Lee's Summit Medical Office Building 2100 Southeast Blue Parkway Lee's Summit, Missouri

> June 9, 2017 Terracon Project No. 02175168

Prepared for:

Hereford Dooley Architects Nashville, Tennessee

Prepared by:

Terracon Consultants, Inc. Lenexa, Kansas

June 9, 2017

lerracon

Hereford Dooley Architects 1720 West End Avenue, Suite 300 Nashville, Tennessee 37203

- Attn: Mr. Trip Hereford, AIA E: trip.hereford@hdarchitects.com
- Re: Geotechnical Engineering Report Lee's Summit Medical Office Building 2100 Southeast Blue Parkway Lee's Summit, Missouri Terracon Project No. 02175168

Dear Mr. Hereford:

Terracon Consultants, Inc. (Terracon) has completed a geotechnical exploration for the proposed Medical Office Building at the Lee's Summit Medical Center in Lee's Summit, Missouri. These services were performed in general accordance with the Terracon proposal and agreement for services number P02175168 dated May 15, 2017. This report presents the findings of the subsurface exploration and provides geotechnical recommendations concerning earthwork and the design and construction of foundations, floor slabs, below grade walls, and pavements for the project.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report, or if we may be of further service, please contact us.

Sincerely, Terracon Consultants, Inc.

Kevin D. Friedrichs, P.E. Project Engineer Missouri: 2013010325 Michael W. Laney, P.E. Senior Associate Missouri: 2014011241

Terracon Consultants, Inc. 13910 West 96th Terrace Lenexa, Kansas 66215 P [913] 492 7777 F [913] 492 7443 terracon.com

TABLE OF CONTENTS

			P	age
	UTIVE S	SUMMA	\RY	i
1.0	-	-	ON	
2.0			FORMATION	
	2.1		ocation and Description	
	2.2		t Description	
3.0			E CONDITIONS	
	3.1	21	I Profile	
	3.2		dwater	
4.0			DATIONS FOR DESIGN AND CONSTRUCTION	
	4.1		chnical Considerations	
	4.2		/ork	
		4.2.1	Site Preparation	
		4.2.2	Fill Materials	5
		4.2.3	Fill Compaction Requirements	7
		4.2.4	Utility Trench Backfill	7
		4.2.5	Grading and Drainage	7
		4.2.6	Earthwork Construction Considerations	8
	4.3	Drilled	Shaft Foundations	9
		4.3.1	Drilled Shaft Design Recommendations	9
		4.3.2	Drilled Shaft Construction Considerations	10
	4.4	Below	Grade Walls	11
		4.4.1	Lateral Earth Pressures	11
	4.5	Floor S	Slab	13
		4.5.1	Floor Slab Design Recommendations	13
		4.5.2	Floor Slab Construction Considerations	14
	4.6	Pavem	ents	14
		4.6.1	Pavement Subgrade Preparation	14
		4.6.2	Opinions of Minimum Pavement Thickness	15
			Pavement Drainage and Maintenance	
	4.7		c Considerations	
5.0	GENE	RAL CO	OMMENTS	17

APPENDIX A – FIELD EXPLORATION

Exhibit A-1	Field Exploration Description
Exhibit A-2	Site Location
Exhibit A-3	Exploration Plan
Exhibits A-4 to A-19	Boring Logs

APPENDIX B – LABORATORY TESTS

Exhibit B-1Laboratory Test SummaryExhibit B-2 and B-3Rock Core Photographs

APPENDIX C – SUPPORTING DOCUMENTS

Exhibit C-1	General Notes
Exhibit C-2	Unified Soil Classification System
Exhibit C-3	Description of Rock Properties

EXECUTIVE SUMMARY

Sixteen (16) borings were performed for the proposed Medical Office Building (MOB) at Lee's Summit Medical Center in Lee's Summit, Missouri. Samples recovered from the borings were tested and logs of borings with test data are appended to this geotechnical engineering report. Professional opinions and recommendations presented in this report are summarized below.

- In general, the borings encountered medium stiff to very stiff fat clays over interbedded shale and limestone bedrock. Bedrock was encountered about depths of about 3 to 10 feet below the existing ground surface, corresponding to approximate elevations ranging from 991 to 998½ feet.
- Based on the subsurface conditions and the anticipated foundation loads, it appears feasible to support the building on drilled shaft foundations that derive their capacity from side friction and end bearing in moderately to slightly weathered limestone/shale bedrock.
- The fat clay soils encountered at this site have the potential to shrink and swell with seasonal fluctuations in the soil moisture content. To help reduce the potential for subgrade volume change, we recommend floor slabs be supported on a 24-inch layer of low volume change (LVC) material. On-site soils may need to be undercut to accommodate placement of the LVC material.
- Existing fill materials (consisting of fat clay with limestone fragments) were encountered at four of the borings to depths ranging from 2 to 5 feet. It appears that some compactive effort was applied to the fill material within the proposed building footprint. However, these materials should be evaluated and tested during construction and either approved by a representative from Terracon or removed and replaced with engineered fill.

The professional opinions and recommendations presented in this report are based on evaluation of data developed by testing discrete samples obtained from widely spaced borings. Site subsurface conditions have been inferred from available data, but actual subsurface conditions will only be revealed by excavation. We recommend Terracon be retained to observe excavations and perform tests during the site preparation, earthwork, and foundation construction phases of the project.

This executive summary should not be separated from or used apart from this report. This report presents recommendations and opinions based on our understanding of the project at the time the report was prepared. The report limitations are described in **Section 5.0**.

GEOTECHNICAL ENGINEERING REPORT LEE'S SUMMIT MEDICAL OFFICE BUILDING 2100 SOUTHEAST BLUE PARKWAY LEE'S SUMMIT, MISSOURI Terracon Project No. 02175168 June 9, 2017

1.0 INTRODUCTION

Terracon Consultants, Inc. (Terracon) has completed a geotechnical exploration for the planned Medical Office Building at Lee's Summit Medical Center in Lee's Summit, Missouri. Sixteen borings were performed at the site to depths ranging from approximately 7 to 17 feet below the existing ground surface. Boring logs and an Exploration Plan are included in Appendix A. This report describes the subsurface conditions encountered at the boring locations, presents the test data, and provides geotechnical engineering recommendations regarding the following items:

- earthwork
- drilled shaft foundations
- seismic site class

- floor slabs
- below grade walls
- pavements

2.0 **PROJECT INFORMATION**

This section of the report reflects our understanding of the project based on information provided by the client. If our understanding of the project information is incorrect, please contact us so we can review the recommendations presented herein.

2.1 Site Location and Description

Item	Description		
	Lee's Summit Medical Center		
Location	2100 Southeast Blue Parkway		
	Lee's Summit, Missouri		
Existing improvements	The site is currently occupied by an asphalt-paved parking lot with lawn and landscaping surrounding the parking lot.		
Existing topography	The site is relatively flat.		

Geotechnical Engineering Report Lee's Summit Medical Office Building Lee's Summit, Missouri June 9, 2017 Terracon Project No. 02175168

2.2 **Project Description**

Item	Description		
Structure	The project consists of a new three-story, 13,280 square foot medical office building with a canopy and new parking and drive areas.		
Building construction	The building will be steel framed with exterior LMV walls and a grade- supported concrete floor slab.		
Maximum loads	In preparing this report, we have considered the following maximum loads: Columns: 600 kips (provided) Walls: 10 kips per lineal foot (klf) (assumed) Slabs: 125 pounds per square foot (psf) (assumed)		
Grading	A site grading plan was not provided. We considered cuts and fills of up to 5 feet will be required to develop final design grades.		
Below grade areas	Elevator pits are anticipated. No basements or retaining walls are planned.		
Pavements	Both concrete and asphalt pavements will be utilized in the new parking and drive areas.		

Lee's Summit Medical Office Building
Lee's Summit, Missouri June 9, 2017
Terracon Project No. 02175168

3.0 SUBSURFACE CONDITIONS

3.1 Typical Profile

Conditions encountered at each boring location are indicated on the boring logs in Appendix A and are summarized in the following table. Stratification boundaries on the boring logs represent the approximate location of changes in soil and rock types; in situ, the transition between materials may be gradual.

Stratum	Approximate Depth of Bottom of Stratum	Material Description	Comments
1a	10 to 12 inches ¹	Asphalt over Aggregate Base	5 to 6 inches of asphalt over 5 to 6 inches of aggregate base
1b	6 to 12 inches ²	Root Zone	
2	2 to 5 feet ³	Fill	Fat clay with limestone fragments
3	3 to 10 feet Undetermined ⁴	Fat Clay (CH)	Dark brown to red brown, stiff to very stiff
4	Undetermined ⁵	Limestone/Shale Bedrock	Light brown to gray, completely to slightly weathered

1. Borings B-1, B-2, B-3, B-4, B-5, B-7 and B-8 encountered Stratum 1a at the surface.

2. Borings B-6, B-9, B-10, B-11, B-12, B-13, B-14, B-15 and B-16 encountered Stratum 1b at the surface.

3. Borings B-1, B-3, B-4 and B-12 encountered Stratum 2.

4. Borings B-9 and B-10 were terminated at a planned depth of 10 feet in Stratum 3.

5. All borings except B-9 and B-10 were terminated within Stratum 4 at a planned depth of 10 feet or auger refusal.

3.2 Groundwater

The boreholes were observed while drilling and after completion for the presence and level of groundwater. Groundwater was observed at boreholes B-10, B-11 and B-12 at the time of our subsurface exploration at depths ranging from 8½ to 10 feet. Long-term observations in piezometers or observation wells, sealed from the influence of surface water, would be needed to develop groundwater information. Groundwater level fluctuations occur due to variations in rainfall, runoff and other factors not evident at the time we performed the borings. The possibility of groundwater level fluctuations should be considered when developing the design and construction plans for the project. Based on the conditions encountered the boring locations, groundwater should be expected near the soil/bedrock interface. The shale/limestone bedrock may be water-bearing, and water inflow will likely be encountered in drilled shaft excavations that penetrate into bedrock.

4.0 **RECOMMENDATIONS FOR DESIGN AND CONSTRUCTION**

4.1 Geotechnical Considerations

Based on anticipated foundation loads and subsurface conditions at the site, drilled shaft foundations bearing in the limestone/shale bedrock are recommended to support the new medical office building.

Existing fill materials (consisting of fat clay with limestone fragments) were encountered at four of the borings to depths ranging from 2 to 5 feet. It appears that some compactive effort was applied to the fill material within the proposed building footprint. However, these materials should be evaluated and tested during construction and either approved by a representative from Terracon or removed and replaced with engineered fill as outlined in Section **4.2**.

The fat clay soils encountered at this site have has the potential to shrink and swell with seasonal fluctuations in the soil moisture content. We recommend floor slabs be supported on at least 24 inches of low volume change (LVC) material, such as well-graded crushed stone aggregate or low plasticity clay. In areas where grades (following stripping of organic soils) will be less than 2 feet below the planned bottom of floor slab level, native fat clay soils should be undercut to accommodate placement of LVC material. In areas where the exposed grade (following stripping of organic soils) will be more than 2 feet below the bottom-of-floor-slab level, at least the upper 24 inches of new engineered fill should consist of LVC material. Placement of a layer of LVC material below the floor slab, as recommended in this report, will not eliminate all future subgrade volume change and resultant floor slab movements. However, use of an LVC zone should reduce the potential for subgrade volume change. Details regarding the LVC zone are provided in sections **4.2.2** and **4.5**.

This report provides recommendations to help mitigate the effects of soil shrinkage and expansion. However, even if these procedures are followed, some movement and at least minor cracking in the structure could still occur. The severity of cracking and other cosmetic damage caused by movement of the floor slab, pavements, and sidewalks will probably increase if any modification of the site results in excessive wetting or drying of the expansive soils. Eliminating the risk of movement and cosmetic distress may not be feasible, but it may be possible to further reduce the risk of movement if significantly more expensive measures are used during construction. We would be pleased to discuss other construction alternatives with you upon request.

4.2 Earthwork

Earthwork on this project should be observed and evaluated by Terracon. The following sections provide recommendations for site preparation, excavation, subgrade preparation, and placement of engineered fill for the project.

4.2.1 Site Preparation

Existing pavements and sidewalks should be demolished and removed from the construction area. Vegetation, topsoil, and any loose, soft, or otherwise unsuitable materials should also be stripped from planned construction areas. Based on information obtained at the boring locations, stripping depths on the order of 6 to 12 inches should be anticipated to remove the root zone materials. However, stripping depths may be different in areas not explored by the borings. Organic soils removed during site preparation should not be used as fill beneath the planned new buildings or pavement areas.

Following removal of pavements, stripping of organic soils, and removal of any other unsuitable materials, the soil within the proposed building areas should be further undercut (where necessary) to accommodate placement of the recommended 24-inch thick LVC layer below floor slabs. The undercut area should extend a minimum of 5 feet laterally outside of the building wall lines. Undercutting to facilitate placement of the LVC layer would not be necessary in areas where grades, following stripping of organic soils and removal of unsuitable materials, are more than 2 feet below the planned bottom of floor slab level.

After initial stripping and any necessary undercutting, the exposed soils should be proofrolled. A Terracon representative should observe the proofrolling. Proofrolling can be accomplished using a loaded tandem-axle dump truck with a gross weight of at least 20 tons, or similarly loaded equipment. Areas that rut, pump, or deflect during the proofrolling should be improved by scarification/compaction or by removal and replacement with engineered fill.

4.2.2 Fill Materials

All materials incorporated in engineered fill sections must be free of organic matter and debris. Fill materials should not be frozen and should not be placed on a frozen subgrade. A sample of each material type should be tested prior to being used on the site. Soil is commonly used as fill in this locale, but not all soils are suitable. Our professional opinions concerning suitability of fill materials are presented in the following table.

Lee's Summit Medical Office Building Lee's Summit, Missouri June 9, 2017 Terracon Project No. 02175168

Cuitability on Fill	Description	Unified Soil Classification		
Suitability as Fill	Description	Group Symbol	Group Name	
		GW	Well-graded gravel	
	Clean Gravel	GP	Poorly graded gravel	
	Gravel with fines	GM	Silty gravel	
Suitable	Graver with lines	GC	Clayey gravel	
Suitable	Clean cond	SW	Well-graded sand	
	Clean sand	SP	Poorly-graded sand	
	Sand with fines	SM	Silty sand	
		SC	Clayey sand	
	Description	Group Symbol	Group Name	
	Silt	ML	Silt ²	
Marginally Suitable ¹	Clay	CL	Lean clay ³	
Gunasie	Clay	СН	Fat clay⁴	
	Description	Group Symbol	Group Name	
		MH	Elastic silt	
Unsuitable	Highly organic soils	OL & OH	Organic clay & organic silt	
		PT	Peat	

1. Depends on location and intended use. Can be used if approved by geotechnical engineer.

2. Highly susceptible to frost action; unstable when wet. Should not be used directly below pavements and exterior slabs without prior approval of geotechnical engineer.

3. Can be expansive if dry or if liquid limit is 45 or greater. Requires approval of geotechnical engineer.

4. Expansive. Not recommended immediately below floors and other movement-sensitive features. Must be placed with strict moisture and density control to reduce swell potential.

Low volume change (LVC) material placed below the building floor slabs can consist of wellgraded crushed stone aggregate (GM), such as Missouri Department of Transportation (MoDOT) Type 5 aggregate. Lean clay (CL) soils could also be used as LVC material provided they have a liquid limit less than 45 and a plasticity index less than 23. The on-site soils do not meet the LVC criteria, so LVC materials will need to be imported from off-site. If a granular leveling course (such as clean crushed stone aggregate) is used immediately below the floor slab, this material can be considered part of the 24-inch thick LVC zone.

4.2.3 Fill Compaction Requirements

ltem		Description	
Lift Thickness (movimum)		9 inches in loose thickness when large, self-propelled compaction equipment is used.	
Lift Thickness (maximum)		4 inches when small, hand-guided equipment (plate or "jumping jack" compactor) is used.	
Minimum Compaction Requirer	ments 1	At least 95 percent of the material's maximum dry density ¹	
Maiature Contant of Clay Sail	LL<45	-2 to +2 percent of optimum moisture content value ¹	
Moisture Content of Clay Soil LL>45		0 to 4 percent above the optimum moisture content value ¹	
Moisture Content of Granular M	laterial	Sufficient to achieve compaction without pumping when proofrolled	
1. As determined by the stand	ard Proct	tor test (ASTM D698)	

We recommend that engineered fill be tested for moisture content and compaction during placement. If the results of the in-place density tests indicate the specified moisture or compaction limits have not been met, the area represented by the test should be reworked and retested as required until the specified moisture and compaction requirements are achieved.

4.2.4 Utility Trench Backfill

All trench excavations should be made with sufficient working space to permit construction including backfill placement and compaction. If utility trenches are backfilled with relatively clean granular material, they should be capped with at least 18 inches of clay fill to reduce the infiltration and conveyance of surface water through the trench backfill.

Utility trenches are common sources of water infiltration and migration. All utility trenches that penetrate beneath the building should be effectively sealed to restrict water intrusion and flow through the trenches that could migrate below the building. We recommend constructing an effective "trench plug" that extends at least 5 feet out from the face of the building exterior. The plug material should consist of clay compacted at a water contact at or above the soil's optimum water content. The clay fill should be placed to completely surround the utility line and be compacted in accordance with recommendations in this memorandum.

4.2.5 Grading and Drainage

Grades should be developed to direct surface water flow away from or around the site during construction. Exposed subgrades should be sloped to provide positive drainage so that saturation of subgrades is avoided. Surface water that accumulates on the site should be promptly removed. Final surrounding grades should promote rapid surface drainage away from structures and pavements. Accumulation of water adjacent to the building could contribute to significant moisture increases in the subgrade soils and subsequent softening/settlement or expansion/heave. Roof drains should discharge into a storm sewer or at least 10 feet away from the building.

Lee's Summit Medical Office Building Lee's Summit, Missouri June 9, 2017 Terracon Project No. 02175168

4.2.6 Earthwork Construction Considerations

Care should be taken to avoid disturbance of prepared subgrades. Unstable subgrade conditions can develop during general construction operations, particularly if the soils are wetted and/or subjected to repetitive construction traffic. If unstable subgrade conditions develop, stabilization measures will need to be employed. Construction traffic over the completed subgrade should be avoided to the extent practical. If the subgrade becomes frozen, desiccated, saturated, or disturbed, the affected materials should be removed or these materials should be scarified, moisture conditioned, and compacted prior to floor slab construction.

As a minimum, excavations should be performed in accordance with OSHA 29 CFR, Part 1926, Subpart P, "Excavations" and its appendices, and in accordance with any applicable local, state, and federal safety regulations. The contractor should be aware that slope height, slope inclination, and excavation depth should in no instance exceed those specified by these safety regulations. Flatter slopes than those dictated by these regulations may be required depending upon the soil conditions encountered and other external factors. These regulations are strictly enforced and if they are not followed, the owner, contractor, and/or earthwork and utility subcontractor could be liable and subject to substantial penalties. Under no circumstances should the information provided in this report be interpreted to mean that Terracon is responsible for construction site safety or the contractor's activities. Construction site safety is the sole responsibility of the constructor who shall also be solely responsible for the means, methods, and sequencing of the construction operations.

Terracon should be retained during the construction phase of the project to observe earthwork and to perform necessary tests and observations during subgrade preparation, placement and compaction of controlled compacted fills, backfilling of excavations into completed subgrades, and just prior to construction of the building floor slab.

4.3 Drilled Shaft Foundations

Based on the anticipated foundation loads and the subsurface conditions encountered at the boring locations, we recommend the building be supported on drilled shaft foundations that derive their capacity from end bearing and side friction in moderately to slightly weathered limestone/shale bedrock. Design recommendations and construction considerations for drilled shaft foundations are presented in the following sections.

4.3.1 Drilled Shaft Design Recommendations

Parameter	Value
Allowable side friction in highly to slightly weathered shale/limestone bedrock	5 ksf ¹
Allowable end bearing in moderately to slightly weathered limestone bedrock	100 ksf ¹
Minimum shaft diameter	30 inches
Minimum penetration into moderately to slightly weathered bedrock ("rock socket" length)	2 shaft diameters ²
Estimated total settlement	1/2 inch or less 3
Estimated differential settlement	1/2 inch or less 3

- 1. The top of the moderately to slightly weathered limestone bedrock ranged from approximately elevation 986 feet (at boring B-1) to 993 feet (at boring B-8). The structural engineer should refer to the appended boring logs and exploration plan to evaluate the required shaft tip elevations based on the structural loading, shaft diameter, and embedment depth.
- 2. The actual required penetration depth into the limestone bedrock will be dictated by the required axial capacity and/or the required lateral capacity.
- 3. Does not include elastic compression of drilled shaft under axial load.

Recommended soil parameters for analyzing lateral deflection of drilled shaft foundations under design loading conditions using the computer program LPILE are provided in the following table. LPILE analyzes pile deflection as a function of the design loads and subsurface soil conditions.

Lee's Summit Medical Office Building
Lee's Summit, Missouri June 9, 2017
Terracon Project No. 02175168

Soil Description (elevation in feet)	<u>LPILE p-y</u> <u>Curve</u> <u>Model</u>	<u>Effective Unit</u> Weight γ (pcf)	Undrained Shear Strength, s _u - clay Uniaxial Compressive Strength, q _u - rock	<u>Strain Factor</u> <u>ε₅₀ – clay</u> <u>k_{rm} - rock</u>
Fat Clay and completely to highly weathered limestone/shale bedrock (from 3 feet below top of shaft elevation to 986 to 993 feet ^{1 2})	3- Stiff clay w/o free water	120	1,000 psf	0.007
Moderately to slightly weathered limestone/shale bedrock (below 986 to 993 feet ¹)	8- Weak rock (Reese)	140	2,000 psi ³	0.0005

- 1. The top of the moderately to slightly weathered limestone bedrock ranged from approximately elevation 986 feet (at boring B-1) to 993 feet (at boring B-8). The structural engineer should refer to the appended boring logs and exploration plan to evaluate the required shaft tip elevations based on the structural loading, shaft diameter, and embedment depth.
- 2. Ignore the lateral capacity of the top 3 feet of the drilled shaft.
- 3. For the Weak Rock model in LPile, uniaxial compressive strength (provided here) is input instead of undrained shear strength.

If center to center spacing between drilled shafts will be less than 8 diameters in the direction of loading, appropriate reduction factors should be applied to these parameters. If closely-spaced shafts are planned, Terracon should be retained to review the proposed foundation configuration and provide appropriate reduction factors.

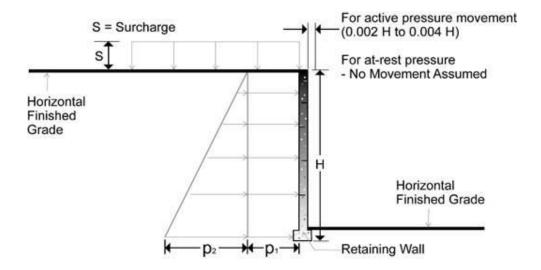
The structural capacity of the drilled shafts should be analyzed using the combined stresses induced by axial and lateral forces. The response of drilled shafts to lateral loads is dependent upon the soil/structure interaction as well as the actual cross section, length, stiffness, and "fixity" (fixed or free head condition) of the shafts.

4.3.2 Drilled Shaft Construction Considerations

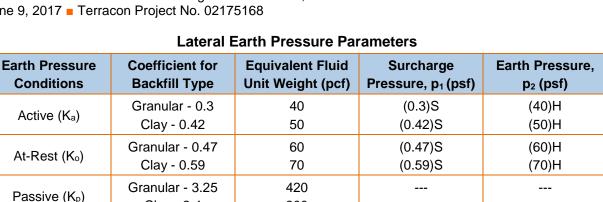
A Terracon representative should observe each drilled shaft excavation to verify that conditions in the excavation are consistent with those encountered in the test borings. If unsuitable materials are encountered, it may be necessary to deepen the shaft excavation.

The contractor is responsible for determining the means and methods for effectively performing the shaft excavations. In our opinion, use of a rock auger will likely be required to penetrate into the limestone bedrock and develop the required rock socket for each drilled shaft. We recommend the contractor have at least two types of rock augers (e.g., a spade-tooth bit and bullet-tooth bit) available on-site for each planned shaft diameter.

Lee's Summit Medical Office Building Lee's Summit, Missouri June 9, 2017 Terracon Project No. 02175168


We do not expect that personnel will enter the excavation to clean or observe the bearing materials; however, temporary steel casing must be installed if personnel will enter the shaft excavation. While removing temporary casing from a shaft excavation during concrete placement, the concrete inside the casing should be maintained at a sufficient level to prevent soil intrusion into the shaft excavation and resist any earth pressures outside the casing during the entire casing removal procedure.

The limestone layer may be water-bearing, and water inflow should be expected when drilled shaft excavations penetrate into the limestone. It may not be practical to dewater the excavations; therefore, the contractor should be prepared to place concrete using a tremie or concrete pump. If more than 6 inches of water is present in the base of an excavation, free-fall placement of concrete should not be allowed. To facilitate construction, reinforcing steel should be ready and on site, and concrete should be available within a very short period of time for placement after the excavation is completed. If shaft excavations must remain open for an extended time, the shaft conditions should be re-evaluated immediately prior to placing concrete. The concrete mixture for drilled shafts be designed to have a slump in the range of 6 to 8 inches.


4.4 Below Grade Walls

4.4.1 Lateral Earth Pressures

Walls with unbalanced backfill levels on opposite sides (e.g., elevator pits) should be designed for earth pressures at least equal to those indicated in the following table. Earth pressures will be influenced by structural design of the walls, conditions of wall restraint, methods of construction and/or compaction and the strength of the materials being restrained. Two wall restraint conditions are shown. Active earth pressure is commonly used for design of free-standing cantilever retaining walls and assumes wall movement. The "at-rest" condition assumes no wall movement. The recommended design lateral earth pressures do not include a factor of safety and do not provide for possible hydrostatic pressure on the walls.

Lee's Summit Medical Office Building Lee's Summit, Missouri June 9, 2017 Terracon Project No. 02175168

Applicable conditions to the above include:

 For active earth pressure, wall must rotate about base, with top lateral movements of about 0.002 H to 0.004 H, where H is wall height

300

- For passive earth pressure to develop, wall must move horizontally to mobilize resistance
- Uniform surcharge, where S is surcharge pressure

Clay - 2.4

- Clay soil backfill: unit weight = 125 pcf (maximum), and ϕ = 24 degrees (minimum)
- Granular material backfill: unit weight = 130 pcf (maximum), and ϕ = 32 degrees (minimum)
- Horizontal backfill, compacted as recommended in the report
- Loading from heavy compaction equipment not included
- No hydrostatic pressures acting on wall
- No loading from nearby footing or slabs
- No dynamic loading
- No safety factor included in soil parameters
- Ignore passive pressure in frost zone

To reduce the potential for hydrostatic loading on elevator pit walls and retaining walls, we recommend that drains be installed along the base of the walls. Drain lines should be surrounded by free-draining granular material encapsulated with an approved geotextile filter fabric. The granular material should extend from the drainage pipes to within 2 feet of final grade for retaining walls and be capped with a cohesive fill material placed and compacted as recommended in Section **4.2** of this report. The granular backfill around elevator pit walls should extend to the granular levelling course below the surrounding floor slab. As an alternative to filter graded gravel, free-draining 1-inch nominal size gravel could be used for the drains if the entire system, including the gravel, is encapsulated with an appropriate geotextile filter fabric.

The drainage pipes should be sloped to provide positive gravity drainage to a down gradient storm sewer or to another suitable frost-free outlet that will allow gravity drainage. Periodic maintenance of drainage systems is necessary so that they do not become plugged and inoperative.

A prefabricated drainage structure placed against retaining walls may also be used as an alternative to free-draining granular fill above the pipe. A prefabricated drainage structure consists of a plastic drainage core or mesh that is covered with filter fabric to prevent soil

lerracon

intrusion. The drainage structure is fastened to the wall after the wall has been waterproofed and prior to placing backfill.

4.5 Floor Slab

4.5.1 Floor Slab Design Recommendations

Item	Description	
Floor slab support ^{1,}	24 inches (minimum) of low volume change (LVC) materials over native soils or engineered fill soils	
Modulus of subgrade reaction	100 pounds per square inch per inch of deflection (psi/in or pci) for point loading conditions	
Granular leveling course layer thickness ^{2,3}	4 inches (minimum)	
Capillary break layer thickness ^{3, 4}	6 inches (minimum)	

1. LVC materials must meet the criteria discussed in Section **4.2.2**.

- 2. If the purpose of this layer is solely to create a level base for concrete placement to maintain a more uniform slab thickness, well graded sand, gravel or crushed stone can be used.
- 3. These granular materials may be considered part of the LVC zone.
- 4. If penetration of moisture vapor through the slab is a concern, the floor slab design should include a capillary break layer instead of the granular leveling course layer described above. Capillary break layers should be comprised of granular materials that have less than 5 percent fines (material passing the #200 sieve). Other design considerations such as cold temperatures and condensation development could warrant addition design considerations.

Joints should be constructed in slabs at regular intervals as recommended by the American Concrete Institute (ACI) to help control the location of cracks. It should be understood that differential settlement between the floor slab and foundations could occur.

Typically, some increase in the floor slab subgrade moisture content will occur because of gradual accumulation of capillary moisture, which would otherwise evaporate if the floor slab had not been constructed. The use of a vapor retarder should be considered beneath concrete slabs on grade that will be covered with wood, tile, carpet or other moisture sensitive or impervious coverings. When conditions warrant the use of a vapor retarder, the slab designer should refer to ACI 302 and ACI 360 for procedures and cautions regarding the use and placement of a vapor retarder.

Lee's Summit Medical Office Building Lee's Summit, Missouri June 9, 2017 Terracon Project No. 02175168

4.5.2 Floor Slab Construction Considerations

If the LVC layer is comprised of low-plasticity clay soils, care should be taken to maintain the recommended subgrade moisture content and density prior to construction of the building floor slab. If the subgrade becomes desiccated prior to construction of the floor slab, the affected materials should be removed or the materials should be scarified, moistened, and compacted.

On most project sites, site grading is generally accomplished early in the construction phase. However, as construction proceeds, subgrades may be disturbed due to utility excavations, construction traffic, desiccation, rainfall, etc. As a result, the floor slab subgrade soils may not be suitable for placement of granular leveling course material and/or concrete at the time of building construction, and corrective action may be required.

Terracon should review the condition of the floor slab subgrade immediately prior to placement of the granular leveling course and construction of the floor slab. Particular attention should be paid to high traffic areas that were rutted and disturbed earlier and to areas containing backfilled trenches. Areas where unsuitable conditions are located should be repaired by removing and replacing the affected material with properly moisture conditioned and compacted fill placed according to the recommendations in this report.

4.6 Pavements

Pavement subgrades are expected to consist of on-site native clay soils and/or engineered fill (depending on final grades). Recommendations included in Section **4.2** should be followed to develop the pavement area subgrade.

4.6.1 Pavement Subgrade Preparation

Grading and paving operations are commonly performed by separate contractors and there is often a time lapse between the end of grading operations and the commencement of paving. Subgrades prepared early in the construction process may become disturbed by construction traffic. Non-uniform subgrades often result in poor pavement performance and local failures relatively soon after pavements are constructed. Depending on the paving equipment used by the contractor, measures may be required to improve subgrade strength to greater depths for support of heavily loaded concrete/asphalt trucks.

We recommend the moisture content and density of the subgrade be evaluated and the pavement subgrades be proofrolled (using a loaded tandem-axle dump truck with a minimum gross weight of 20 tons or similarly loaded rubber-tire equipment) within two days prior to commencement of actual paving operations. Areas not in compliance with the required ranges of moisture or density should be scarified, moisture conditioned, and compacted. Particular attention should be paid to high traffic areas that were rutted and disturbed earlier and to areas where backfilled trenches are located. Areas where unsuitable conditions are located should be repaired by removing and replacing the materials with properly compacted fills. The subgrade should be in its finished form at the time of the final review.

Lee's Summit Medical Office Building
Lee's Summit, Missouri June 9, 2017
Terracon Project No. 02175168

4.6.2 Opinions of Minimum Pavement Thickness

Pavement thickness depends upon many factors including, but not limited to:

- applied wheel/axle loads and number of repetitions,
- subgrade and pavement material characteristics,
- climate conditions, and
- site and pavement drainage.

Specific information regarding anticipated vehicle types, axle loads and traffic volumes was not provided at the time of this report. The "Parking Lots" pavement section considers 4-tire, 2-axle personal vehicle traffic only (cars, vans, pickups and SUVs). The "Drives" pavement section considers personal vehicle traffic and a maximum of ten delivery trucks/trash collection trucks per week. Our recommendations for full depth asphaltic cement concrete (ACC) pavement, ACC pavement over aggregate base, and Portland cement concrete (PCC) pavement sections are outlined in the following table.

Pavement Type	Parking Lots	Drives
Full depth ACC	2 inches ACC surface	2 inches ACC surface
	4 inches ACC base	6 inches ACC base
	2 inches ACC surface	2 inches ACC surface
ACC over	2 inches ACC base	4 inches ACC base
aggregate base	6 inches aggregate base	6 inches aggregate base
	(MoDOT Type 5 or similar)	(MoDOT Type 5 or similar)
	5 inches PCC	6 inches PCC
PCC	4 inches open graded rock	4 inches open graded rock
	(ASTM C 33 Size No. 57	(ASTM C 33 Size No. 57
	aggregate or similar)	aggregate or similar)

1. For trash container pads, we recommend a PCC pavement section be used consisting of 7 inches (minimum) of PCC over 4 inches (minimum) of open graded rock (ASTM C 33 Size No. 57 aggregate or similar) on a compacted soil subgrade. The trash container pad should be large enough to support the container and the tipping axle of the collection truck.

PCC pavements will perform better than ACC in areas where short-radii turning and braking are expected (i.e., entrance/exit aprons) due to better resistance to rutting and shoving. In addition, PCC pavement will perform better in areas subject to heavy static loads.

Construction traffic on the pavements was not considered in developing our opinions of minimum pavement thickness. If the pavements will be subject to construction equipment/vehicles, the pavement sections should be revised to consider the additional loading.

Pavements and subgrades will be subject to freeze-thaw cycles and seasonal fluctuations in moisture content. The pavement sections provided in the tables above were developed based on local soil and climate conditions.

4.6.3 Pavement Drainage and Maintenance

The pavement sections provided above consider that the subgrade soils will not experience significant increases in moisture content. Paved areas should be sloped to provide rapid drainage of surface water and to drain water away from the pavement edges. Pavements should be designed so water does not accumulate on or adjacent to the pavement, since this could saturate and soften the subgrade soils and subsequently accelerate pavement deterioration.

Periodic maintenance of the pavements will be required. Cracks should be sealed, and areas exhibiting distress should be repaired promptly to help prevent further deterioration. Even with periodic maintenance, some movement and related cracking may still occur and repairs may be required.

4.7 Seismic Considerations

	Code	Site Classification
	2012 International Building Code (IBC)	C 1
1.	5 ()	seismic site class definitions are based on average n of 100 feet. The exploratory borings extended to

properties of the subsurface profile to a depth of 100 feet. The exploratory borings extended to bedrock at a maximum depth of approximately 17 feet. Our opinion of site classification is based on boring data and our knowledge of local geological and geotechnical conditions.

5.0 GENERAL COMMENTS

Our analysis and opinions are based upon our understanding of the geotechnical conditions in the area, the data obtained from the site exploration performed and from our understanding of the project. Variations will occur between boring locations, across the site, or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. Therefore, Terracon should be retained to provide observation and testing services during grading, excavation, foundation construction and other earth-related construction phases of the project. If variations appear, we can provide further evaluation and supplemental recommendations. If variations are noted in the absence of our observation and testing services on-site, we should be immediately notified so that we can provide evaluation and supplemental recommendations.

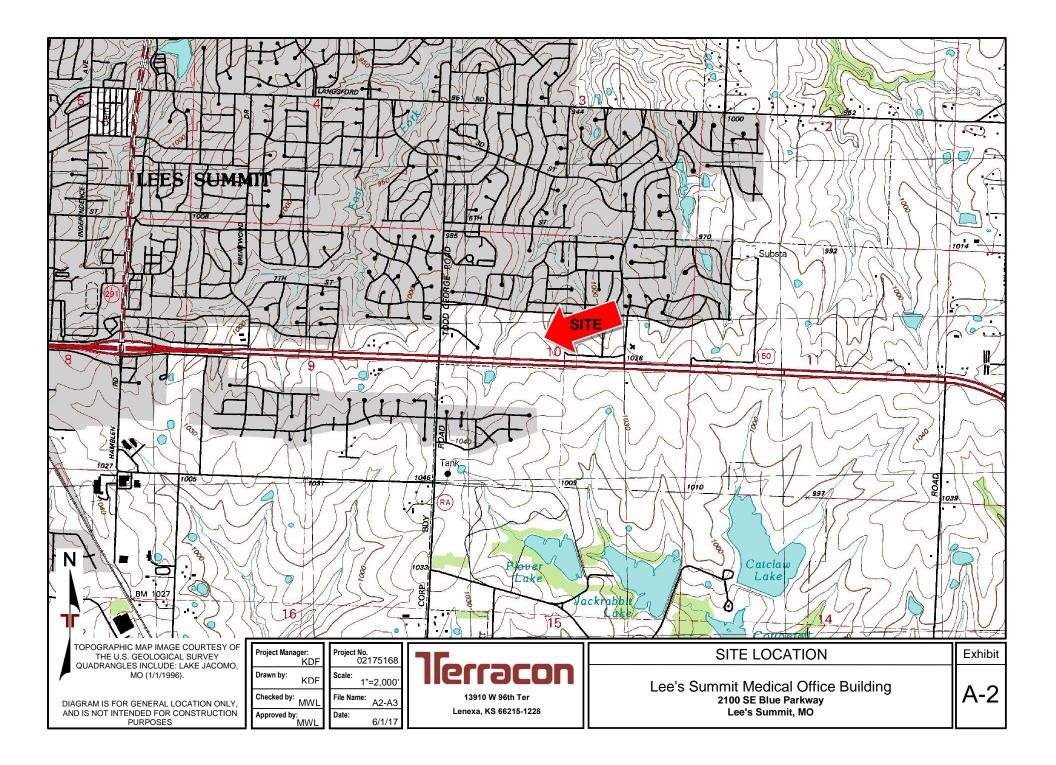
Our scope of services does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

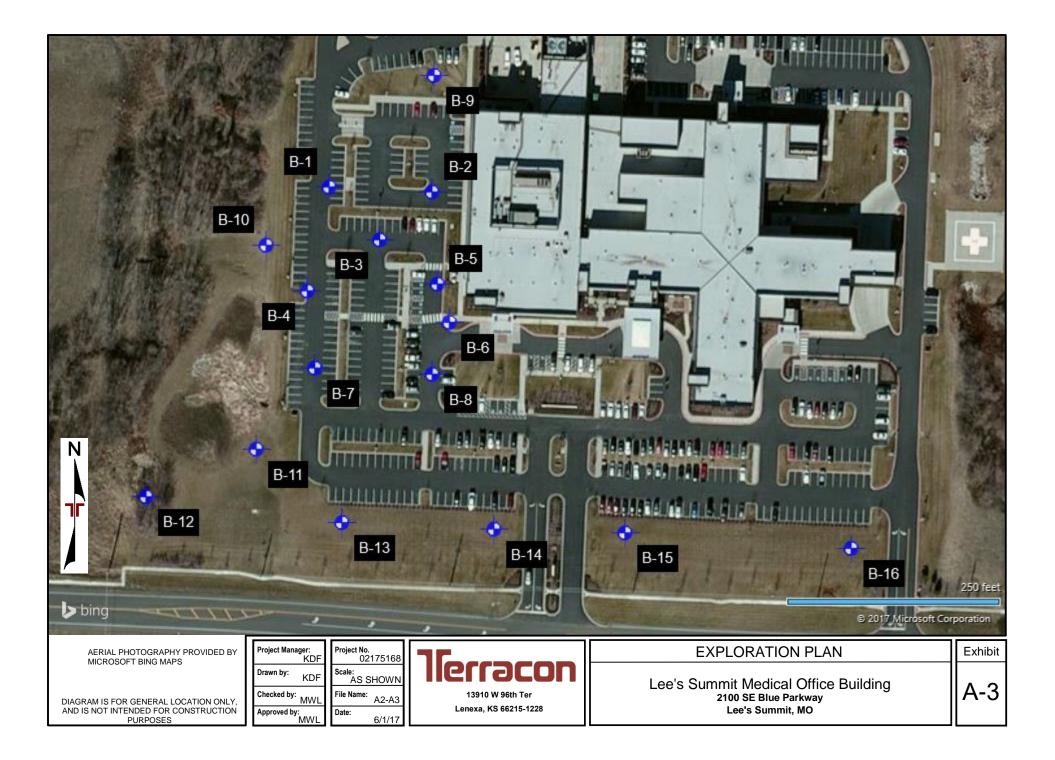
Our services and any correspondence are intended for the exclusive use of our client for specific application to the project discussed and are accomplished in accordance with generally accepted geotechnical engineering practices. No warranties, either express or implied, are intended or made.

Site characteristics as provided are for design purposes and not to estimate excavation cost. Any use of our report in that regard is done at the sole risk of the excavating cost estimator as there may be variations on the site that are not apparent in the data that could significantly impact excavation cost. Any parties charged with estimating excavation costs should seek their own site characterization for that specific purposes to obtain the specific level of detail necessary for cost estimating. Site safety, and cost estimating including, excavation support, and dewatering requirements/design are the responsibility of others. In the event that changes in the nature, design, or location of the project are planned, our conclusions and recommendations shall not be considered valid unless we review the changes and either verify or modify our conclusions in writing.

APPENDIX A FIELD EXPLORATION

Lee's Summit Medical Office Building Lee's Summit, Missouri June 9, 2017 Terracon Project No. 02175168


Field Exploration Description


The borings were laid out at the site by Terracon personnel using a hand held GPS device. The ground surface elevations indicated on the boring logs were obtained using an engineer's level and grade rod and were referenced to the finished floor elevation of the existing medical office building (1006.0 feet). The elevations at the surface of each boring are reported to the nearest ½ foot. The locations and elevations of the borings should be considered accurate only to the degree implied by the means and methods used to define them.

The borings were drilled with a track-mounted, rotary drill rig using solid-stem, continuous flight augers to advance the boreholes. Samples of the soil encountered in the borings were obtained using thin-walled tube and split-barrel sampling procedures. In the thin-walled tube sampling procedure, a thin-walled, seamless steel tube with a sharp cutting edge is pushed hydraulically into the soil to obtain a relatively undisturbed sample. In the split-barrel sampling procedure, a standard 2-inch outside diameter split-barrel sampling spoon is driven into the ground by a 140-pound automatic hammer falling a distance of 30 inches. The number of blows required to advance the sampling spoon the last 12 inches of a normal 18-inch penetration is recorded as the Standard Penetration Test (SPT) resistance value. The SPT resistance values, also referred to as N-values, are indicated on the boring logs at the test depths.

The samples were tagged for identification, sealed to reduce moisture loss, and taken to our laboratory for further examination, testing, and classification. The drill crew backfilled the borings with auger cuttings after completion of drilling/sampling and prior to leaving the site.

The drill crew prepared a field log of each boring to record data including visual classifications of the materials encountered during drilling as well as the driller's interpretation of the subsurface conditions between samples. The final boring logs included with this report represent the engineer's interpretation of the subsurface conditions at the borings based on field and laboratory data and observation of the samples.

	BORING LOG NO. B-1 Page 1 of 1 ROJECT: Lee's Summit MOB CLIENT: Hereford Dooley Architects Nashville, TN ITE: Lee's Summit, Missouri LOCATION See Exhibit A-2 Latitude: 38.903822° Longitude: -94.334242° (1) Mathematical Summary Summar												
PR	OJECT: Lee's Summit MOB		CI	IEN	T:	Here		Architec	ts				
SIT	······································		-			Nasr	iville, I'N						
g	LOCATION See Exhibit A-2		_	NS	ЪЕ	In.)	F	TER	Psi)	(%			
IIC LO	Latitude: 38.903822° Longitude: -94.334242°		H (Ft.	ATIO	ΕТΥ	ERY (JLTS		IFINE ESSI STH (I	TER INT (9	UNIT (pd		
GRAPHIC LOG	Surface	Elev: 1001.0 (Et.)	ЭЕРТ	ATER SERV	MPL	COVE	RESU	IETR (ts	NCON	-MA	민지	LL-PL-PI	
Ċ				88 88	SA	RE	LL.	PEN	U O E S	ŏ	5		
			_	-									
		SIGWIT											
			_	1	X	18				25			
			-	-	()								
			_	1	X	18	4-6-12 N=18			24			
			5 –	-	\land								
			-										
			_	-	\mathbb{N}		3-4-6						
					M	18	N=10			26			
	- light brown with limestone fragments below 8 feet		-										
	- light brown with limestone fragments below 8 feet				$\overline{\mathbf{N}}$		5-6-6						
		991			X	18	N=12			42			
	10.0 <u>LIMESTONE</u> , light brown, completely to highly		10-	-	\vdash								
	weathered, with shale seams		_										
	grov mederately weethered below 11.5 feet												
	- gray, moderately weathered below 11.5 feet	989	_										
	SHALE, gray to brown, highly to moderately weathered		_										
			-	-			REC = 82%		6070				
	14.8 LIMESTONE, gray to dark gray, slightly weath	986.5	15–				RQD = 75%						
	<u>LIMEOTORE</u> , gray to dark gray, originar would		10										
			_										
	17.0	984	_										
	Boring Terminated at 17 Feet												
1													
	Stratification lines are approximate. In-situ, the transition may **Classification estimated from disturbed or core samples. F		av rov				Hammer Type:	Automatic					
Advan Hol	other rock types.		-				Notos						
Hol	cement Method: ow stem augered to 12 feet, NX Coring therafter.	See Exhibit A-3 for des procedures.	scriptic	on of fie	eld		Notes:						
1		See Appendix B for des procedures and additio				tory							
Aband	onment Method: ng backfilled with Auger Cuttings	See Appendix C for exp abbreviations.				ols and							
Sur	acconned with Auger Cultings	Elevations were measu engineer's level and gra			eld us	ing an							
	WATER LEVEL OBSERVATIONS		Boring Started: 5/24/2017 Boring Completed:					oleted: {	5/24/2017				
1	Groundwater not encountered	lier	racon				Drill Rig: 908		Drille	er: SF			
1		13910 V			_	-	_	5168	Exbit	oit.	A-4		
1		Lene	exa, K	S			Project No.: 02175	5168	Exhib	oit:	A-4		

	BORIN	IG I	_00	g n	0	. B	-2			F	Page 1	1 of 1
PR	OJECT: Lee's Summit MOB		CI	LIEN	IT:	Here	eford Dooley / hville, TN	Architec	ts			
SI	E:		_									
	Lee's Summit, Missouri											
ŋ	LOCATION See Exhibit A-2			NS I	Ē	n.)		HAND PENETROMETER (tsf)	D /E si)	(9		ATTERBEF LIMITS
GRAPHIC LOG	Latitude: 38.903806° Longitude: -94.333817°		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	<u> </u>	UNCONFINED COMPRESSIVE STRENGTH (psi)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	
PHIC	Lanude. 30.903000 Longitude94.333017		TH	NAL A	ĽЦ	VEF		(tsf)	NGT	TEN	ΩHT U HΩ	
BRA	Surface Elev.: 1003.	7 (Ft.)	Ш	ATE 3SEI	AMF		핕문	Ľ – É	INC	No	VEIG	LL-PL-P
0	DEPTH ELEVATIO	N (Ft.)		28	Ś	R		Б	202	0		
	0.5 <u>6" ASPHALT CONCRETE</u>	1003										
	0.9 <u>5" AGGREGATE BASE COURSE</u>	1003	_	4								
	FAT CLAY (CH), dark brown to red brown, stiff to very stiff											
	very suit		_	4	$\mathbb{N}/$		3-7-12					
					1Å	18	N=19			23		
			_	-	$\langle \rangle$							
			_	-		14		3.0		27	95	
			5 –	1								
			_	1								
					$\overline{7}$							
			_	1	X	18	3-3-5 N=8			29		
			_		$/ \setminus$		11-0					
	8.5	995]								
	LIMESTONE, light brown, completely to highly		_		\mathbb{N}	11	11-50/5"			16		
-	weathered, with shale seams				ightarrow							
_			10-	4								
			_	-								
	- moderately weathered below 11.5 feet											
	12.3	991.5	-	-								
	SHALE, gray to brown, highly weathered								5850			
_	13.5	990	_	1								
_	LIMESTONE, gray to dark gray	000										
			-	1			REC = 100%					
	slightly weathered, - 4-inch shale layer at 14.5 feet		15-				RQD = 84%					
			15]								
			_	1								
	17.0	986.5	-									
	Boring Terminated at 17 Feet											
	Stratification lines are approximate. In-situ, the transition may be gradual.	nolve:-	mov		_		Hammer Type:	Automatic				
	**Classification estimated from disturbed or core samples. Petrographic a other rock types.	anarysis i	may rev	eal								
	ncement Method: See Exhibit A-3 fo			on of fi	eld		Notes:					
1 IUI	llow stem augered to 12 feet, NX Coring therafter. procedures. See Appendix B for		escrinti	on of l	abora	torv						
	procedures a	ind addit	ional da	ata (if a	any).							
	onment Method: See Appendi: abbreviations abbreviations		xplanat	ion of	symb	ols and	1					
	face capped with asphalt Elevations we	ere mea			eld us	ing an						
	WATER LEVEL OBSERVATIONS	vel and g	grade ro	od.				1/06 17			.1.7. 1.1	- 10 4 10 2
	Groundwater not encountered		Boring Started: 5/24/2017 Boring Con					ig Com	pleted: {	5/24/2017		
							Drill Rig: 908		Drille	er: SF		
			3910 W 96th Ter						Evhil	nit:	۸_۶	
		Ler	nexa, K	5			Project No.: 02175	0100	Exhib	אנ:	A-5	

	В		-00	G N	0	. В-	3			F	Page	1 of 1
PR	OJECT: Lee's Summit MOB		CI	LIEN	T:	Here		Architec	ts			
SIT	Ē:					inasn	ville, TN					
	Lee's Summit, Missouri											
<u>0</u> 0	LOCATION See Exhibit A-2		(;)	NS NS	ſΡΕ	(In.)	T (HAND PENETROMETER (tsf)	ED NVE (psi)	(%)	_d	ATTERBERO LIMITS
HICL	Latitude: 38.903652° Longitude: -94.334033°		DEPTH (Ft.)	R LEV	Щ Ц Ц	ΈRΥ	D TES	AND KOME tsf)	RESS	VTER ENT (HT (p	
GRAPHIC LOG	Surface	Elev.: 1003.4 (Ft.)	DEP	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	UE TE	UNCONFINED COMPRESSIVE STRENGTH (psi)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI
0		ELEVATION (Ft.)		≤ ©	Ś	ž		ЪЕ	202	0	_	
	0.5 6" ASPHALT CONCRETE 0.9 5" AGGREGATE BASE COURSE	1003 1002.5										
	FILL - FAT CLAY, with limestone fragments, b and gray	rown	_	1								
	2.0 FAT CLAY (CH), dark brown to red brown, med	1001.5 lium	-	1	\mathbb{N}	18	2-3-4 N=7			27		58-22-36
	stiff to stiff		_		\square		IN=7					
			-	1	X	18	3-3-3 N=6			30		
			5 -	-	\vdash	\vdash						
			_									
			-	1	X	18	2-3-5 N=8			29		
			_	-	\square							
	9.0	994.5										
	SHALE, light brown, highly weathered				X	17	7-15-50/5"			23		
	10.5	993	10-	1								
	11.0 LIMESTONE , gray, moderately weathered	992.5	_									
0.00	Auger Refusal at 11 Feet											
į												
	Stratification lines are approximate. In-situ, the transition may	be gradual.					Hammer Type:	Automatic				
	**Classification estimated from disturbed or core samples. Pe other rock types.		nay rev	veal								
Advan Con	cement Method:	See Exhibit A-3 for de rocedures.	escriptio	on of fie	eld		Notes:					
	s	See Appendix B for de rocedures and additi				tory						
Aband	onment Method: S	See Appendix C for ex bbreviations.				ols and						
Sur	ace capped with asphalt	Elevations were meas engineer's level and g			eld us	ing an						
	WATER LEVEL OBSERVATIONS Groundwater not encountered						Boring Started: 5/2	24/2017	Borin	ng Comp	pleted:	5/24/2017
			0		U		Drill Rig: 908		Drille	er: SF		
		13910 Len	W 96th iexa, K				Project No.: 02175	5168	Exhit	oit:	A-6	

	BORING LOG NO. B-4 Page 1 of 1 ROJECT: Lee's Summit MOB CLIENT: Hereford Dooley Architects Nashville, TN												
PR	OJECT: Lee's Summit MOB		CL	IEN	Т:	Here	ford Dooley	Architec	ts				
SIT			-			nasn	IVIIIE, I N						
	Lee's Summit, Missouri												
ő	LOCATION See Exhibit A-2		(EL	ΡE	(In.)	т	HAND PENETROMETER (tsf)	ED NE psi)	(%	cf)	ATTERBER(LIMITS	
IC L	Latitude: 38.903488° Longitude: -94.334332°		H (Ft.	ATIC	ЕТΥ	ERY (ULTS	af) MD MD	NFINE (ESSI STH (ENT (TNUT (pq)		
GRAPHIC LOG	Surface F	Elev.: 1001.5 (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	HA (t)	UNCONFINED COMPRESSIVE STRENGTH (psi)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI	
Ċ	DEPTH	ELEVATION (Ft.)		ЗB	S⊿	R	ш	PEN	D O L	Õ	5		
1	0.5 6" ASPHALT CONCRETE	<u> </u>											
	0.9 <u>5" AGGREGATE BASE COURSE</u> FILL - FAT CLAY, with limestone fragments	1000.5	_										
			_				3-4-8						
					X	18	N=12			25			
	3.5	998	_										
	FAT CLAY (CH), dark brown to red brown, med stiff to stiff		_			8		2.75		27	96		
	Sun to Sun					Ũ		2.70			00		
			5 —										
			_										
			_		X	18	2-2-4 N=6			26			
			_		\square		N=0						
	- light brown with limestone fragments below 9	feet	_		X	18	2-2-13 N=15			39			
	10.0 LIMESTONE, light brown, completely to highly	991.5	10—		\square								
	weathered, with shale seams												
			_										
			_										
	13.0	988.5	_										
	SHALE, olive brown to light brown, highly weath					5	50/5"			18			
	14.0 14.5 LIMESTONE , gray, moderately weathered	<u>987.5</u> 987	_		\cap	5	50/5			10			
	Auger Refusal at 14.5 Feet												
į													
5													
	Stratification lines are approximate. In situ the transition much	e gradual					Hammor Tunci	Automotio					
	Stratification lines are approximate. In-situ, the transition may be **Classification estimated from disturbed or core samples. Per other rock types		ay rev	eal			Hammer Type:	nuiomalic					
	other rock types. Incement Method: See Exhibit A-3 for		criptio	n of fie	eld		Notes:						
	S	ocedures. ee Appendix B for des				tory							
Aband		ocedures and addition ee Appendix C for exp				ols and							
Bori	ing backfilled with Auger Cuttings at face capped with asphalt E	obreviations. levations were measu	ured in	the fie	-								
		ngineer's level and gra	ade ro	d.		-	Boring Started: 5/2	24/2017	Rorin	a Com	nleted	5/24/2017	
	Groundwater not encountered	llerr	2				-	-12011			SIGLEU.	512712011	
		13910 V	V 96th	Ter			Drill Rig: 908		Drille				
: I			exa, KS				Project No.: 02175	5168	Exhib	oit:	A-7		

	E	BORING L	.00	G N	10	. В-	5			F	Page [·]	1 of 1
PR	OJECT: Lee's Summit MOB		CI	IEN	IT:	Here	ford Dooley A wille, TN	Architec	ts			
SI	ſE:					INASI	iville, i n					
	Lee's Summit, Missouri											
g	LOCATION See Exhibit A-2		~	NS NS	ЫЩ	(in.)	F	HAND PENETROMETER (tsf)	Psi)	(%	3L)	ATTERBERG LIMITS
	Latitude: 38.90351° Longitude: -94.333795°		Ч (Ft.	ATIO	1	ERY (TES JLTS		IFINE ESSI TH (NT (UNIT T (pe	
GRAPHIC LOG			DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	ETR((ts	UNCONFINED COMPRESSIVE STRENGTH (psi)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI
ß	DEPTH	Elev.: 1004.9 (Ft.) ELEVATION (Ft.)		N N N N N N N N N N N N N N N N N N N	SA	REC	<u> </u>	PEN	UN COI STR	CC	M	
	0.4 5" ASPHALT CONCRETE	1004.5										
	0.8 5" AGGREGATE BASE COURSE	1004	_	-								
	FAT CLAY (CH), dark brown to red brown, me stiff to stiff	aium										
			-		IV.	18	2-3-6 N=9			27		
			_		$ \land$		N-9					
			_		V	18	3-4-5					
			F		$\backslash \setminus$		N=9					
			5 –									
6/9/17			_									
GD												
			_	1	IX.	18	2-3-4 N=7			32		
		997	_		\square							
	SHALE, light brown, completely to highly wear with limestone seams	nerea,			\triangleright	8	18-50/2"			14		
			-	-	hearrow	0	18-50/2			14		
ACOL			10-									
			10									
			-									
168.0	12.0	993	_									
	12.5 LIMESTONE, gray, moderately weathered	992.5										
	Auger Refusal at 12.5 Feet											
N O												
2-90 0												
RT L												
SMA												
GEO												
ORT.												
REP												
INAL												
ORIG												
MO												
ARATI.	Stratification lines are approximate. In-situ, the transition may **Classification estimated from disturbed or core samples.		nay rev	eal			Hammer Type:	Automatic				
Advar	other rock types.		-		ald		Notes:					
≝ Cor	ntinuous Flight Auger	See Exhibit A-3 for de procedures.				4 m m -						
		See Appendix B for de procedures and addition				llory						
Abano	lonment Method: ing backfilled with Auger Cuttings	See Appendix C for ex abbreviations.	kplanat	ion of s	symb	ols and						
ທີ່ Sur	face capped with asphalt	Elevations were meas engineer's level and g	ured in rade ro	the fie	eld us	ing an						
	WATER LEVEL OBSERVATIONS				_	_	Boring Started: 5/2	4/2017	Borin	g Comp	oleted: {	5/24/2017
BORI	Groundwater not encountered	lien	5			Π	Drill Rig: 908		Drille	er: SF		
		13910 Len	W 96th exa, K				Project No.: 02175	168	Exhit	oit:	A-8	

0 LOCATION See Exhibit A-2 Image: Comparison of the compari												1 of 1
PR	OJECT: Lee's Summit MOB		CI	LIEN				Architec	ts			
SIT	Ē:					nasr	iville, TN					
g	LOCATION See Exhibit A-2		0	NS NS	Ы	In.)	L	IER	VE VE osi)	(%	f)	ATTERBERC LIMITS
IIC L0	Latitude: 38.903387° Longitude: -94.333745°		H (Ft.	ATIO	12	RY (JLTS		ESSI' ESSI'	TER NT (9	TINU pc	
APH			EPTI	TER	MPLE	SOVE	IELD	ETR((ts		WAT	EIGH	LL-PL-PI
G				N OBS	SAI	REC	Ē	PEN	STR STR	ö	12	
<u>x4 /x</u> <u>x</u> 1	0.5 <u>6" ROOT ZONE</u>	1005										
	FAT CLAY (CH), dark brown to red brown, stil	f	_	-								
					7							
			_	1	IX.	18				25		
			_	-								
						24		2.0		07	07	
			_]		24		2.0		21	97	
			5 –	-								
			_									
			_	1	V	18				48		
	highly weathered, with shale layers		_		\square		N=36					
					\times	3	50/3"			13		
			_	1								
			10-									
	SHALE , brown to light brown, highly weathere	d										
<u>г</u>			-	1								
			_	-	~		50/1"					
	<u>LIMESTONE</u> , gray, highly to moderately weat	nerea										
			_	1								
			_	-								
	15.0	990.5	15									
YEM	Auger Refusal at 15 Feet		10									
- -												
שאמ												
NOV NOV												
ARA	Stratification lines are approximate. In-situ, the transition ma **Classification estimated from disturbed or core samples.		nay rev	veal			Hammer Type:	Automatic				
Advan	other rock types. cement Method:	See Exhibit A-3 for des	scriptic	on of fie	eld		Notes:					
Cor	tinuous Flight Auger	procedures. See Appendix B for de				tory						
Abort	onment Method:	procedures and addition See Appendix C for ex	onal da	ata (if a	any).	-						
Bac	onment Methoa: kfilled with Auger Cuttings	abbreviations. Elevations were measu			-							
	WATER LEVEL OBSERVATIONS	engineer's level and gr						4/00.17	- ·		.1.2	-10.4.100.1-
	Groundwater not encountered						Boring Started: 5/2	24/2017			pieted:	5/24/2017
		13910 \					Drill Rig: 908		Drille	er: SF		
Ē			exa, K				Project No.: 02175	5168	Exhit	oit:	A-9	

		BORING L	.00	G N	0	. В-	7			F	Page	1 of 1
PR	OJECT: Lee's Summit MOB		CI	IEN	T:	Here		Architec	ts			
SIT	······································		-			nasr	ville, TN					
	Lee's Summit, Missouri											
g	LOCATION See Exhibit A-2		_	NS NS	Ц	In.)	L	HAND PENETROMETER (tsf)	NE Ssi)	(%		ATTERBER(LIMITS
GRAPHIC LOG	Latitude: 38.90324° Longitude: -94.334301°		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS		FINE ESSIV TH (F	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	
APH			EPTH	TER	APLE	OVE	ELD	HAN ETRO (ts	CON MPRI ENG	WAT	IGH I	LL-PL-PI
GF	DEPTH Surfac	Elev.: 1000.9 (Ft.) ELEVATION (Ft.)	ā	VA OBS	SAN	REC	ĒĽ	PEN	UNCONFINED COMPRESSIVE STRENGTH (psi)	S	U B	
	0.5 <u>6" ASPHALT CONCRETE</u>	1000.5										
	0.9 5" AGGREGATE BASE COURSE	1000	_									
	FAT CLAY (CH), dark brown to red brown, me stiff to stiff	aium										
			-		IX	18	3-5-6 N=11			26		
			_		\square		N- 11					
			_		IV	18	2-1-3 N=4					
			5 —		\square		IN-4					
			U									
	- light brown with limestone fragments below	6 feet	-	-								
			_				6-6-3					
					X	10	N=9			18		
	8.0 LIMESTONE, light brown to gray, completely	993 to	_		\vdash							
	highly weathered, with shale seams		_		\ge	2	20-50/0"			31		
	10.5	990.5	10-	-								
	SHALE, light brown to gray, highly to moderate		_									
	weathered											
	12.0 LIMESTONE, gray to dark gray, slightly weath		-	-			REC = 77%					
			_				RQD = 58%		17990	20		
			_									
	15.0	986	15-									
	Boring Terminated at 15 Feet		10									
	Stratification lines are approximate. In-situ, the transition ma		011				Hammer Type:	Automatic			1	I
Advan Holl	**Classification estimated from disturbed or core samples. F other rock types.		-				I Note					
Advan Holl	ancement Method: See Exhibit A-3 for oprocedures.		scriptic	on of fie	eld		Notes:					
1	See Appendix B for o procedures and addi					tory						
Aband	onment Method:	See Appendix C for ex abbreviations.				ols and						
Sur	ng backfilled with Auger Cuttings ace capped with asphalt	Elevations were measured and or			eld us	ing an						
	WATER LEVEL OBSERVATIONS				_		Boring Started: 5/2	24/2017	Borin	g Com	pleted: {	5/24/2017
1	Groundwater not encountered	ller	0			Π	Drill Rig: 908		Drille			
1		13910 \		Ter		- 4	Project No.: 02175	168	Exhib		∖- 10	
1		Lene	una, Ni	0			1 10j001 NO 021/0			F		

	E	BORING L	00	G N	0	. В-	8			F	Page [·]	1 of 1
PR	OJECT: Lee's Summit MOB		CL	IEN	T:	Here Nash	ford Dooley / wille, TN	Architec	ts			
SIT	E: Lee's Summit, Missouri											
IIC LOG	LOCATION See Exhibit A-2 Latitude: 38.90322° Longitude: -94.333816°		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	JLTS	HAND PENETROMETER (tsf)	UNCONFINED COMPRESSIVE STRENGTH (psi)	rer NT (%)	DRY UNIT WEIGHT (pcf)	ATTERBER LIMITS
GRAPHIC	Surface	Elev.: 1002.6 (Ft.) ELEVATION (Ft.)	DEPT	WATER	SAMPL	RECOVE	FIELD TEST RESULTS	PENETR(UNCON COMPR STRENG	WATER CONTENT (%)	DRY WEIGH	LL-PL-PI
$\circ \cup ($	0.5 <u>6" ASPHALT CONCRETE</u> 1.0 <u>6" AGGREGATE BASE COURSE</u>	1002										
	FAT CLAY (CH), brown and gray, medium stiff	<u>1001.5</u> i to	_				1-2-3					
	3.0	999.5			M	18	N=5			29		
	SHALE, light brown, completely to highly weat	hered	_			14		4.5+		29	95	
			5 —									
	6.0 LIMESTONE, gray, highly to moderately weath	996.5	_	-								
	<u>-initioronite</u> , gray, highly to medolately weat		_			0	50/0"					
			_			10	50/41			10		
	9.0 9.5 SHALE , gray to brown, highly weathered	<u>993.5</u> 993	_			18	50/1"		6200	10)		
	LIMESTONE, gray to dark gray, slightly weather	ered	10—									
							REC = 98%					
			_			98	RQD = 90%					
			_	-								
			_									
	13.5 Boring Terminated at 13.5 Feet	989										
[
	Stratification lines are approximate. In-situ, the transition may **Classification estimated from disturbed or core samples. P		ay rev	eal			Hammer Type:	Automatic				
	ow stem augered to 8.5 feet, NX Coring therafter.	See Exhibit A-3 for des procedures. See Appendix B for des procedures and addition	scriptional da	on of la ta (if a	abora ny).	-	Notes:					
Aband Bor Sur	ing backfilled with Auger Cuttings face capped with asphalt	See Appendix C for exp abbreviations. Elevations were measu angineer's level and gra	ured in	the fie	-							
	WATER LEVEL OBSERVATIONS Groundwater not encountered						Boring Started: 5/2	24/2017	Borin	g Comp	oleted: {	5/24/2017
		llerr					Drill Rig: 908		Drille	er: SF		
		13910 W Lene	V 96th exa, KS				Project No.: 02175	5168	Exhil	oit: A	A-11	

	I	BORING L	00	3 N	0	. В-	9			F	Page	1 of 1
PR	OJECT: Lee's Summit MOB		CI	IEN	T:	Here	ford Dooley A	Architec	ts			
SI	ſE:					Nasn	ville, TN					
	Lee's Summit, Missouri											
OG	LOCATION See Exhibit A-2		(.	TEL DNS	ΡE	(In.)	Т	HAND PENETROMETER (tsf)	ED IVE [psi)	%)	- cf)	ATTERBER(LIMITS
GRAPHIC LOG	Latitude: 38.904181° Longitude: -94.333808°		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	af) MD OME	UNCONFINED COMPRESSIVE STRENGTH (psi)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	
RAP	Surfac	e Elev.: 1004.6 (Ft.)	DEPT	SER	MPL	COV	FIELD	H H H H	NCO	ONTE	URY VEIG	LL-PL-PI
	DEPTH	ELEVATION (Ft.)		88	S/	R	-	LE L	°70 ∪ STO	U	>	
<u><u>x</u>, <u>y</u>, <u>x</u></u>	0.5 <u>6" ROOT ZONE</u> <u>FAT CLAY (CH)</u> , dark brown to red brown, me	1004 edium										
	stiff to stiff		_									
			_	-	\mathbb{N}	10	5-6-8			0.1		50.00.00
						18	N=14			21		56-20-36
			_	1								
			_		\mathbb{N}	18	2-4-7			25		
			5 —		\square	10	N=11			20		
			5									
			-									
			_	-	∇		4-5-7					
					M	18	N=12			25		
			_									
			_	-	\mathbb{N}	18	2-2-4			29		
	10.0	994.5	10-		\square	10	N=6			20		
2 I	Boring Terminated at 10 Feet		10									
-												
4												
5												
	Stratification lines are approximate. In-situ, the transition ma **Classification estimated from disturbed or core samples. F		av rev	eal		LL	Hammer Type:	Automatic				
Advar Abanc Bac	other rock types.				12		Notes:					
Cor	tinuous Flight Auger	See Exhibit A-3 for desprocedures.				.	110165.					
		See Appendix B for des procedures and addition	nal da	ita (if a	ny).	-						
Abano Bao	lonment Method: :kfilled with Auger Cuttings	See Appendix C for exp abbreviations.			-							
		Elevations were measu engineer's level and gra			eld us	ing an						
	WATER LEVEL OBSERVATIONS Groundwater not encountered						Boring Started: 5/2	24/2017	Borin	g Comp	oleted:	5/24/2017
		llerr			U		Drill Rig: 908		Drille	er: SF		
		13910 W Lene	V 96th xa, K				Project No.: 02175	5168	Exhit	oit: A	\-12	

BORING LOG NO. B.40 Page 1 of 1 PROLECT: Loc's Summit MOB CLENT: Hereford Doclety Architects STE: Loc's Summit, Missouri Image: Stepse Lock Architects Under SW30305' Longiate: 94.304302' Stepse Lock Architects Stepse Lock Architects Under SW30305' Longiate: 94.304302' Stepse Lock Architects Stepse Lock Architects Under SW30305' Longiate: 94.304302' Stepse Lock Architects Stepse Lock Architects Under SW30305' Longiate: 94.304302' Stepse Lock Architects Stepse Lock Architects Under SW30305' Longiate: 94.304302' Stepse Lock Architects Stepse Lock Architects - durk brown to red brown bolow 3 ford 90 10 24-6-6 10 24-6 - light brown, with limesonom fragments bolow 8 ford 10 12 1-2.2 1-3-3 1-1 Stepse Lock Architects Stepse Lock Architects Stepse Architects Stepse Architects Stepse Architects - light brown, with limesonom fragments bolow 8 fort 10 12 1-2.2 1-3-3 1-1 - light Max Boring Terminated at 10 Feet 10 12 1-2.2 1-3-3 <t< th=""></t<>													
PR	OJECT: Lee's Summit MOB		CL	IEN	T:	Here	ford Dooley A	Architec	ts				
SIT	Έ:		-			nasn	iville, i n						
g	LOCATION See Exhibit A-2		0	NS NS	ЪЕ	In.)	L	IER	VE VE osi)	(%	f)	ATTERBERG LIMITS	
IIC LO	Latitude: 38.903635° Longitude: -94.334502°		H (Ft.	ATIO	ЕТУІ	ERY (JLTS	ND OME	NFINE ESSI'	TER ENT (9	UNIT HT (pc		
RAPH	Surface	Elev: 995.6 (Et.)	DEPT	ATER SERV	MPL	COVE	RESU	HA JETR	NCON	-WA ONTE	DRY /EIGH	LL-PL-PI	
U	DEPTH	()		ŠВ	SA	RE	Ľ	PEN	U O ES	ŏ	\$		
<u>717</u> 71	0.7												
	FAT CLAY (CH), dark brown, medium stiff to st	iff	_										
			_				246						
					X	10				26			
	- dark brown to red brown below 3 feet		_		/ \								
			_			19		3 25		24	100		
								0.20			100		
			5 —										
11/6/			_										
ATE.0			_		X	18				24			
EMPL	light brown with limestone frogments below	fact	_		\square								
TATE	- light brown, with limestone fragments below 8 feet												
			_		X	12				33			
RACO					$ \land$								
TER													
3.GPJ													
75168													
- 021													
ON-0													
T LOC													
SMAR													
3EO 9													
DRT. 0													
REPO													
INAL													
ORIG													
MON													
ц П П		ha waada A						A					
ARA1	Stratification lines are approximate. In-situ, the transition may **Classification estimated from disturbed or core samples. Pe	pe gradual. etrographic analysis ma	ay rev	eal			Hammer Type:	Automatic					
م الله Advan	other rock types. cement Method:	See Exhibit A-3 for des	criptio	n of fie	eld		Notes:						
≝ Con	tinuous Flight Auger	procedures. See Appendix B for des				torv							
	a	rocedures and additio	nal da	ta (if a	ny).	-							
S Aband	kfilled with Auger Cuttings	See Appendix C for exp bbreviations. Elevations were measu			-								
00		ingineer's level and gra			u us	ing all							
	8.5' while drilling		racon				Boring Started: 5/2	23/2017	Borin	ig Com	oleted: {	5/23/2017	
S BOR	8.5' after completion of drilling	13910 V			J		Drill Rig: 908		Drille	er: SF			
Ξ			v 96th exa, KS				Project No.: 02175	5168	Exhib	oit: A	A-13		

	В	ORING L	.OG	N	0.	B-′	11			F	age [·]	1 of 1
PR	OJECT: Lee's Summit MOB		CI	IEN	T:	Here [®] Nash	ford Dooley A ville, TN	rchitect	s			
SI						Nash	vinc, m					
	Lee's Summit, Missouri			i								ATTERREDO
g	LOCATION See Exhibit A-2			SNS	ΡE	(In.)	ta co	HAND PENETROMETER (tsf)	UNCONFINED COMPRESSIVE STRENGTH (psi)	(%)	d)	ATTERBERG LIMITS
HICL	Latitude: 38.902979° Longitude: -94.334543°		н. Н	2 LEV	Щ Ц	ERY	ULTS	ND Sf)	NFIN RESS GTH	ENT (UNIT HT (p	
GRAPHIC LOG	Surface	e Elev.: 1000.3 (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	HA (t	NCO	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI
	DEPTH	ELEVATION (Ft.)	_	88	S₽	R	L.	PEN	°70∪ STO	Ö	>	
<u>x' 1/</u> . <u>x'</u>	.0.7	999.5										
	FAT CLAY (CH), dark brown to red brown, me stiff to stiff	dium		-								
			_				2-4-6					
					X	6	N=10			21		
			_	-	()							
			_				1-2-2					
					X	16	N=4			25		
			5 —	-								
11/6/			_									
DI												
ATE.0			_	1	X	16	5-5-11 N=16			42		
EMPL	8.0 SHALE, light brown, completely weathered	992.5	_		\square							
DATATEMPLATE	STALE, light brown, completely weathered											
					X	4	0-1-1 N=2			27		
WELL 02175168.GPJ TERRACON	Boring Terminated at 10 Feet	990.5	10-		$(\land$							
TER												
8.GPJ												
7516												
L 021												
WEL												
G-NO												
RT LO												
SMAF												
GEO												
ORT.												
REP(
INAL												
ORIG												
ROM												
		the second second						A t t' .				
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO BORD 20 P 20 P 20 P	Stratification lines are approximate. In-situ, the transition may **Classification estimated from disturbed or core samples. P other rock types		may rev	eal			Hammer Type:	HULOMALIC				
M Advar		See Exhibit A-3 for de	escriptic	on of fie	eld		Notes:					
		procedures. See Appendix B for d				itory						
> ⊢ O Abano		procedures and additi See Appendix C for e				ols and						
	kfilled with Auger Cuttings	abbreviations. Elevations were meas	sured in	the fie	-							
	WATER LEVEL OBSERVATIONS	engineer's level and g	prade ro	d.			Boring Started: 5/2	3/2017	Borin	a Com	leted.	5/23/2017
	8.5' while drilling	ller	racon				-	0/2011	_		Jelea. (5/23/2017
	9' after completion of drilling	13910	W 96th	n Ter			Drill Rig: 908		Drille			
Ξ.		Ler	nexa, K	S			Project No.: 02175	168	Exhib	oit: A	\-14	

	В	DRING L	OG	N	0.	B -'	12			F	Page 1	1 of 1
PR	OJECT: Lee's Summit MOB		CL	IEN	T:	Here	ford Dooley A ville, TN	Architec	ts			
SIT	Ē:					inasi	iville, TN					
	Lee's Summit, Missouri											
ő	LOCATION See Exhibit A-2		<u> </u>	NS	ЪЕ	(In.)	F	HAND PENETROMETER (tsf)	ED VE psi)	(%	یل) .	ATTERBERG LIMITS
GRAPHIC LOG	Latitude: 38.902826° Longitude: -94.334998°		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	MD MD	UNCONFINED COMPRESSIVE STRENGTH (psi)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	
RAPH	Surface	Elev.: 997.4 (Ft.)	ЭЕРТ	ATER SERV	MPL	COVE	IELD	IETR (ts		WA-	DRY EIGH	LL-PL-PI
Ū		ELEVATION (Ft.)		₿§	SA	RE	LL.	PEN	STECU	ŏ	~	
<u>7, 1</u> , 7,	12" ROOT ZONE											
<u>1/ \. 1/</u>	1.0 FILL - FAT CLAY, with limestone fragments, da	996.5 ark	_									
	brown		_				1.1.0					
					X	14	1-1-2 N=3			30		
			-									
			_									
						16		4.5+		25	97	
	5.0 <u>FAT CLAY (CH)</u> , dark brown	992.5	5 —									
6/9/17			_	-								
		000 5										
5.E	7.0 <u>SHALE</u> , light brown, completely weathered	990.5	-		IV	18	3-3-4 N=7			30		
MPLA			_		\square		IN-7					
	- with limestone seams below 8.5 feet			\square								
			_		IX	8	28-16-14 N=30			10		
	10.0	987.5	10—	∇	\square		11-30					
WELL 02175168.GPJ TERRACON_DATATEMPLATE.GDT	Boring Terminated at 10 Feet											
GPJ												
5168.												
0217												
ELL												
S O N												
log												
I ART												
2S O												
T. GE												
POR												
AL RE												
SIGIN												
Š V												
0 FRC												
	Stratification lines are approximate. In-situ, the transition may b						Hammer Type:	Automatic				
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO BER 20 P 20	**Classification estimated from disturbed or core samples. Pet other rock types.						<u> </u>					
or Advan ≝ Con		ee Exhibit A-3 for des ocedures.	scriptio	n of fie	eld		Notes:					
VALII		ee Appendix B for de ocedures and addition				tory						
Aband	onment Method:	ee Appendix C for ex obreviations.				ols and						
ທ ອ	El	evations were measingineer's level and gr			eld us	ing an						
	WATER LEVEL OBSERVATIONS					_	Boring Started: 5/2	23/2017	Borin	g Com	oleted: {	5/23/2017
	8.5' while drilling 10' after completion of drilling	lier	5			Π	Drill Rig: 908		Drille	er: SF		
		13910 \ Lene	N 96th exa, KS				Project No.: 02175	6168	Exhit	oit: A	A-15	

	В	ORING LO	C	i N	0.	B-′	13			F	Page	1 of 1
PR	OJECT: Lee's Summit MOB		CL	IEN	T:	Here	ford Dooley	Architect	ts			
SIT	Ē:		-			Nasr	ville, TN					
	Lee's Summit, Missouri											
Ő	LOCATION See Exhibit A-2		(.	EL DNS	ΡE	(In.)	۲.	HAND PENETROMETER (tsf)	ED IVE psi)	%)	cf)	ATTERBERG LIMITS
GRAPHIC LOG	Latitude: 38.902743° Longitude: -94.334189°		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	(ND OME sf)	UNCONFINED COMPRESSIVE STRENGTH (psi)	WATER CONTENT (%)	DRY UNIT WEIGHT (pd)	
RAPI	Surface	Elev.: 1003.9 (Ft.)	DEPT	ATEF SER'	MPL	COV	RES	HA NETR (t	NCOI	ONTE	ERY EG	LL-PL-PI
	DEPTH	ELEVATION (Ft.)		≥8	SA	R	ш.	PEN	D O LS	Ũ	5	
<u> </u>	0.5 <u>6" ROOT ZONE</u> <u>FAT CLAY (CH)</u> , red brown, medium stiff to sti	1003.5										
			_									
			_		\mathbb{N}	10	2-3-5			24		64-24-40
					\square		N=8			24		04-24-40
			_		V	18	1-2-3 N=5			26		
			5 —		\square		N-0					
6/9/17												
			_	1								
	7.0 LIMESTONE, light brown, completely weather	997 ed	_	-	V	18	4-6-22			26		
			_	-	\square		N=28					
	8.5 - gray, moderately weathered below 8 feet Auger Refusal at 8.5 Feet	995.5		<u> </u>								
RACC												
U TER												
88.GP												
17516												
LL 02												
0 ME												
N-90												
ARTL												
0 SM												
E GE												
EPOF												
NAL R												
ORIGII												
MON												
	Stratification lines are approximate to the the tractil	he gradual					Horeman T	Automatic				
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO B B OD D OD O	Stratification lines are approximate. In-situ, the transition may **Classification estimated from disturbed or core samples. P other rock types.		ay rev	eal			Hammer Type:	Automatic				
ä Ø Advan ≝ Cor	cement Method:	See Exhibit A-3 for des	scriptio	on of fie	eld		Notes:					
ALID		procedures. See Appendix B for des procedures and additio				tory						
Aband	onment Method:	procedures and additio See Appendix C for exp				ols and						
ຍ Bac		abbreviations. Elevations were measu engineer's level and gra			eld us	ing an						
	WATER LEVEL OBSERVATIONS					_	Boring Started: 5/2	23/2017	Borin	g Com	pleted:	5/23/2017
BORIN	Groundwater not encountered	llerr	0			Π	Drill Rig: 908		Drille	er: SF		
SIL		13910 V Lene	V 96th exa, K\$				Project No.: 02175	Exhit	oit: A	A-16		

	В		OG		0.	B- ′	14			F	Page ?	1 of <u>1</u>
PR	OJECT: Lee's Summit MOB		CL	IEN	T :	Here	ford Dooley A	Architect	ts			
SIT			_			nasn	ville, TN					
•	Lee's Summit, Missouri											
00	LOCATION See Exhibit A-2		(.	EL DNS	ΡE	(In.)	⊢	HAND PENETROMETER (tsf)	ED IVE psi)	%)	cf)	ATTERBERG LIMITS
HICL	Latitude: 38.902722° Longitude: -94.333561°		DEPTH (Ft.)	% LEV	ЕТΥ	ERY (0 TES	ND Sf)	NFINE RESSI GTH (ENT (UNIT HT (pe	
GRAPHIC LOG	Surface	e Elev.: 1008.7 (Ft.)	DEPT	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	NETR (t	UNCONFINED COMPRESSIVE STRENGTH (psi)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI
	DEPTH	ELEVATION (Ft.)		≤≞	s/	R		PE	'õ₽	0	>	
<u>, 17</u> <u></u>	0.5 <u>6" ROOT ZONE</u> FAT CLAY (CH), red brown, stiff	1008										
	, , , , , , , , , , , , , , , , ,		_	1								
			_		\mathbb{N}	16	2-4-5			24		
			_		\square	10	N=9			27		
			_			13		3.5		26	97	
			5 —									
6/9/17												
		1002	_]		0	50/0"					
	7.0 LIMESTONE, light brown to gray, moderately weathered	1001.5	-			-	50/0					
WELL 02175168.GPJ TERRACON_DATATEMPLATE GDT	Auger Refusal at 7 Feet											
TATE												
RACO												
TER												
8.GP,												
17516												
-L 02												
0 WEI												
00-90												
ART LO												
/WS C												
I. GE(
POR												
AL RE												
RIGIN												
O WO												
ARATE	Stratification lines are approximate. In-situ, the transition ma **Classification estimated from disturbed or core samples. F		ay rev	eal			Hammer Type:	Automatic				
مَ Advan	other rock types.	See Exhibit A-3 for des	-		eld		Notes:					
≝ Cor	tinuous Flight Auger	procedures. See Appendix B for deal				tory						
✓ Abana	onment Method:	procedures and additio See Appendix C for exp	onal da	ita (if a	ny).	-						
Z Bac	kfilled with Auger Cuttings	abbreviations. Elevations were measu	ured in	the fie	-							
	WATER LEVEL OBSERVATIONS	engineer's level and gr	ade ro	d.		-	Boring Started: 5/2	3/2017	Borin	a Com	oleted: F	5/23/2017
ORINC	Groundwater not encountered	llerr					Drill Rig: 908		Drille			,,20,2011
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO B B O D D D D D D D D D D D D D D D D D		13910 V	/V 96th	Ter				168				
Ē			exa, K				Project No.: 02175	Project No.: 02175168 Exhibit: A-17			\-1 7	

	E	ORING L	.OG	i N	0.	B -'	15			F	Page [·]	1 of 1
PR	OJECT: Lee's Summit MOB		CI	IEN			ford Dooley	Architec	ts			
SIT			_			Nasr	nville, TN					
	Lee's Summit, Missouri											
90	LOCATION See Exhibit A-2			ONS	ΡE	(In.)	T, Q	HAND PENETROMETER (tsf)	(psi) (psi)	(%)		ATTERBERO LIMITS
GRAPHIC LOG	Latitude: 38.90271° Longitude: -94.33302°		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	AND ROME tsf)	UNCONFINED COMPRESSIVE STRENGTH (psi)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	
GRAF	Surface	e Elev.: 1011.1 (Ft.)	DEP.	VATE BSER	AMPI	ECOV	FIELI	H ETH	INCO INCO TREN	CONT	DRY	LL-PL-PI
<u>71 %</u> . <u>71</u>	DEPTH 0.5 6" ROOT ZONE	ELEVATION (Ft.)		>0	S	ц		ВЧ	-0%			
	FAT CLAY (CH), red brown, medium stiff to st		_									
			_		X	8	2-4-4 N=8			21		
			_		\square		11-0					
			_]	X	18	1-2-3 N=5			43		
			5 –	-	\vdash							
	- light brown, with limestone fragments below	6 foot	_	-								
	- light brown, with intestone fragments below 7.0	1004			\mathbf{X}	6	6-50/1"			48		
	7.3 LIMESTONE, gray, moderately weathered Auger Refusal at 7.3 Feet	1004	_									
20010												
20												
5	Stratification lines are approximate. In-situ, the transition ma **Classification estimated from disturbed or core samples. F		may rev	real			Hammer Type:	Automatic		L		
Advan	other rock types.		-		214		Notes:					
Cor	tinuous Flight Auger	See Exhibit A-3 for de procedures. See Appendix B for d				torv						
	onmont Mathadi	procedures and additi See Appendix C for e	ional da	ta (if a	ny).	-						
Bac	onment Method: kfilled with Auger Cuttings	abbreviations. Elevations were measured			-							
	WATER LEVEL OBSERVATIONS	engineer's level and g				5	Boring Started: 5/2	23/2017	Borin	a Com	nleted. 4	5/23/2017
	Groundwater not encountered	ller	6				Drill Rig: 908	.012011	Drille		SIELEU. (512012011
Advan Bac		13910	W 96th nexa, K	n Ter			Project No.: 02175	5168	Exhib		A-18	

	E		OG	i N	0.	B-′	16			F	Page	1 of 1
PR	OJECT: Lee's Summit MOB		CL	IEN	T:	Here [®] Nash	ford Dooley A ville, TN	Architec	ts			
SIT												
	Lee's Summit, Missouri								1		1	ATTERBERG
9 O	LOCATION See Exhibit A-2		t.)	WATER LEVEL OBSERVATIONS	ΡE	(In.)	t, c	HAND PENETROMETER (tsf)	UNCONFINED COMPRESSIVE STRENGTH (psi)	(%)		LIMITS
GRAPHIC LOG	Latitude: 38.90266° Longitude: -94.332086°		DEPTH (Ft.)	ATI V	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	sf)		WATER CONTENT (%)	DRY UNIT WEIGHT (pd)	
RAP	Surface	e Elev.: 1009.0 (Ft.)	DEPT	SER	MPL	00	RES		NENCO NENCO	AM	DRY /EIGI	LL-PL-PI
	DEPTH	ELEVATION (Ft.)	-	NS	S⊿	쀭	E.	PEN	I⊇SP	Ō	5	
<u>71 1</u> 7	0.5 <u>6" ROOT ZONE</u>	1008.5										
	FAT CLAY (CH), brown and gray, medium stif stiff	f to	_	-								
			_		IX.	12	2-4-5 N=9			26		65-24-41
			_		\square		N-9					
			_			10		1.75		27	96	
			F									
			5 —									
6/9/17			_	-								
GDT												
ATE.0			_		IX.	18	2-2-4 N=6			40		
MPL	8.0	1001	_		\square		N=0					
	SHALE, light brown, highly weathered				\mathbf{k}		0.50/01					
	9.2	1000	_		arphi	8	6-50/2"					
ACON	Auger Refusal at 9.2 Feet											
ERR/												
E G												
68.G												
1751												
L 02												
WEL												
ON-0												
L L O												
MAR ⁻												
0												
19 1												
POH												
AL RI												
NIGIN												
N OR												
FRO												
	Stratification lines are approximate. In-situ, the transition ma	y be gradual.					Hammer Type:	Automatic				
PAR	**Classification estimated from disturbed or core samples. F other rock types.		ay rev	eal			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
M Advan	cement Method:	See Exhibit A-3 for des	scriptio	on of fie	eld		Notes:					
	tinuous Flight Auger	procedures. See Appendix B for de	scriptio	on of la	abora	itory						
\$ ⊢	opmont Method	procedures and additic See Appendix C for ex	onal da	ita (if a	ıny).	-						
S Aband	onment Method: kfilled with Auger Cuttings	abbreviations.			-							
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SWART LOG-NO WELL 02175168.GPJ TERRACON_DATATEMPLATE B P 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Elevations were measu engineer's level and gr	ade ro	id.	au us	my an						
	WATER LEVEL OBSERVATIONS Groundwater not encountered						Boring Started: 5/2	23/2017	Borin	ng Comp	pleted:	5/23/2017
BOR			5		U		Drill Rig: 908		Drille	er: SF		
THIS			W 96th Ter exa, KS				Project No.: 02175168 Exhibit: A-19					

APPENDIX B LABORATORY TESTS

Geotechnical Engineering Report

Lee's Summit Medical Office Building
Lee's Summit, Missouri June 9, 2017
Terracon Project No. 02175168

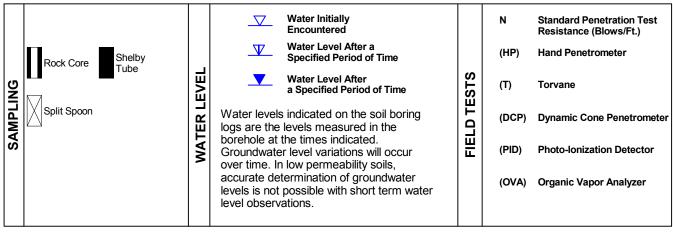
Laboratory Test Summary

Representative soil samples were tested in the laboratory to measure their natural water content, dry unit weight, and Atterberg limits. A pocket penetrometer was used to estimate the approximate unconfined compressive strength of selected samples. The test results are provided on the boring logs included in Appendix A.

The soil samples were classified in the laboratory based on visual observation, texture, plasticity, and the laboratory testing described above. The soil descriptions presented on the boring logs are in accordance with the enclosed General Notes and Unified Soil Classification System (USCS). The estimated USCS group symbols for native soils are shown on the boring logs, and a brief description of the USCS is included in this report.

The bedrock materials encountered in the borings were described in accordance with the appended Description of Rock Properties on the basis of visual classification of core samples, disturbed auger cuttings, and drilling characteristics. Petrographic analysis may indicate other rock types.

Project Manager: KDF	Project No. 02175168	
Drawn by: KDF	Scale: N/A	
Checked by: MWL	File Name: RC	
Approved by: MWL	Date: 6/9/2017	L



Lee's Summit Medical Office Building 2100 Southeast Blue Parkway Lee's Summit, Missouri

APPENDIX C SUPPORTING DOCUMENTS

GENERAL NOTES

DESCRIPTION OF SYMBOLS AND ABBREVIATIONS

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

	(More than 50%	OF COARSE-GRAINED SOILS retained on No. 200 sieve.) Standard Penetration Resistance		CONSISTENCY OF FINE-GRAINED (50% or more passing the No. 200 s tency determined by laboratory shear stread- manual procedures or standard penetra	ieve.) ength testing, field
TERMS	Descriptive Term (Density)	Standard Penetration or N-Value Blows/Ft.	Descriptive Term (Consistency)	Unconfined Compressive Strength Qu, (psf)	Standard Penetration or N-Value Blows/Ft.
L H	Very Loose	0 - 3	Very Soft	less than 500	0 - 1
	Loose	4 - 9	Soft	500 to 1,000	2 - 4
TRENG	Medium Dense	10 - 29	Medium Stiff	1,000 to 2,000	4 - 8
S	Dense	30 - 50	Stiff	2,000 to 4,000	8 - 15
	Very Dense	> 50	Very Stiff	4,000 to 8,000	15 - 30
			Hard	> 8,000	> 30

RELATIVE PROPORTIONS OF SAND AND GRAVEL

Descriptive Term(s) of other constituents	
Trace	
With	
Modifier	

Percent of Dry Weight < 15 15 - 29 > 30

RELATIVE PROPORTIONS OF FINES

Descriptive Term(s) of other constituents	
Trace With Modifier	

Percent of Dry Weight < 5 5 - 12 > 12

GRAIN SIZE TERMINOLOGY

Major Component of Sample Boulders Cobbles Gravel

Sand Silt or Clay Over 12 in. (300 mm) 12 in. to 3 in. (300mm to 75mm) 3 in. to #4 sieve (75mm to 4.75 mm) #4 to #200 sieve (4.75mm to 0.075mm Passing #200 sieve (0.075mm)

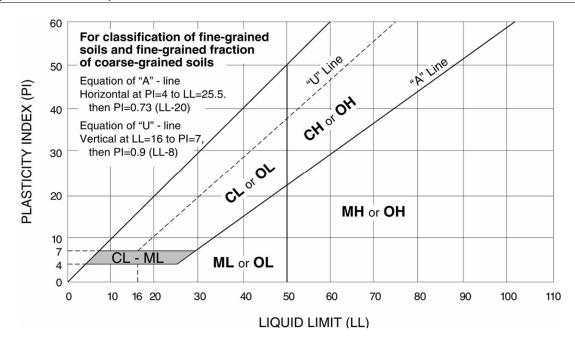
Particle Size

PLASTICITY DESCRIPTION

<u>Term</u> Non-plastic Low Medium High 0 1 - 10 11 - 30 > 30

UNIFIED SOIL CLASSIFICATION SYSTEM

					5	Soil Classification
Criteria for Assigr	ning Group Symbols	and Group Names	s Using Laboratory	Tests ^A	Group Symbol	Group Name ^B
	Gravels:	Clean Gravels:	$Cu \geq 4$ and $1 \leq Cc \leq 3^{\text{E}}$		GW	Well-graded gravel F
	More than 50% of	Less than 5% fines ^c	Cu < 4 and/or 1 > Cc > 3	E	GP	Poorly graded gravel F
	coarse fraction retained	Gravels with Fines:	Fines classify as ML or N	ИН	GM	Silty gravel F,G,H
Coarse Grained Soils:	on No. 4 sieve	More than 12% fines ^c	Fines classify as CL or C	H	GC	Clayey gravel F,G,H
More than 50% retained on No. 200 sieve	Sands:	Clean Sands:	$Cu \ge 6$ and $1 \le Cc \le 3^{E}$		SW	Well-graded sand ¹
on No. 200 Sieve	50% or more of coarse fraction passes No. 4 sieve	Less than 5% fines $^{\rm D}$	Cu < 6 and/or 1 > Cc > 3	E	SP	Poorly graded sand
		Sands with Fines:	Fines classify as ML or N	ИН	SM	Silty sand G,H,I
		More than 12% fines ^D	Fines classify as CL or C	H	SC	Clayey sand G,H,I
		Inorganic:	PI > 7 and plots on or ab	ove "A" line ^J	CL	Lean clay ^{K,L,M}
	Silts and Clays:	Inorganic:	PI < 4 or plots below "A"	line ^J	ML	Silt ^{K,L,M}
	Liquid limit less than 50	Organia	Liquid limit - oven dried	< 0.75	OL	Organic clay K,L,M,N
Fine-Grained Soils:		Organic:	Liquid limit - not dried	< 0.75	UL	Organic silt K,L,M,O
50% or more passes the No. 200 sieve		Inorgania	PI plots on or above "A"	line	СН	Fat clay ^{K,L,M}
	Silts and Clays:	Inorganic:	PI plots below "A" line		MH	Elastic Silt K,L,M
	Liquid limit 50 or more	Organia	Liquid limit - oven dried	< 0.75	он	Organic clay K,L,M,P
		Organic:	Liquid limit - not dried	< 0.75		Organic silt K,L,M,Q
Highly organic soils:	Primarily	organic matter, dark in c	olor, and organic odor	·	PT	Peat


^A Based on the material passing the 3-inch (75-mm) sieve

- ^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.
- ^c Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- ^D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay

^E Cu = D₆₀/D₁₀ Cc =
$$\frac{(D_{30})^2}{D_{10} \times D_{60}}$$

 $^{\sf F}$ If soil contains \geq 15% sand, add "with sand" to group name. $^{\sf G}$ If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- ^H If fines are organic, add "with organic fines" to group name.
- $^+\,$ If soil contains \geq 15% gravel, add "with gravel" to group name.
- $^{\rm J}\,$ If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- ^K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- ^L If soil contains \ge 30% plus No. 200 predominantly sand, add "sandy" to group name.
- ^M If soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- ^N $PI \ge 4$ and plots on or above "A" line.
- ^o PI < 4 or plots below "A" line.
- ^P PI plots on or above "A" line.
- ^Q PI plots below "A" line.

llerracon

DESCRIPTION OF ROCK PROPERTIES

	WEATHERING
Term	Description
Unweathered	No visible sign of rock material weathering, perhaps slight discoloration on major discontinuity surfaces.
Slightly weathered	Discoloration indicates weathering of rock material and discontinuity surfaces. All the rock material may be discolored by weathering and may be somewhat weaker externally than in its fresh condition.
Moderately weathered	Less than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discolored rock is present either as a continuous framework or as corestones.
Highly weathered	More than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discolored rock is present either as a discontinuous framework or as corestones.
Completely weathered	All rock material is decomposed and/or disintegrated to soil. The original mass structure is still largely intact.
Residual soil	All rock material is converted to soil. The mass structure and material fabric are destroyed. There is a large change in volume, but the soil has not been significantly transported.

	STRENGTH OR HARDNESS	
Description	Field Identification	Uniaxial Compressive Strength, PSI (MPa)
Extremely weak	Indented by thumbnail	40-150 (0.3-1)
Very weak	Crumbles under firm blows with point of geological hammer, can be peeled by a pocket knife	150-700 (1-5)
Weak rock	Can be peeled by a pocket knife with difficulty, shallow indentations made by firm blow with point of geological hammer	700-4,000 (5-30)
Medium strong	Cannot be scraped or peeled with a pocket knife, specimen can be fractured with single firm blow of geological hammer	4,000-7,000 (30-50)
Strong rock	Specimen requires more than one blow of geological hammer to fracture it	7,000-15,000 (50-100)
Very strong	Specimen requires many blows of geological hammer to fracture it	15,000-36,000 (100-250)
Extremely strong	Specimen can only be chipped with geological hammer	>36,000 (>250)

DISCONTINUITY DESCRIPTION

Fracture Spacing (Joints, Faults, Other Fractures)		Bedding Spacing (May Include Foliation or Banding)	
Description	Spacing	Description	Spacing
Extremely close	< ¾ in (<19 mm)	Laminated	< ½ in (<12 mm)
Very close	¾ in − 2-1/2 in (19 - 60 mm)	Very thin	½ in – 2 in (12 – 50 mm)
Close	2-1/2 in - 8 in (60 - 200 mm)	Thin	2 in – 1 ft (50 – 300 mm)
Moderate	8 in – 2 ft (200 – 600 mm)	Medium	1 ft – 3 ft (300 – 900 mm)
Wide	2 ft – 6 ft (600 mm – 2.0 m)	Thick	3 ft – 10 ft (900 mm – 3 m)
Very Wide	6 ft – 20 ft (2.0 – 6 m)	Massive	> 10 ft (3 m)

<u>Discontinuity Orientation (Angle)</u>: Measure the angle of discontinuity relative to a plane perpendicular to the longitudinal axis of the core. (For most cases, the core axis is vertical; therefore, the plane perpendicular to the core axis is horizontal.) For example, a horizontal bedding plane would have a 0 degree angle.

ROCK QUALITY DESIGNATION (RQD*)			
RQD Value (%)			
0 - 25			
25 – 50			
50 – 75			
75 – 90			
90 - 100			

*The combined length of all sound and intact core segments equal to or greater than 4 inches in length, expressed as a percentage of the total core run length.

Reference: U.S. Department of Transportation, Federal Highway Administration, Publication No FHWA-NHI-10-034, December 2009 <u>Technical Manual for Design and Construction of Road Tunnels – Civil Elements</u>

