

Mid-Continent Public Library East Lee's Summit Branch Final Stormwater Study

BATTERY DRIVE AND SOUTHEAST BLUE PARKWAY LEE'S SUMMIT, MISSOURI

January 25, 2019

Revised March 26, 2019

Prepared for:

Mid-Continent Public Libraries (MCPL)

Prepared by:

Olsson

7301 W. 133rd Street, Suite 200 Overland Park, KS 66213

TEL 913.381.1170

www.olsson.com

Olsson Project No. B18-0330

TABLES

Table 1 – Pre-Development Curve Number Analysis

Table 2 – Existing Peak Flows

Table 3 – Post-Development Curve Number Analysis

Table 4 – Proposed Peak Flows

Table 5 – Detention Basin, WSE's, and Peak Flows

Table 6 – Peak Flow Change Analysis

APPENDICES

Appendix A: Maps

Appendix B: FEMA Flood Classification Firms

Appendix C: Soil Map

Appendix D: Drainage and Detention Calculations

Appendix E: Water Treatment Calculations

TABLE OF CONTENTS

GENERAL INFORMATION	1
PROJECT LOCATION AND DESCRIPTION	1
STUDY PURPOSE	1
SOILS DESCRIPTIONS	2
METHODOLOGY	2
GENERAL CRITERIA AND REFERENCES	2
HYDROLOGIC/HYDRAULIC ANALYSES	3
EXISTING CONDITIONS ANALYSIS	3
PROPOSED CONDITIONS ANALYSIS	4
STORMWATER DETENTION REQUIREMENTS	6
STORMWATER TREATMENT REQUIREMENTS	8
CLEAN WATER ACT SECTION 404 PERMITTING REQUIREMENTS	8
FEMA/DWR PERMIT REQUIREMENTS	8
CONCLUSIONS AND RECOMMENDATIONS	8

GENERAL INFORMATION

This Stormwater Management Study is being submitted on behalf of the Mid-Continent Public Library (MCPL) for the proposed library facility located at the northeast corner of SE Blue Parkway and Battery Drive.

Project Location and Description

The proposed site is located on Lot 2 of the Magnolia Place at Charleston Park, 1st Plat in the Northeast ¼ of Section 10, Township 47 North, Range 31 West, in Jackson County, Lee's Summit, Missouri and includes approximately 3.8 acres. The site is located at the northeast corner of the SE Blue Parkway and Battery Drive intersection and is generally bounded by Village Cooperative of Lee's Summit to the north, SE Battery Dr to the west, SE Blue Parkway to the south, and an undeveloped lot to the east (See Figure 2). The Church of Jesus Christ of Latter-Day Saints lies east of the undeveloped lot. The proposed development includes a 18,500 S.F. library facility with associated parking lots, landscaping, grading, and utilities. The entirety of the site is located outside of the 100-Year FEMA Floodplain.

Study Purpose

The purpose of this study is to provide a Stormwater Management Plan for the proposed development in accordance with the American Public Works Association (APWA) *Standard Specifications and Design Criteria* Section 5600 "Storm Drainage Systems and Facilities", APWA Manual of Best Management Practices (BMP) for Stormwater Quality, and applicable City of Lee's Summit, Missouri guidelines.

Soils Descriptions

Soil classifications were obtained from the Natural Resource Conservation Service's website by utilizing the Web Soil Survey feature. The site soil composition and classification are listed below:

10082 – Arisburg-Urban Land Complex, 1 to 5 percent slopes – HSG Type C.
 10180 – Udarents-Urban Land-Sampsel Complex, 2 to 5 percent slopes - HSG Type C.

*HSG - Hydrologic Soils Group

See Soils Map in Appendix B.

METHODOLOGY

General Criteria and References

Analytical and design criteria conform to those of Division V - Section 5600 – "Storm Drainage Systems and Facilities" of the Kansas City Metropolitan Chapter of the American Public Works Association's "Standard Specifications and Design Criteria". Based on these criteria, Post-development discharge rates for 2, 10, and 100-year storm events will be limited to provisions in section 5608.4-C1 Performance Criteria – "Comprehensive Control". Post-development discharge rates are limited to 0.5 cfs per acre for the 2-Year event, 2.0 cfs per acre for the 10-year event, and 3.0 cfs per acre for 100-year storm event. Pre and post-development flows from the site are shown below and were calculated using HEC-HMS for the 2, 10 and 100-year storm events. Existing and proposed hydrographs were calculated using the 24-hour SCS Type II rainfall distribution. Given the size of the site, all times of concentration were set a minimum of 5 minutes, the defined minimum per Section 5600.

HYDROLOGIC/HYDRAULIC ANALYSES

Existing Conditions Analysis

The existing site is an undeveloped parcel of land that consist of native vegetation. The site is bounded by SE Battery Drive to the west, The Village Cooperative Apartments to the north, undeveloped property to the east, and SE Blue Parkway to the South. Currently, Blue Parkway lies within MoDOT's US-50 right of way.

The existing drainage for the site is split by a ridge into two outfalls, "A" and "B". The east section drains to outfall "A" and the west section drains to outfall "B". Outfall "A" drains northwest over the curb into the gutter. The gutter drains to an existing public curb inlet on Battery Drive. Outfall "B" drains overland to the northeast. This area drains over the back of the curb to an existing storm structure in the parking lot of the Village Cooperative Apartments.

South of the property there is an existing ditch that lies within US-50 right of way. The ditch drains run-off from Blue Parkway. There is no curb and gutter on Blue Parkway, just a graveled shoulder that allows run-off to drain into the existing ditch. There is an existing 18x24 arch culvert that drains to the ditch from under Battery Drive flows east along the north side of Blue Parkway.

As stated previously, there is an undeveloped lot to the east of the property that is owned by Richard D. Link. Mr. Link is also the person who sold Lot 2, Magnolia place to MCPL. The proposed development did not require all of the property for Lot 2. The east 81' of the property was excluded from the sale and remains the property of Richard D. Link. The proposed drive from the south will be a common access drive that will serve both the MCPL property and the future developed lot to the east. The east half of this drive will be constructed on the undeveloped lot under a mutual understanding with Mr. Link.

This property generally drains to the east to an existing swale away from the library property. None of this area drains to the proposed collection system for the library.

For the purposes of the drainage calculations moving forward this area will be included, therefore the studied area will increase from 3.8 acres to 4.5 acres.

A composite curve number was generated for the site by referencing the Web Soil Survey available in Appendix C, APWA Section 5600 and considered the following factors:

- Existing impervious area
- Existing pervious area
- Hydrologic soil group

The following tables summarize the pre-development composite curve number generation.

Table 1: Pre-Development Curve Number Analysis

Sub-Area	Area (AC)	Soil Group	Curve Number
Pasture (Good)	3.0	С	74
Pasture (Good)	1.5	С	74

The existing peak discharge rates for the 2-year, 10-year, and 100-year storm events from the site are shown in Table 2 below:

Table 2: Existing Peak Flows

Sub-Area / Outfall	Area (acres)	Q (2-Year Storm) (cfs)	Q (10-Year Storm) (cfs)	Q (100-Year Storm) (cfs)
Α	3	4.8	7.4	12.8
В	1.5	2.4	3.6	6.4

Proposed Conditions Analysis

The proposed Public Library will include a 18,500 SF library with associated parking lots, landscaping, grading, and utilities. A site plan has been included in Appendix A. The site will generally continue to drain in the same pattern as existing. Drainage from the site will

enter into an enclosed storm sewer system that will be constructed with the development. The proposed system will collect drainage from the parking area and building. The increase in impervious area will increase runoff from the site. To mitigate the increase in runoff, the following strategy will be implemented.

The site will be graded so that Drainage Areas A & B, noted in the Existing Conditions, will drain north and directed into a detention basin. A proposed drainage map is included in Appendix A.

A post-development composite curve number was generated using the same methodology implemented during the pre-development curve number analysis. Table 3 below summarizes the post-development composite curve number generation.

Table 3: Post-Development Curve Number Analysis

Sub-Area	Area (AC)	Soil Group	Curve Number
Pavement, Buildings, Impervious	2.0	С	98
Turf (Good)	2.5	С	85

A peak flow analysis of the post-development site was conducted using HEC-HMS, the composite curve number, and rainfall and distribution information acquired from APWA section 5600. Post-development peak to the outfall are summarized in the Table 4. Detailed reports from HEC-HMS are available in Appendix D

Table 4: Proposed Peak Flows

Sub-Area / Outfall	Tributary Area	Q (2-Year Storm)	Q (10-Year Storm)	Q (100-Year Storm)
	(acres)	(cfs)	(cfs)	(cfs)
Detention Basin	4.5	13.7	21.1	33.4

The existing ditch to the south will remain essentially unchanged. The drainage area, for the ditch, lies within the existing right of way. An embankment will need to be constructed across the ditch for the southern entrance. A culvert will be installed under the entrance to

maintain flow in the ditch. The 30" culvert will receive the flow from the existing 18x24 (24" equivalent) local drainage from Blue Parkway.

Stormwater Detention Requirements

One proposed detention pond will be utilized to mitigate the increase in flow due to an increase in impervious area. The Detention Basin will be located on the northern part of the property. It will collect runoff from the 4.5-acre property. The pond has an outlet pipe that connects to an orifice plate within a junction box structure that will be within the dam.

The outlet for the detention basin will be a flared end section with a trash rack connected by a 15" pipe to a control structure. The control structure will have an internal control plate. The control plate will have a series of 6 - 1" holes arranged in a single vertical row beginning at Elevation 1006.5. There will be a 2.4 foot weir located at Elevation 1008.75.

The series of 1" vertical holes are designed for the water treatment requirements. the water quality volume (WQv) will be controlled by the vertical holes at the bottom of the plate. The 1" holes will release the water quality volume over a 40-hour period to allow pollutants to settle out of this precipitation event.

The weir will be located above the WQv surface elevation and will control the release of the 2, 10 and 100-year storm events. These storms have been analyzed through the control structure and will release below the pre-existing storm events and below the Comprehensive Control release rates defined in APWA section 5600. The dam will have an emergency spillway to control the 100-year overflow should the outlet become blocked.

Table 5 provides the water surface elevations (WSE's) and peak flows for the proposed detention basin.

Table 5: Detention Basin, WSE's and Peak Flows

Description Description	Statistics
Bottom of Basin	1006.70
Bottom of Basin	1000.70
Total Storage Volume	1.2 ac-ft
Emergency Spillway	
(IE, 100-Yr WSE)	1011.12, 1011.75
Top of Dam Elevation	1012.20
WQv Perf. Plate	1003.30, 1" Vertical Holes 4" C to C
(IE Elevation, Perf and Spacing)	(15 – Holes)
Water Quality Volume	
WSE, Storage, Peak Outflow	1008.85, 0.3 ac-ft, 1.4 cfs
2 nd Stage Weir	
(IE, Width)	1008.85, 2.40 ft
10-Year Storm	
WSE, Storage, Peak Outflow	1009.46, 0.42 ac-ft, 4.6 cfs
100–Year Storm	
WSE, Storage, Peak Outflow	1010.10, 0.65 ac-ft, 11.9 cfs

Table 6 shows the overall peak flows for the site for both pre and post-construction. In addition, it also shows the allowable Comprehensive control release rate. Note that peak flow for post-construction has been lowered in all storm events.

Table 6: Peak Flow Change Analysis

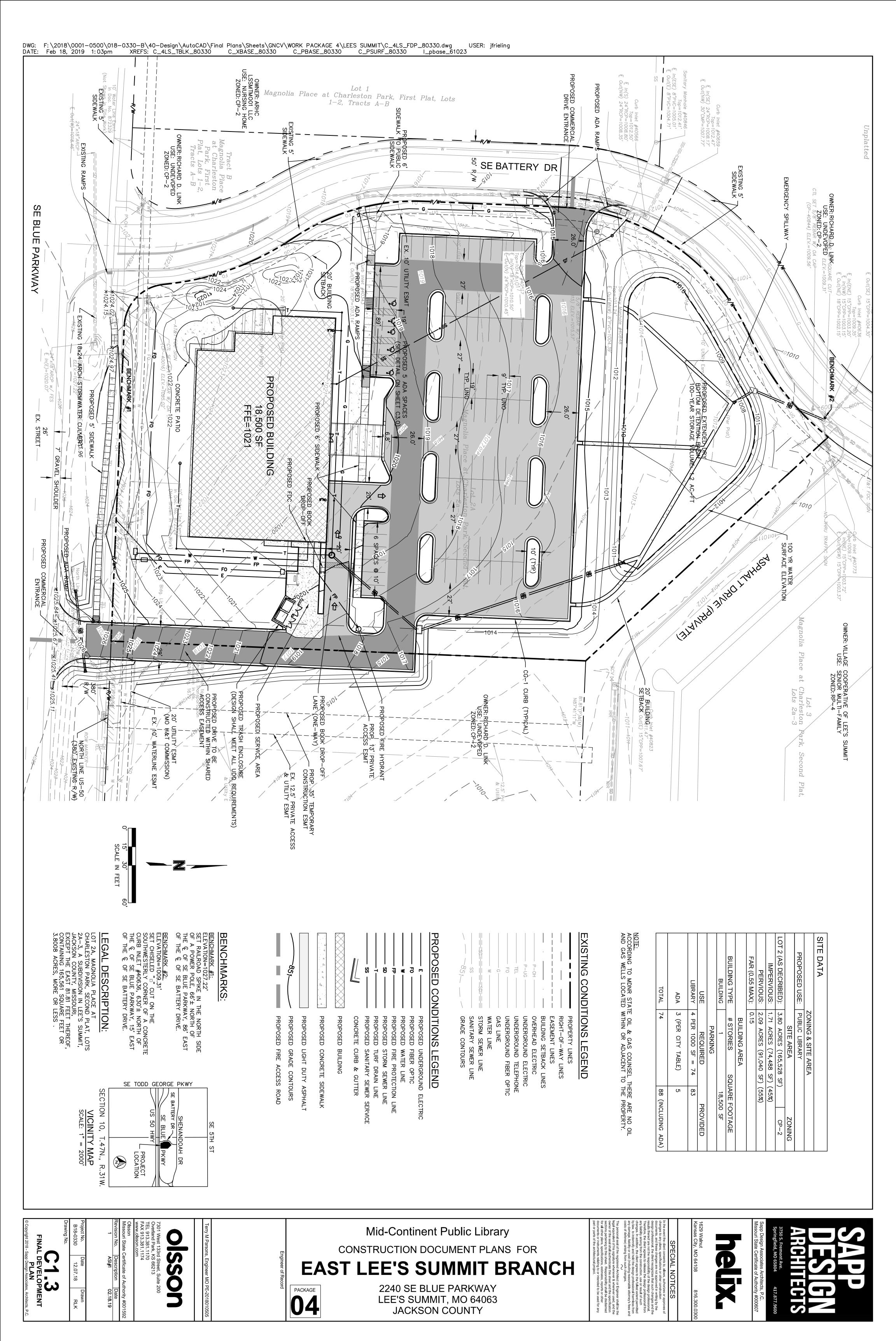
Site	Q (2-Year Storm) (cfs)	Q (10-Year Storm) (cfs)	Q (100-Year Storm) (cfs)
Pre-Construction	7.2	11	19.2
Section 5600 Allowable Comprehensive Release Rate	2.3 (0.5 cfs per acre)	9 (2.0 cfs per acre)	13.5 (3.0 cfs per acre)
Post Construction	1.4	4.6	11.9
Post Const Less Than Allowable	Yes	Yes	Yes

STORMWATER TREATMENT REQUIREMENTS

As stated previously, the proposed detention is designed to act an extended dry bottom detention facility will be used to treat stormwater per MARC water quality standards. The orifice plate for the basin will be sized to release the water quality volume (1.37") over a 40-hour period to allow pollutants to settle from runoff before entering the public stormwater system. The maximum storage for the water quality event in the basin will be 0.3 acre-ft reaching a peak water surface of elevation 1008.85 feet.

CLEAN WATER ACT SECTION 404 PERMITTING REQUIREMENTS

No jurisdictional Waters of the United States have been identified on the study site. Therefore, a Section 404 permit is not required.

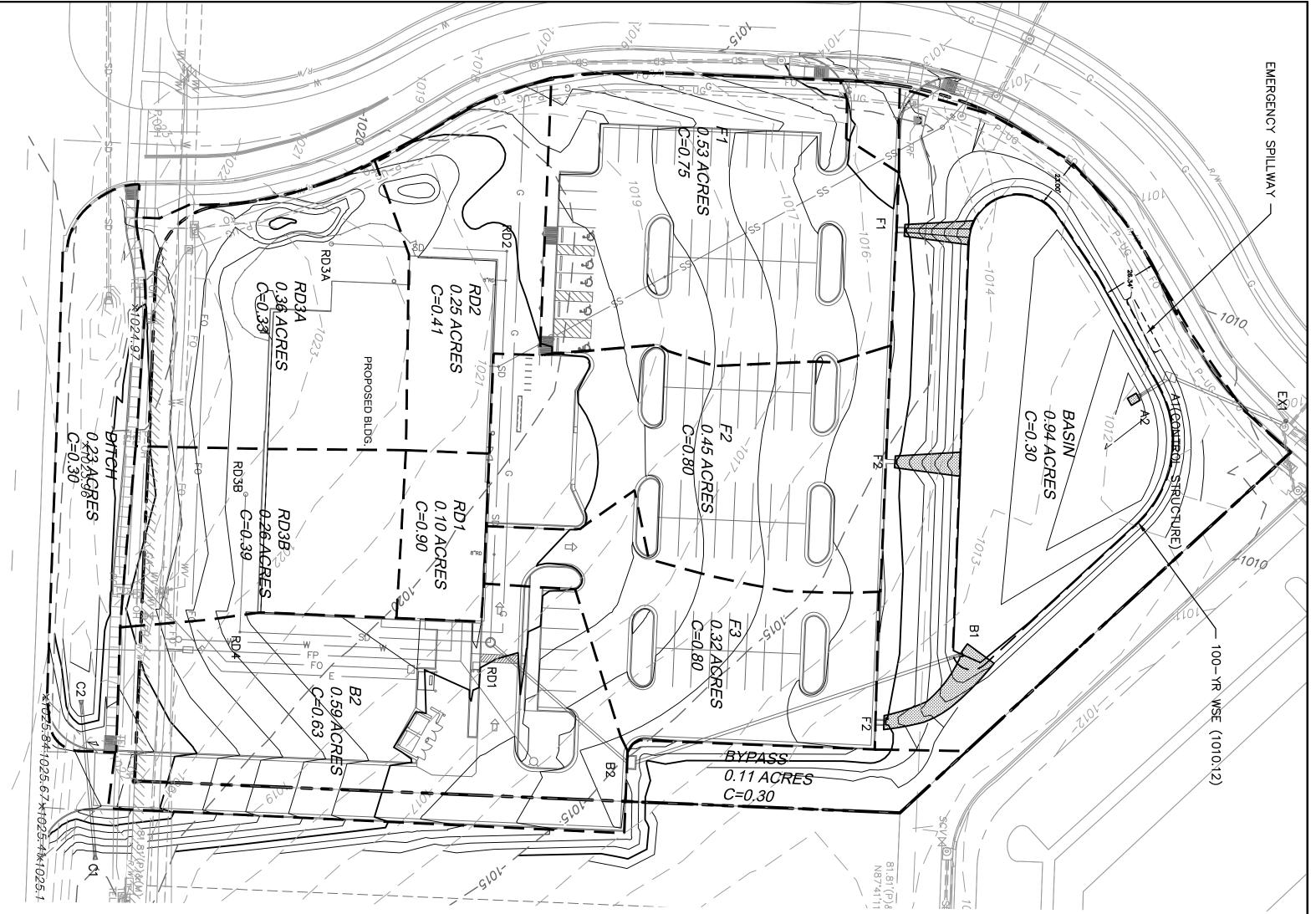

FEMA/DWR PERMIT REQUIREMENTS

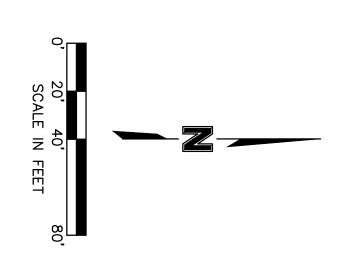
No FEMA permitting or submittals will be required on this site because there are no FEMA delineated floodplains on the site. A copy of the FIRM map for this area has been included in Appendix B.

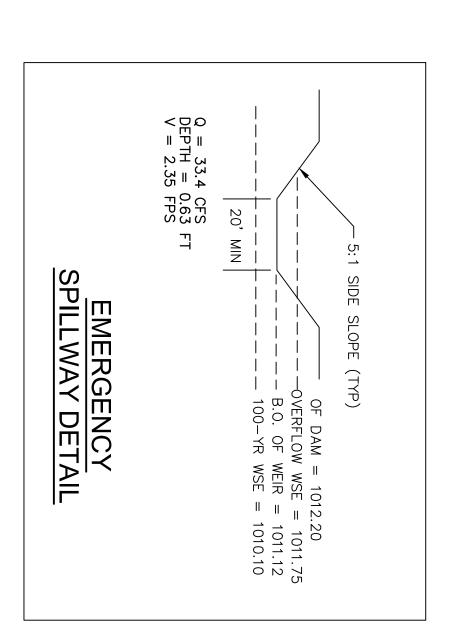
CONCLUSIONS AND RECOMMENDATIONS

As outlined in the preceding report, increased runoff rates in the post-development conditions are mitigated by the detention basins. Drainage patterns on the site remain relatively unchanged. An extended dry detention basin has been designed to maintain or improve storm water quality. Based on these facts and other information provided herein, we request that this stormwater study be approved.

Appendix A Map Exhibits




2240 SE BLUE PARKWAY

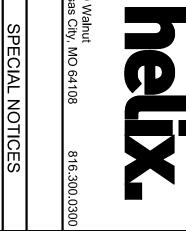

LEE'S SUMMIT, MO 64063

JACKSON COUNTY

PACKAGE

F3	F2	77		RD4		RD3B		B2		RD1		RD2	XUSA	3	FROM		STRUCTURES RUNOFF	DESIGN CON	JOB #: 017-1488	STORM SEVER FIFE AND STRUCTORE TABLE	STORM SEWER			F3	F2	1		í	RD4	RD3B		02	3	RD1		RD2		RD3A	FROM	STRUCTURES RUNOFF CALCULATIONS	DESIGN CON	JOB #: 017-1488
BAS	BAS	BAS	2	2	RD4		<u> </u>	1	B2		공	Ś	RP3	5	7		RES	DITIONS:	SOUMINITE					BAS	BAS	BAS		P.	<u>3</u>			쩐	2	3	RD1		RD2		٦ 	RES	DITIONS:	
0.32	0.45	0.53		0.00		0.26		0.59		0.10		0.25	0.30	0)		DIRECT TO	TOO TEAT	100 VEAE	ָּהָלָאָלָאָלָז מאָלָאָלָז	המטכו כאוו				0.32	0.45	0.53				0.26		0.08		0.10		0.25		\dashv	DIRECT TO AREA A (ACRES) (AC	_	10 YEAR	
0.32 0.80	0.45 0.80	0.53 0.75	0.26	-	0.26 0.39	0.39	1.56 0.6	0.63	0.97 0.53		0.61 0.42	+	0.36 0.33	(ACKEO)	AREA C	TOTAL :	R	MOOTS		ABLIT				0.32 0.80	0.45 0.80	0.53 0.75	Н	0.26 0.39	0.26 0.39			1.56 0.67	0.97	0.90	0.61 0.42		0.36 0.33	0.33	AREA C	Z)	STORME	
1.00	1.00	5 0.94	0.49	+	Н		$^{+}$	0.79			+	+	0.41	+	(K=1.25)	-		IVENT						0.80	0.80	5 0.75	Н	+		0.39	H	7 0.67	+	0.90	T	0.41	H	0.33	KC (K=1.00)	UNOFF C	VENT	
5.0	5.0	5.0	3.0	5.0		5.0			5.0				J. O.	t	(MIZ)		RUNOFF CALCULATIONS							5.0	5.0	5.0		+	y 0	5.0		5.0		5.0		5.0	H	5.0	(MIN)	ALCULATI		
7.35	- 7.35	- 7.35	- 7.35	7.35	- 7.35	7.35	7.35	- 7.35	- 7.35	- 7.35	- 7.35	735	735	(VIIIA)	TIME (IN/HR)		SNO							- 7.35	- 7.35	7.35			7.35	- 7.35			7.35			- 7.35	- 7.35	- 7.35	TIME INTENSITY (MIN) (IN/HR)	ONS		
2.35	3.31	3.65	U.SS			0.93		3.41				+	1.08	T	R) CFS)	_						-		1.88	2.65	2.92			0.75			7.68					0.87	0.87	R) DESIGN Q	-		
				ADS E		ADSE						ADSE	AUG II	•	£)													A D S E	ADS E						ADS E		ADS E	<u> </u>			
FLUME	FLUME	FLUME	8 E. E.	ADS BASINS/ROOF DRAINS	8 in. HDPE	ADS BASINS/ROOF DRAINS	18 m. HDPE	CURB INLET	15 in. HDPE	JUNCTION BOX	12 in. HDPE	ADS BASINS/ROOF DRAINS	AUG BASING/ROOF DRAING	ACINICIDAD	DESCRIPTION									FLUME	FLUME	FLUME		8 in. HDPE	ADS BASINIS/ROOF DRAINS	ADS BASINS/ROOF DRAINS		18 in, HDPE		JUNCTION BOX	10 in. HDPE	ADS BASINS/ROOF DRAINS	8 in. HDPE	ADS BASINS/ROOF DRAINS	DESCRIPTION			
				FDRAINS	m	F DRAINS		i " 	mੱ	3OX	m	F DRAINS	TUKAINO		9 N													m ·	F DRAINS	F DRAINS		ď"	1110	i sox	Ĭ	F DRAINS		F DRAINS	ON.			
			123.00	Ŝ	67.00		1/3.65	2	92.14		193.00	000	88 00	(F.F.)		PIPE												125.00	67.00			173.65	92.14	3	193.00		88.00	1	(L.F.)			
			1.00		1.00 8		1.00		4.00 15		1.00 12	+	200	(%)		PIPE PIPE												1.00 8	1.00			1.00	4.00	+	1.00 10	Н	1.00 8	_	SLOPE PIPE	4		
			1.21		1.21		10.53	+	12.95		2 3.57	+	3		(CFS)	\dashv												1.21	1.21			10.53	08.71	+	2.20	Н	1.21		A (CFS)			
			0.33	2	0.35		1.//		1.23		0.79	9	0.33	(34.71.)		PIPE ,												0.35	C. 35			1.77	1.23	+	0.55		0.35		AREA (SQ.FT.)			
			3.47		3.47 3.	+	5.96		10.56		4.55 4.	-	3 47		(F/S) V (0.0	STOR						3.47 3.	3.47	,		5.96	90.00	,	4.03 4.		3.47 3.		V FULL DES	_		
			3.84 1.10	+	3.84 1.10		6.74 1.45	+	9.72 1.14		.86 1.03	+	1 25		V (F/S) HW/D	5					0 0	MISEWER						3.64 0.94	0.94	-		6.50 1.17	. US./	+	4.53 1.24	Н	.80 1.04		DESIGN V (F/S) Hw/D	_		
				1020.20		1020.20		1017.86		1020.20		1020.20	1020.20	3	ELEVATION	1						PIPE AND							1020 20	1020.20		1017.00	1017 86	1020.20		1020.20		1020.20	MH TOP ELEVATION			
			1016.01		1016.70		1011.72		1015.72		1015.82	0.00	1016 70	-	FLOWLINE	_					0170010	STRUCTU						1016.01	1016.70			1011.72	77.6101	1015	1015.82		1016.70		UPSTREAM FLOWLINE	_		
			1014.76		1016.01		1009.98		1012.02		1013.89	+	1015.82		E FLOWLINE	-1:	PIPE DESIGN				ָרְ - ֻּרְ רַ - ַּרְ	STORM SEWER PIPE AND STRUCTURE TABLE						1014.76	10.9101			1009.98	70.7101		1013.89		1015.82		M DOWNSTREAM E FLOWLINE	PIPE DESIGN		
					101							1					2					-																				
		_	1017.82	1 20	1016.68		1010.12		1017.82		1013.90	000	1016 85	ברעא ווכוע בר		DOWNSTREAM												1017.54	1016.59)		1009.52	1017.54	7 .	1013.48		1016.85		DOWNSTREAM F WATER H	_		
			C. /o	3	0.40		1.4/	ì	0.50		0.85	Ġ	0 73		HEAD (h f)	-												0.48	0.26			0.94	0.32	3	1.45		0.47		FRICTION HEAD (h f)	_		
			0.40	5	1.00		0.50	9	0.30		0.40		100	8	COEFFICIENT	ENTRY LOSS												0.40	1.00			0.50	0.30	3	0.40		1.00	3	ENTRY LOSS COEFFICIENT (k)			
			1.00	3	1.00		0.50	0	0.30		0.40		100	[VOO (K)		ACTUAL												1.00	1.00			0.50	0.30	2	0.40		1.00		LOSS (K)	1		
			0.23	3	0.23		0.35		0.44		0.15	11:0	0.24	+	LOSS (h m)]												0.21	0.21			0.33	0.38	3	0.13		0.22		ENTRY LOSS (h m)			
			0.98	8	0.63		1.82		0.94		1.00	9	0.97	T) (FT) (FT)	-												0.69	0.46			1.27	9.71	2	1.57		0.69		hf+hm (FT)			
			1016.74	1010	1017.43		1013.90		1017.15		1016.85		1017 54		CONTROL]												1016.64	1017.33			1013.48	1016.94	200	1016.85		1017.40		HW, INLET			
			1018.80		1017.31		1011.94		1018.76		1015.82	10.7	1017 82	CONTROL		HW.												1018.23	301.7101			1011.72	C7.91.01	200	1015.82		1017.54		OUTLET CONTROL			
				1018.80		1017.43		1013.90		1018.76		1016.85	1017.02	1017 03	GRADE	HYDRAULIC														1017.33		1013.40	1013 /8	1018.25		1016.85		1017.54	HYDRAULIC GRADE ELEV:	_		
				1019.20		1019.20		1016.86		1019.20		1019.20	1018.20	10100		HYDRAULIC														1019.20		1010.00	1016.88	1019.20		1019.20		1019.20	GRADE (MAX)	-		
													1																								 					
							END SEC	1							8																	END SEC							δ			
							END SECTION TO BASIN								Comments																	END SECTION TO BASIN							Comments			
							SIN																									ž										
																																					Ш					

DRAINAGE PLAN	Drawing No.	Project No. Date Drawn R	1 ASI#1 02.18.	Revision No. Description Date	Olsson Missouri State Certificate of Authority #001592	7301 West 133rd Street, Suite 200 Overland Park, KS 66213 TEL 913.381.1170 FAX 913.381.1174 www.olsson.com	olssor	
AZ		Drawn RLK	02.18.19	Date	ority #001592	00	Š	

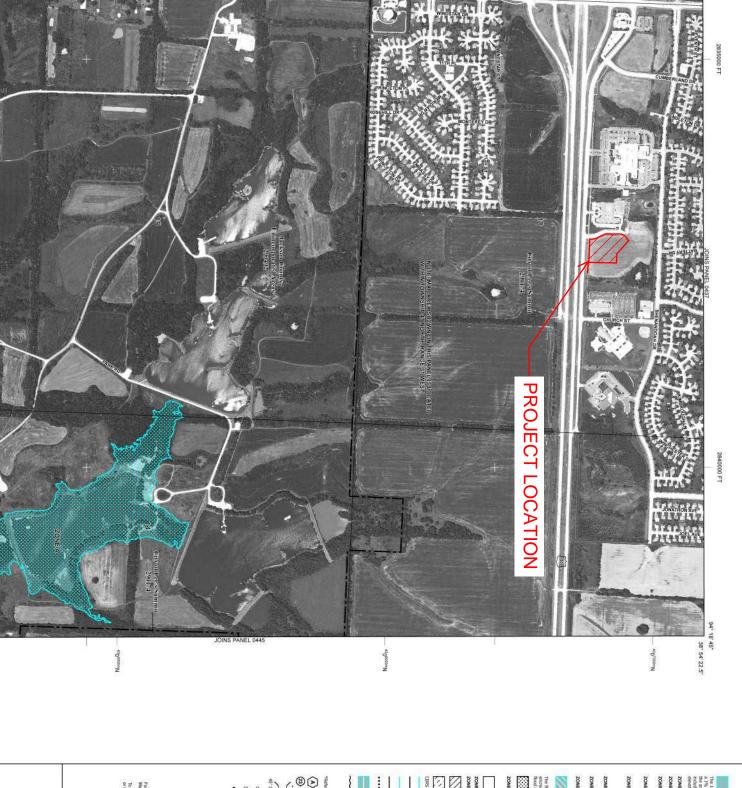

Mid-Continent Public Library

CONSTRUCTION DOCUMENT PLANS FOR

EAST LEE'S SUMMIT BRANCH

PACKAGE 04

2240 SE BLUE PARKWAY LEE'S SUMMIT, MO 64063 JACKSON COUNTY


Appendix B
FEMA Flood Classification Firm

NOTES TO USERS

more debiled information in areas where Base Flood Elevations (BEEs) obellays have been determined, users are encouraged to consult the Flood of Floodsay Data and/or Summary of Stellusers Elevations tables contained to the summare, Sully (FIS). Report that accompanies this FIRM. Users is mare that after a short or the FIRM represent contained whose-foot that the summare sully (FIS). Report that companies this FIRM. Users are mare that BEEs above or those IRMs represent and purposes only and the used as the sole source of flood devasion information. According to the used as the sole source of flood devasion information. According the sole of the sole source of flood devasion information. According the sole of the sole source of flood devasion and the sole of the sole of the sole of the sole of the to purpose of construction and/of floodalpian makeginerist.

aries of the **floodways** were computed at cross sections and interpolated in cross sections. The floodways were based on hydrautic considerations with to requirements of the National Flood insurance Program. Floodway widths the perfinent floodway data are provided in the Flood insurance Study Report jurisdiction.

All developes on this map are references as a file. These focus developes must be compensed to seenced to the same vertical datum. For information the National Geodetic Vertical Datum of the National Geodetic Vertical Datum of 1988, visit the National critical Datum of 1988, visit the National of National (

SPECIAL FLOOD HAZARD AREAS (SHWA) SUBJECT TO MUNICIPAL FLOOD HAZARD AREAS (SHWA) SUBJECT TO MUNICIPAL FLOOD BY THE 1% ANNIAL CHANCE FLOOD TO 1% A fine floot that has 1% chance of being qualled or exceeded in any given year. The Special Floot Hazard Area of the area staject to flooting by the 1% annual chance floot, described Special Floot Hazard is the area staject to flooting by the 1% annual chance floot, described alone, A,C, AH, AO, AA, AM, V, and VL. The black floot Expedition is the water-unfoce develope of the 1% areas of the 1% areas floot Expedition is the water-unfoce develope of the 1% areas floot Expedition is the water-unfoce develope of the 1% areas floot Expedition is the water-unfoce develope of the 1% areas floot Expedition in the 1

lood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevations otherwined.

picked Frod Festel Await formety protected from the 1% annual chance from the 1 fixed cozenal period must be as changed from the 2 fixed cozenal period from the 1 fixed cozenal period from the 1 fixed cozenal period from the 1 fixed must be formed from correct algorithm from the 1 fixed and chance or period from the 3 fixed chance for period from the 1 fixed chance for period from the 3 fixed chance for period chance from 1 fixed changed from 1 fixed fro oastal flood zone with velocity hazard (wave action); Base Flood Elevations etermined. lood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average lepths determined. For areas of alluvial fan flooding, velochtes also determined.

FLOODWAY AREAS IN ZONE AE

The floodowy is the channel of a statum plus any algoose floods an erea shat must be kept fine at the consultant so that the 1% annual chance flood can be carried without substantial increases in that heapths.

OTHER FLOOD AREAS OTHER AREAS Areas determined to be outside the 0.2% annual chance floodplain. Areas in which flood hazards are undetermined, but possible. Areas of 0.2% amual chance flood; areas of 1% amual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% amual chance flood. rally located within or adjacent to Special Flood Hazard Areas 1% Annual Chance Floodplain Boundary

(8) COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS 5" 02' 08", 93" 02' 12" DX5510 X ~ 5/3~~~ OTHERWISE PROTECTED AREAS (OPAs) sity map revision history prior to countywide mapping, refer to the Community table located in the Flood Insurence Study report for this jurisdiction. EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL lanuary 20, 2017 - to change Special Flood Hazard Areas. Geographic coordinates referenced to the North Anie L950 (No.) Silv. Western Herisciptere 5000 Foot table. Historia Stafe Place West Zone (FIPS Zone Z.A.O.), Trainsverse Mercatin projection Bench mark (see explanation in Micras to Users section power). Esse Flood Elevation line and value; elevation in feet*
Rise Flood Elevation value where uniform within zone; elevation in feet.* EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP September 29, 2006 Boundary dividing Special Flood Hazard Area Zones and boundary dividing Special Flood Hazard Areas of different Base Flood Elevations, flood depths, or flood velocities. etical Datum of 1968

MAP SCALE 1" = 500' PANEL 0439G

NATIONAL FLOOD INSURANCE PROGRAM FLOOD INSURANCE RATE MAP JACKSON COUNTY,
MISSOURI
AND INCORPORATED AREAS PANEL 439 OF 625 (SEE MAP INDEX FOR FIRM PANEL LAYOUT) NEAMBER 290482 290174 PANEL SUFFIX

Notice to User. The Map Number shown below should be used when placing map orders; the Community Number shown above should be used on insurance applications for the subject community.

MAP NUMBER 29095C0439G MAP REVISED JANUARY 20, 2017

Federal Emergency Management Agency

Appendix C Soil Map

MAP LEGEND

Soils Area of Interest (AOI) Special Point Features Landfill Borrow Pit Marsh or swamp Lava Flow Gravelly Spot Gravel Pit Closed Depression Clay Spot Blowout Soil Map Unit Points Soil Map Unit Lines Soil Map Unit Polygons Area of Interest (AOI) Background Water Features Transportation ŧ 8 W 4 Rails Stony Spot Other Very Stony Spot Local Roads US Routes Interstate Highways Streams and Canals Special Line Features Wet Spot Aerial Photography Spoil Area Major Roads

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Jackson County, Missouri Survey Area Data: Version 18, Sep 16, 2017

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Jun 11, 2017—Sep 22, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Slide or Slip Sodic Spot Severely Eroded Spot

Mine or Quarry
Miscellaneous Water
Perennial Water
Rock Outcrop
Saline Spot
Sandy Spot

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
10082	Arisburg-Urban land complex, 1 to 5 percent slopes	3.3	79.5%
10180	Udarents-Urban land-Sampsel complex, 2 to 5 percent slopes	0.9	20.5%
Totals for Area of Interest	'	4.2	100.0%

Jackson County, Missouri

10082—Arisburg-Urban land complex, 1 to 5 percent slopes

Map Unit Setting

National map unit symbol: 2w7ld Elevation: 750 to 1,130 feet

Mean annual precipitation: 39 to 45 inches Mean annual air temperature: 50 to 55 degrees F

Frost-free period: 177 to 220 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Arisburg and similar soils: 61 percent

Urban land: 30 percent Minor components: 9 percent

Estimates are based on observations, descriptions, and transects of

the mapunit.

Description of Arisburg

Setting

Landform: Interfluves

Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex Parent material: Loess

Typical profile

Ap - 0 to 6 inches: silt loam A - 6 to 13 inches: silt loam

Bt - 13 to 19 inches: silty clay loam

Btg - 19 to 56 inches: silty clay loam

BCg - 56 to 79 inches: silty clay loam

Properties and qualities

Slope: 1 to 5 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat poorly drained

Capacity of the most limiting layer to transmit water (Ksat):

Moderately high (0.20 to 0.60 in/hr) Depth to water table: About 18 to 30 inches

Frequency of flooding: None Frequency of ponding: None

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0

to 2.0 mmhos/cm)

Available water storage in profile: High (about 11.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C

Ecological site: Loess Upland Prairie (R107BY007MO)

Hydric soil rating: No

Description of Urban Land

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8

Hydric soil rating: No

Minor Components

Sharpsburg

Percent of map unit: 3 percent

Landform: Ridges

Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Down-slope shape: Linear Across-slope shape: Linear

Ecological site: Loess Upland Prairie (R109XY002MO)

Hydric soil rating: No

Sampsel

Percent of map unit: 3 percent

Landform: Hills

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Concave

Ecological site: Interbedded Sedimentary Upland Savanna

(R109XY010MO)

Hydric soil rating: Yes

Greenton

Percent of map unit: 3 percent

Landform: Hillslopes

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Ecological site: Loess Upland Prairie (R109XY002MO)

Hydric soil rating: No

Data Source Information

Soil Survey Area: Jackson County, Missouri Survey Area Data: Version 18, Sep 16, 2017

Jackson County, Missouri

10180—Udarents-Urban land-Sampsel complex, 2 to 5 percent slopes

Map Unit Setting

National map unit symbol: 1n85h

Elevation: 600 to 900 feet

Mean annual precipitation: 33 to 43 inches Mean annual air temperature: 50 to 57 degrees F

Frost-free period: 175 to 220 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Udarents and similar soils: 41 percent

Urban land: 39 percent

Sampsel and similar soils: 15 percent

Estimates are based on observations, descriptions, and transects of

the mapunit.

Description of Udarents

Setting

Landform position (two-dimensional): Summit Landform position (three-dimensional): Crest

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Mine spoil or earthy fill

Typical profile

C1 - 0 to 5 inches: silt loam C2 - 5 to 80 inches: silty clay loam

Properties and qualities

Slope: 2 to 5 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat poorly drained

Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.14 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0

to 2.0 mmhos/cm)

Available water storage in profile: Moderate (about 9.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: C

Ecological site: Deep Loess Upland Prairie (R107BY002MO)

Other vegetative classification: Mixed/Transitional (Mixed Native

Vegetation)

Hydric soil rating: No

Description of Urban Land

Setting

Landform: Interfluves

Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Across-slope shape: Convex

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8

Hydric soil rating: No

Description of Sampsel

Setting

Landform: Hillslopes

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Convex

Parent material: Residuum weathered from shale

Typical profile

Ap - 0 to 13 inches: silty clay loam Bt - 13 to 80 inches: silty clay

Properties and qualities

Slope: 2 to 5 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat poorly drained

Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 0 to 18 inches

Frequency of flooding: None Frequency of ponding: None

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0

to 2.0 mmhos/cm)

Available water storage in profile: Moderate (about 8.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C/D

Ecological site: Wet Footslope Prairie (R112XY041MO)
Other vegetative classification: Grass/Prairie (Herbaceous

Vegetation)

Appendix D

Drainage and Detention Calculations

MCPL EAST LEE'S SUMMIT - DRAINAGE CALCULATIONS

F3	F2	F1	RD4	D 73B	B2	RD1	RD2	RD3A	FROM	STRUC	JOB #: 017-1488	TITLE: EAST			F3		F2	F1		RD4	RD3B		B2	2	2	RD2	RD3A	FROM	STRUC	JOB #: 017-1488	STORM SEV	
BAS	BAS	BAS	RD4		B1 F	B2	RD1	RD2	ТО	STRUCTURES	488	TITLE: EAST LEES SUMMIT LIBRARY			BAS		BAS	BAS	RD1	į	RD4	53		B2	RD1	200		ТО	STRUCTURES	488	STORM SEWER PIPE AND STRUCTURE TABLE	
0.32	0.45	0.53	0.00	96.0	0.59	0.10	0.25	0.36	S) T			LIBRARY			0.32		0.45	0.53		0.00	0.26		0.59	0.10	2	0.25	+	DIRECT AREA (ACRES)	: 10 YEAR STORM		STRUCTURE	
0.32 0.80	0.45 0.80	0.53 0.75	0.26 0.39 0.26 0.39 0.26 0.39	1	Ш	0.90 0.97 0.53	+	0.33 0.36 0.33	AREA C (ACRES)	R		IABLE			0.32 0.80	Ш	0.45 0.80	0.53 0.75	0.26 0.39	Н	0.39	1.56 0.67	Н	0.97 0.53	0.61 0.42	0.30	+	TOTAL AREA C (ACRES)	STORMEV	31 1	TABLE	
100	30 1.00	75 0.94	39 0.49 39 0.49 39 0.49	+		30 1.13 0.66	\pm	33 0.41 33 0.41	÷	FF					0.80	Ħ	0.80	75 0.75	0.39	H	+	57 0.67	H	0.53	Ħ	11 0.41	+	KC (K=1.00)	RUNOFF C			
л О	5.0 -	5.0 -	5.0	л О	5.0 -	5.0 -	5.0 -	5.0 -	Tc TIME (MIN)	CALCULATIONS					5.0		5.0	5.0 -	5.0 -	5.0	5.0 -	5.0 -	5.0 -	5.0	5.0 -	5.0	╁	Tc FLOW (MIN) (MIN)	CALCULATIONS	_		
7.35	7.35	7.35	7.35 7.35 7.35	7 25	7.35	7.35 7.35	7.35 7.35	7.35 7.35	(E E	SNS					7.35		7.35	7.35	7.35	7.35	7.35	7.35	7.35	7.35	7.35	7.35	1 7	W INTENSITY IE (IN/HR)	SNS			
2 35	3.31	3.65	0.93 0.00 0.93	0.03	3.41 9.60	0.83 4.72	0.94 2.35	1.09	DESI (C	-					1.88		2.65	2.92	0.75	0.00	0.75	7.68	2.73	3.78	1.88	0.75	0.87	DESIGN Q (CFS)				
			ADS B/	ADG B			ADS B/	ADS B/			=									ADS B/	ADS B/					ADS B/	ADS B/					
EI LIME	FLUME	FLUME	8 in. HDPE 8 in. HDPE 8 in. HDPE	VEINIS/BOOE	CURB INLET	UNCTION BOX	ADS BASINS/ROOF DRAINS 12 in. HDPE	ADS BASINS/ROOF DRAINS 8 in. HDPE	DESCRIPTION						FLUME		FLUME	FLUME	8 in. HDPE	ADS BASINS/ROOF [ADS BASINS/ROOF DRAINS	18 in. HDPE	CURB INLET	15 in. HDPE	10 in. HDPE	ADS BASINS/ROOF DRAINS	ADS BASINS/ROOF DRAINS	DESCRIPTION				
			DRAINS	SINIC		×	DRAINS	ORAINS		_	=									DRAINS	DRAINS					RAINS						
			67.00 1 125.00 1		H	$\dagger \dagger$		88.00 1	PIPE P LENGTH SL (L.F.) (4	_								125.00 1		67 00 1	1/3.65		92.14 4	193.00 1	00.00	_	PIPE P LENGTH SL (L.F.) (
			1.00 8		H	+	-	1.00 8	SLOPE DIA (%) (IN)	1 H	_								1.00 8	H	100	1.00 18		4.00 15	1.00 10	0	+	PIPE PIPE SLOPE DIA (%) (IN)				
			1.21		10.53	12.95	3.57	1.21	Q FULL (CFS)										121	į	121	10.53		12.95	2.20	į.		Q FULL (CFS) (8				
			0.35 3.	+	H		+	0.35 3.	PIPE VF AREA (F. (SQ.FT.)	_									0.35 3.	H	0.35	1.// 5.	Н	1.23 10	0.55 4.	0.00	╁	PIPE V F AREA (F, (SQ.FT.)		_		
			3.47 3.84 3.47 3.84		++	10		3.47 3.94	V FULL DESIGN (F/S)				STORN						3.47 3.64		3 47 3 64	5.96 6.50		10.56 9.15	4.03 4.53	3.47	\vdash	V FULL DESIGN (F/S)				OLOKIN
			1.10		1.45	1.14	1.03	1.25	Hw/D				SEWER P						0.94		0.94	1.17	i	0.97	1.24	.04	2	Hw/D				SEWEK P
			1020.20	1020 20	1017.86	1020.20	1020.20	1020.20	z		_		STORM SEWER PIPE AND STRUCTURE TABLE							1020.20	1020.20		1017.86	1020.20	200	1020.20	1020.20	MH TOP L				PE AND SI
			1016.70		1011.72	1015.72	1015.82	1016.70	UPSTREAM FLOWLINE	<u> </u>			RUCTURE						1016.01		1016 70	1011.72		1015.72	1015.82	10.70	1016 70	UPSTREAM	P			STORM SEWER FIFE AND STRUCTURE TABLE
			1016.01 1014.76		1009.98	1012.02	1013.89	1015.82	DOWNSTREAM FLOWLINE	IPE DESIGN			[ABLE						1014.76		1016 01	1009.98		1012.02	1013.89	1013.02	1015 00	DOWNSTREAM FLOWLINE	IPE DESIGN			ABLE
			1016.68 1017.82		1010.12	1017.82	1013.90	1016.85	M DOWNSTREAM WATER ELEVATION	-									1017.54		1016 59	1009.52		1017.54	1013.48	1010.00	1016	M DOWNSTREAM WATER ELEVATION				
					H				-		_																			_		
			0.40	ł				0.73	FRICTION COEF	-	_								0.48		0.26	0.94		0.32	1.45	0.47		FRICTION COEF		_		
			1.00					1.00	COEFFICIENT E	1 🗀	=								0.40		000	0.50		0.30	0.40			ENTRY LOSS A COEFFICIENT E (k) L0				
			1.00		\mathbb{H}			1.00	ACTUAL ENTRY LOSS (k)										1.00		100	0.50		0.30	0.40	.00		ACTUAL EN ENTRY LOSS (k)				
			0.23 0.63 0.23 0.98		Н	0		0.24 0.97	ENTRY hf+hm LOSS (hm) (FT)		=								0.21 0.69		0.21 0.46	0.33 1.27		0.39 0.71	0.13 1.5	0.03	1	ENTRY hf+hm LOSS (hm) (FT)		=		
			53 1017.43 98 1016.74		\mathbb{H}		-	97 1017.54	h m HW, INLET T) CONTROL	-	-								39 1016.64		46 1017 33	2/ 1013.48		71 1016.94	.57 1016.85	1017.40	-	h m HW, INLET T) CONTROL		_		
			.43 1017.31 .74 1018.80	+	+	\pm	+	.54 1017.82	ROL CONTROL		=								.64 1018.23	H	33 1017 06	.48 1011.72	Н	.94 1018.25	.85 1015.82	.40		HW, ILET OUTLET ROL CONTROL		=		
			1018.80	$^{+}$	1013.90	1018.76	1016.85 32	1017.82	Ę	1 -									23		1017.33	/2	1013.48	25	Ħ	1016.85		HYDRAULIC ET GRADE OL ELEV.				
			+++		H			-	3																\Box			_ 				
			1019.20	00.00	1016.86	1019.20	1019.20	1019.20	ADE O												1019.20		1016.86	02.8101		1019.20	9.20	DRAULIC GRADE (MAX)		_		
					E E																	Г	!									
					END SECTION TO BASIN				Comments													END SECTION TO BASIN						Comments				
				Ĭ	OBASIN				, w													OBASIN						S				l

MCPL EAST LEE'S SUMMIT - ELEVATION AREA VOLUME TABLE AND STORAGE DISCHARGE TABLE

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Monday, 03 / 25 / 2019

Pond No. 1 - Dry Bottom Pond

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 1003.30 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	1003.30	00	0	0
0.70	1004.00	04	1	1
1.70	1005.00	04	4	5
2.70	1006.00	04	4	9
3.70	1007.00	160	63	72
4.70	1008.00	4,920	1,989	2,061
5.70	1009.00	14,260	9,184	11,245
6.70	1010.00	16,950	15,584	26,829
7.70	1011.00	18,940	17,934	44,763
8.70	1012.00	21,190	20,052	64,816

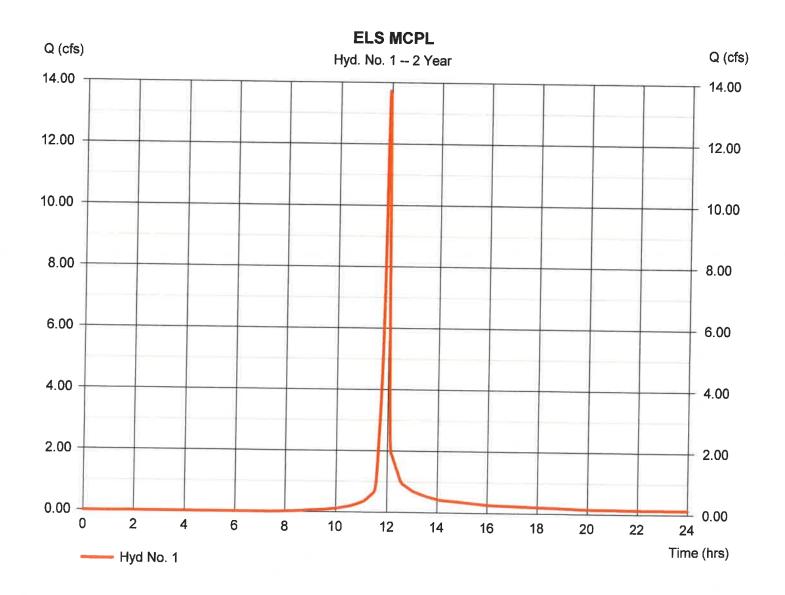
Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	Inactive	0.00	0.00	1.00	Crest Len (ft)	= 2.40	0.00	0.00	0.00
Span (in)	= 15.00	0.00	0.00	1.00	Crest El. (ft)	= 1008.85	0.00	0.00	0.00
No. Barrels	= 1	0	0	15	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 812.00	0.00	0.00	1003.30	Weir Type	= Rect			
Length (ft)	= 100.00	0.00	0.00	5.45	Multi-Stage	= No	No	No	No
Slope (%)	= 1.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage / Storage / Discharge Table

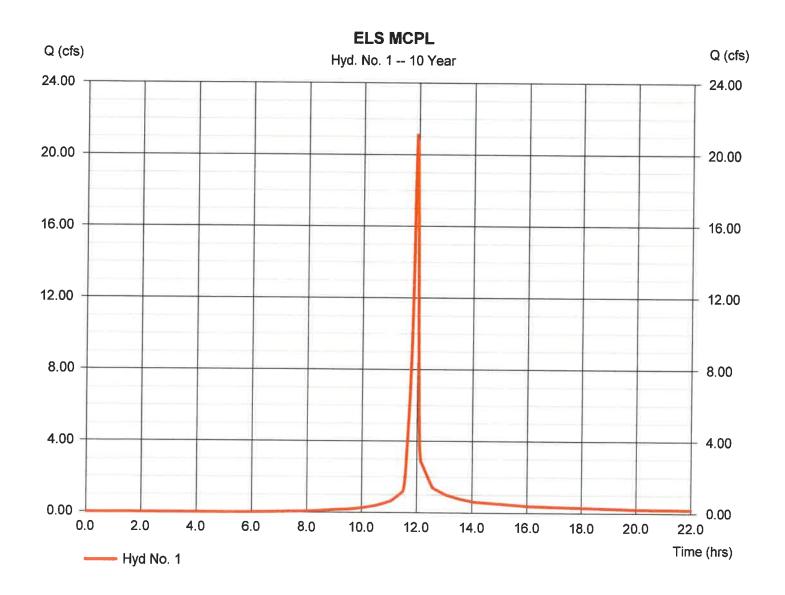

Stage ft	Storage cuft	Elevation ft	CIv A cfs	CIv B cfs	CIv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	1003.30				0.00	0.00						0.000
0.70	1	1004.00				0.03	0.00						0.028
1.70	5	1005.00				0.11	0.00						0.107
2.70	9	1006.00				0.21	0.00						0.214
3.70	72	1007.00				0.34	0.00						0.343
4.70	2,061	1008.00				0.49	0.00						0.491
5.70	11,245	1009.00				0.66	0.46						1.120
6.70	26,829	1010.00				0.84	9.86						10.69
7.70	44,763	1011.00				1.03	25.20						26.22
8.70	64,816	1012.00				1.24	44.68						45.92

Wednesday, 02 / 13 / 2019

Hyd. No. 1

ELS MCPL

Hydrograph type = SCS Runoff Peak discharge = 13.72 cfsStorm frequency = 2 yrs Time to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 27,834 cuft Drainage area = 4.500 acCurve number = 90 Basin Slope = 0.0 % Hydraulic length = 0 ftTc method = User Time of conc. (Tc) $= 5.00 \, \text{min}$ Total precip. = 3.27 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

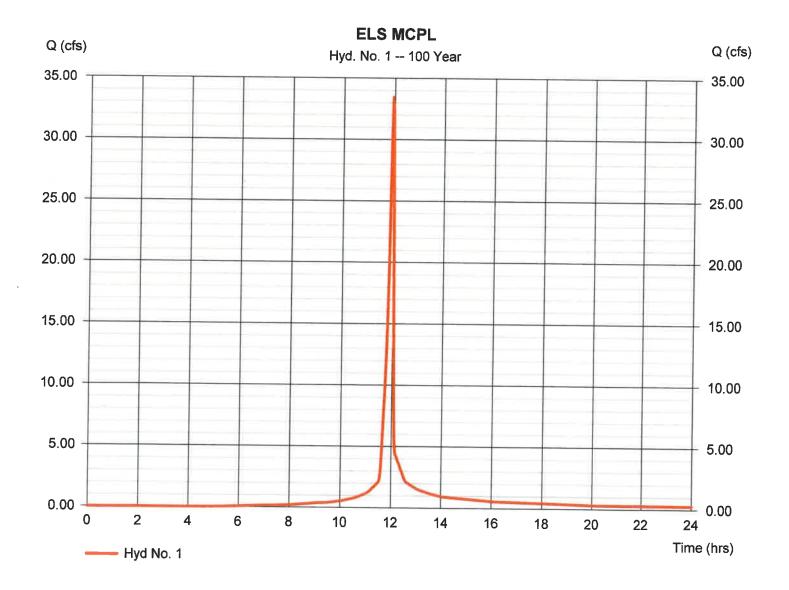


Wednesday, 02 / 13 / 2019

Hyd. No. 1

ELS MCPL

Hydrograph type	= SCS Runoff	Peak discharge	= 21.11 cfs
Storm frequency	= 10 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 43,436 cuft
Drainage area	= 4.500 ac	Curve number	= 90
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.42 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
			* '

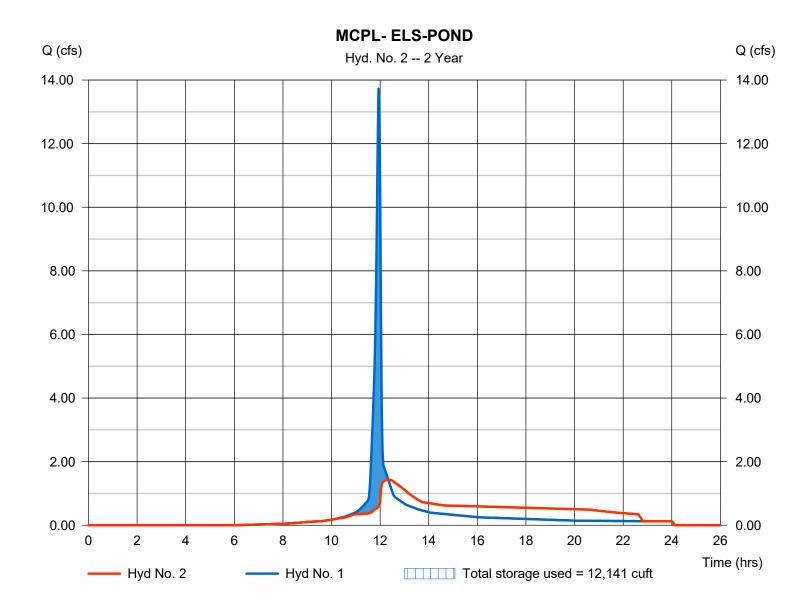


Wednesday, 02 / 13 / 2019

Hyd. No. 1

ELS MCPL

Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method Total precip. Storm duration	= SCS Runoff = 100 yrs = 2 min = 4.500 ac = 0.0 % = User = 6.32 in = 24 hrs	Peak discharge Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution Shape factor	= 33.45 cfs = 11.93 hrs = 70,523 cuft = 90 = 0 ft = 5.00 min = Type II = 484
--	--	--	---

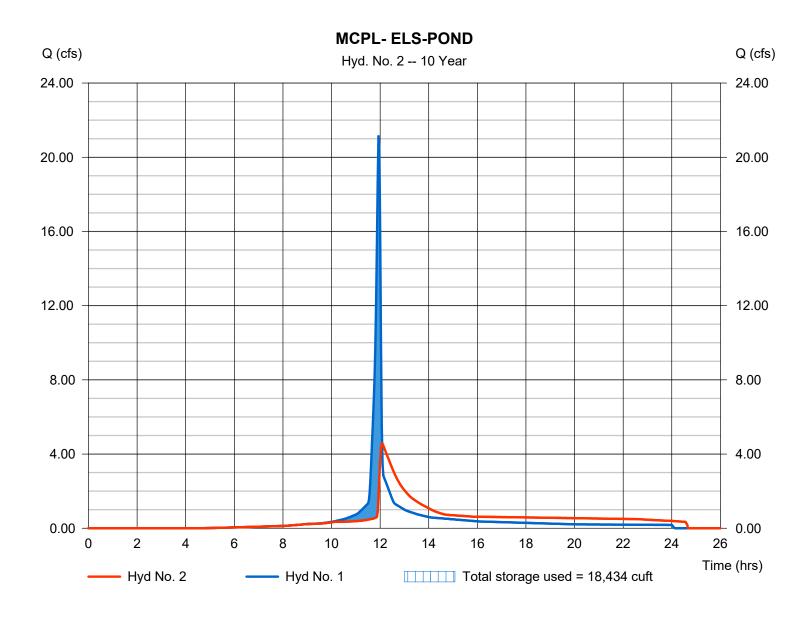

Monday, 03 / 25 / 2019

Hyd. No. 2

MCPL- ELS-POND

Hydrograph type = Reservoir Peak discharge = 1.437 cfsTime to peak Storm frequency = 2 yrs $= 12.33 \, hrs$ Time interval = 2 min Hyd. volume = 28,283 cuft Inflow hyd. No. = 1 - MCPL - ELS Max. Elevation = 1009.06 ft= Dry Bottom Pond Reservoir name Max. Storage = 12,141 cuft

Storage Indication method used.

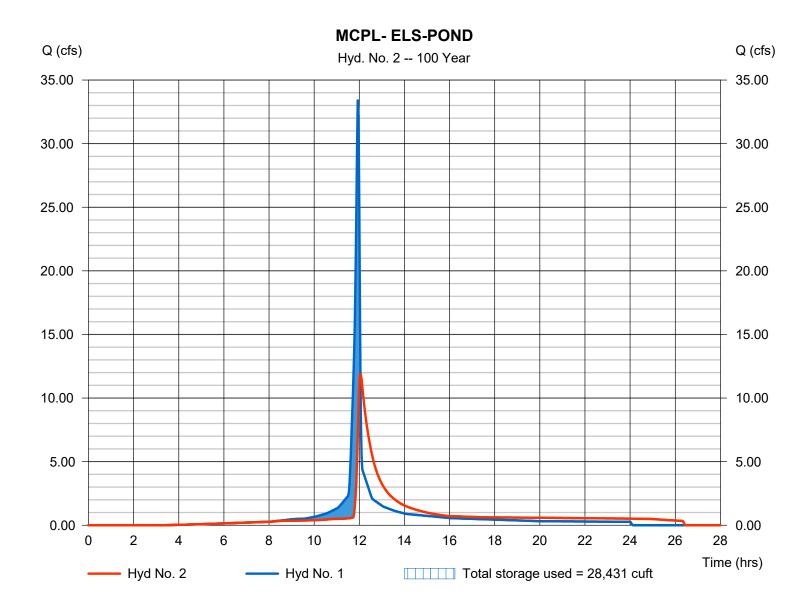

Monday, 03 / 25 / 2019

Hyd. No. 2

MCPL- ELS-POND

Hydrograph type = Reservoir Peak discharge = 4.564 cfsTime to peak Storm frequency = 10 yrs= 12.07 hrsTime interval = 2 min Hyd. volume = 44,563 cuftInflow hyd. No. Max. Elevation = 1 - MCPL - ELS = 1009.46 ftReservoir name = Dry Bottom Pond Max. Storage = 18,434 cuft

Storage Indication method used.


Monday, 03 / 25 / 2019

Hyd. No. 2

MCPL- ELS-POND

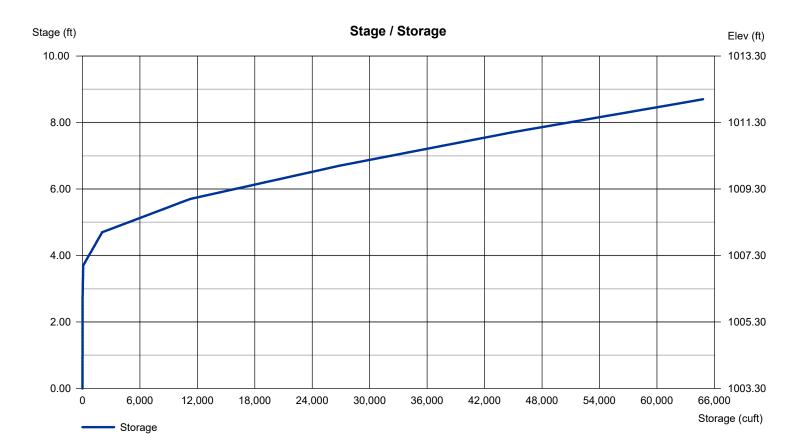
Hydrograph type = Reservoir Peak discharge = 11.88 cfsStorm frequency Time to peak = 100 yrs= 12.07 hrsTime interval = 2 min Hyd. volume = 72,572 cuft Inflow hyd. No. Max. Elevation = 1010.10 ft= 1 - MCPL - ELS = Dry Bottom Pond Reservoir name = 28,431 cuft Max. Storage

Storage Indication method used.

Monday, 03 / 25 / 2019

Pond No. 1 - Dry Bottom Pond

Pond Data


Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 1003.30 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	1003.30	00	0	0
0.70	1004.00	04	1	1
1.70	1005.00	04	4	5
2.70	1006.00	04	4	9
3.70	1007.00	160	63	72
4.70	1008.00	4,920	1,989	2,061
5.70	1009.00	14,260	9,184	11,245
6.70	1010.00	16,950	15,584	26,829
7.70	1011.00	18,940	17,934	44,763
8.70	1012.00	21,190	20,052	64,816

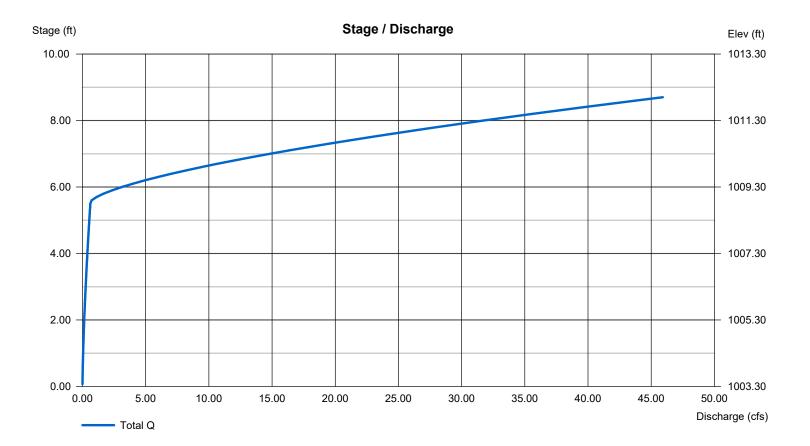
Culvert / Orifice Structures Weir Structures [A] [B] [C] [PrfRsr] [A] [B] [C] [D] Inactive 0.00 0.00 = 2.40 0.00 0.00 0.00 Rise (in) 1.00 Crest Len (ft) = 15.00 0.00 0.00 1.00 Crest El. (ft) = 1008.85 0.00 0.00 0.00 Span (in) No. Barrels = 1 0 0 15 Weir Coeff. = 3.333.33 3.33 3.33 Invert El. (ft) = 812.00 0.00 0.00 1003.30 Weir Type = Rect = 100.000.00 0.00 5.45 Multi-Stage No No No Length (ft) = No Slope (%) = 1.000.00 0.00 n/a N-Value = .013 .013 .013 n/a = 0.600.60 0.60 Orifice Coeff. 0.60 Exfil.(in/hr) = 0.000 (by Contour) Multi-Stage = n/aNo No No TW Elev. (ft) = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Monday, 03 / 25 / 2019

Pond No. 1 - Dry Bottom Pond

Pond Data


Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 1003.30 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	1003.30	00	0	0
0.70	1004.00	04	1	1
1.70	1005.00	04	4	5
2.70	1006.00	04	4	9
3.70	1007.00	160	63	72
4.70	1008.00	4,920	1,989	2,061
5.70	1009.00	14,260	9,184	11,245
6.70	1010.00	16,950	15,584	26,829
7.70	1011.00	18,940	17,934	44,763
8.70	1012.00	21,190	20,052	64,816

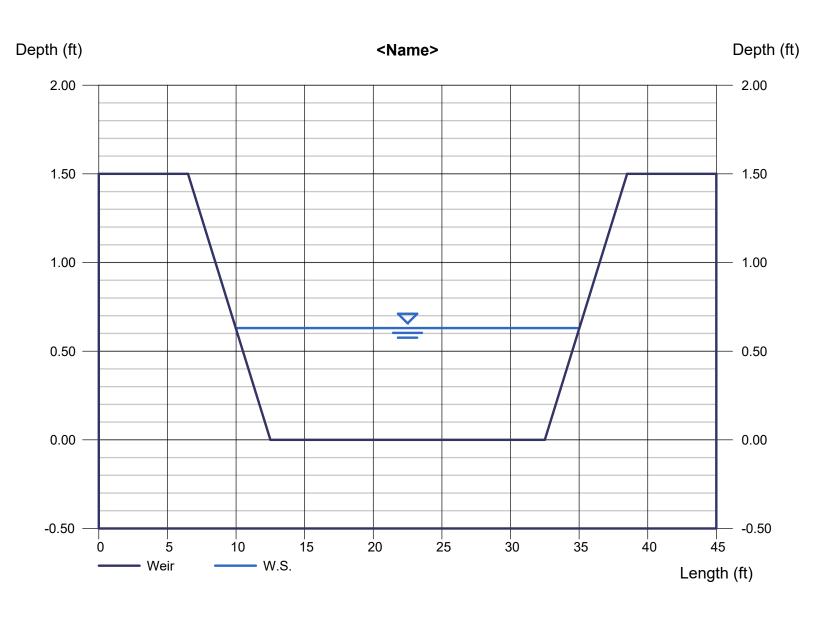
Culvert / Orifice Structures Weir Structures [A] [B] [C] [PrfRsr] [A] [B] [C] [D] Inactive 0.00 0.00 = 2.40 0.00 0.00 0.00 Rise (in) 1.00 Crest Len (ft) Span (in) = 15.00 0.00 0.00 1.00 Crest El. (ft) = 1008.85 0.00 0.00 0.00 No. Barrels = 1 0 0 15 Weir Coeff. = 3.333.33 3.33 3.33 Invert El. (ft) = 812.00 0.00 0.00 1003.30 Weir Type = Rect = 100.000.00 0.00 5.45 Multi-Stage No No No Length (ft) = No Slope (%) = 1.000.00 0.00 n/a N-Value = .013 .013 .013 n/a = 0.600.60 0.60 Orifice Coeff. 0.60 Exfil.(in/hr) = 0.000 (by Contour) Multi-Stage = n/aNo No No TW Elev. (ft) = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Feb 18 2019

<Name>


Trapezoidal Weir		
Crest	=	Broad
Bottom Length (ft)	=	20.00
Total Depth (ft)	=	1.50
Side Slope (z:1)	=	5.00

Calculations

Weir Coeff. Cw = 3.10 Compute by: Known Q Known Q (cfs) = 33.40

HighlightedDepth (ft)= 0.63Q (cfs)= 33.40

Area (sqft) = 14.19 Velocity (ft/s) = 2.35 Top Width (ft) = 25.04

Depth	Q	Area
(ft)	(cfs)	(sqft)
0.15	3.688	3.09
0.30	10.68	6.36
0.45	20.06	9.81
0.60	31.58	13.44
0.75	45.10	17.25
0.90	60.56	21.24
1.05	77.91	25.41
1.20	97.15	29.76
1.35	118.26	34.29
1.50	141.24	39.00

Appendix E
Water Treatment Calculations

Design Procedure Form: Extended Dry Detention Basin (EDDB) Main Worksheet - EDD-1

Project: MCPL East Lee's Summit Date: 01/18/2019

Location: Lee's Summit Company: Olsson

Designer: TMP Checked: LWM

I. Basin Water Quality Volume

- Step 1: Tributary area to EDDB, A_T (ac.) A_T (ac) = 4.50
- Step 2: Calculate WQ_V using methodology in Section 6 WQ_V (ac-ft) = 0.29
- Step 3: Add 20 percent to account for silt and sediment depositation in the basin V_{DESIGN} (ac-ft) = 0.34

14911.83

Ila. Water Quality Outlet Type

Step 1: Set water quality outlet type:

Outlet Type = 2

Type 1 = Single Orifice

Type 2 = Perforated Riser or Plate

Type 3 = V-Notch Weir

Step 2: Proceed to part IIb, IIc, or IId based on water quality outlet type selected

Ilb. Water Quality Pool Outlet, Single Orifice

- Step 1: Depth of water quality volume at outlet, Z_{WQ} (ft) Z_{WQ} (ft) = 2.40
- Step 2: Average head of water quality volume over invert of orifice, H_{WQ} (ft) H_{WQ} (ft) = 1.20 $H_{WQ} = 0.5 * Z_{WQ}$
- Step 3: Average water quality outflow rate, Q_{WQ} (cfs) Q_{WQ} (cfs) = 0.09 $Q_{WQ} = (WQ_V * 43,560) / (40*3,600)$
- Step 4: Set value of orifice discharge coefficient, C_0 $C_0 = 0.66$

 C_O = 0.66 when thickness of riser/weir plate is = or < orifice diameter C_O = 0.80 when thickness of riser/weir plate is > orifice diameter

- Step 5: Water quality outlet orifice diameter (minimum of 1/2 inch), D_O (in) D_O (
- Step 6: To size outlet orifice for EDDB with an irregular stage-volume relationship use the Single Orifice Worksheet

Design Procedure Form: Extended Dry Detention Basin (EDDB) Main Worksheet

Project:	MCPL East Lee's Summit	Date: 01/18/2	019	
	Lee's Summit	Company: Olsson		
esigner	TMP	Checked: <u>LWM</u>		
c. Wate	r Quality Outlet, Peforated Riser (Continu	ued)		
Step 1:	Depth of water quality volume at outlet, Z_W	Q (ft)	Z_{WQ} (ft) =	2.40
Step 2:	Recommended maximum outlet area per r $A_O = WQ_V / (0.013 * Z_{WQ}^2 + 0.22 * Z_{WQ}^2)$		A_{O} (in ²) =	0.57
Step 3:	Circular perforation diameter per row assur	ming a single column, D _I ((in) D _I (in) =	1.00
tep 4:	Numbers of columns, n _c		$n_c = $	Use 1" 1.00
tep 5:	Design circular perforation diameter (from	1 to 2 inches), D _{Perf} (in)	D _{Perf} (in) =	1.00
tep 6:	Horizontal perforation column spacing when If D_{Perf} is not > or = 1, S_c = 4	$n_c > 1$, center to center,	$S_c = $	NA
tep 7:	Number of rows, 4" vertical spacing between	en perforations, center to	center, $n_r = $	7
c. Wate	r Quality Outlet, V-Notch Weir			
step 1:	Depth of water quality volume above perm	anent pool, Z _{WQ} (ft)	Z_{WQ} (ft) =	NA
itep 2:	Average head of water quality pool volume $H_{WQ} = 0.5 * Z_{WQ}$	over invert of v-notch H _W	H_{WQ} (ft) H_{WQ} (ft) =	NA
tep 3:	Average water quality pool outflow rate, Q_V $Q_{WQ} = (WQ_V * 43,560) / (40*3,600)$		Q _{WQ} (cfs) =	NA
tep 4	V-notch weir coefficient, C_{ν}		C _v =	NA
tep 5:	V-notch weir angle, q (deg) θ = 2 *(180/ π)*arctan(Q _{WQ} / (C _v *	H _{wQ} ^{5.2}))	q (deg) =	NA
	V-notch angle should be at least 2 20 degrees if calculated angle is si	•		
Step 6:	V-notch weir top width, W_v (ft) $W_v = 2^* Z_{WQ} * TAN(\theta/2)$		W _v (ft) =	NA
ton 7:	T	- inno moloni ako ma asa ba	alada a alaba a a ad	

Step 7: To calculate v-notch angle for EDW with an irregular stage-volume relationship, use th V-notch Weir Worksheet

Design Procedure Form: Extended Dry Detention Basin (EDDB) Main Worksheet

Project: MCPL East Lee's Summit Date: 01/18/2019 Location: Lee's Summit Olsson Company: Designer: TMP Checked: LWM

III. Flood Control

Refer to APWA Specifications Section 5608

IV. Trash Racks

Total outlet area, A_{ot} (in²) Step 1:

 A_{ot} (in²) = 5.46

Required trash rack open area, A_t (in²) Step 2:

 A_t (in²) = 60.83

 $A_t = A_{ot} * 77 * e^{(-0.124 * D)}$ for single orifice outlet

 $A_t = (A_{ot} / 2) * 77 * e^{(-0.124*D)}$ for orifice plate or perforated riser outlet

At = 4 * A_{ot} for v-notch weir outlet

V. Basin Shape

Length to width ratio should be at least 3:1 (L:W) wherever practicable (L:W) =

10:1 Plus

Step 2: Low flow channel side lining

Concrete: Yes Soil/Riprap: NA

No low flow channel:

NA

Top stage floor drainage slope (toward low flow channel), S_{TS} (%) Step 3:

Top stage depth, D_{TS} (ft)

 S_{TS} (%) = 2.00 D_{TS} (ft) = 5.00

Bottom stage volume, V_{BS} (ac-ft) Step 4:

 V_{BS} (% of WQ_V) = 0.33 V_{BS} (ac-ft) = 1.03

VI. Forebay (Optional)

Step 1: Volume should be greater than 10% of WQ_V Min Vol_{FB} (ac-ft) = NA

Step 2: Forebay depth, Z_{FB} (ft) Z_{FB} (ft) = NA

A_{FB} (ac) = Step 3: Forebay surface area, A_{FB} (ac) NA

Step 2: Paved/hard bottom and sides? NA