DRAINAGE DESIGN SUMMARY

FOR

DCI Lee's Summit

Lee's Summit, Jackson County, Missouri

July 25, 2019 Revised August 23, 2019

Prepared for: Dialysis Clinic, Inc. 1633 Church Street, Suite 500 Nashville, TN 37203 (615) 327-3061 Prepared by: Catalyst Design Group 5016 Centennial Boulevard, Suite 200 Nashville, TN 37209 (615)866-2410

DCI Lee's Summit Lee's Summit, Jackson County, Missouri

Table of Contents

General Information	3
Methodology	3
Existing Conditions Analysis	3
Proposed Conditions Analysis	4
Detention and Water Quality Analysis Storm Drainage Design	4 5
Conclusions and Recommendations	5
Attachments	5
Attachment 1: Site Drainage Area Maps Attachment 2: Hydraflow Hydrographs Routing Calculations Attachment 3: Hydraflow Storm Sewers Calculations Attachment 4: Water Quality Calculations Attachment 5: Supporting Documents	7

DCI Lee's Summit Lee's Summit, Jackson County, Missouri

Drainage Design Summary

General Information

The proposed project consists of constructing a 10,220 sf +/- dialysis clinic with associated parking and site improvements. The existing site is located at 2023 NW Shamrock Avenue in Lee's Summit on Parcel ID 62-240-99-04-00-0-00-000. The property is bordered by NW Shamrock Avenue to the North and NW Pryor Road to the East. The project site is located within the southeast corner of Section 2, Township 47N, Range 32W in the Little Blue River watershed of Kansas City.

Methodology

The following methods were used in this drainage design study to model existing and proposed conditions for stormwater runoff:

- Hydraflow Hydrographs 2018 software
 - SCS/NRCS Curve Number Method
 - o 24-Hour SCS Type II Rainfall Distribution
 - SCS TR-55 Method for Time of Concentration

Existing Conditions Analysis

Currently, the ±2.225-acre site is undeveloped with pasture-like land cover. The site is generally drains via sheet flow and shallow concentrated flow from the North to the Southeast corner of the property. Stormwater runoff exiting the site discharges into the existing public stormwater system in NW Pryor Road which eventually discharges into the Little Blue River.

In analyzing the existing conditions, the site was split into two drainage areas. The majority of the site is included in the North Drainage Area with the site outfall point in the Southeast corner of the property. Runoff from the North Drainage Area discharges into the public storm system in NW Pryor Road. The southern edge of the site is included in the South Drainage Area also with the site outfall point in the Southeast corner of the property. Runoff from the South Drainage Area discharges towards the neighboring property to the South and enters the public storm system further south along NW Pryor Road. Since both drainage areas discharge to the same final outfall, the public storm system in NW Pryor Road, the peak flows for the North and South Drainage Areas were combined in the analysis of the pre vs. post peak flows.

The North Drainage Area is 1.94 acres with a curve number of 84 and a time of concentration of 10.0 minutes. The South Drainage Area is 0.29 acres with a curve number of 84 and a time of concentration of 9.7 minutes.

The project site does not lie within a special flood hazard area per the federal emergency management agency, (FIRM) map no. 29095C0416G dated January 20, 2017.

The majority of the existing soil within the project site is Greenton-Urban land complex. A sliver of the existing soil near the Northwest corner of the property is Sharpsburg-Urban land complex. Both soil types are classified as Type D soil. The NRCS Soils Map can be found in Attachment 5.

A pre-developed drainage area map is included in Attachment 1 for a detailed view of the pre-developed site. Routing calculations produced by Hydraflow Hydrographs 2018 software are included in Attachment 2.

The pre-development flows to the site outfall point is as follows:

Pre-Development Peak Flows		
Storm Event	Existing Site	
	Peak Flows (cfs)	
2-year	6.303	
10-year	11.37	
100-year	18.21	

Proposed Conditions Analysis

The proposed project consists of constructing a 10,220 sf +/- dialysis clinic with associated parking and site improvements. The proposed dialysis clinic is to be located centrally on the site. Proposed stormwater runoff is to be directed via sheet flow, shallow concentrated flow, and channel flow to an extended dry detention pond that is to be located at the south end of the site. A small portion of the south and eastern edge of the site will bypass the proposed extended dry detention pond and discharge to the public storm system along NW Pryor Road as in the existing conditions. A post-developed drainage area map is included in Attachment 1 for a detailed view of the post-developed site.

Detention and Water Quality Analysis

Per Section 5600 of the Kansas City Metropolitan Chapter APWA Standard Specification & Design Criteria manual, the maximum post-developed peak discharge rates from any development shall not exceed those as follows:

- 50% storm peak rate less than or equal to 0.5 cfs per site acre
- 10% storm peak rate less than or equal to 2.0 cfs per site acre
- 1% storm peak rate less than or equal to 3.0 cfs per site acre

Also, for comprehensive control a 40-hour extended detention of runoff from the local 90% mean annual event (1.37"/24-hour rainfall) must be achieved for the water quality volume.

The required water quality treatment volume was calculated to be $\frac{5,015}{5,015}$ cf ($\frac{0.115}{0.115}$ ac-ft). See Attachment 4 for the water quality treatment volume calculations.

The proposed BMP practice chosen for this site is the extended dry detention basin. Calculations were generated following Chapter 8.10 of the Manual of Best Management Practices for Stormwater Quality. The proposed extended dry detention pond has a volume of 19,672 cf. The water quality treatment volume to be discharged over 40 hours is met at the elevation 963.5 in the proposed pond. The proposed outlet structure in the pond is to consist of a perforated riser with 6 holes with 4" vertical spacing up to the treatment volume elevation. Stormwater runoff exceeding the water quality treatment volume will discharge through an 8" orifice at an elevation of 963.8 and then a 24" pipe to the existing storm system in NW Pryor Road. The grated casting of the outlet structure is set just above the 100 year storm elevation at 966.20 to serve as an emergency overflow weir. The pond is also designed with an emergency spillway located on the East edge of the pond. The spillway is sized to pass the 1% storm from the contributing drainage area as well as the adjacent Fire department development's 1% storm with 1' of freeboard to the top of the dam assuming zero available storage in the ponds and zero flow through the primary outlet. See Attachment 2 for detention routing calculations.

The overall post-development peak flows to the outfall are as follows:

Post-Development Peak Flows			
Storm Event	Proposed Site		
	Peak Flows (cfs)		
2-year	<mark>1.308</mark>		
10-year	<mark>3.679</mark>		
100-year	<mark>5.937</mark>		

Storm Drainage Design

All stormwater pipes and structures have been designed to convey the 10-year storm event. Tailwater elevations were considered to be between the crown and critical depth of the pipes.

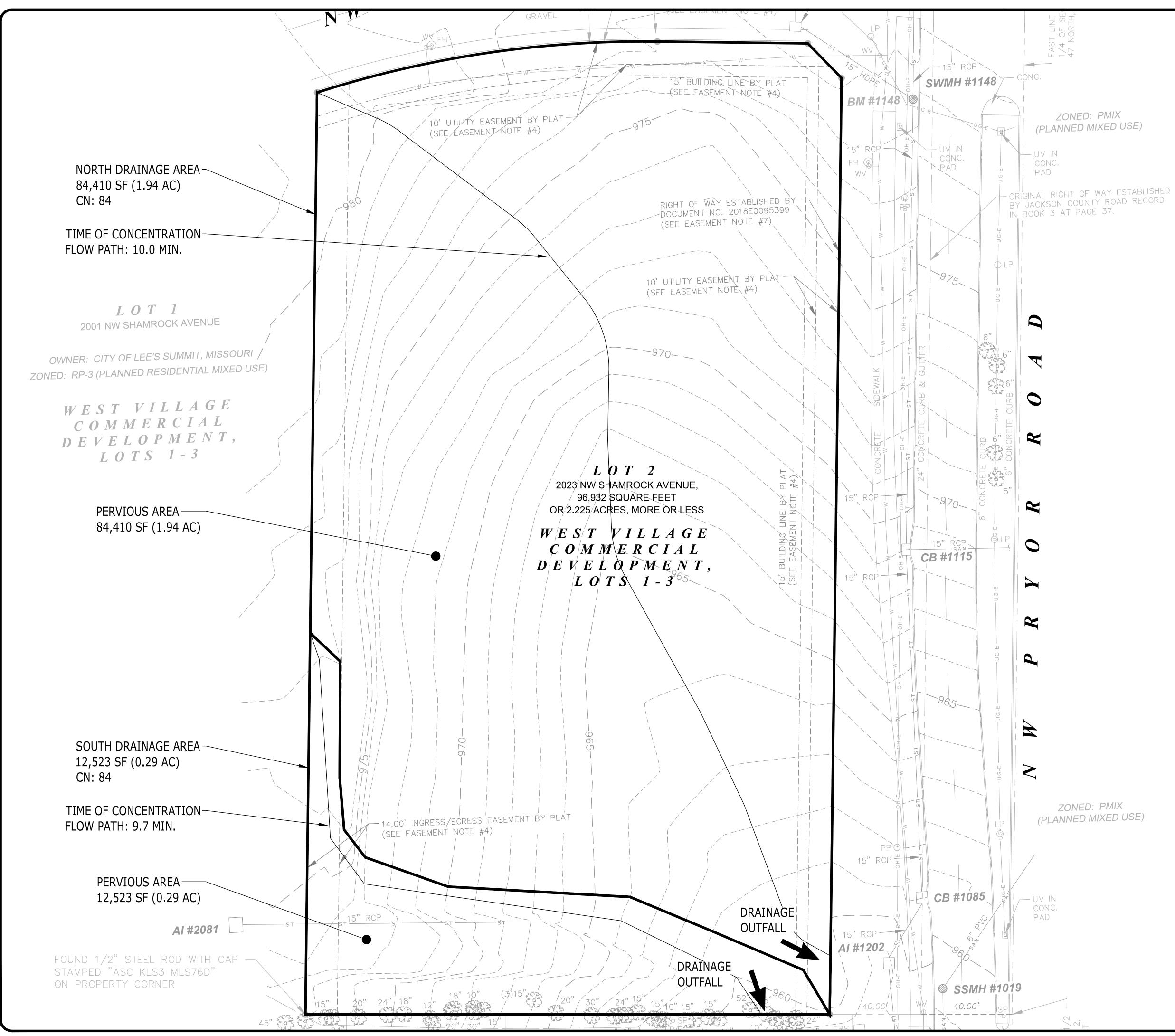
Pipe and structures calculations were compiled using Hydraflow Storm Sewers 2018 software and are included as Attachment 3. An Inlet Drainage Area Map detailing the areas discharging to each proposed inlet is included in Attachment 1.

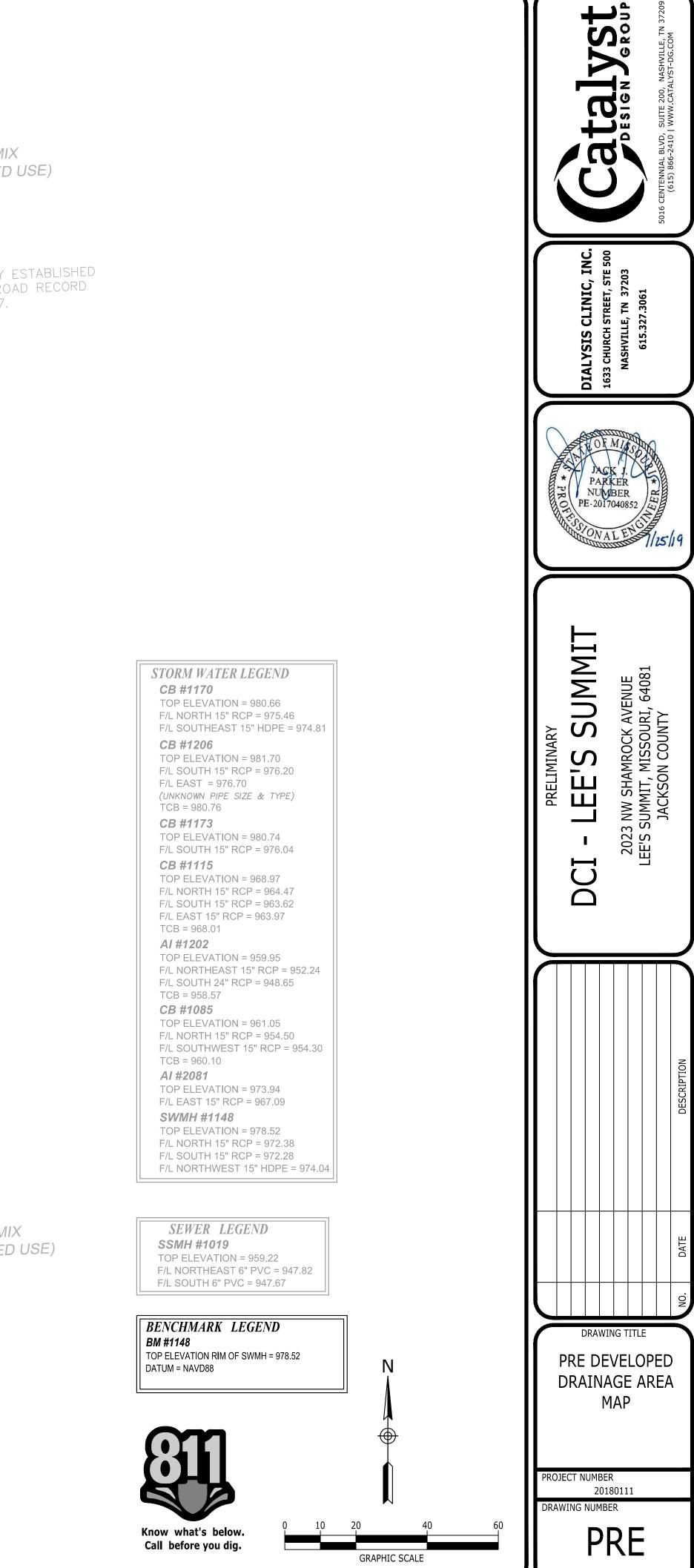
Conclusions and Recommendations

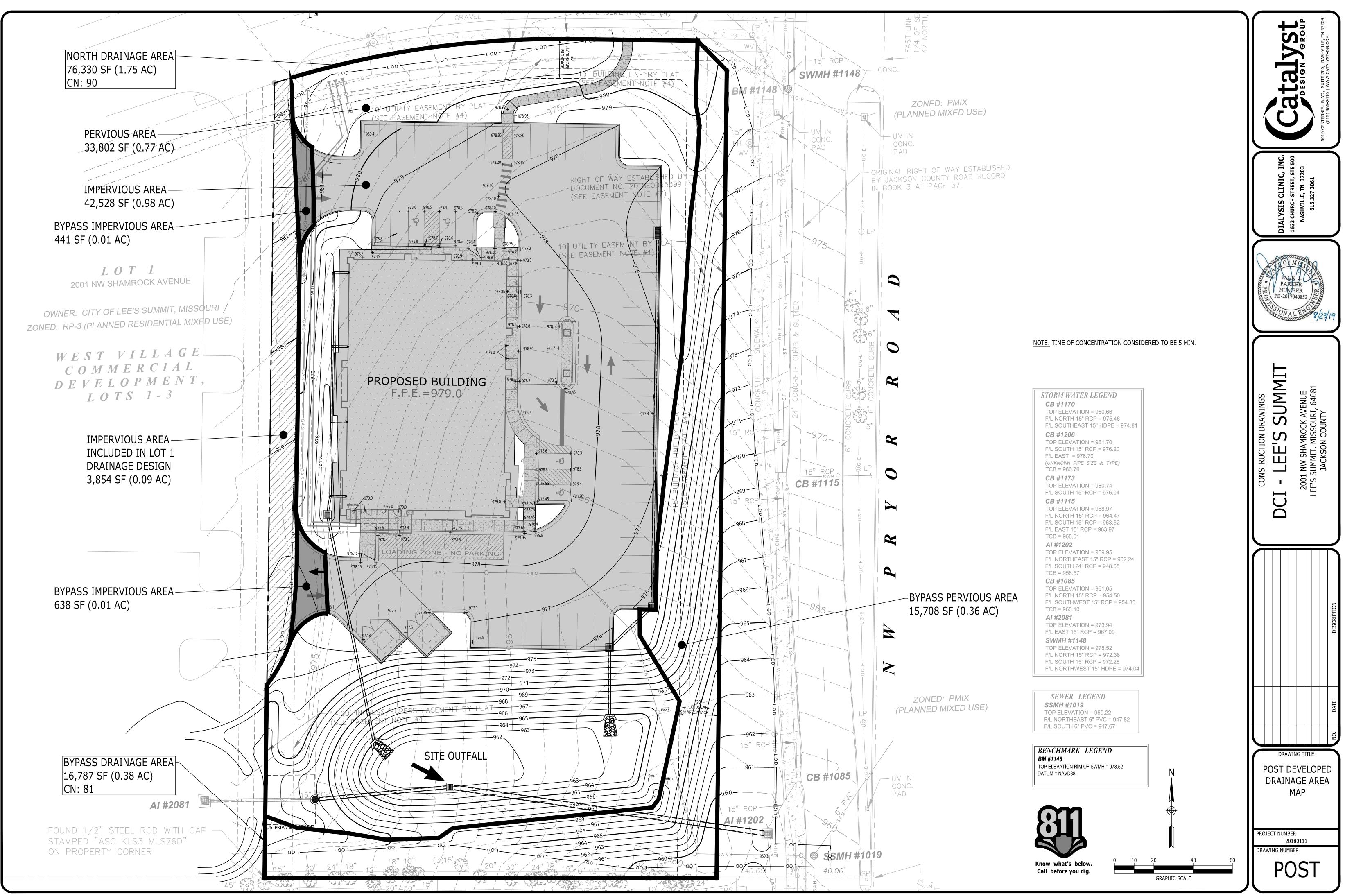
The stormwater management system for the proposed development has been designed per Section 5600 of the Kansas City Metropolitan Chapter APWA Standard Specifications Design Criteria and the Manual of Best Management Practices for Stormwater Quality. Due to the increase in impervious area for the proposed development, water quality and detention requirements are to be met by the use of a proposed extended dry detention basin located on the South portion of the project site. The water quality treatment volume calculated to be **5,015** cf is to be released over 40 hours through a perforated riser. The detention requirements specify maximum release rates based on the lesser of either pre-developed peak flow rates or a predetermined flow rate per site acreage. The post-developed peak flow rates. The post-developed peak flow rate for the 2-year storm event exceeds the allowable peak flow rate by **0.2** cfs. This minor exceedance is considered to have negligible impact on the downstream infrastructure. The extended dry detention pond also has more than 2 feet of freeboard for all storm events in order to provide exceptional flood protection during extreme storm events.

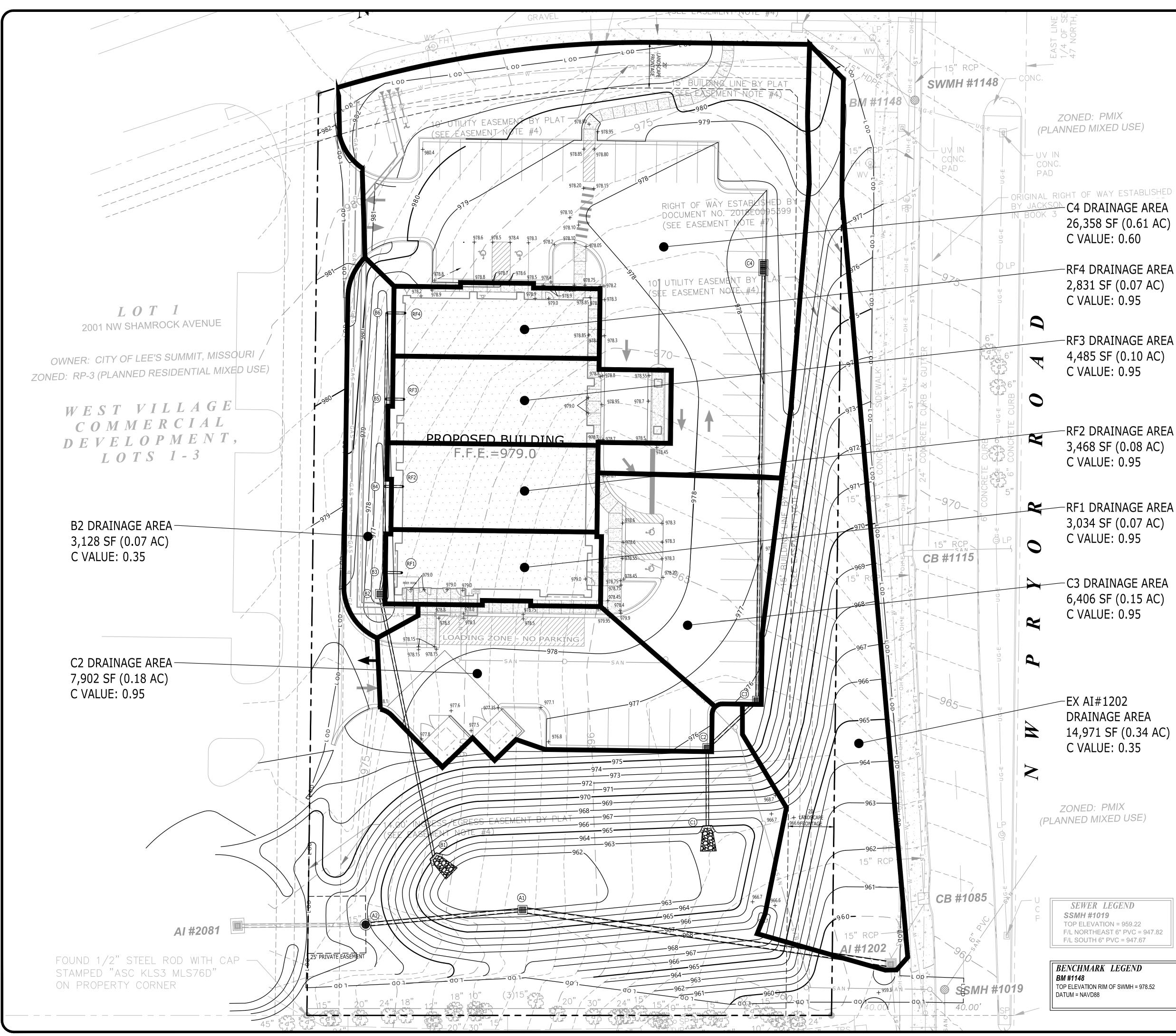
Pre- and Post- Peak Flows Comparison					
Storm Event	Pre-dev. Peak	Allowable		Post-Dev. Peak	Difference (+/-)
	Flow (cfs)	Post-Dev. Peak Flow (cfs)		Flows (cfs)	
2-year	6.303	(0.5 cfs/2.225 ac)	1.1125	<mark>1.308</mark>	<mark>+0.1955</mark>
10-year	11.37	(2.0 cfs/2.225 ac)	4.450	<mark>3.679</mark>	<mark>-0.771</mark>
100-year	18.21	(3.0 cfs/2.225 ac)	6.675	<mark>5.937</mark>	<mark>-0.738</mark>

Attachments:


Attachment 1 Site Drainage Area Maps


Attachment 2 *Hydraflow Hydrographs* Routing Calculations


- Attachment 3 Hydraflow Storm Sewers Calculations
- Attachment 4 Water Quality Calculations


Attachment 5 Supporting Documents

Attachment 1 Site Drainage Area Maps

-C4 DRAINAGE AREA 26,358 SF (0.61 AC) C VALUE: 0.60

-RF4 DRAINAGE AREA 2,831 SF (0.07 AC) C VALUE: 0.95

-RF3 DRAINAGE AREA 4,485 SF (0.10 AC) C VALUE: 0.95

-RF2 DRAINAGE AREA 3,468 SF (0.08 AC) C VALUE: 0.95

RF1 DRAINAGE AREA 3,034 SF (0.07 AC) C VALUE: 0.95

-C3 DRAINAGE AREA 6,406 SF (0.15 AC) C VALUE: 0.95

-EX AI#1202 DRAINAGE AREA 14,971 SF (0.34 AC) C VALUE: 0.35

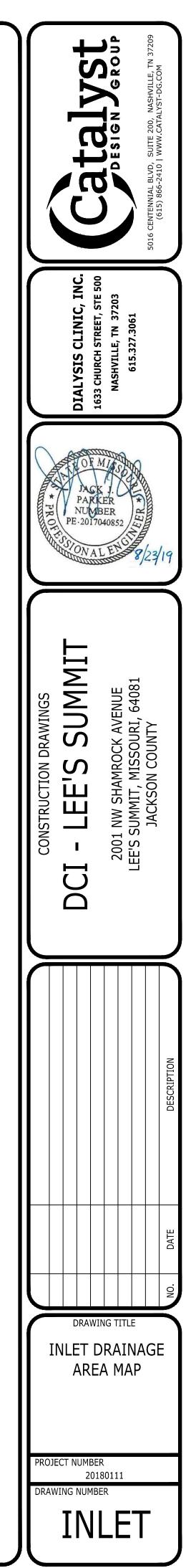
ZONED: PMIX

SEWER LEGEND TOP ELEVATION = 959.22 F/L NORTHEAST 6" PVC = 947.82 F/L SOUTH 6" PVC = 947.67

BENCHMARK LEGEND

TOP ELEVATION RIM OF SWMH = 978.52 DATUM = NAVD88

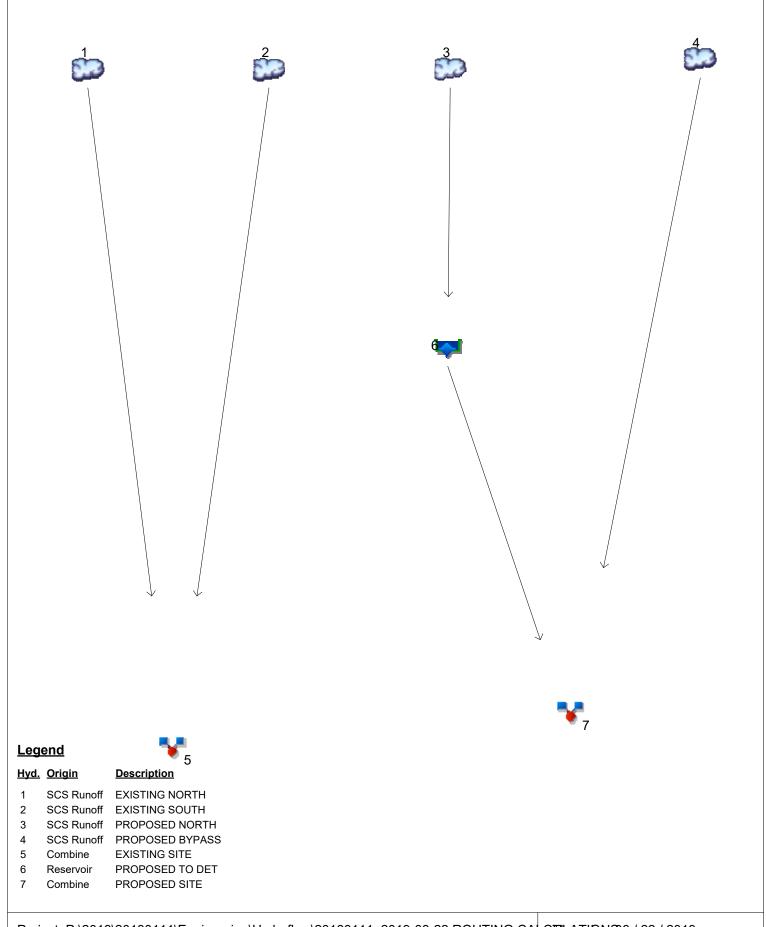
STRUCTURE TABLE			
CODE	DESCRIPTION	TOP GRATE	
A1	POND OUTLET	966.20	
A2	JUNCTION MANHOLE	971.20	
B1	HEADWALL	NA	
B2	CATCH BASIN	976.50	
B3	CLEANOUT	976.80	
B4	CLEANOUT	977.10	
B5	CLEANOUT	977.80	
B6	CLEANOUT	978.00	
C1	HEADWALL	NA	
C2	SINGLE CURB INLET	975.80	
C3	SINGLE CURB INLET	975.80	
C4	DOUBLE CURB INLET	977.60	
EX AI #2081	EXISTING POND OUTLET	973.94	
EX AL#1202	EXISTING CATCH BASIN	959.95	
RF1	ROOF CONNECTION	NA	
RF2	ROOF CONNECTION	NA	
RF3	ROOF CONNECTION	NA	
RF4	ROOF CONNECTION	NA	


PIPE TABLE

			-				
FROM CODE	FROM INV	<u>TO</u> CODE	<u>TO</u> INV.	GRADE (%)	SIZE (INCHES)	LENGTH (L.F.)	TYPE
A1	958.00	EX AL#1202	948.85	5.61%	24"	163	RCP
A2	966.58	A1	958.20	12.13%	15"	69	RCP
B2	972.63	B1	963.50	7.76%	12"	118	HDPE
B3	972.93	B2	972.83	1.04%	10"	10	HDPE
B4	973.30	В3	972.93	0.98%	10"	38	HDPE
B5	973.69	B4	973.30	1.02%	10"	38	HDPE
B6	974.06	B5	973.69	0.98%	10"	38	HDPE
C2	969.00	C1	963.50	15.89%	12"	35	HDPE
C3	971.30	C2	969.20	6.99%	12"	30	HDPE
C4	973.50	C3	971.50	1.05%	12"	190	HDPE
EX AI #2081	967.09	A2	966.58	0.91%	15"	56	RCP
RF1	974.25	В3	972.93	16.50%	10"	8	HDPE
RF2	974.25	B4	973.30	11.88%	10"	8	HDPE
RF3	974.25	B5	973.69	7.00%	10"	8	HDPE
RF4	974.25	B6	974.06	2.38%	10"	8	HDPE

	_
STORM WATER LEGEND	
CB #1170	
TOP ELEVATION = 980.66	
F/L NORTH 15" RCP = 975.46	
F/L SOUTHEAST 15" HDPE = 974.81	
CB #1206	
TOP ELEVATION = 981.70	
F/L SOUTH 15" RCP = 976.20	
F/L EAST = 976.70	
(UNKNOWN PIPE SIZE & TYPE)	
TCB = 980.76	
CB #1173	
TOP ELEVATION = 980.74	
F/L SOUTH 15" RCP = 976.04	
CB #1115	
TOP ELEVATION = 968.97	
F/L NORTH 15" RCP = 964.47	
F/L SOUTH 15" RCP = 963.62	
F/L EAST 15" RCP = 963.97	
TCB = 968.01	
AI #1202	
TOP ELEVATION = 959.95	
F/L NORTHEAST 15" RCP = 952.24	
F/L SOUTH 24" RCP = 948.65	
TCB = 958.57	
CB #1085	
TOP ELEVATION = 961.05	
F/L NORTH 15" RCP = 954.50	
F/L SOUTHWEST 15" RCP = 954.30 TCB = 960.10	
Al #2081	
TOP ELEVATION = 973.94 F/L EAST 15" RCP = 967.09	
SWMH #1148	
TOP ELEVATION = 978.52 F/L NORTH 15" RCP = 972.38	
F/L SOUTH 15" RCP = 972.38	
F/L NORTHWEST 15" HDPE = 974.04	
T/ENGINITIWEOT TO TIBLE 074.04	

Know what's below. Call before you dig.


GRAPHIC SCALE

Attachment 2 *Hydraflow Hydrographs* Routing Calculations

Watershed Model Schematic

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Project: P:\2018\20180111\Engineering\Hydraflow\20180111_2019-08-22 ROUTING CALCUMATSU3,508p/v22 / 2019

Hydraflow Table of Contents 111\Engineering\Hydraflow\20180111_2019-08-22 ROUTING CALCULATIONS.gpw

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020	Thursday, 08 / 22 / 2019
Watershed Model Schematic	1

Hydrograph Return Period Recap	. 2
--------------------------------	-----

Summary Report	3
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, EXISTING NORTH	
TR-55 Tc Worksheet	5
Hydrograph No. 2, SCS Runoff, EXISTING SOUTH	6
TR-55 Tc Worksheet	7
Hydrograph No. 3, SCS Runoff, PROPOSED NORTH	8
Hydrograph No. 4, SCS Runoff, PROPOSED BYPASS	9
Hydrograph No. 5, Combine, EXISTING SITE	10
Hydrograph No. 6, Reservoir, PROPOSED TO DET	11
Pond Report - Detention Pond	12
Hydrograph No. 7, Combine, PROPOSED SITE	14

10 - Year

Summary Report	15
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, EXISTING NORTH	16
Hydrograph No. 2, SCS Runoff, EXISTING SOUTH	17
Hydrograph No. 3, SCS Runoff, PROPOSED NORTH	18
Hydrograph No. 4, SCS Runoff, PROPOSED BYPASS	19
Hydrograph No. 5, Combine, EXISTING SITE	20
Hydrograph No. 6, Reservoir, PROPOSED TO DET	21
Hydrograph No. 7, Combine, PROPOSED SITE	22

100 - Year

Summary Report	23
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, EXISTING NORTH	
Hydrograph No. 2, SCS Runoff, EXISTING SOUTH	
Hydrograph No. 3, SCS Runoff, PROPOSED NORTH	
Hydrograph No. 4, SCS Runoff, PROPOSED BYPASS	
Hydrograph No. 5, Combine, EXISTING SITE	
Hydrograph No. 6, Reservoir, PROPOSED TO DET	
Hydrograph No. 7, Combine, PROPOSED SITE	
⁻ Report	
	•••••••

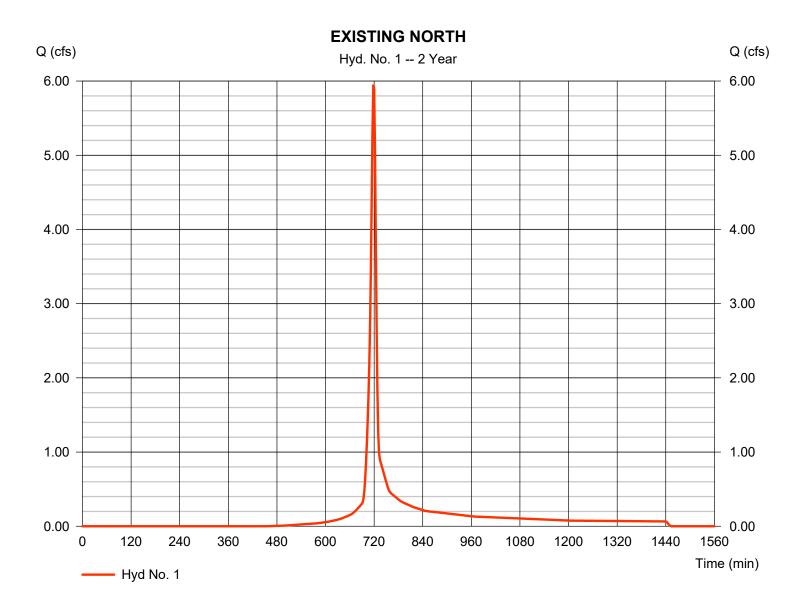
Hydrograph Return Period Recap Hydrafiow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No.	Hydrograph type	Inflow hyd(s)		Peak Outflow (cfs)						Hydrograph Description	
0.	(origin)		1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Decomption
1	SCS Runoff			5.952			10.72			17.14	EXISTING NORTH
2	SCS Runoff			0.811			1.466			2.350	EXISTING SOUTH
3	SCS Runoff			6.980			11.51			17.48	PROPOSED NORTH
4	SCS Runoff			1.094			2.056			3.371	PROPOSED BYPASS
5	Combine	1, 2,		6.704			12.09			19.36	EXISTING SITE
6	Reservoir	3		0.683			2.066			3.037	PROPOSED TO DET
7	Combine	4, 6		1.308			3.679			5.937	PROPOSED SITE

Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	5.952	2	718	13,637				EXISTING NORTH
2	SCS Runoff	0.811	2	720	2,102				EXISTING SOUTH
3	SCS Runoff	6.980	2	716	14,579				PROPOSED NORTH
4	SCS Runoff	1.094	2	716	2,209				PROPOSED BYPASS
5	Combine	6.704	2	718	15,739	1, 2,			EXISTING SITE
6	Reservoir	0.683	2	742	14,127	3	964.17	7,932	PROPOSED TO DET
7	Combine	1.308	2	718	16,337	4, 6			PROPOSED SITE

P:\2018\20180111\Engineering\Hydraflow\2018@tum_Peti@d822@aDUTING CALD\ulr&daQ108.gp2/2019


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 1

EXISTING NORTH

Hydrograph type	= SCS Runoff	Peak discharge	= 5.952 cfs
Storm frequency	= 2 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 13,637 cuft
Drainage area	= 1.940 ac	Curve number	= 84*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 8.00 min
Total precip.	= 3.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

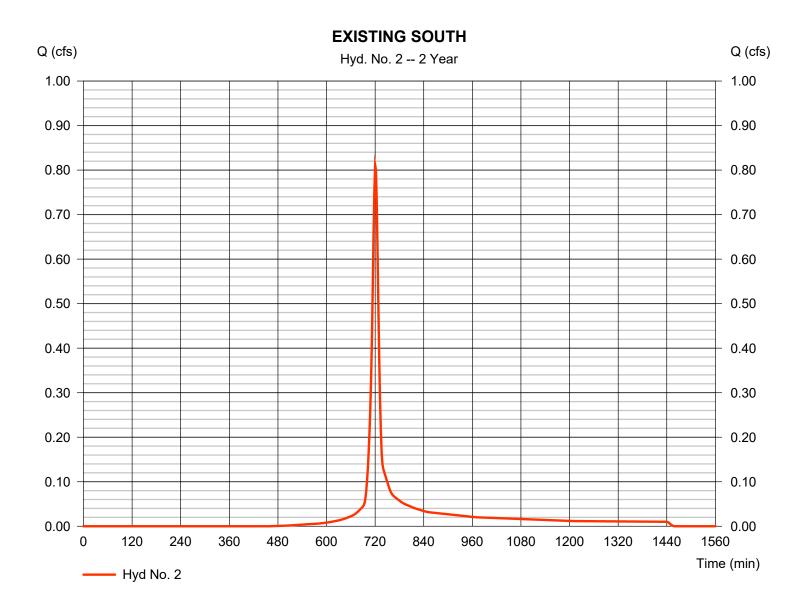
* Composite (Area/CN) = [(1.940 x 84)] / 1.940

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 1

EXISTING NORTH

<u>Description</u>	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 100.0 = 3.50 = 5.70		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 6.16	+	0.00	+	0.00	=	6.16
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 367.00 = 4.06 = Unpaved =3.25	ł	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 1.88	+	0.00	+	0.00	=	1.88
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							8.00 min


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 2

EXISTING SOUTH

Hydrograph type	= SCS Runoff	Peak discharge	= 0.811 cfs
Storm frequency	= 2 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 2,102 cuft
Drainage area	= 0.290 ac	Curve number	= 84*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 10.10 min
Total precip.	= 3.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.290 x 84)] / 0.290

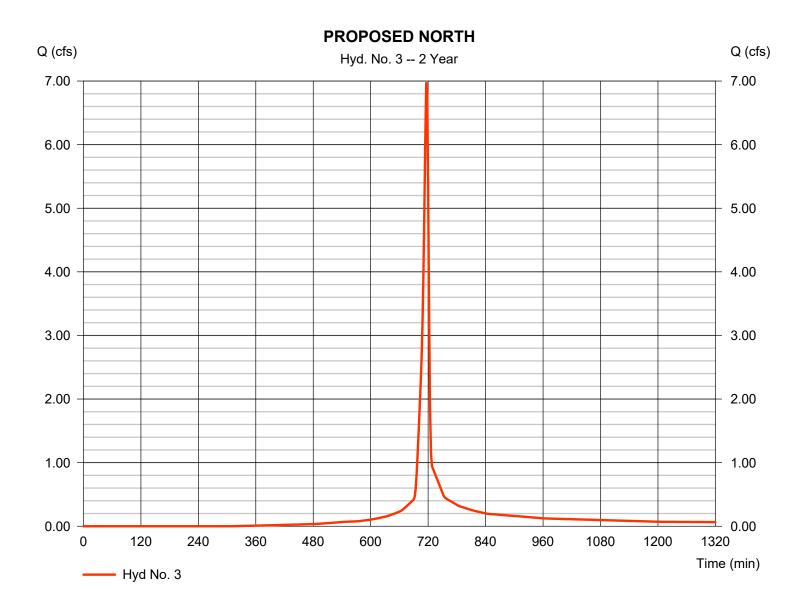
6

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 2

EXISTING SOUTH

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 100.0 = 3.50 = 2.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 9.37	+	0.00	+	0.00	=	9.37
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 206.00 = 7.52 = Unpaved =4.42	ł	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.78	+	0.00	+	0.00	=	0.78
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							10.10 min

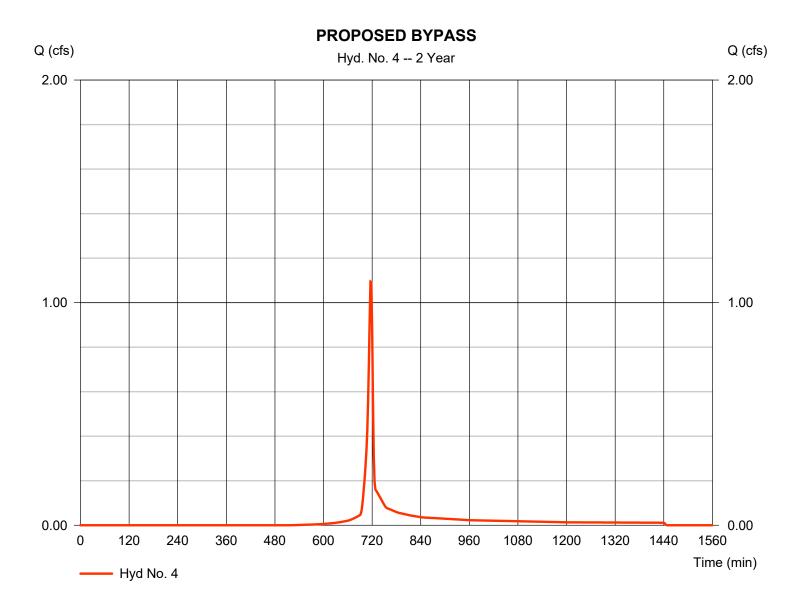

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 3

PROPOSED NORTH

Hydrograph type	= SCS Runoff	Peak discharge	= 6.980 cfs
Storm frequency	= 2 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 14,579 cuft
Drainage area	= 1.750 ac	Curve number	= 90*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.770 x 80) + (0.980 x 98)] / 1.750

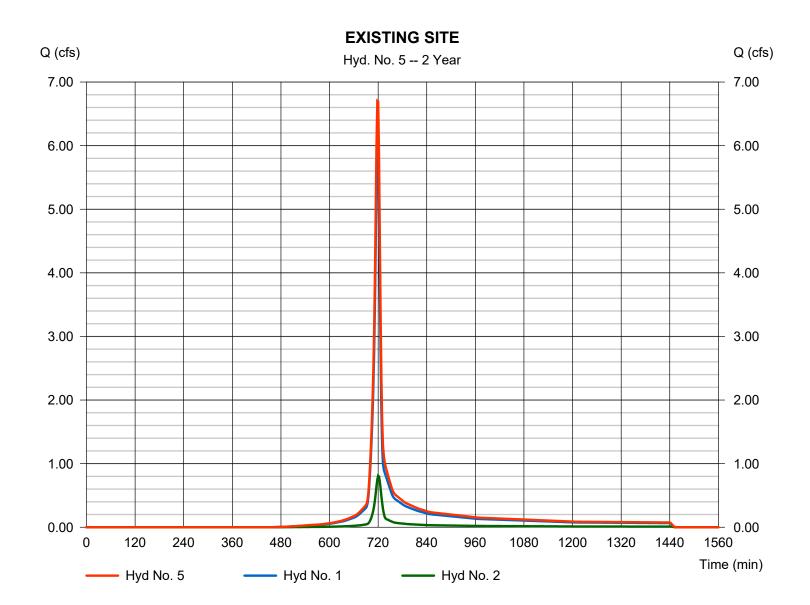

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 4

PROPOSED BYPASS

Hydrograph type	= SCS Runoff	Peak discharge	= 1.094 cfs
Storm frequency	= 2 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 2,209 cuft
Drainage area	= 0.380 ac	Curve number	= 81*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.360 x 80) + (0.020 x 98)] / 0.380

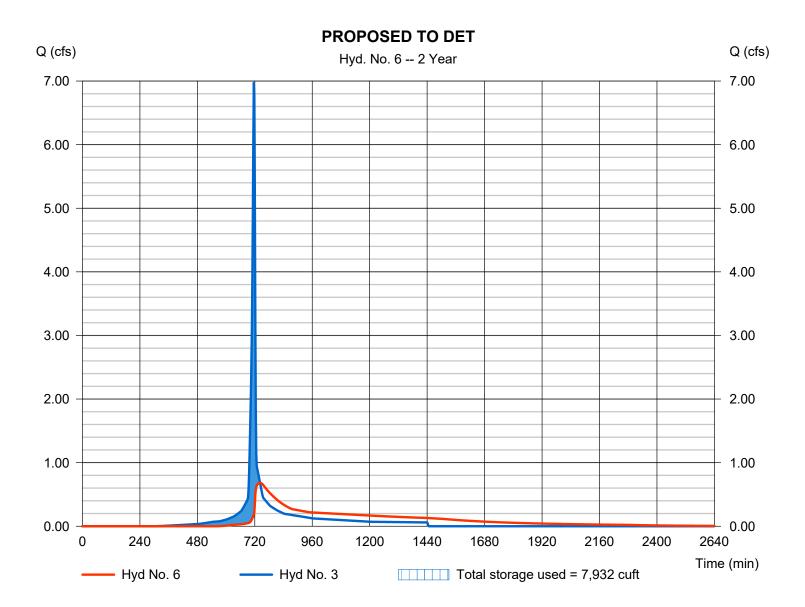

9

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 5

EXISTING SITE

Hydrograph type	= Combine	Peak discharge	= 6.704 cfs
Storm frequency	= 2 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 15,739 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 2.230 ac
inited Hyde.	1, Z		2.200 40


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 6

PROPOSED TO DET

Hydrograph type	= Reservoir	Peak discharge	= 0.683 cfs
Storm frequency	= 2 yrs	Time to peak	= 742 min
Time interval	= 2 min	Hyd. volume	= 14,127 cuft
Inflow hyd. No.	= 3 - PROPOSED NORTH	Max. Elevation	= 964.17 ft
Reservoir name	= Detention Pond	Max. Storage	= 7,932 cuft

Storage Indication method used.

Pond Report

Pond No. 1 - Detention Pond

Pond Data

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 961.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	961.00	10	0	0
1.00	962.00	1,575	793	793
2.00	963.00	3,200	2,388	3,180
3.00	964.00	4,610	3,905	7,085
4.00	965.00	5,590	5,100	12,185
5.00	966.00	6,670	6,130	18,315
5.20	966.20	6,895	1,357	19,672

Culvert / Orifice Structures

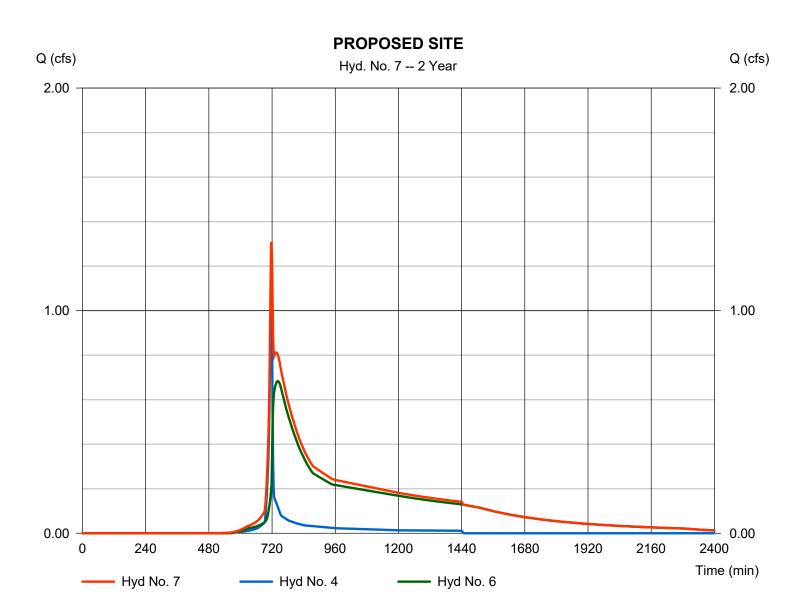
	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 24.00	8.00	Inactive	1.00	Crest Len (ft)	= 12.00	Inactive	Inactive	Inactive
Span (in)	= 24.00	8.00	0.00	1.00	Crest El. (ft)	= 966.20	0.00	0.00	0.00
No. Barrels	= 1	1	0	6	Weir Coeff.	= 2.60	3.33	3.33	3.33
Invert El. (ft)	= 958.00	963.80	0.00	961.52	Weir Type	= Broad			
Length (ft)	= 162.00	1.00	0.00	1.65	Multi-Stage	= Yes	No	No	No
Slope (%)	= 1.05	0.50	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	Yes	No	Yes	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
	oun		010	013	015	010	010	010	015	010	010	010	010
0.00	0	961.00	0.00	0.00		0.00	0.00						0.000
0.10	79	961.10	21.39 ic	0.00		0.00	0.00						0.000
0.20	159	961.20	21.39 ic	0.00		0.00	0.00						0.000
0.30	238	961.30	21.39 ic	0.00		0.00	0.00						0.000
0.40	317	961.40	21.39 ic	0.00		0.00	0.00						0.000
0.50	396	961.50	21.39 ic	0.00		0.00	0.00						0.000
0.60	476	961.60	21.39 ic	0.00		0.00	0.00						0.001
0.70	555	961.70	21.39 ic	0.00		0.00	0.00						0.005
0.80	634	961.80	21.39 ic	0.00		0.01	0.00						0.009
0.90	713	961.90	21.39 ic	0.00		0.01	0.00						0.015
1.00	793	962.00	21.39 ic	0.00		0.02	0.00						0.021
1.10	1,031	962.10	21.39 ic	0.00		0.03	0.00						0.028
1.20	1,270	962.20	21.39 ic	0.00		0.04	0.00						0.036
1.30	1,509	962.30	21.39 ic	0.00		0.04	0.00						0.044
1.40	1,748	962.40	21.39 ic	0.00		0.05	0.00						0.053
1.50	1,986	962.50	21.39 ic	0.00		0.06	0.00						0.062
1.60	2,225	962.60	21.39 ic	0.00		0.07	0.00						0.071
1.70	2,464	962.70	21.39 ic	0.00		0.08	0.00						0.082
1.80	2,703	962.80	21.39 ic	0.00		0.09	0.00						0.092
1.90	2,941	962.90	21.39 ic	0.00		0.10	0.00						0.103
2.00	3,180	963.00	21.39 ic	0.00		0.11	0.00						0.115
2.10	3,571	963.10	21.39 ic	0.00		0.13	0.00						0.126
2.20	3,961	963.20	21.39 ic	0.00		0.14	0.00						0.139
2.30	4,352	963.30	21.39 ic	0.00		0.15	0.00						0.151
2.40	4,742	963.40	21.39 ic	0.00		0.16	0.00						0.164
2.50	5,133	963.50	21.39 ic	0.00		0.18	0.00						0.177
2.60	5,523	963.60	21.39 ic	0.00		0.19	0.00						0.191
2.70	5,914	963.70	21.39 ic	0.00		0.20	0.00						0.205
2.80	6,304	963.80	21.39 ic	0.00		0.22	0.00						0.219
2.90	6,695	963.90	21.39 ic	0.04 ic		0.23	0.00						0.270
3.00	7,085	964.00	21.39 ic	0.13 ic		0.25	0.00						0.384
3.10	7,595	964.10	21.39 ic	0.29 ic		0.26	0.00						0.550
3.20	8,105	964.20	21.39 ic	0.47 ic		0.28	0.00						0.751
3.30	8,615	964.30	21.39 ic	0.68 ic		0.30	0.00						0.975
3.40	9,125	964.40	21.39 ic	0.88 ic		0.31	0.00						1.187
3.50	9,635	964.50	21.39 ic	1.02 ic		0.33	0.00						1.345

Weir Structures

Detention Pond Stage / Storage / Discharge Table


•	•	•											
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
3.60	10,145	964.60	21.39 ic	1.15 ic		0.34	0.00						1.492
3.70	10,655	964.70	21.39 ic	1.26 ic		0.36	0.00						1.626
3.80	11,165	964.80	21.39 ic	1.37 ic		0.38	0.00						1.750
3.90	11,675	964.90	21.39 ic	1.47 ic		0.40	0.00						1.867
4.00	12,185	965.00	21.39 ic	1.56 ic		0.41	0.00						1.978
4.10	12,798	965.10	21.39 ic	1.65 ic		0.43	0.00						2.083
4.20	13,411	965.20	21.39 ic	1.74 ic		0.45	0.00						2.185
4.30	14,024	965.30	21.39 ic	1.82 ic		0.47	0.00						2.283
4.40	14,637	965.40	21.39 ic	1.89 ic		0.49	0.00						2.378
4.50	15,250	965.50	21.39 ic	1.96 ic		0.51	0.00						2.470
4.60	15,863	965.60	21.39 ic	2.04 ic		0.52	0.00						2.560
4.70	16,476	965.70	21.39 ic	2.10 ic		0.54	0.00						2.647
4.80	17,089	965.80	21.39 ic	2.17 ic		0.56	0.00						2.733
4.90	17,702	965.90	21.39 ic	2.23 ic		0.58	0.00						2.817
5.00	18,315	966.00	21.39 ic	2.30 ic		0.60	0.00						2.900
5.02	18,451	966.02	21.39 ic	2.31 ic		0.61	0.00						2.916
5.04	18,586	966.04	21.39 ic	2.32 ic		0.61	0.00						2.932
5.06	18,722	966.06	21.39 ic	2.33 ic		0.62	0.00						2.948
5.08	18,858	966.08	21.39 ic	2.34 ic		0.62	0.00						2.965
5.10	18,993	966.10	21.39 ic	2.36 ic		0.62	0.00						2.981
5.12	19,129	966.12	21.39 ic	2.37 ic		0.63	0.00						2.997
5.14	19,265	966.14	21.39 ic	2.38 ic		0.63	0.00						3.013
5.16	19,400	966.16	21.39 ic	2.39 ic		0.64	0.00						3.029
5.18	19,536	966.18	21.39 ic	2.40 ic		0.64	0.00						3.045
5.20	19,672	966.20	21.39 ic	2.42 ic		0.64	0.00						3.060

...End

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

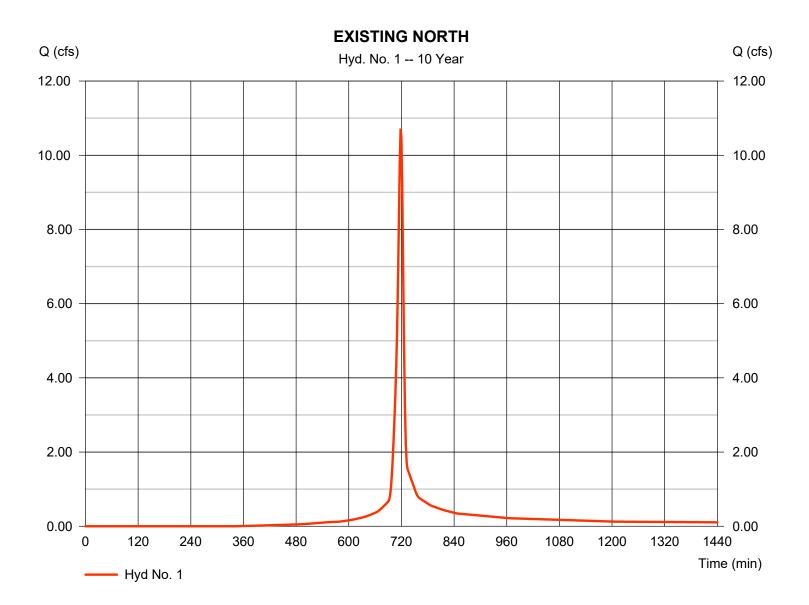
Hyd. No. 7

PROPOSED SITE

Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

łyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	10.72	2	718	24,971				EXISTING NORTH
2	SCS Runoff	1.466	2	720	3,849				EXISTING SOUTH
3	SCS Runoff	11.51	2	716	24,811				PROPOSED NORTH
4	SCS Runoff	2.056	2	716	4,205				PROPOSED BYPASS
5	Combine	12.09	2	718	28,821	1, 2,			EXISTING SITE
6	Reservoir	2.066	2	726	24,360	3	965.09	12,699	PROPOSED TO DET
7	Combine	3.679	2	718	28,565	4, 6			PROPOSED SITE

P:\2018\20180111\Engineering\Hydraflow\2018@tum_P@ti@d84027R@UTING CALD\ulr&daQ108.gp@/ 2019


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

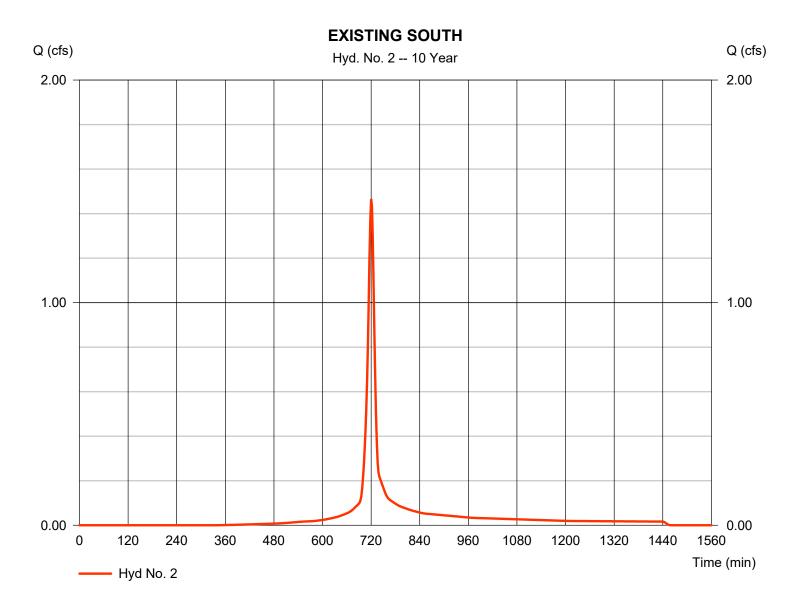
Hyd. No. 1

EXISTING NORTH

Hydrograph type	= SCS Runoff	Peak discharge	= 10.72 cfs
Storm frequency	= 10 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 24,971 cuft
Drainage area	= 1.940 ac	Curve number	= 84*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 8.00 min
Total precip.	= 5.30 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.940 x 84)] / 1.940

16

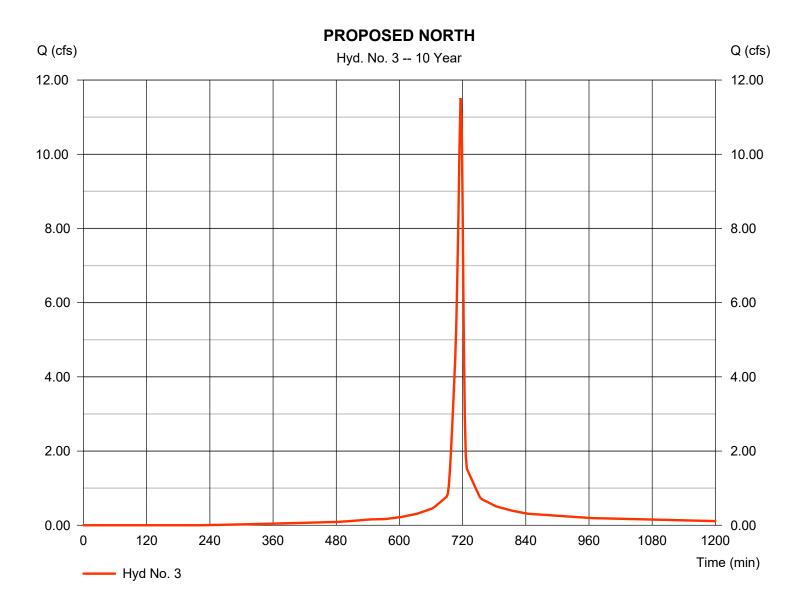

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 2

EXISTING SOUTH

Hydrograph type	= SCS Runoff	Peak discharge	= 1.466 cfs
Storm frequency	= 10 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 3,849 cuft
Drainage area	= 0.290 ac	Curve number	= 84*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 10.10 min
Total precip.	= 5.30 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.290 x 84)] / 0.290

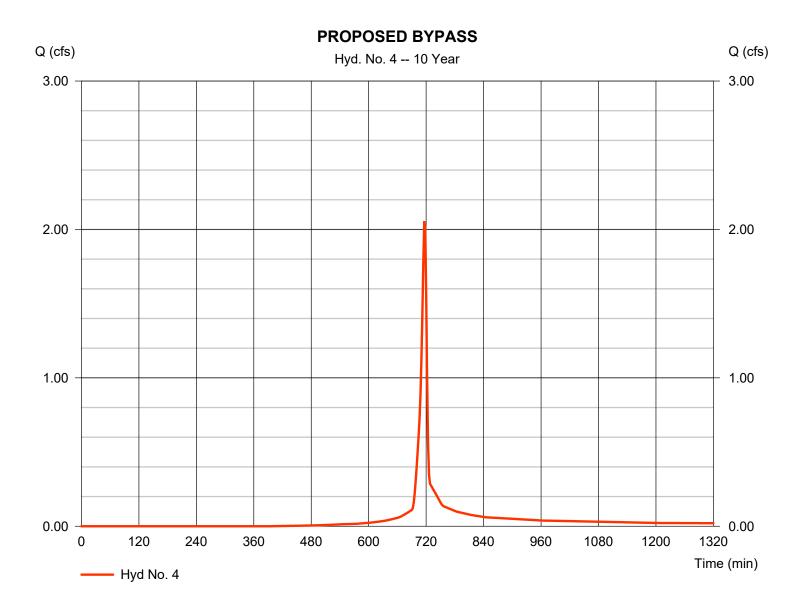

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 3

PROPOSED NORTH

Hydrograph type	= SCS Runoff	Peak discharge	= 11.51 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 24,811 cuft
Drainage area	= 1.750 ac	Curve number	= 90*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.30 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.770 x 80) + (0.980 x 98)] / 1.750

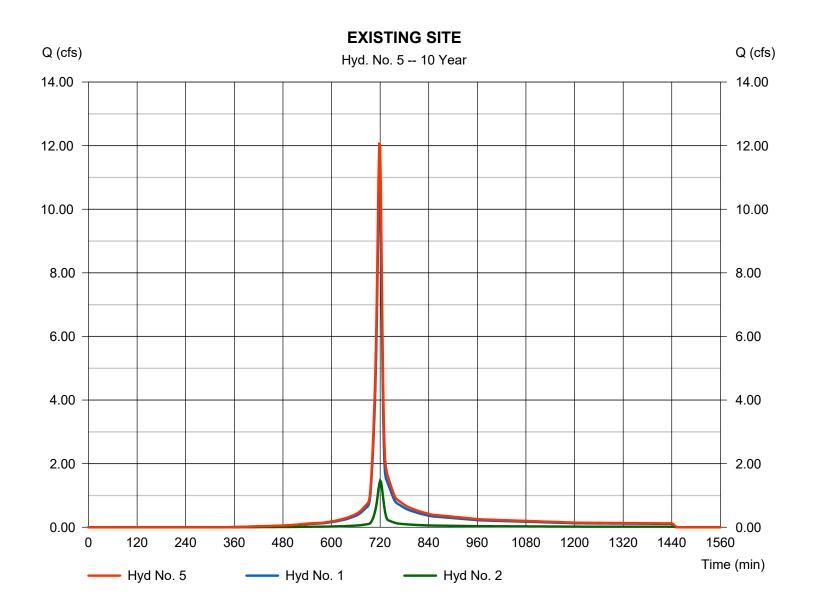

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 4

PROPOSED BYPASS

Hydrograph type	= SCS Runoff	Peak discharge	= 2.056 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 4,205 cuft
Drainage area	= 0.380 ac	Curve number	= 81*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.30 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.360 x 80) + (0.020 x 98)] / 0.380

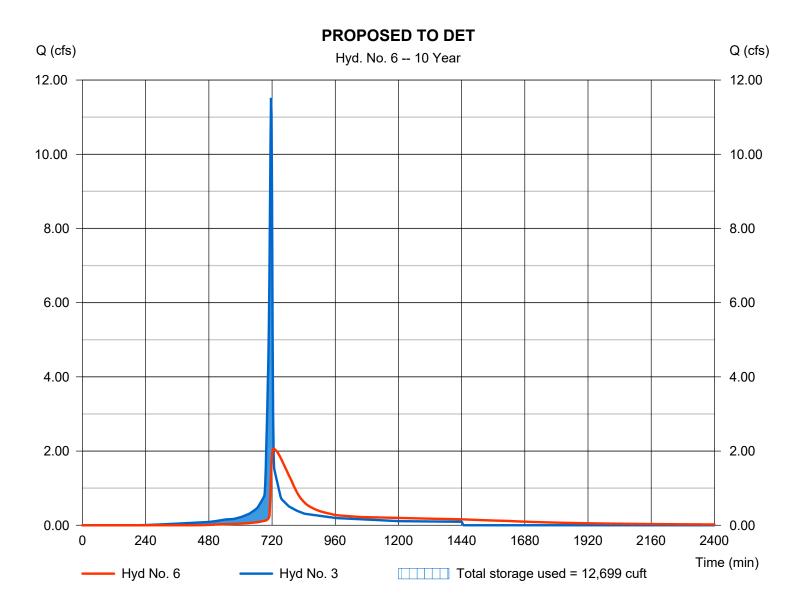


19

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 5

EXISTING SITE

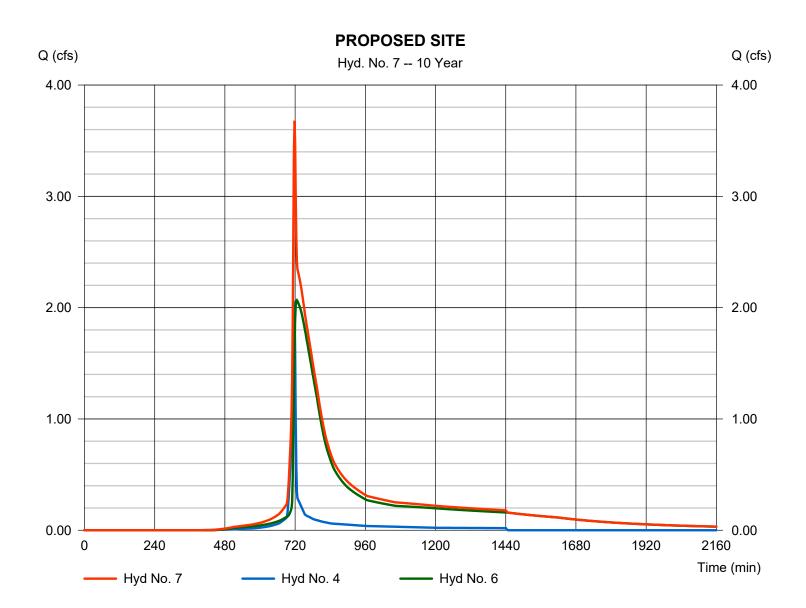

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 6

PROPOSED TO DET

Hydrograph type	= Reservoir	Peak discharge	= 2.066 cfs
Storm frequency	= 10 yrs	Time to peak	= 726 min
Time interval	= 2 min	Hyd. volume	= 24,360 cuft
Inflow hyd. No.	= 3 - PROPOSED NORTH	Max. Elevation	= 965.09 ft
Reservoir name	= Detention Pond	Max. Storage	= 12,699 cuft

Storage Indication method used.



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 7

PROPOSED SITE

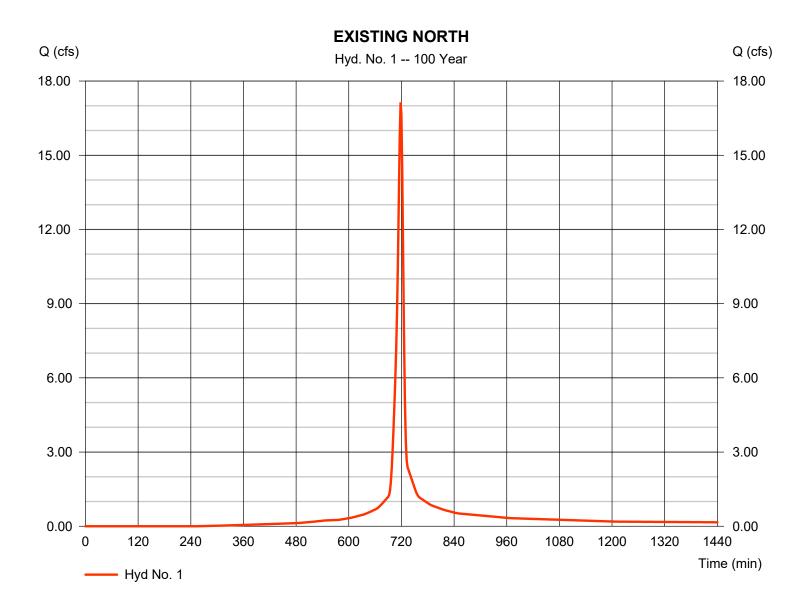
Hydrograph type	= Combine	Peak discharge	= 3.679 cfs
Storm frequency	= 10 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 28,565 cuft
Inflow hyds.	= 4, 6	Contrib. drain. area	= 0.380 ac

22

Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

łyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	17.14	2	718	40,898				EXISTING NORTH
2	SCS Runoff	2.350	2	720	6,305				EXISTING SOUTH
3	SCS Runoff	17.48	2	716	38,772				PROPOSED NORTH
4	SCS Runoff	3.371	2	716	7,060				PROPOSED BYPASS
5	Combine	19.36	2	718	47,203	1, 2,			EXISTING SITE
6	Reservoir	3.037	2	726	38,321	3	966.17	19,468	PROPOSED TO DET
7	Combine	5.937	2	718	45,382	4, 6			PROPOSED SITE

P:\2018\20180111\Engineering\Hydraflow\2018@tun Petiod8400 Read TING CALOULeATAQ108.gp2/2019


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

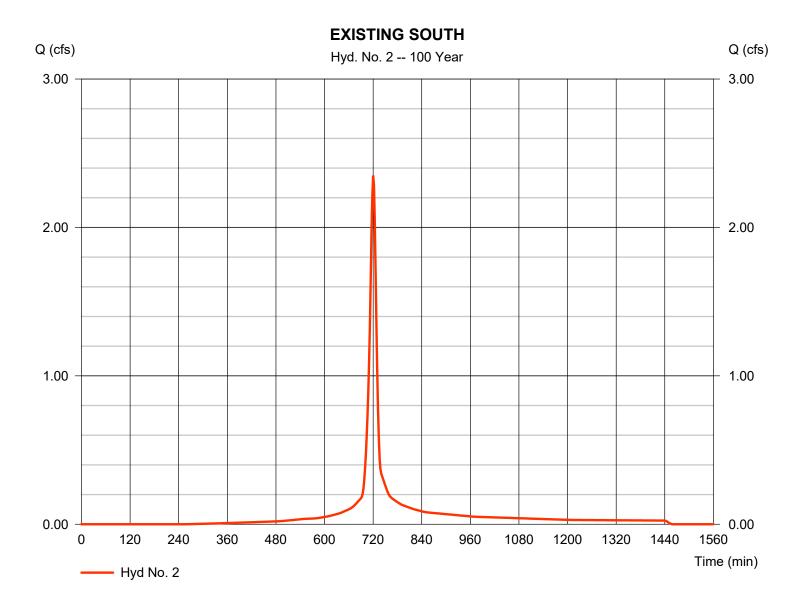
Hyd. No. 1

EXISTING NORTH

Hydrograph type	= SCS Runoff	Peak discharge	= 17.14 cfs
Storm frequency	= 100 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 40,898 cuft
Drainage area	= 1.940 ac	Curve number	= 84*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 8.00 min
Total precip.	= 7.70 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.940 x 84)] / 1.940

24

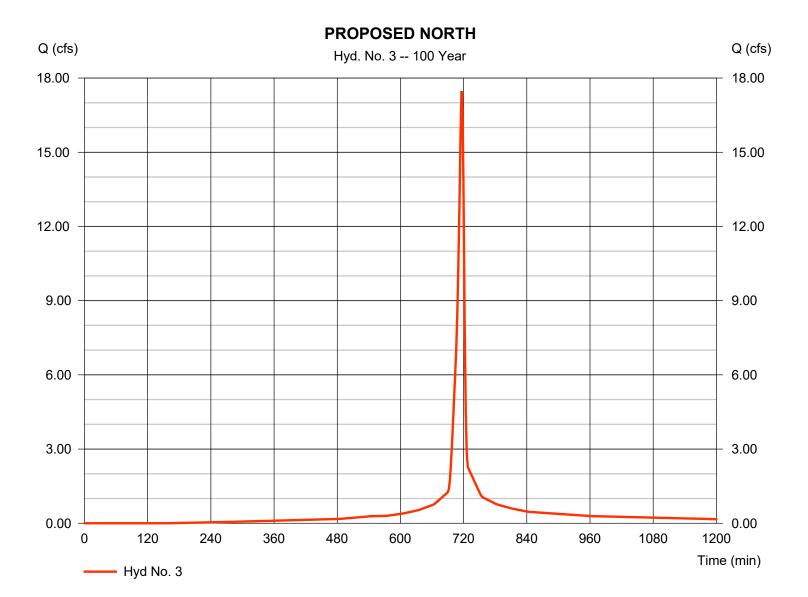

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 2

EXISTING SOUTH

Hydrograph type	= SCS Runoff	Peak discharge	= 2.350 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 6,305 cuft
Drainage area	= 0.290 ac	Curve number	= 84*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 10.10 min
Total precip.	= 7.70 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.290 x 84)] / 0.290

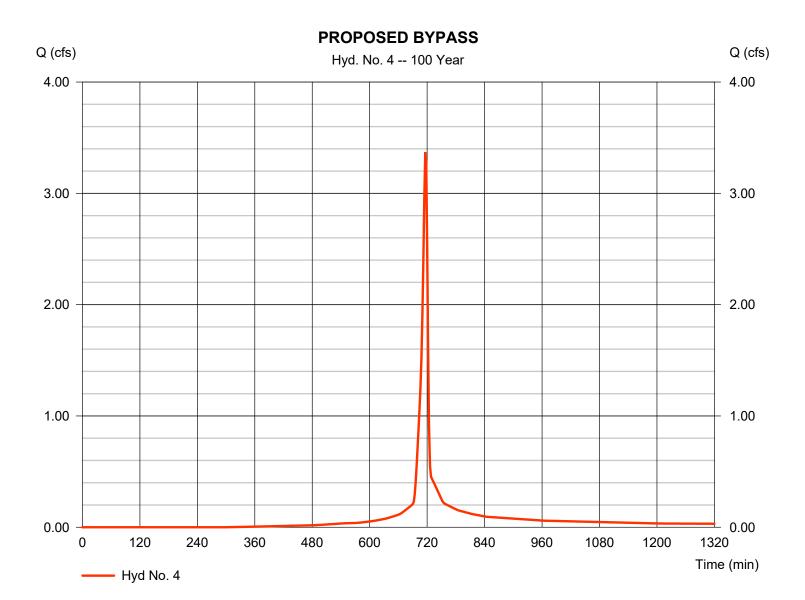

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 3

PROPOSED NORTH

Hydrograph type	= SCS Runoff	Peak discharge	= 17.48 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 38,772 cuft
Drainage area	= 1.750 ac	Curve number	= 90*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 7.70 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.770 x 80) + (0.980 x 98)] / 1.750

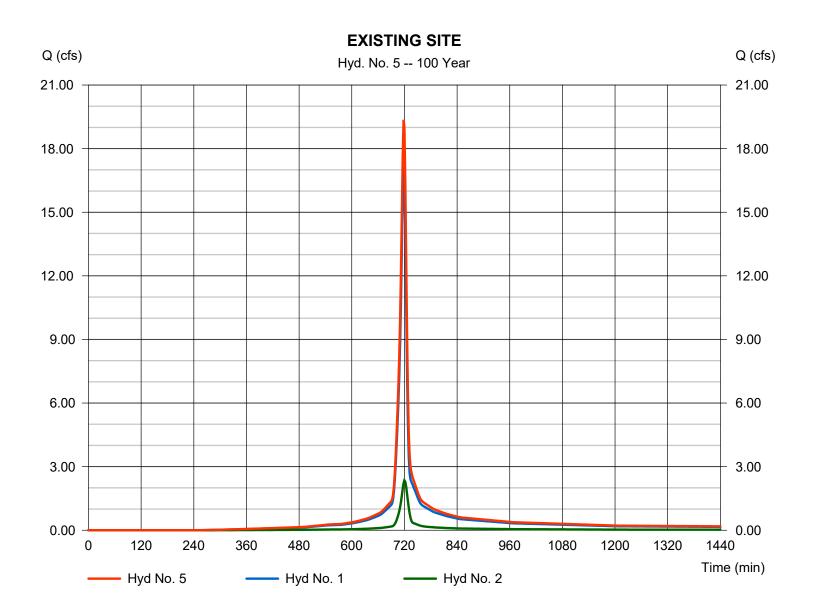

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 4

PROPOSED BYPASS

Hydrograph type	= SCS Runoff	Peak discharge	= 3.371 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 7,060 cuft
Drainage area	= 0.380 ac	Curve number	= 81*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 7.70 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.360 x 80) + (0.020 x 98)] / 0.380

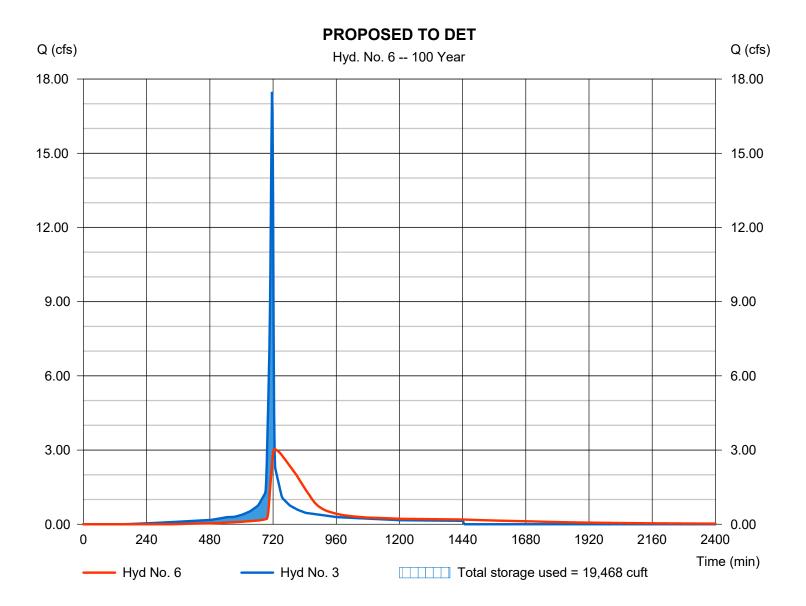

27

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 5

EXISTING SITE

Hydrograph type	 Combine 100 yrs 2 min 1, 2 	Peak discharge	= 19.36 cfs
Storm frequency		Time to peak	= 718 min
Time interval		Hyd. volume	= 47,203 cuft
Inflow hyds.		Contrib. drain. area	= 2.230 ac

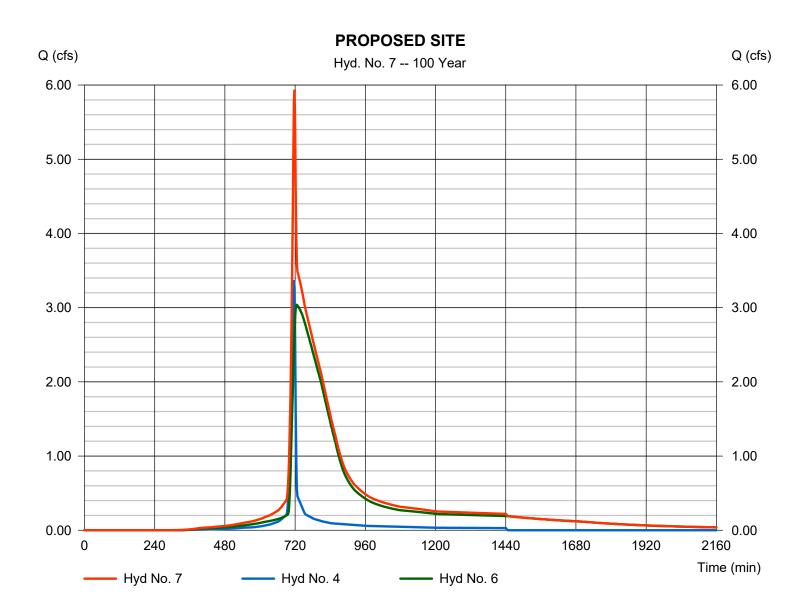

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 6

PROPOSED TO DET

Hydrograph type	= Reservoir	Peak discharge	= 3.037 cfs
Storm frequency	= 100 yrs	Time to peak	= 726 min
Time interval	= 2 min	Hyd. volume	= 38,321 cuft
Inflow hyd. No.	= 3 - PROPOSED NORTH	Max. Elevation	= 966.17 ft
Reservoir name	= Detention Pond	Max. Storage	= 19,468 cuft

Storage Indication method used.



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 7

PROPOSED SITE

Hydrograph type	= Combine	Peak discharge	= 5.937 cfs
Storm frequency	= 100 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 45,382 cuft
Inflow hyds.	= 4, 6	Contrib. drain. area	= 0.380 ac

30

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Return Period	Intensity-Du	uration-Frequency E	quation Coefficients	(FHA)
(Yrs)	В	D	E	(N/A)
1	0.0000	0.0000	0.0000	
2	26.1250	4.3000	0.6753	
3	0.0000	0.0000	0.0000	
5	32.4010	4.4000	0.6735	
10	37.8784	4.5000	0.6734	
25	42.5803	4.1000	0.6577	
50	45.8000	3.8000	0.6449	
100	48.9298	3.5000	0.6340	
	1		1	1

File name: Lee's Summit IDF.IDF

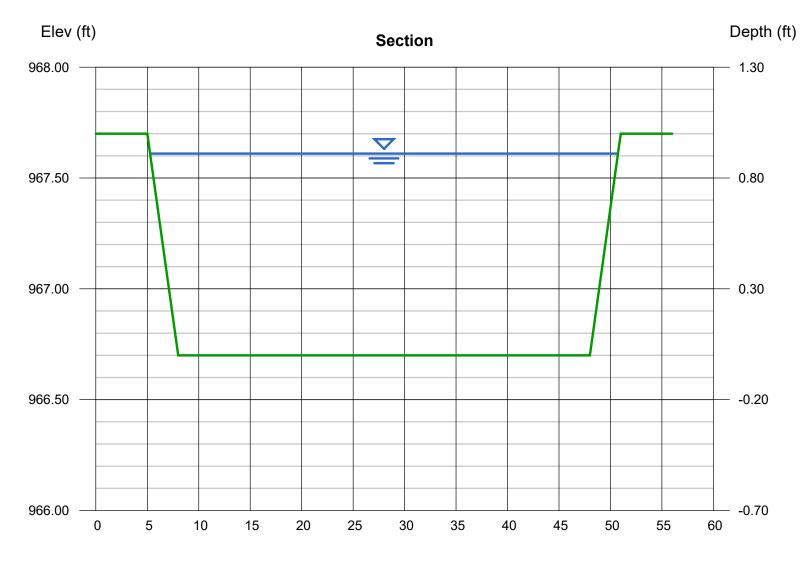
Intensity = B / (Tc + D)^E

Return		Intensity Values (in/hr)														
Period (Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60				
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
2	5.79	4.33	3.54	3.03	2.67	2.40	2.19	2.02	1.88	1.76	1.66	1.57				
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
5	7.16	5.38	4.40	3.77	3.32	2.99	2.73	2.52	2.34	2.20	2.07	1.96				
10	8.32	6.26	5.12	4.39	3.88	3.49	3.19	2.94	2.74	2.57	2.42	2.29				
25	9.97	7.47	6.12	5.25	4.64	4.18	3.82	3.53	3.29	3.09	2.91	2.76				
50	11.27	8.43	6.90	5.93	5.24	4.73	4.33	4.00	3.73	3.50	3.31	3.14				
100	12.60	9.39	7.69	6.61	5.85	5.28	4.83	4.47	4.18	3.92	3.71	3.52				

Tc = time in minutes. Values may exceed 60.

Preci	ip. file name: P:\2018\20180111\Engineering\Hydraflow\Lee's Summit Precipitation.pcp

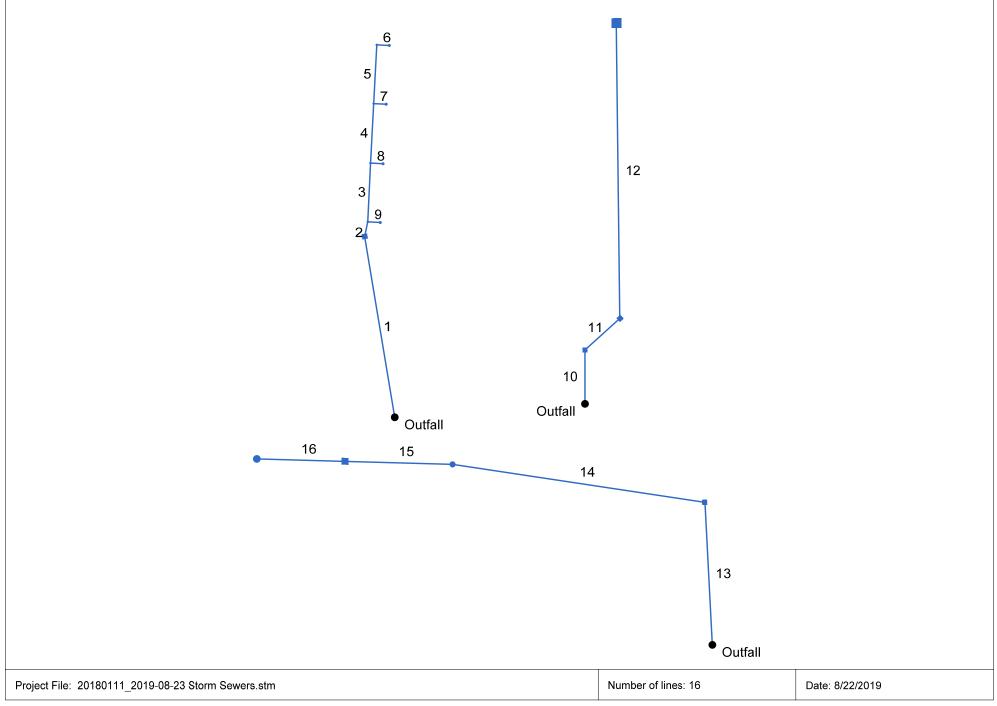
		R	ainfall P	recipitat	ion Tabl	e (in)		
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
SCS 24-hour	0.00	3.50	0.00	0.00	5.30	0.00	0.00	7.70
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Custom	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00


31

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Emergency Spillway


	Highlighted	
= 40.00	Depth (ft)	= 0.91
= 3.00, 3.00	Q (cfs)	= 34.51
= 1.00	Area (sqft)	= 38.88
= 966.70	Velocity (ft/s)	= 0.89
= 1.00	Wetted Perim (ft)	= 45.76
= 0.150	Crit Depth, Yc (ft)	= 0.29
	Top Width (ft)	= 45.46
	EGL (ft)	= 0.92
Known Q		
= 34.51		
	= 3.00, 3.00 = 1.00 = 966.70 = 1.00 = 0.150 Known Q	= 40.00 Depth (ft) = 3.00, 3.00 Q (cfs) = 1.00 Area (sqft) = 966.70 Velocity (ft/s) = 1.00 Wetted Perim (ft) = 0.150 Crit Depth, Yc (ft) Top Width (ft) EGL (ft) Known Q Known Q

Reach (ft)

Attachment 3 Hydraflow Storm Sewers Calculations

Hydraflow Storm Sewers Extension for Autodesk® AutoCAD® Civil 3D® Plan

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor Ioss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	B2-B1	2.29	12	Cir	117.73	963.50	972.63	7.755	964.32	973.28	n/a	973.28 j	End	Grate
2	B3-B2	2.12	10	Cir	9.60	972.83	972.93	1.042	973.48	973.58	0.33	973.58	1	Manhole
3	B4-B3	1.66	10	Cir	37.80	972.93	973.30	0.979	973.58	973.88	n/a	973.88 j	2	Manhole
4	B5-B4	1.13	10	Cir	38.29	973.30	973.69	1.019	973.88	974.16	n/a	974.16 j	3	Manhole
5	B6-B5	0.46	10	Cir	37.80	973.69	974.06	0.979	974.16	974.36	n/a	974.36 j	4	Manhole
6	RF4-B6	0.46	10	Cir	8.00	974.06	974.25	2.375	974.36	974.55	n/a	974.55	5	Grate
7	RF3-B5	0.66	10	Cir	8.00	973.69	974.25	7.000	974.16	974.61	n/a	974.61 j	4	Grate
8	RF2-B4	0.53	10	Cir	8.00	973.30	974.25	11.875	973.88	974.57	n/a	974.57 j	3	Grate
9	RF1-B3	0.46	10	Cir	8.00	972.93	974.25	16.500	973.58	974.55	n/a	974.55 j	2	Grate
10	C2-C1	4.74	12	Cir	34.68	963.50	969.00	15.859	964.45	969.90	n/a	969.90 j	End	Curb-Horiz
11	C3-C2	3.54	12	Cir	30.04	969.20	971.30	6.991	969.90	972.10	n/a	972.10	10	Curb-Horiz
12	C4-C3	2.55	12	Cir	190.02	971.50	973.50	1.053	972.12	974.18	n/a	974.18	11	Curb-Horiz
13	Pipe - (4)	6.67	24	Cir	91.74	947.73	948.65	1.003	949.19	949.56	n/a	949.56 j	End	Grate
14	A1-EX AL#1202	5.84	24	Cir	163.20	948.85	958.00	5.607	949.56	958.85	n/a	958.85	13	Grate
15	A2-A1	2.16	15	Cir	69.11	958.20	966.58	12.125	958.85	967.17	n/a	967.17 j	14	Manhole
16	EX AI #2081 - A2	2.16	15	Cir	56.15	966.58	967.00	0.748	967.17	967.59	n/a	967.59	15	Grate
Projec	t File: 20180111_2019-08-23	Storm Sewers.s	tm						Number o	of lines: 16		Run	Date: 8/22	/2019
NOTE	S: Return period = 10 Yrs. ; j	- Line contains ł	nyd. jump.											

Storm Sewer Tabulation

Statio	n	Len	Drng A	Area	Rnoff	Area x	(C	Тс		Rain	Total	Сар	Vel	Pipe		Invert El	ev	HGL Ele	v	Grnd / Ri	m Elev	Line ID
Line		-	Incr	Total	coeff	Incr	Total	Inlet	Syst	-(1)	flow	full			Slope	Dn	Up	Dn	Up	Dn	Up	-
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
4	Final	447 70	0.07	0.20	0.25	0.02	0.22	5.0	5.0	7.0	2.29	0.02	2.70	10	7 76	062.50	070.60	064.33	072.08	065.00	076 50	B2-B1
1	End	117.73		0.39	0.35	0.02	0.33	5.0		7.0		9.92	3.79	12	7.76	963.50	972.63	964.32	973.28	965.00	976.50	
2	1	9.60	0.00	0.32	0.00	0.00	0.30	0.0	5.0	7.0	2.12	2.24	4.65	10	1.04	972.83	972.93	973.48	973.58	976.50	976.80	B3-B2
3	2	37.80	0.00	0.25	0.00	0.00	0.24	0.0	5.0	7.0	1.66	2.17	3.86	10	0.98	972.93	973.30	973.58	973.88	976.80	977.10	B4-B3
4	3	38.29	0.00	0.17	0.00	0.00	0.16	0.0	5.0	7.0	1.13	2.21	3.16	10	1.02	973.30	973.69	973.88	974.16	977.10	977.80	B5-B4
5	4	37.80	0.00	0.07	0.00	0.00	0.07	0.0	5.0	7.0	0.46	2.17	2.05	10	0.98	973.69	974.06	974.16	974.36	977.80	978.00	B6-B5
6	5	8.00	0.07	0.07	0.95	0.07	0.07	5.0	5.0	7.0	0.46	3.37	2.66	10	2.38	974.06	974.25	974.36	974.55	978.00	979.00	RF4-B6
7	4	8.00	0.10	0.10	0.95	0.10	0.10	5.0	5.0	7.0	0.66	5.79	2.52	10	7.00	973.69	974.25	974.16	974.61	977.80	979.00	RF3-B5
8	3	8.00	0.08	0.08	0.95	0.08	0.08	5.0	5.0	7.0	0.53	7.55	2.04	10	11.88	973.30	974.25	973.88	974.57	977.10	979.00	RF2-B4
9	2	8.00	0.07	0.07	0.95	0.07	0.07	5.0	5.0	7.0	0.46	8.90	1.83	10	16.50	972.93	974.25	973.58	974.55	976.80	979.00	RF1-B3
10	End	34.68	0.18	0.94	0.95	0.17	0.68	5.0	5.0	7.0	4.74	14.18	6.25	12	15.86	963.50	969.00	964.45	969.90	965.00	975.80	C2-C1
11	10	30.04	0.15	0.76	0.95	0.14	0.51	5.0	5.0	7.0	3.54	9.42	5.63	12	6.99	969.20	971.30	969.90	972.10	975.80	975.80	C3-C2
12	11	190.02	0.61	0.61	0.60	0.37	0.37	5.0	5.0	7.0	2.55	3.65	4.74	12	1.05	971.50	973.50	972.12	974.18	975.80	977.60	C4-C3
13	End	91.74	0.34	0.34	0.35	0.12	0.12	5.0	5.0	7.0	6.67	22.65	3.74	24	1.00	947.73	948.65	949.19	949.56	950.00	959.95	Pipe - (4)
14	13	163.20	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	5.84	53.56	5.18	24	5.61	948.85	958.00	949.56	958.85	959.95	966.20	A1-EX AL#1202
15	14	69.11	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	2.16	22.49	3.58	15	12.13	958.20	966.58	958.85	967.17	966.20	971.20	A2-A1
16	15	56.15	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	2.16	5.58	3.82	15	0.75	966.58	967.00	967.17	967.59	971.20	973.94	EX AI #2081 - A2
Proje	ct File:	201801	11_201	9-08-23	Storm Se	ewers.st	m									Numbe	r of lines: 1	6		Run Da	te: 8/22/20	019
NOT	ES:Inte	nsity = 6	6.71 / (I	Inlet time	+ 12.50) ^ 0.79;	Return	period =	Yrs. 10	; Pipe ti	ravel tim	e suppre	essed.;	c = cir e	e = ellip	b = box						

Inlet Report

Line No	Inlet ID	Q = CIA	Q carry	Q	Q Byp	Junc	Curb Ir	nlet	Gra	te Inlet				G	utter					Inlet		Byp Line
NO		(cfs)	(cfs)	capt (cfs)	вур (cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	No
1	B2	0.17	0.00	0.17	0.00	Grate	0.0	0.00	2.60	2.30	2.30	Sag	2.00	0.050	0.020	0.013	0.08	1.63	0.08	1.63	0.0	Off
2	B3	0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.0	Off
3	B4	0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.0	Off
4	B5	0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.0	Off
5	B6	0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.0	Off
6	RF4	0.46	0.00	0.46	0.00	Grate	0.0	0.00	0.81	1.00	1.00	Sag	2.00	0.050	0.020	0.013	0.16	5.16	0.16	5.16	0.0	Off
7	RF3	0.66	0.00	0.66	0.00	Grate	0.0	0.00	0.81	1.00	1.00	Sag	2.00	0.050	0.020	0.013	0.20	7.02	0.20	7.02	0.0	Off
8	RF2	0.53	0.00	0.53	0.00	Grate	0.0	0.00	0.81	1.00	1.00	Sag	2.00	0.050	0.020	0.013	0.18	5.81	0.18	5.81	0.0	Off
9	RF1	0.46	0.00	0.46	0.00	Grate	0.0	0.00	0.81	1.00	1.00	Sag	2.00	0.050	0.020	0.013	0.16	5.16	0.16	5.16	0.0	Off
10	C2	1.19	0.00	1.19	0.00	Curb	4.0	2.30	0.00	0.00	0.00	Sag	2.00	0.050	0.020	0.013	0.26	9.87	0.26	9.87	0.0	Off
11	C3	0.99	0.00	0.99	0.00	Curb	4.0	2.30	0.00	0.00	0.00	Sag	2.00	0.050	0.020	0.013	0.23	8.74	0.23	8.74	0.0	Off
12	C4	2.55	0.00	2.55	0.00	Curb	4.0	4.60	0.00	0.00	0.00	Sag	2.00	0.050	0.020	0.013	0.32	13.17	0.32	13.17	0.0	Off
13	EX AL#1202	0.83	0.00	0.74	0.09	Grate	0.0	0.00	0.00	2.60	2.60	0.020	2.00	0.050	0.020	0.013	0.15	4.49	0.07	1.32	0.0	Off
14	A1	3.68*	0.00	3.68	0.00	Grate	0.0	0.00	2.30	2.60	2.60	Sag	2.00	0.050	0.020	0.013	0.36	14.81	0.36	14.81	0.0	Off
15	A2	0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.0	Off
16	EX AI #2081	2.16*	0.00	2.16	0.00	Grate	0.0	0.00	3.14	2.00	2.00	Sag	2.00	0.050	0.020	0.013	0.29	11.66	0.29	11.66	0.0	Off
Proiec	t File: 20180111 :	2019-08-23	Storm Se	ewers.st										Number	of lines:	16			un Date:	8/22/201	19	
	S: Inlet N-Values																					

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor Ioss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	B2-B1	3.19	12	Cir	117.73	963.50	972.63	7.755	964.38	973.39	n/a	973.39 j	End	Grate
2	B3-B2	2.95	10	Cir	9.60	972.83	972.93	1.042	973.62	973.76	0.45	974.21	1	Manhole
3	B4-B3	2.31	10	Cir	37.80	972.93	973.30	0.979	974.21*	974.63*	0.28	974.91	2	Manhole
4	B5-B4	1.57	10	Cir	38.29	973.30	973.69	1.019	974.91*	975.11*	0.13	975.24	3	Manhole
5	B6-B5	0.65	10	Cir	37.80	973.69	974.06	0.979	975.24*	975.27*	0.02	975.29	4	Manhole
6	RF4-B6	0.65	10	Cir	8.00	974.06	974.25	2.375	975.29*	975.30*	0.02	975.32	5	Grate
7	RF3-B5	0.92	10	Cir	8.00	973.69	974.25	7.000	975.24*	975.25*	0.04	975.30	4	Grate
8	RF2-B4	0.74	10	Cir	8.00	973.30	974.25	11.875	974.91	974.91	0.04	974.95	3	Grate
9	RF1-B3	0.65	10	Cir	8.00	972.93	974.25	16.500	974.21	974.60	n/a	974.60 j	2	Grate
10	C2-C1	6.60	12	Cir	34.68	963.50	969.00	15.859	964.48	969.97	n/a	969.97 j	End	Curb-Horiz
11	C3-C2	4.94	12	Cir	30.04	969.20	971.30	6.991	969.97	972.21	0.79	972.21	10	Curb-Horiz
12	C4-C3	3.56	12	Cir	190.02	971.50	973.50	1.053	972.30	974.30	n/a	974.30	11	Curb-Horiz
13	Pipe - (4)	10.48	24	Cir	91.74	947.73	948.65	1.003	949.31	949.81	n/a	949.81 j	End	Grate
14	A1-EX AL#1202	9.32	24	Cir	163.20	948.85	958.00	5.607	949.81	959.09	n/a	959.09	13	Grate
15	A2-A1	3.38	15	Cir	69.11	958.20	966.58	12.125	959.09	967.32	n/a	967.32 j	14	Manhole
16	EX AI #2081 - A2	3.38	15	Cir	56.15	966.58	967.00	0.748	967.32	967.74	n/a	967.74	15	Grate
	File: 20180111_2019-08-23 6: Return period = 100 Yrs.			/n). ; j - Lir	ne contains	hyd. jump.			Number c	of lines: 16		Run	Date: 8/22	/2019

Storm Sewer Tabulation

Statior	n	Len	Drng A	rea	Rnoff	Area x	C	Тс		Rain	Total	Сар	Vel	Pipe		Invert El	ev	HGL Ele	v	Grnd / Ri	m Elev	Line ID
Line			Incr	Total	coeff	Incr	Total	Inlet	Syst	(I)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	117.73	0.07	0.39	0.35	0.02	0.33	5.0	5.0	9.7	3.19	9.92	4.65	12	7.76	963.50	972.63	964.38	973.39	965.00	976.50	B2-B1
2	1	9.60	0.00	0.32	0.00	0.00	0.30	0.0	5.0	9.7	2.95	2.24	5.47	10	1.04	972.83	972.93	973.62	973.76	976.50	976.80	B3-B2
3	2	37.80	0.00	0.25	0.00	0.00	0.24	0.0	5.0	9.7	2.31	2.17	4.23	10	0.98	972.93	973.30	974.21	974.63	976.80	977.10	B4-B3
4	3	38.29	0.00	0.17	0.00	0.00	0.16	0.0	5.0	9.7	1.57	2.21	2.88	10	1.02	973.30	973.69	974.91	975.11	977.10	977.80	B5-B4
5	4	37.80	0.00	0.07	0.00	0.00	0.07	0.0	5.0	9.7	0.65	2.17	1.19	10	0.98	973.69	974.06	975.24	975.27	977.80	978.00	B6-B5
6	5	8.00	0.07	0.07	0.95	0.07	0.07	5.0	5.0	9.7	0.65	3.37	1.19	10	2.38	974.06	974.25	975.29	975.30	978.00	979.00	RF4-B6
7	4	8.00	0.10	0.10	0.95	0.10	0.10	5.0	5.0	9.7	0.92	5.79	1.69	10	7.00	973.69	974.25	975.24	975.25	977.80	979.00	RF3-B5
8	3	8.00	0.08	0.08	0.95	0.08	0.08	5.0	5.0	9.7	0.74	7.55	1.47	10	11.88	973.30	974.25	974.91	974.91	977.10	979.00	RF2-B4
9	2	8.00	0.07	0.07	0.95	0.07	0.07	5.0	5.0	9.7	0.65	8.90	2.06	10	16.50	972.93	974.25	974.21	974.60	976.80	979.00	RF1-B3
10	End	34.68	0.18	0.94	0.95	0.17	0.68	5.0	5.0	9.7	6.60	14.18	8.46	12	15.86	963.50	969.00	964.48	969.97	965.00	975.80	C2-C1
11	10	30.04	0.15	0.76	0.95	0.14	0.51	5.0	5.0	9.7	4.94	9.42	7.10	12	6.99	969.20	971.30	969.97	972.21	975.80	975.80	C3-C2
12	11	190.02	0.61	0.61	0.60	0.37	0.37	5.0	5.0	9.7	3.56	3.65	5.28	12	1.05	971.50	973.50	972.30	974.30	975.80	977.60	C4-C3
13	End	91.74	0.34	0.34	0.35	0.12	0.12	5.0	5.0	9.7	10.48	22.65	4.75	24	1.00	947.73	948.65	949.31	949.81	950.00	959.95	Pipe - (4)
14	13	163.20	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	9.32	53.56	5.80	24	5.61	948.85	958.00	949.81	959.09	959.95	966.20	A1-EX AL#1202
15	14	69.11	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	3.38	22.49	4.04	15	12.13	958.20	966.58	959.09	967.32	966.20	971.20	A2-A1
16	15	56.15	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	3.38	5.58	4.46	15	0.75	966.58	967.00	967.32	967.74	971.20	973.94	EX AI #2081 - A2
Proje	Project File: 20180111_2019-08-23 Storm Sewers.stm Number of lines: 16 Run Date: 8/22/2019)19									
NOT	NOTES:Intensity = 170.80 / (Inlet time + 18.20) ^ 0.91; Return period =Yrs. 100 ; Pipe travel time suppressed. ; c = cir e = ellip b = box																					

Inlet Report

Line No	Inlet ID	Q = CIA	Q carry	Q	Q Byp	Junc	Curb Ir	let	Gra	te Inlet				G	utter				Inlet			Byp Line
NO		(cfs)	(cfs)	capt (cfs)	Бур (cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)		Spread (ft)	Depr (in)	No
1	B2	0.24	0.00	0.24	0.00	Grate	0.0	0.00	2.60	2.30	2.30	Sag	2.00	0.050	0.020	0.013	0.10	2.09	0.10	2.09	0.0	Off
2	B3	0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.0	Off
3	B4	0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.0	Off
4	B5	0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.0	Off
5	B6	0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.0	Off
6	RF4	0.65	0.00	0.65	0.00	Grate	0.0	0.00	0.81	1.00	1.00	Sag	2.00	0.050	0.020	0.013	0.20	6.88	0.20	6.88	0.0	Off
7	RF3	0.92	0.00	0.92	0.00	Grate	0.0	0.00	0.81	1.00	1.00	Sag	2.00	0.050	0.020	0.013	0.24	9.20	0.24	9.20	0.0	Off
8	RF2	0.74	0.00	0.74	0.00	Grate	0.0	0.00	0.81	1.00	1.00	Sag	2.00	0.050	0.020	0.013	0.21	7.68	0.21	7.68	0.0	Off
9	RF1	0.65	0.00	0.65	0.00	Grate	0.0	0.00	0.81	1.00	1.00	Sag	2.00	0.050	0.020	0.013	0.20	6.88	0.20	6.88	0.0	Off
10	C2	1.66	0.00	1.66	0.00	Curb	4.0	2.30	0.00	0.00	0.00	Sag	2.00	0.050	0.020	0.013	0.31	12.32	0.31	12.32	0.0	Off
11	C3	1.38	0.00	1.38	0.00	Curb	4.0	2.30	0.00	0.00	0.00	Sag	2.00	0.050	0.020	0.013	0.28	10.91	0.28	10.91	0.0	Off
12	C4	3.56	0.00	3.56	0.00	Curb	4.0	4.60	0.00	0.00	0.00	Sag	2.00	0.050	0.020	0.013	0.39	16.43	0.39	16.43	0.0	Off
13	EX AL#1202	1.16	0.00	0.96	0.19	Grate	0.0	0.00	0.00	2.60	2.60	0.020	2.00	0.050	0.020	0.013	0.17	5.33	0.09	1.79	0.0	Off
14	A1	5.94*	0.00	5.94	0.00	Grate	0.0	0.00	2.30	2.60	2.60	Sag	2.00	0.050	0.020	0.013	0.47	20.29	0.47	20.29	0.0	Off
15	A2	0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.0	Off
16	EX AI #2081	3.38*	0.00	3.38	0.00	Grate	0.0	0.00	3.14	2.00	2.00	Sag	2.00	0.050	0.020	0.013	0.38	15.89	0.38	15.89	0.0	Off
Proiect	t File: 20180111 2	2019-08-23 :	L Storm Se	ewers.st	и т				I	<u> </u>		<u> </u>		Number	of lines:	16		R	un Date:	8/22/201	9	1
	S: Inlet N-Values :									400.57											-	

Attachment 4 Water Quality Calculations

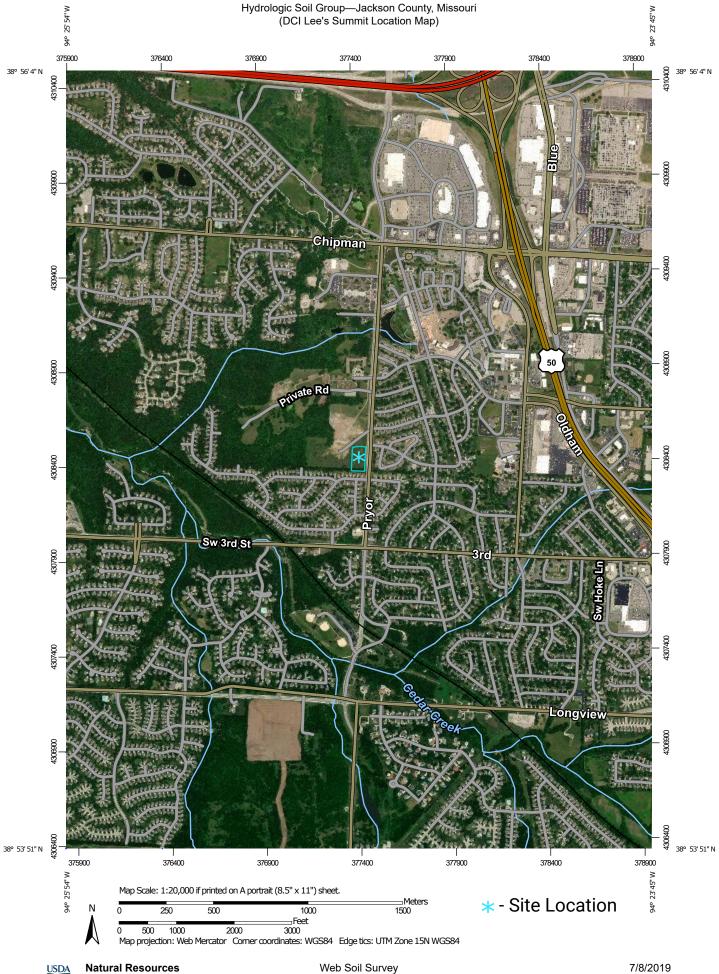
DCI Lee's Summit CDG #20180111

Date:	7/25/2019
Revised:	8/23/2019

Proposed Conditions

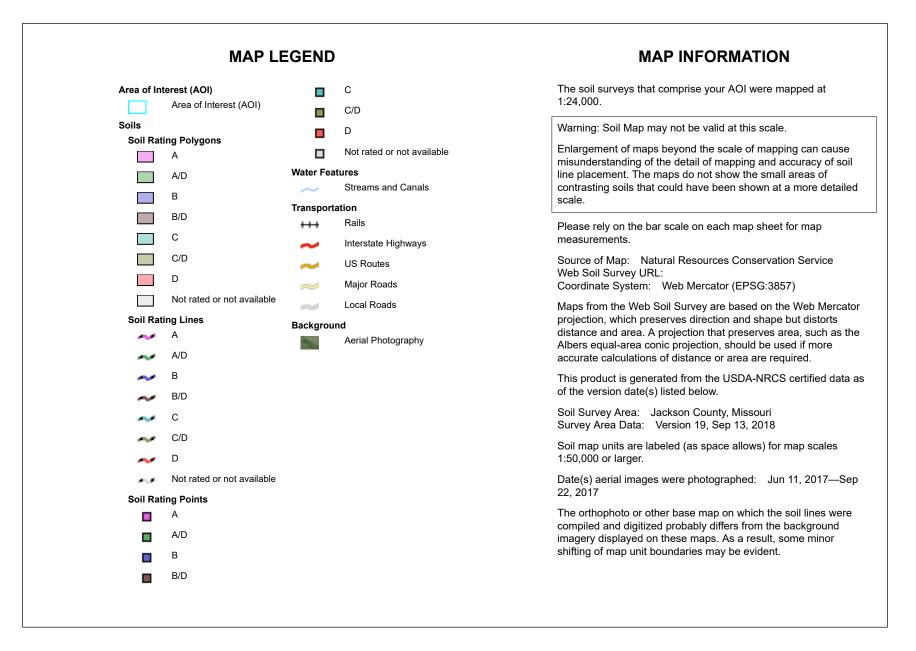
Drainage	Pervious	Impervious	Total Area,	Total Area,	Percent Site	Volumetric Runoff Coefficient,	Required WQ Treatment	Required WQ Treatment
Area	Area (ac)	Area (ac)	DA (ac)	DA (sf)	Impervious, I	Rv = .05+.009I	Volume, WQv=P(Rv) (in)	Volume, WQv=P(Rv)(DA) (cf)
North	0.77	0.98	1.75	76,330	56.0%	0.554	0.759	4,827.75
Bypass	0.36	0.02	0.38	16,756	5.3%	0.098	0.134	186.90
							Sum=	5014.64

Extended Dry Detention Pond


Elevatio	Elevation-Area-Volume Table								
Elevation	Area (sf)	Volume (cf)							
961	10	0							
962	1,575	793							
963	3,200	3,180							
963.5	3,905	5,132	*WQv elevation						
964	4,610	7,085							
965	5,590	12,185							
966	6,670	18,315							
966.2	6,895	19,672							

Extended	Return Event (years)	Max Water Surface Elevation (ft)	Freeboard (ft)
Dry Detention	2	964.17	4.53
Pond	10	965.09	3.61
POllu	100	966.17	2.53

Perforated Riser


WQv Treatment Depth Above Lowest Orif	ice, Zwq	2.5 ft
Water Quality Volume		5,132 cf
Water Quality Volume		0.118 ac-ft
Recommended Max Outlet Area per Row,	Ao	1.35 sq. in
$A_o = \frac{WQ_v}{(0.013(Z_{wq}^2 + 0.22(Z_{wq}) - 0.10))}$		
Number of columns, nc	1 column	
Design circular perforation diameter, Dper	f	1 in
Number of rows (4" vertical spacing), nr		6 rows
	Perforation 1 Elevation	961.52
	Perforation 2 Elevation	961.85
	Perforation 3 Elevation	962.18
	Perforation 4 Elevation	962.51
	Perforation 5 Elevation	962.84
	Perforation 6 Elevation	963.17

Attachment 5 Supporting Documents

Conservation Service

Hydrologic Soil Group

	1		1	
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
10024	Greenton-Urban land complex, 5 to 9 percent slopes	D	2.2	97.6%
10128	Sharpsburg-Urban land complex, 2 to 5 percent slopes	D	0.1	2.4%
Totals for Area of Intere	est	2.2	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

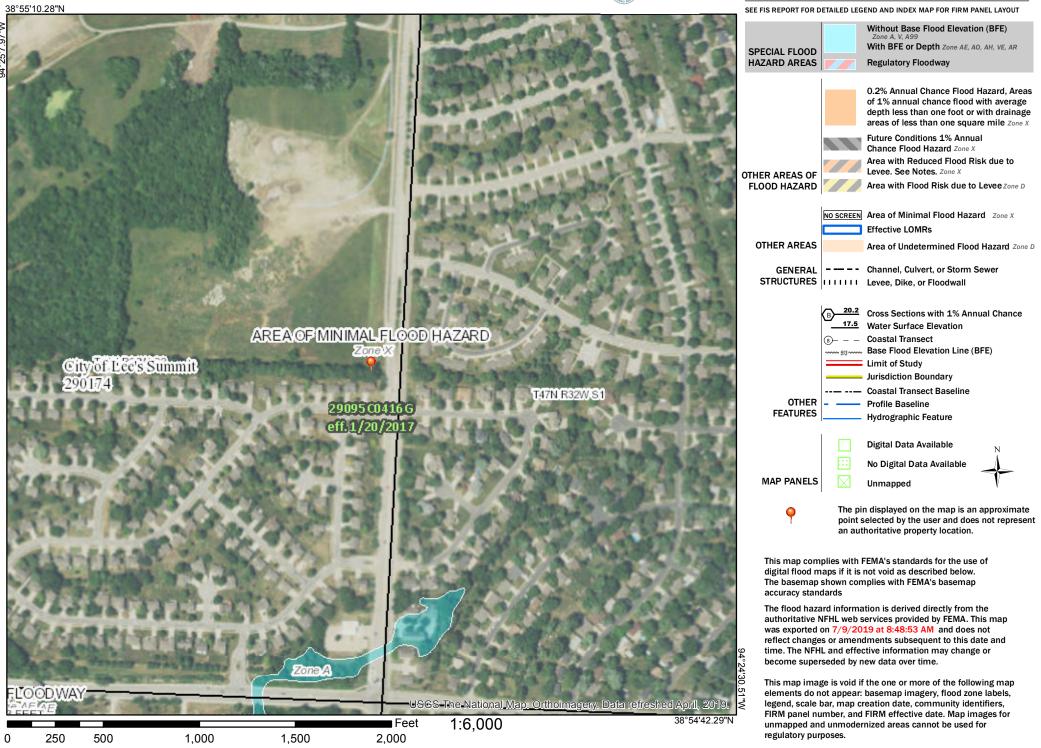
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.


Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

National Flood Hazard Layer FIRMette

Legend

