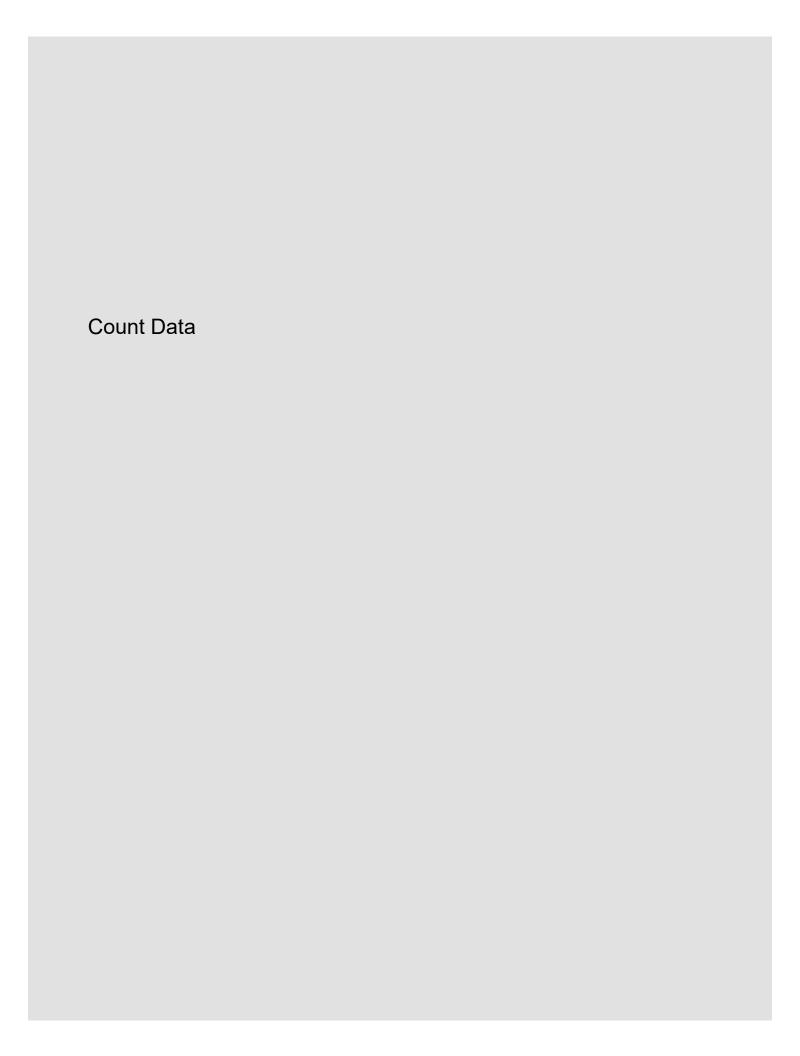
A right-in/right-out access is illustrated on the site plan along the new roadway between Colbern Road and the library full access. Potential for a right-in/right-out access should be considered when more definitive roadway plans are available.

5. SUMMARY

The purpose of this study was to summarize traffic impacts regarding a proposed library expansion to the existing Mid-Continent Public Library Colbern Road branch located north of Colbern Road between Rice Road and Ball Drive in Lee's Summit, Missouri.

5.1. Conclusions

The general findings of note for the traffic impact study include the following:


- 1. In general, traffic operations are not expected to be significantly impacted by the proposed development.
- Several existing deficiencies of turn lanes at study intersections were noted, either turn lanes not provided or have reduced existing storage length. The operations of these existing movements are not expected to be significantly impacted by the proposed development.
- 3. An increase in southbound queuing at the existing library drive is expected with the library expansion. This queuing is expected to exceed available throat but can be contained internal to the site. Considering the future relocation and restriction of access at this drive location, the operations are expected to be acceptable.
- 4. As modifications are made to the roadway network in the vicinity of this project, evaluation of existing access and modifications to accommodate future roadway projects should be made.

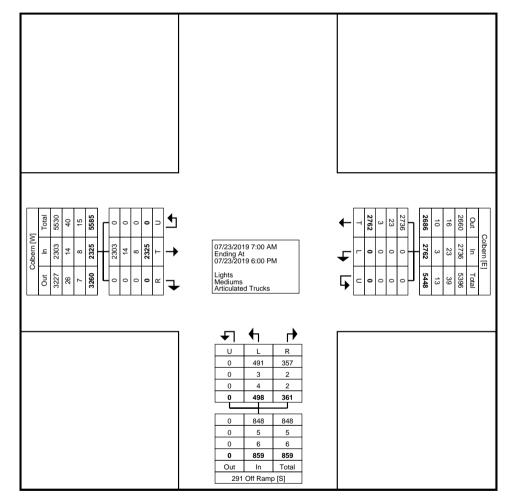
5.2. Recommendations

There are no recommended improvements associated with the proposed development conditions analysis conducted for this study. As modifications to the roadway network in the vicinity of the library are made, a review of access should be conducted.

APPENDIX A

Data Collection

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com


Count Name: Colbern Rd & Route 291 NB Off-Ramp Site Code: Start Date: 07/23/2019 Page No: 1

Turning Movement Data

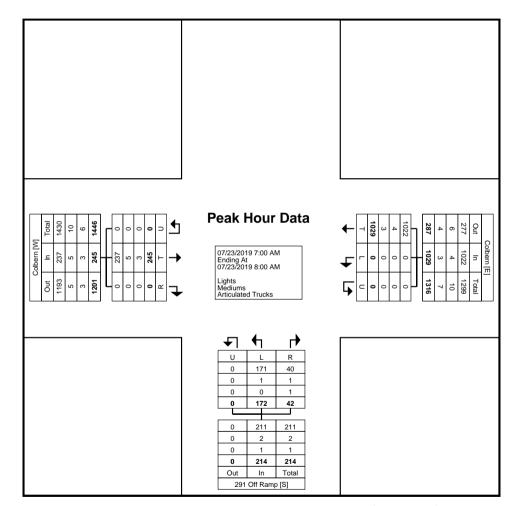
	Colbern 291 Off Ramp								bern				
Start Time	Thru	West Left	bound U-Turn	Ann Total	Diaht	North Left	bound U-Turn	Ann Total	Diaht	East Thru	bound U-Turn	Ann Total	Int. Total
7.00 444				App. Total	Right		-	App. Total	Right	-		App. Total	
7:00 AM	243	0	. 0	243	10	39	. 0	49	0	. 51	0	51	343
7:15 AM	272	0	0	272	7	46	0	53	0	60	0	60	385
7:30 AM	233	0	0	233	14	43	0	57	0	64	0	64	354
7:45 AM	281	0	. 0	281	11	44	. 0	55	0	70	0	70	406
Hourly Total	1029	0	0	1029	42	172	0	214	0	245	0	245	1488
8:00 AM	224	0	0	224	12	30	0	42	0	68	0	68	334
8:15 AM	179	0	. 0	179	12	45	. 0	57	0	62	. 0	62	298
8:30 AM	165	0	. 0	165	13	24	0	37	0	57	0	57	259
8:45 AM	166	0	0	166	12	25	0	37	0	81	0	81	284
Hourly Total	734	0	. 0	734	49	124	0	173	0	268	. 0	268	1175
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-
4:00 PM	115	0	0	115	32	32	0	64	0	191	0	191	370
4:15 PM	128	0	. 0	128	26	17	. 0	43	0	176	. 0	176	347
4:30 PM	117	0	0	117	37	28	0	65	0	211	0	211	393
4:45 PM	151	0	0	151	38	25	0	63	0	232	0	232	446
Hourly Total	511	0	. 0	511	133	102	0	235	0	810	0	810	1556
5:00 PM	146	0	. 0	146	41	24	0	65	0	297	0	297	508
5:15 PM	121	0	0	121	35	26	0	61	0	274	0	274	456
5:30 PM	117	0	0	117	29	26	0	55	0	224	0	224	396
5:45 PM	104	0	0	104	32	24	0	56	0	207	0	207	367
Hourly Total	488	0	0	488	137	100	0	237	0	1002	0	1002	1727
Grand Total	2762	0	0	2762	361	498	0	859	0	2325	0	2325	5946
Approach %	100.0	0.0	0.0		42.0	58.0	0.0	-	0.0	100.0	0.0	-	-
Total %	46.5	0.0	0.0	46.5	6.1	8.4	0.0	14.4	0.0	39.1	0.0	39.1	-
Lights	2736	0	0	2736	357	491	0	848	0	2303	0	2303	5887
% Lights	99.1	-	<u>-</u>	99.1	98.9	98.6	-	98.7	i	99.1	<u>-</u>	99.1	99.0
Mediums	23	0	0	23	2	3	0	5	0	14	0	14	42
% Mediums	0.8	-	<u>-</u>	0.8	0.6	0.6	<u>-</u>	0.6	ī	0.6	<u>-</u>	0.6	0.7
Articulated Trucks	3	0	0	3	2	4	0	6	0	8	0	8	17
% Articulated Trucks	0.1	-	-	0.1	0.6	0.8	-	0.7	-	0.3	-	0.3	0.3

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com

Count Name: Colbern Rd & Route 291 NB Off-Ramp Site Code: Start Date: 07/23/2019 Page No: 2

Turning Movement Data Plot

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com


Count Name: Colbern Rd & Route 291 NB Off-Ramp Site Code: Start Date: 07/23/2019 Page No: 3

Turning Movement Peak Hour Data (7:00 AM)

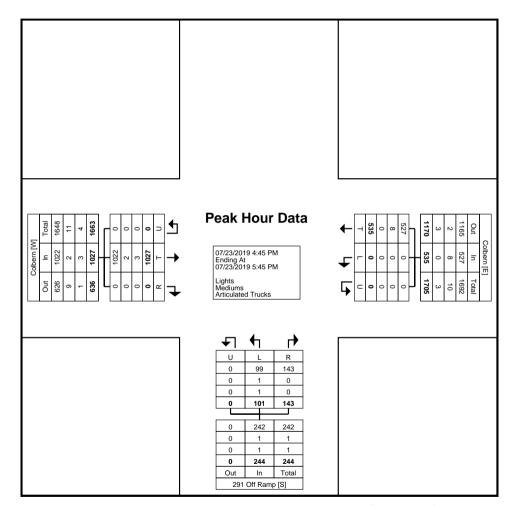
				ranning	VIOVCITICIT	it i can i ic	ou Dala (7.00 / (IVI)					
		Col	lbern		291 Off Ramp								
Start Time	Westbound				Northbound				Eastbound				
	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
7:00 AM	243	0	0	243	10	39	0	49	0	51	0	51	343
7:15 AM	272	0	0	272	7	46	0	53	0	60	0	60	385
7:30 AM	233	0	0	233	14	43	0	57	0	64	0	64	354
7:45 AM	281	0	0	281	11	44	0	55	0	70	0	70	406
Total	1029	0	0	1029	42	172	0	214	0	245	0	245	1488
Approach %	100.0	0.0	0.0	-	19.6	80.4	0.0	-	0.0	100.0	0.0	-	-
Total %	69.2	0.0	0.0	69.2	2.8	11.6	0.0	14.4	0.0	16.5	0.0	16.5	-
PHF	0.915	0.000	0.000	0.915	0.750	0.935	0.000	0.939	0.000	0.875	0.000	0.875	0.916
Lights	1022	0	0	1022	40	171	0	211	0	237	0	237	1470
% Lights	99.3	_	<u>-</u>	99.3	95.2	99.4	_	98.6	-	96.7	_	96.7	98.8
Mediums	4	0	0	4	1	1	0	2	0	5	0	5	11
% Mediums	0.4	-	-	0.4	2.4	0.6	-	0.9	-	2.0	-	2.0	0.7
Articulated Trucks	3	0	0	3	1	0	0	1	0	3	0	3	7
% Articulated Trucks	0.3	-	-	0.3	2.4	0.0	-	0.5	-	1.2	-	1.2	0.5

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com

Count Name: Colbern Rd & Route 291 NB Off-Ramp Site Code: Start Date: 07/23/2019 Page No: 4

Turning Movement Peak Hour Data Plot (7:00 AM)

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com


Count Name: Colbern Rd & Route 291 NB Off-Ramp Site Code: Start Date: 07/23/2019 Page No: 5

Turning Movement Peak Hour Data (4:45 PM)

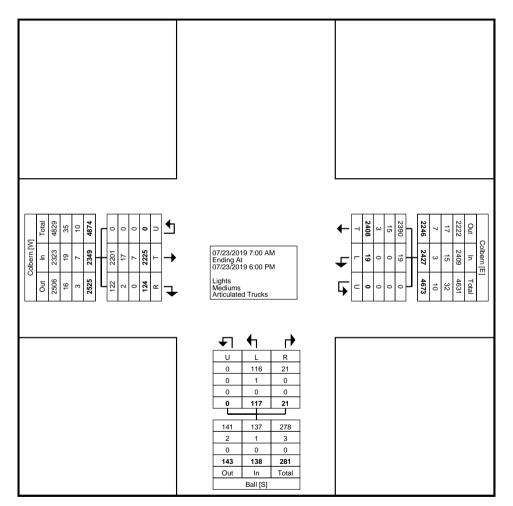
				1 41111119	1000011101	it i oak i it	on Data (1. 10 1 111)	•				
		Col	lbern			291 O	ff Ramp			Col	lbern		
Start Time		West	tbound			North	bound			East	bound		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
4:45 PM	151	0	0	151	38	25	0	63	0	232	0	232	446
5:00 PM	146	0	0	146	41	24	0	65	0	297	0	297	508
5:15 PM	121	0	0	121	35	26	0	61	0	274	0	274	456
5:30 PM	117	0	0	117	29	26	0	55	0	224	0	224	396
Total	535	0	0	535	143	101	0	244	0	1027	0	1027	1806
Approach %	100.0	0.0	0.0	-	58.6	41.4	0.0	-	0.0	100.0	0.0	-	-
Total %	29.6	0.0	0.0	29.6	7.9	5.6	0.0	13.5	0.0	56.9	0.0	56.9	-
PHF	0.886	0.000	0.000	0.886	0.872	0.971	0.000	0.938	0.000	0.864	0.000	0.864	0.889
Lights	527	0	0	527	143	99	0	242	0	1022	0	1022	1791
% Lights	98.5	-	-	98.5	100.0	98.0	-	99.2	-	99.5	-	99.5	99.2
Mediums	8	0	0	8	0	1	0	1	0	2	0	2	11
% Mediums	1.5	-	-	1.5	0.0	1.0	-	0.4	-	0.2	-	0.2	0.6
Articulated Trucks	0	0	0	0	0	1	0	1	0	3	0	3	4
% Articulated Trucks	0.0	-	-	0.0	0.0	1.0	-	0.4	-	0.3	-	0.3	0.2

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com

Count Name: Colbern Rd & Route 291 NB Off-Ramp Site Code: Start Date: 07/23/2019 Page No: 6

Turning Movement Peak Hour Data Plot (4:45 PM)

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com


Count Name: Colbern Rd & Ball Dr Site Code: Start Date: 07/23/2019 Page No: 1

Turning Movement Data

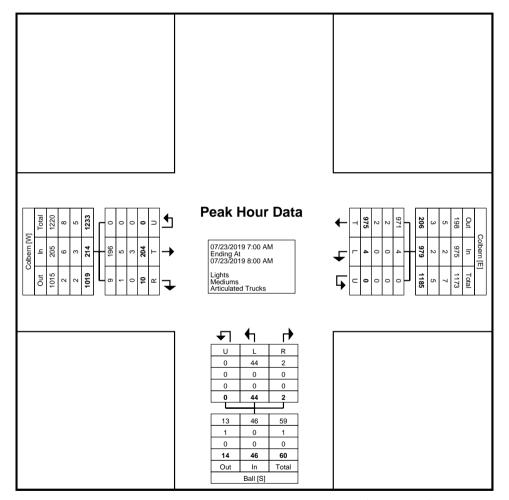
			bern bound				sall sbound				lbern bound		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
7:00 AM	241	1	0	242	0	14	0	14	3	42	0	45	301
7:15 AM	243	0	0	243	0	12	0	12	1	52	0	53	308
7:30 AM	235	0	0	235	1	7	0	8	3	56	0	59	302
7:45 AM	256	3	0	259	1	11	0	12	3	54	0	57	328
Hourly Total	975	4	0	979	2	44	0	46	10	204	0	214	1239
8:00 AM	200	2	0	202	1	13	0	14	1	55	0	56	272
8:15 AM	164	0	0	164	2	6	0	8	4	51	0	55	227
8:30 AM	160	1	0	161	3	5	0	8	1	45	0	46	215
8:45 AM	152	1	0	153	0	7	0	7	6	58	0	64	224
Hourly Total	676	4	0	680	6	31	0	37	12	209	0	221	938
*** BREAK ***	-	-	<u>-</u>	-	-	-	-	-	-	-	-	-	-
4:00 PM	93	0	0	93	0	9	0	9	7	167	0	174	276
4:15 PM	84	0	0	84	1	6	0	7	6	190	0	196	287
4:30 PM	85	0	0	85	0	2	0	2	7	232	0	239	326
4:45 PM	122	1	0	123	2	4	0	6	15	238	0	253	382
Hourly Total	384	1	0	385	3	21	0	24	35	827	0	862	1271
5:00 PM	94	1	0	95	3	2	0	5	14	292	0	306	406
5:15 PM	92	2	0	94	2	3	0	5	20	274	0	294	393
5:30 PM	94	3	0	97	3	9	0	12	18	215	0	233	342
5:45 PM	93	4	0	97	2	7	0	9	15	204	0	219	325
Hourly Total	373	10	0	383	10	21	0	31	67	985	0	1052	1466
Grand Total	2408	19	0	2427	21	117	0	138	124	2225	0	2349	4914
Approach %	99.2	0.8	0.0	-	15.2	84.8	0.0	-	5.3	94.7	0.0	_	-
Total %	49.0	0.4	0.0	49.4	0.4	2.4	0.0	2.8	2.5	45.3	0.0	47.8	-
Lights	2390	19	0	2409	21	116	0	137	122	2201	0	2323	4869
% Lights	99.3	100.0	<u>-</u>	99.3	100.0	99.1	<u>-</u>	99.3	98.4	98.9		98.9	99.1
Mediums	15	0	0	15	0	1	0	1	2	17	0	19	35
% Mediums	0.6	0.0	_	0.6	0.0	0.9	_	0.7	1.6	0.8	_	0.8	0.7
Articulated Trucks	3	0	0	3	0	0	0	0	0	7	0	7	10
% Articulated Trucks	0.1	0.0	-	0.1	0.0	0.0	-	0.0	0.0	0.3	-	0.3	0.2

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com

Count Name: Colbern Rd & Ball Dr Site Code: Start Date: 07/23/2019 Page No: 2

Turning Movement Data Plot

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com


Count Name: Colbern Rd & Ball Dr Site Code: Start Date: 07/23/2019 Page No: 3

Turning Movement Peak Hour Data (7:00 AM)

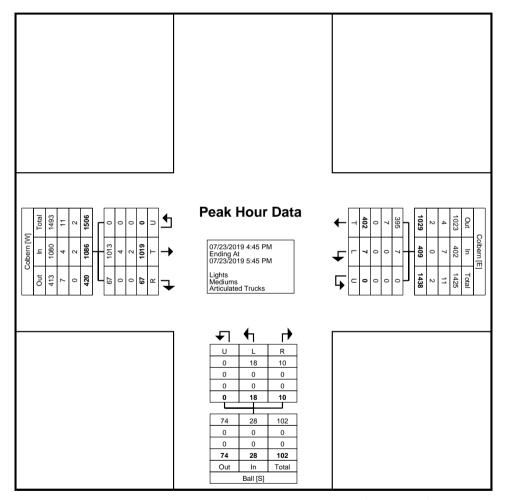
				ranning	INIONCITICI	it i can i ic	Jui Dala (7.00 / (IVI)					
		Col	bern			В	Ball			Col	lbern		
Start Time		West	bound			North	bound			East	bound		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
7:00 AM	241	. 1	0	242	0	14	0	14	3	42	0	45	301
7:15 AM	243	0	0	243	0	12	0	12	1	52	0	53	308
7:30 AM	235	0	0	235	1	7	0	8	3	56	0	59	302
7:45 AM	256	3	0	259	1	11	0	12	3	54	0	57	328
Total	975	4	0	979	2	44	0	46	10	204	0	214	1239
Approach %	99.6	0.4	0.0	-	4.3	95.7	0.0	-	4.7	95.3	0.0	-	-
Total %	78.7	0.3	0.0	79.0	0.2	3.6	0.0	3.7	0.8	16.5	0.0	17.3	-
PHF	0.952	0.333	0.000	0.945	0.500	0.786	0.000	0.821	0.833	0.911	0.000	0.907	0.944
Lights	971	4	0	975	2	44	0	46	9	196	0	205	1226
% Lights	99.6	100.0	<u>-</u>	99.6	100.0	100.0	-	100.0	90.0	96.1	-	95.8	99.0
Mediums	2	0	0	2	0	0	0	0	1	5	0	6	8
% Mediums	0.2	0.0	-	0.2	0.0	0.0	-	0.0	10.0	2.5	-	2.8	0.6
Articulated Trucks	2	0	0	2	0	0	0	0	0	3	0	3	5
% Articulated Trucks	0.2	0.0	-	0.2	0.0	0.0	-	0.0	0.0	1.5	-	1.4	0.4

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com

Count Name: Colbern Rd & Ball Dr Site Code: Start Date: 07/23/2019 Page No: 4

Turning Movement Peak Hour Data Plot (7:00 AM)

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com


Count Name: Colbern Rd & Ball Dr Site Code: Start Date: 07/23/2019 Page No: 5

Turning Movement Peak Hour Data (4:45 PM)

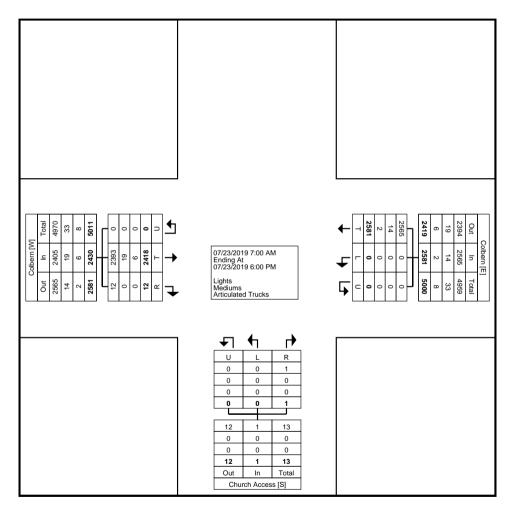
				running	INIONCLLICI	it i can i it	Jui Dala (T.TO 1 101)					
		Col	lbern			В	Ball			Col	bern		
Start Time		West	tbound			North	bound			East	bound		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
4:45 PM	122	. 1	0	123	2	4	0	6	15	238	0	253	382
5:00 PM	94	1	0	95	3	2	0	5	14	292	0	306	406
5:15 PM	92	2	0	94	2	3	0	5	20	274	0	294	393
5:30 PM	94	3	0	97	3	9	0	12	18	215	0	233	342
Total	402	7	0	409	10	18	0	28	67	1019	0	1086	1523
Approach %	98.3	1.7	0.0	-	35.7	64.3	0.0	-	6.2	93.8	0.0	-	-
Total %	26.4	0.5	0.0	26.9	0.7	1.2	0.0	1.8	4.4	66.9	0.0	71.3	-
PHF	0.824	0.583	0.000	0.831	0.833	0.500	0.000	0.583	0.838	0.872	0.000	0.887	0.938
Lights	395	7	0	402	10	18	0	28	67	1013	0	1080	1510
% Lights	98.3	100.0	<u>-</u>	98.3	100.0	100.0	-	100.0	100.0	99.4	-	99.4	99.1
Mediums	7	0	0	7	0	0	0	0	0	4	0	4	11
% Mediums	1.7	0.0	-	1.7	0.0	0.0	-	0.0	0.0	0.4	-	0.4	0.7
Articulated Trucks	0	0	0	0	0	0	0	0	0	2	0	2	2
% Articulated Trucks	0.0	0.0	<u>-</u>	0.0	0.0	0.0	-	0.0	0.0	0.2	-	0.2	0.1

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com

Count Name: Colbern Rd & Ball Dr Site Code: Start Date: 07/23/2019 Page No: 6

Turning Movement Peak Hour Data Plot (4:45 PM)

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com


Count Name: Colbern Rd & Existing Church Access Site Code: Start Date: 07/23/2019 Page No: 1

Turning Movement Data

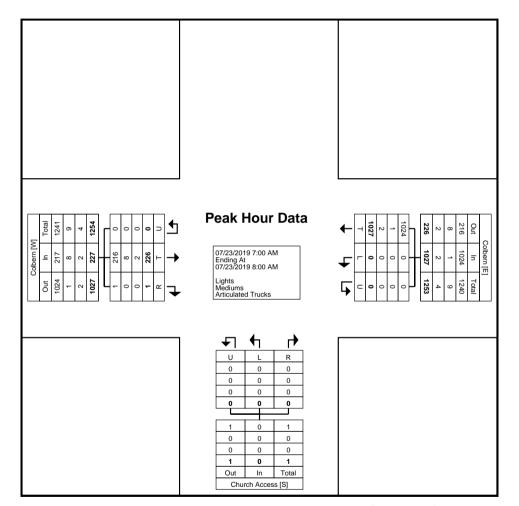
			bern				Access				lbern bound		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
7:00 AM	248	0	0	248	0	0	0	0	0	47	0	47	295
7:15 AM	266	0	0	266	0	0	0	0	0	52	0	52	318
7:30 AM	238	0	0	238	0	0	0	0	1	61	0	62	300
7:45 AM	275	0	0	275	0	0	0	0	0	66	0	66	341
Hourly Total	1027	0	0	1027	0	0	0	0	1	226	0	227	1254
8:00 AM	210	0	0	210	0	0	0	0	0	58	0	58	268
8:15 AM	169	0	0	169	0	0	0	0	0	56	0	56	225
8:30 AM	160	0	0	160	0	0	0	0	0	51	0	51	211
8:45 AM	151	0	0	151	0	0	0	0	0	73	0	73	224
Hourly Total	690	0	0	690	0	0	0	0	0	238	0	238	928
*** BREAK ***	-	-	_	-	-	-	<u>-</u>	-	-	-	_	-	-
4:00 PM	106	0	0	106	1	0	0	1	0	187	0	187	294
4:15 PM	107	0	0	107	0	0	0	0	0	202	0	202	309
4:30 PM	98	0	0	98	0	0	0	0	0	237	0	237	335
4:45 PM	131	0	0	131	0	0	0	0	1	254	0	255	386
Hourly Total	442	0	0	442	1	0	0	1	1	880	0	881	1324
5:00 PM	108	0	0	108	0	0	0	0	1	312	0	313	421
5:15 PM	116	0	0	116	0	0	0	0	2	288	0	290	406
5:30 PM	103	0	0	103	0	0	0	0	2	244	0	246	349
5:45 PM	95	0	0	95	0	0	0	0	5	230	0	235	330
Hourly Total	422	0	0	422	0	0	0	0	10	1074	0	1084	1506
Grand Total	2581	0	0	2581	1	0	0	1	12	2418	0	2430	5012
Approach %	100.0	0.0	0.0	-	100.0	0.0	0.0		0.5	99.5	0.0		-
Total %	51.5	0.0	0.0	51.5	0.0	0.0	0.0	0.0	0.2	48.2	0.0	48.5	-
Lights	2565	0	0	2565	1	0	0	1	12	2393	0	2405	4971
% Lights	99.4	-	<u>-</u>	99.4	100.0	-	<u>-</u>	100.0	100.0	99.0		99.0	99.2
Mediums	14	0	0	14	0	0	0	0	0	19	0	19	33
% Mediums	0.5	-		0.5	0.0	-	_	0.0	0.0	0.8	-	0.8	0.7
Articulated Trucks	2	0	0	2	0	0	0	0	0	6	0	6	8
% Articulated Trucks	0.1	-	-	0.1	0.0	-	-	0.0	0.0	0.2	-	0.2	0.2

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com

Count Name: Colbern Rd & Existing Church Access Site Code: Start Date: 07/23/2019 Page No: 2

Turning Movement Data Plot

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com


Count Name: Colbern Rd & Existing Church Access Site Code: Start Date: 07/23/2019 Page No: 3

Turning Movement Peak Hour Data (7:00 AM)

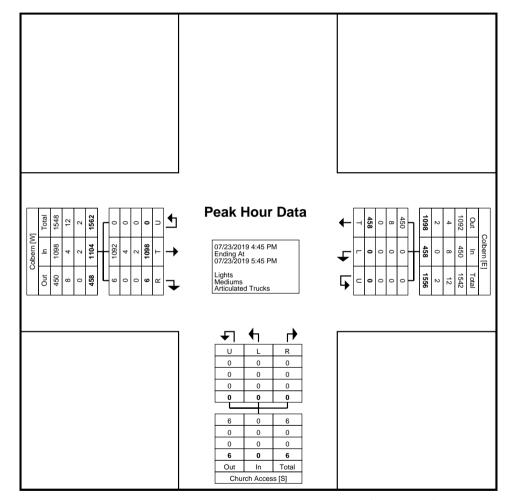
							(,					1
		Col	bern			Church	Access			Co	lbern		
Start Time		West	bound			North	bound			East	bound		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
7:00 AM	248	0	0	248	0	0	0	0	0	47	0	47	295
7:15 AM	266	0	0	266	0	0	0	0	0	52	0	52	318
7:30 AM	238	0	0	238	0	0	0	0	1	61	0	62	300
7:45 AM	275	0	0	275	0	0	0	0	0	66	0	66	341
Total	1027	0	0	1027	0	0	0	0	1	226	0	227	1254
Approach %	100.0	0.0	0.0	-	0.0	0.0	0.0	-	0.4	99.6	0.0	-	-
Total %	81.9	0.0	0.0	81.9	0.0	0.0	0.0	0.0	0.1	18.0	0.0	18.1	-
PHF	0.934	0.000	0.000	0.934	0.000	0.000	0.000	0.000	0.250	0.856	0.000	0.860	0.919
Lights	1024	0	0	1024	0	0	0	0	1	216	0	217	1241
% Lights	99.7	-	-	99.7	-	-	-	-	100.0	95.6	-	95.6	99.0
Mediums	1	0	0	1	0	0	0	0	0	8	0	8	9
% Mediums	0.1	-	-	0.1	-	-	-	-	0.0	3.5	-	3.5	0.7
Articulated Trucks	2	0	0	2	0	0	0	0	0	2	0	2	4
% Articulated Trucks	0.2	-	-	0.2	-	-	-	-	0.0	0.9	-	0.9	0.3

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com

Count Name: Colbern Rd & Existing Church Access Site Code: Start Date: 07/23/2019 Page No: 4

Turning Movement Peak Hour Data Plot (7:00 AM)

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com


Count Name: Colbern Rd & Existing Church Access Site Code: Start Date: 07/23/2019 Page No: 5

Turning Movement Peak Hour Data (4:45 PM)

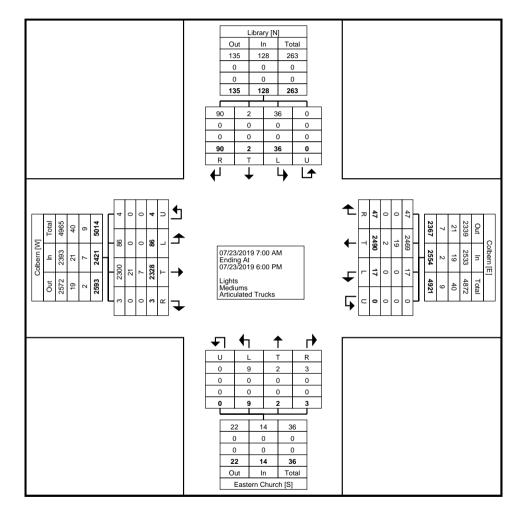
				ranning	INIONCITICI	it i can i ic	on Data (7.70 i ivi <i>)</i>					
		Col	bern			Church	Access			Col	bern		
Start Time		West	bound			North	bound			East	bound		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
4:45 PM	131	0	0	131	0	0	0	0	1	254	0	255	386
5:00 PM	108	0	0	108	0	0	0	0	1	312	0	313	421
5:15 PM	116	0	0	116	0	0	0	0	2	288	0	290	406
5:30 PM	103	0	0	103	0	0	0	0	2	244	0	246	349
Total	458	0	0	458	0	0	0	0	6	1098	0	1104	1562
Approach %	100.0	0.0	0.0	-	0.0	0.0	0.0	-	0.5	99.5	0.0	-	-
Total %	29.3	0.0	0.0	29.3	0.0	0.0	0.0	0.0	0.4	70.3	0.0	70.7	-
PHF	0.874	0.000	0.000	0.874	0.000	0.000	0.000	0.000	0.750	0.880	0.000	0.882	0.928
Lights	450	0	0	450	0	0	0	0	6	1092	0	1098	1548
% Lights	98.3	-	<u>-</u>	98.3	-	-	<u>-</u>	-	100.0	99.5	<u>-</u>	99.5	99.1
Mediums	8	0	0	8	0	0	0	0	0	4	0	4	12
% Mediums	1.7	-	-	1.7	-	-	-	-	0.0	0.4	-	0.4	0.8
Articulated Trucks	0	0	0	0	0	0	0	0	0	2	0	2	2
% Articulated Trucks	0.0	-	-	0.0	-	-	-	-	0.0	0.2	-	0.2	0.1

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com

Count Name: Colbern Rd & Existing Church Access Site Code: Start Date: 07/23/2019 Page No: 6

Turning Movement Peak Hour Data Plot (4:45 PM)

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com


Count Name: Colbern Rd & Existing Library Drive Site Code: Start Date: 07/23/2019 Page No: 1

Turning Movement Data

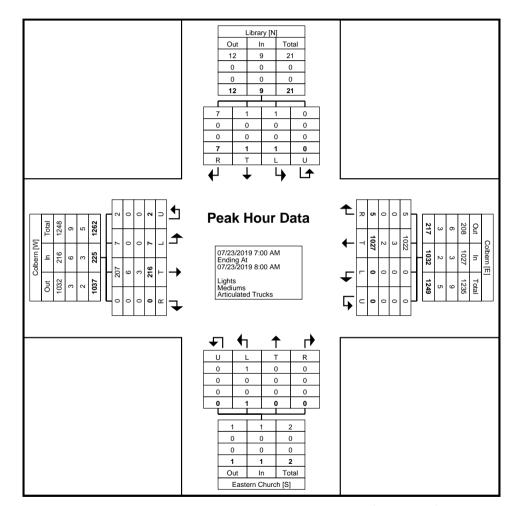
			Library					Colbern	3				astern Chur	ch				Colbern			
Start Time			Southbound					Westbound					Northbound					Eastbound			
	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
7:00 AM	1	1	. 0	0	2	1	257	. 0	0	258	0	0	1	0	. 1	0	45	. 0	1	46	307
7:15 AM	1	0	0	0	1	1	262	0	0	263	0	0	0	0	0	0	53	0	0	53	317
7:30 AM	3	0	0	0	3	3	236	0	0	239	0	0	0	0	0	0	59	1	0	60	302
7:45 AM	2	0	1	0	3	0	272	0	0	272	0	0	0	0	0	0	59	6	1	66	341
Hourly Total	7	1	1	0	9	5	1027	0	0	1032	0	0	1	0	1	0	216	7	2	225	1267
8:00 AM	1	0	0	0	1	3	210	0	0	213	0	0	0	0	0	1	56	1	0	58	272
8:15 AM	1	0	0	0	1	0	167	0	0	167	0	0	0	0	0	0	54	1	0	55	223
8:30 AM	0	0	0	0	0	3	160	1	0	164	0	0	0	0	0	1	46	3	0	50	214
8:45 AM	5	0	2	0	7	4	147	1	0	152	0	0	0	0	0	0	66	7	0	73	232
Hourly Total	7	0	2	0	9	10	684	2	0	696	0	0	0	0	0	2	222	12	0	236	941
*** BREAK ***	-			_	-	-	_	_	_	-	-	-	_	_	_	-		_	-	_	-
4:00 PM	6	0	2	0	8	7	100	0	0	107	0	0	0	0	0	0	180	9	1	190	305
4:15 PM	17	0	5	0	22	7	88	1	0	96	0	1	1	0	2	0	192	10	0	202	322
4:30 PM	13	0	6	0	19	4	86	0	0	90	0	0	0	0	0	0	241	7	0	248	357
4:45 PM	5	0	2	0	7	5	122	2	0	129	1	0	1	0	2	0	254	5	0	259	397
Hourly Total	41	0	15	0	56	23	396	3	0	422	1	1	2	0	4	0	867	31	1	899	1381
5:00 PM	9	0	6	0	15	2	98	0	0	100	0	0	1	0	1	0	301	10	1	312	428
5:15 PM	11	0	7	0	18	2	104	0	0	106	1	0	0	0	1	0	279	7	0	286	411
5:30 PM	6	0	4	0	10	3	95	4	0	102	1	0	3	0	4	0	229	10	0	239	355
5:45 PM	9	1	1	0	11	2	86	8	0	96	0	1	2	0	3	1	214	9	0	224	334
Hourly Total	35	1	18	0	54	9	383	12	0	404	2	1	6	0	9	1	1023	36	1	1061	1528
Grand Total	90	2	36	0	128	47	2490	17	0	2554	3	2	9	0	14	3	2328	86	4	2421	5117
Approach %	70.3	1.6	28.1	0.0	_	1.8	97.5	0.7	0.0	-	21.4	14.3	64.3	0.0		0.1	96.2	3.6	0.2		-
Total %	1.8	0.0	0.7	0.0	2.5	0.9	48.7	0.3	0.0	49.9	0.1	0.0	0.2	0.0	0.3	0.1	45.5	1.7	0.1	47.3	-
Lights	90	2	36	0	128	47	2469	17	0	2533	3	2	9	0	14	3	2300	86	4	2393	5068
% Lights	100.0	100.0	100.0	_	100.0	100.0	99.2	100.0		99.2	100.0	100.0	100.0	_	100.0	100.0	98.8	100.0	100.0	98.8	99.0
Mediums	0	0	0	0	0	0	19	0	0	19	0	0	0	0	0	0	21	0	0	21	40
% Mediums	0.0	0.0	0.0	-	0.0	0.0	0.8	0.0	-	0.7	0.0	0.0	0.0	-	0.0	0.0	0.9	0.0	0.0	0.9	0.8
Articulated Trucks	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	0	7	0	0	7	9
% Articulated Trucks	0.0	0.0	0.0	-	0.0	0.0	0.1	0.0	-	0.1	0.0	0.0	0.0	-	0.0	0.0	0.3	0.0	0.0	0.3	0.2

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com

Count Name: Colbern Rd & Existing Library Drive Site Code: Start Date: 07/23/2019 Page No: 2

Turning Movement Data Plot

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com


Count Name: Colbern Rd & Existing Library Drive Site Code: Start Date: 07/23/2019 Page No: 3

Turning Movement Peak Hour Data (7:00 AM)

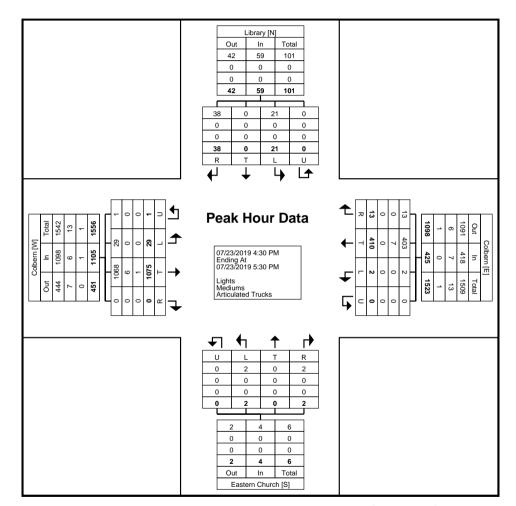
	i				1			,		ı		`		,	1					i	
			Library					Colbern				E	astern Churc	ch				Colbern			
Start Time			Southbound	i				Westbound					Northbound					Eastbound			
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
7:00 AM	1	1	0	0	2	1	257	0	0	258	0	0	1	0	1	0	45	0	1	46	307
7:15 AM	1	0	0	0	1	1	262	0	0	263	0	0	0	0	0	0	53	0	0	53	317
7:30 AM	3	0	0	0	3	3	236	0	0	239	0	0	0	0	0	0	59	1	0	60	302
7:45 AM	2	0	1	0	3	0	272	0	0	272	0	0	0	0	0	0	59	6	1	66	341
Total	7	1	1	0	9	5	1027	0	0	1032	0	0	1	0	1	0	216	7	2	225	1267
Approach %	77.8	11.1	11.1	0.0	-	0.5	99.5	0.0	0.0	-	0.0	0.0	100.0	0.0	-	0.0	96.0	3.1	0.9	-	-
Total %	0.6	0.1	0.1	0.0	0.7	0.4	81.1	0.0	0.0	81.5	0.0	0.0	0.1	0.0	0.1	0.0	17.0	0.6	0.2	17.8	-
PHF	0.583	0.250	0.250	0.000	0.750	0.417	0.944	0.000	0.000	0.949	0.000	0.000	0.250	0.000	0.250	0.000	0.915	0.292	0.500	0.852	0.929
Lights	7	1	1	0	9	5	1022	0	0	1027	0	0	1	0	1	0	207	7	2	216	1253
% Lights	100.0	100.0	100.0	-	100.0	100.0	99.5	-	-	99.5	-	-	100.0	-	100.0	-	95.8	100.0	100.0	96.0	98.9
Mediums	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	0	6	0	0	6	9
% Mediums	0.0	0.0	0.0	-	0.0	0.0	0.3	-	-	0.3	-	-	0.0	-	0.0	-	2.8	0.0	0.0	2.7	0.7
Articulated Trucks	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	0	3	0	0	3	5
% Articulated Trucks	0.0	0.0	0.0	-	0.0	0.0	0.2	-	-	0.2	-	-	0.0	-	0.0	-	1.4	0.0	0.0	1.3	0.4

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com

Count Name: Colbern Rd & Existing Library Drive Site Code: Start Date: 07/23/2019 Page No: 4

Turning Movement Peak Hour Data Plot (7:00 AM)

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com


Count Name: Colbern Rd & Existing Library Drive Site Code: Start Date: 07/23/2019 Page No: 5

Turning Movement Peak Hour Data (4:30 PM)

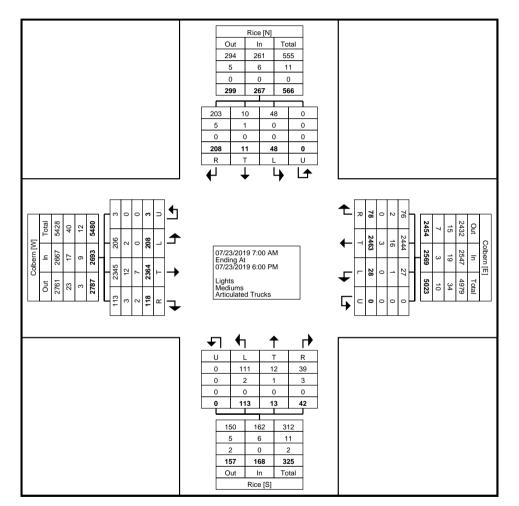
								,				,		,							1
			Library					Colbern				E	astern Chur	ch				Colbern			
Start Time			Southbound	ł				Westbound					Northbound	I				Eastbound			
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
4:30 PM	13	0	6	0	19	4	86	0	0	90	0	0	0	0	0	0	241	7	0	248	357
4:45 PM	5	0	2	0	7	5	122	2	0	129	1	0	1	0	2	0	254	5	0	259	397
5:00 PM	9	0	6	0	15	2	98	0	0	100	0	0	1	0	1	0	301	10	1	312	428
5:15 PM	11	0	7	0	18	2	104	0	0	106	1	0	0	0	1	0	279	7	0	286	411
Total	38	0	21	0	59	13	410	2	0	425	2	0	2	0	4	0	1075	29	1	1105	1593
Approach %	64.4	0.0	35.6	0.0	-	3.1	96.5	0.5	0.0	-	50.0	0.0	50.0	0.0	-	0.0	97.3	2.6	0.1	-	-
Total %	2.4	0.0	1.3	0.0	3.7	0.8	25.7	0.1	0.0	26.7	0.1	0.0	0.1	0.0	0.3	0.0	67.5	1.8	0.1	69.4	-
PHF	0.731	0.000	0.750	0.000	0.776	0.650	0.840	0.250	0.000	0.824	0.500	0.000	0.500	0.000	0.500	0.000	0.893	0.725	0.250	0.885	0.930
Lights	38	0	21	0	59	13	403	2	0	418	2	0	2	0	4	0	1068	29	1	1098	1579
% Lights	100.0	-	100.0	-	100.0	100.0	98.3	100.0	-	98.4	100.0	-	100.0	-	100.0	-	99.3	100.0	100.0	99.4	99.1
Mediums	0	0	0	0	0	0	7	0	0	7	0	0	0	0	0	0	6	0	0	6	13
% Mediums	0.0	-	0.0	-	0.0	0.0	1.7	0.0	-	1.6	0.0	-	0.0	-	0.0	-	0.6	0.0	0.0	0.5	0.8
Articulated Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1
% Articulated Trucks	0.0	-	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0	-	0.0	-	0.0	-	0.1	0.0	0.0	0.1	0.1

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com

Count Name: Colbern Rd & Existing Library Drive Site Code: Start Date: 07/23/2019 Page No: 6

Turning Movement Peak Hour Data Plot (4:30 PM)

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com


Count Name: Colbern Rd & Rice Rd Site Code: Start Date: 07/23/2019 Page No: 1

Turning Movement Data

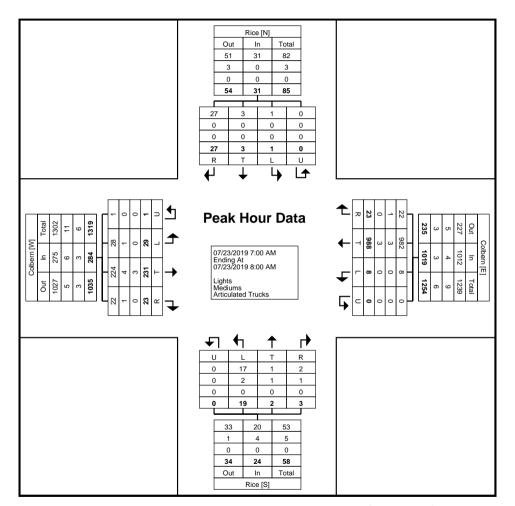
			Rice Southbound	i				Colbern Westbound	3				Rice Northbound	ı				Colbern Eastbound			
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
7:00 AM	8	0	0	0	8	4	238	2	0	244	2	1	4	0	7	2	49	10	0	61	320
7:15 AM	6	0	1	0	7	8	257	2	0	267	0	1	6	0	7	6	53	8	0	67	348
7:30 AM	5	2	0	0	7	5	224	0	0	229	0	0	3	0	3	5	65	6	1	77	316
7:45 AM	8	1	0	0	9	6	269	4	0	279	1	0	6	0	7	10	64	5	0	79	374
Hourly Total	27	3	1	0	31	23	988	8	0	1019	3	2	19	0	24	23	231	29	1	284	1358
8:00 AM	14	1	1	0	16	2	205	4	0	211	1	0	5	0	6	11	59	9	0	79	312
8:15 AM	6	1	0	. 0	7	3	166	2	0	171	2	1	5	0	8	10	58	6	1	75	261
8:30 AM	14	0	3	0	17	1	149	6	0	156	0	1	4	0	5	9	52	9	0	70	248
8:45 AM	16	1	2	0	19	7	142	3	0	152	1	0	8	0	9	11	73	11	0	95	275
Hourly Total	50	3	6	. 0	59	13	662	15	0	690	4	2	22	0	28	41	242	35	1	319	1096
*** BREAK ***	-	-	-		-	-		-	_	-	-	-		_	-	-	_	-	_		-
4:00 PM	20	1	6	0	27	14	89	1	0	104	4	1	8	0	13	9	189	20	0	218	362
4:15 PM	20	1	9	. 0	30	4	103	0	0	107	5	3	. 8	0	16	4	187	21	0	212	365
4:30 PM	16	0	5	0	21	5	94	0	0	99	6	0	8	0	14	7	221	15	1	244	378
4:45 PM	22	1	7	0	30	7	120	1	0	128	4	0	14	0	18	6	248	28	0	282	458
Hourly Total	78	3	27	0	108	30	406	2	0	438	19	4	38	0	61	26	845	84	1	956	1563
5:00 PM	25	1	4	0	30	2	109	2	0	113	9	2	12	0	23	9	296	29	0	334	500
5:15 PM	13	1	3	0	17	7	106	1	0	114	2	1	6	0	9	9	288	12	0	309	449
5:30 PM	10	0	4	0	14	1	101	0	0	102	2	1	8	0	11	6	233	11	0	250	377
5:45 PM	5	0	3	0	. 8	2	91	0	0	93	3	1	8	0	12	4	229	8	0	241	354
Hourly Total	53	2	14	0	69	12	407	3	0	422	16	5	34	0	55	28	1046	60	0	1134	1680
Grand Total	208	11	48	0	267	78	2463	28	0	2569	42	13	113	0	168	118	2364	208	3	2693	5697
Approach %	77.9	4.1	18.0	0.0	-	3.0	95.9	1.1	0.0	-	25.0	7.7	67.3	0.0	-	4.4	87.8	7.7	0.1	-	-
Total %	3.7	0.2	0.8	0.0	4.7	1.4	43.2	0.5	0.0	45.1	0.7	0.2	2.0	0.0	2.9	2.1	41.5	3.7	0.1	47.3	-
Lights	203	10	48	0	261	76	2444	27	0	2547	39	12	111	0	162	113	2345	206	3	2667	5637
% Lights	97.6	90.9	100.0		97.8	97.4	99.2	96.4	_	99.1	92.9	92.3	98.2	_	96.4	95.8	99.2	99.0	100.0	99.0	98.9
Mediums	5	1	0	0	6	2	16	1	0	19	3	1	2	0	6	3	12	2	0	17	48
% Mediums	2.4	9.1	0.0	-	2.2	2.6	0.6	3.6	_	0.7	7.1	7.7	1.8	-	3.6	2.5	0.5	1.0	0.0	0.6	0.8
Articulated Trucks	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	2	7	0	0	9	12
% Articulated Trucks	0.0	0.0	0.0	-	0.0	0.0	0.1	0.0		0.1	0.0	0.0	0.0	-	0.0	1.7	0.3	0.0	0.0	0.3	0.2

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com

Count Name: Colbern Rd & Rice Rd Site Code: Start Date: 07/23/2019 Page No: 2

Turning Movement Data Plot

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com


Count Name: Colbern Rd & Rice Rd Site Code: Start Date: 07/23/2019 Page No: 3

Turning Movement Peak Hour Data (7:00 AM)

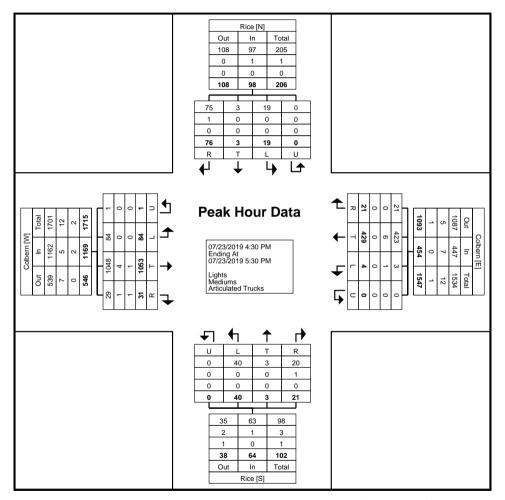
	i				1			,				`		,							
			Rice					Colbern					Rice					Colbern			
Start Time			Southbound	I				Westbound					Northbound					Eastbound			
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
7:00 AM	8	0	0	0	8	4	238	2	0	244	2	1	4	0	7	2	49	10	0	61	320
7:15 AM	6	0	1	0	7	8	257	2	0	267	0	1	6	0	7	6	53	8	0	67	348
7:30 AM	5	2	0	0	7	5	224	0	0	229	0	0	3	0	3	5	65	6	1	77	316
7:45 AM	8	1	0	0	9	6	269	4	0	279	1	0	6	0	7	10	64	5	0	79	374
Total	27	3	1	0	31	23	988	8	0	1019	3	2	19	0	24	23	231	29	1	284	1358
Approach %	87.1	9.7	3.2	0.0	-	2.3	97.0	0.8	0.0	-	12.5	8.3	79.2	0.0	-	8.1	81.3	10.2	0.4	-	-
Total %	2.0	0.2	0.1	0.0	2.3	1.7	72.8	0.6	0.0	75.0	0.2	0.1	1.4	0.0	1.8	1.7	17.0	2.1	0.1	20.9	-
PHF	0.844	0.375	0.250	0.000	0.861	0.719	0.918	0.500	0.000	0.913	0.375	0.500	0.792	0.000	0.857	0.575	0.888	0.725	0.250	0.899	0.908
Lights	27	3	1	0	31	22	982	8	0	1012	2	1	17	0	20	22	224	28	1	275	1338
% Lights	100.0	100.0	100.0	-	100.0	95.7	99.4	100.0	-	99.3	66.7	50.0	89.5	-	83.3	95.7	97.0	96.6	100.0	96.8	98.5
Mediums	0	0	0	0	0	1	3	0	0	4	1	1	2	0	4	1	4	1	0	6	14
% Mediums	0.0	0.0	0.0	-	0.0	4.3	0.3	0.0	-	0.4	33.3	50.0	10.5	-	16.7	4.3	1.7	3.4	0.0	2.1	1.0
Articulated Trucks	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	0	3	0	0	3	6
% Articulated Trucks	0.0	0.0	0.0	-	0.0	0.0	0.3	0.0	-	0.3	0.0	0.0	0.0	_	0.0	0.0	1.3	0.0	0.0	1.1	0.4

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com

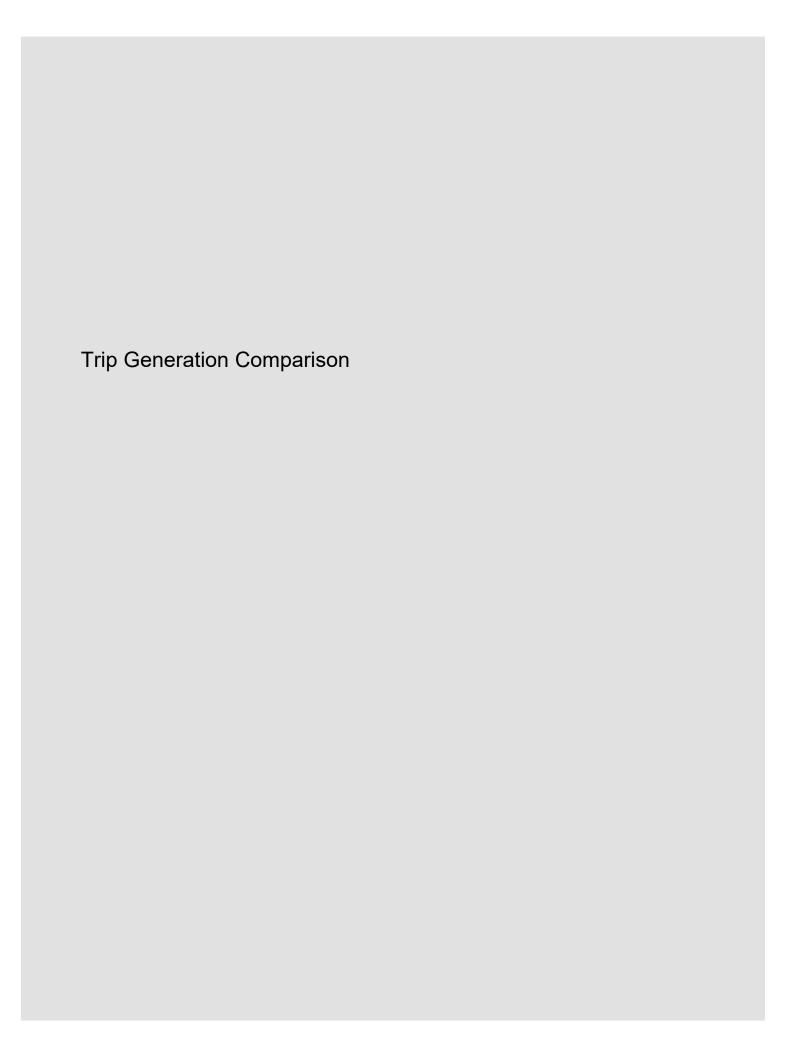
Count Name: Colbern Rd & Rice Rd Site Code: Start Date: 07/23/2019 Page No: 4

Turning Movement Peak Hour Data Plot (7:00 AM)

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com


Count Name: Colbern Rd & Rice Rd Site Code: Start Date: 07/23/2019 Page No: 5

Turning Movement Peak Hour Data (4:30 PM)


i	i				1			,				`		,	1						
			Rice					Colbern					Rice					Colbern			
Start Time			Southbound	i				Westbound					Northbound					Eastbound			
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
4:30 PM	16	0	5	0	21	5	94	0	0	99	6	0	8	0	14	7	221	15	1	244	378
4:45 PM	22	1	7	0	30	7	120	1	0	128	4	0	14	0	18	6	248	28	0	282	458
5:00 PM	25	1	4	0	30	2	109	2	0	113	9	2	12	0	23	9	296	29	0	334	500
5:15 PM	13	1	3	0	17	7	106	1	0	114	2	1	6	0	9	9	288	12	0	309	449
Total	76	3	19	0	98	21	429	4	0	454	21	3	40	0	64	31	1053	84	1	1169	1785
Approach %	77.6	3.1	19.4	0.0	-	4.6	94.5	0.9	0.0	-	32.8	4.7	62.5	0.0	-	2.7	90.1	7.2	0.1	-	-
Total %	4.3	0.2	1.1	0.0	5.5	1.2	24.0	0.2	0.0	25.4	1.2	0.2	2.2	0.0	3.6	1.7	59.0	4.7	0.1	65.5	-
PHF	0.760	0.750	0.679	0.000	0.817	0.750	0.894	0.500	0.000	0.887	0.583	0.375	0.714	0.000	0.696	0.861	0.889	0.724	0.250	0.875	0.893
Lights	75	3	19	0	97	21	423	3	0	447	20	3	40	0	63	29	1048	84	1	1162	1769
% Lights	98.7	100.0	100.0	-	99.0	100.0	98.6	75.0	-	98.5	95.2	100.0	100.0	-	98.4	93.5	99.5	100.0	100.0	99.4	99.1
Mediums	1	0	0	0	1	0	6	1	0	7	1	0	0	0	1	1	4	0	0	5	14
% Mediums	1.3	0.0	0.0	-	1.0	0.0	1.4	25.0	-	1.5	4.8	0.0	0.0	-	1.6	3.2	0.4	0.0	0.0	0.4	0.8
Articulated Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	2	2
% Articulated Trucks	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	_	0.0	3.2	0.1	0.0	0.0	0.2	0.1

Overland Park, Kansas, United States 66213 913.381.1170 tmchenry@olssonassociates.com

Count Name: Colbern Rd & Rice Rd Site Code: Start Date: 07/23/2019 Page No: 6

Turning Movement Peak Hour Data Plot (4:30 PM)

Daily Trip Generation

ITE			Trip Gen.	Daily	Trip Dist	tribution	Daily	/ Trips
Code/Page	Land Use	Size	Avg. Rate/Eq.	Trips	Enter	Exit	Enter	Exit
590	Library	15,000 S	F Equation	1055	50%	50%	528	527
Total				1,055			528	527

AM Peak Hour Trip Generation (Adjacent Street)

ITE				Trip Gen.	AM Peak	Trip Dist	ribution	AM Peak	Hour Trips
Code/Page	Land Use	Size		Avg. Rate/Eq.	Hour Trips	Enter	Exit	Enter	Exit
590	Library	15,000	SF	Equation	12	71%	29%	9	3
Total					12			9	3

PM Peak Hour Trip Generation (Adjacent Street)

ITE				Trip Gen.	PM Peak	Trip Dist		PM Peak	Hour Trips
Code/Page	Land Use	Size		Avg. Rate/Eq.	Hour Trips	Enter	Exit	Enter	Exit
590	Library	15,000	SF	Equation	123	48%	52%	60	63
Total					123			60	63

Comparison of Existing Actual Trips to Expected Trips

		AM			PM	
	Total	Enter	Exit	Total	Enter	Exit
Existing Actual Trips	21	12	9	102	43	59
Existing Expected Trips	12	9	3	123	60	63
Difference	9	3	6	-21	-17	-4

APPENDIX B

Existing Development Conditions

Major Street: Colbern Rd Minor Street : Rice Rd

Time Count Began :

6:00am July 23rd, 2019 Is the intersection in a community with a population less than 10,000 or are speeds greater than 40 mph?

Major Street

Minor Street

City: Lee's Summit, MO County:

Day of Week of Count:

Tuesday

Adjustment factor for day of week and month of year of count . . .

2 4

	Major	Street			Minor	Street	
Time	Approach	Volumes			Approac	h Volumes	
Beginning	EAST	WEST	Total	≅	NORTH	SOUTH	*
12:00 m	0	0	0		0	0	0
1:00	0	0	0		0	0	0
2:00	0	0	0		0	0	0
3:00 am	0	0	0		0	0	0
4:00	0	0	0		0	0	0
5:00	0	0	0		0	0	0
6:00 am	0	0	0		0	0	0
7:00	284	1019	1303		24	31	31
8:00	319	690	1009		28	59	59
9:00 am	0	0	0		0	0	0
10:00	0	0	0		0	0	0
11:00	0	0	0		0	0	0
12:00 n	0	0	0		0	0	0
1:00	0	0	0		0	0	0
2:00	0	0	0		0	0	0
3:00 pm	0	0	0		0	0	0
4:00	956	438	1394		61	108	108
5:00	1134	422	1556		55	69	69
6:00 pm	0	0	0		0	0	0
7:00	0	0	0		0	0	0
8:00	0	0	0		0	0	0
9:00 pm	0	0	0		0	0	0
10:00	0	0	0		0	0	0
11:00	0	0	0		0	0	0
24HR Total	2693	2569			168	267	

Note:

Total of both approaches.

The HIGHEST approach only.

NOTE:

Basic minimum hourly volumes (unreduced)

NOTE: No adjust ment made

Warrant Percent of Volume Warrant Warrant Volume Warrant 0 ******* 0 ****** 0 ******* 0 ****** 0 ******* 0 ****** 0 ******* 0 ****** 0 ******* 0 ****** 0 ******* 0 ****** 0 ******* 0 ****** 0 ******* 0 ****** 0 ******* 0 ****** 120 26 250 12	nt * * *
Volume Warrant Volume Warrant 0 ******* 0 ****** 0 ******* 0 ****** 0 ******* 0 ****** 0 ****** 0 ****** 0 ****** 0 ****** 0 ****** 0 ****** 0 ****** 0 ******	* * * *
O ****** O ***** O ******	* * * *
O ****** O *****	* * *
O ******	* * *
O ******	* *
0 ****** 0 ***** 0 ****** 0 ***** 0 ****** 0 ***** 0 ******	*
0 ***** 0 ***** 0 ***** 0 *****	*
0 ****** 0 ***** 0 ******	
0 ***** 0 ****	*
	*
	,
190 31 360 16	
0 **** 0 ****	*
0 ***** 0 ****	*
0 ***** 0 ****	*
0 **** 0 ****	*
0 ***** 0 ****	*
0 ***** 0 ****	*
0 ***** 0 ****	*
120 90 230 47	,
120 58 180 38	
0 ***** 0 ****	
0 ***** 0 ****	
0 ***** 0 ****	*
0 ***** 0 ****	*
0 ***** 0 ****	*
0 *****	*
Warranting Volumes Warranting Volume	
From MUTCD Fig. 4C-1 From MUTCD Fig.	4C-3
Hours Met 0 Hours Met 0	
Warrant Met No Warrant Met No	

Major Street volume is so low that no

Minor Street warrant exists

Major Street: Colbern Rd Minor Street: Ex. Library Access Time Count Began : Date:

6:00am

Is the intersection in a community with a population less than 10,000 or are speeds greater than 40 mph?

Major Street Minor Street

No

No

Warrant Met

City: Lee's Summit, MO

County:

Day of Week of Count:

July 23rd, 2019 Tuesday

Adjustment factor for day of week and month of year of count . . .

1 2

	Major	Street		Minor	Street	
Time	Approach	Volumes		Approac	h Volumes	
Beginning	EAST	WEST	Total :	NORTH	SOUTH	*
12:00 m	0	0	0	0	0	0
1:00	0	0	0	0	0	0
2:00	0	0	0	0	0	0
3:00 am	0	0	0	0	0	0
4:00	0	0	0	0	0	0
5:00	0	0	0	0	0	0
6:00 am	0	0	0	0	0	0
7:00	225	1032	1257	1	9	9
8:00	236	696	932	0	9	9
9:00 am	0	0	0	0	0	0
10:00	0	0	0	0	0	0
11:00	0	0	0	0	0	0
12:00 n	0	0	0	0	0	0
1:00	0	0	0	0	0	0
2:00	0	0	0	0	0	0
3:00 pm	0	0	0	0	0	0
4:00	899	422	1321	4	56	56
5:00	1061	404	1465	9	54	54
6:00 pm	0	0	0	0	0	0
7:00	0	0	0	0	0	0
8:00	0	0	0	0	0	0
9:00 pm	0	0	0	0	0	0
10:00	0	0	0	0	0	0
11:00	0	0	0	0	0	0
24HR Total	2421	2554		14	128	

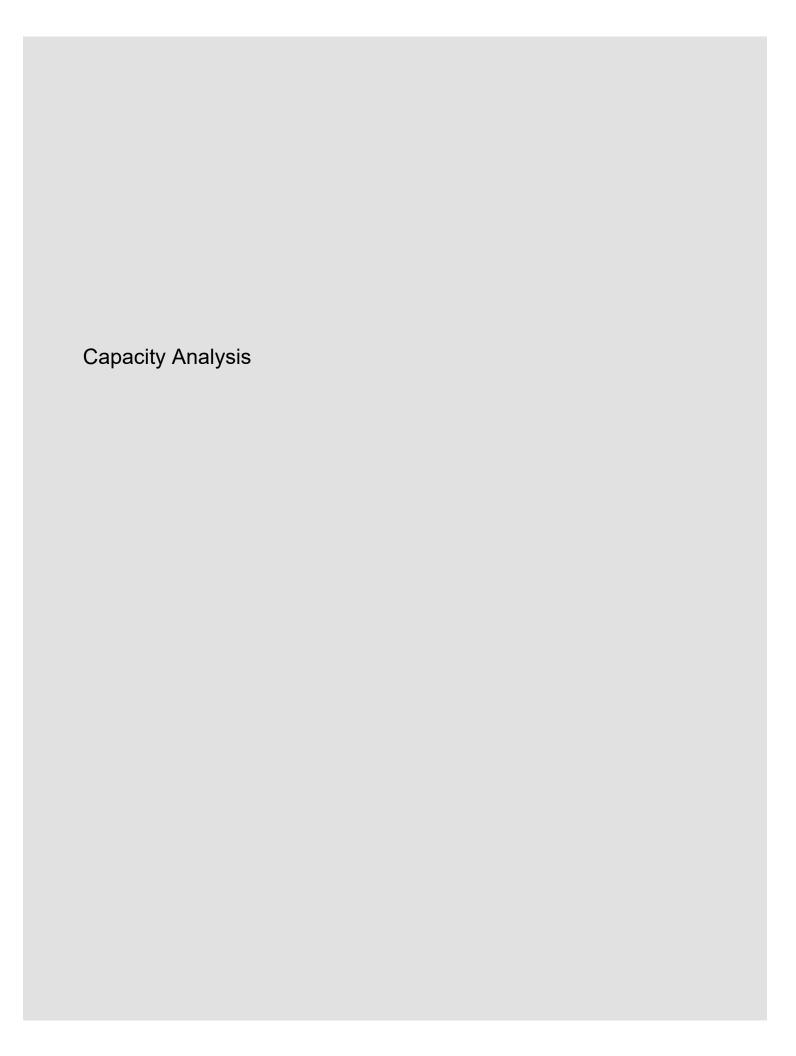
Total of both approaches. Note: ≅

The HIGHEST approach only.

NOTE:

Basic minimum hourly volumes (unreduced)

NOTE: No adjust ment made


	2 - Four-Hour Iar Volume	Warrant #3	
Warrar	nt Percent	Warrant	Percent
	of		of
Volume	Warrant	Volume	Warrant
0	****	0	****
0	****	0	****
0	****	0	****
0	****	0	****
0	****	0	****
0	****	0	****
0	****	0	****
120	8	270	3
220	4	400	2
0	****	0	****
0	****	0	****
0	****	0	****
0	****	0	****
0	****	0	****
0	****	0	****
0	****	0	****
120	47	250	22
120	45	210	26
0	****	0	****
0	****	0	****
0	****	0	****
0	****	0	****
0	****	0	****
0	****	0	****
Warrantii	ng Volumes	Warranting	Volumes
	TCD Fig. 4C-1		CD Fig. 4C-3
Hours Met	0	Hours Met	0

***** Major Street volume is so low that no

Minor Street warrant exists

No

Warrant Met

Intersection												
Int Delay, s/veh	1.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†		ሻ	†	1,51	,,,,,,,	4	, LOIK	UDL	4	ODIN
Traffic Vol, veh/h	29	235	23	8	996	23	19	2	3	1	3	27
Future Vol, veh/h	29	235	23	8	996	23	19	2	3	1	3	27
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	60	-	-	225	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	73	89	58	50	92	72	79	50	38	25	38	84
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	40	264	40	16	1083	32	24	4	8	4	8	32
Major/Minor N	1ajor1			Major2		ľ	Minor1		N	Minor2		
Conflicting Flow All	1115	0	0	304	0	0	942	1511	152	1345	1515	558
Stage 1	-	-	-	-	-	-	364	364	-	1131	1131	-
Stage 2	-	-	-	-	-	-	578	1147	-	214	384	-
Critical Hdwy	4.14	-	-	4.14	-	-	7.54	6.54	6.94	7.54	6.54	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-
Follow-up Hdwy	2.22	-	-	2.22	-	-	3.52	4.02	3.32	3.52	4.02	3.32
Pot Cap-1 Maneuver	622	-	-	1254	-	-	218	119	867	110	118	473
Stage 1	-	-	-	-	-	-	627	622	-	217	277	-
Stage 2	-	-	-	-	-	-	468	272	-	768	610	-
Platoon blocked, %		-	-		-	-						, .
Mov Cap-1 Maneuver	622	-	-	1254	-	-	181	110	867	100	109	473
Mov Cap-2 Maneuver	-	-	-	-	-	-	181	110	-	100	109	-
Stage 1	-	-	-	-	-	-	587	582	-	203	273	-
Stage 2	-	-	-	-	-	-	418	268	-	707	571	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1.3			0.1			26.6			23		
HCM LOS							D			С		
Minor Lane/Major Mvmt		NBLn1	EBL	EBT	EBR	WBL	WBT	WBR:	SBLn1			
Capacity (veh/h)		202	622	-	-	1254	-	-	244			
HCM Lane V/C Ratio		0.178		-		0.013	-	-	0.18			
HCM Control Delay (s)		26.6	11.2	-	-	7.9	-	-	23			
HCM Lane LOS		D	В	-	-	Α	-	-	С			
HCM 95th %tile Q(veh)		0.6	0.2	-	-	0	-	-	0.6			

Intersection												
Int Delay, s/veh	0.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ř	ħβ		*	↑ ↑			4			4	
Traffic Vol, veh/h	7	223	0	0	1027	5	1	0	0	1	1	7
Future Vol, veh/h	7	223	0	0	1027	5	1	0	0	1	1	7
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	90	-	-	95	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	29	92	100	100	94	42	25	100	100	25	25	58
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	24	242	0	0	1093	12	4	0	0	4	4	12
Major/Minor N	/lajor1		1	Major2		ı	Minor1		ı	Minor2		
Conflicting Flow All	1105	0	0	242	0	0	839	1395	121	1268	1389	553
Stage 1	-	-	-		-	-	290	290	-	1099	1099	-
Stage 2	_	_	_	_	_	_	549	1105	_	169	290	_
Critical Hdwy	4.14	_	-	4.14	_	_	7.54	6.54	6.94	7.54	6.54	6.94
Critical Hdwy Stg 1	_	-	-	-	_	_	6.54	5.54	-	6.54	5.54	-
Critical Hdwy Stg 2	-	-	_	-	_	-	6.54	5.54	_	6.54	5.54	-
Follow-up Hdwy	2.22	-	_	2.22	_	_	3.52	4.02	3.32	3.52	4.02	3.32
Pot Cap-1 Maneuver	628	-	_	1322	_	_	259	140	908	125	141	477
Stage 1	-	-	-		_	_	694	671	-	227	287	-
Stage 2	-	-	_	-	_	-	488	285	_	816	671	-
Platoon blocked, %		-	_		_	_						
Mov Cap-1 Maneuver	628	_	-	1322	_	_	240	135	908	121	136	477
Mov Cap-2 Maneuver	-	-	-	-	-	-	240	135	-	121	136	-
Stage 1	-	-	-	-	-	_	668	646	_	218	287	-
Stage 2	-	-	-	-	-	-	469	285	-	785	646	-
-												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1			0			20.3			22.2		
HCM LOS	•						C			C		
Minor Lane/Major Mvmt		NBLn1	EBL	EBT	EBR	WBL	WBT	WBR :	SBLn1			
Capacity (veh/h)		240	628	-	-	1322	-	-	229			
HCM Lane V/C Ratio		0.017		_	_	-	_		0.088			
HCM Control Delay (s)		20.3	11	-	-	0	_	_	22.2			
HCM Lane LOS		C	В	_	_	A	-	-	C			
HCM 95th %tile Q(veh)		0.1	0.1	-	_	0	-	_	0.3			
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2												

Intersection						
Int Delay, s/veh	0					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	LDI	WDL.	↑ ↑	NDL	TVDIX
Traffic Vol, veh/h	230	1	0	1035	0	0
Future Vol, veh/h	230	1	0	1035	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	- Stop	None
Storage Length	_	-	_	-	_	0
Veh in Median Storage		_	_	0	0	-
Grade, %	0	<u>-</u>	_	0	0	<u>-</u>
Peak Hour Factor	86	25	100	93	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	267	4	0	1113	0	0
MINITIL FIOW	207	4	U	1113	U	U
Major/Minor I	Major1	N	Major2	N	Minor1	
Conflicting Flow All	0	0	-	-	-	136
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	_	-
Critical Hdwy Stg 2	-	_	_	_	_	_
Follow-up Hdwy	_	_	_	-	-	3.32
Pot Cap-1 Maneuver	-	_	0	_	0	888
Stage 1	_	_	0	_	0	-
Stage 2	_	_	0	_	0	_
Platoon blocked, %	_	_	•	_	<u> </u>	
Mov Cap-1 Maneuver	_	_	_	_	_	888
Mov Cap-2 Maneuver	_	_	_	_	_	-
Stage 1	_	_	_	_	_	_
Stage 2	_	_	_	_	_	_
Stage 2						
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		0	
HCM LOS					Α	
Minor Lane/Major Mvm	, t	NBLn1	EBT	EBR	WBT	
	ı I	NDLIII	ED I	EDK	VVDI	
Capacity (veh/h) HCM Lane V/C Ratio		-	-	-	-	
HUVITANE V/C RATIO			_	-	-	
		-				
HCM Control Delay (s)		0	-	-	-	
			- -	-	- -	

	→	•	←	†
Lane Group	EBT	WBL	WBT	NBT
Lane Group Flow (vph)	244	12	1026	60
v/c Ratio	0.11	0.02	0.41	0.13
Control Delay	6.6	4.2	5.1	3.2
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	6.6	4.2	5.1	3.2
Queue Length 50th (ft)	11	1	63	0
Queue Length 95th (ft)	43	2	99	13
Internal Link Dist (ft)	295		547	737
Turn Bay Length (ft)		245		
Base Capacity (vph)	3473	1212	3539	1396
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.07	0.01	0.29	0.04
Intersection Summary				

	۶	→	•	•	←	•	1	†	<i>></i>	/	Ţ	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		∱ ∱		ሻ	^			4				
Traffic Volume (veh/h)	0	211	10	4	975	0	44	0	2	0	0	0
Future Volume (veh/h)	0	211	10	4	975	0	44	0	2	0	0	0
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0			
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Work Zone On Approach		No			No			No				
Adj Sat Flow, veh/h/ln	0	1870	1870	1870	1870	0	1900	1870	1900			
Adj Flow Rate, veh/h	0	232	12	12	1026	0	56	0	4			
Peak Hour Factor	0.92	0.91	0.83	0.33	0.95	0.92	0.79	0.92	0.50			
Percent Heavy Veh, %	0	2	2	2	2	0	0	2	0			
Cap, veh/h	0	1073	55	563	1868	0	129	0	9			
Arrive On Green	0.00	0.31	0.31	0.02	0.53	0.00	0.08	0.00	0.08			
Sat Flow, veh/h	0	3532	177	1781	3647	0	1649	0	118			
Grp Volume(v), veh/h	0	119	125	12	1026	0	60	0	0			
Grp Sat Flow(s),veh/h/ln	0	1777	1839	1781	1777	0	1767	0	0			
Q Serve(g_s), s	0.0	1.5	1.5	0.1	5.8	0.0	1.0	0.0	0.0			
Cycle Q Clear(g_c), s	0.0	1.5	1.5	0.1	5.8	0.0	1.0	0.0	0.0			
Prop In Lane	0.00		0.10	1.00		0.00	0.93		0.07			
Lane Grp Cap(c), veh/h	0	554	574	563	1868	0	139	0	0			
V/C Ratio(X)	0.00	0.22	0.22	0.02	0.55	0.00	0.43	0.00	0.00			
Avail Cap(c_a), veh/h	0	2285	2364	1651	4570	0	1398	0	0			
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Upstream Filter(I)	0.00	1.00	1.00	1.00	1.00	0.00	1.00	0.00	0.00			
Uniform Delay (d), s/veh	0.0	7.7	7.7	5.8	4.8	0.0	13.3	0.0	0.0			
Incr Delay (d2), s/veh	0.0	0.2	0.2	0.0	0.3	0.0	2.1	0.0	0.0			
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
%ile BackOfQ(50%),veh/ln	0.0	0.3	0.4	0.0	0.5	0.0	0.4	0.0	0.0			
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	0.0	7.9	7.9	5.8	5.0	0.0	15.4	0.0	0.0			
LnGrp LOS	Α	Α	Α	Α	Α	Α	В	Α	Α			
Approach Vol, veh/h		244			1038			60				
Approach Delay, s/veh		7.9			5.1			15.4				
Approach LOS		Α			Α			В				
Timer - Assigned Phs		2	3	4				8				
Phs Duration (G+Y+Rc), s		8.4	6.5	15.5				21.9				
Change Period (Y+Rc), s		6.0	6.0	6.0				6.0				
Max Green Setting (Gmax), s		24.0	19.0	39.0				39.0				
Max Q Clear Time (g_c+l1), s		3.0	2.1	3.5				7.8				
Green Ext Time (p_c), s		0.2	0.0	1.3				8.1				
Intersection Summary												
HCM 6th Ctrl Delay			6.0									
HCM 6th LOS			A									

	→	←	1	~
Lane Group	EBT	WBT	NBL	NBR
Lane Group Flow (vph)	278	1133	185	56
v/c Ratio	0.13	0.52	0.38	0.12
Control Delay	7.6	11.1	29.0	7.8
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	7.6	11.1	29.0	7.8
Queue Length 50th (ft)	32	176	85	0
Queue Length 95th (ft)	47	227	144	19
Internal Link Dist (ft)	516	112	754	
Turn Bay Length (ft)				250
Base Capacity (vph)	2162	2162	491	480
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.13	0.52	0.38	0.12
Intersection Summary				

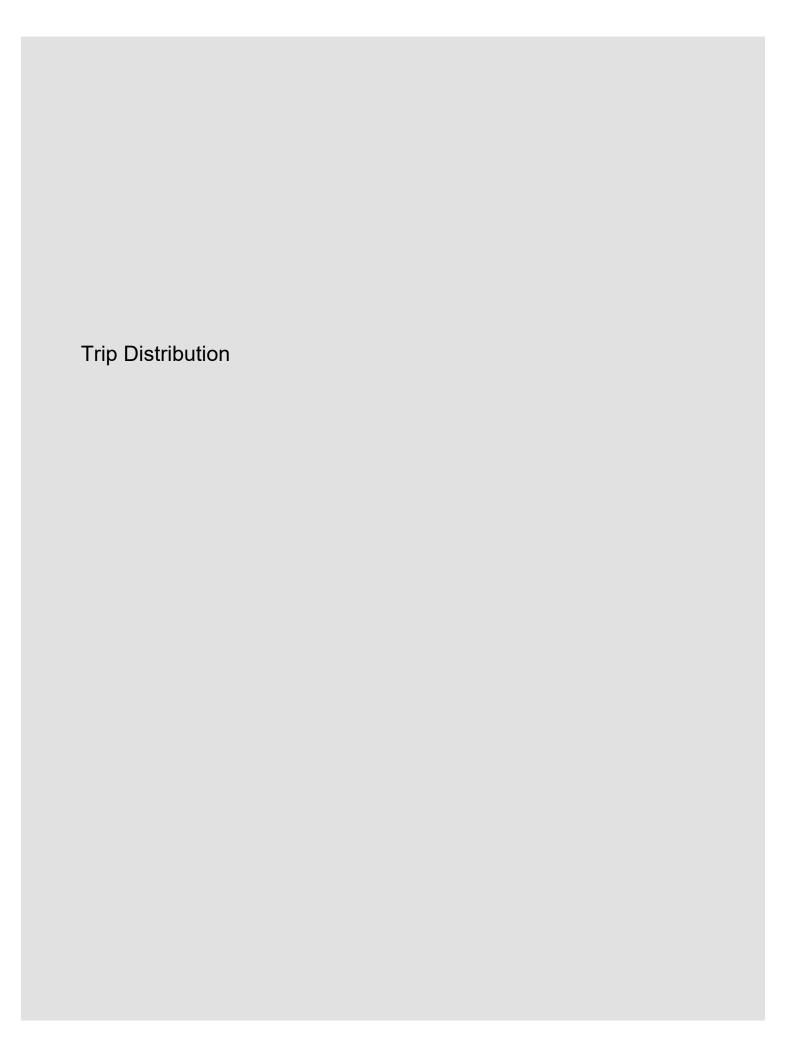
	-	•	•	←	•	~	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	^			^	ች	7	
Traffic Volume (veh/h)	245	0	0	1042	172	42	
Future Volume (veh/h)	245	0	0	1042	172	42	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	U	1.00	1.00	U	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No	1.00	1.00	No	No	1.00	
Adj Sat Flow, veh/h/ln	1870	0	0	1870	1870	1870	
Adj Flow Rate, veh/h	278	0	0	1133	185	0	
Peak Hour Factor	0.88	1.00	1.00	0.92	0.93	0.75	
Percent Heavy Veh, %	2	0	0	2	2	2	
Cap, veh/h	2172	0	0	2172	495		
Arrive On Green	0.61	0.00	0.00	0.61	0.28	0.00	
Sat Flow, veh/h	3741	0.00	0.00	3741	1781	1585	
Grp Volume(v), veh/h	278	0	0	1133	185	0	
Grp Sat Flow(s), veh/h/ln	1777	0	0	1777	1781	1585	
Q Serve(g_s), s	3.0	0.0	0.0	16.4	7.5	0.0	
Cycle Q Clear(g_c), s	3.0	0.0	0.0	16.4	7.5	0.0	
Prop In Lane	0.0	0.00	0.00	10.4	1.00	1.00	
Lane Grp Cap(c), veh/h	2172	0.00	0.00	2172	495	1.00	
V/C Ratio(X)	0.13	0.00	0.00	0.52	0.37		
Avail Cap(c_a), veh/h	2172	0.00	0.00	2172	495		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	0.00	
Uniform Delay (d), s/veh	7.4	0.0	0.0	10.0	26.2	0.0	
Incr Delay (d2), s/veh	0.1	0.0	0.0	0.9	2.2	0.0	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	1.0	0.0	0.0	5.6	3.4	0.0	
Unsig. Movement Delay, s/vel							
LnGrp Delay(d),s/veh	7.5	0.0	0.0	10.9	28.3	0.0	
LnGrp LOS	A	A	A	В	C	3.0	
Approach Vol, veh/h	278			1133	185	А	
Approach Delay, s/veh	7.5			10.9	28.3		
Approach LOS	A			В	C		
••	,,						
Timer - Assigned Phs		2				6	8
Phs Duration (G+Y+Rc), s		60.0				60.0	30.0
Change Period (Y+Rc), s		5.0				5.0	5.0
Max Green Setting (Gmax), s		55.0				55.0	25.0
Max Q Clear Time (g_c+l1), s		18.4				5.0	9.5
Green Ext Time (p_c), s		9.7				1.8	0.4
ntersection Summary							
HCM 6th Ctrl Delay			12.3				
HCM 6th LOS			В				
Notes							

Intersection													
Int Delay, s/veh	21.7												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	7	†	LDIK	ኘ	†		, tDL	4	, 1011	JUL	4	JUIN	
Traffic Vol, veh/h	84	1060	31	4	431	21	40	3	21	19	3	76	
Future Vol, veh/h	84	1060	31	4	431	21	40	3	21	19	3	76	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	- -	- -	None	-	-	None	
Storage Length	60	_	-	225	_	-	_	_	-	_	_	-	
Veh in Median Storage,		0	_	-	0	_	_	0	_	_	0	_	
Grade, %	" <u>-</u>	0	_	_	0	_	_	0	_	_	0	_	
Peak Hour Factor	72	89	86	50	89	75	71	38	58	68	75	76	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mymt Flow	117	1191	36	8	484	28	56	8	36	28	4	100	
WWW.ICTIOW	- 111	1101	- 00	- 0	707	20	- 00	- 0	- 00	20	7	100	
Major/Minor	10ia=1			/lois=0			line -1			Aine - O			
	1ajor1			Major2			Minor1	4074		/linor2	4075	050	
Conflicting Flow All	512	0	0	1227	0	0	1703	1971	614	1348	1975	256	
Stage 1	-	-	-	-	-	-	1443	1443	-	514	514	-	
Stage 2	-	-	-	-	-	-	260	528	-	834	1461	-	
Critical Hdwy	4.14	-	-	4.14	-	-	7.54	6.54	6.94	7.54	6.54	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-	
Follow-up Hdwy	2.22	-	-	2.22	-	-	3.52	4.02	3.32	3.52	4.02	3.32	
Pot Cap-1 Maneuver	1050	-	-	564	-	-	59	62	435	109	61	743	
Stage 1	-	-	-	-	-	-	139	196	-	511	534	-	
Stage 2	-	-	-	-	-	-	722	526	-	329	192	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	1050	-	-	564	-	-	~ 44	54	435	80	53	743	
Mov Cap-2 Maneuver	-	-	-	-	-	-	~ 44	54	-	80	53	-	
Stage 1	-	-	-	-	-	-	124	174	-	454	527	-	
Stage 2	-	-	-	-	-	-	611	519	-	256	171	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.8			0.2		\$	392.1			38			
HCM LOS	J. .					Ψ	F			E			
							·			_			
Minor Lane/Major Mvmt		NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SRI n1				
Capacity (veh/h)		67	1050	-	LDIX	564	-	- 1001	236				
HCM Lane V/C Ratio		1.499	0.111	-		0.014	-		0.559				
HCM Control Delay (s)	¢	392.1	8.9	-	-	11.5	-	-	38				
HCM Lane LOS	φ	392.1	6.9 A	-	_	11.3 B	-	-	50 E				
HCM 95th %tile Q(veh)		8.6	0.4	_	-	0	-	-	3.1				
,		0.0	0.4			U			J. I				
Notes ~: Volume exceeds capa													
	11	C. D.	elay exc	2242 36	1/10	· Come	outation	Not Do	finad	*• ΔII r	maior w	oluma ir	n platoon

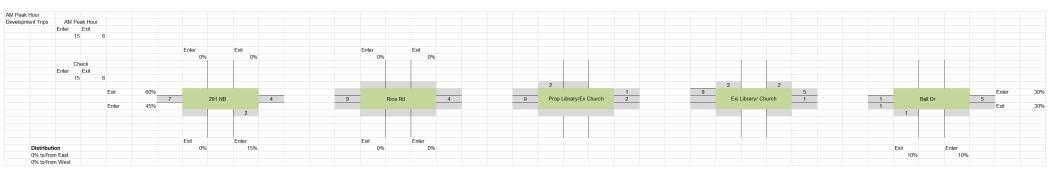
Intersection												
Int Delay, s/veh	1.4											
•				14.5	14/5-					0-:-	0==	05-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>ች</u>	Λ₽		<u>ነ</u>	∱ ⊅			4			4	
Traffic Vol, veh/h	30	1075	0	2	420	13	2	0	2	21	0	38
Future Vol, veh/h	30	1075	0	2	420	13	2	0	2	21	0	38
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	90	-	-	95	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	73	89	100	25	84	65	50	100	50	75	100	73
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	41	1208	0	8	500	20	4	0	4	28	0	52
Major/Minor N	Major1		ı	Major2		ı	Minor1		I	Minor2		
Conflicting Flow All	520	0	0	1208	0	0	1556	1826	604	1212	1816	260
Stage 1	520	-	U	1200	-	-	1290	1290	- 004	526	526	200
Stage 2	_		_	-	_	_	266	536	<u>-</u>	686	1290	_
Critical Hdwy	4.14	-	<u>-</u>	4.14		<u>-</u>	7.54	6.54	6.94	7.54	6.54	6.94
Critical Hdwy Stg 1	4.14	-	_	4.14	-	_	6.54	5.54	0.34	6.54	5.54	0.34
Critical Hdwy Stg 2	_	-	<u>-</u>	-		<u>-</u>	6.54	5.54	-	6.54	5.54	
Follow-up Hdwy	2.22	-	_	2.22	-	_	3.52	4.02	3.32	3.52	4.02	3.32
Pot Cap-1 Maneuver	1042	-	-	573		-	77	76	441	138	77	739
Stage 1	1042		_	313	_	_	173	232	441	503	527	133
Stage 1	-	-	-	-	-	-	716	522		404	232	-
Platoon blocked, %	-		_	-		_	710	JZZ	-	404	232	_
Mov Cap-1 Maneuver	1042	-	<u>-</u>	573			69	72	441	131	73	739
Mov Cap-2 Maneuver	1042	-	_	313	-	_	69	72	441	131	73	133
Stage 1	_	-	<u>-</u>	-	_	<u>-</u>	166	223	-	483	520	-
Stage 2	-	-	_	-	_	_	656	515	<u>-</u>	385	223	-
Slaye Z	<u>-</u>	-	<u>-</u>	-	_	<u>-</u>	000	J 13	<u>-</u>	505	223	<u>-</u>
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.3			0.2			37.4			22.8		
HCM LOS							Е			С		
Minor Lane/Major Mvm	t I	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR:	SBI n1			
Capacity (veh/h)		119		LUI	LDIX	573	**D1	- 1001	282			
HCM Lane V/C Ratio		0.067	0.039	-		0.014	-		0.284			
HCM Control Delay (s)		37.4	8.6	-	-	11.4		-				
HCM Lane LOS		37.4 E	0.0 A				-	-	22.0 C			
HCM 95th %tile Q(veh)		0.2	0.1	-	-	B 0	-		1.1			
		0.2	U. I	-	-	U	-	-	1.1			

Intersection						
Int Delay, s/veh	0					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	† }	LDIX	****	^	HUL	7
Traffic Vol, veh/h	1105	6	0	460	0	0
Future Vol, veh/h	1105	6	0	460	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	_	-	_	-	_	0
Veh in Median Storage		_	_	0	0	-
Grade, %	0	_	_	0	0	_
Peak Hour Factor	88	75	100	87	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	1256	8	0	529	0	0
IVIVIIIL I IOW	1230	U	U	323	U	U
Major/Minor	Major1	N	Major2	N	Minor1	
Conflicting Flow All	0	0	-	-	-	632
Stage 1	-	_	-	-	-	_
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	_	3.32
Pot Cap-1 Maneuver	-	-	0	-	0	423
Stage 1	-	-	0	-	0	-
Stage 2	-	-	0	-	0	-
Platoon blocked, %	-	_		-		
Mov Cap-1 Maneuver	-	_	_	_	_	423
Mov Cap-2 Maneuver	_	_	-	_	_	-
Stage 1	_	_	-	_	-	_
Stage 2	_	_	_	_	_	_
olago 2						
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		0	
HCM LOS					Α	
Minor Lane/Major Mvn	nt I	NBLn1	EBT	EBR	WBT	
	IL I	NDLIII	LDI	LDN	VVDI	
Capacity (veh/h) HCM Lane V/C Ratio		-	-	-	-	
			_	-	-	
	\	-				
HCM Control Delay (s)		0	-	-	-	
			-	-	-	

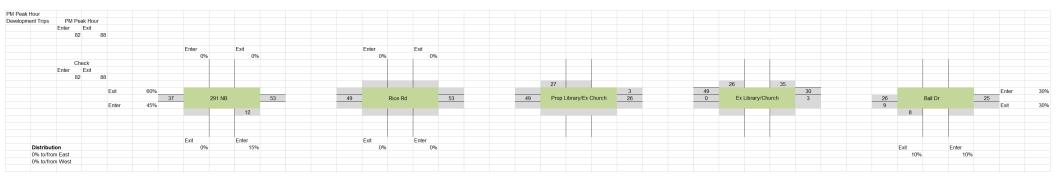
	→	•	•	†
Lane Group	EBT	WBL	WBT	NBT
Lane Group Flow (vph)	1251	12	502	48
v/c Ratio	0.48	0.03	0.18	0.12
Control Delay	6.2	3.1	3.0	2.2
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	6.2	3.1	3.0	2.2
Queue Length 50th (ft)	84	1	25	0
Queue Length 95th (ft)	216	3	33	8
Internal Link Dist (ft)	295		547	737
Turn Bay Length (ft)		245		
Base Capacity (vph)	3040	1071	3488	1223
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.41	0.01	0.14	0.04
Intersection Summary				

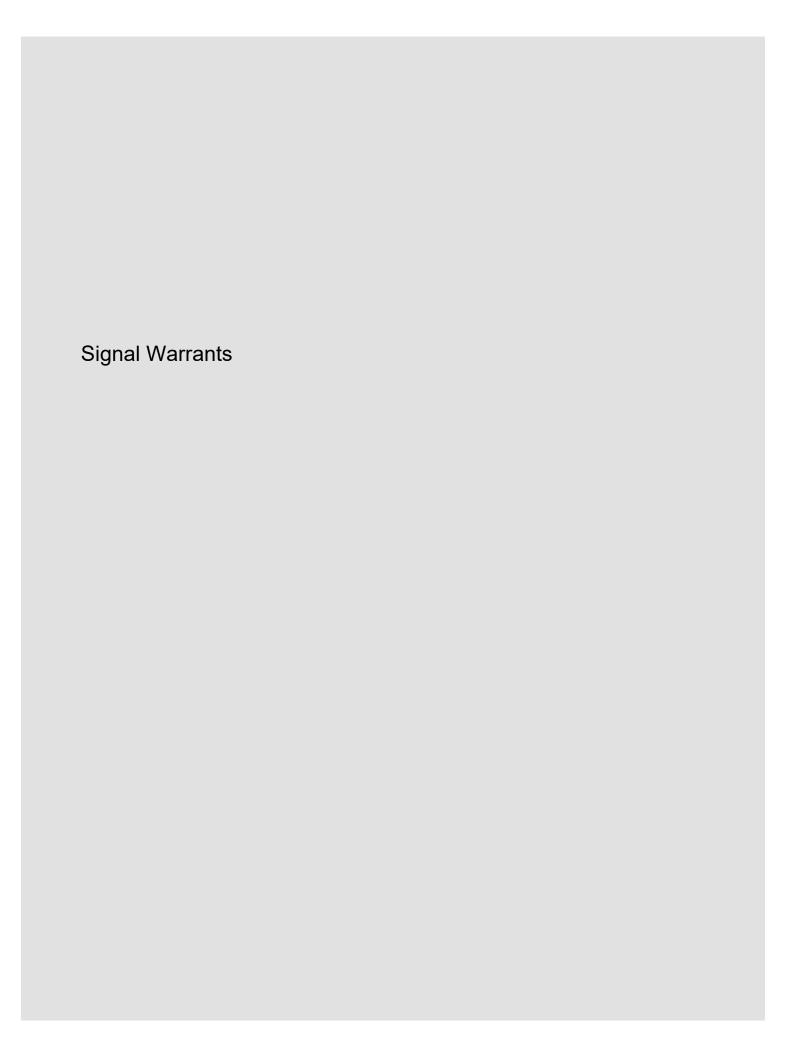

	۶	→	•	•	—	•	•	†	<i>></i>	\	 	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		∱ β		7	^			4				
Traffic Volume (veh/h)	0	1019	67	7	412	0	18	0	10	0	0	0
Future Volume (veh/h)	0	1019	67	7	412	0	18	0	10	0	0	0
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0			
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Work Zone On Approach		No			No			No				
Adj Sat Flow, veh/h/ln	0	1870	1870	1870	1870	0	1900	1870	1900			
Adj Flow Rate, veh/h	0	1171	80	12	502	0	36	0	12			
Peak Hour Factor	0.92	0.87	0.84	0.58	0.82	0.92	0.50	0.92	0.83			
Percent Heavy Veh, %	0	2	2	2	2	0	0	2	0			
Cap, veh/h	0	1726	118	309	2368	0	78	0	26			
Arrive On Green	0.00	0.51	0.51	0.02	0.67	0.00	0.06	0.00	0.06			
Sat Flow, veh/h	0	3469	230	1781	3647	0	1296	0	432			
Grp Volume(v), veh/h	0	616	635	12	502	0	48	0	0			
Grp Sat Flow(s),veh/h/ln	0	1777	1829	1781	1777	0	1728	0	0			
Q Serve(g_s), s	0.0	11.4	11.4	0.1	2.4	0.0	1.2	0.0	0.0			
Cycle Q Clear(g_c), s	0.0	11.4	11.4	0.1	2.4	0.0	1.2	0.0	0.0			
Prop In Lane	0.00		0.13	1.00		0.00	0.75		0.25			
Lane Grp Cap(c), veh/h	0	908	935	309	2368	0	105	0	0			
V/C Ratio(X)	0.00	0.68	0.68	0.04	0.21	0.00	0.46	0.00	0.00			
Avail Cap(c_a), veh/h	0	1577	1623	1046	3153	0	944	0	0			
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Upstream Filter(I)	0.00	1.00	1.00	1.00	1.00	0.00	1.00	0.00	0.00			
Uniform Delay (d), s/veh	0.0	8.0	8.0	6.1	2.8	0.0	19.9	0.0	0.0			
Incr Delay (d2), s/veh	0.0	0.9	0.9	0.1	0.0	0.0	3.1	0.0	0.0			
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
%ile BackOfQ(50%),veh/ln	0.0	2.7	2.8	0.0	0.2	0.0	0.5	0.0	0.0			
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	0.0	8.9	8.9	6.1	2.9	0.0	23.1	0.0	0.0			
LnGrp LOS	Α	Α	Α	Α	Α	Α	С	Α	Α			
Approach Vol, veh/h		1251			514			48				
Approach Delay, s/veh		8.9			3.0			23.1				
Approach LOS		Α			Α			С				
Timer - Assigned Phs		2	3	4				8				
Phs Duration (G+Y+Rc), s		8.7	6.8	28.5				35.3				
Change Period (Y+Rc), s		6.0	6.0	6.0				6.0				
Max Green Setting (Gmax), s		24.0	19.0	39.0				39.0				
Max Q Clear Time (g_c+I1), s		3.2	2.1	13.4				4.4				
Green Ext Time (p_c), s		0.2	0.0	9.0				3.4				
Intersection Summary												
HCM 6th Ctrl Delay			7.6									
HCM 6th LOS			Α									

	→	•	•	~
Lane Group	EBT	WBT	NBL	NBR
Lane Group Flow (vph)	1200	615	104	164
v/c Ratio	0.52	0.27	0.24	0.35
Control Delay	10.3	7.8	31.6	16.3
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	10.3	7.8	31.6	16.3
Queue Length 50th (ft)	192	78	53	35
Queue Length 95th (ft)	224	103	99	86
Internal Link Dist (ft)	516	112	754	
Turn Bay Length (ft)				250
Base Capacity (vph)	2300	2300	442	466
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.52	0.27	0.24	0.35
Intersection Summary				

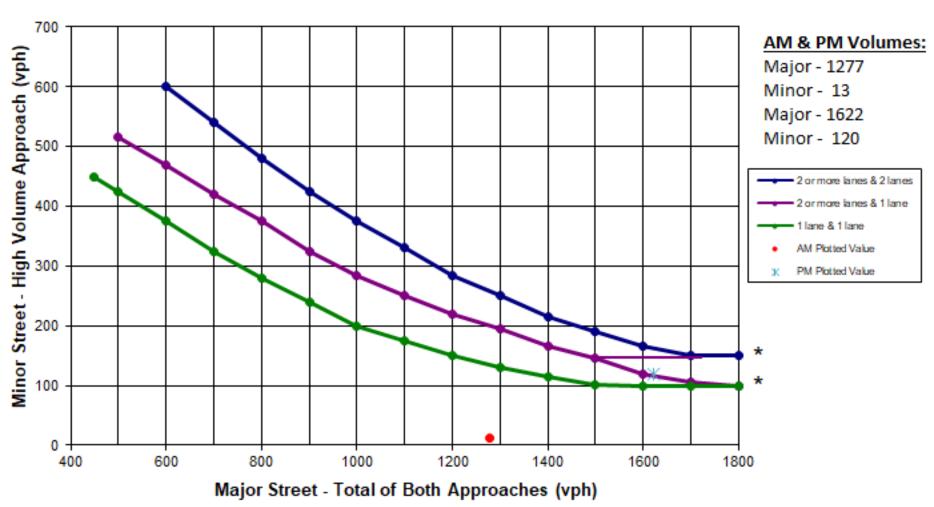

	→	•	•	←	•	~	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	† †	_5,(^	ሻ	7	
Traffic Volume (veh/h)	1032	0	0	547	101	143	
Future Volume (veh/h)	1032	0	0	547	101	143	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	U	1.00	1.00	U	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No	1.00	1.00	No	No	1.00	
Adj Sat Flow, veh/h/ln	1870	0	0	1870	1870	1870	
Adj Flow Rate, veh/h	1200	0	0	615	1070	0	
Peak Hour Factor	0.86	1.00	1.00	0.89	0.97	0.87	
Percent Heavy Veh, %	2	0	0	2	2	2	
						2	
Cap, veh/h Arrive On Green	2310	0 00	0	2310	445	0.00	
	0.65	0.00	0.00	0.65	0.25		
Sat Flow, veh/h	3741	0	0	3741	1781	1585	
Grp Volume(v), veh/h	1200	0	0	615	104	0	
Grp Sat Flow(s), veh/h/ln	1777	0	0	1777	1781	1585	
Q Serve(g_s), s	17.8	0.0	0.0	7.3	4.7	0.0	
Cycle Q Clear(g_c), s	17.8	0.0	0.0	7.3	4.7	0.0	
Prop In Lane		0.00	0.00		1.00	1.00	
Lane Grp Cap(c), veh/h	2310	0	0	2310	445		
V/C Ratio(X)	0.52	0.00	0.00	0.27	0.23		
Avail Cap(c_a), veh/h	2310	0	0	2310	445		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	0.00	
Uniform Delay (d), s/veh	9.2	0.0	0.0	7.4	29.9	0.0	
Incr Delay (d2), s/veh	0.8	0.0	0.0	0.3	1.2	0.0	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	6.0	0.0	0.0	2.5	2.1	0.0	
Unsig. Movement Delay, s/ve	eh						
LnGrp Delay(d),s/veh	10.1	0.0	0.0	7.7	31.1	0.0	
LnGrp LOS	В	А	Α	Α	С		
Approach Vol, veh/h	1200			615	104	Α	
Approach Delay, s/veh	10.1			7.7	31.1	, ,	
Approach LOS	10.1 R			Α.	31.1 C		
	D				U		
Timer - Assigned Phs		2				6	
Phs Duration (G+Y+Rc), s		70.0				70.0	
Change Period (Y+Rc), s		5.0				5.0	
Max Green Setting (Gmax), s	3	65.0				65.0	
Max Q Clear Time (g_c+l1), s		9.3				19.8	
Green Ext Time (p_c), s		4.5				11.0	
Intersection Summary							
HCM 6th Ctrl Delay			10.5				
HCM 6th LOS			10.5 B				
			D				
Notes							

APPENDIX C

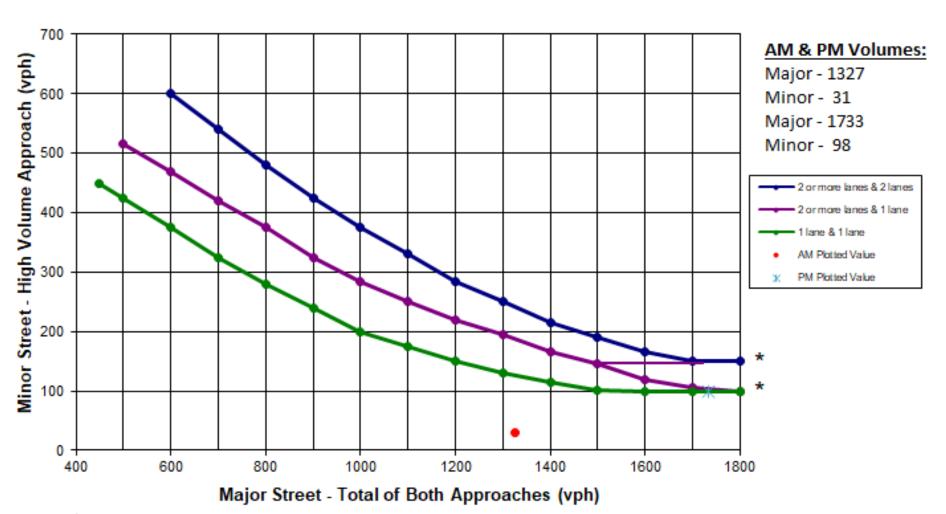

Existing plus Proposed Development Conditions



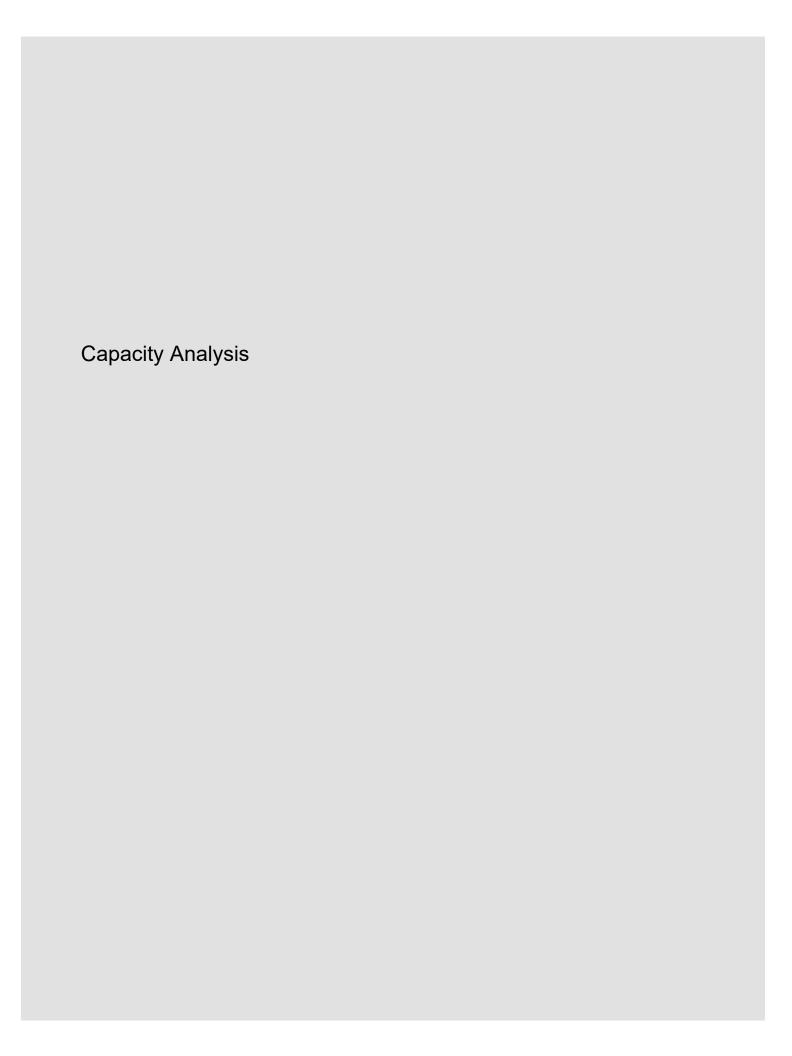
AM



PM



Peak Hour Volume Warrant (Existing + Development) Colbern Rd & Proposed Library Access



*Note: 150 vph applies as the lower threshold volume for a minor street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

Peak Hour Volume Warrant (Existing+Dev) Colbern Rd & Rice Rd

*Note: 150 vph applies as the lower threshold volume for a minor street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

Intersection												
Int Delay, s/veh	1.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ች	ħβ		ሻ	ħβ			4			4	
Traffic Vol, veh/h	29	244	23	8	1000	23	19	2	3	1	3	27
Future Vol, veh/h	29	244	23	8	1000	23	19	2	3	1	3	27
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	60	-	-	225	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	78	87	78	78	93	78	78	78	78	78	78	78
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	37	280	29	10	1075	29	24	3	4	1	4	35
Major/Minor M	lajor1		ı	Major2		N	Minor1		ľ	Minor2		
	1104	0	0	309	0	0	929	1493	155	1326	1493	552
Stage 1	-	-	-	-	-	-	369	369	-	1110	1110	-
Stage 2	-	-	-	-	-	-	560	1124	-	216	383	-
Critical Hdwy	4.14	-	-	4.14	-	-	7.54	6.54	6.94	7.54	6.54	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-
Follow-up Hdwy	2.22	-	-	2.22	-	-	3.52	4.02	3.32	3.52	4.02	3.32
Pot Cap-1 Maneuver	628	-	-	1248	-	-	222	122	863	114	122	477
Stage 1	-	-	-	-	-	-	623	619	-	223	283	-
Stage 2	-	-	-	-	-	-	480	279	-	766	610	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	628	-	-	1248	-	-	190	114	863	106	114	477
Mov Cap-2 Maneuver	-	-	-	-	-	-	190	114	-	106	114	-
Stage 1	-	-	-	-	-	-	586	582	-	210	281	-
Stage 2	-	-	-	-	-	-	436	277	-	714	574	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1.2			0.1			26.5			17.1		
HCM LOS							D			С		
Minor Lane/Major Mvmt		NBLn1	EBL	EBT	EBR	WBL	WBT	WBR:	SBLn1			
Capacity (veh/h)		198	628	-	-	1248	-	-	336			
HCM Lane V/C Ratio		0.155		-	-	0.008	-	-	0.118			
HCM Control Delay (s)		26.5	11.1	-	-	7.9	-	-	17.1			
HCM Lane LOS		D	В	-	-	Α	-	-	С			
HCM 95th %tile Q(veh)		0.5	0.2	-	-	0	-	-	0.4			

Intersection												
Int Delay, s/veh	0.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u> </u>	†	LDIX	ሻ	†	WDIX	NDL	4	NDIX	ODL	4	ODIN
Traffic Vol, veh/h	16	223	0	0	1028	10	1	0	0	3	1	9
Future Vol, veh/h	16	223	0	0	1028	10	1	0	0	3	1	9
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	_	-	None	_	-	None	-	-	None	-	-	None
Storage Length	90	-	-	95	_	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	78	87	78	100	93	78	78	100	100	78	78	78
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	21	256	0	0	1105	13	1	0	0	4	1	12
Major/Minor N	1ajor1		_	Major2		_	Minor1		_	Minor2		
Conflicting Flow All	1118	0	0	256	0	0	851	1416	128	1282	1410	559
Stage 1	-	-	-	-	-	-	298	298	-	1112	1112	-
Stage 2	-	-	-	_	-	-	553	1118	-	170	298	-
Critical Hdwy	4.14	-	-	4.14	-	-	7.54	6.54	6.94	7.54	6.54	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-
Follow-up Hdwy	2.22	-	-	2.22	-	-	3.52	4.02	3.32	3.52	4.02	3.32
Pot Cap-1 Maneuver	620	-	-	1306	-	-	253	136	898	122	137	472
Stage 1	-	-	-	-	-	-	686	666	-	223	282	-
Stage 2	-	-	-	-	-	-	485	281	-	815	666	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	620	-	-	1306	-	-	239	131	898	119	132	472
Mov Cap-2 Maneuver	-	-	-	-	-	-	239	131	-	119	132	-
Stage 1	-	-	-	-	-	-	663	643	-	215	282	-
Stage 2	-	-	-	-	-	-	471	281	-	787	643	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.8			0			20.1			20.4		
HCM LOS							С			С		
Minor Lane/Major Mvmt		NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		239	620			1306	-	-	251			
HCM Lane V/C Ratio		0.005		_	_	500	_		0.066			
HCM Control Delay (s)		20.1	11	-	-	0	-	-	20.4			
HCM Lane LOS		C	В	_	_	A	-	_	С			
HCM 95th %tile Q(veh)		0	0.1	-	-	0	_	-	0.2			

Intersection												
Int Delay, s/veh	0											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ħβ			∱ }				1			7
Traffic Vol, veh/h	0	239	1	0	1037	1	0	0	0	0	0	2
Future Vol, veh/h	0	239	1	0	1037	1	0	0	0	0	0	2
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
_	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	<u>-</u>	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	0	-	-	0
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	78	87	78	78	93	92	100	92	100	92	92	78
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	275	1	0	1115	1	0	0	0	0	0	3
Major/Minor M	ajor1		N	Major2		<u> </u>	Minor1		N	/linor2		
Conflicting Flow All	-	0	0	-	-	0	-	-	138	-	-	558
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	-	-	-	6.94	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	-	-	-	3.32	-	-	3.32
Pot Cap-1 Maneuver	0	-	-	0	-	-	0	0	885	0	0	473
Stage 1	0	-	-	0	-	-	0	0	-	0	0	-
Stage 2	0	-	-	0	-	-	0	0	-	0	0	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	-	-	-	-	-	885	-	-	473
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			0			12.7		
HCM LOS							A			В		
							, ,					
Minor Lane/Major Mvmt	N	NBLn1	EBT	EBR	WBT	WBR S	SBLn1					
Capacity (veh/h)		-	-	-	-	-	473					
HCM Lane V/C Ratio		_	_	_	_	_	0.005					
HCM Control Delay (s)		0	-	-	-	-	12.7					
HCM Lane LOS		A	-	-	-	-	В					
HCM 95th %tile Q(veh)		-	-	_	_	-	0					
2000												

	-	•	←	†
Lane Group	EBT	WBL	WBT	NBT
Lane Group Flow (vph)	258	5	1054	61
v/c Ratio	0.11	0.01	0.41	0.13
Control Delay	6.4	4.2	5.1	3.3
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	6.4	4.2	5.1	3.3
Queue Length 50th (ft)	12	1	66	0
Queue Length 95th (ft)	43	3	103	14
Internal Link Dist (ft)	295		547	737
Turn Bay Length (ft)		245		
Base Capacity (vph)	3462	1205	3539	1386
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.07	0.00	0.30	0.04
Intersection Summary				

	۶	→	•	•	—	•	1	†	<i>></i>	/	↓	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		∱ ∱		ħ	^			4				
Traffic Volume (veh/h)	0	212	11	4	980	0	45	0	2	0	0	0
Future Volume (veh/h)	0	212	11	4	980	0	45	0	2	0	0	0
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0			
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Work Zone On Approach		No			No			No				
Adj Sat Flow, veh/h/ln	0	1870	1870	1870	1870	0	1900	1870	1900			
Adj Flow Rate, veh/h	0	244	14	5	1054	0	58	0	3			
Peak Hour Factor	0.92	0.87	0.78	0.78	0.93	0.78	0.78	1.00	0.78			
Percent Heavy Veh, %	0	2	2	2	2	0	0	2	0			
Cap, veh/h	0	1135	65	559	1894	0	133	0	7			
Arrive On Green	0.00	0.33	0.33	0.01	0.53	0.00	0.08	0.00	0.08			
Sat Flow, veh/h	0	3511	195	1781	3647	0	1683	0	87			
Grp Volume(v), veh/h	0	126	132	5	1054	0	61	0	0			
Grp Sat Flow(s),veh/h/ln	0	1777	1835	1781	1777	0	1771	0	0			
Q Serve(g_s), s	0.0	1.6	1.6	0.1	6.1	0.0	1.0	0.0	0.0			
Cycle Q Clear(g_c), s	0.0	1.6	1.6	0.1	6.1	0.0	1.0	0.0	0.0			
Prop In Lane	0.00		0.11	1.00		0.00	0.95		0.05			
Lane Grp Cap(c), veh/h	0	590	610	559	1894	0	140	0	0			
V/C Ratio(X)	0.00	0.21	0.22	0.01	0.56	0.00	0.44	0.00	0.00			
Avail Cap(c_a), veh/h	0	2240	2314	1642	4481	0	1374	0	0			
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Upstream Filter(I)	0.00	1.00	1.00	1.00	1.00	0.00	1.00	0.00	0.00			
Uniform Delay (d), s/veh	0.0	7.4	7.4	5.7	4.8	0.0	13.6	0.0	0.0			
Incr Delay (d2), s/veh	0.0	0.2	0.2	0.0	0.3	0.0	2.1	0.0	0.0			
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
%ile BackOfQ(50%),veh/ln	0.0	0.4	0.4	0.0	0.6	0.0	0.4	0.0	0.0			
Unsig. Movement Delay, s/veh	0.0	7.0	7.0		F 4	0.0	45.7	0.0	0.0			
LnGrp Delay(d),s/veh	0.0	7.6	7.6	5.7	5.1	0.0	15.7	0.0	0.0			
LnGrp LOS	A	A	A	A	A	A	В	A	A			
Approach Vol, veh/h		258			1059			61				
Approach Delay, s/veh		7.6			5.1			15.7				
Approach LOS		Α			Α			В				
Timer - Assigned Phs		2	3	4				8				
Phs Duration (G+Y+Rc), s		8.4	6.2	16.3				22.5				
Change Period (Y+Rc), s		6.0	6.0	6.0				6.0				
Max Green Setting (Gmax), s		24.0	19.0	39.0				39.0				
Max Q Clear Time (g_c+l1), s		3.0	2.1	3.6				8.1				
Green Ext Time (p_c), s		0.2	0.0	1.4				8.4				
Intersection Summary												
HCM 6th Ctrl Delay			6.0									
HCM 6th LOS			Α									

	-	←	1	~
Lane Group	EBT	WBT	NBL	NBR
Lane Group Flow (vph)	290	1125	198	56
v/c Ratio	0.13	0.52	0.40	0.12
Control Delay	7.6	11.1	29.5	7.8
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	7.6	11.1	29.5	7.8
Queue Length 50th (ft)	33	174	91	0
Queue Length 95th (ft)	48	224	148	21
Internal Link Dist (ft)	516	112	754	
Turn Bay Length (ft)				250
Base Capacity (vph)	2162	2162	491	480
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.13	0.52	0.40	0.12
Intersection Summary				

	-	•	•	←	4	/	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	^			^	ች	7	
Traffic Volume (veh/h)	252	0	0	1046	172	44	
Future Volume (veh/h)	252	0	0	1046	172	44	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No			No	No		
Adj Sat Flow, veh/h/ln	1870	0	0	1870	1870	1870	
Adj Flow Rate, veh/h	290	0	0	1125	198	0	
Peak Hour Factor	0.87	1.00	1.00	0.93	0.87	0.78	
Percent Heavy Veh, %	2	0	0	2	2	2	
Cap, veh/h	2172	0	0	2172	495	_	
Arrive On Green	0.61	0.00	0.00	0.61	0.28	0.00	
Sat Flow, veh/h	3741	0.00	0.00	3741	1781	1585	
Grp Volume(v), veh/h	290	0	0	1125	198	0	
Grp Sat Flow(s), veh/h/ln	1777	0	0	1777	1781	1585	
Q Serve(g_s), s	3.1	0.0	0.0	16.2	8.1	0.0	
Cycle Q Clear(g_c), s	3.1	0.0	0.0	16.2	8.1	0.0	
Prop In Lane	J. I	0.00	0.00	10.2	1.00	1.00	
Lane Grp Cap(c), veh/h	2172	0.00	0.00	2172	495	1.00	
V/C Ratio(X)	0.13	0.00	0.00	0.52	0.40		
Avail Cap(c_a), veh/h	2172	0.00	0.00	2172	495		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	0.00	
Uniform Delay (d), s/veh	7.4	0.00	0.00	10.0	26.4	0.00	
Incr Delay (d2), s/veh	0.1	0.0	0.0	0.9	2.4	0.0	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	1.0	0.0	0.0	5.5	3.7	0.0	
Unsig. Movement Delay, s/veh		0.0	0.0	3.5	3.1	0.0	
Unsig. Movement Delay, s/ven LnGrp Delay(d),s/veh	7.5	0.0	0.0	10.8	28.8	0.0	
LnGrp LOS	7.5 A	0.0 A	0.0 A	10.6 B	20.0 C	0.0	
Approach Vol, veh/h	290	A	A	1125	198	A	
•					28.8	А	
Approach LOS	7.5			10.8	28.8 C		
Approach LOS	А			В	C		
Timer - Assigned Phs		2				6	8
Phs Duration (G+Y+Rc), s		60.0				60.0	30.0
Change Period (Y+Rc), s		5.0				5.0	5.0
Max Green Setting (Gmax), s		55.0				55.0	25.0
Max Q Clear Time (g_c+l1), s		18.2				5.1	10.1
Green Ext Time (p_c), s		9.6				1.9	0.5
Intersection Summary							
HCM 6th Ctrl Delay			12.5				
HCM 6th LOS			В				
Notes							

ntersection													
nt Delay, s/veh	15.1												
Novement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
ane Configurations	<u> </u>	†	LDIX	YVDL	↑	VVDIX	NDL	4	INDIX	ODL	4	ODIN	
raffic Vol, veh/h	84	1109	31	4	484	21	40	3	21	19	3	76	
uture Vol, veh/h	84	1109	31	4	484	21	40	3	21	19	3	76	
onflicting Peds, #/hr	04	0	0	0	0	0	0	0	0	0	0	0	
sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
T Channelized	-	-	None	-	-	None	Slop -	SiOP -	None	Stop -	Stop -	None	
torage Length	60		NOHE -	225	_	NOILE	_	-	NOHE	_	-	NOHE	
eh in Median Storage,		0	-	225	0	<u>-</u>		0	_	_	0	_	
en in Median Storage, rade, %	, # -	0			0			0		-	0		
	78	93	- 78	- 78	92	- 78	78	78	- 78	78	78	- 78	
eak Hour Factor													
eavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
lvmt Flow	108	1192	40	5	526	27	51	4	27	24	4	97	
-:/NA:	A = ! =A			M-:0			Air 4			A:O			
	/lajor1			Major2			Minor1	40		Minor2	10		
onflicting Flow All	553	0	0	1232	0	0	1703	1991	616	1364	1998	277	
Stage 1	-	-	-	-	-	-	1428	1428	-	550	550	-	
Stage 2	-	-	-	-	-	-	275	563	-	814	1448	-	
itical Hdwy	4.14	-	-	4.14	-	-	7.54	6.54	6.94	7.54	6.54	6.94	
ritical Hdwy Stg 1	-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-	
ritical Hdwy Stg 2	-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-	
ollow-up Hdwy	2.22	-	-	2.22	-	-	3.52	4.02	3.32	3.52	4.02	3.32	
ot Cap-1 Maneuver	1013	-	-	561	-	-	59	60	433	106	59	720	
Stage 1	-	-	-	-	-	-	142	199	-	487	514	-	
Stage 2	-	-	-	-	-	-	708	507	-	338	195	-	
latoon blocked, %		-	-		-	-							
ov Cap-1 Maneuver	1013	-	-	561	-	-	~ 44	53	433	86	52	720	
ov Cap-2 Maneuver	-	-	-	-	-	-	~ 44	53	-	86	52	-	
Stage 1	-	-	-	-	-	-	127	178	-	435	509	-	
Stage 2	-	-	-	-	-	-	602	502	-	277	174	-	
, and the second													
pproach	EB			WB			NB			SB			
ICM Control Delay, s	0.7			0.1		\$	325.4			32.1			
ICM LOS	V.,			0		Y	F			D			
200							•						
linor Lane/Major Mvmt	· •	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SRI n1				
apacity (veh/h)		63	1013	-	LDIX	561	-	-	255				
CM Lane V/C Ratio		1.302	0.106			0.009			0.493				
	¢	325.4		-		11.5	-		32.1				
CM Control Delay (s) CM Lane LOS	ф	325.4 F	9	-	-		-	-	32.1 D				
CM 95th %tile Q(veh)		6.9	0.4	-	-	B 0	-	-	2.5				
,		0.9	0.4	_		U			2.0				
otes													
Volume exceeds cap			elay exc			+: Comp							n platoon

Intersection												
Int Delay, s/veh	5.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ħβ		ሻ	∱ }			4			4	
Traffic Vol, veh/h	79	1075	0	2	423	43	2	0	2	56	0	64
Future Vol, veh/h	79	1075	0	2	423	43	2	0	2	56	0	64
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	90	-	-	95	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	78	93	100	78	87	78	78	100	78	78	100	78
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	101	1156	0	3	486	55	3	0	3	72	0	82
Major/Minor N	Major1			Major2		N	Minor1		N	/linor2		
Conflicting Flow All	541	0	0	1156	0	0	1607	1905	578	1300	1878	271
Stage 1	-	-	-	-	-	-	1358	1358	-	520	520	-
Stage 2	-	-	-	-	-	-	249	547	-	780	1358	-
Critical Hdwy	4.14	_	-	4.14	-	-	7.54	6.54	6.94	7.54	6.54	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-
Critical Hdwy Stg 2	-	_	-	-	-	-	6.54	5.54	-	6.54	5.54	-
Follow-up Hdwy	2.22	-	-	2.22	-	-	3.52	4.02	3.32	3.52	4.02	3.32
Pot Cap-1 Maneuver	1024	-	-	600	-	-	70	68	459	119	71	727
Stage 1	-	-	-	-	-	-	157	215	-	507	530	-
Stage 2	-	-	-	-	-	-	733	516	-	354	215	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1024	-	-	600	-	-	57	61	459	109	64	727
Mov Cap-2 Maneuver	-	-	-	-	-	-	57	61	-	109	64	-
Stage 1	-	-	-	-	-	-	141	194	-	457	527	-
Stage 2	-	-	-	-	-	-	647	513	-	317	194	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.7			0.1			42.5			66.4		
HCM LOS							E			F		
Minor Lane/Major Mvm	t	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR :	SBLn1			
Capacity (veh/h)		101	1024	-	-	600	-	-	199			
HCM Lane V/C Ratio			0.099	-	_	0.004	-	_	0.773			
HCM Control Delay (s)		42.5	8.9	-	-	11	-	-	66.4			
HCM Lane LOS		E	А	-	-	В	-	-	F			
HCM 95th %tile Q(veh)		0.2	0.3	-	-	0	-	-	5.3			

Intersection												
Int Delay, s/veh	0.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		†			†				7			7
Traffic Vol, veh/h	0	1154	6	0	486	3	0	0	0	0	0	27
Future Vol, veh/h	0	1154	6	0	486	3	0	0	0	0	0	27
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	0	-	-	0
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	93	78	100	92	78	100	92	100	92	92	78
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	1241	8	0	528	4	0	0	0	0	0	35
Major/Minor M	lajor1			Major2			/linor1		<u> </u>	Minor2		
Conflicting Flow All	-	0	0	-	-	0	-	-	625	-	-	266
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	-	-	-	6.94	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	-	-	-	3.32	-	-	3.32
Pot Cap-1 Maneuver	0	-	-	0	-	-	0	0	428	0	0	732
Stage 1	0	-	-	0	-	-	0	0	-	0	0	-
Stage 2	0	-	-	0	-	-	0	0	-	0	0	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	-	-	-	-	-	428	-	-	732
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			0			10.2		
HCM LOS							Α			В		
Minor Lane/Major Mvmt	ı	NBLn1	EBT	EBR	WBT	WBR S	SBLn1					
Capacity (veh/h)		-	-	-	-		732					
HCM Lane V/C Ratio		-	-	-	-		0.047					
HCM Control Delay (s)		0	-	-	-	-	10.2					
HCM Lane LOS		Α	-	-	-	-	В					
HCM 95th %tile Q(veh)		-	-	-	-	-	0.1					

	→	•	←	†
Lane Group	EBT	WBL	WBT	NBT
Lane Group Flow (vph)	1221	9	502	46
v/c Ratio	0.42	0.02	0.16	0.11
Control Delay	4.9	2.7	2.1	1.8
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	4.9	2.7	2.1	1.8
Queue Length 50th (ft)	0	0	0	0
Queue Length 95th (ft)	222	3	36	0
Internal Link Dist (ft)	295		547	737
Turn Bay Length (ft)		245		
Base Capacity (vph)	3128	1196	3493	1318
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.39	0.01	0.14	0.03
Intersection Summary				

	۶	→	•	•	—	•	•	†	<i>></i>	\	ţ	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		∱ }		ň	^			4				
Traffic Volume (veh/h)	0	1045	76	7	437	0	26	0	10	0	0	0
Future Volume (veh/h)	0	1045	76	7	437	0	26	0	10	0	0	0
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0			
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Work Zone On Approach		No			No			No				
Adj Sat Flow, veh/h/ln	0	1870	1870	1870	1870	0	1900	1870	1900			
Adj Flow Rate, veh/h	0	1124	97	9	502	0	33	0	13			
Peak Hour Factor	0.92	0.93	0.78	0.78	0.87	0.78	0.78	0.78	0.78			
Percent Heavy Veh, %	0	2	2	2	2	0	0	2	0			
Cap, veh/h	0	1677	145	309	2349	0	73	0	29			
Arrive On Green	0.00	0.51	0.51	0.01	0.66	0.00	0.06	0.00	0.06			
Sat Flow, veh/h	0	3404	285	1781	3647	0	1235	0	486			
Grp Volume(v), veh/h	0	603	618	9	502	0	46	0	0			
Grp Sat Flow(s),veh/h/ln	0	1777	1819	1781	1777	0	1721	0	0			
Q Serve(g_s), s	0.0	10.9	10.9	0.1	2.4	0.0	1.1	0.0	0.0			
Cycle Q Clear(g_c), s	0.0	10.9	10.9	0.1	2.4	0.0	1.1	0.0	0.0			
Prop In Lane	0.00		0.16	1.00		0.00	0.72		0.28			
Lane Grp Cap(c), veh/h	0	900	922	309	2349	0	102	0	0			
V/C Ratio(X)	0.00	0.67	0.67	0.03	0.21	0.00	0.45	0.00	0.00			
Avail Cap(c_a), veh/h	0	1617	1656	1073	3235	0	964	0	0			
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Upstream Filter(I)	0.00	1.00	1.00	1.00	1.00	0.00	1.00	0.00	0.00			
Uniform Delay (d), s/veh	0.0	7.9	7.9	6.0	2.9	0.0	19.5	0.0	0.0			
Incr Delay (d2), s/veh	0.0	0.9	0.9	0.0	0.0	0.0	3.1	0.0	0.0			
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
%ile BackOfQ(50%),veh/ln	0.0	2.5	2.6	0.0	0.2	0.0	0.5	0.0	0.0			
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	0.0	8.8	8.8	6.0	2.9	0.0	22.6	0.0	0.0			
LnGrp LOS	A	A	A	A	A	A	С	A	A			
Approach Vol, veh/h		1221			511			46				
Approach Delay, s/veh		8.8			3.0			22.6				
Approach LOS		Α			Α			С				
Timer - Assigned Phs		2	3	4				8				
Phs Duration (G+Y+Rc), s		8.5	6.6	27.7				34.3				
Change Period (Y+Rc), s		6.0	6.0	6.0				6.0				
Max Green Setting (Gmax), s		24.0	19.0	39.0				39.0				
Max Q Clear Time (g_c+I1), s		3.1	2.1	12.9				4.4				
Green Ext Time (p_c), s		0.2	0.0	8.8				3.4				
Intersection Summary												
HCM 6th Ctrl Delay			7.5									
HCM 6th LOS			Α									

	→	•	•	1
Lane Group	EBT	WBT	NBL	NBR
Lane Group Flow (vph)	1149	652	122	187
v/c Ratio	0.50	0.28	0.28	0.39
Control Delay	10.0	7.9	32.3	16.8
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	10.0	7.9	32.3	16.8
Queue Length 50th (ft)	180	84	63	42
Queue Length 95th (ft)	227	112	103	88
Internal Link Dist (ft)	516	112	754	
Turn Bay Length (ft)				250
Base Capacity (vph)	2300	2300	442	474
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.50	0.28	0.28	0.39
Intersection Summary				

	→	•	•	←	•	~	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	^			^	ሻ	7	
Traffic Volume (veh/h)	1069	0	0	600	101	155	
Future Volume (veh/h)	1069	0	0	600	101	155	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	•	1.00	1.00	•	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No	1.00	1.00	No	No	1.00	
Adj Sat Flow, veh/h/ln	1870	0	0	1870	1870	1870	
Adj Flow Rate, veh/h	1149	0	0	652	122	0	
Peak Hour Factor	0.93	1.00	1.00	0.92	0.83	0.83	
Percent Heavy Veh, %	2	0	0	2	2	2	
Cap, veh/h	2310	0	0	2310	445		
Arrive On Green	0.65	0.00	0.00	0.65	0.25	0.00	
Sat Flow, veh/h	3741	0.00	0.00	3741	1781	1585	
Grp Volume(v), veh/h	1149	0	0	652	122	0	
Grp Sat Flow(s), veh/h/ln	1777	0	0	1777	1781	1585	
Q Serve(g_s), s	16.7	0.0	0.0	7.9	5.5	0.0	
Cycle Q Clear(g_c), s	16.7	0.0	0.0	7.9	5.5	0.0	
Prop In Lane	10.1	0.00	0.00	1.5	1.00	1.00	
Lane Grp Cap(c), veh/h	2310	0.00	0.00	2310	445	1.00	
V/C Ratio(X)	0.50	0.00	0.00	0.28	0.27		
Avail Cap(c_a), veh/h	2310	0.00	0.00	2310	445		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	0.00	
Uniform Delay (d), s/veh	9.1	0.00	0.0	7.5	30.2	0.0	
Incr Delay (d2), s/veh	0.8	0.0	0.0	0.3	1.5	0.0	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	5.7	0.0	0.0	2.6	2.5	0.0	
Unsig. Movement Delay, s/ve		0.0	0.0	2.0	2.0	0.0	
LnGrp Delay(d),s/veh	9.8	0.0	0.0	7.8	31.7	0.0	
LnGrp LOS	3.0 A	Α	Α	Α.	C	0.0	
Approach Vol, veh/h	1149			652	122	А	
Approach Vol, ven/n Approach Delay, s/veh	9.8			7.8	31.7	A	
Approach LOS	9.0 A			7.0 A	31.7 C		
Applicación LOS	A			A	U		
Timer - Assigned Phs		2				6	
Phs Duration (G+Y+Rc), s		70.0				70.0	
Change Period (Y+Rc), s		5.0				5.0	
Max Green Setting (Gmax), s	i	65.0				65.0	
Max Q Clear Time (g_c+l1), s	6	9.9				18.7	
Green Ext Time (p_c), s		4.8				10.3	
Intersection Summary							
HCM 6th Ctrl Delay			10.5				
HCM 6th LOS			В				
			_				
Notes							