Stormwater Report for Summit Waves – Wave Pool Addition

City of Lee's Summit, Missouri

Prepared for:

City of Lee's Summit, Missouri – Parks and Recreation 220 SE Green Street Lee's Summit, MO 64063

Prepared by:

Kimley-Horn and Associates, Inc. 13455 Noel Road, Two Galleria Office Tower, Suite 700 Dallas, TX 75240 (972) 770-1300

Kimley »Horn

© May 2019 MISSOURI REGISTRATION NUMBER 001512

Table of Contents

1.0	Introduction	1
	1.1 Authority	1
	1.2 Purpose of Study	1
	1.3 Site Description	1
	1.4 Methodology	2
2.0	Hydrology	3
	2.1 Existing Conditions Analysis	3
	2.2 Proposed Conditions Analysis	5
	2.3 Water Quality	6
3.0	Conclusion	8
4.0	References	9

List of Tables

Table 1:	Subject Property Soil Classification	1
Table 2:	Summary of Existing Condition Hydrologic Parameters	3
Table 3:	Summary of Existing Condition Peak Flows	4
Table 4:	Summary of Allowable Peak Flows	4
Table 5:	Summary of Proposed Condition Hydrologic Parameters	5
Table 6:	Summary of Existing, Allowable, and Proposed Condition Peak Flows	6
Table 7:	Comparison of Allowable and Proposed Condition Peak Flows	6

Table of Contents

Appendices

Appendix AHydrology
Existing Condition Drainage Area Map
Proposed Condition Drainage Area Map
NRCS Soil Map
Hydrologic Calculations
HEC-HMS Output
Summit Waves – Wave Pool Addition Construction Plan Excerpts

Appendix B Digital Files

This document, together with the concepts and designs presented herein, as an instrument of services is intended only for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization and adaptation by Kimley-Horn and Associates, Inc. shall be without liability to Kimley-Horn and Associates, Inc.

List of Appendices Kimley »Horn

1.0 Introduction

The City of Lee's Summit Parks and Recreation Board (LSPR) has retained the services of Kimley-Horn and Associates, Inc. (Kimley-Horn) to prepare a stormwater assessment for the proposed wave pool addition in the existing Summit Waves Aquatic Park in Lee's Summit, Missouri. The contacts for the study are as follows:

Kevin Gaskey, P.E. Carolyn F. Cox, P.E., CFM (TX) Deanna H. Abbruzese, E.I.T. (TX) Kimley-Horn and Associates, Inc. 13455 Noel Road, Two Galleria Tower, Suite 700 Dallas, TX 75240 (972)770-1300

1.2 PURPOSE OF STUDY

The subject property is located at the northeast corner of SW Jefferson Street and SE Blue Parkway in the City of Lee's Summit, Missouri. The subject property is located adjacent to the existing Summit Waves Aquatic Park and is proposed to be a wave pool addition to the existing park. This study was performed to evaluate the impacts of the proposed development on the peak flow rates within the watershed and to design detention and water quality in accordance with City criteria.

1.3 SITE DESCRIPTION

The subject property is approximately 3.27 acres and the limits of disturbance for the proposed project is approximately 1.92 acres. In existing conditions, the site drains in four different directions and ultimately to three different existing storm sewer systems. There are no FEMA classifications associated with this site. The site consists of all Type C soil, which can be seen on the NRCS Soil Map in **Appendix A**. See **Table 1** below for the soil classification information.

Symbol	Name	Slopes	HSG
10082	Arisburg-Urban land complex	1-5%	С
10180	Udarents-Urban land-Sampsel complex	2-5%	С
10181	Udarents-Urban land-Sampsel complex	5-9%	С
99012	Urban land, upland	5-9%	С
99033	Udarents-Urban land complex	2-9%	С

Table 1. Subject Property Soil Classification

1.4 METHODOLOGY

This study was completed using unit hydrograph modeling methods in accordance with The Kansas City Metropolitan Chapter American Public Works Association Standard Specifications and Design Criteria Section 5600 (APWA 5600) published in February 2011. Hydrologic modeling was performed using HEC-HMS version 4.1. More details on methodologies are provided in the following sections.

The following criteria was used for the hydrologic model:

- Hydrologic Method: Unit Hydrograph
- Return Frequency Storms: 2-year, 10-year, and 100-year
- Soil Moisture Conditions: AMC II
- Transform Method: SCS Unit Hydrograph, Lag Time
- Loss Method: SCS Curve Number
- Curve Number Reference: Kansas City APWA 5600
- Rainfall Distribution: 24-Hour Frequency Storm
- Rainfall Depths: NOAA Atlas 14 Point Precipitation Frequency Estimates, September 2018

2.0 Hydrology

2.1 EXISTING CONDITION ANALYSIS

The existing subject property is an undeveloped tract of land adjacent to the existing Summit Waves Aquatic Park. The majority of the site consists of short grass with a few trees and an existing asphalt sidewalk connecting the aquatic park to a playground located north of the subject property. There is an existing hill located in the middle of the subject property.

The subject property drains in four different directions and ultimately to three different existing storm sewer systems. Each of the four outfall locations are shown as Points of Interest (POI) on the *Existing Condition Drainage Area Map* in **Appendix A**. Each existing drainage basin was analyzed for only the on-site areas in order to determine the excess runoff at each outfall from the proposed site alone. The northwest corner of the site drains to an existing grassed ditch along SW Jefferson Street, which drains to the storm sewer and the curb inlet along SW 6th Street (Outfall A). A small portion of the northeast corner of the site drains through the existing park/playground north of the subject property and directly into the curb inlet along SW 6th street (Outfall B). The eastern portion of the site drains to the existing grate inlet located in the existing aquatic park connecting to the Summit Waves storm sewer system (Outfall C). The southern portion of the site drains to two curb inlets and a catch basin which connect to the storm sewer system underneath Jefferson Street just north of Blue Parkway (Outfall D).

Curve numbers were determined from Table 5602-3 in APWA 5600 based on a hydrologic soil type of C. Times of concentration were determined using SCS TR-55 methods. Where times of concentration were less than 5 minutes, a minimum inlet time of 5 minutes was used per APWA 5600. **Table 2** below summarizes the existing condition input data for each on-site drainage basin and its corresponding POI.

Outfall	POI	Drainage Area	Area (ac)	Area (mi²)	CN	TC (min)	T _{lag} (min)
Ditch along SW Jefferson Street	А	А	1.17	0.00183	75.2	4.52	2.71
Curb Inlet on SW 6th Street	В	В	0.16	0.00025	75.5	4.22	2.53
Existing Summit Waves	C	C1	0.13	0.00020	77.7	7.64	4.58
Aquatic Park Storm Sewer	C	C2	0.38	0.00059	75.3	5.91	3.54
Storm Sewer at Jefferson Street North of Blue Parkway	D	D	1.42	0.00222	75.5	7.20	4.32

Table 2. Summary of Existing Condition Hydrologic Parameters

The peak flows for each POI were analyzed to determine existing release rates. The existing condition 2-, 10- and 100-year peak flows leaving the subject property are summarized in **Table 3**.

POI	2-Year (cfs)	10-Year (cfs)	100-Year (cfs)
А	2.2	5.7	10.8
В	0.3	0.8	1.5
С	0.9	2.3	4.3
D	2.4	6.1	11.6

Table 3. Summary of Existing Condition Peak Flows

The allowable release rates were determined per APWA Section 5608.4 which states that postdevelopment peak discharge rates from the site shall not exceed those indicated below:

- 50% storm peak rate less than or equal to 0.5 cfs per site acre
- 10% storm peak rate less than or equal to 2.0 cfs per site acre
- 1% storm peak rate less than or equal to 3.0 cfs per site acre

An allowable release rate was calculated for each POI. The peak flow rates for the project area considered bypass were determined from the proposed condition hydrologic model since the land use condition of these areas will be the same in proposed as they are in existing. The release rates for the wave pool site area were calculated based on the criteria stated above. The wave pool site area allowable release rates were added to the bypass peak flow rates to calculate the total allowable peak flow rate for each POI. **Table 4** below summarizes the allowable peak flow rates for each POI.

ΡΟΙ	DA	Area	Classification	Allowa R	able Re ate (cfs	lease 5)	Total Allowable Release Rate (cfs)		
	(ac)			Q2	Q10	Q100	Q2	Q10	Q100
	A1	0.86	Bypass	1.8*	4.3*	8.1*			
	A2	0.07	Site 0.0 0.1 0.2						
۸	A3	0.24	Site	0.1	0.5	0.7	2.2	6.2	11.0
A	A4	0.23	Site	0.1	0.5	0.7	2.2		
	A5	0.32	Site	0.2	0.6	1.0			
	A6	0.11	Site	0.1	0.2	0.3			
В	В	0.13	Bypass	0.3*	0.6*	1.2*	0.3	0.6	1.2
0	C1	0.14	Site	0.1	0.3	0.4	0.1	0.4	0.0
C	C2	0.05	Site	0.0	0.1	0.2	0.1	0.4	0.0
D	D	0.88	Bypass	1.6*	3.9*	7.3*	1.6	3.9	7.3
А	Pool	0.22	-	-	-	-	-	-	-

Table 4. Summary of Allowable Peak Flows

Allowable release rate values calculated using the APWA Section 5608.4 criteria.

*Allowable release rate values determined from proposed condition hydrologic model.

2.0 Hydrology Kimley »Horn

2.2 PROPOSED CONDITION ANALYSIS

A wave pool addition to the existing Summit Waves Aquatic Park is proposed within the subject property. The development consists of a wave pool, a paved patio, a mechanical/restroom building, service drives, parking, and shade structures.

The drainage from the subject property is proposed to drain to the same four locations as in existing conditions. The proposed grading associated with the development will create a hill on the south side of the existing hill in the middle of the subject property. The site walk will be reconstructed to follow the base of the new hill. The amount of sidewalk concrete will remain the same as existing.

The majority of the proposed wave pool site will be sent to Outfall A and the ditch along the western boundary of the subject property. The pool surface area was not considered to contribute to the on-site drainage. When the pool is in operation, it will drain to the sanitary sewer system. The pool drainage area was included in the HEC-HMS model for reference but it is not shown as going to any of the POI.

Table 5 below summarizes the input data for the proposed condition drainage areas.

Outfall	ΡΟΙ	Drainage Area	Area (ac)	Area (mi²)	CN	TC (min)	T _{lag} (min)
		A1	0.86	0.00134	75.7	3.97	2.38
		A2	0.07	0.00011	98.0	5.00	3.00
		A3	0.24	0.00038	92.0	5.23	3.14
Ditch along SW Jefferson Street	A	A4	0.23	0.00036	98.0	5.35	3.21
		A5	0.32	0.00050	88.3	5.98	3.59
		A6	0.11	0.00017	89.3	5.62	3.37
		Pool	0.22	0.00034	98.0	5.19	3.11
Curb Inlet on SW 6th Street	В	В	0.13	0.00020	75.8	4.09	2.45
Existing Summit Waves	C	C1	0.14	0.00022	87.7	7.49	4.49
Aquatic Park Storm Sewer	C	C2	0.05	0.00008	83.6	5.00	3.00
Storm Sewer at Jefferson Street North of Blue Parkway	D	D	0.88	0.00138	76.5	7.24	4.35

Table 5. Summary of Proposed Condition Hydrologic Parameters

The majority of the runoff from the subject property will be detained in an underground detention vault located in the northeast corner of the site. Runoff will collect from two proposed bioretention areas through a proposed 24" RCP running along the eastern and southern portion of the pool deck. In all storm events, the peak flow rates at each outfall will either match the allowable release rate or be below the existing condition peak flow rate.

Detention pond details can be seen in the attached Summit Waves – Wave Pool Addition Construction Plans included in **Appendix A**. **Table 6** below summarizes the peak flow rates at each outfall location. **Table 7** compares the proposed condition flow rates to the allowable flow rates at each outfall location. A digital copy of the model is included in **Appendix B**.

POL	Existi	ng Peak l	Flow (cfs)	Allowa	ble Peak	Flow (cfs)	Proposed Peak Flow (cfs)			
FUI	Q2	Q10	Q100	Q2	Q10	Q100	Q2	Q10	Q100	
Α	2.2	5.7	10.8	2.2	6.2	11.0	2.2	5.6	10.8	
В	0.3	0.8	1.5	0.3	0.6	1.2	0.3	0.6	1.2	
С	0.9	2.3	4.3	0.1	0.4	0.6	0.6	1.1	1.8	
D	2.4	6.1	11.6	1.6	3.9	7.3	1.6	3.9	7.3	

Table 6. Summary of Existing, Allowable, and Proposed Condition Peak Flows

Table 7. Comparison of Allowable and Proposed Condition Peak Flows

POI	2-Year (Prop-Allow) (cfs)	10-Year (Prop-Allow) (cfs)	100-Year (Prop-Allow) (cfs)		
Α	0.0	-0.6	-0.2		
В	0.0	0.0	0.0		
С	0.5	0.7	1.2		
D	0.0	0.0	0.0		

At POI C, proposed condition peak flows do not meet APWA Section 5608.4 criteria, but they are less than existing condition flow rates. The drainage design for the existing Summit Waves Aquatic Park Wave accounted for existing condition peak flows. At point A, where a detention facility is required, peak flow rates are at or below the allowable flow rates shown in **Table 4**.

2.3 WATER QUALITY

The proposed subject property includes water quality in accordance with APWA 5600 and the Manual of Best Management Practices for Stormwater Quality published by Kansas City Metropolitan Chapter APWA in October 2012 (APWA/MARC BMP Manual). A Level of Service was calculated at each of the outfall locations for the proposed site.

At outfalls B and D there is minimal change in curve number from existing to proposed conditions therefore there are no water quality measures required at these locations per criteria. At outfall C the proposed runoff drains to the existing aquatic park which includes existing water quality elements, so no new water quality elements were proposed.

2.0 Hydrology Kimley »Horn At outfall A, there is a change in curve number of 16.6 for the disturbed project area, which corresponds to a Level of Service of 8. In order to achieve this Level of Service, there will be two bioretention swales located along the west and south edges of the site. The pool deck will drain directly to the bioretention swales and then drain into a 24" RCP by means of a perforated pipe beneath the length of each bioretention swale. The underground detention vault will provide extended dry detention, releasing the runoff from the local 90% mean annual event (1.37"/24hour rainfall) over a 40-hour time period. The proposed wave pool site is 70% impervious, resulting in a water guality volume of 0.08 acre-feet. In addition to the bioretention and extended dry detention, a hydrodynamic separator will be installed downstream of the outfall of the detention vault. The hydrodynamic separator will achieve an efficiency of 80% removal of total suspended solids. A detail for the hydrodynamic separator can be seen in the attached Summit Waves – Wave Pool Addition Construction Plans included in Appendix A. The combination of these 3 Best Management Practices (BMPs) will achieve an overall water quality rating of 10.14, exceeding the required water quality rating value of 8. Water quality calculations are included in the hydrologic calculations and the attached Summit Waves - Wave Pool Addition Construction Plans included in Appendix A.

3.0 Conclusion

This stormwater report has been prepared to evaluate the hydrologic and water quality impacts from the proposed development of Summit Waves – Wave Pool Addition. The proposed development includes an underground detention facility to reduce peak discharge rates from the wave pool site in the 2-, 10-, and 100-year storm events. The results of the study support that the peak stormwater discharge from the subject property will not increase at the offsite outfalls above the allowable release rates based on APWA Section 5608.4 criteria as a result of the development. Additionally, multiple water quality features will be constructed to ensure that the required water quality Level of Service is being met. These water quality features include bioretention swales, extended dry detention, and a hydrodynamic separator.

4.0 References

Chow, Ven Te. Open Channel Hydraulics. McGraw-Hill, 1959.

- Kansas City Metropolitan Chapter American Public Works Association Standard Specifications and Design Criteria. *Storm Drainage Systems and Facilities, Section 5600.* APWA, February 2011.
- Kansas City Metropolitan Chapter American Public Works Association. *Manual of Best Management Practices For Stormwater Quality.* APWA / MARC, October 2012.
- U.S. Army Corps of Engineers. *HEC-HMS, v. 4.1 (software package)*. U.S. Army Corps of Engineers, July 2015.

Appendix A: Hydrology

Existing Condition Drainage Area Map Proposed Condition Drainage Area Map NRCS Soil Map Hydrologic Calculations HEC-HMS Output Summit Waves – Wave Pool Addition Construction Plan Excerpts

\DAL_Hydro\064538700 - Lee's Summit Wave Pool\DWG\EXH\Drainage Area Map.dwg [Existing] 5/23/2019 9:43am kAerial x24x36 - h&h xDAM xGrad xBndy xsite xLiDAR xPond

z: K.: \DAL_Hydro\064538700 - Lee's Summit Wave Pool\DWG\EXH\Drainage Area Map.dwg [Proposed] 5/23/2019 9: 42am sfs: xAerial x24x36 - h&h xDAM xGrad xBndy xsite xLiDAR xPond

USDA Natural Resources Conservation Service

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI	
10082	Arisburg-Urban land complex, 1 to 5 percent slopes	С	186.2	79.4%	
10180	Udarents-Urban land- Sampsel complex, 2 to 5 percent slopes	С	0.2	0.1%	
10181	Udarents-Urban land- Sampsel complex, 5 to 9 percent slopes	С	27.0	11.5%	
99012	Urban land, upland, 5 to 9 percent slopes		1.4	0.6%	
99033	Udarents-Urban land complex, 2 to 9 percent slopes	С	19.7	8.4%	
Totals for Area of Intere	est	234.4	100.0%		

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Existing Condition Hydrologic Parameters										
Outfall	POI	DA	Area (ac)	Area (mi ²)	CN	TC (min)	T _{lag} (min)	Q _{2yr} (cfs)	Q _{10yr} (cfs)	Q _{100yr} (cfs)
Ditch along SW Jefferson Street	Α	А	1.17	0.00183	75.2	4.52	2.71	2.2	5.7	10.8
Curb Inlet on SW 6th Street	В	В	0.16	0.00025	75.5	4.22	2.53	0.3	0.8	1.5
Existing Summit Waves Aquatic Park	C	C1	0.13	0.00020	77.7	7.64	4.58	0.2	0.6	1.1
Storm Sewer	C	C2	0.38	0.00059	75.3	5.91	3.54	0.7	1.7	3.2
Storm Sewer at Jefferson Street	D	D	1 / 2	0.00222	75 5	7 20	1 22	2.4	4 1	11.4
North of Blue Parkway	U	U	1.42	0.00222	10.0	7.20	4.3Z	2.4	0.1	11.0

	Proposed Condition Hydrologic Parameters									
Outfall	POI	DA	Area (ac)	Area (mi ²)	CN	TC (min)	T _{lag} (min)	Q _{2yr} (cfs)	Q _{10yr} (cfs)	Q _{100yr} (cfs)
		A1	0.86	0.00134	75.7	3.97	2.38	1.8	4.3	8.1
		A2	0.07	0.00011	98.0	5.00	3.00	0.3	0.5	0.8
Ditch along SW/ Jefferson Street	۸	A3	0.24	0.00038	92.0	5.23	3.14	1.0	1.7	2.7
Ditch along SW Jenerson Street	A	A4	0.23	0.00036	98.0	5.35	3.21	1.0	1.7	2.6
		A5	0.32	0.00050	88.3	5.98	3.59	1.1	2.0	3.3
		A6	0.11	0.00017	89.3	5.62	3.37	0.4	0.7	1.1
Curb Inlet on SW 6th Street	В	В	0.13	0.00020	75.8	4.09	2.45	0.3	0.6	1.2
Existing Summit Waves Aquatic Park	C	C1	0.14	0.00022	87.7	7.49	4.49	0.4	0.8	1.3
Storm Sewer	C	C2	0.05	0.00008	83.6	5.00	3.00	0.2	0.3	0.5
Storm Sewer at SE Blue Parkway	D	D	0.88	0.00138	76.5	7.24	4.35	1.6	3.9	7.3
Sanitary Sewer/Ditch along SW Jefferson Street	-	Pool	0.22	0.00034	98.0	5.19	3.11	1.0	1.6	2.4

TIME OF CONCENTRATION & LAG TIME

EXISTING TR-55 Methodolo	ду																			
	SHEET FLC	WC					SHALLOW	CONCENT	RATED FLO	WC				STORM SEWER	FLOW				TOTAL	
	Tc = (0.007 2-year/24-h	(nL)^0.8)/(P r Rainfall De	2^0.5)(s^0.4) epth (in.) =	3.71			Tc = L / 60'	*V						Assumed Velocit	y = 4 ft/s (swale)					
Basin	Length	Elev ₁	Elev ₂	Slope	Manning's	T _{c1}	Length	Elev ₂	Elev ₃	Slope	Condition	V_{avg}	T_{c2}	Inlet Time	Travel Length	Travel Velocity	Travel Time	T _{c3}	T _{ctotal}	T_{lag}
	(ft)	(ft)	(ft)	(ft/ft)	"n"	(min)	(ft)	(ft)	(ft)	(ft/ft)	TR-55 Fig. 3-1	(ft/s)	(min)	(min)	(ft)	(ft/s)	(min)	(min)	(min)	(min)
A	50	1066.0	1063.0	0.0600	0.150	3.4	137	1063.0	1052.0	0.080	Unpaved	4.57	0.5		156	4.0	0.7	0.7	4.5	2.7
В	50	1063.0	1061.0	0.0400	0.150	4.0	40	1061.0	1060.0	0.025	Unpaved	2.55	0.3						4.2	2.5
C1	50	1061.5	1061.0	0.0100	0.150	6.9	116	1061.0	1058.0	0.026	Unpaved	2.59	0.7						7.6	4.6
C2	50	1066.0	1065.0	0.0200	0.150	5.2	145	1065.0	1058.0	0.048	Unpaved	3.55	0.7						5.9	3.5
D	50	1066.0	1065.0	0.0200	0.150	5.2	342	1065.0	1054.0	0.032	Unpaved	2.89	2.0						7.2	4.3

TIME OF CONCE PROPOSED	ENTRATIO	N & LAG T	IME																	
TR-55 Methodolo	ogy																			
	SHEET FL	.ow					SHALLOW	CONCENT	RATED FLO	w				STORM SEWER Assumed Velocit	FLOW y = 4 ft/s (swale)				TOTAL	
	Tc = (0.007 2-year/24-h	7(nL)^0.8)/(F hr Rainfall De	2^0.5)(s^0.4) epth (in.) =	3.71			Tc = L / 60	*V						Assumed Velocit Assumed Velocit	y = 6 ft/s (storm se y = 3 ft/s (bioreten	ewer) ition)				
Basin	Length	Elev ₁	Elev ₂	Slope	Manning's	T _{c1}	Length	Elev ₂	Elev ₃	Slope	Condition	V_{avg}	T_{c2}	Inlet Time	Travel Length	Travel Velocity	Travel Time	T_{c3}	T_{cTOTAL}	T _{lag}
	(ft)	(ft)	(ft)	(ft/ft)	"n"	(min)	(ft)	(ft)	(ft)	(ft/ft)	TR-55 Fig. 3-1	(ft/s)	(min)	(min)	(ft)	(ft/s)	(min)	(min)	(min)	(min)
A1	50	1059.5	1056.0	0.0700	0.150	3.2	44	1056.0	1052.0	0.091	Unpaved	4.86	0.2		156	4.0	0.7	0.7	4.0	2.4
A2														5.0					5.0	3.0
A3														5.0	81	6.0	0.2	5.2	5.2	3.1
A4														5.0	127	6.0	0.4	5.4	5.4	3.2
A5														5.0	176	3.0	1.0	6.0	6.0	3.6
A6														5.0	112	3.0	0.6	5.6	5.6	3.4
В	50	1062.5	1060.5	0.0400	0.150	4.0	20	1060.5	1060.0	0.025	Unpaved	2.55	0.1						4.1	2.5
C1	50	1061.5	1061.0	0.0100	0.150	6.9	116	1061.0	1058.0	0.026	Paved	3.27	0.6						7.5	4.5
C2														5.0					5.0	3.0
D	50	1059.0	1058.0	0.0200	0.150	5.2	248	1058.0	1054.0	0.016	Unpaved	2.05	2.0						7.2	4.3
Pool														5.0	67	6.0	0.2	5.2	5.2	3.1

	Existing Condition Curve Number Calculations						
Drainage Area	Surface Description/Soil Type	CN	Area (ac)	Weighed CN			
Δ	Undeveloped Area HSG C	74	1.11	75.0			
A	Parking lots, roofs, streets/HSG C	98	0.06	/5.2			
R	Undeveloped Area HSG C	74	0.15	75.5			
D	Parking lots, roofs, streets/HSG C	98	0.01				
C	Undeveloped Area HSG C	74	0.11	ר דד			
C	Parking lots, roofs, streets/HSG C	98	0.02	//./			
D	Undeveloped Area HSG C	74	0.36	75.3			
U	Parking lots, roofs, streets/HSG C	98	0.02				

	Proposed Condition Curve Num	ber Calcula	tions		
Drainage Area	Surface Description/Soil Type	CN	Area (ac)	Weighed CN	
۸1	Undeveloped Area HSG C	74	0.80	75.7	
AI	Parking lots, roofs, streets/HSG C	98	0.06	75.7	
٨٥	Undeveloped Area HSG C	74	0.00	08.0	
RZ	Parking lots, roofs, streets/HSG C	98	0.07	70.0	
٨3	Undeveloped Area HSG C	74	0.06	02.0	
AS	Parking lots, roofs, streets/HSG C	98	0.18	92.0	
Δ.4	Undeveloped Area HSG C	74	0.00	08.0	
A4	Parking lots, roofs, streets/HSG C	98	0.23	90.0	
٨٥	Undeveloped Area HSG C	74	0.13	88.3	
AD	Parking lots, roofs, streets/HSG C Undeveloped Area HSG C	98	0.19	00.3	
٨.6	Undeveloped Area HSG C	74	0.04	80.3	
AU	Parking lots, roofs, streets/HSG C	98	0.07	09.3	
R	Undeveloped Area HSG C	74	0.12	75.9	
D	Parking lots, roofs, streets/HSG C	98	0.01	75.0	
C1	Undeveloped Area HSG C	74	0.07	ר דס	
CT	Parking lots, roofs, streets/HSG C	98	0.08	07.7	
C2	Undeveloped Area HSG C	74	0.03	02.6	
62	Parking lots, roofs, streets/HSG C	98	0.02	03.0	
D	Undeveloped Area HSG C	74	0.79	76 5	
U	Parking lots, roofs, streets/HSG C	98	0.09	70.0	
Pool	Undeveloped Area HSG C	74	0.00	08.0	
FUUI	Parking lots, roofs, streets/HSG C	98	0.22	98.U	

Water Quality Calculations - Outfall A (Disturbed Area):

A. Predevelopment CN

Land Use	Area	CN	CN*A	
Grass	1.27	74	93.98	
Pavement	0.01	98	0.98	
	CN _{PreWeighted} =			

B. Postdevelopment CN

Land Use	Area	CN	CN*A	
Grass	0.32	74	23.68	
Pavement	0.75	98	73.5	
	CN _{PostWeighted} =			

C. Level of Service (LS) Calculation

$CN_{PreWeighted} =$	74.2
$CN_{PostWeighted} =$	90.8
Difference =	16.6
LS Requried	0
(Table 4.2)=	0

D. Proposed BMP Package

DA	Cover/BMP Description	Treatment Area	VR	VR*Area
A1 (Bypass, Disturbed)	None	0.10	0.00	0.00
A2 (Bypass)	None	0.07	0.00	0.00
A3	Extended Dry Detention + Hydrodynamic Seperator	0.24	8.00	1.92
A4	Extended Dry Detention + Hydrodynamic Seperator	0.23	8.00	1.84
A5	Bioretention, Extended Dry Detention, + Hydrodynamic	0.32	16.50	5.28
A6	Bioretention, Extended Dry Detention, + Hydrodynamic	0.11	16.50	1.82
			Total =	10.86
		Wei	ghted VR =	10.14
		Rec	uired VR =	8.00

E. Water Quality Volume

% Site Impervious	70%
Rv	0.68
WQV (in)	0.93
WQV (ac-ft)	0.08
Release Rate (hr)	40
Q _{WQV} (cfs)	0.03

Water Quality Calculations - Outfall B:

A. Predevelopment CN

Land Use	Area	CN	CN*A
Grass	0.15	74	11.1
Pavement	0.01	98	0.98
		$CN_{PreWeighted} =$	75.5

B. Postdevelopment CN

Land Use	Area	CN	CN*A
Grass	0.12	74	8.88
Pavement	0.01	98	0.98
		$CN_{PostWeighted} =$	75.8

C. Level of Service (LS) Calculation

$CN_{PreWeighted} =$	75.5
CN _{PostWeighted} =	75.8
Difference =	0.3
LS Requried (Table 4.2)=	n/a

Water Quality Calculations - Outfall D:

A. Predevelopment CN

Land Use	Area	CN	CN*A
Grass	1.33	74	98.42
Pavement	0.09	98	8.82
		$CN_{PreWeighted} =$	75.5

B. Postdevelopment CN

Land Use	Area	CN	CN*A
Grass	0.80	74	59.2
Pavement	0.09	98	8.82
		CN _{PostWeighted} =	76.4

C. Level of Service (LS) Calculation

$CN_{PreWeighted} =$	75.5
$CN_{PostWeighted} =$	76.4
Difference =	0.9
LS Requried (Table 4.2)=	n/a

TABLE 4.2 LS for Previously Undeveloped Sites

Change in CN	Impact	LS
17 or greater	High water quality impact	8
7 to 16	Moderate water quality impact	7
4 to 6	Low water quality impact	6
1 to 3	Minimal water quality impact	5

Water Quality Calculations - Outfall C:

A. Predevelopment CN

Land Use	Area	CN	CN*A			
Grass	0.47	74	34.78			
Pavement	0.04	98	3.92			
		$CN_{PreWeighted} =$	75.9			

B. Postdevelopment CN

Land Use	Area	CN	CN*A
Grass	0.09	74	6.66
Pavement	0.10	98	9.8
		$CN_{PostWeighted} =$	86.6

C. Level of Service (LS) Calculation

$CN_{PreWeighted} =$	75.9
CN _{PostWeighted} =	86.6
Difference =	10.7
LS Requried	7
(Table 4.2)=	1

Outfall Structure Summary												
	Volume	Elevation	Op	pening #1			Opening #2			Opening #3		Total
Design Storm	(ac-ft)	(ft)	Weir	Orifice	Actual	Weir	Orifice	Actual	Weir	Orifice	Actual	Actual
WQV	0.08	1051.79	0.34	0.02	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.02
2-year	0.10	1051.97	0.40	0.02	0.02	0.12	0.00	0.12	0.00	0.00	0.00	0.14
10-year	0.16	1053.02	0.84	0.03	0.03	2.06	1.36	1.36	0.00	0.00	0.00	1.39
100-year	0.24	1054.30	1.50	0.04	0.04	5.98	2.09	2.09	1.64	0.35	0.35	2.48

Elevation Discharge Summary Table										
Elovation	Op	pening #1			Opening #2			Opening #3		
Lievation	Weir	Orifice	Actual	Weir	Orifice	Actual	Weir	Orifice	Actual	Actual
1050.3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1051.3	0.19	0.02	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.02
1052.3	0.53	0.03	0.03	0.55	0.66	0.55	0.00	0.00	0.00	0.58
1053.3	0.97	0.03	0.03	2.80	1.55	1.55	0.11	0.11	0.11	1.70
1054.3	1.50	0.04	0.04	5.98	2.09	2.09	1.64	0.35	0.35	2.48
1054.80	1.79	0.04	0.04	7.85	2.32	2.32	2.77	0.43	0.43	2.78

Stage Storage Summary Table					
Elevation	Area Volume				
(ft)	(ac)	(ac-ft)			
1050.30	0.06	0.00			
1054.80	0.06	0.25			

Detention Outfall Calculations					
g (ft^2/s) =	32.2				
C _{Orifice} =	0.6				
C _{weir} =	3				
Open	ing #1 (WQV	/)			
Shape =	Rectangular	•			
Height (ft)=	0.06	=	0.75	inches	
Length (ft) =	0.06	=	0.75	inches	
Area (ft)=	0.004				
Centroid (ft) =	1050.33				
Invert Elevation (ft) =	1050.30				
Top of Pipe Elevation (ft) =	1050.36				
0	pening #2				
Shape =	Rectangular	•			
Height (ft)=	0.58	=	7.0	inches	
Length (ft) =	0.50	=	6.0	inches	
Area (ft ²)=	0.292				
Centroid (ft) =	1052.08				
Invert Elevation (ft) =	1051.79				
Top of Pipe Elevation (ft) =	1052.37				

\cap	nen	ina	#3
	nen	IIIU	#J

C	Opening #3					
Shape =	Shape = Rectangular					
Height (ft)=	0.17	=	2.0 inches			
Length (ft) =	0.42	=	5.0 inches			
Area (ft)=	0.07					
Centroid (ft) =	1053.18					
Invert Elevation (ft) =	1053.10					
Top of Pipe Elevation (ft) =	1053.27					

Project: Lee's Summit Simulation Run: 002 Existing

Start of Run:07Mar2019, 00:00End of Run:10Mar2019, 00:00Compute Time:22May2019, 16:43:09

Basin Model: Existing Meteorologic Model: 002-Year Control Specifications:72-Hour

Hydrologic Element	Drainage Are (MI2)	a₽eak Discha (CFS)	r g ieme of Peak	Volume (AC-FT)
А	0.00183	2.24	07Mar2019, 12:04	0.11
В	0.00025	0.32	07Mar2019, 12:04	0.02
C1	0.00020	0.24	07Mar2019, 12:06	0.01
C2	0.00059	0.68	07Mar2019, 12:05	0.04
D	0.00222	2.42	07Mar2019, 12:06	0.14
J-A	0.00183	2.24	07Mar2019, 12:04	0.11
J-B	0.00025	0.32	07Mar2019, 12:04	0.02
J-C	0.00079	0.92	07Mar2019, 12:05	0.05
J-D	0.00222	2.42	07Mar2019, 12:06	0.14

Junction "J-A" Results for Run "002 Existing"

Run:002 Existing Element:J-A Result:Outflow --- Run:002 Existing Element:A Result:Outflow

Junction "J-B" Results for Run "002 Existing"

- Run:002 Existing Element:J-B Result:Outflow ---- Run:002 Existing Element:B Result:Outflow

Junction "J-C" Results for Run "002 Existing"

Junction "J-D" Results for Run "002 Existing"

Run:002 Existing Element:J-D Result:Outflow --- Run:002 Existing Element:D Result:Outflow

Project: Lee's Summit Simulation Run: 010 Existing

Start of Run:07Mar2019, 00:00End of Run:10Mar2019, 00:00Compute Time:22May2019, 16:43:12

Basin Model: Existing Meteorologic Model: 010-Year Control Specifications:72-Hour

Hydrologic Element	Drainage Are (MI2)	areak Discha (CFS)	r g ieme of Peak	Volume (AC-FT)
А	0.00183	5.65	07Mar2019, 12:04	0.29
В	0.00025	0.79	07Mar2019, 12:04	0.04
C1	0.00020	0.57	07Mar2019, 12:06	0.03
C2	0.00059	1.71	07Mar2019, 12:05	0.09
D	0.00222	6.05	07Mar2019, 12:05	0.36
J-A	0.00183	5.65	07Mar2019, 12:04	0.29
J-B	0.00025	0.79	07Mar2019, 12:04	0.04
J-C	0.00079	2.27	07Mar2019, 12:05	0.13
J-D	0.00222	6.05	07Mar2019, 12:05	0.36

Junction "J-A" Results for Run "010 Existing"

Run:010 Existing Element:J-A Result:Outflow --- Run:010 Existing Element:A Result:Outflow

Junction "J-B" Results for Run "010 Existing"

Run:010 Existing Element:J-B Result:Outflow
 Run:010 Existing Element:B Result:Outflow

Junction "J-D" Results for Run "010 Existing"

Run:010 Existing Element:J-D Result:Outflow ---- Run:010 Existing Element:D Result:Outflow
Project: Lee's Summit Simulation Run: 100 Existing

Start of Run:07Mar2019, 00:00End of Run:10Mar2019, 00:00Compute Time:22May2019, 16:43:16

Basin Model: Existing Meteorologic Model: 100-Year Control Specifications:72-Hour

Hydrologic Element	Drainage Are (MI2)	areak Discha (CFS)	r g ieme of Peak	Volume (AC-FT)
А	0.00183	10.75	07Mar2019, 12:04	0.60
В	0.00025	1.49	07Mar2019, 12:04	0.08
C1	0.00020	1.06	07Mar2019, 12:06	0.07
C2	0.00059	3.24	07Mar2019, 12:05	0.20
D	0.00222	11.57	07Mar2019, 12:05	0.74
J-A	0.00183	10.75	07Mar2019, 12:04	0.60
J-B	0.00025	1.49	07Mar2019, 12:04	0.08
J-C	0.00079	4.30	07Mar2019, 12:05	0.26
J-D	0.00222	11.57	07Mar2019, 12:05	0.74

Junction "J-A" Results for Run "100 Existing"

Run:100 Existing Element:J-A Result:Outflow
 Run:100 Existing Element:A Result:Outflow

Junction "J-B" Results for Run "100 Existing"

Run:100 Existing Element:J-B Result:Outflow
 Run:100 Existing Element:B Result:Outflow

Junction "J-C" Results for Run "100 Existing"

----- Run:100 Existing Element:C1 Result:Outflow

Junction "J-D" Results for Run "100 Existing"

Run:100 Existing Element:J-D Result:Outflow
 Run:100 Existing Element:D Result:Outflow

Project: Lee's Summit Simulation Run: 002 Proposed

Start of Run:07Mar2019, 00:00End of Run:10Mar2019, 00:00Compute Time:23May2019, 10:46:30

Basin Model: Proposed Meteorologic Model: 002-Year Control Specifications:72-Hour

Hydrologic Element	Drainage Are (MI2)	aPeak Discha (CFS)	rgëme of Peak	Volume (AC-FT)
A1	0.00134	1.75	07Mar2019, 12:04	0.08
A2	0.00011	0.32	07Mar2019, 12:04	0.02
A3	0.00038	0.95	07Mar2019, 12:04	0.05
A4	0.00036	1.02	07Mar2019, 12:04	0.06
A5	0.00050	1.06	07Mar2019, 12:05	0.06
A6	0.00017	0.38	07Mar2019, 12:05	0.02
В	0.00020	0.26	07Mar2019, 12:04	0.01
C1	0.00022	0.42	07Mar2019, 12:06	0.02
C2	0.00008	0.15	07Mar2019, 12:04	0.01
D	0.00138	1.59	07Mar2019, 12:06	0.09
Detention	0.00141	0.43	07Mar2019, 12:32	0.17
J-A	0.00286	2.20	07Mar2019, 12:04	0.27
J-A1	0.00034	0.98	07Mar2019, 12:04	0.05
J-B	0.00020	0.26	07Mar2019, 12:04	0.01
J-C	0.00030	0.57	07Mar2019, 12:05	0.03
J-D	0.00138	1.59	07Mar2019, 12:06	0.09
J-1	0.00141	0.43	07Mar2019, 12:32	0.17
J-2	0.00152	0.48	07Mar2019, 12:06	0.19
Pool	0.00034	0.98	07Mar2019, 12:04	0.05
R-1	0.00141	0.43	07Mar2019, 12:32	0.17
R-2	0.00152	0.48	07Mar2019, 12:06	0.19

2.0 1.5 HEV 1.0 0.5 0.0 12:00 12:00 00:00 00:00 00:00 12:00 00:00 07Mar2019 08Mar2019 09Mar2019 - Run:002 Proposed Element:J-A Result:Outflow ---- Run:002 Proposed Element:R-2 Result:Outflow ----- Run:002 Proposed Element:A1 Result:Outflow

Junction "J-A" Results for Run "002 Proposed"

0.25 0.20 0.15^{_]} 0.10 0.05 00:00 12:00 12:00 00:00 00:00 12:00 00:00 08Mar2019 07Mar2019 09Mar2019

Junction "J-B" Results for Run "002 Proposed"

- Run:002 Proposed Element:J-B Result:Outflow

---- Run:002 Proposed Element:B Result:Outflow

Junction "J-C" Results for Run "002 Proposed"

Junction "J-D" Results for Run "002 Proposed"

----- Run:002 Proposed Element:J-D Result:Outflow

---- Run:002 Proposed Element:D Result:Outflow

Project: Lee's Summit Simulation Run: 010 Proposed

Start of Run:07Mar2019, 00:00End of Run:10Mar2019, 00:00Compute Time:23May2019, 10:44:27

Basin Model: Proposed Meteorologic Model: 010-Year Control Specifications:72-Hour

1	1	1	1	
A1	0.00134	4.30	07Mar2019, 12:04	0.22
A2	0.00011	0.52	07Mar2019, 12:04	0.03
A3	0.00038	1.67	07Mar2019, 12:04	0.10
A4	0.00036	1.67	07Mar2019, 12:04	0.10
A5	0.00050	1.99	07Mar2019, 12:05	0.11
A6	0.00017	0.70	07Mar2019, 12:04	0.04
В	0.00020	0.64	07Mar2019, 12:04	0.03
C1	0.00022	0.81	07Mar2019, 12:05	0.05
C2	0.00008	0.30	07Mar2019, 12:04	0.02
D	0.00138	3.87	07Mar2019, 12:05	0.23
Detention	0.00141	1.50	07Mar2019, 12:18	0.34
J-A	0.00286	5.63	07Mar2019, 12:04	0.59
J-A1	0.00034	1.59	07Mar2019, 12:04	0.10
J-B	0.00020	0.64	07Mar2019, 12:04	0.03
J-C	0.00030	1.10	07Mar2019, 12:05	0.07
J-D	0.00138	3.87	07Mar2019, 12:05	0.23
J-1	0.00141	1.50	07Mar2019, 12:18	0.34
J-2	0.00152	1.63	07Mar2019, 12:16	0.37
Pool	0.00034	1.59	07Mar2019, 12:04	0.10
R-1	0.00141	1.50	07Mar2019, 12:18	0.34
R-2	0.00152	1.63	07Mar2019, 12:16	0.37

Junction "J-A" Results for Run "010 Proposed"

----- Run:010 Proposed Element:A1 Result:Outflow

Junction "J-B" Results for Run "010 Proposed"

Run:010 Proposed Element:J-B Result:Outflow

---- Run:010 Proposed Element:B Result:Outflow

Junction "J-C" Results for Run "010 Proposed"

Junction "J-D" Results for Run "010 Proposed"

Project: Lee's Summit Simulation Run: 100 Proposed

Start of Run:07Mar2019, 00:00End of Run:10Mar2019, 00:00Compute Time:23May2019, 10:44:04

Basin Model: Proposed Meteorologic Model: 100-Year Control Specifications:72-Hour

Hydrologic Element	Drainage Are (MI2)	aPeak Discha (CFS)	rgëme of Peak	Volume (AC-FT)
A1	0.00134	8.10	07Mar2019, 12:04	0.45
A2	0.00011	0.79	07Mar2019, 12:04	0.05
A3	0.00038	2.65	07Mar2019, 12:04	0.17
A4	0.00036	2.56	07Mar2019, 12:04	0.17
A5	0.00050	3.26	07Mar2019, 12:05	0.21
A6	0.00017	1.13	07Mar2019, 12:04	0.07
В	0.00020	1.21	07Mar2019, 12:04	0.07
C1	0.00022	1.33	07Mar2019, 12:05	0.09
C2	0.00008	0.52	07Mar2019, 12:04	0.03
D	0.00138	7.29	07Mar2019, 12:05	0.47
Detention	0.00141	2.53	07Mar2019, 12:18	0.61
J-A	0.00286	10.76	07Mar2019, 12:04	1.11
J-A1	0.00034	2.43	07Mar2019, 12:04	0.16
J-B	0.00020	1.21	07Mar2019, 12:04	0.07
J-C	0.00030	1.84	07Mar2019, 12:05	0.12
J-D	0.00138	7.29	07Mar2019, 12:05	0.47
J-1	0.00141	2.53	07Mar2019, 12:18	0.61
J-2	0.00152	2.81	07Mar2019, 12:07	0.66
Pool	0.00034	2.43	07Mar2019, 12:04	0.16
R-1	0.00141	2.53	07Mar2019, 12:18	0.61
R-2	0.00152	2.81	07Mar2019, 12:07	0.66

Junction "J-B" Results for Run "100 Proposed"

Run:100 Proposed Element:J-B Result:Outflow

---- Run:100 Proposed Element:B Result:Outflow

Junction "J-C" Results for Run "100 Proposed"

Junction "J-D" Results for Run "100 Proposed"

----- Run:100 Proposed Element:J-D Result:Outflow

---- Run:100 Proposed Element:D Result:Outflow

*USE ONLY USDA CERTIFIED SEED.

SLOPES.

Engineer <u>KEVIN S. GASKEY</u> P.E. No. <u>28441</u> Date <u>MAY 2019</u>

> DDITION IIT, MO

SUMMIT,

SUMMIT VE POO

 \leq

MAP

AREA

EXISTING DRAINAGE

ABP ABP

SHEET

C-3

VES

M

Existing Condition Hydrologic Parameters										
Outfall	POI	DA	Area (ac)	Area (mi ²)	CN	TC (min)	T _{lag} (min)	$\mathbf{Q}_{2yr}(cfs)$	Q _{10yr} (cfs)	$\mathbf{Q}_{100 \mathrm{yr}}$ (cfs
itch along SW Jefferson Street	А	А	1.17	0.00183	75.2	4.52	2.71	2.2	5.7	10.8
Curb Inlet on SW 6th Street	В	В	0.16	0.00025	75.5	4.22	2.53	0.3	0.8	1.5
isting Summit Waves Aquatic	C	C1	0.13	0.00020	77.7	7.64	4.58	0.2	0.6	1.1
Park Storm Sewer	C	C2	0.38	0.00059	75.3	5.91	3.54	0.7	1.7	3.2
orm Sewer at Jefferson Street North of Blue Parkway	D	D	1.42	0.00222	75.5	7.20	4.32	2.4	6.1	11.6

5/24/2019 8: 28am	Images:
\LAC_LALP\064538700_Lees Summit\Dwg\Sheet\Civils\C-EX DAM.dwg [Layout1]	xsurvey xaerial 20190325x2436 xgrad xutil xDAM xLiDAR xbndy
\DAL_LALP\	xsite xstorm

Proposed Condition Hydrologic Parameters										
Outfall	POI	DA	Area (ac)	Area (mi ²)	CN	TC (min)	T _{lag} (min)	\mathbf{Q}_{2yr} (cfs)	Q _{10yr} (cfs)	Q _{100yr} (cfs)
		A1	0.86	0.00134	75.7	3.97	2.38	1.8	4.3	8.1
		A2	0.07	0.00011	98.0	5.00	3.00	0.3	0.5	0.8
Ditch along SW/ lofforcon Stroot		A3	0.24	0.00038	92.0	5.23	3.14	1.0	1.7	2.7
Ditch along SW Jenerson Street		A4	0.23	0.00036	98.0	5.35	3.21	1.0	1.7	2.6
		A5	0.32	0.00050	88.3	5.98	3.59	1.1	2.0	3.3
		A6	0.11	0.00017	89.3	5.62	3.37	0.4	0.7	1.1
Curb Inlet on SW 6th Street	В	В	0.13	0.00020	75.8	4.09	2.45	0.3	0.6	1.2
Existing Summit Waves Aquatic	C	C1	0.14	0.00022	87.7	7.49	4.49	0.4	0.8	1.3
Park Storm Sewer		C2	0.05	0.00008	83.6	5.00	3.00	0.2	0.3	0.5
Storm Sewer at SE Blue Parkway	D	D	0.88	0.00138	76.5	7.24	4.35	1.6	3.9	7.3
Sanitary Sewer/Ditch along SW Jefferson Street	-	Pool	0.22	0.00034	98.0	5.19	3.11	1.0	1.6	2.4

	PROPOSED DRAINAGE AREA MAI								
AS SHOWN	ABP	ABO	SEG	MAY 2019	064538700				
Scale:	Designed by:	Drawn by:	Checked by:	Date:	Project No.				
	sheet C-4								

GRAPHIC SCALE IN FEET 0 15 30 60 15 15 15 15 15 15 15 15 15 15	Vindmillorn		13455 Noel Road, Suite 700, Dallas, Texas 75240	PHONE: 214-420-5600 FAX: 214-420-5680 MMMM VIMI EV LICEN COM	MISSOURI REGISTRATION NUMBER 001512	© 2019 KIMLEY-HORN AND ASSOCIATES, INC.
2" W PROPOSED WATER LINE PROPOSED SS LINE PROPOSED UGE LINE Image: I	Engineer P.E. No	95% F Not for co Kim	REVIE FOR REVIE Instruction o Iey» KEVIN S Dat	W ONLY v permit purp HOI GASKEY MAY	T 10565. 2019	
NOTES: 1. CONTRACTOR TO FIELD VERIFY LOCATION AND THE FLOWLINES OF ALL ZISTING UTILITIES. 2. WATER & WASTEWATER SERVICE TO BE PROVIDED BY CITY OF LEE'S SUMME CONTRACTOR TO COORDINATE WITH M.E.P. PLANS AT ALL UTILITY SUBJURTS. 3. CONTRACTOR TO ENSURE NO FIRE HYDRANTS. METERS OR VALVES ARE PLACED IN SIDEWALKS. 3. CONTRACTOR TO FIELD VERIFY LOCATION AND THE FLOWLINES OF ALL EXISTING UTILITIES. 3. CONTRACTOR TO FIELD VERIFY LOCATION AND THE FLOWLINES OF ALL EXISTING UTILITIES. 4. WATER AND WASTEWATER SERVICE TO BE PROVIDED BY THE CITY. 3. CONTRACTOR TO COORDINATE WITH MEP PLANS AT ALL UTILITY SUBDUTS. 4. CONTRACTOR TO O ENSURE NO METERS OR VALVES ARE PLACED IN SIDEWALKS. 5. CONTRACTOR TO REFERENCE GEOTECHNICAL REPORT PREPARED BY INTERTEK PSI (PSI PROJECT NO. 03381842 DATED DECEMBER 14, 2018 FOR UTILITY TRENCH RECOMMENDATIONS. 5. NO / OR ELEVATION OF EXISTING UTILITIES AS SHOWN ON THESE PLANS IS BASED ON RECORDS OF THE VARIOUS UTILITY COMPANIES, AND WHERE UREMENTS TAKEN IN THE FIELD. THE INFORMATION IS NOT TO BE RELIED ON AS BEING EXACT OR COMPLETE. THE CONTRACTOR MUST CONTACT THE TUTY COMPANIES AT LEAST 72 HOURS BEFORE ANY EXAVATION TO NERQUEST EXACT FIELD LOCATION OF EXISTING UTILITIES ONTACT THE INTY OF THE UTILITY AUTHORITIES INSPECTORS 72 HOURS BEFORE CONNECTION TO ANY EXISTING LINES. CONTRACTOR SHALL COORDINATE INTY COMPANIES AT LEAST 72 HOURS BEFORE ANY EXAVATION TO TO BE RECIDEN TO ANY EXISTING LINES. CONTRACTOR SHALL COORDINATE INTY OF THE UTILITY AUTHORITIES INSPECTORS 72 HOURS BEFORE CONNECTION TO ANY EXISTING LINES. CONTRACTOR SHALL COORDINATE INTY OF THE UTILITY AUTHORITIES INSPECTORS 72 HOURS BEFORE CONNECTION TO ANY EXISTING LINES. CONTRACTOR SHALL COORDINATE INSPECTION AND/OR CERTIFICATIONS REQUIRED BY CODES AND/OR UTILITY SERVICE COMPANIES SHALL BE PERFORMED PRIOR TO ANNOUNCED SION AND THE FINAL CONTRACTOR STEVEN. INSPECTION AND/OR CERTIFICATIONS REQUIRED BY CODES AND/OR UTILITY SERVICE COMPANIES SHALL BE PERFORMED PRIOR TO ANNOUNCED SION AND THE FINAL CONTRACTOR STEVENCE.	CI IN ANT VALVES		WAVF POOL ADDITION		LEE'S SUMMII, MO	
STO HAVE 48' COVER MINIMUM. AND SANITARY SEWRER LINES, AND WATERLINES AND STORM SEWER LINES SHOULD BE KEPT TEN FEET (10') APART WHEN PARALLEL OR 24'' ANDC WHEN CROSSING (OUTSIDE OF PIPE TO OUTSIDE OF PIPE), IF 24'' OF VERTICAL CLEARANCE CAN NOT BE MAINTAINED, SANITARY SEWER LINE TO DONCRETE FOR 20' CENTERED ON CROSSING. PIPE LAYING AND BACKFILING SHALL BE IN ACCORDANCE WITH FEDERAL OSHA REGULATIONS CONSTRUCTION, AND INSPECTION FOR WATER AND SANITARY SEWER LINES SHALL BE PER CITY OF ST. CHARLES STANDARD SPECIFICATIONS. EXISTING CONDITIONS TO REMAIN WILL BE REPLACED AT THE CONTRACTORS EXPAND. MALT REFER TO MEP PLANS AND SP SHEPTS FOR EXACT UTILITY ENTRANCE/CONNECTION LOCATIONS. MALTOR SHALL BE RESPONSIBLE FOR ALL TAP ANT TEO METRACOSINECTION LOCATIONS. MACTOR SHALL BE RESPONSIBLE FOR ALL TAP ANT TEO METRACE/CONNECTION LOCATIONS. MACTOR SHALL BE RESPONSIBLE FOR ALL TAP ANT TEO MEES REQUIRED. AS WELL AS COSTS OF UNDERGROUND SERVICE CONNECTIONS TO BE MARTOR SHALL INCLUDE IN THE BID PRICE THE DAILY RECORD KEEPING OF THE AS-BUILT CONDITION OF ALL THE UNDERGROUND UTILITIES.			UTILITY PLAN			
	Scale: AS SHOWN	Designed by: ABP	Drawn by: ABO	Checked by: SEG	Date: MAY 2019	Project No. 064538700

AL_LALP/LAC_LALP/064538/00_Lees Summit/Dwg/Sheet/Civils/C-UTILT7 PLAT te xstorm xsurvey xaerial 20190325x2436 xutil xEXUtil xbndy xpond

LEE'S SUMMIT MISSOURI PUBLIC WORKS ENGINEERING DIVISION | 220 SE GREEN STREET | LEE'S SUMMIT, MO 64063 DROP SANITARY SEWER MANHOLE

<u>ELEVATION</u>

WATER METER

H. ANGLE VALVE

FLARED COPPER

LETER WELL

- CONNECTION

I. YOKE -

D. PVC —

9 LID AND RISER RING SHALL BE SET SO THAT GROUND WATER WILL DRAIN AWAY FROM THE WELL. 10. CONTACT WATER UTILITIES, 816-969-1900, FOR REQUIREMENTS OF A METER LARGER THAN 2"

IEE'C CIIMMIT	Date: 02/13
LEE 3 30 MININI	Drawn By: JN
MISSOURI	Checked By: DL
ENGINEERING DIVISION 220 SE GREEN STREET LEE'S SUMMIT, MO 64063	FILE: WAT-11
CE CONNECTION /METER WELL	Rev: 1/14
JE COMMECTION/ WELL WELL	Rev:

		PHONE: 214-420-5600 FAX: 214-420-5680		© 2019 KIMLEY-HORN AND ASSOCIATES, INC.			
UTILITY DETAILS							

080 075 070 065	HORIZONTAL SCALE: 1"= 40 VERTICAL SCALE: 1"= 4' CONTRACTOR TO ADJUST ALL RIM ELEVATIONS TO MATCH FINISHED GRADE	Kimpey Morn 13455 Noel Road, Suite 700, Dallas, Texas 75240 PHONE: 214-420-5600 FAX: 214-420-5680 WWW.KIMLEY-HORN.COM MISSOURI REGISTRATION NUMBER 001512 © 2019 KIMLEY-HORN AND ASSOCIATES, INC.
060		95% REVIEW SET FOR REVIEW ONLY Not for construction or permit purposes. Kimley >>> Horn Engineer <u>KEVIN S. GASKEY</u> P.E. No. 28441 Date MAY 2019
055		Z
050		ADDITI(MIT, MC
045		MMIT W POOL / S SUMN
040		SUI WAVE LEE
		UTILITY PROFILES
		Scale: AS SHOWN Designed by: ABP Drawn by: ABO Drate: MAY 2019 Project No. 064538700 Flie: K:DAL_LALP/LAC_LALP May 2019 Project No. 064538700 Krefs: 20190325x2436 outil

JAL_LALP/LAC_LALP/064538700_Lees Summit/Dwg/Sheet/Civils/C-STORM PROFILES.dwg [Layout1] 5/24/2019 8:29am 190325x2436 outil

SF

by:

SHEET

C-9

WATER QUALITY CALCULATIONS - PROPOSED CONDITIONS

Water Quality Calculations - Outfall A (Disturbed Area):

A. Predevelopment CN

Land Use	Area	CN	CN*A
Grass	1.27	74	93.98
Pavement	0.01	98	0.98
	CN	74.2	
		J	

B. Postdevelopment CN										
Land Use	Area	CN	CN*A							
Grass	0.32	74	23.68							
Pavement	0.75	98	73.5							
	90.8									

C. Level of Service (LS) Calculation

C. LEVEL OF SE	
CN _{PreWeighted} =	74.2
CN _{PostWeighted} =	90.8
Difference =	16.6
LS Requried	Q
(Table 4.2)=	0

D۸	Cover/BMP Description	Treatment	\/P	VP*Aroa	% Sit
DA	covery block Description	Area		VN Alea	Rv
A1 (Bypass, Disturbed)	None	0.10	0.00	0.00	WQV WQV
A2 (Bypass)	None	0.07	0.00	0.00	Relea
A3	Extended Dry Detention + Hydrodynamic Seperator	0.24	8.00	1.92	Qwqv
A4	Extended Dry Detention + Hydrodynamic Seperator	0.23	8.00	1.84	
A5	Bioretention, Extended Dry Detention, + Hydrodynamic	0.32	16.50	5.28	
A6	Bioretention, Extended Dry Detention, + Hydrodynamic	0.11	16.50	1.82	
			Total =	10.86	
		Weig	hted VR =	10.14	
		Requ	uired VR =	8.00	

E. Water Quality Volu
% Site Impervious
Rv
WQV (in)
WQV (ac-ft)
Release Rate (hr)
Q _{WQV} (cfs)

	Existing Condition Hydrologic Parameters												
ΡΟΙ	DA	Area (ac)	Area (mi²)	CN	TC (min)	T _{lag} (min)	Q _{2yr} (cfs)	Q _{10yr} (cfs)	Q _{100yr} (cfs)				
А	А	1.17	0.00183	75.2	4.52	2.71	2.2	5.7	10.8				
В	В	0.16	0.00025	75.5	4.22	2.53	0.3	0.8	1.5				
6	C1	0.13	0.00020	77.7	7.64	4.58	0.2	0.6	1.1				
C	C2	0.38	0.00059	75.3	5.91	3.54	0.7	1.7	3.2				
D	D	1.42	0.00222	75.5	7.20	4.32	2.4	6.1	11.6				

TIME OF CONCENTRATION & LAG TIME EXISTING

TR-55 Methodol	ogy																			
	SHEET FLOW SHALL						SHALLOW	CONCEN	TRATED F	LOW				STORM SEWE	R FLOW				TOTAL	
Tc = (0.007(nL)^0.8)/(P2^0.5)(s^0.4) 2-year/24-hr Rainfall Depth (in.) = 3.71				Tc = L / 60*V							Assumed Velocity = 4 ft/s (swale)									
Basin	Length (ft)	Elev ₁	Elev ₂	Slope (ft/ft)	Manning's "n"	T _{c1} (min)	Length (ft)	Elev ₂	Elev ₃	Slope (ft/ft)	Condition TR-55 Fig. 3-1	V _{avg} (ft/s)	T _{c2} (min)	Inlet Time (min)	Travel Length (ft)	Travel Velocity (ft/s)	Travel Time (min)	T _{c3} (min)	T _{cTOTAL} (min)	T _{lag} (min)
А	50	1066.0	1063.0	0.0600	0.150	3.4	137	1063.0	1052.0	0.080	Unpaved	4.57	0.5		156	4.0	0.7	0.7	4.5	2.7
B	50	1063.0	1061.0	0.0400	0.150	4.0	40	1061.0	1060.0	0.025	Unpaved	2.55	0.3						4.2	2.5
C1	50	1061.5	1061.0	0.0100	0.150	6.9	116	1061.0	1058.0	0.026	Unpaved	2.59	0.7						7.6	4.6
C2	50	1066.0	1065.0	0.0200	0.150	5.2	145	1065.0	1058.0	0.048	Unpaved	3.55	0.7						5.9	3.5
D	50	1066.0	1065.0	0.0200	0.150	5.2	342	1065.0	1054.0	0.032	Unpaved	2.89	2.0						7.2	4.3

Start End Com	of Run: 07Mar 2019 of Run: 10Mar 2019 oute Time: 22May 2019	, 00:00 Basi , 00:00 Metr , 09:37:31 Con	n Model: Existing corologic Model: 002-Year trol Specifications: 72-Hour	
Show Elements: All Element	s 🗸 V	olume Units: () IN	AC-FT Sort	ting: Hydrologic 🗸
Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
D	0.00222	2.4	07Mar2019, 12:06	0.14
J-D	0.00222	2.4	07Mar2019, 12:06	0.14
C2	0.00059	0.7	07Mar2019, 12:05	0.04
01	0.00020	0.2	07Mar2019, 12:06	0.01
J-C	0.00079	0.9	07Mar2019, 12:05	0.05
В	0.00025	0.3	07Mar2019, 12:04	0.02
]-8	0.00025	0.3	07Mar2019, 12:04	0.02
A	0.00183	2.2	07Mar2019, 12:04	0.11
J-A.	0.00183	2.2	07Mar2019, 12:04	0.11

Proposed Condition Hydrologic Parameters											
POI	DA	Area (ac)	Area (mi²)	CN	TC (min)	T _{lag} (min)	Q _{2yr} (cfs)	Q _{10yr} (cfs)	Q _{100yr} (cfs)		
	A1	0.86	0.00134	75.7	3.97	2.38	1.8	4.3	8.1		
	A2	0.07	0.00011	98.0	5.00	3.00	0.3	0.5	0.8		
^	A3	0.24	0.00038	92.0	5.23	3.14	1.0	1.7	2.7		
A	A4	0.23	0.00036	98.0	5.35	3.21	1.0	1.7	2.6		
	A5	0.32	0.00050	88.3	5.98	3.59	1.1	2.0	3.3		
	A6	0.11	0.00017	89.3	5.62	3.37	0.4	0.7	1.1		
В	В	0.13	0.00020	75.8	4.09	2.45	0.3	0.6	1.2		
C	C1	0.14	0.00022	87.7	7.49	4.49	0.4	0.8	1.3		
C	C2	0.05	0.00008	83.6	5.00	3.00	0.2	0.3	0.5		
D	D	0.88	0.00138	76.5	7.24	4.35	1.6	3.9	7.3		
-	Pool	0.22	0.00034	98.0	5.19	3.11	1.0	1.6	2.4		

TIME OF CONCENTRATION & LAG TIME PROPOSED

TR-55 Methodol	ogy																			
	SHEET FL	.ow					SHALLOW		ITRATED F	LOW				STORM SEWE	R FLOW				TOTAL	
							F.							Assumed Veloc	ity = 4 ft/s (swale	e)				
	Tc = (0.00	7(nL)^0.8)/(P2^0.5)(s^0.4)			Tc = L / 60	0*V						Assumed Veloc	ity = 6 ft/s (storm	n sewer)				
	n = 0.24 (d	dense grass	5)				A							Assumed Veloc	ity = 3 ft/s (bioret	tention)				
Basin	Length	Elev ₁	Elev ₂	Slope	Manning's	T _{c1}	Length	Elev ₂	Elev ₃	Slope	Condition	Vavg	T _{c2}	Inlet Time	Travel Length	Travel Velocity	Travel Time	T _{c3}	T _{cTOTAL}	Tlag
	(ft)			(ft/ft)	"n"	(min)	(ft)			(ft/ft)	TR-55 Fig. 3-1	(ft/s)	(min)	(min)	(ft)	(ft/s)	(min)	(min)	(min)	(min)
A1	50	1059.5	1056.0	0.0700	0.150	3.2	44	1056.0	1052.0	0.091	Unpaved	4.86	0.2		156	4.0	0.7	0.7	4.0	2.4
A2														5.0					5.0	3.0
A3														5.0	81	6.0	0.2	5.2	5.2	3.1
A4														5.0	127	6.0	0.4	5.4	5.4	3.2
A5														5.0	176	3.0	1.0	6.0	6.0	3.6
A6														5.0	112	3.0	0.6	5.6	5 .6	3.4
В	50	1062.5	1060.5	0.0400	0.150	4.0	20	1060.5	1060.0	0.025	Unpaved	2.55	0.1						<mark>4.1</mark>	2.5
C1	50	1061.5	1061.0	0.0100	0.150	6.9	116	1061.0	1058.0	0.026	Paved	3.27	0.6						7.5	4.5
C2														5.0					5.0	3.0
D	50	1059.0	1058.0	0.0200	0.150	5.2	248	1058.0	1054.0	0.016	Unpaved	2.05	2.0						7.2	4.3
Bool														5.0	67	6.0	0.2	50	52	2 1

	Project: Lee's Sur	mmit Simulation Ru	un: 002 Proposed	
Start End o Comp	of Run: 07Mar2019, f Run: 10Mar2019, ute Time:22May2019,	00:00 Basir 00:00 Mete ,09:34:43 Cont	n Model: Proposed corologic Model: 002-Year trol Specifications: 72-Hour	
now Elements: All Elements	r ∼ -	olume Units: 🔿 IN	AC-FT Sort	ing: Hydrologic 🗸
Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(AC-FT)
	0.00050	1.1	07Mar2019, 12:05	0.06
	0.00038	0.9	07Mar2019, 12:04	0.05
	0.00036	1.0	07Mar2019, 12:04	0.06
	0.00017	0.4	07Mar2019, 12:05	0.02
tention	0.00141	0.5	07Mar2019, 12:29	0.18
L	0.00141	0.5	07Mar2019, 12:29	0.18
1	0.00141	0.5	07Mar2019, 12:29	0.18
	0.00011	0.3	07Mar2019, 12:04	0.02
2	0.00152	0.5	07Mar2019, 12:23	0.20
2	0.00152	0.5	07Mar2019, 12:23	0.20
	0.00134	1.7	07Mar2019, 12:04	0.08
λ	0.00286	2.2	07Mar2019, 12:04	0.28
	0.00138	1.6	07Mar2019, 12:06	0.09
)	0.00138	1.6	07Mar2019, 12:06	0.09
ol	0.00034	1.0	07Mar2019, 12:04	0.05
1	0.00034	1.0	07Mar2019, 12:04	0.05
	0.00022	0.4	07Mar2019, 12:06	0.02
	0.00008	0.1	07Mar2019, 12:04	0.01
3	0.00030	0.6	07Mar2019, 12:05	0.03
	0.00020	0.3	07Mar2019, 12:04	0.01
)	0.00020	0.3	07Mar2019, 12:04	0.01

								 _
	Proje	ct: Lee's Summit Res	: Simulat ervoir: Dete	ion Run: 002 Propos ention	sed			
Sta Enc Cor	rt of Run: (l of Run: : mpute Time:)	07Mar2019, 00: 10Mar2019, 00: 22May2019, 09	00 00 :34:43	Basin Model: Meteorologic Model Control Specificatio	Pro 1: 00 0ns:72	oposed)2-Year 2-Hour		
	_	Volume Un	iits: () IN	AC-FT				c
omputed Result	s							~
Peak Inf Peak Dis Inflow V Discharg	flow: 3. scharge: 0. olume: 0. ge Volume:0.	4 (CFS) 5 (CFS) 18 (AC-FT) 18 (AC-FT)	Date/Time Date/Time Peak Stor Peak Elev	of Peak Inflow: of Peak Discharge: age: ation:	07Mar 07Mar 0.09 (1051.	r2019, 12:0 r2019, 12:2 (AC-FT) .6 (FT))4 29	

lunction	2 YR			10 YR			100 YR		
Junction	Existing	Proposed	Difference	Existing	Proposed	Difference	Existing	Proposed	Difference
J-A	2.2	2.2	0.0	5.6	5.6	0.0	10.8	10.8	0.0
J-B	0.3	0.3	0.0	0.8	0.6	-0.2	1.5	1.2	-0.3
J-C	0.9	0.6	-0.3	2.3	1.1	-1.2	4.3	1.8	-2.5
J-D	2.4	1.6	-0.8	6.1	3.9	-2.2	11.6	7.3	-4.3

	<			
			NORTH	+
C1 0.14 A0 1.3 CFS			RAPHIC SCALE	IN FEET
				355
POI C				
	LEGENI	<u>2</u>		
	PROPOSED DF	RAINAGE ARE	EA BOUNDARY	,
	PROPERTY BC	UNDARY		

PROPOSED BIOSWALE

PROPOSED DETENTION POND

1065	1-FT ON-GROUND TOPOGRAPHY (ANDERSON SURVEY COMPANY, 2018)
<u>1065</u>	1-FT AERIAL TOPOGRAPHY (MISSOURI LIDAR)
	PROPOSED CONTOURS (KIMLEY-HORN 2019)

PROPOSED CONTOURS (KIMLEY-HORN, 2019)

NOTE: REFERENCE THE STORMWATER REPORT FOR SUMMIT WAVES - WAVE POOL ADDITION PREPARED BY KIMLEY-HORN IN APRIL 2019 FOR ADDITIONAL DRAINAGE INFORMATION

VERTICAL DATUM: NAVD88

Water Quality Calculations - Outfall D:

Land Use	Area	CN	CN*A
Grass	1.33	74	98.42
Pavement	0.09	98	8.82
		CN _{PreWeighted} =	75.5

B. Postdevelopment CN					
Land Use	Area	CN	CN*A		
Grass	0.80	74	59.2		
Pavement	0.09	98	8.82		
		CN _{PostWeighted} =	76.4		

C. Level of Service (LS) Calculation

$CN_{PreWeighted} =$	75.5
CN _{PostWeighted} =	76.4
Difference =	0.9
LS Requried	2
(Table 4.2)=	nya

Water Quality Calculations - Outfall B:

A. Predevelopment CN				
Land Use	Area	CN	CN*A	
Grass	0.15	74	11.1	
Pavement	0.01	98	0.98	
		$CN_{PreWeighted} =$	75.5	

B. Postdevelopment CN					
Land Use	Area	CN	CN*A		
Grass	0.12	74	8.88		
Pavement	0.01	98	0.98		
		CN _{PostWeighted} =	75.8		

C. Level of Service (LS) Calculation

$CN_{PreWeighted} =$	75.5	

$CN_{PostWeighted} =$	75.8
Difference =	0.3
LS Requried	-
(Table 4.2)=	n/a

lume	•	_
	70%	
	0.68	
	0.93	
	0.08	
	40	

0.03

HYDROLOGIC CALCULATIONS - EXISTING CONDITIONS

	Project: Lee's Su	ummit Simulation R	tun: 010 Existing	
Start of End of Compu	of Run: 07Mar2019 f Run: 10Mar2019 ute Time:22May2019	, 00:00 Basin , 00:00 Mete , 09:49:16 Con	n Model: Existing corologic Model: 010-Year trol Specifications:72-Hour	
nents: All Elements	\sim V	olume Units: 🔘 IN	AC-FT Sort	ing: Hydrologic 🗸
Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
	0.00222	6.1	07Mar 2019, 12:05	0.36
	0.00222	6.1	07Mar2019, 12:05	0.36
	0.00059	1.7	07Mar 2019, 12:05	0.09
	0.00020	0.6	07Mar 2019, 12:06	0.03
	0.00079	2.3	07Mar2019, 12:05	0.13
	0.00025	0.8	07Mar 2019, 12:04	0.04
	0.00025	0.8	07Mar2019, 12:04	0.04
	0.00183	5.6	07Mar 2019, 12:04	0.29
	0.00183	5.6	07Mar 2019, 12:04	0.29

St. En Ca	art of Run: 07Mar2019 d of Run: 10Mar2019 mpute Time:22May2019	, 00:00 Basir , 00:00 Mete , 09:49:37 Cont	n Model: Existing eorologic Model: 100-Year trol Specifications:72-Hour	
Show Elements: All Eleme	nts 🗸 🛛 V	olume Units: 🔘 IN	AC-FT Sort	ing: Hydrologic 🦂
Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
D	0.00222	11.6	07Mar2019, 12:05	0.74
J-D	0.00222	11.6	07Mar2019, 12:05	0.74
C2	0.00059	3.2	07Mar2019, 12:05	0.20
C1	0.00020	1.1	07Mar2019, 12:06	0.07
J-C	0.00079	4.3	07Mar2019, 12:05	0.26
3	0.00025	1.5	07Mar2019, 12:04	0.08
) - 8	0.00025	1.5	07Mar2019, 12:04	0.08
Δ.	0.00183	10.8	07Mar2019, 12:04	0.60
J-A	0.00183	10.8	07Mar2019, 12:04	0.60

Project: Lee's Summit Simulation Run: 100 Proposed

Start of Run: 07Mar2019, 00:00 Basin Model: Proposed End of Run: 10Mar2019, 00:00 Meteorologic Model: 100-Year Compute Time:22May2019, 09:33:03 Control Specifications:72-Hour

Project: Lee's Summit Simulation Run: 100 Proposed

Reservoir: Detention
 Start of Run:
 07Mar2019, 00:00
 Basin Model:
 Proposed

 End of Run:
 10Mar2019, 00:00
 Meteorologic Model:
 100-Year

 Compute Time: 22May2019, 09:33:03
 Control Specifications: 72-Hour

Volume Units: 🔿 IN 💿 AC-FT

 Peak Inflow:
 9.6 (CFS)
 Date/Time of Peak Inflow:
 07Mar2019, 12:04

 Peak Discharge:
 3.4 (CFS)
 Date/Time of Peak Discharge:07Mar2019, 12:14

 Inflow Volume:
 0.62 (AC-FT)
 Peak Storage:
 0.22 (AC-FT)

 Discharge Volume:
 0.62 (AC-FT)
 Peak Elevation:
 1053.4 (FT)

 Drainage Area (MI2)
 Peak Discharge (CFS)

 0.00050
 3.3

 0.00038
 2.6

 0.00017
 1.1

 0.00017
 1.1

 0.00141
 3.4

 0.00141
 3.4

 0.000110
 0.8

0.000152 0.00152 0.00134 0.00286 0.00138 0.00138 0.00034

0.00034 0.00022 0.00008 0.00030 0.00020 0.00020

Volume Units: 🔿 IN 💿 AC-FT Sorting: Hydrologic 🗸

Time of Peak

07Mar2019, 12:05 07Mar2019, 12:04 07Mar2019, 12:04 07Mar2019, 12:04 07Mar2019, 12:04 07Mar2019, 12:14 07Mar2019, 12:14 07Mar2019, 12:14

07Mar2019, 12:04 07Mar2019, 12:13 07Mar2019, 12:13 07Mar2019, 12:04 07Mar2019, 12:04 07Mar2019, 12:05 07Mar2019, 12:05 07Mar2019, 12:05 07Mar2019, 12:05 07Mar2019, 12:05 07Mar2019, 12:04 07Mar2019, 12:04

Volume (AC-FT) 0.21 0.17

0.62 0.62 0.05

0.67

0.45

0.47 0.47 0.16 0.09 0.03 0.12 0.07 0.07

Show Elements: All Elements \lor

Hydrologic Element

Computed Results

Detention

HYDROLOGIC CALCULATIONS - PROPOSED CONDITIONS

	Project: Lee's Sur	mmit Simulation Ri	un: 010 Proposed	
Star End Com	t of Run: 07Mar2019, of Run: 10Mar2019, pute Time:22May2019,	00:00 Basir 00:00 Mete , 09:34:54 Cont	n Model: Proposed :orologic Model: 010-Year trol Specifications: 72-Hour	
Elements: All Element	ts 💛 Vi	olume Units: 🔘 IN	AC-FT Sort	ing: Hydrologic 🗸
Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
	0.00050	2.0	07Mar 2019, 12:05	0.11
	0.00038	1.7	07Mar 2019, 12:04	0.10
	0.00036	1.7	07Mar 2019, 12:04	0.10
	0.00017	0.7	07Mar2019, 12:04	0.04
tion	0.00141	1.4	07Mar 2019, 12:19	0.35
	0.00141	1.4	07Mar 2019, 12:19	0.35
	0.00141	1.4	07Mar 2019, 12:19	0.35
	0.00011	0.5	07Mar 2019, 12:04	0.03
	0.00152	1.5	07Mar2019, 12:16	0.38
	0.00152	1.5	07Mar 2019, 12:16	0.38
	0.00134	4.3	07Mar2019, 12:04	0.22
	0.00286	5.6	07Mar2019, 12:04	0.60
	0.00138	3.9	07Mar 2019, 12:05	0.23
	0.00138	3.9	07Mar2019, 12:05	0.23
	0.00034	1.6	07Mar2019, 12:04	0.10
	0.00034	1.6	07Mar2019, 12:04	0.10
	0.00022	0.8	07Mar2019, 12:05	0.05
	0.00008	0.3	07Mar 2019, 12:04	0.02
	0.00030	1.1	07Mar 2019, 12:05	0.07
	0.00020	0.6	07Mar2019, 12:04	0.03
	0.00020	0.6	07Mar2019, 12:04	0.03

	0.00020	0.6	07Mar 2019,	12:04	0.03
	0.00020	0.6	07Mar 2019,	12:04	0.03
	1		terri de terreterre		
Pr	oject: Lee's Sumn	nit Simulatio	on Run: 010 Propo	sed	
	Re	servoir: Dete	ntion		
Start of Run	: 07Mar 2019. 0	0:00	Basin Model:	Propose	d
End of Run:	10Mar 2019, 0	0:00	Meteorologic Mode	l: 010-Yea	r
Compute Tin	ne:22May2019.0	9:34:54	Control Specificati	ons:72-Hour	
	Volume L	Jnits: 🔿 IN	AC-FT		
ed Results		-	-		
Peak Inflow:	6.0 (CFS)	Date/Time	of Peak Inflow:	07Mar 2019,	, 12:04
Peak Discharge:	1.4 (CFS)	Date/Time	of Peak Discharge	:07Mar 2019,	, 12:19
Inflow Volume:	0.35 (AC-FT)	Peak Stora	ge:	0.15 (AC-FI	r)
Discharge Volume	::0.35 (AC-FT)	Peak Eleva	tion:	1052.4 (FT)	lí l

			13455 Noel Koad, Suite 700, Dallas, 1exas 75240 PHONE: 214-420-5600 FAX: 214-420-5680	WWW.KIMLEY-HORN.COM MISSOLIELEGISTEATION NILIMEED 001512	© 2019 KIMLEY-HORN AND ASSOCIATES, INC.	
Engineer P.E. No.	95% Not for Kim 28441	REV FOR REV Construction	IEW S TIEW ONL ¹ TIEW ONL ¹ TIEW ONL ¹ TIEW ONL ¹ TIEW S TIEW ONL ¹ TIEW ONL ¹ T	SET y burposes. DITT EY AY 2019		
						SS.dwa [Lavout] 5/24/2019 8:29am
cale: AS SHOWN	esigned by: ABP	rawn by: ABO	hecked by: SEG	ate: MAY 2019	roject No. 064538700	34538700 Lees Summit/Dwa/Sheet/Civils/C-DRAINAGE CALC
Ň	ă	б SHE C-	⊡ EET - 1 (õ	Ā	VDAL LALP/LAC LALP/06

A MINIMUM 4" TYPE 1 OR 5 AGGREGATE BASE SHALL BE PLACED BENEATH ALL CURB AND GUTTER SECTIONS AND INCLUDED WITHIN

GNERAL NOTES:

THE MAINLINE BASE PAY LIMITS.

C-13

			13455 Noel Koad, Suite 700, Dallas, Texas 75240 PHONE: 214-420-5600 FAX: 214-420-5680	WWW.KIMLEY-HORN.COM MISSOLIDI PECISTRATION NILIMBER 001513	© 2019 KIMLEY-HORN AND ASSOCIATES, INC.	
Engineer P.E. No.	95% Not for Kim 28441	REV FOR REV construction DICY KEVIN	IEW S TIEW ONL' to or permit WHC S. GASK Date	SET Y purposes. DTT EY AY 2019		
DETENTION DETAILS						
Scale: AS SHOWN	Designed by: ABP	Drawn by: ABO	Checked by: SEG	Date: MAY 2019	Project No. 064538700	
sheet C-15						

K: \DAL_LALP\LAC_LALP\064538700_Lees Summit\Dwg\Sheet\Civils\C-CONSTRUCTION DETAILS.dwg [Layout1 (4)] 5/24/2019 8: 29am e: 2019073552476

TRAFFIC CONTROL NOTES

1. ALL TRAFFIC CONTROL SHALL CONFORM TO THE LATEST VERSION OF THE MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES (MUTCD). FIELD MODIFICATIONS MAY BE MADE TO ADDRESS LOCAL CONDITIONS WITH THE APPROVAL OF THE ENGINEER.

2. DESIGN SPEED ON JEFFEROSN STREET IS 35 MPH. MINIMUM SIGN SPACING, CHANNELIZATION DEVICE SPACING AND TAPER LENGTHS ARE AS SHOWN.

3. CONTRACTOR IS RESPONSIBLE FOR INSTALLATION, MAINTENANCE, AND REMOVAL OF TRAFFIC CONTROL DEVICES. TRAFFIC CONTROL DEVICES SHOULD BE INSPECTED DAILY AND REPAIRED OR REPLACED AS NECESSARY. AFTER REMOVAL, CONTRACTOR IS RESPONSIBLE FOR RESTORATION OF MODIFICATIONS TO ROADWAY AND SIDEWALK SURFACES, ROADWAY MARKINGS, AND SIGNAGE DUE TO TRAFFIC CONTROL DEVICES OR CONSTRUCTION ACTIVITY.

4. CHANNELIZATION DRUMS ARE THE MINIMUM LEVEL OF CHANNELIZATION DEVICE WHICH SHALL BE USED ON THE OUTSIDE EDGES OF THE TRAVEL LANES. NARROW CHANNELIZATION DEVICES ON THE CENTERLINE SEPARATING OPPOSITE LANES OF TRAFFIC SHALL BE VERTICAL PANELS, TABULAR MARKERS, OR NAVIGATOR/NAVICADE DELINEATORS OR EQUIVALENT 12"-WIDE DEVICES. OPPOSING TRAFFIC LANE DIVIDER (OTLD) DEVICES WITH CW6-4 "TWO WAY TRAFFIC" SIGNS SHALL BE USED AT 200 FT INTERVALS.

5. IF THE TCP IS ACTIVE DURING THE HOURS OF DARKNESS, ALL CHANNELIZATION DEVICES SHALL HAVE A TYPE "C" STEADY-BURN WARNING LIGHT OR EQUIVALENT REFLECTOR, AND ALL WARNING SIGNS SHALL HAVE A TYPE "A" LOW-INTENSITY FLASHING WARNING LIGHT, AS REQUIRED IN ACCORDANCE WITH THE CURRENT EDITION OF MUTCD.

6. TWO-WAY VEHICULAR TRAFFIC FLOW AND ACCESS TO ALL OCCUPIED PROPERTIES SHALL BE MAINTAINED AT ALL TIMES UNLESS NOTED.

7. PEDESTRIAN PATHWAYS SHALL BE PROVIDED ACROSS OR AROUND THE WORK AREA IN ACCORDANCE WITH THE MUTCD. CONTRACTOR SHALL DE PROVIDED ACROSSION ACCOUNT THE WORK AND A IN ACCONDANCE WITH THE MUTCD. CONTRACTOR SHALL PROVIDE SIDEWALK CLOSURE, CROSSWALK CLOSURE, AND/OR WALKWAY BYPASS WHEREVER PEDESTRIAN MOVEMENTS ARE AFFECTED BY CONSTRUCTION ACTIVITIES. ALL SIDEWALKS AND CROSSWALKS SHALL BE ACCESSIBLE WHEN CONTRACTOR IS NOT WORKING UNLESS OTHERWISE APPROVED BY THE CITY TRAFFIC ENGINEER.

8. WHEN THE TCP IS NOT IN EFFECT, ALL CHANNELIZING DEVICES SHALL BE REMOVED FROM THE TRAVEL LANES AND ALL SIGNS SHALL BE COVERED OR TURNED AWAY FROM THE DIRECTION OF TRAFFIC. THE TRAVEL LANE SURFACES SHALL BE RESTORED WITH STEEL PLATES OR TEMPORARY PAVEMENT. WHERE A SAW CUT OR PAVEMENT REMOVAL RESULTS IN MORE THAN A 2" DROP-OFF ADJACENT TO AN ACTIVE TRAVEL LANE, THE EDGE SHALL BE MARKED WITH VERTICAL PANELS OR CHANNELIZATION DRUMS AT 25' SPACING, AND WARNING SIGN CW 8-9a "SHOULDER DROP-OFF" SHALL BE POSTED 240' IN ADVANCE OF THE DROP-OFF CONDITION.

LEGEND

LINE OF DELINEATORS

CENTER LANE DEVICE S WITH OTLD

Ħ \leftarrow

• • • •

SIGN TYPE 3 BARRICADE DIRECTION OF TRAVEL WORK AREA

Vindan Monta			13423 Noel Koad, Suite 700, Dallas, 1exas 72240 PHONE: 214-420-5600 FAX: 214-420-5680	WWW.KIMLEY-HORN.COM MISSOLIEL BEGISTEATION NILIMBEE 001513	© 2019 KIMLEY-HORN AND ASSOCIATES, INC.
Engineer P.E. No.	95% Not for 0 28441	FOR REV FOR REV Construction	IEW S IEW ONL to or permit S. GASK S. GASK	SET y purposes, DTN EY AY 2019	
Scale: AS SHOWN	Designed by: ABP	Drawn by: ABO	Checked by: SEG	Date: MAY 2019	Project No. 064538700
	(SHE	EET	6	
Appendix B: Digital Files

