# **Micro Storm Water Drainage Study**

# Burton Townhomes Lee's Summit

Southwest Corner of NW Olive St and NW Orchard Dr City of Lee's Summit, Jackson County, Missouri

Created On:

January 18, 2019

# Prepared by:



1815 McGee Street, #200 | Kansas City, MO 64108 mslutter@ric-consult.com 816.800.0950

# Table of Contents

| Title Sheet                             | 1         |
|-----------------------------------------|-----------|
| Table of Contents                       | 2         |
| General Information                     | 3         |
| Methodology                             | 4         |
| Existing Conditions Analysis            | 4         |
| Proposed Conditions Analysis            | 6         |
| Detention Analysis                      | 7         |
| Water Quality Analysis                  | 10        |
| Summary                                 | 10        |
| Conclusion                              | 11        |
| Site Location Map                       | Exhibit A |
| FEMA Firm Map                           | Exhibit B |
| NRCS Web Soil Survey                    | Exhibit C |
| Existing Drainage Map                   | Exhibit D |
| Existing Conditions Analysis            | Exhibit E |
| Proposed Drainage Map                   | Exhibit F |
| Proposed Conditions Analysis            | Exhibit G |
| Proposed Detention Stage-Storage Curves | Exhibit H |
| MARC BMP Worksheets                     | Exhibit I |
| Proposed BMP Location Plan              | Exhibit J |

#### **GENERAL INFORMATION**

#### A. Project Location

The proposed Burton Townhomes development is in the City of Lee's Summit, Jackson County, MO. The project is located on the southwest corner of NW Olive St and NW Orchard Dr and is 3.52 acres in size. The proposed location is currently 3 lots zoned for single family residential or vacant residential land that are planned to be re-zoned Planned Residential Mixed-Use RP-3. The entire site is located within the Cedar Creek Watershed. Table 1 lists the parcel information for each of the 3 proposed lots and all adjacent properties.

**Table 1: Existing Lot Information** 

| Parcel Description          | Address                                         | Parcel ID                | Land Use Type                  |  |  |  |  |  |
|-----------------------------|-------------------------------------------------|--------------------------|--------------------------------|--|--|--|--|--|
| Proposed Parcel Information |                                                 |                          |                                |  |  |  |  |  |
| NW Corner of Proposed Lot   | 500 NW Olive St                                 | 61-320-01-06-00-0-00-000 | 1101 – Vacant Residential Land |  |  |  |  |  |
| SE Corner of Proposed Lot   | 408 NW Olive St                                 | 61-310-06-01-00-0-00-000 | 1110 – Single Family Residence |  |  |  |  |  |
| SW Corner of Proposed Lot   | No Address Assigned by<br>City Lee's Summit, MO | 61-320-07-01-00-0-00-000 | 1101-Vacant Residential Land   |  |  |  |  |  |
|                             | Adjacent Parce                                  | l Information            |                                |  |  |  |  |  |
| N of Proposed Lot           | 221 NW Chipman Rd                               | 61-320-01-02-00-0-00-000 | 3216 – Wholesale Trade         |  |  |  |  |  |
| NE of Proposed Lot          | 504 NW Olive St                                 | 61-310-05-11-00-0-000    | 1110 – Single Family Residence |  |  |  |  |  |
| NE of Proposed Lot          | 502 NW Olive St                                 | 61-310-05-12-00-0-00-000 | 1110 – Single Family Residence |  |  |  |  |  |
| SE of Proposed Lot          | 406 NW Olive St                                 | 61-310-06-02-00-0-00-000 | 1110 – Single Family Residence |  |  |  |  |  |
| S of Proposed Lot           | 404 NW Olive St                                 | 61-310-06-03-00-0-00-000 | 1110 – Single Family Residence |  |  |  |  |  |

Activities include the construction of a proposed townhome development and associated infrastructure. The proposed site will not impact downstream infrastructure because none exists. See Exhibit A for a site location map.

#### B. Federal Emergency Management Agency (FEMA) Classification

According to the Flood Insurance Rate Map (FIRM) panel number 29095C0417G, dated January 20, 2017, the property lies within Zone "X" (future base flood) as defined as areas having a one percent annual chance flood based on future conditions hydrology. See Exhibit B for a site location FEMA FIRM map.

#### C. Soil Classification

Soil classifications published by the United States Department of Agriculture/Natural Resources Conservation Service (USDA/NRCS) website for Jackson County, MO on October 16, 2018 indicate the existing site is made up of three soil types:

| 10082 | Arisburg-Urban Land Complex, 1 to 5 percent slopes Hydraulic Soil Group (HSG) Type C        |
|-------|---------------------------------------------------------------------------------------------|
| 10128 | Sharpsburg-Urban Land Complex, 2 to 5 percent slopes Hydraulic Soils Group (HSG) Type D     |
| 7462  | Udarents -Urban Land - Sampsel, 5 to 9 percent slopes<br>Hydraulic Soils Group (HSG) Type C |

See Exhibit C for a detailed soil report.

## D. Drainage Patterns

Two existing sub basins were identified at the project location. ExNW was identified as the northern drainage area with a discharge point at the northwest corner of the sub basin. The second existing sub basin was identified as ExSE with a discharge point at the southeast corner of the sub basin. No offsite drainage areas were identified at the project location. See Exhibit D for an existing drainage map.

#### **METHODOLOGY**

This study was prepared in accordance with the provisions of "Section 5600 – Storm Drainage Systems and Facilities" (February 15, 2006) of the Kansas City Metropolitan Chapter of the American Public Works Association as adopted and modified (City of Lee's Summit Section 5600, August 8, 2011) for use in storm facilities design by the City of Lee's Summit, MO. Pre and post development runoff were determined using the curve number method described in SCS (now NRCS) Technical Release No. 55 "Urban Hydrology for Small Watersheds" (2nd Edition, June 1986) as provided for in APWA Sub-section 5602.2. Storm water management controls included in the post development TR55 analyses were designed to reduce peak discharges to or below pre-development values as stipulated in Sub-section 5601.5. The analyses were performed using the Type II 24-hour storm distribution for 50%, 10% and 1% annual probability storm events. The rainfall depths used in the analyses corresponding to those events are shown in Table 2.

 Storm
 Percent
 Rainfall Depth (in)

 2 Year
 50%
 3.50

 10 Year
 10%
 5.30

 100 Year
 1%
 7.70

**Table 2: Storm Analysis Table** 

#### **EXISTING CONDITIONS ANALYSIS**

Existing site drainage patterns are shown in Exhibit D – Existing Drainage Map. Exhibit D shows two drainage areas that were analyzed for existing conditions. The total drainage area of the existing site is 3.52 acres and contains no offsite drainages.

The curve numbers used in the TR55 existing condition analysis are 74.0 (ExNW, >75% grass cover, good) and 83.0 (ExSE, ¼ acre lots, 38% impervious).

The existing drainage map (Exhibit D) identifies each sub basin discharge point and related area shown in Table 3 below. The existing conditions model results have been provided in Exhibit E. The time of concentration determined for each sub basin is shown in Table 4. The sub basin discharge for the three storm events investigated are shown in Table 5 and summarized in Table 6.

Comprehensive control was used in accordance with APWA 5608.4 to determine maximum release rates for each post development sub basin. This allows for a maximum discharge (cfs/acre) for 2-yr, 10-yr, and 100-yr storm events. There are no off-site contributors to the drainage area present in the existing condition drainage area. The sub basin allowable release rates for the three storm events investigated are shown in Table 7.

**Table 3. Existing Discharge Points** 

| Outfall | Direction                                                                                                                                                                                     |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ExNW    | Flow travels across the lot from east (NW Olive St) to west (Railroad ROW). Runoff that it discharged across the western property line is conveyed to the NW corner parallel to the railroad. |
| ExSW    | Flow travels across the lot from north to south parallel to NW Olive St. Runoff is discharge in the SE corner of the sub basin.                                                               |

**Table 4. Existing Time of Concentration Calculations** 

| Sub Basin | Overland Flow                               | Shallow<br>Concentrated Flow                         | Channel Flow                                                                  | Tc<br>(Min.) |
|-----------|---------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------|--------------|
| ExNW      | Length=100 ft<br>Slope=3.0%<br>N Value=0.30 | Length= 380 ft<br>Slope= 2.6%<br>Short Grass Pasture | Length= n/a<br>Slope= n/a<br>Cross Section Area= n/a<br>Wetted Perimeter= n/a | 19.47        |
| ExSE      | Length=100 ft<br>Slope=3.0%<br>N Value=0.30 | Length=150 ft<br>Slope=3.70%<br>Short Grass Pasture  | Length= n/a<br>Slope= n/a<br>Cross Section Area= n/a<br>Wetted Perimeter= n/a | 15.72        |

Table 5: Existing Site Hydrology and Flows

| rubic of Existing One right clogy und rions |                    |         |                 |               |                         |             |                         |                          |                        |
|---------------------------------------------|--------------------|---------|-----------------|---------------|-------------------------|-------------|-------------------------|--------------------------|------------------------|
| Sub Basin                                   | Discharge<br>Point | Outfall | Outfall<br>Type | Area<br>(Ac.) | T <sub>c</sub><br>(min) | CN<br>Value | Q <sub>2</sub><br>(cfs) | Q <sub>10</sub><br>(cfs) | Q <sub>100</sub> (cfs) |
| ExNW                                        | А                  | NW      | Low<br>Point    | 2.61          | 19.47                   | 74.00       | 3.51                    | 7.58                     | 13.56                  |
| ExSE                                        | В                  | SE      | Low<br>Point    | 0.91          | 15.72                   | 83.00       | 2.05                    | 3.76                     | 6.09                   |

**Table 6: Total Outflow Summary** 

| Sub Basin | Q <sub>2</sub><br>(cfs) | Q <sub>10</sub><br>(cfs) | Q <sub>100</sub> (cfs) |
|-----------|-------------------------|--------------------------|------------------------|
| ExNW      | 3.51                    | 7.58                     | 13.56                  |
| ExSE      | 2.05                    | 3.76                     | 6.09                   |

Table 7: Allowable Release Rates per Existing Discharge Point

| Sub Basin | Q <sub>2</sub><br>(cfs) | Q <sub>10</sub><br>(cfs) | Q <sub>100</sub><br>(cfs) |
|-----------|-------------------------|--------------------------|---------------------------|
| ExNW      | 1.31                    | 5.22                     | 7.83                      |
| ExSE      | 0.46                    | 1.82                     | 2.73                      |

#### PROPOSED CONDITIONS ANALYSIS

The overall drainage pattern for the proposed condition has been updated to three sub basins with three separate discharge points. See Exhibit F for a proposed drainage map. The development will not add any area to the existing 3.52 acres, but the area of each sub basin has changed.

The curve number used for the proposed site was 90.0 (1/8 acre lots, 65% impervious) HSG C was assumed for the curve number calculations.

The proposed drainage map (Exhibit F) identifies the sub basin discharge points and related area shown in Table 8 below. The proposed conditions model results have been provided in Exhibit G. The time of concentration assumptions for each sub basin are shown in Table 9. The sub basin discharge for the three storm events investigated are shown in Table 10 and summarized in Table 11. The sub basin allowable release rates for the three storm events investigated are shown in Table 12.

**Table 8. Proposed Discharge Points** 

| Table of Frepuesta Bloomarge Forme |                                                                                                                                      |  |  |  |  |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Outfall                            | Direction                                                                                                                            |  |  |  |  |
| Northwest<br>(ProNW)               | Runoff is conveyed NW across the ProNW sub basin to a discharge point in the NW corner of the proposed lot.                          |  |  |  |  |
| Southeast (ProSE)                  | Runoff is conveyed SE across the ProSE sub basin to existing roadway ditch and discharge point in the SE corner of the proposed lot. |  |  |  |  |
| South<br>(ProS)                    | Runoff is conveyed SW across the ProS sub basin to a discharge point in the NW corner of the ProS sub basin.                         |  |  |  |  |

**Table 9. Proposed Time of Concentration Calculations** 

| Sub Basin | Overland Flow                                  | Shallow<br>Concentrated Flow                 | Channel Flow                                                                               | Tc<br>(Min.) |
|-----------|------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------|--------------|
| ProNW     | Length= 40 ft<br>Slope= 1.0%<br>N Value= 0.30  | Length= 175 ft<br>Slope= 2.5%<br>Paved       | Length= 117 Slope= 1.0% Cross Section Area= 1.77 ft <sub>2</sub> Wetted Perimeter= 9.42 ft | 11.55        |
| ProSE     | Length= 70 ft<br>Slope= 1.0%<br>N Value= 0.015 | Length= 120 ft<br>Slope= 2.0%<br>Short Grass | Length= n/a Slope= n/a Cross Section Area= n/a Wetted Perimeter= n/a                       | 9.84         |
| ProS      | Length= 40 ft<br>Slope= 1.0%<br>N Value= 0.30  | Length= 200 ft<br>Slope= 1.0%<br>Paved       | Length= n/a<br>Slope= n/a<br>Cross Section Area= n/a<br>Wetted Perimeter= n/a              | 11.98        |

Table 10: Proposed Site Hydrology and Flows

| Sub Basin | Discharge<br>Point | Outfall<br>Type              | Area<br>(Ac.) | T <sub>c</sub><br>(min) | CN    | Q <sub>2</sub> (cfs) | Q <sub>10</sub><br>(cfs) | Q <sub>100</sub> (cfs) |
|-----------|--------------------|------------------------------|---------------|-------------------------|-------|----------------------|--------------------------|------------------------|
| ProNW     | А                  | Railroad<br>ROW              | 1.75          | 11.55                   | 90.00 | 5.62                 | 9.31                     | 14.18                  |
| ProSE     | В                  | Un-<br>Detained<br>Discharge | 0.60          | 9.84                    | 90.00 | 2.01                 | 3.33                     | 5.07                   |
| ProS      | С                  | Railroad<br>ROW              | 1.17          | 11.98                   | 90.00 | 3.73                 | 6.18                     | 9.41                   |

**Table 11: Total Outflow Summary** 

| Sub Basin | Q <sub>2</sub><br>(cfs) | Q <sub>10</sub> (cfs) | Q <sub>100</sub> (cfs) |
|-----------|-------------------------|-----------------------|------------------------|
| ProNE     | 5.62                    | 9.31                  | 14.18                  |
| ProSE     | 2.01                    | 3.33                  | 5.07                   |
| ProS      | 3.73                    | 6.18                  | 9.41                   |

Table 12: Allowable Release Rates per Proposed Discharge Point

| Sub Basin | Q <sub>2</sub> (cfs) | Q <sub>10</sub> (cfs) | Q <sub>100</sub> (cfs) |
|-----------|----------------------|-----------------------|------------------------|
| ProNW     | 0.88                 | 3.45                  | 5.25                   |
| ProSE     | 0.30                 | 1.20                  | 1.80                   |
| ProS      | 0.59                 | 2.34                  | 3.51                   |

#### **DETENTION ANALYSIS**

Detention analysis was completed according to APWA Section 5608: Stormwater Detention and Retention. The proposed detention analysis was completed per APWA 5608.4.C.1.a (pg 92) which allows a maximum peak discharge rate of 0.5 (2-yr), 2.0 (10-yr), and 3.0 (100-yr) cfs/acre for any development under runoff control strategies. Criteria from APWA 5608.4.C.1.b (pg 92) was also applied to ensure 40-hour extended detention of runoff for local 90% mean annual event. (1.37"/24-hour rainfall)

All outflow conditions assume free flow. All downstream pipes of the detention basin will be sized using manning's equation to carry the 100-year flow condition to site development. To mitigate this, we are proposing two detention basins on site.

The proposed onsite detention consists of two above ground extended dry detention basins (EDDB) which accommodate wet detention for a 40-hour extended period. A 4" outfall pipe was assumed for the water quality outfall in each detention pond based on the minimum allowable cross-sectional area outlet.

The proposed northwest basin (ProNW) will have an invert elevation of 1007.00', a top of dam of 1012.10', and a 100-year HGL of 1010.50'. The total volume of the storage basin at the 100-year HGL is 0.35 acrefeet. Runoff is to be conveyed through 1-Perforated Riser (Invert = 1007.00', 40-hour extended dry detention outfall) and 1-12" HDPE Pipe (invert = 1009.02'). The 40-linear foot 12" pipe will be built at a 5.0%

slope. Runoff from both outfall pipes will daylight on the existing property (Invert = 1007.00') and flow towards railroad right-of-way.

The emergency overflow structure consists of a 103' wide naturally graded trapezoidal weir at an elevation of 1011.0'. A minimum of 0.50' of freeboard is required between the emergency spillway crest and the maximum 100-year WSE and 0.50' of freeboard has been provided.

The proposed south basin (ProS) will have an invert elevation of 1014.25', a top of dam of 1017.60', and a 100-year HGL of 1016.0'. The total volume of the storage basin at the 100-year HGL is 0.27 acre-feet. Runoff is to be conveyed through 1 – Perforated Riser (Invert = 1014.25', 40-hour extended dry detention outfall) and 1-12" HDPE Pipe (invert = 1014.95'). The 20-linear foot 12" pipe will be built at a 5.00% slope. Runoff from both outfall pipes will daylight on the existing property (Invert = 1014.00') and flow towards railroad right-of-way.

The emergency overflow structure consists of a 75' wide naturally graded trapezoidal weir at an elevation of 1016.50'. A minimum of 0.50' of freeboard is required between the emergency spillway crest and the maximum 100-year WSE and 0.50' of freeboard has been provided.

Please see Table 13 below for a summary of pipe velocities during 2, 10, and 100-year storms, Table 14 for a detention basin inflow/outflow summary, Table 15 for a detention basin summary, and Table 16 for an APWA 5608 peak discharge requirement summary.

 $V_2$  $V_{10}$ V<sub>100</sub> **Pipe** (fps) (fps) (fps) Proposed NE Detention Basin 12" HDPE 1.11 5.89 3.30 Proposed S Detention Basin 12" HDPE 0.66 2.10 4.33

**Table 13: Summary of Pipe Velocities** 

Table 14: Detention Basin Inflow/Outflow Summary

| Storm Event     | Q <sub>in</sub><br>(cfs) | Ponding<br>Elevation (ft) | Max Depth<br>Attained (ft) | Q <sub>out</sub><br>(cfs) |  |  |  |
|-----------------|--------------------------|---------------------------|----------------------------|---------------------------|--|--|--|
|                 | Propo                    | sed NW Pond               |                            |                           |  |  |  |
| 100- Year Storm | 14.15                    | 1010.50                   | 3.50                       | 4.62                      |  |  |  |
| 10-Year Storm   | 9.30                     | 1009.80                   | 2.80                       | 2.59                      |  |  |  |
| 2-Year Storm    | 5.61                     | 1009.23                   | 2.23                       | 0.87                      |  |  |  |
|                 | Proposed S Pond          |                           |                            |                           |  |  |  |
| 100- Year Storm | 9.41                     | 1016.00                   | 1.75                       | 3.40                      |  |  |  |
| 10-Year Storm   | 6.18                     | 1015.53                   | 1.28                       | 1.65                      |  |  |  |
| 2-Year Storm    | 3.72                     | 1015.10                   | 0.85                       | 0.52                      |  |  |  |

**Table 15: Summary of Detention Basin Design** 

| Proposed NW Detention Basin          |                                                                 |  |  |  |
|--------------------------------------|-----------------------------------------------------------------|--|--|--|
| Drainage Area                        | 1.75 AC                                                         |  |  |  |
| Curve Number                         | 90.00                                                           |  |  |  |
| Basin Flow Line Outfall              | 1007.00'                                                        |  |  |  |
| Pond Base Elevation                  | 1007.00'                                                        |  |  |  |
| Outlet Structure                     | 1 – 12" HDPE Pipes @ 1009.02'<br>1 – Perforated Pipe @ 1007.00' |  |  |  |
| Max 100-year HGL                     | 1010.50'                                                        |  |  |  |
| 100-Year Emergency<br>Weir Elevation | 1011.00'                                                        |  |  |  |
| Top of Dam                           | 1012.10'                                                        |  |  |  |
| Ī                                    | Proposed SE Detention Basin                                     |  |  |  |
| Drainage Area                        | 1.17 AC                                                         |  |  |  |
| Curve Number                         | 90.00                                                           |  |  |  |
| Basin Flow Line Outfall              | 1014.00'                                                        |  |  |  |
| Pond Base Elevation                  | 1014.25'                                                        |  |  |  |
| Outlet Structure                     | 1 – 12" HDPE Pipe @ 1014.95'<br>1 – Perforated Pipe @ 1014.25"  |  |  |  |
| Max 100-year HGL                     | 1016.00'                                                        |  |  |  |
| 100-Year Emergency<br>Weir Elevation | 1016.50'                                                        |  |  |  |
| Top of Dam                           | 1017.60'                                                        |  |  |  |

Table 16. Summary of APWA 5608 Peak Discharge Requirements

| Outfall Desc.   | Q <sub>2</sub> (cfs) | Q <sub>10</sub> (cfs) | Q <sub>100</sub> (cfs) |
|-----------------|----------------------|-----------------------|------------------------|
| ProNW Allowable | 0.88                 | 3.45                  | 5.25                   |
| ProNW Actual    | 0.87                 | 2.59                  | 4.62                   |
| Difference      | -0.01                | -0.86                 | -0.63                  |
| ProS Allowable  | 0.59                 | 2.34                  | 3.51                   |
| ProS Actual     | 0.52                 | 1.65                  | 3.40                   |
| Difference      | -0.07                | -0.69                 | -0.11                  |

APWA Section 5608.4.F.2 requires that the detention basin emergency spillway performance provides a minimum of 1 ft of freeboard from the design stage to the top of dam, assuming zero available storage in the basin and zero flow through the primary outlet. Table 17 shows a summary of emergency spillway performance for the 100-yr storm event assuming zero flow through the primary outlet.

Table 17. Summary of Emergency Spillway Performance (100-Yr Event)

| Outfall Desc. | Crest<br>Elev (ft) | Length<br>(ft) | Top of Dam<br>Elev (ft) | Max WSE (ft) | Freeboard<br>(ft) |
|---------------|--------------------|----------------|-------------------------|--------------|-------------------|
| ProNW         | 1011.00            | 103            | 1012.10                 | 1011.10      | 1.00              |
| ProS          | 1016.50            | 75             | 1017.60                 | 1016.56      | 1.04              |

The proposed southeast sub basin (ProSE) is an un-detained drainage area. The existing discharge point (Discharge point B on Exhibits D & F) will remain the same for the ProSE sub basin but the drainage area has decreased. The decreased area will be un-detained and discharge at existing discharge point B. Updated curve number and drainage area for the SE basin show an overall reduction in runoff conveyed to discharge point B. See Table 18 below for a summary of existing and proposed conditions at discharge point B.

**Table 18. Summary of Discharge Point B Conditions** 

| Outfall Desc. | Area (AC) | CN    | Q <sub>2</sub> (cfs) | Q <sub>10</sub> (cfs) | Q <sub>100</sub> (cfs) |
|---------------|-----------|-------|----------------------|-----------------------|------------------------|
| ExSE          | 0.91      | 83.00 | 2.07                 | 3.78                  | 6.13                   |
| ProSE         | 0.60      | 90.00 | 2.01                 | 3.33                  | 5.07                   |

#### **WATER QUALITY ANALYSIS**

MARC BMP Manual Section 4.0 was used to determine BMP requirements for the proposed site. Worksheet 1A (Required level of Service – Developed Site) was used to determine the existing site value rating based on the current single-family residential land use. An existing value rating of 18.37 was calculated based on the existing impervious area for the site. See Exhibit H for Worksheet 1A calculations.

MARC BMP Manual Section 4.0, Worksheet 2 was used to analyze the proposed site BMP mitigation package. Extended-dry detention was added to the 1.75-acre ProNW sub basin. Extended-dry detention to native vegetation swale was added to the 1.17-acres ProS sub basin. Preserved native vegetation was added to the ProSE sub basin. See Exhibit J for a BMP location plan of the proposed BMP mitigation package. A total value rating of 20.74 was calculated for the proposed site. See Exhibit I for Worksheet 2 calculations.

APWA 5608.4 and Chapter 6 of the MARC/APWA BMP Manual require 40-hour extended detention to treat the Water Quality Storm. MARC BMP Manual Chapter 6 section 6.2 Short-Cut Method (pg 6-1) was used to determine the water quality volume for a proposed drainage area of less than 10 acres. Table 19 lists rainfall event, percent impervious area, and volumetric runoff coefficient assumptions made for the ProNW and ProS detention basin design. Table 20 lists the water quality volume calculations for each sub basin. EDDB calculations have been provided in Exhibit I.

Table 19. APWA/MARC Water Quality Volume

| Rainfall Event (P, in/24-hrs)      | 1.37  |
|------------------------------------|-------|
| Percent Site Imperviousness (I, %) | 65    |
| Volumetric Runoff Coefficient (Rv) | 0.635 |

Table 20. APWA/MARC Water Quality Volume

| <b>Detention Basin</b> | Area<br>(AC) | Water Quality Volume (ac-ft) | Q <sub>out</sub> (cfs) |
|------------------------|--------------|------------------------------|------------------------|
| ProNW                  | 1.75         | 0.13                         | 0.04                   |
| ProS                   | 1.17         | 0.09                         | 0.03                   |

Note: Qout (cfs) assumes full 40-hr extended detention of total design volume.

### **SUMMARY**

The proposed site will require stormwater detention because of an increased runoff from the existing conditions. Table 21 summarizes the existing and proposed peak flows from the entire site with no stormwater detention.

Table 21. Summary of Existing and Proposed Peak Flows

| Outfall Desc.                           | Q <sub>2</sub> (cfs) | Q <sub>10</sub> (cfs) | Q <sub>100</sub> (cfs) |
|-----------------------------------------|----------------------|-----------------------|------------------------|
| Total Existing Site                     | 5.56                 | 11.34                 | 19.65                  |
| Total Proposed Site w/ out<br>Detention | 11.36                | 18.82                 | 28.66                  |

Two above ground extended dry detention basins, a native vegetation swale, and native vegetation have been added to the proposed site (ProNW and ProS) to reduce the proposed site peak runoff, improve water quality, and control release rates for all required design storms. Table 22 summarizes the existing and proposed peak flowrate decrease with the included stormwater detention. The proposed detention meets all APWA 5608 peak discharge requirements. Table 23 summarizes allowable and actual proposed site peak discharge requirements.

Table 22. Summary of Total Existing and Proposed Peak Discharges

| Outfall Desc.                    | Q <sub>2</sub> (cfs) | Q <sub>10</sub> (cfs) | Q <sub>100</sub> (cfs) |
|----------------------------------|----------------------|-----------------------|------------------------|
| Total Existing Site              | 5.56                 | 11.34                 | 19.65                  |
| Total Proposed Site w/ Detention | 3.33                 | 7.46                  | 12.92                  |

Table 23. Summary of Proposed Peak Discharge Requirements

| Outfall Desc.   | Q <sub>2</sub> (cfs) | Q <sub>10</sub> (cfs) | Q <sub>100</sub> (cfs) |
|-----------------|----------------------|-----------------------|------------------------|
| ProNW Allowable | 0.88                 | 3.45                  | 5.25                   |
| ProNW Actual    | 0.87                 | 2.59                  | 4.62                   |
| ProS Allowable  | 0.59                 | 2.34                  | 3.51                   |
| ProS Actual     | 0.52                 | 1.65                  | 3.40                   |

The proposed site will also have a third un-detained sub basin (ProSE). A request for waiver from the City of Lee' Summit Design and Construction Manual requirement has been proposed based on an overall decrease in peak flowrate discharging to outlet point B. Table 24 summarizes the existing and proposed peak flowrates at discharge point B.

Table 24. Summary of Discharge Point B Conditions

| Outfall Desc. | Area (AC) | CN    | Q <sub>2</sub> (cfs) | Q <sub>10</sub> (cfs) | Q <sub>100</sub> (cfs) |
|---------------|-----------|-------|----------------------|-----------------------|------------------------|
| ExSE          | 0.91      | 83.00 | 2.05                 | 3.76                  | 6.09                   |
| ProSE         | 0.60      | 90.00 | 2.01                 | 3.33                  | 5.07                   |

#### CONCLUSION

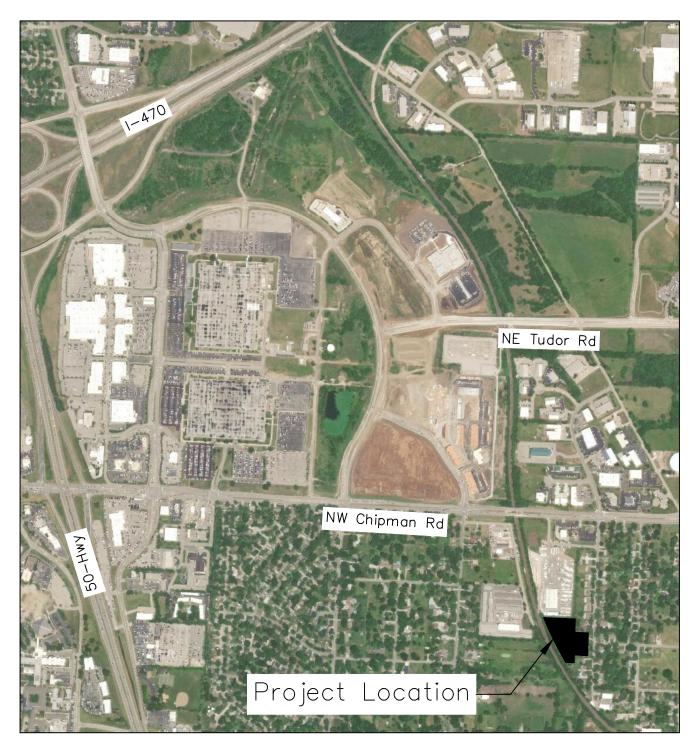
The proposed Burton Townhomes development is a 3.52 acre site in Lee's Summit, MO that will include the construction of 9 townhome units and associated infrastructure. Two above ground extended-dry detention basins have been proposed to control the increase runoff produced by the development.

The proposed development meets all stormwater criteria set forth by the City of Lee's Summit, Missouri and APWA 5600 design criteria. These requirements include an overall decrease in post development peak flowrates, 40-hour water quality extended detention, and a maximum allowable sub basin discharge rate.

A request for waiver from the City of Lee's Summit Design and Construction Manual requirement has been proposed for the un-detained sub basin ProSE based on a peak flowrate discharge decrease under proposed conditions.

Based on this information, Renaissance Infrastructure Consulting recommends approval of this storm study. If you have any questions or need additional information, please contact me.

Sincerely,


Mick Slutter, PE

Jonathan Daldalian, El

RENAISSANCE INFRASTRUCTURE CONSULTING

# Exhibit A Project Location Map

# Exhibit A: Burton Townhomes Lee's Summit



Scale: 1" = 1000'

Location Map 18-0251

Prepared: 10/16/18



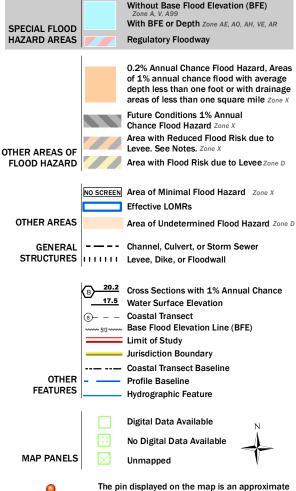
1815 McGee Street, Suite 200 Kansas City, Missouri 64108 816.800.0950 www.ric-consult.com

# Exhibit B FEMA FIRM Map

# National Flood Hazard Layer FIRMette

250

500

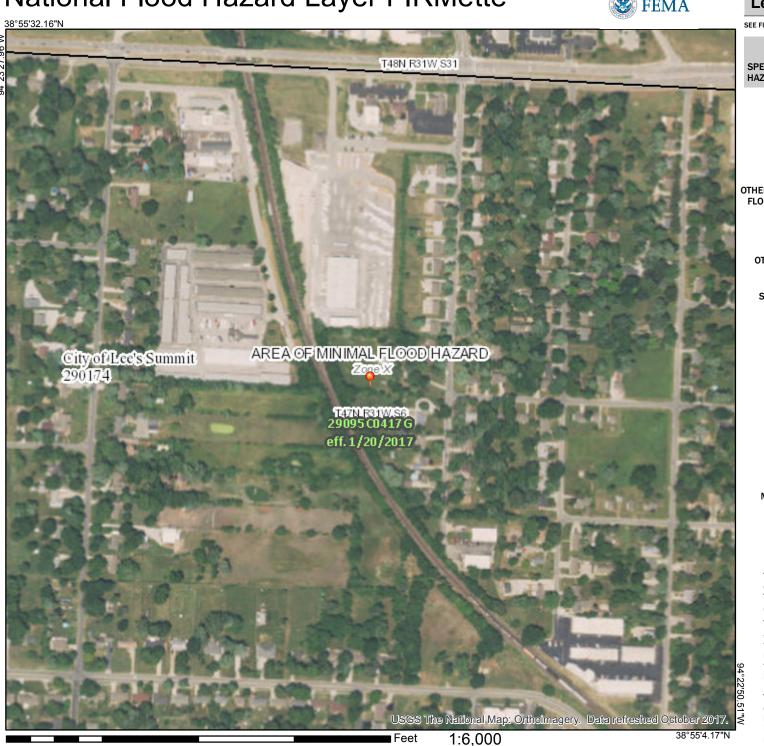

1,000

1,500



#### Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT




point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 10/24/2018 at 10:40:52 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.



2,000

# Exhibit C NRCS Web Soil Survey



#### MAP LEGEND

### Area of Interest (AOI)

Area of Interest (AOI)

#### Soils

Soil Map Unit Polygons



Soil Map Unit Points

#### **Special Point Features**

Blowout

Borrow Pit 

36 Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill ۵

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop Saline Spot

Sandy Spot

Severely Eroded Spot 0

Sinkhole

Slide or Slip

Sodic Spot

Spoil Area

â Stony Spot

00 Very Stony Spot

Wet Spot Other

Special Line Features

#### **Water Features**

Δ

Streams and Canals

#### Transportation

Rails ---

Interstate Highways

**US Routes** 

Major Roads

Local Roads

#### Background

Aerial Photography

#### MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

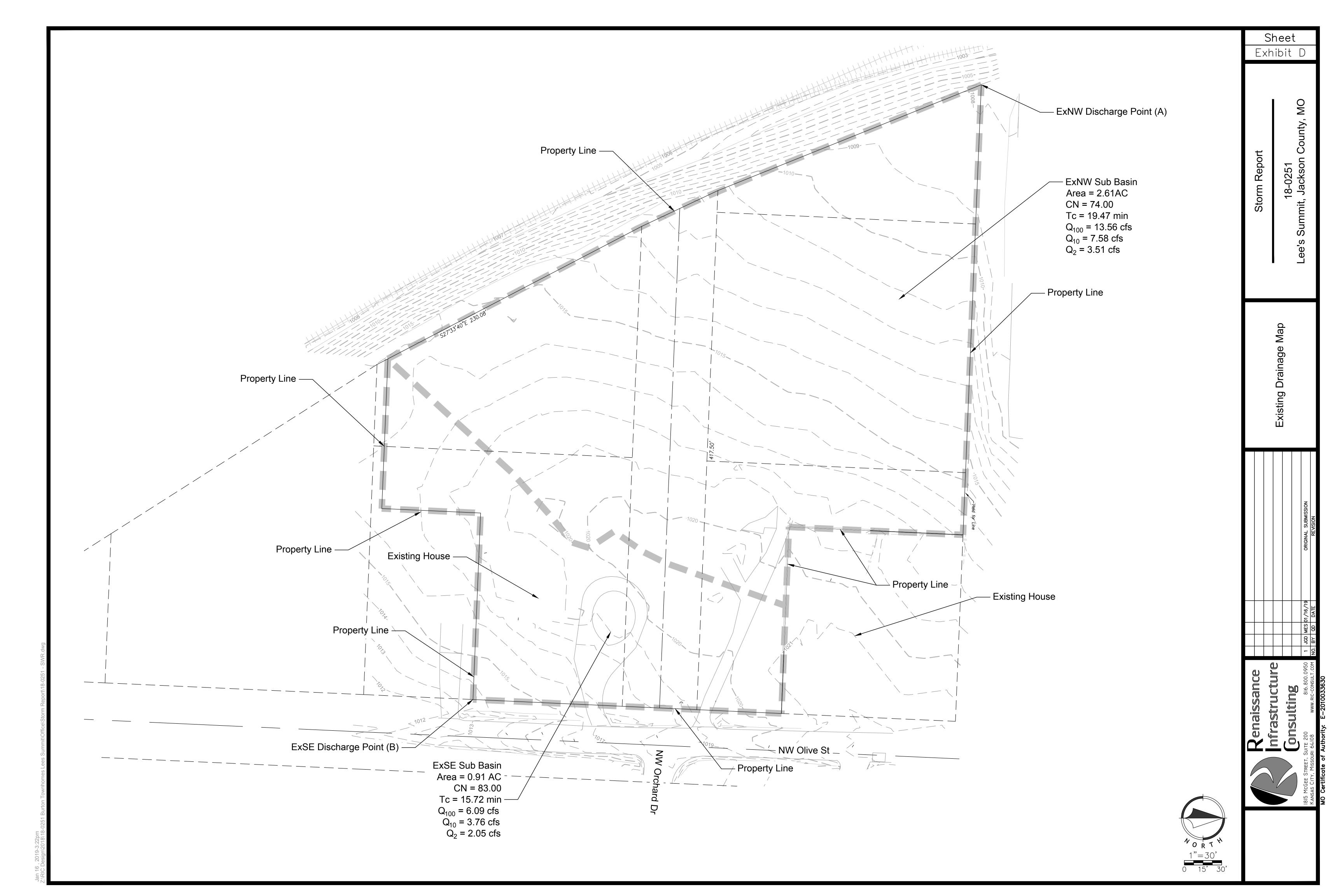
Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Jackson County, Missouri Survey Area Data: Version 19, Sep 13, 2018

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.


Date(s) aerial images were photographed: Jun 11, 2017—Sep 22. 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

# **Map Unit Legend**

| Map Unit Symbol             | Map Unit Name                                              | Acres in AOI | Percent of AOI |
|-----------------------------|------------------------------------------------------------|--------------|----------------|
| 10082                       | Arisburg-Urban land complex,<br>1 to 5 percent slopes      | 0.7          | 17.9%          |
| 10128                       | Sharpsburg-Urban land complex, 2 to 5 percent slopes       | 3.1          | 81.6%          |
| 10181                       | Udarents-Urban land-Sampsel complex, 5 to 9 percent slopes | 0.0          | 0.5%           |
| Totals for Area of Interest |                                                            | 3.8          | 100.0%         |

# Exhibit D Existing Drainage Map



# **Exhibit E Existing Conditions Analysis**

# **Project Description**

| File Name Ex | xisting.SPF |
|--------------|-------------|
|--------------|-------------|

## **Project Options**

| Flow Units                              | CFS            |
|-----------------------------------------|----------------|
| Elevation Type                          | Elevation      |
| Hydrology Method                        | SCS TR-55      |
| Time of Concentration (TOC) Method      | SCS TR-55      |
| Link Routing Method                     | Kinematic Wave |
| Enable Overflow Ponding at Nodes        | YES            |
| Skip Steady State Analysis Time Periods | NO             |

# **Analysis Options**

| Start Analysis On              | Oct 16, 2018 | 00:00:00      |
|--------------------------------|--------------|---------------|
| End Analysis On                | Oct 17, 2018 | 00:00:00      |
| Start Reporting On             | Oct 16, 2018 | 00:00:00      |
| Antecedent Dry Days            | 0            | days          |
| Runoff (Dry Weather) Time Step | 0 01:00:00   | days hh:mm:ss |
| Runoff (Wet Weather) Time Step | 0 00:05:00   | days hh:mm:ss |
| Reporting Time Step            | 0 00:05:00   | days hh:mm:ss |
| Routing Time Step              | 30           | seconds       |

### **Number of Elements**

|                 | Qty |
|-----------------|-----|
| Rain Gages      | 1   |
| Subbasins       | 2   |
| Nodes           | 2   |
| Junctions       | 0   |
| Outfalls        | 2   |
| Flow Diversions | 0   |
| Inlets          | 0   |
| Storage Nodes   | 0   |
| Links           | 0   |
| Channels        | 0   |
| Pipes           | 0   |
| Pumps           | 0   |
| Orifices        | 0   |
| Weirs           | 0   |
| Outlets         | 0   |
| Pollutants      | 0   |
| Land Uses       | 0   |

#### **Rainfall Details**

| SN Rain Ga<br>ID | ge Data<br>Source | Data Source<br>ID | Rainfall<br>Type | Rain<br>Units | State    | County  | Period |      | Rainfall<br>Distribution |
|------------------|-------------------|-------------------|------------------|---------------|----------|---------|--------|------|--------------------------|
| 1                | Time Serie        | es 2-Year         | Cumulative       | inches        | Missouri | Jackson | 2      | 3.50 | SCS Type II 24-hr        |

# **Subbasin Summary**

| SN Subbas | sin Area     | Weighted | Total        | Total        | Total           | Peak          | Time of                       |
|-----------|--------------|----------|--------------|--------------|-----------------|---------------|-------------------------------|
| ID        |              | Curve    | Rainfall     | Runoff       | Runoff          | Runoff        | Concentration                 |
|           |              | Number   |              |              | Volume          |               |                               |
|           |              |          |              |              |                 |               |                               |
|           | (ac)         |          | (in)         | (in)         | (ac-in)         | (cfs)         | (days hh:mm:ss)               |
| 1 ExNW    | (ac)<br>2.62 | 74.00    | (in)<br>3.50 | (in)<br>1.24 | (ac-in)<br>3.25 | (cfs)<br>3.51 | (days hh:mm:ss)<br>0 00:19:28 |

# **Node Summary**

| SN Elemen | t Element | Invert    | Ground/Rim | Initial   | Surcharge | Ponded | Peak   | Max HGL   | Max       | Min Time       | of       | Total   | Total Time |
|-----------|-----------|-----------|------------|-----------|-----------|--------|--------|-----------|-----------|----------------|----------|---------|------------|
| ID        | Type      | Elevation | (Max)      | Water     | Elevation | Area   | Inflow | Elevation | Surcharge | Freeboard Peak |          | Flooded | Flooded    |
|           |           |           | Elevation  | Elevation |           |        |        | Attained  | Depth     | Attained Flood | ding     | Volume  |            |
|           |           |           |            |           |           |        |        |           | Attained  | Occu           | irrence  |         |            |
|           |           | (ft)      | (ft)       | (ft)      | (ft)      | (ft²)  | (cfs)  | (ft)      | (ft)      | (ft) (days     | s hh:mm) | (ac-in) | (min)      |
| 1 Out-01  | Outfall   | 0.00      |            |           |           |        | 0.00   | 0.00      |           |                |          |         |            |
| 2 Out-03  | Outfall   | 0.00      |            |           |           |        | 0.00   | 0.00      |           |                |          |         |            |

#### **Subbasin Hydrology**

#### Subbasin: ExNW

#### **Input Data**

| Area (ac)             | 2.62         |
|-----------------------|--------------|
| Weighted Curve Number | 74.00        |
| Rain Gage ID          | Rain Gage-01 |

#### **Composite Curve Number**

|                              | Alea    | 2011  | Curve  |
|------------------------------|---------|-------|--------|
| Soil/Surface Description     | (acres) | Group | Number |
| > 75% grass cover, Good      | 2.62    | С     | 74.00  |
| Composite Area & Weighted CN | 2.62    |       | 74.00  |

#### **Time of Concentration**

TOC Method : SCS TR-55

Sheet Flow Equation :

 $Tc = (0.007 * ((n * Lf)^0.8)) / ((P^0.5) * (Sf^0.4))$ 

#### Where:

Tc = Time of Concentration (hr)

n = Manning's roughness

Lf = Flow Length (ft)

P = 2 yr, 24 hr Rainfall (inches)

Sf = Slope (ft/ft)

#### Shallow Concentrated Flow Equation:

V = 16.1345 \* (Sf^0.5) (unpaved surface)
V = 20.3282 \* (Sf^0.5) (paved surface)
V = 15.0 \* (Sf^0.5) (grassed waterway surface)
V = 10.0 \* (Sf^0.5) (nearly bare & untilled surface)
V = 9.0 \* (Sf^0.5) (cultivated straight rows surface)
V = 7.0 \* (Sf^0.5) (short grass pasture surface)

V = 7.0 (61°0.5) (31°0.5) (woodland surface) V = 5.0 \* (5f°0.5) (woodland surface) V = 2.5 \* (5f°0.5) (forest w/heavy litter surface)

Tc = (Lf / V) / (3600 sec/hr)

#### Where:

Tc = Time of Concentration (hr)

Lf = Flow Length (ft)

V = Velocity (ft/sec)

Sf = Slope (ft/ft)

#### Channel Flow Equation:

 $V = (1.49 * (R^{(2/3)}) * (Sf^{0.5})) / n$ 

R = Aq / Wp

Tc = (Lf / V) / (3600 sec/hr)

#### Where:

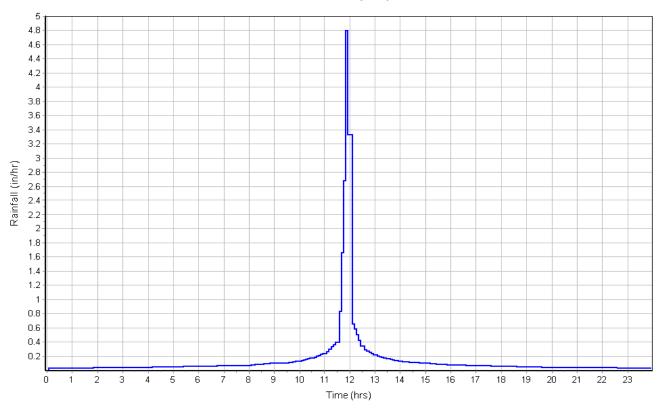
Tc = Time of Concentration (hr)

Lf = Flow Length (ft)
R = Hydraulic Radius (ft)

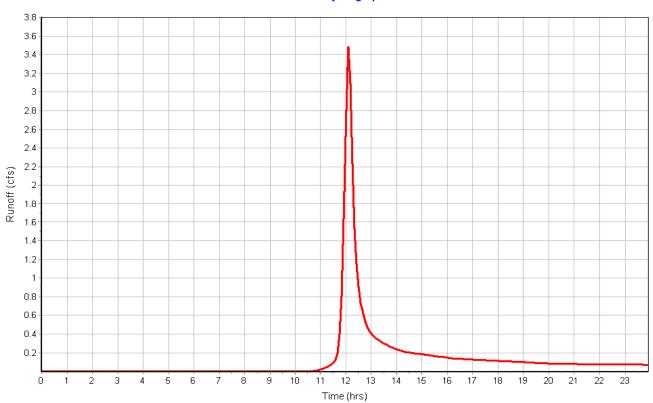
Aq = Flow Area (ft²)
Wp = Wetted Perimeter (ft)
V = Velocity (ft/sec)

Sf = Slope (ft/ft)

n = Manning's roughness


| Sheet Flow Computations                            | Subarea<br>A  | Subarea<br>B | Subarea<br>C |
|----------------------------------------------------|---------------|--------------|--------------|
| •                                                  |               |              |              |
| Manning's Roughness :                              | 0.30          | 0.00         | 0.00         |
| Flow Length (ft):                                  | 100           | 0.00         | 0.00         |
| Slope (%):                                         | 3.0           | 0.00         | 0.00         |
| 2 yr, 24 hr Rainfall (in) :                        | 3.50          | 0.00         | 0.00         |
| Velocity (ft/sec):                                 | 0.12          | 0.00         | 0.00         |
| Computed Flow Time (min):                          | 13.87         | 0.00         | 0.00         |
| Shallow Concentrated Flow Computations             | Subarea<br>A  | Subarea<br>B | Subarea<br>C |
| Flow Length (ft):                                  | 380           | 0.00         | 0.00         |
| Slope (%):                                         | 2.6           | 0.00         | 0.00         |
| Surface Type :                                     | Grass pasture | Unpaved      | Unpaved      |
| Velocity (ft/sec):                                 | 1.13          | 0.00         | 0.00         |
| Computed Flow Time (min) :<br>Total TOC (min)19.47 | 5.60          | 0.00         | 0.00         |

#### **Subbasin Runoff Results**


| Total Rainfall (in)                   | 3.50       |
|---------------------------------------|------------|
| Total Runoff (in)                     | 1.24       |
| Peak Runoff (cfs)                     | 3.51       |
| Weighted Curve Number                 | 74.00      |
| Time of Concentration (days hh:mm:ss) | 0 00:19:28 |
|                                       |            |

Subbasin : ExNW

#### Rainfall Intensity Graph



#### Runoff Hydrograph



#### Subbasin : ExSE

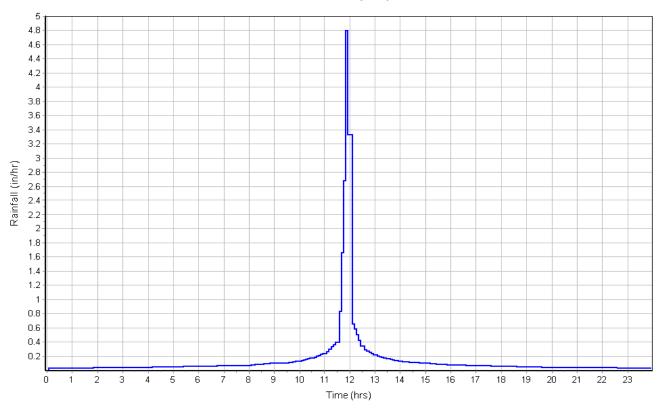
#### Input Data

| Area (ac)             | 0.90         |
|-----------------------|--------------|
| Weighted Curve Number | 83.00        |
| Rain Gage ID          | Rain Gage-01 |

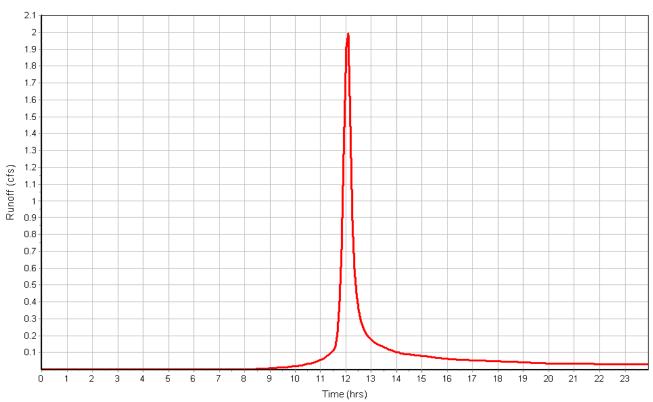
#### **Composite Curve Number**

| iipoolio oul vo ituliibol     |         |       |        |
|-------------------------------|---------|-------|--------|
|                               | Area    | Soil  | Curve  |
| Soil/Surface Description      | (acres) | Group | Number |
| 1/4 acre lots, 38% impervious | 0.90    | С     | 83.00  |
| Composite Area & Weighted CN  | 0.90    |       | 83.00  |

#### Time of Concentration


|                                                          | Subarea                          | Subarea                      | Subarea                 |
|----------------------------------------------------------|----------------------------------|------------------------------|-------------------------|
| Sheet Flow Computations                                  | Α                                | В                            | С                       |
| Manning's Roughness :                                    | 0.30                             | 0.00                         | 0.00                    |
| Flow Length (ft):                                        | 100                              | 0.00                         | 0.00                    |
| Slope (%):                                               | 3.0                              | 0.00                         | 0.00                    |
| 2 yr, 24 hr Rainfall (in):                               | 3.50                             | 0.00                         | 0.00                    |
| Velocity (ft/sec):                                       | 0.12                             | 0.00                         | 0.00                    |
| Computed Flow Time (min):                                | 13.87                            | 0.00                         | 0.00                    |
|                                                          |                                  |                              |                         |
|                                                          |                                  |                              |                         |
|                                                          | Subarea                          | Subarea                      | Subarea                 |
| Shallow Concentrated Flow Computations                   | Subarea<br>A                     | Subarea<br>B                 | Subarea<br>C            |
| Shallow Concentrated Flow Computations Flow Length (ft): |                                  |                              |                         |
| · · · · · · · · · · · · · · · · · · ·                    | A                                | В                            | С                       |
| Flow Length (ft):                                        | A<br>150                         | 0.00<br>0.00                 | 0.00<br>0.00            |
| Flow Length (ft): Slope (%):                             | A<br>150<br>3.7                  | 0.00<br>0.00                 | 0.00<br>0.00            |
| Flow Length (ft) :<br>Slope (%) :<br>Surface Type :      | A<br>150<br>3.7<br>Grass pasture | 8<br>0.00<br>0.00<br>Unpaved | 0.00<br>0.00<br>Unpaved |

#### Subbasin Runoff Results


| Total Rainfall (in)                   | 3.50       |
|---------------------------------------|------------|
| Total Runoff (in)                     | 1.86       |
| Peak Runoff (cfs)                     | 2.05       |
| Weighted Curve Number                 | 83.00      |
| Time of Concentration (days hh:mm:ss) | 0 00:15:43 |

#### Subbasin : ExSE

#### Rainfall Intensity Graph



#### Runoff Hydrograph



# **Project Description**

| File Name Ex | xisting.SPF |
|--------------|-------------|
|--------------|-------------|

## **Project Options**

| Flow Units                              | CFS            |
|-----------------------------------------|----------------|
| Elevation Type                          | Elevation      |
| Hydrology Method                        | SCS TR-55      |
| Time of Concentration (TOC) Method      | SCS TR-55      |
| Link Routing Method                     | Kinematic Wave |
| Enable Overflow Ponding at Nodes        | YES            |
| Skip Steady State Analysis Time Periods | NO             |

# **Analysis Options**

| Start Analysis On              | Oct 16, 2018 | 00:00:00      |
|--------------------------------|--------------|---------------|
| End Analysis On                | Oct 17, 2018 | 00:00:00      |
| Start Reporting On             | Oct 16, 2018 | 00:00:00      |
| Antecedent Dry Days            | 0            | days          |
| Runoff (Dry Weather) Time Step | 0 01:00:00   | days hh:mm:ss |
| Runoff (Wet Weather) Time Step | 0 00:05:00   | days hh:mm:ss |
| Reporting Time Step            | 0 00:05:00   | days hh:mm:ss |
| Routing Time Step              | 30           | seconds       |

### **Number of Elements**

|                 | Qty |
|-----------------|-----|
| Rain Gages      | 1   |
| Subbasins       | 2   |
| Nodes           | 2   |
| Junctions       | 0   |
| Outfalls        | 2   |
| Flow Diversions | 0   |
| Inlets          | 0   |
| Storage Nodes   | 0   |
| Links           | 0   |
| Channels        | 0   |
| Pipes           | 0   |
| Pumps           | 0   |
| Orifices        | 0   |
| Weirs           | 0   |
| Outlets         | 0   |
| Pollutants      | 0   |
| Land Uses       | 0   |

#### **Rainfall Details**

| SN Rain Ga | age Data<br>Source | Data Source<br>ID | Rainfall<br>Type | Rain<br>Units | State    | County  | Period |      | Rainfall<br>Distribution |
|------------|--------------------|-------------------|------------------|---------------|----------|---------|--------|------|--------------------------|
| 1          | Time Serie         | es 10-Year        | Cumulative       | inches        | Missouri | Jackson | 10     | 5.30 | SCS Type II 24-hr        |

# **Subbasin Summary**

| SN Subbasin | Area | Weighted | Total                      | Total                                    | Total                 | Peak                                                                 | Time of                                                                           |
|-------------|------|----------|----------------------------|------------------------------------------|-----------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| ID          |      | Curve    | Rainfall                   | Runoff                                   | Runoff                | Runoff                                                               | Concentration                                                                     |
|             |      | Number   |                            |                                          | Volume                |                                                                      |                                                                                   |
|             | (ac) |          | (in)                       | (in)                                     | (ac-in)               | (cfs)                                                                | (days hh:mm:ss)                                                                   |
| 1 ExNW      | 2.62 | 74.00    | 5.30                       | 2.61                                     | 6.83                  | 7.58                                                                 | 0 00:19:28                                                                        |
| 2 ExSE      |      | 83.00    | 5.30                       | 3.45                                     | 3 10                  | 3.76                                                                 | 0 00:15:43                                                                        |
|             | ID   | ID (ac)  | ID Čurve<br>Number<br>(ac) | ID Čurve Rainfall<br>Number<br>(ac) (in) | Number (ac) (in) (in) | ID Čurve Rainfall Runoff Runoff Number Volume (ac) (in) (in) (ac-in) | ID Curve Rainfall Runoff Runoff Runoff Number Volume (ac) (in) (in) (ac-in) (cfs) |

# **Node Summary**

| SN Elemen | t Element | Invert    | Ground/Rim | Initial   | Surcharge | Ponded | Peak   | Max HGL   | Max       | Min Time       | of       | Total   | Total Time |
|-----------|-----------|-----------|------------|-----------|-----------|--------|--------|-----------|-----------|----------------|----------|---------|------------|
| ID        | Type      | Elevation | (Max)      | Water     | Elevation | Area   | Inflow | Elevation | Surcharge | Freeboard Peak |          | Flooded | Flooded    |
|           |           |           | Elevation  | Elevation |           |        |        | Attained  | Depth     | Attained Flood | ding     | Volume  |            |
|           |           |           |            |           |           |        |        |           | Attained  | Occu           | irrence  |         |            |
|           |           | (ft)      | (ft)       | (ft)      | (ft)      | (ft²)  | (cfs)  | (ft)      | (ft)      | (ft) (days     | s hh:mm) | (ac-in) | (min)      |
| 1 Out-01  | Outfall   | 0.00      |            |           |           |        | 0.00   | 0.00      |           |                |          |         |            |
| 2 Out-03  | Outfall   | 0.00      |            |           |           |        | 0.00   | 0.00      |           |                |          |         |            |

#### **Subbasin Hydrology**

#### Subbasin: ExNW

#### **Input Data**

| Area (ac)             | 2.62         |
|-----------------------|--------------|
| Weighted Curve Number | 74.00        |
| Rain Gage ID          | Rain Gage-01 |

#### **Composite Curve Number**

|                              | Alea    | 2011  | Curve  |
|------------------------------|---------|-------|--------|
| Soil/Surface Description     | (acres) | Group | Number |
| > 75% grass cover, Good      | 2.62    | С     | 74.00  |
| Composite Area & Weighted CN | 2.62    |       | 74.00  |

#### **Time of Concentration**

TOC Method : SCS TR-55

Sheet Flow Equation :

 $Tc = (0.007 * ((n * Lf)^0.8)) / ((P^0.5) * (Sf^0.4))$ 

#### Where:

Tc = Time of Concentration (hr)

n = Manning's roughness

Lf = Flow Length (ft)

P = 2 yr, 24 hr Rainfall (inches)

Sf = Slope (ft/ft)

#### Shallow Concentrated Flow Equation:

V = 16.1345 \* (Sf^0.5) (unpaved surface)
V = 20.3282 \* (Sf^0.5) (paved surface)
V = 15.0 \* (Sf^0.5) (grassed waterway surface)
V = 10.0 \* (Sf^0.5) (nearly bare & untilled surface)
V = 9.0 \* (Sf^0.5) (cultivated straight rows surface)
V = 7.0 \* (Sf^0.5) (short grass pasture surface)

V = 7.0 (61°0.5) (31°0.5) (woodland surface) V = 5.0 \* (5f°0.5) (woodland surface) V = 2.5 \* (5f°0.5) (forest w/heavy litter surface)

Tc = (Lf / V) / (3600 sec/hr)

#### Where:

Tc = Time of Concentration (hr)

Lf = Flow Length (ft)

V = Velocity (ft/sec)

Sf = Slope (ft/ft)

#### Channel Flow Equation:

 $V = (1.49 * (R^{(2/3)}) * (Sf^{0.5})) / n$ 

R = Aq / Wp

Tc = (Lf / V) / (3600 sec/hr)

#### Where:

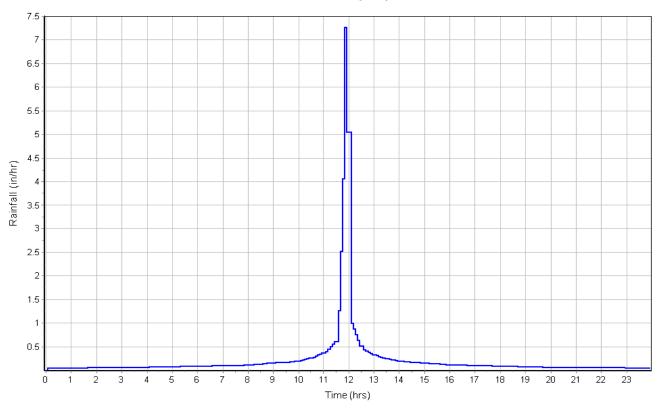
Tc = Time of Concentration (hr)

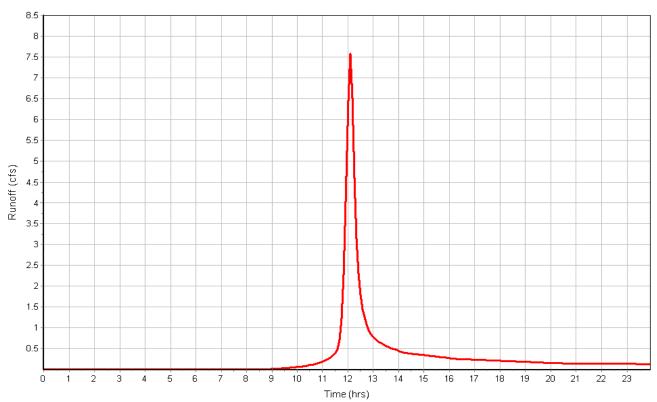
Lf = Flow Length (ft)
R = Hydraulic Radius (ft)

Aq = Flow Area (ft²)
Wp = Wetted Perimeter (ft)
V = Velocity (ft/sec)

Sf = Slope (ft/ft)

n = Manning's roughness


|                                        | Subarea       | Subarea | Subarea |
|----------------------------------------|---------------|---------|---------|
| Sheet Flow Computations                | Α             | В       | С       |
| Manning's Roughness :                  | 0.30          | 0.00    | 0.00    |
| Flow Length (ft):                      | 100           | 0.00    | 0.00    |
| Slope (%):                             | 3.0           | 0.00    | 0.00    |
| 2 yr, 24 hr Rainfall (in) :            | 3.50          | 0.00    | 0.00    |
| Velocity (ft/sec):                     | 0.12          | 0.00    | 0.00    |
| Computed Flow Time (min):              | 13.87         | 0.00    | 0.00    |
|                                        |               |         |         |
|                                        | Subarea       | Subarea | Subarea |
| Shallow Concentrated Flow Computations | Α             | В       | С       |
| Flow Length (ft):                      | 380           | 0.00    | 0.00    |
| Slope (%):                             | 2.6           | 0.00    | 0.00    |
| Surface Type :                         | Grass pasture | Unpaved | Unpaved |
| Velocity (ft/sec):                     | 1.13          | 0.00    | 0.00    |
| Computed Flow Time (min):              | 5.60          | 0.00    | 0.00    |
| Total TOC (min)19.47                   |               |         |         |


#### **Subbasin Runoff Results**

| Total Rainfall (in)                   | 5.30       |
|---------------------------------------|------------|
| Total Runoff (in)                     | 2.61       |
| Peak Runoff (cfs)                     | 7.58       |
| Weighted Curve Number                 | 74.00      |
| Time of Concentration (days hh:mm:ss) | 0 00:19:28 |
|                                       |            |

#### Subbasin : ExNW

# Rainfall Intensity Graph





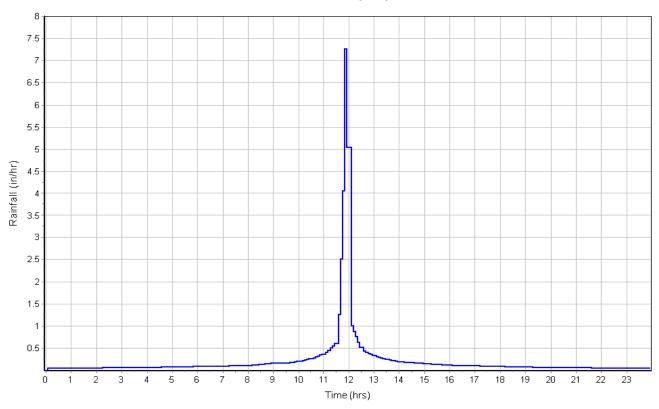
# Subbasin : ExSE

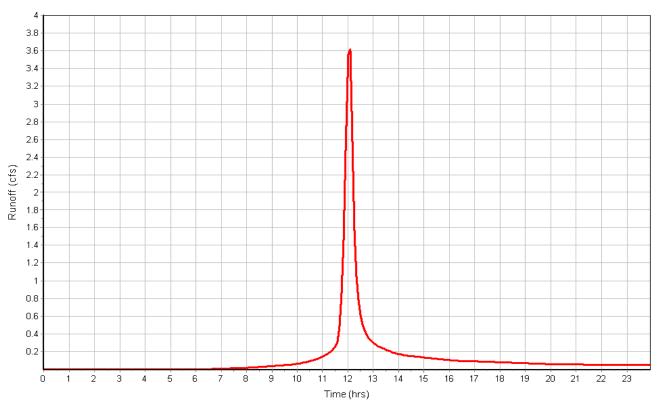
# Input Data

| Area (ac)             | 0.90         |
|-----------------------|--------------|
| Weighted Curve Number | 83.00        |
| Rain Gage ID          | Rain Gage-01 |

# **Composite Curve Number**

| ipocito cui vo rtuiriboi      |         |       |        |
|-------------------------------|---------|-------|--------|
|                               | Area    | Soil  | Curve  |
| Soil/Surface Description      | (acres) | Group | Number |
| 1/4 acre lots, 38% impervious | 0.90    | С     | 83.00  |
| Composite Area & Weighted CN  | 0.90    |       | 83.00  |


#### Time of Concentration


|                                        | Subarea       | Subarea | Subarea |
|----------------------------------------|---------------|---------|---------|
| Sheet Flow Computations                | Α             | В       | С       |
| Manning's Roughness :                  | 0.30          | 0.00    | 0.00    |
| Flow Length (ft):                      | 100           | 0.00    | 0.00    |
| Slope (%):                             | 3.0           | 0.00    | 0.00    |
| 2 yr, 24 hr Rainfall (in):             | 3.50          | 0.00    | 0.00    |
| Velocity (ft/sec):                     | 0.12          | 0.00    | 0.00    |
| Computed Flow Time (min) :             | 13.87         | 0.00    | 0.00    |
|                                        |               |         |         |
|                                        | Subarea       | Subarea | Subarea |
| Shallow Concentrated Flow Computations | Α             | В       | С       |
| Flow Length (ft):                      | 150           | 0.00    | 0.00    |
| Slope (%):                             | 3.7           | 0.00    | 0.00    |
| Surface Type :                         | Grass pasture | Unpaved | Unpaved |
| Velocity (ft/sec):                     | 1.35          | 0.00    | 0.00    |
| Computed Flow Time (min):              | 1.85          | 0.00    | 0.00    |
| Total TOC (min)15.72                   |               |         |         |

| Total Rainfall (in)                   | 5.30       |
|---------------------------------------|------------|
| Total Runoff (in)                     | 3.45       |
| Peak Runoff (cfs)                     | 3.76       |
| Weighted Curve Number                 | 83.00      |
| Time of Concentration (days hh:mm:ss) | 0 00:15:43 |
|                                       |            |

#### Subbasin : ExSE

#### Rainfall Intensity Graph





# **Project Description**

| File Name | Existing.SPF |
|-----------|--------------|
|-----------|--------------|

# **Project Options**

| Flow Units                              | CFS            |
|-----------------------------------------|----------------|
| Elevation Type                          | Elevation      |
| Hydrology Method                        | SCS TR-55      |
| Time of Concentration (TOC) Method      | SCS TR-55      |
| Link Routing Method                     | Kinematic Wave |
| Enable Overflow Ponding at Nodes        | YES            |
| Skip Steady State Analysis Time Periods | NO             |
| · · · · · · · · · · · · · · · · · · ·   |                |

# **Analysis Options**

| Start Analysis On              | Oct 16, 2018   | 00:00:00      |
|--------------------------------|----------------|---------------|
| End Analysis On                | . Oct 17, 2018 | 00:00:00      |
| Start Reporting On             | Oct 16, 2018   | 00:00:00      |
| Antecedent Dry Days            | . 0            | days          |
| Runoff (Dry Weather) Time Step | . 0 01:00:00   | days hh:mm:ss |
| Runoff (Wet Weather) Time Step | . 0 00:05:00   | days hh:mm:ss |
| Reporting Time Step            | . 0 00:05:00   | days hh:mm:ss |
| Routing Time Step              |                | seconds       |

# **Number of Elements**

|                 | Qty |
|-----------------|-----|
| Rain Gages      | 1   |
| Subbasins       | 2   |
| Nodes           | 2   |
| Junctions       | 0   |
| Outfalls        | 2   |
| Flow Diversions | 0   |
| Inlets          | 0   |
| Storage Nodes   | 0   |
| Links           | 0   |
| Channels        | 0   |
| Pipes           | 0   |
| Pumps           | 0   |
| Orifices        | 0   |
| Weirs           | 0   |
| Outlets         | 0   |
| Pollutants      | 0   |
| Land Uses       | 0   |

# **Rainfall Details**

| SN Rain Gage<br>ID | Data<br>Source | Data Source<br>ID | Rainfall<br>Type | Rain<br>Units | State    | County  | Period |      | Rainfall<br>Distribution |
|--------------------|----------------|-------------------|------------------|---------------|----------|---------|--------|------|--------------------------|
| 1                  | Time Series    | 100-Year          | Cumulative       | inches        | Missouri | Jackson | 100    | 7.70 | SCS Type II 24-hr        |

# **Subbasin Summary**

| SN Subbasin | Area | Weighted | Total    | Total  | Total   | Peak   | Time of         |
|-------------|------|----------|----------|--------|---------|--------|-----------------|
| ID          |      | Curve    | Rainfall | Runoff | Runoff  | Runoff | Concentration   |
|             |      | Number   |          |        | Volume  |        |                 |
|             | (ac) |          | (in)     | (in)   | (ac-in) | (cfs)  | (days hh:mm:ss) |
| 1 ExNW      | 2.62 | 74.00    | 7.70     | 4.66   | 12.20   | 13.56  | 0 00:19:28      |
| 2 ExSE      | 0.90 | 83.00    | 7.70     | 5.69   | 5.12    | 6.09   | 0 00:15:43      |

# **Node Summary**

| SN Elemen | t Element | Invert    | Ground/Rim | Initial   | Surcharge | Ponded | Peak   | Max HGL   | Max       | Min Time       | of       | Total   | Total Time |
|-----------|-----------|-----------|------------|-----------|-----------|--------|--------|-----------|-----------|----------------|----------|---------|------------|
| ID        | Type      | Elevation | (Max)      | Water     | Elevation | Area   | Inflow | Elevation | Surcharge | Freeboard Peak |          | Flooded | Flooded    |
|           |           |           | Elevation  | Elevation |           |        |        | Attained  | Depth     | Attained Flood | ding     | Volume  |            |
|           |           |           |            |           |           |        |        |           | Attained  | Occu           | irrence  |         |            |
|           |           | (ft)      | (ft)       | (ft)      | (ft)      | (ft²)  | (cfs)  | (ft)      | (ft)      | (ft) (days     | s hh:mm) | (ac-in) | (min)      |
| 1 Out-01  | Outfall   | 0.00      |            |           |           |        | 0.00   | 0.00      |           |                |          |         |            |
| 2 Out-03  | Outfall   | 0.00      |            |           |           |        | 0.00   | 0.00      |           |                |          |         |            |

# **Subbasin Hydrology**

#### Subbasin: ExNW

#### **Input Data**

| Area (ac)             | 2.62         |
|-----------------------|--------------|
| Weighted Curve Number | 74.00        |
| Rain Gage ID          | Rain Gage-01 |

#### **Composite Curve Number**

| <b>P</b>                     | Area    | Soil  | Curve  |
|------------------------------|---------|-------|--------|
| Soil/Surface Description     | (acres) | Group | Number |
| > 75% grass cover, Good      | 2.62    | С     | 74.00  |
| Composite Area & Weighted CN | 2.62    |       | 74.00  |

#### **Time of Concentration**

TOC Method : SCS TR-55

Sheet Flow Equation:

 $Tc = (0.007 * ((n * Lf)^0.8)) / ((P^0.5) * (Sf^0.4))$ 

#### Where:

Tc = Time of Concentration (hr)

n = Manning's roughness

Lf = Flow Length (ft)

P = 2 yr, 24 hr Rainfall (inches)

Sf = Slope (ft/ft)

#### Shallow Concentrated Flow Equation:

V = 16.1345 \* (Sf^0.5) (unpaved surface)
V = 20.3282 \* (Sf^0.5) (paved surface)
V = 15.0 \* (Sf^0.5) (grassed waterway surface)
V = 10.0 \* (Sf^0.5) (nearly bare & untilled surface)
V = 9.0 \* (Sf^0.5) (cultivated straight rows surface)
V = 7.0 \* (Sf^0.5) (short grass pasture surface)

V = 7.0 (6f-0.5) (strong state plane) V = 5.0 \* (Sf^0.5) (woodland surface) V = 2.5 \* (Sf^0.5) (forest w/heavy litter surface)

Tc = (Lf / V) / (3600 sec/hr)

#### Where:

Tc = Time of Concentration (hr)

Lf = Flow Length (ft)

V = Velocity (ft/sec)

Sf = Slope (ft/ft)

#### Channel Flow Equation:

 $V = (1.49 * (R^{(2/3)}) * (Sf^{0.5})) / n$ 

R = Aq / Wp

Tc = (Lf / V) / (3600 sec/hr)

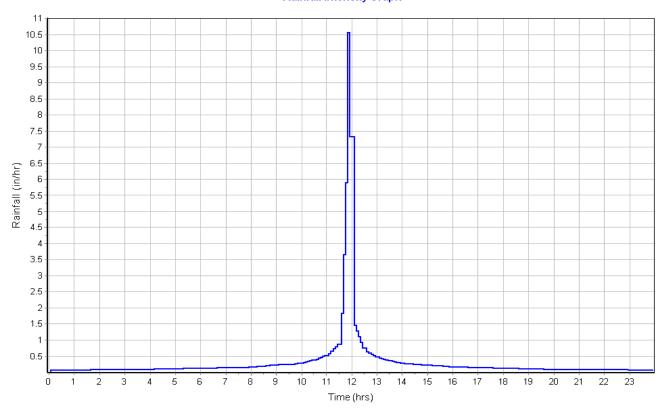
#### Where:

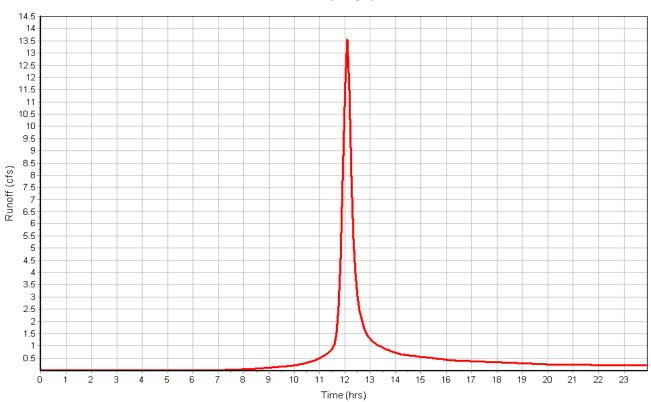
Tc = Time of Concentration (hr)

Lf = Flow Length (ft)
R = Hydraulic Radius (ft)

Aq = Flow Area (ft²)
Wp = Wetted Perimeter (ft)
V = Velocity (ft/sec)

Sf = Slope (ft/ft)


n = Manning's roughness


|                                        | Subarea       | Subarea | Subarea |
|----------------------------------------|---------------|---------|---------|
| Sheet Flow Computations                | Α             | В       | С       |
| Manning's Roughness :                  | 0.30          | 0.00    | 0.00    |
| Flow Length (ft):                      | 100           | 0.00    | 0.00    |
| Slope (%):                             | 3.0           | 0.00    | 0.00    |
| 2 yr, 24 hr Rainfall (in):             | 3.50          | 0.00    | 0.00    |
| Velocity (ft/sec):                     | 0.12          | 0.00    | 0.00    |
| Computed Flow Time (min):              | 13.87         | 0.00    | 0.00    |
|                                        |               |         |         |
|                                        | Subarea       | Subarea | Subarea |
| Shallow Concentrated Flow Computations | Α             | В       | С       |
| Flow Length (ft):                      | 380           | 0.00    | 0.00    |
| Slope (%):                             | 2.6           | 0.00    | 0.00    |
| Surface Type :                         | Grass pasture | Unpaved | Unpaved |
| Velocity (ft/sec):                     | 1.13          | 0.00    | 0.00    |
| Computed Flow Time (min):              | 5.60          | 0.00    | 0.00    |
| Total TOC (min)19.47                   |               |         |         |

| Total Rainfall (in)                   | 7.70       |
|---------------------------------------|------------|
| Total Runoff (in)                     | 4.66       |
| Peak Runoff (cfs)                     | 13.56      |
| Weighted Curve Number                 | 74.00      |
| Time of Concentration (days hh:mm:ss) | 0 00:19:28 |
|                                       |            |

#### Subbasin : ExNW

#### Rainfall Intensity Graph





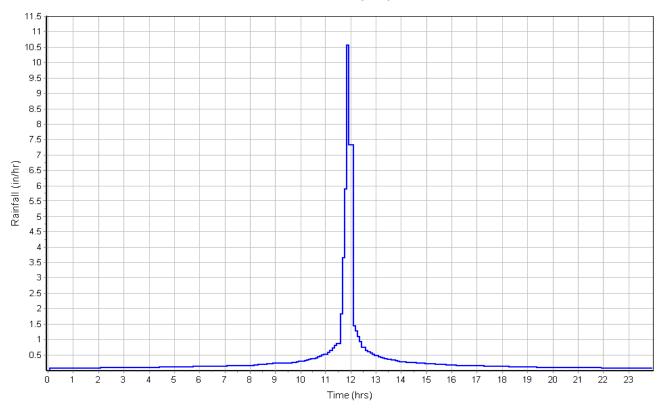
# Subbasin : ExSE

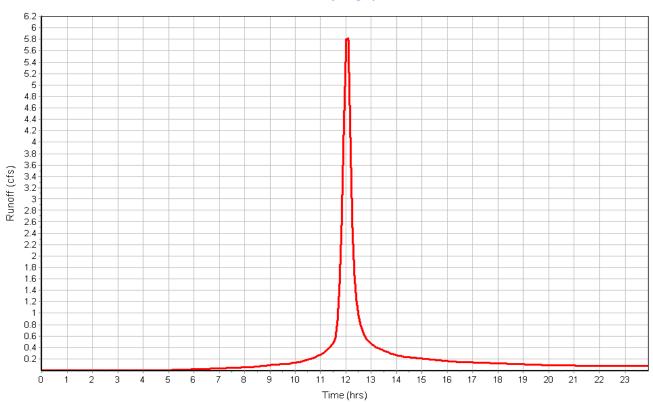
# Input Data

| Area (ac)             | 0.90         |
|-----------------------|--------------|
| Weighted Curve Number | 83.00        |
| Rain Gage ID          | Rain Gage-01 |

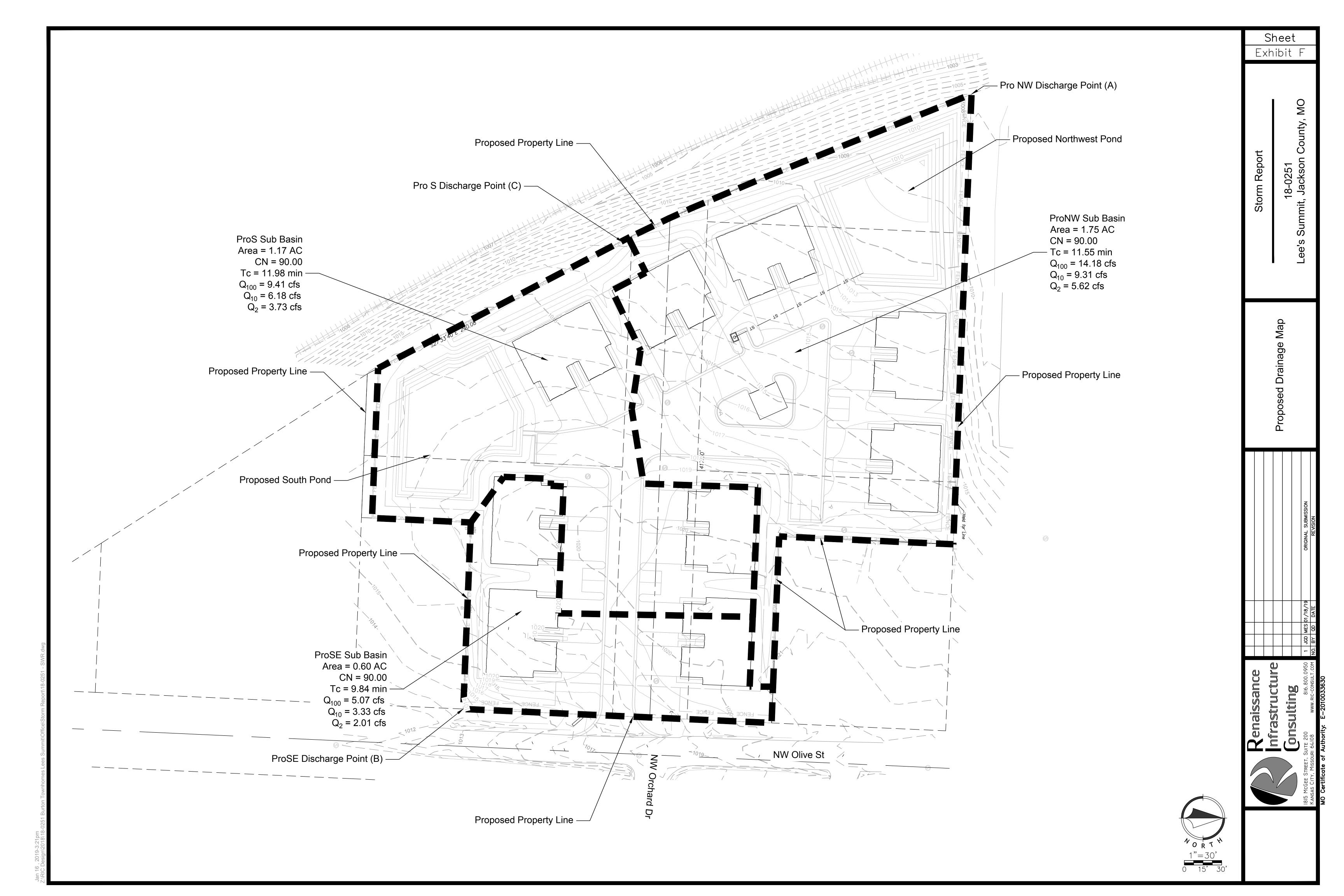
# **Composite Curve Number**

| iipoolio oul vo ituliibol     |         |       |        |
|-------------------------------|---------|-------|--------|
|                               | Area    | Soil  | Curve  |
| Soil/Surface Description      | (acres) | Group | Number |
| 1/4 acre lots, 38% impervious | 0.90    | С     | 83.00  |
| Composite Area & Weighted CN  | 0.90    |       | 83.00  |


#### Time of Concentration


|                                                              | Subarea                          | Subarea                      | Subarea                 |
|--------------------------------------------------------------|----------------------------------|------------------------------|-------------------------|
| Sheet Flow Computations                                      | Α                                | В                            | С                       |
| Manning's Roughness :                                        | 0.30                             | 0.00                         | 0.00                    |
| Flow Length (ft):                                            | 100                              | 0.00                         | 0.00                    |
| Slope (%):                                                   | 3.0                              | 0.00                         | 0.00                    |
| 2 yr, 24 hr Rainfall (in) :                                  | 3.50                             | 0.00                         | 0.00                    |
| Velocity (ft/sec):                                           | 0.12                             | 0.00                         | 0.00                    |
| Computed Flow Time (min) :                                   | 13.87                            | 0.00                         | 0.00                    |
|                                                              |                                  |                              |                         |
|                                                              |                                  |                              |                         |
|                                                              | Subarea                          | Subarea                      | Subarea                 |
| Shallow Concentrated Flow Computations                       | Subarea<br>A                     | Subarea<br>B                 | Subarea<br>C            |
| Shallow Concentrated Flow Computations<br>Flow Length (ft) : |                                  |                              |                         |
| ·                                                            | A                                | В                            | С                       |
| Flow Length (ft):                                            | A<br>150                         | 0.00<br>0.00                 | 0.00<br>0.00            |
| Flow Length (ft): Slope (%):                                 | A<br>150<br>3.7                  | 0.00<br>0.00                 | 0.00<br>0.00            |
| Flow Length (ft) :<br>Slope (%) :<br>Surface Type :          | A<br>150<br>3.7<br>Grass pasture | 8<br>0.00<br>0.00<br>Unpaved | 0.00<br>0.00<br>Unpaved |

| Total Rainfall (in)                   | 7.70       |
|---------------------------------------|------------|
| Total Runoff (in)                     | 5.69       |
| Peak Runoff (cfs)                     | 6.09       |
| Weighted Curve Number                 | 83.00      |
| Time of Concentration (days hh:mm:ss) | 0 00:15:43 |


#### Subbasin : ExSE

#### Rainfall Intensity Graph





# **Exhibit F Proposed Drainage Map**



# **Exhibit G Proposed Conditions Analysis**

# **Project Description**

File Name ...... Proposed.SPF

# **Project Options**

| Flow Units                              | CFS            |
|-----------------------------------------|----------------|
| Elevation Type                          | Elevation      |
| Hydrology Method                        | SCS TR-55      |
| Time of Concentration (TOC) Method      | SCS TR-55      |
| Link Routing Method                     | Kinematic Wave |
| Enable Overflow Ponding at Nodes        | YES            |
| Skip Steady State Analysis Time Periods | NO             |

# **Analysis Options**

| Start Analysis On              | Oct 16, 2018 | 00:00:00      |
|--------------------------------|--------------|---------------|
| End Analysis On                | Oct 17, 2018 | 00:00:00      |
| Start Reporting On             | Oct 16, 2018 | 00:00:00      |
| Antecedent Dry Days            | 0            | days          |
| Runoff (Dry Weather) Time Step | 0 01:00:00   | days hh:mm:ss |
| Runoff (Wet Weather) Time Step | 0 00:05:00   | days hh:mm:ss |
| Reporting Time Step            | 0 00:05:00   | days hh:mm:ss |
| Routing Time Step              | 30           | seconds       |

# **Number of Elements**

|                 | Qty |
|-----------------|-----|
| Rain Gages      | 1   |
| Subbasins       | 3   |
| Nodes           | 3   |
| Junctions       | 0   |
| Outfalls        | 3   |
| Flow Diversions | 0   |
| Inlets          | 0   |
| Storage Nodes   | 0   |
| Links           | 0   |
| Channels        | 0   |
| Pipes           | 0   |
| Pumps           | 0   |
| Orifices        | 0   |
| Weirs           | 0   |
| Outlets         | 0   |
| Pollutants      | 0   |
| Land Uses       | 0   |

# **Rainfall Details**

| SN | Rain Gage<br>ID | Data<br>Source | Data Source<br>ID | Rainfall<br>Type | Rain<br>Units | State    | County  | Period |      | Rainfall<br>Distribution |
|----|-----------------|----------------|-------------------|------------------|---------------|----------|---------|--------|------|--------------------------|
| 1  |                 | Time Series    | 2-year            | Cumulative       | inches        | Missouri | Jackson | 2      | 3.50 | SCS Type II 24-hr        |

# **Subbasin Summary**

| , | SN Subbasin | Area | Weighted | Total    | Total  | Total   | Peak   | Time of         |
|---|-------------|------|----------|----------|--------|---------|--------|-----------------|
|   | ID          |      | Curve    | Rainfall | Runoff | Runoff  | Runoff | Concentration   |
|   |             |      | Number   |          |        | Volume  |        |                 |
|   |             | (ac) |          | (in)     | (in)   | (ac-in) | (cfs)  | (days hh:mm:ss) |
|   | 1 ProNW     | 1.75 | 90.00    | 3.50     | 2.45   | 4.28    | 5.62   | 0 00:11:33      |
|   | 2 ProS      | 1.17 | 90.00    | 3.50     | 2.45   | 2.86    | 3.73   | 0 00:11:58      |
|   | 3 ProSE     | 0.60 | 90.00    | 3.50     | 2.45   | 1.47    | 2.01   | 0 00:09:50      |

# **Node Summary**

| SN Element  | Element | Invert    | Ground/Rim | Initial   | Surcharge | Ponded             | Peak   | Max HGL   | Max       | Min       | Time of      | Total   | Total Time |
|-------------|---------|-----------|------------|-----------|-----------|--------------------|--------|-----------|-----------|-----------|--------------|---------|------------|
| ID          | Type    | Elevation | (Max)      | Water     | Elevation | Area               | Inflow | Elevation | Surcharge | Freeboard | Peak         | Flooded | Flooded    |
|             |         |           | Elevation  | Elevation |           |                    |        | Attained  | Depth     | Attained  | Flooding     | Volume  |            |
|             |         |           |            |           |           |                    |        |           | Attained  |           | Occurrence   |         |            |
|             |         | (ft)      | (ft)       | (ft)      | (ft)      | (ft <sup>2</sup> ) | (cfs)  | (ft)      | (ft)      | (ft)      | (days hh:mm) | (ac-in) | (min)      |
| 1 NWoutfall | Outfall | 0.00      |            |           |           |                    | 0.00   | 0.00      |           |           |              |         |            |
| 2 SEoutfall | Outfall | 0.00      |            |           |           |                    | 0.00   | 0.00      |           |           |              |         |            |
| 3 Soutfall  | Outfall | 0.00      |            |           |           |                    | 0.00   | 0.00      |           |           |              |         |            |
|             |         |           |            |           |           |                    |        |           |           |           |              |         |            |

# **Subbasin Hydrology**

#### Subbasin: ProNW

#### **Input Data**

| Area (ac)             | 1.75         |
|-----------------------|--------------|
| Weighted Curve Number | 90.00        |
| Rain Gage ID          | Rain Gage-01 |

#### **Composite Curve Number**

|                               | Alea    | 2011  | Curve  |
|-------------------------------|---------|-------|--------|
| Soil/Surface Description      | (acres) | Group | Number |
| 1/8 acre lots, 65% impervious | 1.75    | С     | 90.00  |
| Composite Area & Weighted CN  | 1.75    |       | 90.00  |

#### **Time of Concentration**

TOC Method : SCS TR-55

Sheet Flow Equation:

 $Tc = (0.007 * ((n * Lf)^0.8)) / ((P^0.5) * (Sf^0.4))$ 

#### Where:

Tc = Time of Concentration (hr)

n = Manning's roughness

Lf = Flow Length (ft)

P = 2 yr, 24 hr Rainfall (inches)

Sf = Slope (ft/ft)

#### Shallow Concentrated Flow Equation:

V = 16.1345 \* (Sf^0.5) (unpaved surface)
V = 20.3282 \* (Sf^0.5) (paved surface)
V = 15.0 \* (Sf^0.5) (grassed waterway surface)
V = 10.0 \* (Sf^0.5) (nearly bare & untilled surface)
V = 9.0 \* (Sf^0.5) (cultivated straight rows surface)
V = 7.0 \* (Sf^0.5) (short grass pasture surface)

V = 7.0 (6f-0.5) (strong state plane) V = 5.0 \* (Sf^0.5) (woodland surface) V = 2.5 \* (Sf^0.5) (forest w/heavy litter surface)

Tc = (Lf / V) / (3600 sec/hr)

#### Where:

Tc = Time of Concentration (hr)

Lf = Flow Length (ft)

V = Velocity (ft/sec)

Sf = Slope (ft/ft)

#### Channel Flow Equation:

 $V = (1.49 * (R^{(2/3)}) * (Sf^{0.5})) / n$ 

R = Aq / Wp

Tc = (Lf / V) / (3600 sec/hr)

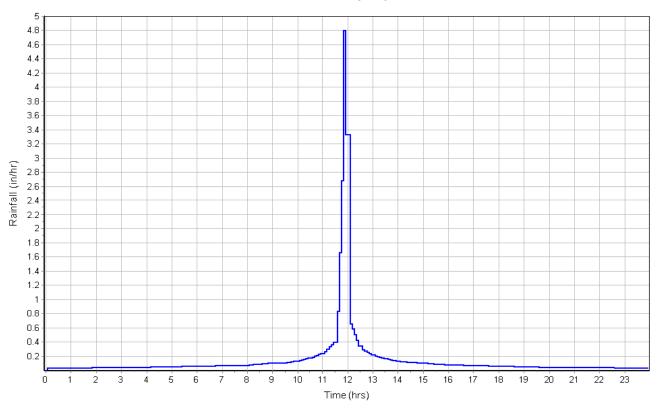
#### Where:

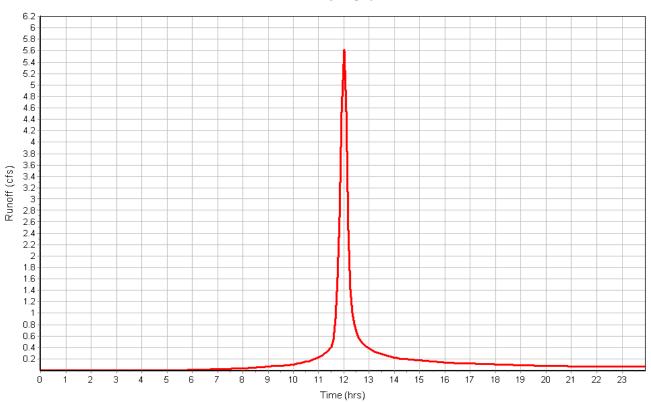
Tc = Time of Concentration (hr)

Lf = Flow Length (ft)
R = Hydraulic Radius (ft)

Aq = Flow Area (ft²)
Wp = Wetted Perimeter (ft)
V = Velocity (ft/sec)

Sf = Slope (ft/ft)


n = Manning's roughness


|                                        | Subarea | Subarea      | Subarea       |
|----------------------------------------|---------|--------------|---------------|
| Sheet Flow Computations                | Α       | В            | С             |
| Manning's Roughness :                  | 0.30    | 0.00         | 0.00          |
| Flow Length (ft):                      | 40      | 0.00         | 0.00          |
| Slope (%):                             | 1.0     | 0.00         | 0.00          |
| 2 yr, 24 hr Rainfall (in) :            | 3.50    | 0.00         | 0.00          |
| Velocity (ft/sec):                     | 0.06    | 0.00         | 0.00          |
| Computed Flow Time (min):              | 10.34   | 0.00         | 0.00          |
|                                        |         |              |               |
|                                        | Subarea | Subarea      | Subarea       |
| Shallow Concentrated Flow Computations | Α       | В            | С             |
| Flow Length (ft):                      | 175     | 0.00         | 0.00          |
| Slope (%):                             | 2.5     | 0.00         | 0.00          |
| Surface Type :                         | Paved   | Paved        | Grass pasture |
| Velocity (ft/sec):                     | 3.21    | 0.00         | 0.00          |
| Computed Flow Time (min) :             | 0.91    | 0.00         | 0.00          |
|                                        | Subarea | 0            | Cubana        |
| Channel Flam Commutations              |         | Subarea<br>B | Subarea       |
| Channel Flow Computations              | 0.012   |              | C             |
| Manning's Roughness :                  |         | 0.00         | 0.00          |
| Flow Length (ft):                      | 117     | 0.00         | 0.00          |
| Channel Slope (%):                     | 1.0     | 0.00         | 0.00          |
| Cross Section Area (ft²):              | 1.77    | 0.00         | 0.00          |
| Wetted Perimeter (ft):                 | 4.71    | 0.00         | 0.00          |
| Velocity (ft/sec) :                    | 6.47    | 0.00         | 0.00          |
| Computed Flow Time (min):              | 0.30    | 0.00         | 0.00          |
| Total TOC (min)11.55                   |         |              |               |

| Total Rainfall (in)                     | 3.50       |
|-----------------------------------------|------------|
| Total Runoff (in)                       | 2.45       |
| Peak Runoff (cfs)                       | 5.62       |
| Weighted Curve Number                   |            |
| Time of Concentration (days hh:mm:ss)   | 0 00:11:33 |
| • • • • • • • • • • • • • • • • • • • • |            |

#### Subbasin: ProNW

#### Rainfall Intensity Graph





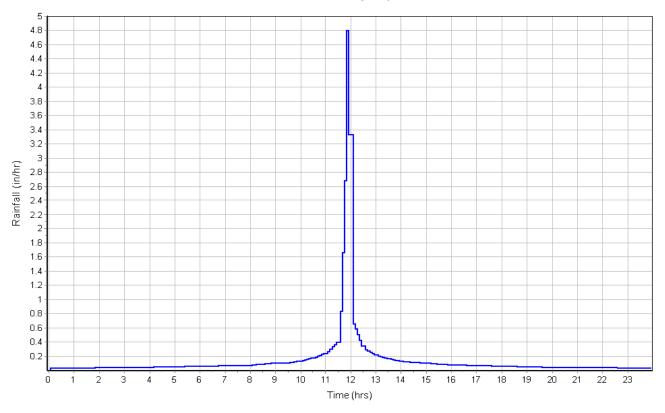
# Subbasin: ProS

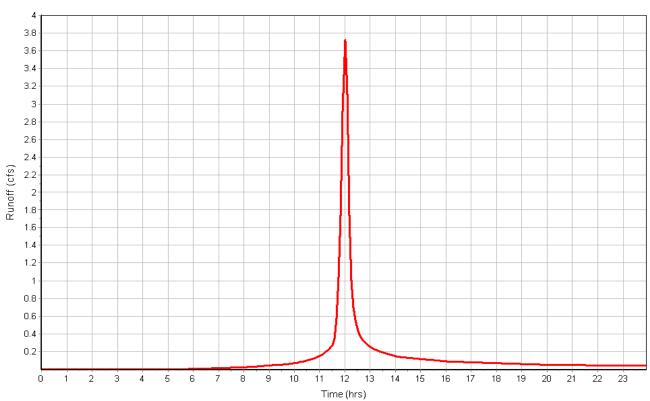
# Input Data

| Area (ac)             | 1.17         |
|-----------------------|--------------|
| Weighted Curve Number | 90.00        |
| Rain Gage ID          | Rain Gage-01 |

# **Composite Curve Number**

| iipoolio oui ro ituiliboi     |         |       |        |
|-------------------------------|---------|-------|--------|
|                               | Area    | Soil  | Curve  |
| Soil/Surface Description      | (acres) | Group | Number |
| 1/8 acre lots, 65% impervious | 1.17    | С     | 90.00  |
| Composite Area & Weighted CN  | 1.17    |       | 90.00  |


#### Time of Concentration


| Sheet Flow Computations Manning's Roughness: Flow Length (ft): Slope (%): 2 yr, 24 hr Rainfall (in): Velocity (ft/sec): Computed Flow Time (min): | Subarea | Subarea | Subarea |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|
|                                                                                                                                                   | A       | B       | C       |
|                                                                                                                                                   | 0.3     | 0.00    | 0.00    |
|                                                                                                                                                   | 40      | 0.00    | 0.00    |
|                                                                                                                                                   | 1.0     | 0.00    | 0.00    |
|                                                                                                                                                   | 3.50    | 0.00    | 0.00    |
|                                                                                                                                                   | 0.06    | 0.00    | 0.00    |
|                                                                                                                                                   | 10.34   | 0.00    | 0.00    |
| Shallow Concentrated Flow Computations Flow Length (ft): Slope (%): Surface Type:                                                                 | Subarea | Subarea | Subarea |
|                                                                                                                                                   | A       | B       | C       |
|                                                                                                                                                   | 200     | 0.00    | 0.00    |
|                                                                                                                                                   | 1.0     | 0.00    | 0.00    |
|                                                                                                                                                   | Payed   | Unpaved | Unpaved |
| Velocity (ft/sec) : Computed Flow Time (min) : Total TOC (min)11.98                                                                               | 2.03    | 0.00    | 0.00    |
|                                                                                                                                                   | 1.64    | 0.00    | 0.00    |

| Total Rainfall (in)                   | 3.50       |
|---------------------------------------|------------|
| Total Runoff (in)                     |            |
| Peak Runoff (cfs)                     | 3.73       |
| Weighted Curve Number                 | 90.00      |
| Time of Concentration (days hh:mm:ss) | 0 00:11:59 |

#### Subbasin: ProS

#### Rainfall Intensity Graph





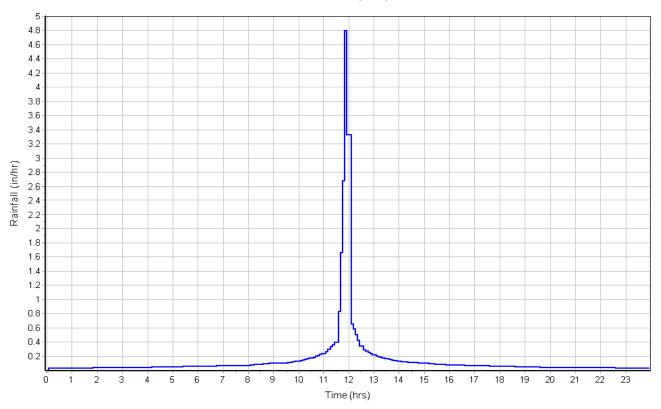
# Subbasin : ProSE

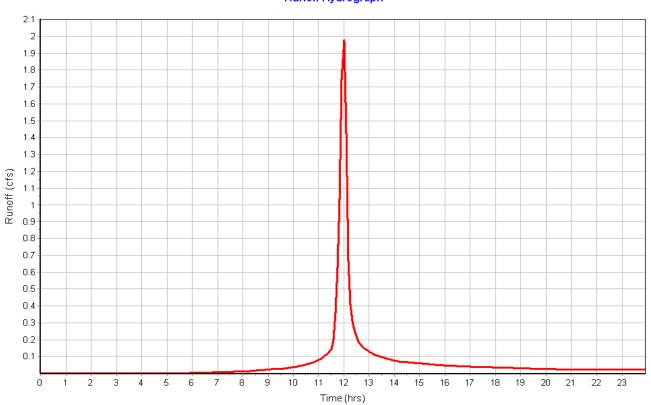
# Input Data

| Area (ac)             | 0.60         |
|-----------------------|--------------|
| Weighted Curve Number | 90.00        |
| Rain Gage ID          | Rain Gage-01 |

# **Composite Curve Number**

| iipooito oui to ituiliboi     |         |       |        |
|-------------------------------|---------|-------|--------|
|                               | Area    | Soil  | Curve  |
| Soil/Surface Description      | (acres) | Group | Number |
| 1/8 acre lots, 65% impervious | 0.60    | С     | 90.00  |
| Composite Area & Weighted CN  | 0.60    |       | 90.00  |


#### Time of Concentration


| Subarea            | Subarea                                                         | Subarea                                                                          |
|--------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------|
| Α                  | В                                                               | С                                                                                |
| 0.015              | 0.30                                                            | 0.00                                                                             |
| 70                 | 70                                                              | 0.00                                                                             |
| 1.0                | 1.0                                                             | 0.00                                                                             |
| 3.50               | 3.50                                                            | 0.00                                                                             |
| 0.79               | 0.07                                                            | 0.00                                                                             |
| 1.47               | 16.18                                                           | 0.00                                                                             |
|                    |                                                                 |                                                                                  |
| Subarea            | Subarea                                                         | Subarea                                                                          |
| Α                  | В                                                               | С                                                                                |
| 120                | 0.00                                                            | 0.00                                                                             |
|                    |                                                                 |                                                                                  |
| 2                  | 0.00                                                            | 0.00                                                                             |
| 2<br>Grass pasture |                                                                 | 0.00<br>Unpaved                                                                  |
| _                  |                                                                 |                                                                                  |
| Grass pasture      | rass pastu                                                      | Unpaved                                                                          |
|                    | A<br>0.015<br>70<br>1.0<br>3.50<br>0.79<br>1.47<br>Subarea<br>A | A B 0.015 0.30 70 70 1.0 1.0 3.50 3.50 0.79 0.07 1.47 16.18  Subarea Subarea A B |

| Total Rainfall (in)                   | 3.50       |
|---------------------------------------|------------|
| Total Runoff (in)                     | 2.45       |
| Peak Runoff (cfs)                     | 2.01       |
| Weighted Curve Number                 | 90.00      |
| Time of Concentration (days hh:mm:ss) | 0 00:09:50 |

#### Subbasin : ProSE

#### Rainfall Intensity Graph





# **Project Description**

File Name ...... Proposed.SPF

# **Project Options**

| Flow Units                              | CFS            |
|-----------------------------------------|----------------|
| Elevation Type                          | Elevation      |
| Hydrology Method                        | SCS TR-55      |
| Time of Concentration (TOC) Method      | SCS TR-55      |
| Link Routing Method                     | Kinematic Wave |
| Enable Overflow Ponding at Nodes        | YES            |
| Skip Steady State Analysis Time Periods | NO             |
|                                         |                |

# **Analysis Options**

| Start Analysis On              | Oct 16, 2018 | 00:00:00      |
|--------------------------------|--------------|---------------|
| End Analysis On                | Oct 17, 2018 | 00:00:00      |
| Start Reporting On             | Oct 16, 2018 | 00:00:00      |
| Antecedent Dry Days            | 0            | days          |
| Runoff (Dry Weather) Time Step | 0 01:00:00   | days hh:mm:ss |
| Runoff (Wet Weather) Time Step | 0 00:05:00   | days hh:mm:ss |
| Reporting Time Step            | 0 00:05:00   | days hh:mm:ss |
| Routing Time Step              | 30           | seconds       |

# **Number of Elements**

|                 | Qty |
|-----------------|-----|
| Rain Gages      | 1   |
| Subbasins       | 3   |
| Nodes           | 3   |
| Junctions       | 0   |
| Outfalls        | 3   |
| Flow Diversions | 0   |
| Inlets          | 0   |
| Storage Nodes   | 0   |
| Links           | 0   |
| Channels        | 0   |
| Pipes           | 0   |
| Pumps           | 0   |
| Orifices        | 0   |
| Weirs           | 0   |
| Outlets         | 0   |
| Pollutants      | 0   |
| Land Uses       | 0   |

# **Rainfall Details**

| SN | Rain Gage<br>ID | Data<br>Source | Data Source<br>ID | Rainfall<br>Type | Rain<br>Units | State    | County  | Period |      | Rainfall<br>Distribution |
|----|-----------------|----------------|-------------------|------------------|---------------|----------|---------|--------|------|--------------------------|
| 1  |                 | Time Series    | 10-year           | Cumulative       | inches        | Missouri | Jackson | 10     | 5.30 | SCS Type II 24-hr        |

# **Subbasin Summary**

| 5 | SN Subbasin | Area | Weighted | Total    | Total  | Total   | Peak   | Time of         |
|---|-------------|------|----------|----------|--------|---------|--------|-----------------|
|   | ID          |      | Curve    | Rainfall | Runoff | Runoff  | Runoff | Concentration   |
|   |             |      | Number   |          |        | Volume  |        |                 |
|   |             | (ac) |          | (in)     | (in)   | (ac-in) | (cfs)  | (days hh:mm:ss) |
|   | 1 ProNW     | 1.75 | 90.00    | 5.30     | 4.17   | 7.29    | 9.31   | 0 00:11:33      |
|   | 2 ProS      | 1.17 | 90.00    | 5.30     | 4.17   | 4.87    | 6.18   | 0 00:11:58      |
|   | 3 ProSE     | 0.60 | 90.00    | 5.30     | 4.17   | 2.50    | 3.33   | 0 00:09:50      |

# **Node Summary**

| SN Element  | Element | Invert    | Ground/Rim | Initial   | Surcharge | Ponded             | Peak   | Max HGL   | Max       | Min       | Time of      | Total   | Total Time |
|-------------|---------|-----------|------------|-----------|-----------|--------------------|--------|-----------|-----------|-----------|--------------|---------|------------|
| ID          | Type    | Elevation | (Max)      | Water     | Elevation | Area               | Inflow | Elevation | Surcharge | Freeboard | Peak         | Flooded | Flooded    |
|             |         |           | Elevation  | Elevation |           |                    |        | Attained  | Depth     | Attained  | Flooding     | Volume  |            |
|             |         |           |            |           |           |                    |        |           | Attained  |           | Occurrence   |         |            |
|             |         | (ft)      | (ft)       | (ft)      | (ft)      | (ft <sup>2</sup> ) | (cfs)  | (ft)      | (ft)      | (ft)      | (days hh:mm) | (ac-in) | (min)      |
| 1 NWoutfall | Outfall | 0.00      |            |           |           |                    | 0.00   | 0.00      |           |           |              |         |            |
| 2 SEoutfall | Outfall | 0.00      |            |           |           |                    | 0.00   | 0.00      |           |           |              |         |            |
| 3 Soutfall  | Outfall | 0.00      |            |           |           |                    | 0.00   | 0.00      |           |           |              |         |            |
|             |         |           |            |           |           |                    |        |           |           |           |              |         |            |

# **Subbasin Hydrology**

#### Subbasin: ProNW

#### **Input Data**

| Area (ac)             | 1.75         |
|-----------------------|--------------|
| Weighted Curve Number | 90.00        |
| Rain Gage ID          | Rain Gage-01 |

#### **Composite Curve Number**

|                               | Alea    | 2011  | Curve  |
|-------------------------------|---------|-------|--------|
| Soil/Surface Description      | (acres) | Group | Number |
| 1/8 acre lots, 65% impervious | 1.75    | С     | 90.00  |
| Composite Area & Weighted CN  | 1.75    |       | 90.00  |

#### **Time of Concentration**

TOC Method : SCS TR-55

Sheet Flow Equation:

 $Tc = (0.007 * ((n * Lf)^0.8)) / ((P^0.5) * (Sf^0.4))$ 

#### Where:

Tc = Time of Concentration (hr)

n = Manning's roughness

Lf = Flow Length (ft)

P = 2 yr, 24 hr Rainfall (inches)

Sf = Slope (ft/ft)

#### Shallow Concentrated Flow Equation:

V = 16.1345 \* (Sf^0.5) (unpaved surface)
V = 20.3282 \* (Sf^0.5) (paved surface)
V = 15.0 \* (Sf^0.5) (grassed waterway surface)
V = 10.0 \* (Sf^0.5) (nearly bare & untilled surface)
V = 9.0 \* (Sf^0.5) (cultivated straight rows surface)
V = 7.0 \* (Sf^0.5) (short grass pasture surface)

V = 7.0 (6f-0.5) (strong state plane) V = 5.0 \* (Sf^0.5) (woodland surface) V = 2.5 \* (Sf^0.5) (forest w/heavy litter surface)

Tc = (Lf / V) / (3600 sec/hr)

#### Where:

Tc = Time of Concentration (hr)

Lf = Flow Length (ft)

V = Velocity (ft/sec)

Sf = Slope (ft/ft)

#### Channel Flow Equation:

 $V = (1.49 * (R^{(2/3)}) * (Sf^{0.5})) / n$ 

R = Aq / Wp

Tc = (Lf / V) / (3600 sec/hr)

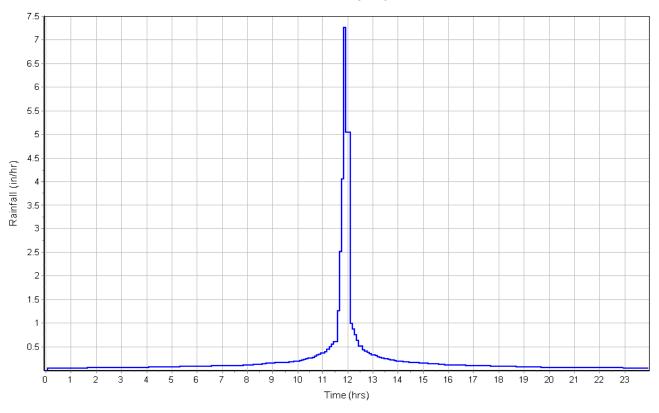
#### Where:

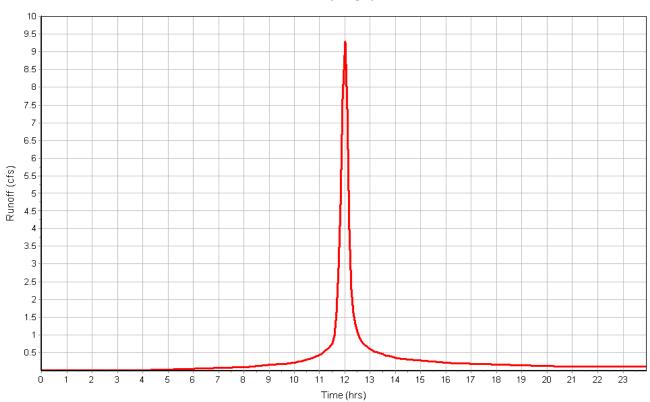
Tc = Time of Concentration (hr)

Lf = Flow Length (ft)
R = Hydraulic Radius (ft)

Aq = Flow Area (ft²)
Wp = Wetted Perimeter (ft)
V = Velocity (ft/sec)

Sf = Slope (ft/ft)


n = Manning's roughness


|                                        | Subarea | Subarea | Subarea       |
|----------------------------------------|---------|---------|---------------|
| Sheet Flow Computations                | Α       | В       | С             |
| Manning's Roughness:                   | 0.30    | 0.00    | 0.00          |
| Flow Length (ft):                      | 40      | 0.00    | 0.00          |
| Slope (%):                             | 1.0     | 0.00    | 0.00          |
| 2 yr, 24 hr Rainfall (in) :            | 3.50    | 0.00    | 0.00          |
| Velocity (ft/sec):                     | 0.06    | 0.00    | 0.00          |
| Computed Flow Time (min) :             | 10.34   | 0.00    | 0.00          |
|                                        |         |         |               |
|                                        | Subarea | Subarea | Subarea       |
| Shallow Concentrated Flow Computations | Α       | В       | С             |
| Flow Length (ft):                      | 175     | 0.00    | 0.00          |
| Slope (%):                             | 2.5     | 0.00    | 0.00          |
| Surface Type :                         | Paved   | Paved   | Grass pasture |
| Velocity (ft/sec):                     | 3.21    | 0.00    | 0.00          |
| Computed Flow Time (min) :             | 0.91    | 0.00    | 0.00          |
|                                        |         |         |               |
|                                        | Subarea | Subarea | Subarea       |
| Channel Flow Computations              | Α       | В       | С             |
| Manning's Roughness :                  | 0.012   | 0.00    | 0.00          |
| Flow Length (ft):                      | 117     | 0.00    | 0.00          |
| Channel Slope (%):                     | 1.0     | 0.00    | 0.00          |
| Cross Section Area (ft²):              | 1.77    | 0.00    | 0.00          |
| Wetted Perimeter (ft):                 | 4.71    | 0.00    | 0.00          |
| Velocity (ft/sec):                     | 6.47    | 0.00    | 0.00          |
| Computed Flow Time (min) :             | 0.30    | 0.00    | 0.00          |
| Total TOC (min)11.55                   |         |         |               |

| Total Rainfall (in)                   | 5.30       |
|---------------------------------------|------------|
| Total Runoff (in)                     | 4.17       |
| Peak Runoff (cfs)                     | 9.31       |
| Weighted Curve Number                 |            |
| Time of Concentration (days hh:mm:ss) | 0 00:11:33 |
| , , ,                                 |            |

#### Subbasin: ProNW

#### Rainfall Intensity Graph





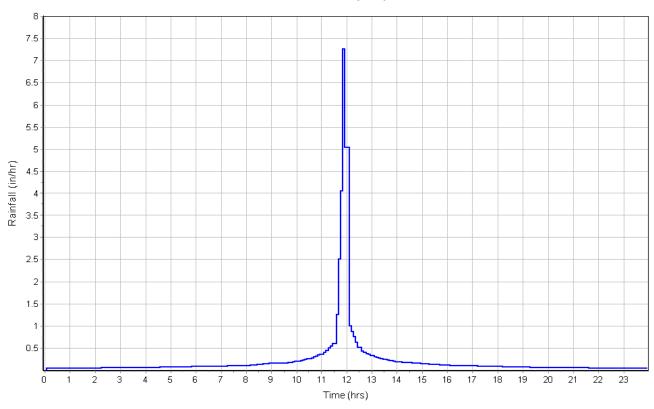
# Subbasin : ProS

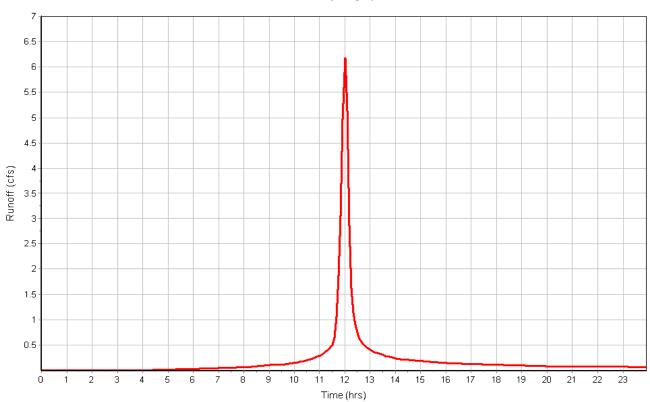
# Input Data

| Area (ac)             | 1.17         |
|-----------------------|--------------|
| Weighted Curve Number | 90.00        |
| Rain Gage ID          | Rain Gage-01 |

# **Composite Curve Number**

| iipoolio oui ro ituiliboi     |         |       |        |
|-------------------------------|---------|-------|--------|
|                               | Area    | Soil  | Curve  |
| Soil/Surface Description      | (acres) | Group | Number |
| 1/8 acre lots, 65% impervious | 1.17    | С     | 90.00  |
| Composite Area & Weighted CN  | 1.17    |       | 90.00  |


#### Time of Concentration


| Sheet Flow Computations Manning's Roughness: Flow Length (ft): Slope (%): 2 yr, 24 hr Rainfall (in): Velocity (ft/sec): Computed Flow Time (min): | Subarea | Subarea | Subarea |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|
|                                                                                                                                                   | A       | B       | C       |
|                                                                                                                                                   | 0.3     | 0.00    | 0.00    |
|                                                                                                                                                   | 40      | 0.00    | 0.00    |
|                                                                                                                                                   | 1.0     | 0.00    | 0.00    |
|                                                                                                                                                   | 3.50    | 0.00    | 0.00    |
|                                                                                                                                                   | 0.06    | 0.00    | 0.00    |
|                                                                                                                                                   | 10.34   | 0.00    | 0.00    |
| Shallow Concentrated Flow Computations Flow Length (ft): Slope (%): Surface Type:                                                                 | Subarea | Subarea | Subarea |
|                                                                                                                                                   | A       | B       | C       |
|                                                                                                                                                   | 200     | 0.00    | 0.00    |
|                                                                                                                                                   | 1.0     | 0.00    | 0.00    |
|                                                                                                                                                   | Payed   | Unpaved | Unpaved |
| Velocity (ft/sec) : Computed Flow Time (min) : Total TOC (min)11.98                                                                               | 2.03    | 0.00    | 0.00    |
|                                                                                                                                                   | 1.64    | 0.00    | 0.00    |

| Total Rainfall (in)                   | 5.30       |
|---------------------------------------|------------|
| Total Runoff (in)                     |            |
| Peak Runoff (cfs)                     | 6.18       |
| Weighted Curve Number                 | 90.00      |
| Time of Concentration (days hh:mm:ss) | 0 00:11:59 |

#### Subbasin : ProS

#### Rainfall Intensity Graph





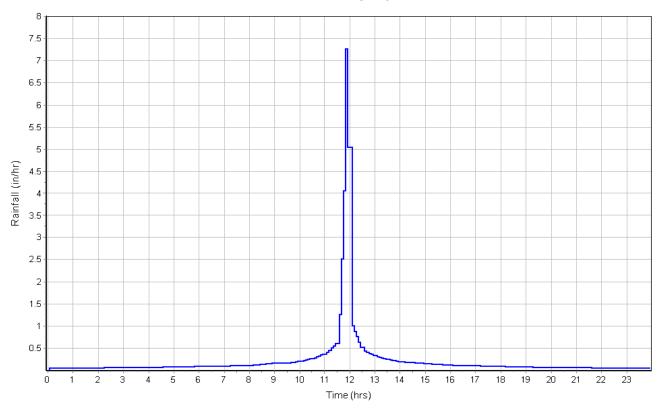
# Subbasin : ProSE

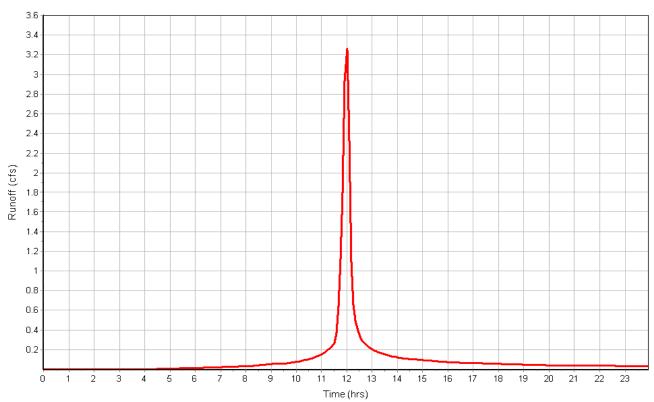
# Input Data

| Area (ac)             | 0.60         |
|-----------------------|--------------|
| Weighted Curve Number | 90.00        |
| Rain Gage ID          | Rain Gage-01 |

# **Composite Curve Number**

| iipooito oui to ituiliboi     |         |       |        |
|-------------------------------|---------|-------|--------|
|                               | Area    | Soil  | Curve  |
| Soil/Surface Description      | (acres) | Group | Number |
| 1/8 acre lots, 65% impervious | 0.60    | С     | 90.00  |
| Composite Area & Weighted CN  | 0.60    |       | 90.00  |


#### Time of Concentration


|                                        | Subarea       | Subarea    | Subarea |
|----------------------------------------|---------------|------------|---------|
| Sheet Flow Computations                | Α             | В          | С       |
| Manning's Roughness :                  | 0.015         | 0.30       | 0.00    |
| Flow Length (ft):                      | 70            | 70         | 0.00    |
| Slope (%):                             | 1.0           | 1.0        | 0.00    |
| 2 yr, 24 hr Rainfall (in) :            | 3.50          | 3.50       | 0.00    |
| Velocity (ft/sec):                     | 0.79          | 0.07       | 0.00    |
| Computed Flow Time (min):              | 1.47          | 16.18      | 0.00    |
|                                        |               |            |         |
|                                        | Subarea       | Subarea    | Subarea |
| Shallow Concentrated Flow Computations | A             | В          | С       |
| Flow Length (ft):                      | 120           | 0.00       | 0.00    |
| Slope (%):                             | 2             | 0.00       | 0.00    |
| Surface Type :                         | Grass pasture | rass pastu | Unpaved |
| Velocity (ft/sec):                     | 0.99          | 0.00       | 0.00    |
| Computed Flow Time (min):              | 2.02          | 0.00       | 0.00    |
| Total TOC (min)9.84                    |               |            |         |
|                                        |               |            |         |

| Total Rainfall (in)                   | 5.30       |
|---------------------------------------|------------|
| Total Runoff (in)                     |            |
| Peak Runoff (cfs)                     | 3.33       |
| Weighted Curve Number                 | 90.00      |
| Time of Concentration (days hh:mm:ss) | 0 00:09:50 |

#### Subbasin : ProSE

#### Rainfall Intensity Graph





# **Project Description**

File Name ...... Proposed.SPF

# **Project Options**

| Flow Units                              | CFS            |
|-----------------------------------------|----------------|
| Elevation Type                          | Elevation      |
| Hydrology Method                        | SCS TR-55      |
| Time of Concentration (TOC) Method      | SCS TR-55      |
| Link Routing Method                     | Kinematic Wave |
| Enable Overflow Ponding at Nodes        | YES            |
| Skip Steady State Analysis Time Periods | NO             |

# **Analysis Options**

| Start Analysis On              | Oct 16, 2018 | 00:00:00      |
|--------------------------------|--------------|---------------|
|                                |              |               |
| End Analysis On                | Oct 17, 2018 | 00:00:00      |
| Start Reporting On             | Oct 16, 2018 | 00:00:00      |
| Antecedent Dry Days            | 0            | days          |
| Runoff (Dry Weather) Time Step | 0 01:00:00   | days hh:mm:ss |
| Runoff (Wet Weather) Time Step | 0 00:05:00   | days hh:mm:ss |
| Reporting Time Step            | 0 00:05:00   | days hh:mm:ss |
| Routing Time Step              | 30           | seconds       |

# **Number of Elements**

|                 | Qty |
|-----------------|-----|
| Rain Gages      | 1   |
| Subbasins       | 3   |
| Nodes           | 3   |
| Junctions       | 0   |
| Outfalls        | 3   |
| Flow Diversions | 0   |
| Inlets          | 0   |
| Storage Nodes   | 0   |
| Links           | 0   |
| Channels        | 0   |
| Pipes           | 0   |
| Pumps           | 0   |
| Orifices        | 0   |
| Weirs           | 0   |
| Outlets         | 0   |
| Pollutants      | 0   |
| Land Uses       | 0   |

# **Rainfall Details**

| SN | Rain Gage<br>ID | Data<br>Source | Data Source<br>ID | Rainfall<br>Type | Rain<br>Units | State    | County  | Period |      | Rainfall<br>Distribution |
|----|-----------------|----------------|-------------------|------------------|---------------|----------|---------|--------|------|--------------------------|
| 1  |                 | Time Series    | 100-year          | Cumulative       | inches        | Missouri | Jackson | 100    | 7.70 | SCS Type II 24-hr        |

# **Subbasin Summary**

| 5 | SN Subbasin | Area | Weighted | Total    | Total  | Total   | Peak   | Time of         |
|---|-------------|------|----------|----------|--------|---------|--------|-----------------|
|   | ID          |      | Curve    | Rainfall | Runoff | Runoff  | Runoff | Concentration   |
|   |             |      | Number   |          |        | Volume  |        |                 |
|   |             | (ac) |          | (in)     | (in)   | (ac-in) | (cfs)  | (days hh:mm:ss) |
|   | 1 ProNW     | 1.75 | 90.00    | 7.70     | 6.51   | 11.39   | 14.18  | 0 00:11:33      |
|   | 2 ProS      | 1.17 | 90.00    | 7.70     | 6.51   | 7.62    | 9.41   | 0 00:11:58      |
|   | 3 ProSE     | 0.60 | 90.00    | 7.70     | 6.51   | 3.91    | 5.07   | 0 00:09:50      |

#### **Node Summary**

| SN Element  | Element | Invert    | Ground/Rim | Initial   | Surcharge | Ponded             | Peak   | Max HGL   | Max       | Min Ti       | ime of      | Total   | Total Time |
|-------------|---------|-----------|------------|-----------|-----------|--------------------|--------|-----------|-----------|--------------|-------------|---------|------------|
| ID          | Type    | Elevation | (Max)      | Water     | Elevation | Area               | Inflow | Elevation | Surcharge | Freeboard Pe | eak         | Flooded | Flooded    |
|             |         |           | Elevation  | Elevation |           |                    |        | Attained  | Depth     | Attained Flo | looding     | Volume  |            |
|             |         |           |            |           |           |                    |        |           | Attained  | O            | ccurrence   |         |            |
|             |         | (ft)      | (ft)       | (ft)      | (ft)      | (ft <sup>2</sup> ) | (cfs)  | (ft)      | (ft)      | (ft) (d      | days hh:mm) | (ac-in) | (min)      |
| 1 NWoutfall | Outfall | 0.00      |            |           |           |                    | 0.00   | 0.00      |           |              |             |         | <u>.</u>   |
| 2 SEoutfall | Outfall | 0.00      |            |           |           |                    | 0.00   | 0.00      |           |              |             |         |            |
| 3 Soutfall  | Outfall | 0.00      |            |           |           |                    | 0.00   | 0.00      |           |              |             |         |            |

#### **Subbasin Hydrology**

#### Subbasin: ProNW

#### **Input Data**

| Area (ac)             | 1.75         |
|-----------------------|--------------|
| Weighted Curve Number | 90.00        |
| Rain Gage ID          | Rain Gage-01 |

#### **Composite Curve Number**

|                               | Alea    | 3011  | Curve  |
|-------------------------------|---------|-------|--------|
| Soil/Surface Description      | (acres) | Group | Number |
| 1/8 acre lots, 65% impervious | 1.75    | С     | 90.00  |
| Composite Area & Weighted CN  | 1.75    |       | 90.00  |

#### **Time of Concentration**

TOC Method : SCS TR-55

Sheet Flow Equation :

 $Tc = (0.007 * ((n * Lf)^0.8)) / ((P^0.5) * (Sf^0.4))$ 

#### Where:

Tc = Time of Concentration (hr)

n = Manning's roughness

Lf = Flow Length (ft)

P = 2 yr, 24 hr Rainfall (inches)

Sf = Slope (ft/ft)

#### Shallow Concentrated Flow Equation:

V = 16.1345 \* (Sf^0.5) (unpaved surface)
V = 20.3282 \* (Sf^0.5) (paved surface)
V = 15.0 \* (Sf^0.5) (grassed waterway surface)
V = 10.0 \* (Sf^0.5) (nearly bare & untilled surface)
V = 9.0 \* (Sf^0.5) (cultivated straight rows surface)
V = 7.0 \* (Sf^0.5) (short grass pasture surface)

V = 7.0 (6f-0.5) (strong state plane) V = 5.0 \* (Sf^0.5) (woodland surface) V = 2.5 \* (Sf^0.5) (forest w/heavy litter surface)

Tc = (Lf / V) / (3600 sec/hr)

#### Where:

Tc = Time of Concentration (hr)

Lf = Flow Length (ft)

V = Velocity (ft/sec)

Sf = Slope (ft/ft)

#### Channel Flow Equation:

 $V = (1.49 * (R^{(2/3)}) * (Sf^{0.5})) / n$ 

R = Aq / Wp

Tc = (Lf / V) / (3600 sec/hr)

#### Where:

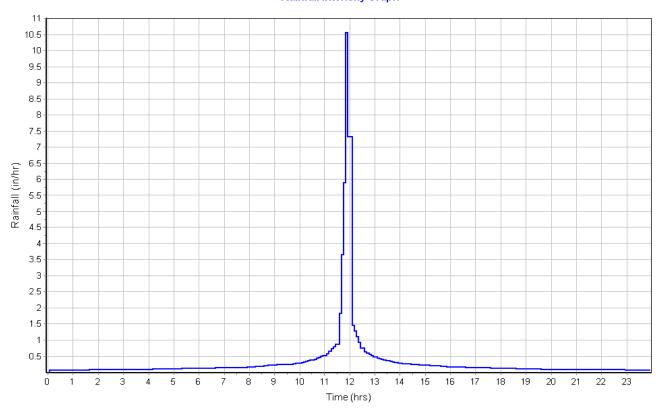
Tc = Time of Concentration (hr)

Lf = Flow Length (ft)
R = Hydraulic Radius (ft)

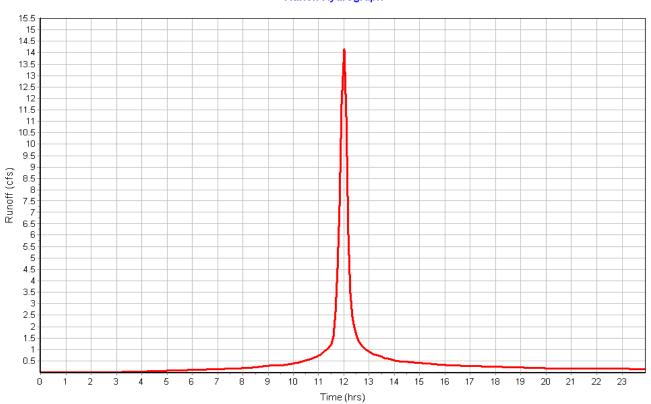
Aq = Flow Area (ft²)
Wp = Wetted Perimeter (ft)
V = Velocity (ft/sec)

Sf = Slope (ft/ft)

n = Manning's roughness


|                                        | Subarea | Subarea | Subarea       |
|----------------------------------------|---------|---------|---------------|
| Sheet Flow Computations                | Α       | В       | С             |
| Manning's Roughness:                   | 0.30    | 0.00    | 0.00          |
| Flow Length (ft):                      | 40      | 0.00    | 0.00          |
| Slope (%):                             | 1.0     | 0.00    | 0.00          |
| 2 yr, 24 hr Rainfall (in) :            | 3.50    | 0.00    | 0.00          |
| Velocity (ft/sec):                     | 0.06    | 0.00    | 0.00          |
| Computed Flow Time (min) :             | 10.34   | 0.00    | 0.00          |
|                                        |         |         |               |
|                                        | Subarea | Subarea | Subarea       |
| Shallow Concentrated Flow Computations | Α       | В       | С             |
| Flow Length (ft):                      | 175     | 0.00    | 0.00          |
| Slope (%):                             | 2.5     | 0.00    | 0.00          |
| Surface Type :                         | Paved   | Paved   | Grass pasture |
| Velocity (ft/sec):                     | 3.21    | 0.00    | 0.00          |
| Computed Flow Time (min) :             | 0.91    | 0.00    | 0.00          |
|                                        |         |         |               |
|                                        | Subarea | Subarea | Subarea       |
| Channel Flow Computations              | Α       | В       | С             |
| Manning's Roughness :                  | 0.012   | 0.00    | 0.00          |
| Flow Length (ft):                      | 117     | 0.00    | 0.00          |
| Channel Slope (%):                     | 1.0     | 0.00    | 0.00          |
| Cross Section Area (ft²):              | 1.77    | 0.00    | 0.00          |
| Wetted Perimeter (ft):                 | 4.71    | 0.00    | 0.00          |
| Velocity (ft/sec) :                    | 6.47    | 0.00    | 0.00          |
| Computed Flow Time (min) :             | 0.30    | 0.00    | 0.00          |
| Total TOC (min)11.55                   |         |         |               |

#### Subbasin Runoff Results


| Total Rainfall (in)                   | 7.70       |
|---------------------------------------|------------|
| Total Runoff (in)                     | 6.51       |
| Peak Runoff (cfs)                     | 14.18      |
| Weighted Curve Number                 | 90.00      |
| Time of Concentration (days hh:mm:ss) | 0 00:11:33 |
|                                       |            |

#### Subbasin: ProNW

#### Rainfall Intensity Graph



#### Runoff Hydrograph



#### Subbasin: ProS

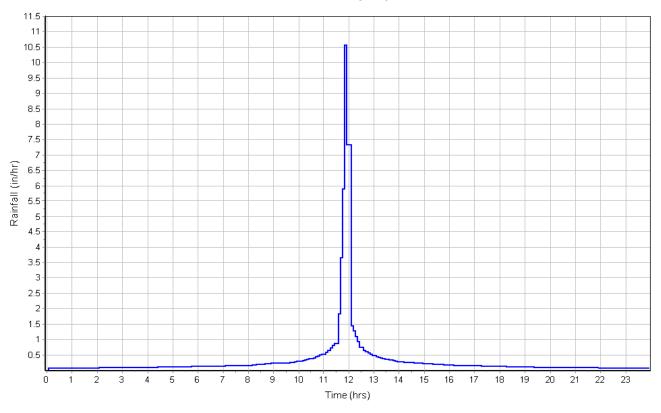
#### Input Data

| Area (ac)             | 1.17         |
|-----------------------|--------------|
| Weighted Curve Number | 90.00        |
| Rain Gage ID          | Rain Gage-01 |

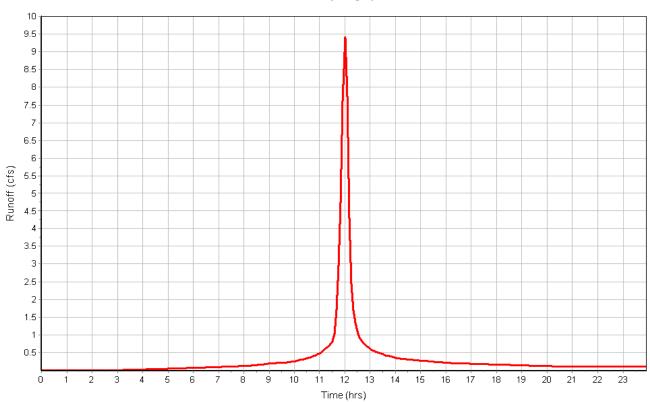
#### **Composite Curve Number**

| iipoolio oui ro ituiliboi     |         |       |        |
|-------------------------------|---------|-------|--------|
|                               | Area    | Soil  | Curve  |
| Soil/Surface Description      | (acres) | Group | Number |
| 1/8 acre lots, 65% impervious | 1.17    | С     | 90.00  |
| Composite Area & Weighted CN  | 1.17    |       | 90.00  |

#### Time of Concentration


|                                        | Subarea | Subarea | Subarea |
|----------------------------------------|---------|---------|---------|
| Sheet Flow Computations                | Α       | В       | С       |
| Manning's Roughness :                  | 0.3     | 0.00    | 0.00    |
| Flow Length (ft):                      | 40      | 0.00    | 0.00    |
| Slope (%):                             | 1.0     | 0.00    | 0.00    |
| 2 yr, 24 hr Rainfall (in):             | 3.50    | 0.00    | 0.00    |
| Velocity (ft/sec):                     | 0.06    | 0.00    | 0.00    |
| Computed Flow Time (min) :             | 10.34   | 0.00    | 0.00    |
|                                        |         |         |         |
|                                        | Subarea | Subarea | Subarea |
| Shallow Concentrated Flow Computations | Α       | В       | С       |
| Flow Length (ft):                      | 200     | 0.00    | 0.00    |
| Slope (%):                             | 1.0     | 0.00    | 0.00    |
| Surface Type :                         | Paved   | Unpaved | Unpaved |
| Velocity (ft/sec):                     | 2.03    | 0.00    | 0.00    |
| Computed Flow Time (min):              | 1.64    | 0.00    | 0.00    |
| Total TOC (min)11.98                   |         |         |         |
|                                        |         |         |         |

#### Subbasin Runoff Results


| Total Rainfall (in)                   | 7.70       |
|---------------------------------------|------------|
| Total Runoff (in)                     | 6.51       |
| Peak Runoff (cfs)                     | 9.41       |
| Weighted Curve Number                 | 90.00      |
| Time of Concentration (days hh:mm:ss) | 0 00:11:59 |

#### Subbasin : ProS

#### Rainfall Intensity Graph



#### Runoff Hydrograph



#### Subbasin : ProSE

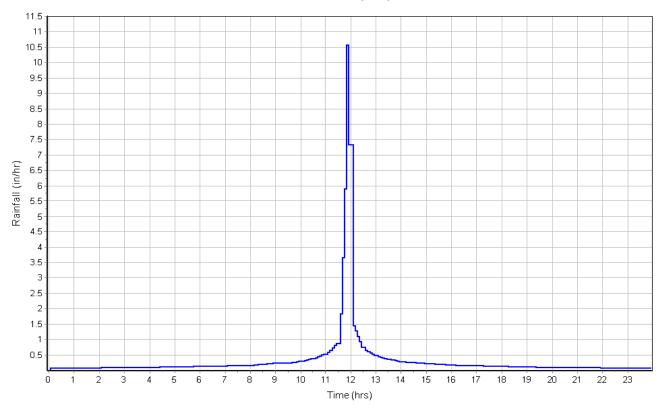
#### Input Data

| Area (ac)             | 0.60         |
|-----------------------|--------------|
| Weighted Curve Number | 90.00        |
| Rain Gage ID          | Rain Gage-01 |

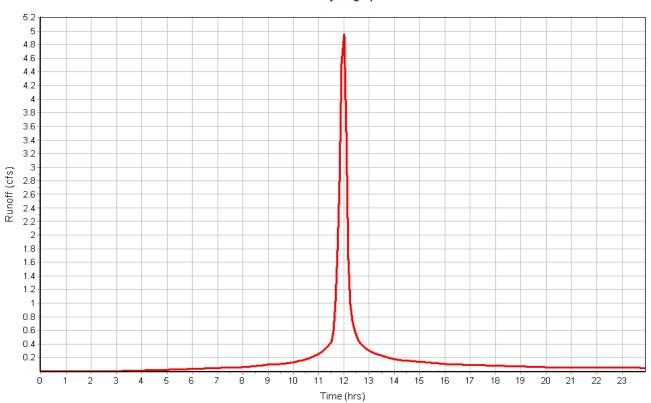
#### **Composite Curve Number**

| inpodito dui to itumboi       |         |       |        |
|-------------------------------|---------|-------|--------|
|                               | Area    | Soil  | Curve  |
| Soil/Surface Description      | (acres) | Group | Number |
| 1/8 acre lots, 65% impervious | 0.60    | Ċ     | 90.00  |
| Composite Area & Weighted CN  | 0.60    |       | 90.00  |

#### Time of Concentration


|                                        | Subarea            | Subarea              | Subarea         |
|----------------------------------------|--------------------|----------------------|-----------------|
| Sheet Flow Computations                | Α                  | В                    | С               |
| Manning's Roughness:                   | 0.015              | 0.30                 | 0.00            |
| Flow Length (ft):                      | 70                 | 70                   | 0.00            |
| Slope (%):                             | 1.0                | 1.0                  | 0.00            |
| 2 yr, 24 hr Rainfall (in) :            | 3.50               | 3.50                 | 0.00            |
| Velocity (ft/sec):                     | 0.79               | 0.07                 | 0.00            |
| Computed Flow Time (min):              | 1.47               | 16.18                | 0.00            |
|                                        | Subarea            | Subarea              | Subarea         |
| Shallow Concentrated Flow Computations | A                  | В                    | С               |
|                                        |                    |                      |                 |
| Flow Length (ft):                      | 120                | 0.00                 | 0.00            |
| Flow Length (ft): Slope (%):           | 120<br>2           | 0.00<br>0.00         | 0.00<br>0.00    |
| <b>3</b> ( )                           |                    | 0.00                 |                 |
| Slope (%):                             | 2                  | 0.00                 | 0.00            |
| Slope (%) :<br>Surface Type :          | 2<br>Grass pasture | 0.00<br>e rass pastu | 0.00<br>Unpaved |

#### Subbasin Runoff Results


| Total Rainfall (in)                   | 7.70       |
|---------------------------------------|------------|
| Total Runoff (in)                     | 6.51       |
| Peak Runoff (cfs)                     | 5.07       |
| Weighted Curve Number                 | 90.00      |
| Time of Concentration (days hh:mm:ss) | 0 00:09:50 |

#### Subbasin : ProSE

#### Rainfall Intensity Graph



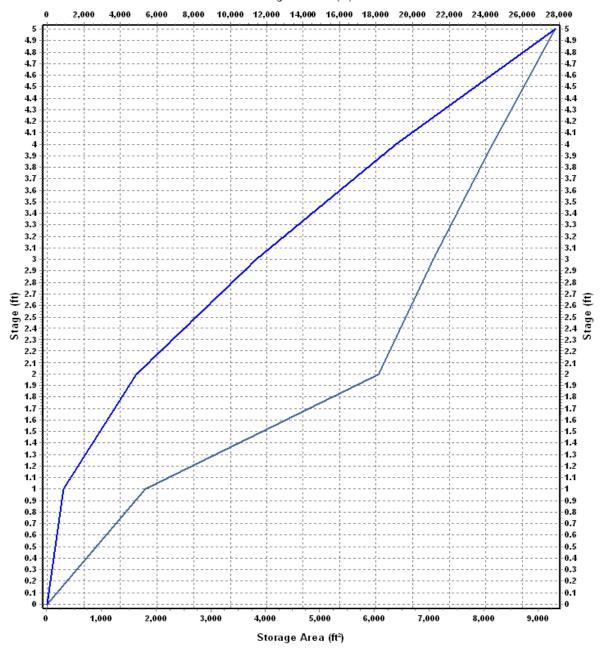
#### Runoff Hydrograph



# Exhibit H Proposed Detention Stage-Storage Curves

#### **Storage Nodes**

#### Storage Node : NWpond


#### Input Data

| Invert Elevation (ft)        | 1007.00 |
|------------------------------|---------|
| Max (Rim) Elevation (ft)     | 1012.10 |
| Max (Rim) Offset (ft)        | 5.10    |
| Initial Water Elevation (ft) | 1007.00 |
| Initial Water Depth (ft)     | 0.00    |
| Ponded Area (ft²)            | 0.00    |
| Evaporation Loss             |         |

# Storage Area Volume Curves Storage Curve : NWpond

| Stage | Storage            | Storage            |
|-------|--------------------|--------------------|
|       | Area               | Volume             |
| (ft)  | (ft <sup>2</sup> ) | (ft <sup>3</sup> ) |
| 0     | 10                 | 0.000              |
| 1     | 1810               | 910.00             |
| 2     | 6080               | 4855.00            |
| 3     | 7080               | 11435.00           |
| 4     | 8155               | 19052.50           |
| 5     | 9310               | 27785.00           |

Storage Volume (ft³)



#### Storage Node : NWpond (continued)

#### **Outflow Weirs**

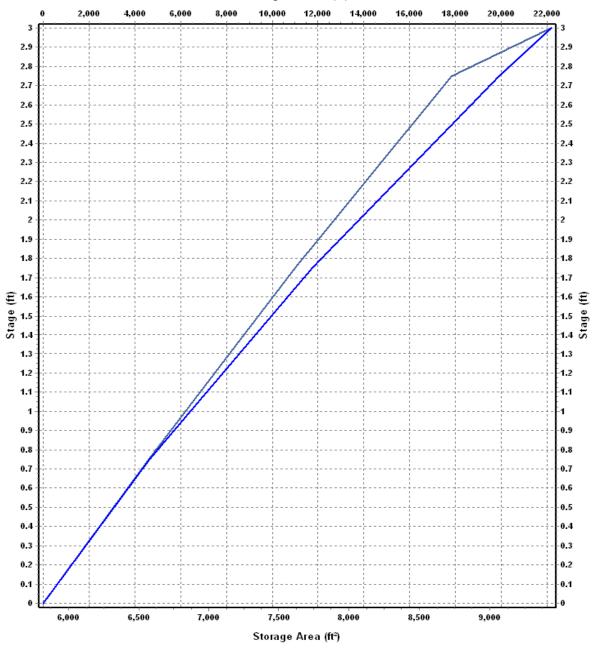
|   | SN Element | Weir     | Flap   | Crest     | Crest  | Length | Weir Total | Discharge   |
|---|------------|----------|--------|-----------|--------|--------|------------|-------------|
|   | ID         | Type     | Gate   | Elevation | Offset |        | Height     | Coefficient |
|   |            |          |        | (ft)      | (ft)   | (ft)   | (ft)       |             |
| - | 1 NWweir   | Trapezoi | dal No | 1011.00   | 4.00   | 100.00 | 1.10       | 3.33        |

#### **Outflow Orifices**

| SN Element    | Orifice | Orifice  | Flap | Circular | Rectangular | Rectangular | Orifice   | Orifice     |
|---------------|---------|----------|------|----------|-------------|-------------|-----------|-------------|
| ID            | Type    | Shape    | Gate | Orifice  | Orifice     | Orifice     | Invert    | Coefficient |
|               |         |          |      | Diameter | Height      | Width       | Elevation |             |
|               |         |          |      | (in)     | (in)        | (in)        | (ft)      |             |
| 1 NW-12in     | Side    | CIRCULAR | No   | 12.00    |             |             | 1009.02   | 0.61        |
| 2 NW-WQoutlet | Side    | CIRCULAR | No   | 4.00     |             |             | 1007.00   | 0.61        |

| Peak Inflow (cfs)                       | 5.61    |
|-----------------------------------------|---------|
| Peak Lateral Inflow (cfs)               | 5.61    |
| Peak Outflow (cfs)                      | 0.87    |
| Peak Exfiltration Flow Rate (cfm)       | 0.00    |
| Max HGL Elevation Attained (ft)         | 1009.23 |
| Max HGL Depth Attained (ft)             | 2.23    |
| Average HGL Elevation Attained (ft)     | 1007.51 |
| Average HGL Depth Attained (ft)         | 0.51    |
| Time of Max HGL Occurrence (days hh:mm) | 0 12:29 |
| Total Exfiltration Volume (1000-ft³)    | 0.000   |
| Total Flooded Volume (ac-in)            | 0       |
| Total Time Flooded (min)                | 0       |
| Total Retention Time (sec)              | 0.00    |

#### Storage Node : Spond


#### Input Data

| Invert Elevation (ft)        | 1014.25 |
|------------------------------|---------|
| Max (Rim) Elevation (ft)     | 1017.60 |
| Max (Rim) Offset (ft)        | 3.35    |
| Initial Water Elevation (ft) |         |
| Initial Water Depth (ft)     | 0.00    |
| Ponded Area (ft²)            |         |
| Evaporation Loss             |         |

# Storage Area Volume Curves Storage Curve : Spond

| Stage    | Storage            | Storage            |
|----------|--------------------|--------------------|
|          | Area               | Volume             |
| <br>(ft) | (ft <sup>2</sup> ) | (ft <sup>3</sup> ) |
| 0        | 5820               | 0.000              |
| 0.75     | 6570               | 4646.25            |
| 1.75     | 7613               | 11737.75           |
| 2.75     | 8730               | 19909.25           |
| 3.0      | 9440               | 22180.50           |
|          |                    |                    |

#### Storage Volume (ft³)



#### Storage Node : Spond (continued)

#### **Outflow Weirs**

| SN Element  | Weir     | Flap   | Crest     | Crest  | Length | Weir Total | Discharge   |
|-------------|----------|--------|-----------|--------|--------|------------|-------------|
| ID          | Type     | Gate   | Elevation | Offset |        | Height     | Coefficient |
|             |          |        | (ft)      | (ft)   | (ft)   | (ft)       |             |
| <br>1 Swier | Trapezoi | dal No | 1016.50   | 2.25   | 75.00  | 1.10       | 3.33        |

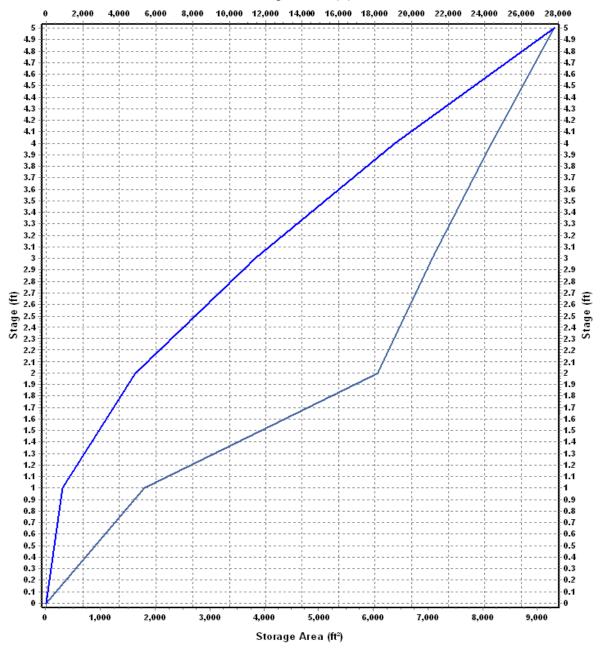
#### **Outflow Orifices**

| SN Element  | Orifice | Orifice | Flap | Circular | Rectangular | Rectangular | Orifice   | Orifice     |
|-------------|---------|---------|------|----------|-------------|-------------|-----------|-------------|
| ID          | Type    | Shape   | Gate | Orifice  | Orifice     | Orifice     | Invert    | Coefficient |
|             |         |         |      | Diameter | Height      | Width       | Elevation |             |
|             |         |         |      | (in)     | (in)        | (in)        | (ft)      |             |
| 1 S-12in    | Side    | CIRCULA | R No | 12.00    |             |             | 1014.95   | 0.61        |
| 2 S-WQoutle | t Side  | CIRCULA | R No | 4.00     |             |             | 1014.25   | 0.61        |

| Peak Inflow (cfs)                       | 3.72    |
|-----------------------------------------|---------|
| Peak Lateral Inflow (cfs)               | 3.72    |
| Peak Outflow (cfs)                      | 0.52    |
| Peak Exfiltration Flow Rate (cfm)       | 0.00    |
| Max HGL Elevation Attained (ft)         | 1015.10 |
| Max HGL Depth Attained (ft)             | 0.85    |
| Average HGL Elevation Attained (ft)     | 1014.48 |
| Average HGL Depth Attained (ft)         | 0.23    |
| Time of Max HGL Occurrence (days hh:mm) | 0 12:32 |
| Total Exfiltration Volume (1000-ft³)    | 0.000   |
| Total Flooded Volume (ac-in)            | 0       |
| Total Time Flooded (min)                | 0       |
| Total Retention Time (sec)              | 0.00    |

#### **Storage Nodes**

#### Storage Node : NWpond


#### Input Data

| Invert Elevation (ft)        | 1007.00 |
|------------------------------|---------|
| Max (Rim) Elevation (ft)     | 1012.10 |
| Max (Rim) Offset (ft)        | 5.10    |
| Initial Water Elevation (ft) | 1007.00 |
| Initial Water Depth (ft)     | 0.00    |
| Ponded Area (ft²)            | 0.00    |
| Evaporation Loss             |         |

# Storage Area Volume Curves Storage Curve : NWpond

| Storage            | Storage                                             |
|--------------------|-----------------------------------------------------|
| Area               | Volume                                              |
| (ft <sup>2</sup> ) | (ft³)                                               |
| 10                 | 0.000                                               |
| 1810               | 910.00                                              |
| 6080               | 4855.00                                             |
| 7080               | 11435.00                                            |
| 8155               | 19052.50                                            |
| 9310               | 27785.00                                            |
|                    | Area<br>(ft²)<br>10<br>1810<br>6080<br>7080<br>8155 |

Storage Volume (ft³)



#### Storage Node : NWpond (continued)

#### **Outflow Weirs**

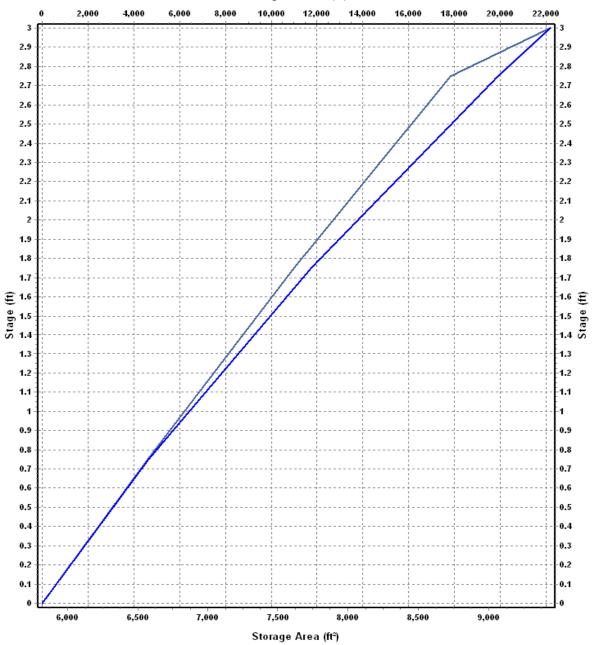
| SN Eleme<br>ID | nt Weir<br>Type | Flap<br>Gate | Crest<br>Elevation | Crest<br>Offset | Length | Weir Total<br>Height | Discharge<br>Coefficient |
|----------------|-----------------|--------------|--------------------|-----------------|--------|----------------------|--------------------------|
|                |                 |              | (ft)               | (ft)            | (ft)   | (ft)                 |                          |
| 1 NWwe         | ir Trapezoidal  | No           | 1011.00            | 4.00            | 100.00 | 1.10                 | 3.33                     |

#### **Outflow Orifices**

| SN Element    | Orifice | Orifice  | Flap | Circular | Rectangular | Rectangular | Orifice   | Orifice     |
|---------------|---------|----------|------|----------|-------------|-------------|-----------|-------------|
| ID            | Type    | Shape    | Gate | Orifice  | Orifice     | Orifice     | Invert    | Coefficient |
|               |         |          |      | Diameter | Height      | Width       | Elevation |             |
|               |         |          |      | (in)     | (in)        | (in)        | (ft)      |             |
| <br>1 NW-12in | Side    | CIRCULAR | No   | 12.00    |             |             | 1009.02   | 0.61        |
| 2 NW-WQoutlet | Side    | CIRCULAR | No   | 4.00     |             |             | 1007.00   | 0.61        |

| Peak Inflow (cfs) Peak Lateral Inflow (cfs) Peak Outflow (cfs) Peak Exfiltration Flow Rate (cfm) Max HGL Elevation Attained (ft) Max HGL Depth Attained (ft) Average HGL Elevation Attained (ft) Average HGL Depth Attained (ft) Time of Max HGL Occurrence (days hh:mm) Total Exfiltration Volume (1000-fts) Total Flooded Volume (ac-in) Total Time Flooded (min) | 9.30<br>2.59<br>0.00<br>1009.80<br>2.8<br>1007.70<br>0.7<br>0 12:19<br>0.000<br>0 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Total Retention Time (sec)                                                                                                                                                                                                                                                                                                                                          |                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   |

#### Storage Node : Spond


#### Input Data

| Invert Elevation (ft)        | 1014.25 |
|------------------------------|---------|
| Max (Rim) Elevation (ft)     | 1017.60 |
| Max (Rim) Offset (ft)        | 3.35    |
| Initial Water Elevation (ft) | 1014.25 |
| Initial Water Depth (ft)     | 0.00    |
| Ponded Area (ft²)            | 0.00    |
| Evaporation Loss             | 0.00    |

# Storage Area Volume Curves Storage Curve : Spond

| Stage    | Storage            | Storage            |
|----------|--------------------|--------------------|
|          | Area               | Volume             |
| <br>(ft) | (ft <sup>2</sup> ) | (ft <sup>3</sup> ) |
| 0        | 5820               | 0.000              |
| 0.75     | 6570               | 4646.25            |
| 1.75     | 7613               | 11737.75           |
| 2.75     | 8730               | 19909.25           |
| 3.0      | 9440               | 22180.50           |
|          |                    |                    |





#### Storage Node : Spond (continued)

#### **Outflow Weirs**

| SN Element  | Weir     | Flap   | Crest     | Crest  | Length | Weir Total | Discharge   |
|-------------|----------|--------|-----------|--------|--------|------------|-------------|
| ID          | Type     | Gate   | Elevation | Offset |        | Height     | Coefficient |
|             |          |        | (ft)      | (ft)   | (ft)   | (ft)       |             |
| <br>1 Swier | Trapezoi | dal No | 1016.50   | 2.25   | 75.00  | 1.10       | 3.33        |

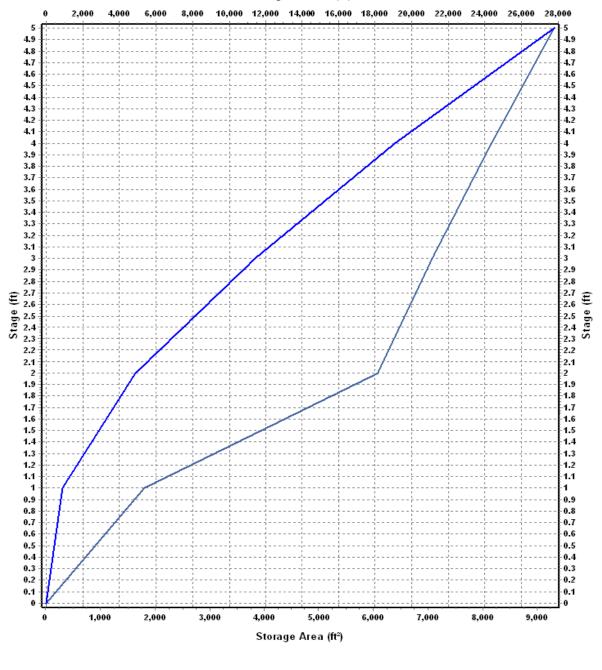
#### **Outflow Orifices**

| SN Element   | Orifice | Orifice  | Flap | Circular | Rectangular | Rectangular | Orifice   | Orifice     |
|--------------|---------|----------|------|----------|-------------|-------------|-----------|-------------|
| ID           | Type    | Shape    | Gate | Orifice  | Orifice     | Orifice     | Invert    | Coefficient |
|              |         |          |      | Diameter | Height      | Width       | Elevation |             |
|              |         |          |      | (in)     | (in)        | (in)        | (ft)      |             |
| 1 S-12in     | Side    | CIRCULAR | No   | 12.00    |             |             | 1014.95   | 0.61        |
| 2 S-WQoutlet | Side    | CIRCULAR | No   | 4.00     |             |             | 1014.25   | 0.61        |

| Peak Inflow (cfs)                       | 6.18    |
|-----------------------------------------|---------|
| Peak Lateral Inflow (cfs)               | 6.18    |
| Peak Outflow (cfs)                      | 1.65    |
| Peak Exfiltration Flow Rate (cfm)       | 0.00    |
| Max HGL Elevation Attained (ft)         | 1015.53 |
| Max HGL Depth Attained (ft)             | 1.28    |
| Average HGL Elevation Attained (ft)     | 1014.56 |
| Average HGL Depth Attained (ft)         | 0.31    |
| Time of Max HGL Occurrence (days hh:mm) | 0 12:20 |
| Total Exfiltration Volume (1000-ft³)    | 0.000   |
| Total Flooded Volume (ac-in)            | 0       |
| Total Time Flooded (min)                | 0       |
| Total Retention Time (sec)              | 0.00    |

#### **Storage Nodes**

#### Storage Node : NWpond


#### Input Data

| Invert Elevation (ft)        | 1007.00 |
|------------------------------|---------|
| Max (Rim) Elevation (ft)     | 1012.10 |
| Max (Rim) Offset (ft)        | 5.10    |
| Initial Water Elevation (ft) | 1007.00 |
| Initial Water Depth (ft)     | 0.00    |
| Ponded Area (ft²)            | 0.00    |
| Evaporation Loss             |         |

# Storage Area Volume Curves Storage Curve : NWpond

| Stage | Storage            | Storage  |
|-------|--------------------|----------|
|       | Area               | Volume   |
| (ft)  | (ft <sup>2</sup> ) | (ft³)    |
| 0     | 10                 | 0.000    |
| 1     | 1810               | 910.00   |
| 2     | 6080               | 4855.00  |
| 3     | 7080               | 11435.00 |
| 4     | 8155               | 19052.50 |
| 5     | 9310               | 27785.00 |

Storage Volume (ft³)



#### Storage Node : NWpond (continued)

#### **Outflow Weirs**

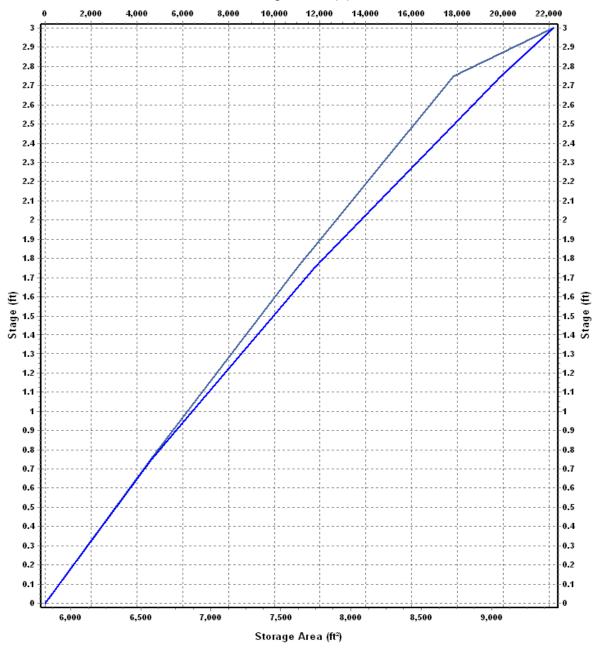
|   | SN Element | Weir     | Flap   | Crest     | Crest  | Length | Weir Total | Discharge   |
|---|------------|----------|--------|-----------|--------|--------|------------|-------------|
|   | ID         | Type     | Gate   | Elevation | Offset |        | Height     | Coefficient |
|   |            |          |        | (ft)      | (ft)   | (ft)   | (ft)       |             |
| - | 1 NWweir   | Trapezoi | dal No | 1011.00   | 4.00   | 100.00 | 1.10       | 3.33        |

#### **Outflow Orifices**

| SN Element    | Orifice | Orifice  | Flap | Circular | Rectangular | Rectangular | Orifice   | Orifice     |
|---------------|---------|----------|------|----------|-------------|-------------|-----------|-------------|
| ID            | Type    | Shape    | Gate | Orifice  | Orifice     | Orifice     | Invert    | Coefficient |
|               |         |          |      | Diameter | Height      | Width       | Elevation |             |
|               |         |          |      | (in)     | (in)        | (in)        | (ft)      |             |
| 1 NW-12in     | Side    | CIRCULAR | No   | 12.00    |             |             | 1009.02   | 0.61        |
| 2 NW-WQoutlet | Side    | CIRCULAR | No   | 4.00     |             |             | 1007.00   | 0.61        |

| Peak Inflow (cfs)                       | 14.15   |
|-----------------------------------------|---------|
| Peak Lateral Inflow (cfs)               | 14.15   |
| Peak Outflow (cfs)                      | 4.62    |
| Peak Exfiltration Flow Rate (cfm)       | 0.00    |
| Max HGL Elevation Attained (ft)         | 1010.50 |
| Max HGL Depth Attained (ft)             | 3.5     |
| Average HGL Elevation Attained (ft)     | 1007.92 |
| Average HGL Depth Attained (ft)         | 0.92    |
| Time of Max HGL Occurrence (days hh:mm) | 0 12:18 |
| Total Exfiltration Volume (1000-ft³)    | 0.000   |
| Total Flooded Volume (ac-in)            | 0       |
| Total Time Flooded (min)                | 0       |
| Total Retention Time (sec)              | 0.00    |

#### Storage Node : Spond


#### Input Data

| Invert Elevation (ft)        | 1014.25 |
|------------------------------|---------|
| Max (Rim) Elevation (ft)     | 1017.60 |
| Max (Rim) Offset (ft)        | 3.35    |
| Initial Water Elevation (ft) | 1014.25 |
| Initial Water Depth (ft)     | 0.00    |
| Ponded Area (ft²)            | 0.00    |
| Evaporation Loss             | 0.00    |

# Storage Area Volume Curves Storage Curve : Spond

| Stage | Storage            | Storage  |
|-------|--------------------|----------|
|       | Area               | Volume   |
| (ft)  | (ft <sup>2</sup> ) | (ft³)    |
| 0     | 5820               | 0.000    |
| 0.75  | 6570               | 4646.25  |
| 1.75  | 7613               | 11737.75 |
| 2.75  | 8730               | 19909.25 |
| 3.0   | 9440               | 22180.50 |
|       |                    |          |

#### Storage Volume (ft³)



#### Storage Node : Spond (continued)

#### **Outflow Weirs**

| SN Element | Weir        | Flap | Crest     | Crest  | Length | Weir Total | Discharge   |
|------------|-------------|------|-----------|--------|--------|------------|-------------|
| ID         | Type        | Gate | Elevation | Offset |        | Height     | Coefficient |
|            |             |      | (ft)      | (ft)   | (ft)   | (ft)       |             |
| 1 Swier    | Trapezoidal | No   | 1016.50   | 2.25   | 75.00  | 1.10       | 3.33        |

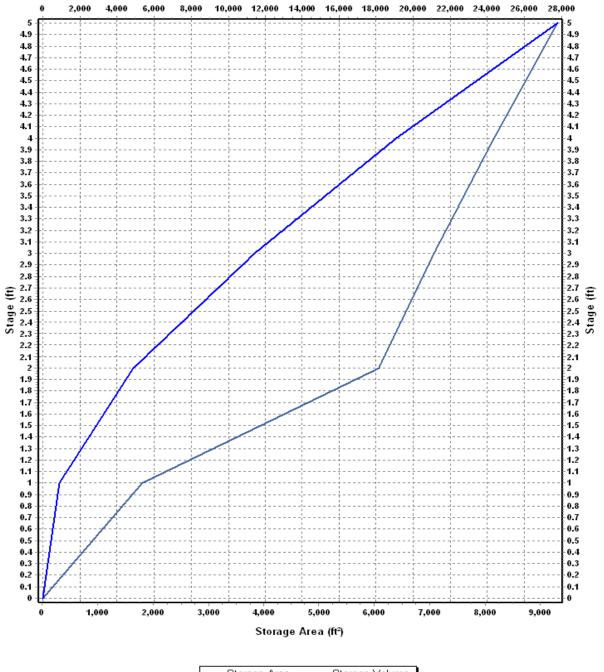
#### **Outflow Orifices**

| SN Element  | Orifice | Orifice | Flap | Circular | Rectangular | Rectangular | Orifice   | Orifice     |
|-------------|---------|---------|------|----------|-------------|-------------|-----------|-------------|
| ID          | Type    | Shape   | Gate | Orifice  | Orifice     | Orifice     | Invert    | Coefficient |
|             |         |         |      | Diameter | Height      | Width       | Elevation |             |
|             |         |         |      | (in)     | (in)        | (in)        | (ft)      |             |
| 1 S-12in    | Side    | CIRCULA | R No | 12.00    |             |             | 1014.95   | 0.61        |
| 2 S-WQoutle | t Side  | CIRCULA | R No | 4.00     |             |             | 1014.25   | 0.61        |

| Peak Inflow (cfs)                       | 9.41    |
|-----------------------------------------|---------|
| Peak Lateral Inflow (cfs)               | 9.41    |
| Peak Outflow (cfs)                      | 3.40    |
| Peak Exfiltration Flow Rate (cfm)       | 0.00    |
| Max HGL Elevation Attained (ft)         | 1016.00 |
| Max HGL Depth Attained (ft)             | 1.75    |
| Average HGL Elevation Attained (ft)     | 1014.65 |
| Average HGL Depth Attained (ft)         | 0.4     |
| Time of Max HGL Occurrence (days hh:mm) | 0 12:18 |
| Total Exfiltration Volume (1000-ft³)    | 0.000   |
| Total Flooded Volume (ac-in)            | 0       |
| Total Time Flooded (min)                | 0       |
| Total Retention Time (sec)              | 0.00    |

#### **Storage Nodes**

#### Storage Node : NWpond


#### Input Data

| Invert Elevation (ft)        | 1007.00 |
|------------------------------|---------|
| Max (Rim) Elevation (ft)     | 1012.10 |
| Max (Rim) Offset (ft)        | 5.10    |
| Initial Water Elevation (ft) | 1007.00 |
| Initial Water Depth (ft)     | 0.00    |
| Ponded Area (ft²)            | 0.00    |
| Evaporation Loss             |         |
|                              |         |

# Storage Area Volume Curves Storage Curve : NWpond

| Stage | Storage            | Storage            |
|-------|--------------------|--------------------|
|       | Area               | Volume             |
| (ft)  | (ft <sup>2</sup> ) | (ft <sup>3</sup> ) |
| 0     | 10                 | 0.000              |
| 1     | 1810               | 910.00             |
| 2     | 6080               | 4855.00            |
| 3     | 7080               | 11435.00           |
| 4     | 8155               | 19052.50           |
| 5     | 9310               | 27785.00           |

Storage Volume (ft³)

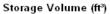


#### Storage Node : NWpond (continued)

#### **Outflow Weirs**

| SN Element | Weir        | Flap | Crest     | Crest  | Length | Weir Total | Discharge   |
|------------|-------------|------|-----------|--------|--------|------------|-------------|
| ID         | Type        | Gate | Elevation | Offset |        | Height     | Coefficient |
|            |             |      | (ft)      | (ft)   | (ft)   | (ft)       |             |
| 1 NWweir   | Trapezoidal | No   | 1011.00   | 4.00   | 103.00 | 1.10       | 3.33        |

| Peak Inflow (cfs)                       | 14.10   |
|-----------------------------------------|---------|
| Peak Lateral Inflow (cfs)               | 14.10   |
| Peak Outflow (cfs)                      | 11.59   |
| Peak Exfiltration Flow Rate (cfm)       | 0.00    |
| Max HGL Elevation Attained (ft)         | 1011.10 |
| Max HGL Depth Attained (ft)             | 4.1     |
| Average HGL Elevation Attained (ft)     | 1009.45 |
| Average HGL Depth Attained (ft)         | 2.45    |
| Time of Max HGL Occurrence (days hh:mm) | 0 12:10 |
| Total Exfiltration Volume (1000-ft³)    | 0.000   |
| Total Flooded Volume (ac-in)            | 0       |
| Total Time Flooded (min)                | 0       |
| Total Retention Time (sec)              | 0.00    |
|                                         |         |


#### Storage Node : Spond


#### Input Data

| Invert Elevation (ft)        | 1014.25 |
|------------------------------|---------|
| Max (Rim) Elevation (ft)     | 1017.60 |
| Max (Rim) Offset (ft)        | 3.35    |
| Initial Water Elevation (ft) | 1014.25 |
| Initial Water Depth (ft)     | 0.00    |
| Ponded Area (ft²)            | 0.00    |
| Evaporation Loss             | 0.00    |

# Storage Area Volume Curves Storage Curve : Spond

| Stage | Storage            | Storage  |
|-------|--------------------|----------|
|       | Area               | Volume   |
| (ft)  | (ft <sup>2</sup> ) | (ft³)    |
| 0     | 5820               | 0.000    |
| 0.75  | 6570               | 4646.25  |
| 1.75  | 7613               | 11737.75 |
| 2.75  | 8730               | 19909.25 |
| 3.0   | 9440               | 22180.50 |
|       |                    |          |





#### Storage Node : Spond (continued)

#### **Outflow Weirs**

| SN Element | Weir        | Flap | Crest     | Crest  | Length | Weir Total | Discharge   |
|------------|-------------|------|-----------|--------|--------|------------|-------------|
| ID         | Type        | Gate | Elevation | Offset |        | Height     | Coefficient |
|            |             |      | (ft)      | (ft)   | (ft)   | (ft)       |             |
| 1 Swier    | Trapezoidal | No   | 1016.50   | 2.25   | 75.00  | 1.10       | 3.33        |

| Peak Inflow (cfs)                       | 9.41    |
|-----------------------------------------|---------|
| Peak Lateral Inflow (cfs)               | 9.41    |
| Peak Outflow (cfs)                      | 3.52    |
| Peak Exfiltration Flow Rate (cfm)       | 0.00    |
| Max HGL Elevation Attained (ft)         | 1016.56 |
| Max HGL Depth Attained (ft)             | 2.31    |
| Average HGL Elevation Attained (ft)     | 1015.46 |
| Average HGL Depth Attained (ft)         | 1.21    |
| Time of Max HGL Occurrence (days hh:mm) | 0 12:17 |
| Total Exfiltration Volume (1000-ft³)    | 0.000   |
| Total Flooded Volume (ac-in)            | 0       |
| Total Time Flooded (min)                | 0       |
| Total Retention Time (sec)              | 0.00    |
|                                         |         |

# **Exhibit I MARC BMP Worksheets**

#### WORKSHEET 1A: REQUIRED LEVEL OF SERVICE - DEVELOPED SITE

18-0251 Burton Townhomes

Project:

Location: Lee's Summit, MO

|         | Α.             | Total Area Disturbed by Redevelopment Activity (ac.)                                                                                                                                                                                                                                                                                                         |             |                              |                  |
|---------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------|------------------|
|         |                | Disturbed Area Description                                                                                                                                                                                                                                                                                                                                   |             | Acres                        |                  |
|         |                | Existing Single Family Residential Lots                                                                                                                                                                                                                                                                                                                      |             | 3.52                         | _                |
|         |                | Existing offiger annity residential Lots                                                                                                                                                                                                                                                                                                                     |             | 3.32                         |                  |
|         |                |                                                                                                                                                                                                                                                                                                                                                              |             |                              | $\dashv$         |
|         |                |                                                                                                                                                                                                                                                                                                                                                              |             |                              |                  |
|         |                |                                                                                                                                                                                                                                                                                                                                                              | "1A" Total: | 3.52                         |                  |
|         | В.             | Existing Impervious Area Inside Disturbed Area (ac.)                                                                                                                                                                                                                                                                                                         |             |                              |                  |
|         |                | Existing Impervious Area Description                                                                                                                                                                                                                                                                                                                         |             | Acres                        |                  |
|         |                | Driveways                                                                                                                                                                                                                                                                                                                                                    |             | 0.13                         |                  |
|         |                | House and Garage                                                                                                                                                                                                                                                                                                                                             | +           | 0.05                         | $\dashv$         |
|         |                |                                                                                                                                                                                                                                                                                                                                                              |             |                              |                  |
|         |                | <u> </u>                                                                                                                                                                                                                                                                                                                                                     | "1B" Total: | 0.18                         | $\exists$        |
|         | C.             | Required Treatment Area (ac.)                                                                                                                                                                                                                                                                                                                                |             |                              | -                |
|         | ٠.             | "1A" Total Less "1B" Total                                                                                                                                                                                                                                                                                                                                   | "1C"        | 3.34                         |                  |
| Percent | t Impe         | rvious in Postdevelopedment Conditions and Level of Service (LS)                                                                                                                                                                                                                                                                                             |             |                              |                  |
|         |                |                                                                                                                                                                                                                                                                                                                                                              |             |                              |                  |
|         |                | Total Booking laws and laws and law booking Block and Associated                                                                                                                                                                                                                                                                                             |             |                              |                  |
|         | A.             | Total Postdevelopment Impervious Area Inside Disturbed Area (ac.)                                                                                                                                                                                                                                                                                            |             |                              |                  |
|         | A.             | Total Postdevelopment Impervious Area Inside Disturbed Area (ac.)  Postdevelopment Impervious Area Description                                                                                                                                                                                                                                               |             | Acres                        |                  |
|         | A.             |                                                                                                                                                                                                                                                                                                                                                              |             | Acres<br>1.70                | $\exists$        |
|         | A.             | Postdevelopment Impervious Area Description                                                                                                                                                                                                                                                                                                                  |             |                              | 3                |
|         | A.             | Postdevelopment Impervious Area Description                                                                                                                                                                                                                                                                                                                  |             |                              |                  |
|         | A.             | Postdevelopment Impervious Area Description Parking/Roof/Impervious Area                                                                                                                                                                                                                                                                                     | "2A" Total: |                              |                  |
|         |                | Postdevelopment Impervious Area Description Parking/Roof/Impervious Area                                                                                                                                                                                                                                                                                     | "2A" Total: | 1.70                         |                  |
|         |                | Postdevelopment Impervious Area Description Parking/Roof/Impervious Area                                                                                                                                                                                                                                                                                     | "2A" Total: | 1.70                         |                  |
|         | В.             | Postdevelopment Impervious Area Description Parking/Roof/Impervious Area                                                                                                                                                                                                                                                                                     |             | 1.70                         |                  |
|         | В.             | Postdevelopment Impervious Area Description  Parking/Roof/Impervious Area  Existing Impervious Area Inside Disturbed Area (ac.)                                                                                                                                                                                                                              |             | 1.70                         |                  |
|         | В.             | Postdevelopment Impervious Area Description  Parking/Roof/Impervious Area  Existing Impervious Area Inside Disturbed Area (ac.)  Net Increase in Impervious Area (ac.)                                                                                                                                                                                       | "1B" Total  | 1.70                         |                  |
|         | В.             | Postdevelopment Impervious Area Description  Parking/Roof/Impervious Area  Existing Impervious Area Inside Disturbed Area (ac.)  Net Increase in Impervious Area (ac.)  "2A" Total Less "1B" Total  Percent Impervious  Net Increase in Impervious Area/Required Treatment Area                                                                              | "1B" Total  | 1.70<br>1.70<br>0.18         | (Round to Intege |
|         | В.             | Postdevelopment Impervious Area Description  Parking/Roof/Impervious Area  Existing Impervious Area Inside Disturbed Area (ac.)  Net Increase in Impervious Area (ac.)  "2A" Total Less "1B" Total  Percent Impervious                                                                                                                                       | "1B" Total  | 1.70                         | (Round to Intege |
|         | B.<br>C.<br>D. | Postdevelopment Impervious Area Description  Parking/Roof/Impervious Area  Existing Impervious Area Inside Disturbed Area (ac.)  Net Increase in Impervious Area (ac.)  "2A" Total Less "1B" Total  Percent Impervious  Net Increase in Impervious Area/Required Treatment Area                                                                              | "1B" Total  | 1.70<br>1.70<br>0.18         | (Round to Intege |
|         | B.<br>C.       | Postdevelopment Impervious Area Description  Parking/Roof/Impervious Area  Existing Impervious Area Inside Disturbed Area (ac.)  Net Increase in Impervious Area (ac.)  "2A" Total Less "1B" Total  Percent Impervious  Net Increase in Impervious Area/Required Treatment Area  "2C"/"1C" x 100                                                             | "1B" Total  | 1.70<br>1.70<br>0.18         | (Round to Intege |
| Vinimu  | B.<br>C.<br>D. | Postdevelopment Impervious Area Description  Parking/Roof/Impervious Area  Existing Impervious Area Inside Disturbed Area (ac.)  Net Increase in Impervious Area (ac.)  "2A" Total Less "1B" Total  Percent Impervious  Net Increase in Impervious Area/Required Treatment Area  "2C"/"1C" x 100  Level of Service                                           | "1B" Total  | 1.70<br>1.70<br>0.18<br>1.52 | (Round to Intege |
| Minimu  | B.<br>C.<br>D. | Postdevelopment Impervious Area Description  Parking/Roof/Impervious Area  Existing Impervious Area Inside Disturbed Area (ac.)  Net Increase in Impervious Area (ac.)  "2A" Total Less "1B" Total  Percent Impervious  Net Increase in Impervious Area/Required Treatment Area  "2C"/"1C" x 100  Level of Service  Use Percent Impervious to Enter Table 4. | "1B" Total  | 1.70<br>1.70<br>0.18<br>1.52 | (Round to Intege |
| Vinimu  | B.<br>C.<br>D. | Postdevelopment Impervious Area Description  Parking/Roof/Impervious Area  Existing Impervious Area Inside Disturbed Area (ac.)  Net Increase in Impervious Area (ac.)  "2A" Total Less "1B" Total  Percent Impervious  Net Increase in Impervious Area/Required Treatment Area  "2C"/"1C" x 100  Level of Service  Use Percent Impervious to Enter Table 4. | "1B" Total  | 1.70<br>1.70<br>0.18<br>1.52 | (Round to Intege |

Ву:

Checked: MES

JGD

Date:

Date:

1/18/2019

1/18/2019

#### WORKSHEET 2: DEVELOP MITIGATION PACKAGE(S) THAT MEET THE REQUIRED LS

| Proje<br>Loca<br><b>She</b> e |                         | 18-0251 Burton Townhomes<br>Lee's Summit, MO                                                           |          |                 | By:<br>Checked:     | JGD<br>MES             | Date:<br>Date:                 | 1/18/2019<br>1/18/2019 |
|-------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------|----------|-----------------|---------------------|------------------------|--------------------------------|------------------------|
| 1.                            | Required L              | S (New Development, Wksht 1) or Tot                                                                    | al VF    | R (Redevelor    | oment, Wks          | sht 1A)                | ]                              | 18.37                  |
|                               | Note: Vario             | ous BMPs may alter CN of proposed deve                                                                 | elopr    | ment, and LS    | ; recalculate       | e bith if applicab     | le.                            |                        |
| 2.                            | Proposed I              | BMP Option Package No.                                                                                 | <u>1</u> | Treatment       | VR from             | Product of VR          |                                |                        |
|                               | Cover/RMP               | Description                                                                                            |          | Area            | or 4.6 <sup>1</sup> | x Area                 |                                |                        |
|                               |                         | ry Detention                                                                                           | -        | 1.75            | 4                   | 7 7                    | 1                              |                        |
|                               |                         | patative Swale                                                                                         | -        | 1.17            | 7                   | 8.19                   |                                |                        |
|                               | Native Vega             |                                                                                                        |          | 0.6             | 9.25                | 5.55                   |                                |                        |
|                               | Ivalive vege            | 211011                                                                                                 | -        | 0.0             | 0.20                | 0.55                   |                                |                        |
|                               |                         |                                                                                                        |          |                 |                     | 0                      |                                |                        |
|                               |                         | Tota                                                                                                   | al²:     | 3.52            | Total:              | 20.74                  |                                |                        |
|                               |                         |                                                                                                        |          |                 | ighted VR:          |                        | = total product/total are      | a                      |
|                               | * Blank in              | atment area cannot exceed 100 percent of Redevelopment  Meets required LS (Yes/No)?                    | of the   | e actual site a |                     | ditional options are I | peing tested, proceed below)   |                        |
| 3.                            | Proposed I              | BMP Option Package No.                                                                                 | <u>2</u> | Treatment       | VR from             | Product of VR          |                                |                        |
|                               | Cover/BMP               | Description                                                                                            |          | Area            | or 4.6 <sup>1</sup> | x Area                 | <u>.</u>                       |                        |
|                               |                         |                                                                                                        |          |                 |                     |                        |                                |                        |
|                               |                         |                                                                                                        |          |                 |                     |                        |                                |                        |
|                               |                         |                                                                                                        |          |                 |                     |                        |                                |                        |
|                               |                         |                                                                                                        |          |                 |                     |                        |                                |                        |
|                               |                         | Tota                                                                                                   | al²:     |                 | Total:              |                        |                                |                        |
|                               |                         |                                                                                                        | -        | *We             | ighted VR:          |                        | = total product/total are      | a                      |
|                               | <sup>2</sup> Total trea | lated for final BMP only in Treatment Tra<br>atment area cannot exceed 100 percent of<br>Redevelopment |          |                 | Ū                   |                        |                                |                        |
|                               | 1                       | Meets required LS (Yes/No)?                                                                            |          |                 | (If No, or if ad    | ditional options are I | peing tested, move to next she | eet)                   |

Designer: JGD Checked By: MES Company: RIC

**Date:** 1/4/2019

Project: 18-0251 - Burton Townhomes

Location: Proposed NW Basin, Lee's Summit, MO

| I. Water Quality Volume                                                                                  | D. 11. 1.0.                   |                     |
|----------------------------------------------------------------------------------------------------------|-------------------------------|---------------------|
| Step 1) Tributary area to EDDC, $A_T$ (ac)                                                               | Rational C = $A_T$ (ac) =     | <u>0.65</u><br>1.75 |
| Step 2) Calculate WQv using methodology in Section 6                                                     | WQv (ac-ft) =                 | 0.13                |
| Step 3) Add 20 percent to account for silt and sediment deposition in the basin                          | $V_{\text{design}}$ (ac-ft) = | <u>0.16</u>         |
|                                                                                                          |                               |                     |
| Ila. Pretreatment                                                                                        |                               |                     |
| Step 1) Set water quality outlet type                                                                    | Outlet type =                 | 2                   |
| Type 1 = single orifice                                                                                  |                               | _                   |
| Type 2 = perforated riser or plate                                                                       |                               |                     |
| Type 3 = v-notch weir Step 3) Proceed to Part Ilb, Ilc or Ild based on water qulity outlet type selected |                               |                     |
| Step 3) Froced to Fart his, he of his based off water quilty outlet type selected                        |                               |                     |
| Ilb. Water Quality Outlet, Single Orifice                                                                |                               |                     |
| Step 1) Depth of water quality volume and outlet, Z <sub>WQ</sub> (ft)                                   | $Z_{WQ}(ft) =$                | 1.65                |
|                                                                                                          |                               |                     |
| Step 2) Average head of water quality volume over invert of orifice, H <sub>WQ</sub> (ft)                | $H_{WQ}$ (ft) =               | <u>0.83</u>         |
| $H_{WQ} = 0.5 * Z_{WQ}$                                                                                  |                               |                     |
| Step 3) Average water quality outfall rate, Q <sub>WQ</sub> (cfs)                                        | C <sub>WQ</sub> (cfs) =       | 0.04                |
| $Q_{WO} = (WQ_V * 43,560)/(40 * 3,600)$                                                                  | - WQ ( /                      | <u> </u>            |
|                                                                                                          |                               |                     |
| Step 4) Set Value of orifice discharge coefficient, C <sub>0</sub>                                       | C <sub>0</sub> =              | <u>0.66</u>         |
| $C_0$ = 0.66 when thickness of riser/weir plate it $\leq$ orifice diameter                               |                               |                     |
| $C_0$ = 0.80 when thickness of riser/weir plate it $\geq$ orifice diameter                               |                               |                     |
| Step 5) Water quality outlet orifice diameter (minimum of 4 inches), $D_0$ (in)                          | $D_0$ (in) =                  | 1.24                |
| $D_0 = 12 * 2 * (Q_{WQ} / (C_0 * \pi * (2*g*H)^{0.5}))^{0.5}$                                            | D <sub>0</sub> (iii)          | 1.27                |
|                                                                                                          |                               |                     |
| Step 6) To size outlet orifice for EDDB with an irregular stage-volume relationship, use the Single Or   | rifice Worksheet              |                     |
|                                                                                                          |                               |                     |
| Ilc. Water Quality Outlet, Perforated Riser                                                              |                               |                     |
| Step 1) Depth at outlet above lowest perforateion, $Z_{WO}$ (ft)                                         | $Z_{WQ}(ft) =$                | <u>1.65</u>         |
| Toopin at outlet above lowest periorateion, $z_{\text{WQ}}(n)$                                           | ∠wQ (11) -                    | 1.00                |
| Step 2) Recommended maximum outlet area per row, A <sub>0</sub> (in <sup>2</sup> )                       | $A_0 (in^2) =$                | <u>0.4</u>          |
| $A_0 = (WQ_V)/(0.013*Z_{WQ}^2+0.22*Z_{WQ}-0.10)$                                                         |                               |                     |
|                                                                                                          | <b>5</b> (1)                  |                     |
| Step 3) Circular perforation diameter per row assuming a single column, D <sub>1</sub> (in)              | $D_1$ (in) =                  | <u>0.75</u>         |
| Step 4) Number of columns, n <sub>c</sub>                                                                | n <sub>c</sub> =              | 2.00                |
|                                                                                                          |                               |                     |

Designer: JGD Checked By: MES Company: RIC

**Date**: 1/4/2019

Project: 18-0251 - Burton Townhomes

Location: Proposed NW Basin, Lee's Summit, MO

| Step 5) Design circular perforation diameter (should be between 1 and 2 inches), D <sub>perf</sub> (in)                                                                                            | D <sub>perf</sub> (in) = | <u>1.51</u> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------|
| Step 6) Horizontal perforation column spacing when $n_c > 1$ , center to center, $S_c$<br>If $D_{perf} \ge 1.0$ inche, $S_c = 4$                                                                   |                          |             |
| Step 7) Number of rows (4" vertical spacing between perforations, center to center), n <sub>r</sub>                                                                                                | n <sub>r</sub> =         | <u>5</u>    |
| Ild. Other Pretreatment Devices                                                                                                                                                                    |                          |             |
| Step 1) Depth of water quality volume permanent pool, Z <sub>WQ</sub> (ft)                                                                                                                         | $Z_{WQ}(ft) =$           | <u>1.65</u> |
| Step 2) Average head of water quality pool volume over invert of v-notch, $H_{WQ}$ (ft)<br>$H_{WQ} = 0.5 * Z_{WQ}$                                                                                 | $H_{WQ}(ft) =$           | 0.83        |
| Step 3) Average water quality pool outfall rate, $Q_{WQ}$ (cfs) $Q_{WQ} = (WQ_V * 43,560)/(40 * 3,600)$                                                                                            | Q <sub>WQ</sub> (cfs) =  | 0.04        |
| Step 4) V-notch weir coefficient, C <sub>V</sub>                                                                                                                                                   | C <sub>V</sub> =         | <u>2.50</u> |
| Step 5) V-notch weir angle, $\theta$ (deg) $\theta = 2*(180/\pi)*arctan(Q_{WQ}/(C_v*H_{WQ}^{5/2}))$ V-notch angle should be at least 20 degrees. Set to 20 degrees if calculated angle is smaller. | θ (deg) =                | 20.0        |
| Step 6) Top width of V-notch weir, $W_v$ (ft) $W_v = 2*Z_{WQ}*Tan(\theta/2)$                                                                                                                       | $W_{v}(ft) =$            | <u>0.55</u> |
| Step 7) To calculate v-notch angle for EDDB with an irregular stage-volume relationship, use the V-notc                                                                                            | h Weir worksheet         |             |

Designer: JGD Checked By: MES Company: RIC

**Date:** 1/4/2019

Project: 18-0251 - Burton Townhomes

Location: Proposed NW Basin, Lee's Summit, MO

Reference: APWA/MARC BMP Manual, 8.10 EDDB, pg 8-107 thru 8-128

#### III. Flood Control

Reference APWA Specifications Section 5608

Designer: JGD Checked By: MES Company: RIC

**Date:** 1/4/2019

Project: 18-0251 - Burton Townhomes

Location: Proposed NW Basin, Lee's Summit, MO

| IV. Trash Rock                                                                                                      |                                               |                       |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------|
| Step 1) Total outlet area, A <sub>0</sub> (in <sup>2</sup> )                                                        | $A_{0t} (in^2) =$                             | <u>2.2</u>            |
| Cton 2) Donth of avoid blooket 7 (in)                                                                               |                                               |                       |
| Step 2) Depth of gravel blanket, $Z_{gravel}$ (in) $A_t = A_{0t}*77*e^{-0.124*D} \text{ for single orifice outlet}$ | $A_{t}(in^{2}) =$                             | 151                   |
| $A_t = A_{0t} / 7 e^{-0.124 \cdot D}$ for orifice plate outlet                                                      | $A_{t}(in^{2}) =$ $A_{t}(in^{2}) =$           | <u>154</u>            |
| $A_t = (A_{0t}/2) / T = 100 \text{ of the plate outlet}$<br>$A_t = 4*A_{0t} \text{ for v-notch weir outlet}$        | $A_{t}(iii') = A_{t}(in^{2}) = A_{t}(in^{2})$ | <u>77</u><br><u>9</u> |
| A <sub>t</sub> = 4 A <sub>0t</sub> for v-notch well outlet                                                          | $A_{t}(\Pi \Gamma)$                           | <u>9</u>              |
| V. Basin Shape                                                                                                      |                                               |                       |
| Step 1) Length to width ratio should be at least 3:1 (L:W) wherever practicable                                     | (L:W) =                                       | <u>4:1</u>            |
| Step 2) Low flow channel side lining                                                                                | Concrete:                                     |                       |
| 3                                                                                                                   | Soil/Riprap:                                  |                       |
|                                                                                                                     | No low flow channel:                          | <u>X</u>              |
| Step 3) Top stage floor drainage slope (toward low flow channel), S <sub>ts</sub> (%)                               | S <sub>ts</sub> (%) =                         | 20/                   |
|                                                                                                                     |                                               | <u>2%</u>             |
| Top stage depth, D <sub>ts</sub> (ft)                                                                               | Dts (ft) =                                    | <u>5</u>              |
| Step 4) Bottom stage volume, V <sub>bs</sub> (ac-ft)                                                                | V <sub>bs</sub> (% of WQ <sub>V</sub> )       | <u>10%</u>            |
| 1.25 to 3ft deeper than top stage. Bottom stage shall store 10-25% of WQ <sub>v</sub> .                             | V <sub>bs</sub> (ac-ft)                       | 0.50                  |
|                                                                                                                     | 1 05 (4.5 1.5)                                | <u>0.00</u>           |
| VI. Forebay (Optional)                                                                                              |                                               |                       |
| Step 1) Volume should be greater than 10% of $WQ_v$                                                                 | Min Vol <sub>FB</sub> (ac-ft) =               | 0.02                  |
| Step 2) Forebay depth, Z <sub>FB</sub> (ft)                                                                         | $Z_{FB}(ft) =$                                | <u>1.0</u>            |
|                                                                                                                     | -FB (14)                                      | 1.0                   |
| Step 3) Forebay surface area, A <sub>FB</sub> (ac)                                                                  | Min A <sub>FB</sub> (ac) =                    | 0.02                  |
|                                                                                                                     | $Min A_{FB}(ft) =$                            | <u>693.69</u>         |
| Step 4) Paved/hardbottom and sides?                                                                                 | Y/N?                                          | <u>N</u>              |
| VI. Basin Side Slopes                                                                                               |                                               |                       |
| vi. Dasiii Gide Glopes                                                                                              |                                               |                       |
| Base side slopes should be at least 4:1 (H:V)                                                                       | Side Slope (H:V) =                            | <u>4:1</u>            |
| VII. Dam Embankment side slopes                                                                                     |                                               |                       |
| Dam embankment side slopes should be at least 3:1 (H:V)                                                             | Dam Embankment (H:V) =                        | A·1                   |
| Dani embankment side sidpes silduld be at least 3.1 (n.v)                                                           |                                               | <u>4:1</u>            |
|                                                                                                                     |                                               |                       |

Designer: JGD Checked By: MES Company: RIC

**Date:** 1/4/2019

**Project:** 18-0251 - Burton Townhomes

Location: Proposed NW Basin, Lee's Summit, MO

Reference: APWA/MARC BMP Manual, 8.10 EDDB, pg 8-107 thru 8-128

# IX. Vegetation Check the method of vegetation planted in the EDDB or describe "other" Native Grass: Irrigated Turf Grass: Other: X. Inlet Protection Indicate method of inlet protection/energy dissipation at EDDB inlet Rip Rap Rock XI. Access Indicate that access has been provided for maintenance vehicals

Designer: JGD Checked By: MES Company: RIC Date: 1/4/2019

Project: 18-0251 - Burton Townhomes

Location: Proposed S Basin, Lee's Summit, MO

| I. Water Quality Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------|
| Ston 1) Tributory group to EDDC A (go)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rational C =                  | <u>0.65</u>         |
| Step 1) Tributary area to EDDC, A <sub>T</sub> (ac) Step 2) Calculate WQv using methodology in Section 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $A_T$ (ac) = WQv (ac-ft) =    | <u>1.17</u><br>0.09 |
| Step 3) Add 20 percent to account for silt and sediment deposition in the basin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_{\text{design}}$ (ac-ft) = | 0.09<br>0.11        |
| 30, 100 = 0 paradix to constitution of the con | design (*)                    | <u>9</u>            |
| Ila. Pretreatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                     |
| Step 1) Set water quality outlet type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Outlet type =                 | <u>2</u>            |
| Type 1 = single orifice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | _                   |
| Type 2 = perforated riser or plate Type 3 = v-notch weir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                     |
| Step 3) Proceed to Part Ilb, Ilc or Ild based on water qulity outlet type selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                     |
| Ilb. Water Quality Outlet, Single Orifice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>-</b> (6)                  |                     |
| Step 1) Depth of water quality volume and outlet, $Z_{WQ}$ (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $Z_{WQ}$ (ft) =               | <u>0.65</u>         |
| Step 2) Average head of water quality volume over invert of orifice, H <sub>WQ</sub> (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $H_{WQ}$ (ft) =               | 0.33                |
| $H_{WQ} = 0.5 * Z_{WQ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                     |
| Step 3) Average water quality outfall rate, Q <sub>WQ</sub> (cfs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C <sub>WQ</sub> (cfs) =       | 0.03                |
| $Q_{WQ} = (WQ_V * 43,560)/(40 * 3,600)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                     |
| Step 4) Set Value of orifice discharge coefficient, $C_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C <sub>0</sub> =              | 0.66                |
| C <sub>0</sub> = 0.66 when thickness of riser/weir plate it ≤ orifice diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                     |
| $C_0$ = 0.80 when thickness of riser/weir plate it $\geq$ orifice diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                     |
| Step 5) Water quality outlet orifice diameter (minimum of 4 inches), $D_0$ (in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D <sub>0</sub> (in) =         | <u>1.28</u>         |
| $D_0 = 12 * 2 * (Q_{WQ} / (C_0 * \pi * (2*g*H)^{0.5}))^{0.5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | <u> </u>            |
| Step 6) To size outlet orifice for EDDB with an irregular stage-volume relationship, use the Single Orif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ice Worksheet                 |                     |
| Ilc. Water Quality Outlet, Perforated Riser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                     |
| Step 1) Depth at outlet above lowest perforateion, $Z_{WQ}$ (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $Z_{WQ}(ft) =$                | <u>1.65</u>         |
| Step 2) Recommended maximum outlet area per row, $A_0$ (in <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $A_0 (in^2) =$                | 0.3                 |
| $A_0 = (WQ_V)/(0.013*Z_{WQ}^2 + 0.22*Z_{WQ} - 0.10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.0 (III )                    | <u>0.0</u>          |
| Step 3) Circular perforation diameter per row assuming a single column, $D_1$ (in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D <sub>1</sub> (in) =         | <u>0.62</u>         |
| Step 4) Number of columns, n <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n <sub>c</sub> =              | 2.00                |
| Step 5) Design circular perforation diameter (should be between 1 and 2 inches), D <sub>perf</sub> (in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D <sub>perf</sub> (in) =      | <u>1.23</u>         |

Designer: JGD Checked By: MES Company: RIC Date: 1/4/2019

**Project:** 18-0251 - Burton Townhomes

Location: Proposed S Basin, Lee's Summit, MO

| Step 6) Horizontal perforation column spacing when $n_c$ > 1, center to center, $S_c$ If $D_{perf} \ge 1.0$ inche, $S_c$ = 4                                                                        |                         |             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------|
| Step 7) Number of rows (4" vertical spacing between perforations, center to center), n <sub>r</sub>                                                                                                 | $n_r =$                 | <u>5</u>    |
| Ild. Other Pretreatment Devices                                                                                                                                                                     |                         |             |
| Step 1) Depth of water quality volume permanent pool, $Z_{WQ}$ (ft)                                                                                                                                 | $Z_{WQ}$ (ft) =         | <u>0.65</u> |
| Step 2) Average head of water quality pool volume over invert of v-notch, $H_{WQ}$ (ft) $H_{WQ} = 0.5 * Z_{WQ}$                                                                                     | $H_{WQ}(ft) =$          | <u>0.33</u> |
| Step 3) Average water quality pool outfall rate, $Q_{WQ}$ (cfs) $Q_{WQ} = (WQ_V * 43,560)/(40 * 3,600)$                                                                                             | Q <sub>WQ</sub> (cfs) = | 0.03        |
| Step 4) V-notch weir coefficient, $C_V$ $C_V = 0.59-0.57$                                                                                                                                           | C <sub>V</sub> =        | <u>2.50</u> |
| Step 5) V-notch weir angle, $\theta$ (deg) $\theta = 2*(180/\pi)*\arctan(Q_{WQ}/(C_v*H_{WQ}^{5/2}))$ V-notch angle should be at least 20 degrees. Set to 20 degrees if calculated angle is smaller. | θ (deg) =               | <u>20.2</u> |
| Step 6) Top width of V-notch weir, $W_v$ (ft) $W_v = 2*Z_{WQ}*Tan(\theta/2)$                                                                                                                        | $W_{v}(ft) =$           | 0.22        |
| Step 7) To calculate v-notch angle for EDDB with an irregular stage-volume relationship, use the V-notch Weir worksheet                                                                             |                         |             |

Designer: JGD Checked By: MES Company: RIC **Date:** 1/4/2019

Project: 18-0251 - Burton Townhomes

Location: Proposed S Basin, Lee's Summit, MO

Reference: APWA/MARC BMP Manual, 8.10 EDDB, pg 8-107 thru 8-128

#### III. Flood Control

Reference APWA Specifications Section 5608

Designer: JGD Checked By: MES Company: RIC Date: 1/4/2019

Project: 18-0251 - Burton Townhomes

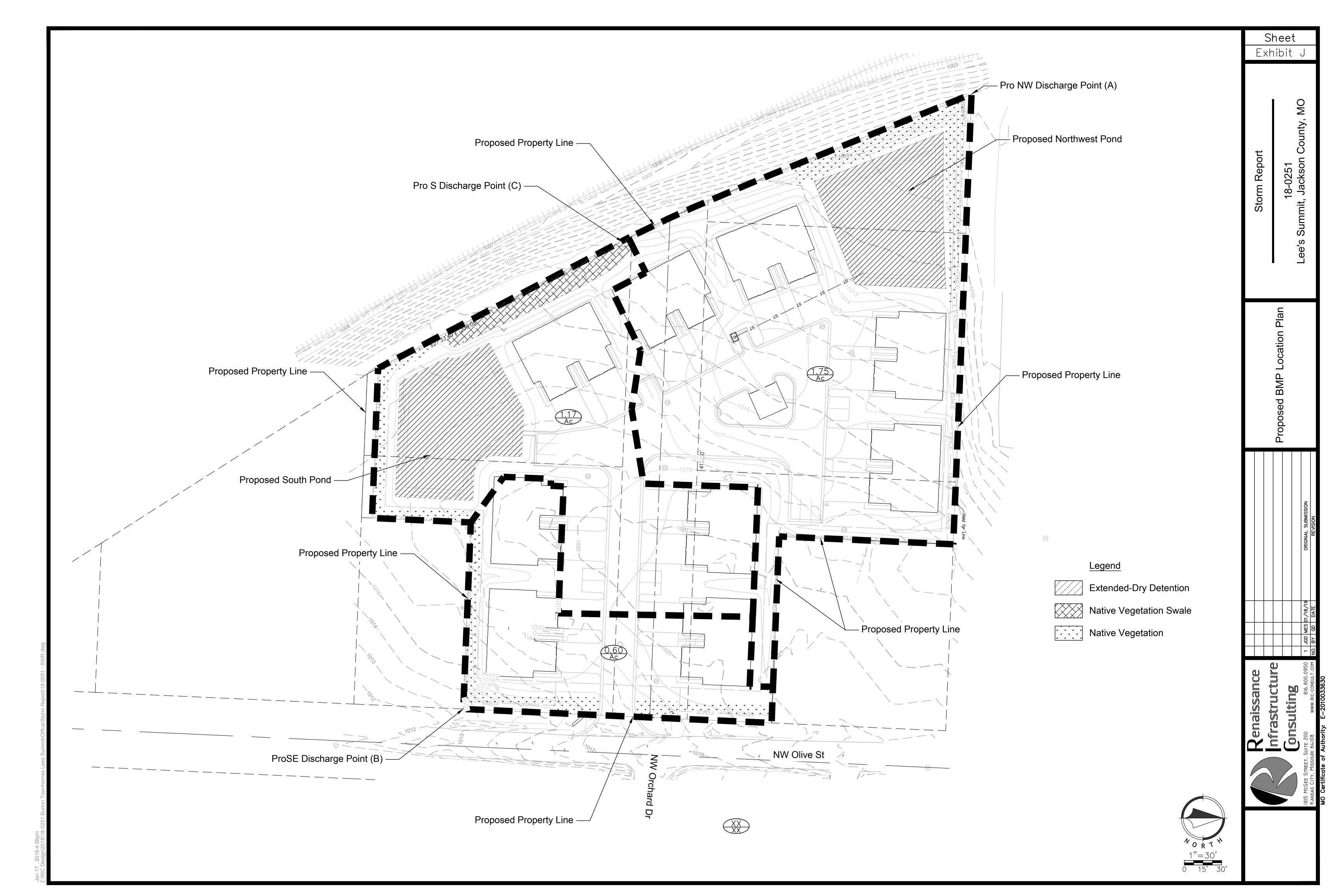
Location: Proposed S Basin, Lee's Summit, MO

| IV. Trash Rock                                                                          |                                         |               |
|-----------------------------------------------------------------------------------------|-----------------------------------------|---------------|
| Step 1) Total outlet area, A <sub>0</sub> (in <sup>2</sup> )                            | $A_{0t} (in^2) =$                       | <u>1.5</u>    |
|                                                                                         |                                         |               |
| Step 2) Depth of gravel blanket, Z <sub>gravel</sub> (in)                               |                                         |               |
| $A_t = A_{0t} * 77 * e^{-0.124 * D} $ for single orifice outlet                         | $A_t(in^2) =$                           | <u>105</u>    |
| $A_t = (A_{0t}/2)*77*e^{-0.124*D}$ for orifice plate outlet                             | $A_{t}(in^{2}) =$                       | <u>53</u>     |
| $A_t = 4*A_{0t}$ for v-notch weir outlet                                                | $A_{t}(in^{2}) =$                       | <u>6</u>      |
| V. Basin Shape                                                                          |                                         |               |
| Step 1) Length to width ratio should be at least 3:1 (L:W) wherever practicable         | (L:W) =                                 | <u>4:1</u>    |
| Step 2) Low flow channel side lining                                                    | Concrete:                               |               |
|                                                                                         | Soil/Riprap:                            |               |
|                                                                                         | No low flow channel:                    | <u>X</u>      |
| Ctan 2) Tan atom floor drainage clans (toward law flow shannel) C (0/)                  | C (0/) -                                | 00/           |
| Step 3) Top stage floor drainage slope (toward low flow channel), S <sub>ts</sub> (%)   | S <sub>ts</sub> (%) =                   | <u>2%</u>     |
| Top stage depth, D <sub>ts</sub> (ft)                                                   | Dts (ft) =                              | <u>5</u>      |
| Step 4) Bottom stage volume, V <sub>bs</sub> (ac-ft)                                    | V <sub>bs</sub> (% of WQ <sub>V</sub> ) | <u>10%</u>    |
| 1.25 to 3ft deeper than top stage. Bottom stage shall store 10-25% of WQ <sub>v</sub> . | V <sub>bs</sub> (ac-ft)                 | 0.50          |
| 1.20 to sit doops. than top stage. Bottom stage shall store to 25% of the average.      | V <sub>DS</sub> (do it)                 | <u>0.00</u>   |
| VI. Forebay (Optional)                                                                  |                                         |               |
| Step 1) Volume should be greater than 10% of $WQ_{\nu}$                                 | Min Vol <sub>FB</sub> (ac-ft) =         | <u>0.01</u>   |
| Step 2) Forebay depth, Z <sub>FB</sub> (ft)                                             | $Z_{FB}(ft) =$                          | <u>1.0</u>    |
|                                                                                         | -FB ()                                  | 1.0           |
| Step 3) Forebay surface area, A <sub>FB</sub> (ac)                                      | Min A <sub>FB</sub> (ac) =              | <u>0.01</u>   |
|                                                                                         | $Min A_{FB}(ft) =$                      | <u>463.78</u> |
| Step 4) Paved/hardbottom and sides?                                                     | Y/N?                                    | <u>N</u>      |
| VI Pagin Sida Slanga                                                                    |                                         |               |
| VI. Basin Side Slopes                                                                   |                                         |               |
| Base side slopes should be at least 4:1 (H:V)                                           | Side Slope (H:V) =                      | <u>4:1</u>    |
| VII. Dam Embankment side slopes                                                         |                                         |               |
| Dam embankment eide elenes should be at least 2:1 (U1V)                                 | Dam Embankment (U.) () =                | 1.1           |
| Dam embankment side slopes should be at least 3:1 (H:V)                                 | Dam Embankment (H:V) =                  | <u>4:1</u>    |
|                                                                                         |                                         |               |

Designer: JGD Checked By: MES Company: RIC Date: 1/4/2019

**Project:** 18-0251 - Burton Townhomes **Location:** Proposed S Basin, Lee's Summit, MO

Reference: APWA/MARC BMP Manual, 8.10 EDDB, pg 8-107 thru 8-128


## IX. Vegetation Check the method of vegetation planted in the EDDB or describe "other" Native Grass: Irrigated Turf Grass: Other: X. Inlet Protection Indicate method of inlet protection/energy dissipation at EDDB inlet Rip Rap Rock

XI. Access

Indicate that access has been provided for maintenance vehicals

Yes

### Exhibit J Proposed BMP Location Plan

