

Summit Square II Apartments Lee's Summit, Missouri

May 11, 2018 Terracon Project No. 02185057

Prepared for:

NorthPoint Development Riverside, Missouri

Prepared by:

Terracon Consultants, Inc. Lenexa, Kansas

May 11, 2018

NorthPoint Development 4825 NW 41st Street, Suite 500 Riverside, Missouri 64150

- Attn: Mr. Grant Barnes Project Manager P: (816) 888 7390
 - E: grant@northpointkc.com
- Re: Geotechnical Engineering Report Summit Square II Apartments NW Ward Road and NW Donovan Road Lee's Summit, Missouri Terracon Project No. 02185057

Dear Mr. Barnes:

We have completed a geotechnical exploration for the above referenced project. This study was performed in general accordance with Terracon Proposal No. P02185057, dated March 7, 2018. This report presents the findings of the subsurface exploration and provides geotechnical recommendations concerning earthwork and the design and construction of foundations, floor slabs, and pavements for the proposed project.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report, or if we may be of further service, please contact us.

Sincerely, Terracon Consultants, Inc.

Kevin D. Friedrichs, P.E. Project Engineer Missouri: PE 2013010325 Kole C. Berg, P.E. Senior Engineer Missouri: PE 2002016417

Terracon Consultants, Inc. 13910 W. 96th Terrace Lenexa, Kansas 66215 P (913) 492 7777 F (913) 492 7443 terracon.com

REPORT TOPICS

INTRODUCTION	1
SITE CONDITIONS	1
PROJECT DESCRIPTION	2
GEOTECHNICAL CHARACTERIZATION	
GEOTECHNICAL OVERVIEW	5
EARTHWORK	6
SHALLOW FOUNDATIONS	11
SEISMIC CONSIDERATIONS	12
FLOOR SLABS	13
BELOW-GRADE STRUCTURES	
LATERAL EARTH PRESSURES	17
PAVEMENTS	
GENERAL COMMENTS	

Note: This report was originally delivered in a web-based format. **Orange Bold** text in the report indicates a referenced section heading. The PDF version also includes hyperlinks which direct the reader to that section and clicking on the <u>Herracon</u> logo will bring you back to this page. For more interactive features, please view your project online at <u>client.terracon.com</u>.

ATTACHMENTS

EXPLORATION AND TESTING PROCEDURES SITE LOCATION AND EXPLORATION PLANS EXPLORATION RESULTS (Boring Logs and Laboratory Data) SUPPORTING INFORMATION (General Notes, USCS, and Description of Rock Properties)

Summit Square II Apartments NW Ward Road and NW Donovan Road Lee's Summit, Missouri Terracon Project No. 02185057 May 11, 2018

INTRODUCTION

This report presents the results of our subsurface exploration and geotechnical engineering evaluation performed for the proposed Summit Square II Apartments to be located at the northeast corner (NEC) of NW Ward Road and NW Donovan Road in Lee's Summit, Missouri. Nineteen exploratory borings were performed at the site to depths ranging from approximately 10 to 15 feet below existing site grades. This report describes the subsurface conditions encountered at the boring locations, presents the test data, and provides geotechnical recommendations for the following items:

- earthwork
- foundations
- floor slabs

- lateral earth pressures
- seismic site class
- pavements

Maps showing the site and boring locations are shown in the **Site Location** and **Exploration Plan** sections, respectively. The results of the laboratory testing performed on soil samples obtained from the site during the field exploration are included on the boring logs in the **Exploration Results** section of this report.

SITE CONDITIONS

The following description of site conditions is derived from our site visit in association with the field exploration and our review of publicly available geologic and topographic maps.

ltem	Description		
Project Location	The project is located at NW Ward Road and NW Donovan Road in Lee's Summit, Missouri. Latitude/Longitude: 38.92932° N/ 94.39168° W (approximate) See Site Location		
Existing Improvements	The site is vacant and appears to have been rough graded. The property is surrounded by existing commercial and residential development.		

Summit Square II Apartments Lee's Summit, Missouri May 11, 2018 Terracon Project No. 02185057

Item	Description
Current Ground Cover	Grass covered and bare soil. There are some isolated stockpiles of excavated limestone, gravel and asphaltic concrete within the southwestern of the site.
Existing Topography	Based on the ALTA Survey prepared by Shafer, Klein & Warren (SKW) dated May 12, 2017, the elevations in Lot 2 range from 1010 feet in the southwest to 995 feet in the northeast. In Lot 1, to the north, elevations range from 1,005 feet at the north to 982 feet to the south. Along the southern boundary of Lot 1, there is an approximately 13-foot-high at about 5:1 (horizontal:vertical) slope.
Geology	Our experience near the vicinity of the proposed development and review of the above referenced report and available geologic maps indicates subsurface conditions consist of fill and residual clay soils over limestone and shale bedrock.

PROJECT DESCRIPTION

Our initial understanding of the project was provided in our proposal and was discussed in the project planning stage. A period of collaboration has transpired since the project was initiated, and our final understanding of the project conditions is as follows:

ltem	Description		
	The site consists of two lots (referred to as the Summit Orchard Lots 1 and 2):		
Project Description	 Lot 1 [981 NW Ward Road] Parcel ID: 52-900-03-56-00-0-000 (4.6 acres) 		
	 Lot 2 [837 NW Donovan Road] Parcel ID: 52-900-03-57-00-0-00-000 (8.3 acres) 		
	The project is bounded by a NW Ward Road to the west, NW Tudor Road to the north, an electrical substation and the first phase to the east and NW Donovan Road to the south.		
	Based on the Preliminary Site Plan prepared by NSPJ Architecture, dated March 28, 2018, the project includes the following:		
	Lot 1- Northern portion of the site Building 4- 4/5-story split		
	 Building 5- 4 story on grade 		
Proposed Structure	Lot 2- Southern portion of the site		
	 Building 1- 4 story on grade Building 2-4/5 story and/1 		
	 Building 2- 4/5-story split Building 3- 4/5-story split 		
	The site also has an associated pool/amenity area, center green space, dog park, driveways, parking lots, carports and garages.		
Building Construction	The buildings will be constructed with wood framed walls, and the parking garage will be reinforced concrete and/or masonry block construction.		

Summit Square II Apartments
Lee's Summit, Missouri
May 11, 2018
Terracon Project No. 02185057

ltem	Description		
Finished Floor Elevation (FFE)	 The finished floor elevations are expected to be as follows: Building 1- 1,008.0 feet Buildings 2 and 3- 995.5/1009.25 feet Building 4- 995.25/1006.0 feet Building 5- 988.9 feet 		
Maximum Loads	 Anticipated structural loads for the new building were not provided. Based on our experience with similar structures, we have considered the following maximum loads: Columns: 150 kips Walls: 2 kips per linear foot Slabs: 150 pounds per square foot 		
Grading/Slopes	Up to $5\frac{1}{2}$ feet of cut and $8\frac{1}{2}$ feet of fill will be required to develop final grade. Final slope angles of $3(H)$: $1(V)$ or flatter are expected.		
Below Grade Structures	Buildings 2, 3 and 4 will have walk-out lower levels and elevator pits. A pool is planned east of Building 1.		
Free-Standing Retaining Walls	No retaining walls were planned at the time this report was prepared.		
Pavements	No information regarding anticipated vehicle types, axle loads, or traffic volumes was provided. We anticipate that both concrete and asphalt pavements will be considered. We anticipate the pavements will be utilized primarily by passenger vehicles (cars, pickup trucks, SUV's) with occasional panel delivery trucks and trash collection trucks.		

GEOTECHNICAL CHARACTERIZATION

Subsurface Profile

We have developed a general characterization of the subsurface soil and groundwater conditions based upon our review of the data and our understanding of the geologic setting and planned construction. The following table provides our geotechnical characterization.

The geotechnical characterization forms the basis of our geotechnical calculations and evaluation of site preparation, foundation options and pavement options. As noted in **General Comments**, the characterization is based upon widely spaced borings across the site, and variations are likely.

Stratum	Approximate Depth to Bottom of Stratum	Material Description	Consistency
1	1 to 3 feet	Fill: Fat Clay - with limestone fragments	N/A
2	5 to 6 feet ¹	Fat clay (CH)	Stiff to very stiff

Summit Square II Apartments Lee's Summit, Missouri May 11, 2018 Terracon Project No. 02185057

Stratum	Approximate Depth to Bottom of Stratum	Material Description	Consistency
3	51/2 to 111/2 feet ²	Shale	Highly weathered
4	Undetermined: Borings terminated within this stratum at auger refusal at approximately 51/2 to 12 feet	Limestone	Highly weathered
 Not encountered at Boring B-4, B-14 and B-15 Not encountered at Boring B-1 			

Lot 2 (Southern portion of the site)

Stratum	Approximate Depth to Bottom of Stratum	Material Description	Consistency
1	1 to 7 feet	Fill: Fat Clay - with limestone fragments	N/A
2	3½ to 8½ feet ¹	Lean clay (CL) and Fat clay (CH)	Very stiff to hard
3	Undetermined: Borings terminated within this stratum at a planned depth of approximately 10 to 15 feet in shale or auger refusal at approximately 8½ to 9 feet	Shale and/or limestone	N/A
1. 0	nly encountered in Boring B-6, B-8, B-10, I	3-16, B-18 and B-19	

Conditions encountered at each boring location are indicated on the individual boring logs shown in the **Exploration Results** section and are attached to this report. Stratification boundaries on the boring logs represent the approximate location of changes in native soil types; in situ, the transition between materials may be gradual.

Groundwater Conditions

The boreholes were observed during drilling for the presence and level of groundwater. Perched groundwater was observed in borehole B-3 at a depth of 3 feet (11 feet at the completion of drilling) during our subsurface exploration. Water was not observed the other borings. Long-term observations in piezometers or observation wells, sealed from the influence of surface water, would be needed to develop more detailed groundwater information. Groundwater level fluctuations occur due to variations in rainfall, runoff, and other factors not evident at the time we performed the borings. The potential for groundwater level fluctuations should be considered when developing the design and construction plans for the project.

Summit Square II Apartments Lee's Summit, Missouri May 11, 2018 Terracon Project No. 02185057

GEOTECHNICAL OVERVIEW

Existing fill materials were encountered at most of the boring locations. The fill was composed primarily of clay soils with limestone fragments and extended to depths of 1 to 7 feet below the ground surface. Limestone fragments ranging from gravel to cobble size were encountered within the fill at varying depths below the ground surface. Based on field and laboratory test data, included SPT blow counts and density measurements, it appears that compactive effort was applied to the fill; however, no documentation regarding placement and compaction of the fill was provided for our review. Since samples of the fill recovered from our borings consisted of inorganic clays and rock fragments, and the fill appears to have been compacted when it was placed, it appears feasible to support the proposed buildings on conventional shallow footing foundations that bear on observed and tested existing fill involves a risk of unpredictable performance, but this risk can be mitigated by thorough observation and testing during construction. If the owner is not willing to accept the risk, significantly more expensive methods could be used to reduce or eliminate this risk (e.g., complete removal and replacement of the fill, installation of a ground improvement system, or support of the buildings on deep foundations).

Provided the owner accepts the risks associated with support of building floor slabs and pavements over the existing fill in exchange for reduced construction costs, stable portions of the existing fill could also be left in place for support of building floor slabs and pavements. Where existing fill will be left in place in these areas, a representative from Terracon should evaluate the condition of the fill by observing a proof-roll and/or test pit excavations.

It should be noted that undocumented fill may contain loose or soft soils or other unsuitable materials; these conditions may not be disclosed by the widely-spaced, small-diameter borings. If these conditions are present and are not discovered and corrected during construction, larger than normal settlement could occur, possibly resulting in cracking or other damage to building elements supported on or above the existing fill. These risks can be reduced by thorough observation and testing during construction. Foundation excavations should be observed and probed, and the slab and pavement subgrade soils should be proofrolled. Where unsuitable conditions are observed, corrective procedures should be implemented (e.g., extending footing excavations deeper to suitable materials, improvement of slab subgrade soils by scarification/compaction, or removal of unsuitable materials and replacement with engineered fill).

We understand that post-tensioned slabs may be utilized for the apartment buildings at this site. Recommendations regarding post-tensioned slabs are provided in Floor Slabs. Recommendations for conventional grade-supported concrete floor slabs has also been provided as an alternative.

The fat clay soils and shale encountered at this site have the potential to shrink and swell with seasonal fluctuations in the soil moisture content. We recommend that conventional grade-

Summit Square II Apartments Lee's Summit, Missouri May 11, 2018 Terracon Project No. 02185057

supported concrete floor slabs be supported on at least 24 inches of low volume change (LVC) material, such as low plasticity clay. In areas that are currently above or less than 2 feet below the planned bottom of floor slab level, native fat clay soils and shale should be undercut to accommodate placement of LVC material. In areas where the exposed grade (following stripping of organic soils) will be more than 2 feet of fill will be placed below the bottom-of-floor-slab level, at least the upper 24 inches of new engineered fill should consist of LVC material. Placement of a layer of LVC material below floor slabs, as recommended in this report, will not eliminate all future subgrade volume change and resultant floor slab movements. However, use of an LVC zone should reduce the potential for subgrade volume change. Details regarding the LVC zone are provided in this report in Floor Slabs. LVC materials would not be required for post-tensioned floor slabs.

The clay soils encountered at the site will shrink and swell as their moisture contents fluctuate. This report provides recommendations to help mitigate the effects of soil shrinkage and expansion. However, even if these procedures are followed, some movement and at least minor cracking in the structures could still occur. The severity of cracking and other cosmetic damage caused by movement of floor slabs, pavements, and sidewalks will probably increase if any modification of the site results in excessive wetting or drying of the expansive soils. Eliminating the risk of movement and cosmetic distress may not be feasible, but it may be possible to further reduce the risk of movement if significantly more expensive measures are used during construction. We would be pleased to discuss other construction alternatives with you upon request

The General Comments section provides an understanding of the report limitations.

EARTHWORK

Site preparation, excavation, subgrade preparation and placement of engineered fills should conform to recommendations presented in this section. The recommendations presented for design and construction of earth-supported elements including foundations, slabs, and pavements are contingent upon the recommendations outlined in this section being followed. We recommend earthwork on this project be observed and evaluated by Terracon. The evaluation of earthwork should include observation and testing of subgrade preparation, engineered fill, foundation bearing soils, and other geotechnical conditions exposed during the construction of the project.

Site Preparation

All stockpile soils should be removed from the site prior to commencement of construction operations at this site. Where vegetation/topsoil is currently present within proposed construction areas, the vegetation and organic soils should be stripped. It is possible that the vegetation/topsoil

Summit Square II Apartments Lee's Summit, Missouri May 11, 2018 Terracon Project No. 02185057

may not have been stripped prior to placement of the existing stockpiles; any remaining vegetation/topsoil should be removed after removal of the existing stockpiles. Removal depths will likely vary across the site and should be adjusted based on conditions encountered during site preparation. Organic soils removed during site preparation should not be used as fill beneath the proposed new building areas.

The soils within the proposed building area should be further undercut as necessary to accommodate placement of the recommended 24-inch thick LVC layer below the floor slab. Undercutting for the LVC layer should extend at least 5 feet outside the building wall lines. Where post-tensioned slabs will be utilized, this undercut and placement of LVC would not be required.

Following initial stripping and any necessary undercutting, the exposed soils should be proofrolled. A Terracon representative should observe the proofrolling. Particular attention should be paid to areas where existing fill is exposed following stripping and initial undercutting. Proofrolling can be accomplished using a loaded tandem-axle dump truck with a gross weight of at least 20 tons, or similarly loaded equipment. Areas that display excessive deflection (pumping) or rutting during proofroll operations should be improved by scarification/compaction or by removal and replacement with engineered fill.

Fill Material Types

All materials incorporated in engineered fill sections must be free of organic matter and debris. Fill materials should not be frozen and should not be placed on a frozen subgrade. A sample of each material type should be tested prior to being used on the site. Soil is commonly used as fill in this locale, but not all soils are suitable. Our professional opinions concerning suitability of fill materials are presented in the following table.

Summit Square II Apartments Lee's Summit, Missouri May 11, 2018 Terracon Project No. 02185057

Suitability on Fill	Description	Unified Soil Classification		
Suitability as Fill		Group Symbol	Group Name	
	Clean Gravel	GW	Well-graded gravel	
		GP	Poorly graded gravel	
		GM	Silty gravel	
Suitable	Gravel with fines	GC	Clayey gravel	
Suitable	Clean sand	SW	Well-graded sand	
		SP	Poorly-graded sand	
	Sand with fines	SM	Silty sand	
		SC	Clayey sand	
	Description	Group Symbol	Group Name	
Marginally Suitable ¹	Silt	ML	Silt ²	
	Clay	CL	Lean clay ³	
	Clay	СН	Fat clay ⁴	
	Description	Group Symbol	Group Name	
Unsuitable	Highly organic soils	MH	Elastic silt	
		OL & OH	Organic clay & organic silt	
		PT	Peat	

1. Depends on location and intended use. Can be used if approved by geotechnical engineer.

2. Highly susceptible to frost action; unstable when wet. Should not be used directly below pavements and exterior slabs without prior approval of geotechnical engineer.

3. Can be expansive if dry or if liquid limit is 45 or greater. Requires approval of geotechnical engineer.

4. Expansive. Not recommended immediately below floors and other movement-sensitive features. Must be placed with strict moisture and density control to reduce swell potential.

Low volume change (LVC) material placed below the building floor slabs can consist of wellgraded crushed stone aggregate (e.g., MoDOT Type 5). Lean clay soils with a liquid limit less than 45 and plasticity index less than 23 could also be used as LVC material, but these soils would be susceptible to softening and disturbance if they become wetted by surface water and precipitation. Soils that meet the LVC criteria were not encountered in the borings. Therefore, the use of imported LVC materials should be expected. If a granular leveling course (such as crushed stone aggregate) is used immediately below the floor slabs, this material can be considered part of the LVC zone. Summit Square II Apartments Lee's Summit, Missouri May 11, 2018 Terracon Project No. 02185057

Fill Compaction Requirements

Item		Description
Lift Thickness (maximum)		9 inches in loose thickness when large, self-propelled compaction equipment is used.4 inches when small, hand-guided equipment (plate or "jumping jack" compactor) is used.
Minimum Compaction Requirements ¹		At least 95 percent of the material's maximum dry density ¹
LL<45	LL<45	-2 to +2 percent of optimum moisture content value ¹
Moisture Content of Clay Soil		0 to 4 percent above the optimum moisture content value ¹
Moisture Content of Granular Material		Sufficient to achieve compaction without pumping when proofrolled
1. As determined by the standard Proctor		tor test (ASTM D 698)

We recommend that engineered fill be tested for moisture content and compaction during placement. If the results of the in-place density tests indicate the specified moisture or compaction limits have not been met, the area represented by the test should be reworked and retested as required until the specified moisture and compaction requirements are achieved.

Utility Trench Backfill

All trench excavations should be made with sufficient working space to permit construction including backfill placement and compaction. If utility trenches are backfilled with relatively clean granular material, they should be capped with at least 18 inches of clay fill to reduce the infiltration and conveyance of surface water through the trench backfill.

Utility trenches are common sources of water infiltration and migration. All utility trenches that penetrate beneath buildings should be effectively sealed to restrict water intrusion and flow through the trenches that could migrate below the building. We recommend constructing an effective "trench plug" that extends at least 5 feet out from the face of the building exterior. The plug material should consist of clay compacted as recommended in Earthwork. The clay fill should be placed to completely surround the utility line and be compacted in accordance with recommendations in this report.

Grading and Drainage

During construction, grades should be developed to direct surface water flow away from or around the site. Exposed subgrades should be sloped to provide positive drainage so that saturation of subgrades is avoided. Surface water should not be permitted to accumulate on the site. Final surrounding grades should promote rapid surface drainage away from the structures. Accumulation

Summit Square II Apartments
Lee's Summit, Missouri
May 11, 2018
Terracon Project No. 02185057

of water adjacent to the structure could contribute to significant moisture increases in the subgrade soils and subsequent softening/settlement or expansion/heave.

After construction of the structures and pavements have been completed, we recommend verifying final grades to document that effective drainage has been achieved. Grades around the structures should also be periodically inspected and adjusted as necessary, as part of the structure's maintenance program.

Earthwork Construction Considerations

Terracon should be retained during the construction phase of the project to observe earthwork and to perform necessary tests and observations during subgrade preparation, proofrolling, placement and compaction of controlled compacted fills, backfilling of excavations into completed subgrades, and just prior to construction of foundations, slabs, and pavements.

Care should be taken to avoid disturbance of prepared subgrades. Unstable subgrade conditions can develop during general construction operations, particularly if the soils are wetted and/or subjected to repetitive construction traffic. If unstable subgrade conditions develop, stabilization measures will need to be employed. Construction traffic over the completed subgrade should be avoided to the extent practical. If the subgrade becomes frozen, desiccated, saturated, or disturbed, the affected materials should be removed or these materials should be scarified, moisture conditioned, and compacted prior to floor slab construction.

As a minimum, excavations should be performed in accordance with OSHA 29 CFR, Part 1926, Subpart P, "Excavations" and its appendices, and in accordance with any applicable local, state, and federal safety regulations. The contractor should be aware that slope height, slope inclination, and excavation depth should in no instance exceed those specified by these safety regulations. Flatter slopes than those dictated by these regulations may be required depending upon the soil conditions encountered and other external factors. These regulations are strictly enforced and if they are not followed, the owner, contractor, and/or earthwork and utility subcontractor could be liable and subject to substantial penalties. Under no circumstances should the information provided in this report be interpreted to mean that Terracon is responsible for construction site safety or the contractor's activities. Construction site safety is the sole responsibility of the contractor who shall also be solely responsible for the means, methods, and sequencing of the construction operations.

Bedrock strata were encountered at relatively shallow depths at some of the boring locations. Rock excavation methods may be required for deeper excavations, such as utility trenches, depending upon the depth of excavation and the type of rock encountered. In our experience, completely to highly weathered bedrock strata that can be easily penetrated with a flight auger can typically be excavated using track-hoes with rock teeth or ripper equipped dozers. Excavation of harder bedrock will likely require the use of jackhammers or pneumatic breakers. Excavation

of rock in confined areas (such as trenches) is usually difficult, even above the level of auger refusal.

SHALLOW FOUNDATIONS

Foundation Design Parameters

The depth to bedrock varied across the site. Each building should be evaluated individually and the bearing material should be determined prior to construction. The footings for each individual building should either bear entirely on native soil and engineered fill or entirely on bedrock. Bearing on multiple material types may result in abrupt differential settlement resulting in cracking and differential movement of buildings.

Description	Value	
	Bearing on Native Clay, Engineered Fill, Tested and Approved Existing Fill or Completely Weathered Shale:	
Maximum not allowable bearing processo	3,000 psf	
Maximum het allowable bearing pressure	Bearing on Highly to Moderately Weathered Shale or	
	Limestone:	
	5,000 psf	
Minimum embedment below finished grade for frost protection ²	3 feet ³	
	Isolated footings: 30 inches	
Minimum footing wiaths	Continuous footings: 16 inches	
Estimated total settlement ⁴	1 inch or less	
Estimated differential settlement ⁴	1/2 to 2/3 of the total settlement over a horizontal distance of 50 feet	

- 1. The recommended net allowable bearing pressure is the pressure in excess of the minimum surrounding overburden pressure at the footing base elevation. This pressure assumes that any soft soils or other unsuitable materials, if encountered, will be undercut and replaced with engineered fill.
- 2. This embedment depth is recommended for perimeter footings and footings beneath unheated areas to provide frost protection and to reduce the effects of seasonal moisture variations in the foundation bearing soils. Interior footings in heated areas may be supported at shallower depths, provided they are not exposed to freezing conditions during construction.
- 3. Footings can be supported at a shallower depth on competent limestone that is free of fractures. Terracon should review the rock conditions where any footings are planned to extend to depths less than those recommended in this report.
- 4. The foundation settlement will depend upon the variations within the subsurface soil profile, the structural loading conditions, the embedment depth of the footings, the thickness of engineered fill below the footings, and the quality of the earthwork operations and footing construction.

Summit Square II Apartments
Lee's Summit, Missouri
May 11, 2018
Terracon Project No. 02185057

Foundation Construction Considerations

The base of all foundation excavations should be free of water and loose materials prior to placing concrete. Concrete should be placed soon after excavating to reduce bearing soil disturbance. If the materials at the bearing level become excessively dry, disturbed, saturated, or frozen, the affected soil should be removed prior to placing concrete. If the excavations must remain open overnight or for an extended period of time, placement of a lean concrete mud-mat over the bearing soils should be considered.

All footing bearing surfaces should be observed and tested by Terracon. If unsuitable conditions are encountered, footing excavations should be extended deeper to suitable bearing materials. Footings can bear directly on suitable soils at the lower level or on lean concrete backfill as shown in the following figure.

Lean Concrete Backfill

NOTE: Excavations in sketches shown vertical for convenience. Excavations should be sloped as necessary for safety.

SEISMIC CONSIDERATIONS

Code	Site Classification
2012 International Building Code (IBC)	C 1

 The 2012 International Building Code (IBC) site profile determination is based on average properties of the subsurface profile to a depth of 100 feet. The exploratory borings extended to a maximum depth of approximately 14 feet, with all borings terminating in shale or limestone bedrock. Our opinion of site classification is based on boring conditions and our knowledge of local geological and geotechnical conditions.

FLOOR SLABS

Post-tensioned Floor Slab Design

We understand that post-tensioned slab-on-grade floors may be utilized for the buildings. Based on our analysis of the field and laboratory data, design parameters were developed using the 2004 Third Edition Design of Post-Tensioned Slabs-On-Ground Manual prepared by the Post-Tensioning Institute (PTI).

The moisture beneath the shallow foundation will change in response to wetting and drying conditions around the foundation perimeter. The maximum moisture variation distance is termed the edge moisture variation distance, e_m , and is an important factor governing the design of posttensioned floor slabs. The e_m is related to the percent fine clay and climatic conditions as well as other parameters, such as soil fabric factor and unsaturated diffusion coefficient.

The plasticity index of the soil, type and amount of clay mineral in the soil, and the moisture conditions from the time of construction through the life of the structure are parameters that should be considered in design of a slab-on-grade. The plasticity index and the clay mineral are values of the soil that can be estimated by laboratory tests and, although variable from location to location, remain relatively constant with time.

The moisture condition has a significant effect on slab behavior and is highly variable with time, changing seasonally, with annual climate conditions, drainage patterns, ground cover, and vegetation.

Based on our laboratory test data and our experience with similar soils, the post-tensioned slabs at this site should be designed using criteria outlined by the Post-Tensioning Institute using the following parameters:

Summit Square II Apartments
Lee's Summit, Missouri
May 11, 2018
Terracon Project No. 02185057

Parameter	Value
Depth of seasonal moisture change	Approximately 5 feet
Liquid Limit	60
Plasticity Index	35
Percentage of material passing #200 sieve	95
Percent finer than 2 microns	30
Soil fabric factor, F _f	1.0
Approximate Thornthwaite Moisture Index, Im ¹	+20
Estimated constant soil suction, pF	3.4
Range of soil suction, pF	2.5 to 4.5
Estimated edge moisture variation distance, e _m	For center lift: 3.8 feet For edge lift: 7.0 feet
Estimated differential soil movement, ym	For center lift: 0.59 inches For edge lift: 1.1 inches

1. The estimated movements do not consider the effects of non-climatic factors which might arise from conditions beyond the control of Terracon. The conditions include, but are not limited to, location of planters and trees around the building, poor drainage, and operations of the owner/contractor on the site subsequent to our explorations.

On most project sites, the site grading is generally accomplished early in the construction phase. However, as construction proceeds, the subgrade may be disturbed due to utility excavations, construction traffic, desiccation, rainfall etc. As a result, the floor slab subgrade soils may not be suitable for placement of the granular course or concrete and corrective action may be required.

We recommend the subgrade be evaluated immediately prior to placing the granular leveling course. Where unsuitable conditions are located within the floor slab subgrade soils, the soils should be repaired by removing and replacing the affected material with properly compacted fill. All floor slab subgrade areas should be moisture conditioned and properly compacted to the recommendations in this report immediately prior to placement of the granular material and concrete.

Summit Square II Apartments Lee's Summit, Missouri May 11, 2018 Terracon Project No. 02185057

Conventional Floor Slab Design

If conventional grade-supported concrete floor slabs are to be used, the following design recommendations should be applied.

Item	Description
Floor Slab Support	24 inches of low volume change (LVC) material over native soils, engineered fill soils or shale bedrock
Modulus of Subgrade Reaction	100 pounds per square inch per inch of deflection (psi/in or pci) for point loading conditions
Granular Leveling Course Layer Thickness ^{1,2}	4 inches (minimum)

1. Well graded crushed stone (e.g., MDOT Type 5 aggregate) or open-graded crushed stone (e.g., ASTM C33, Size No. 57 aggregate) can be used as the leveling course.

2. These granular materials may be considered part of the LVC zone.

Joints should be constructed in slabs at regular intervals as recommended by the American Concrete Institute (ACI) to help control the location of cracks. Joints or any cracks in the floor slab that develop should be sealed with a water-proof, non-extruding compressible compound.

Loads on footings that support structural walls and column loads are typically greater than floor slab loads. Consequently, footings should be expected to settle more than the adjacent floor slabs. The structural engineer should consider the potential for differential movement between foundations and grade-supported floor slabs.

Typically, some increase in the floor slab subgrade moisture content will occur because of gradual accumulation of capillary moisture, which would otherwise evaporate if the floor slab had not been constructed. The use of a vapor retarder should be considered beneath concrete slabs-on-grade that will be covered with wood, tile, carpet or other moisture sensitive or impervious coverings, or when the slab will support equipment sensitive to moisture. When conditions warrant the use of a vapor retarder, the slab designer should refer to ACI 302 and/or ACI 360 for procedures and cautions regarding the use and placement of a vapor retarder.

Conventional Floor Slab Construction Considerations

If LVC materials consist of clay, the subgrade should be maintained in a relatively moist condition until the floor slab is constructed. If the subgrade becomes desiccated prior to construction of the floor slab, the affected material should be removed or the materials should be scarified, moistened, and compacted. Upon completion of grading operations in the building area, care should be taken to maintain the recommended subgrade moisture content and density prior to construction of the building floor slab.

Geotechnical Engineering Report Summit Square II Apartments Lee's Summit, Missouri May 11, 2018 Terracon Project No. 02185057

On most project sites, the site grading is generally accomplished early in the construction phase. However, as construction proceeds, the subgrade may be disturbed due to utility excavations, construction traffic, desiccation, rainfall etc. As a result, the floor slab subgrade soils may not be suitable for placement of the granular course and/or concrete at the time of building construction, and corrective action may be required.

Terracon should evaluate the condition of the floor slab subgrades immediately prior to placement of the granular leveling course and construction of the slabs. Particular attention should be paid to areas containing backfilled trenches and high traffic areas that were previously disturbed during construction. Where unsuitable conditions are located within the floor slab subgrade soils, the subgrade should be improved by removing and replacing the affected material with properly compacted fill.

BELOW-GRADE STRUCTURES

Swimming Pool

We understand the swimming pool bottom slab, walls, and deck will be constructed using conventional concrete forming and placement techniques. Based on the site grading plan, soils surrounding the swimming pool are expected to consist of engineered fill material.

The swimming pool walls should be designed to resist the at-rest lateral earth pressures provided in the Lateral Earth Pressures section. These parameters are based on drainage being provided behind the pool walls to prevent hydrostatic loading on the walls.

A free-draining granular material (e.g., open-graded crushed stone such as ASTM C 33, Size No. 57 aggregate) should be used to backfill a minimum 2-foot zone extending laterally beyond the pool walls. The granular section behind the pool walls should be hydraulically connected to the drainage layer below the pool bottom slab. A geotextile filter fabric (e.g., Mirafi 160N, Contech C60NW, or an approved equivalent) should be placed between the granular material and the adjacent engineered fill soils to help prevent infiltration of fines into the granular material. If the pool walls will be constructed using any method other than conventional formed, cast-in-place concrete, Terracon should be contacted so we can provide supplemental recommendations. In particular, pool walls constructed by spraying of gunite directly on excavation sidewalls would require special geotechnical considerations that are not addressed in this report.

At least 24 inches of LVC material (refer to the **Fill Materials** section) should be placed at the base of the pool excavation (below the pool bottom slab). The upper 12 inches of the LVC layer below the pool bottom slab should consist of free-draining granular material (e.g., open-graded crushed stone such as ASTM C 33, Size No. 57 aggregate). A system of collector drains should

Summit Square II Apartments Lee's Summit, Missouri May 11, 2018 Terracon Project No. 02185057

be constructed at the base of the free-draining granular layer. The drains should outlet to a sump or other suitable outlet where water can be collected and removed.

The deck area surrounding the pools should be sloped to allow surface drainage. The pool deck slabs should be constructed on a minimum 24-inch thick layer of LVC material (as discussed in the **Fill Materials** section), and the upper 6 inches of the LVC layer should consist free draining aggregate. Subdrains should be installed at regular intervals below the pool deck slabs to collect and remove water from the free draining aggregate layer. Subdrains could consist of 4-inch diameter, perforated plastic pipes encapsulated in filter fabric and placed in shallow trenches at the base of the granular layer. The subdrains should slope to a suitable discharge point. All joints within the pool deck area should be properly sealed and maintained to prevent downward migration of water to the underlying subgrade soils.

If groundwater levels rise above the bottom of the pool when the pool is empty, uplift loads could be imposed on the pool bottom slab and hydrostatic pressure could be imposed on the pool walls, which could cause heaving, cracking or other damage to the pool bottom slab and walls. We anticipate that the pool design will include pressure relief valves that will allow backflow of groundwater into the empty pool in order to help reduce the potential for hydrostatic loading and subsequent heaving, cracking, or other damage.

Although specific details regarding the pool utilities were not provided to us, in our experience, swimming pools usually include several utility pits/basins (e.g., a pump pit, surge basin, backwash basin and recirculation pump pit). The lateral earth pressure, drainage, and fill placement recommendations provided above for the pool are also applicable to these structures. Permanent drainage systems should be installed at the base of all below grade pits/basins to remove groundwater and help reduce the potential for hydrostatic loading on below grade walls and slabs.

LATERAL EARTH PRESSURES

Design Parameters

Below grade walls with unbalanced backfill levels on opposite sides should be designed for at-rest earth pressures at least equal to those indicated in the following table. The recommended design lateral earth pressures do not include a factor of safety and do not provide for possible hydrostatic pressure on the walls.

Summit Square II Apartments Lee's Summit, Missouri May 11, 2018 Terracon Project No. 02185057

Lateral Earth Pressure Parameters

Earth Pressure	Coefficient for	Equivalent Fluid	Surcharge	Earth Pressure,
Conditions	Backfill Type	Unit Weight (pcf)	Pressure, p₁ (psf)	p₂ (psf)
Active (Ka)	Granular - 0.3	40	(0.3)S	(40)H
	Clay - 0.42	50	(0.42)S	(50)H
At-Rest (K _o)	Granular - 0.47	60	(0.47)S	(60)H
	Clay - 0.60	70	(0.60)S	(70)H
Passive (K _p)	Granular - 3.3 Clay - 2.4	420 290		

Applicable conditions to the above include:

- For active earth pressure, wall must rotate about base, with top lateral movements of about
 0.002 H to 0.004 H, where H is wall height
- For passive earth pressure to develop, wall must move horizontally to mobilize resistance
- Uniform surcharge, where S is surcharge pressure
- Clay soil backfill: unit weight = 120 pcf (maximum), and ϕ = 24 degrees (minimum)
- Granular material backfill: unit weight = 130 pcf (maximum), and ϕ = 32 degrees (minimum)
- Horizontal backfill, compacted as recommended in the report
- Loading from heavy compaction equipment not included
- No hydrostatic pressures acting on wall
- No loading from nearby footing or slabs
- No dynamic loading
- No safety factor included in soil parameters
- Ignore passive pressure in frost zone

Summit Square II Apartments
Lee's Summit, Missouri
May 11, 2018
Terracon Project No. 02185057

Backfill placed against structures should consist of granular soils or low plasticity cohesive soils. For the granular values to be valid, the granular backfill must extend out and up from the base of the wall at an angle of at least 45 degrees from vertical for the active and at-rest cases, and at an angle of 60 degrees from vertical for the passive case. To calculate the resistance to sliding, a value of 0.3 should be used as the ultimate coefficient of friction where the footing bears on native clay soils or engineered fill.

Subsurface Drainage for Below Grade Walls

To prevent hydrostatic pressure on below-grade walls, we recommend drains be installed at the foundation level. Each drain line should be sloped to provide positive gravity drainage and should be surrounded by free-draining granular material graded to prevent the intrusion of fines, or an alternative free-draining granular material encapsulated with suitable filter fabric. At least a 2-foot wide section of free-draining granular fill should be used for backfill above the drain line and adjacent to the wall. The free-draining granular fill should extend to within 2 feet of final grade and should be capped with compacted cohesive fill to minimize infiltration of surface water into the drain system.

As an alternative to free-draining granular fill, a pre-fabricated drainage structure may be used. A pre-fabricated drainage structure is a plastic drainage core or mesh which is covered with filter fabric to prevent soil intrusion, and is fastened to the wall prior to placing backfill.

PAVEMENTS

Pavement Subgrade Preparation

Pavement subgrades are expected to consist of on-site native clay soils. The pavement subgrades should be proofrolled as recommended in **Earthwork**. If soft or otherwise unsuitable areas are observed, additional over-excavation and replacement will be needed.

If limestone bedrock is encountered at pavement subgrade elevation, the bedrock should be overexcavated at least 6 inches to accommodate placement of a compacted crushed aggregate layer. If seepage from the limestone is suspected, the aggregate layer should consist of free-draining aggregate (ASTM C 33 No. 57), which should be day-lighted at down-gradient locations so water will not accumulate below pavements. If interception and transmission of seepage is not a concern, the aggregate layer can consist of densely graded aggregate such as MDOT Type 5.

Grading and paving are commonly performed by separate contractors and there is often a time lapse between the end of grading operations and the commencement of paving. Subgrades prepared early in the construction process may become disturbed by construction traffic. Non-uniform subgrades often result in poor pavement performance and local failures relatively soon after pavements are constructed. Depending on the paving equipment used by the contractor, measures may be required to improve subgrade strength to greater depths for support of heavily loaded concrete/asphalt trucks.

We recommend the moisture content and density of the subgrade be evaluated and the pavement subgrades be proofrolled (using a loaded tandem-axle dump truck with a minimum gross weight of 20 tons or similarly loaded rubber-tire equipment) within two days prior to commencement of actual paving operations. Areas not in compliance with the required ranges of moisture or density should be scarified, moisture conditioned, and compacted. Particular attention should be paid to high traffic areas that were rutted and disturbed earlier and to areas where backfilled trenches are located. Areas where unsuitable conditions are located should be repaired by removing and replacing the materials with properly compacted fills. The subgrade should be in its finished form at the time of the final review.

Opinions of Minimum Pavement Thickness

Pavement thickness depends upon many factors including but not limited to:

- applied wheel/axle loads and number of repetitions
- subgrade and pavement material characteristics
- climate conditions
- site and pavement drainage

Specific information regarding anticipated vehicle types, axle loads and traffic volumes was not provided at the time of this report. The "Parking Lots" pavement section considers 4-tire, 2-axle personal vehicle traffic only (cars, vans, pickups and SUVs). The "Drives" pavement section considers personal vehicle traffic and a maximum of ten delivery trucks/trash collection trucks per week. Our recommendations for full depth asphaltic cement concrete (ACC) pavement, ACC pavement over aggregate base, and Portland cement concrete (PCC) pavement sections are outlined in the following table.

Summit Square II Apartments Lee's Summit, Missouri May 11, 2018 Terracon Project No. 02185057

Pavement Type	Parking Lots	Drives					
Full dopth ACC	2 inches ACC surface	2 inches ACC surface					
Full depth ACC	4 inches ACC base	6 inches ACC base					
	2 inches ACC surface	2 inches ACC surface					
ACC over	2 inches ACC base	4 inches ACC base					
aggregate base	6 inches aggregate base (MoDOT Type 5 or similar)	6 inches aggregate base (MoDOT Type 5 or similar)					
	5 inches PCC	6 inches PCC					
PCC	4 inches open graded rock (ASTM C33 Size No. 57 aggregate or similar)	4 inches open graded rock (ASTM C33 Size No. 57 aggregate or similar)					

1. For trash container pads, we recommend a PCC pavement section be used consisting of 7 inches (minimum) of PCC over 4 inches (minimum) of open graded rock (ASTM C33 Size No. 57 aggregate or similar) on a compacted soil subgrade. The trash container pad should be large enough to support the container and the tipping axle of the collection truck.

PCC pavements will perform better than ACC in areas where short-radii turning and braking are expected (i.e., entrance/exit aprons) due to better resistance to rutting and shoving. In addition, PCC pavement will perform better in areas subject to heavy static loads.

Construction traffic on the pavements was not considered in developing our opinions of minimum pavement thickness. If the pavements will be subject to construction equipment/vehicles, the pavement sections should be revised to consider the additional loading.

Pavements and subgrades will be subject to freeze-thaw cycles and seasonal fluctuations in moisture content. Pavement thickness design methods are intended to provide adequate thickness of structural materials over a particular subgrade such that wheel loads are reduced to a level that the subgrade can support. The subgrade support parameters for pavement thickness design do not account for shrink/swell movements of a subgrade constructed of expansive clay soils. Therefore, the pavement may be adequate from a structural standpoint, yet still experience cracking and deformation due to shrink/swell related movement of the subgrade.

The pavement sections provided above consider that the subgrade soils will not experience significant increases in moisture content. Paved areas should be sloped to provide rapid drainage of surface water and to drain water away from the pavement edges. Pavements should be designed so water does not accumulate on or adjacent to the pavement, since this could saturate and soften the subgrade soils and subsequently accelerate pavement deterioration.

Periodic maintenance of the pavements will be required. Cracks should be sealed, and areas exhibiting distress should be repaired promptly to help prevent further deterioration. Even with

periodic maintenance, some movement and related cracking may still occur and repairs may be required.

GENERAL COMMENTS

Our analysis and opinions are based upon our understanding of the project, the geotechnical conditions in the area, and the data obtained from our site exploration. Natural variations will occur between boring locations or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. Terracon should be retained to provide observation and testing services during pertinent construction phases. If variations appear, we can provide further evaluation and supplemental recommendations. If variations are noted in the absence of our observation and testing services on-site, we should be immediately notified so that we can provide evaluation and supplemental recommendations.

Our scope of services does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

Our services and any correspondence or collaboration through this system are intended for the sole benefit and exclusive use of our client for specific application to the project discussed and are accomplished in accordance with generally accepted geotechnical engineering practices with no third party beneficiaries intended. Any third party access to services or correspondence is solely for information purposes to support the services provided by Terracon to our client. Reliance upon the services and any work product is limited to our client, and is not intended for third parties. Any use or reliance of the provided information by third parties is done solely at their own risk. No warranties, either express or implied, are intended or made.

Site characteristics as provided are for design purposes and not to estimate excavation cost. Any use of our report in that regard is done at the sole risk of the excavating cost estimator as there may be variations on the site that are not apparent in the data that could significantly impact excavation cost. Any parties charged with estimating excavation costs should seek their own site characterization for specific purposes to obtain the specific level of detail necessary for costing. Site safety, and cost estimating including, excavation support, and dewatering requirements/design are the responsibility of others. If changes in the nature, design, or location of the project are planned, our conclusions and recommendations shall not be considered valid unless we review the changes and either verify or modify our conclusions in writing.

ATTACHMENTS

EXPLORATION AND TESTING PROCEDURES

Field Exploration

The borings were located in the field by Terracon personnel using a hand-held GPS unit with a horizontal accuracy of ± 20 feet. Ground surface elevations indicated on the boring logs were interpolated from the SKW topographic map.

The borings were drilled with a track-mounted, rotary drill rig using solid-stem, continuous flight augers to advance the boreholes. Samples of the soil encountered in the borings were obtained using thin-walled tube and split-barrel sampling procedures. In the thin-walled tube sampling procedure, a thin-walled, seamless steel tube with a sharp cutting edge is pushed hydraulically into the soil to obtain a relatively undisturbed sample. In the split-barrel sampling procedure, a standard 2-inch outside diameter split-barrel sampling spoon is driven into the ground by a 140-pound automatic hammer falling a distance of 30 inches. The number of blows required to advance the sampling spoon the last 12 inches of a normal 18-inch penetration is recorded as the Standard Penetration Test (SPT) resistance value. The SPT resistance values, also referred to as N-values, are indicated on the boring logs at the test depths. Boring B-11 was extended through the limestone bedrock using N-series rock coring procedures. The underlying shale was sampled using the split-barrel sampling spoon.

The samples were tagged for identification, sealed to reduce moisture loss, and taken to our laboratory for further examination, testing, and classification. The drill crew backfilled the borings with auger cuttings after completion of drilling/sampling and prior to leaving the site.

The drill crew prepared a field log of each boring to record data including visual classifications of the materials encountered during drilling as well as the driller's interpretation of the subsurface conditions between samples. The final boring logs included with this report represent the engineer's interpretation of the subsurface conditions at the borings based on field and laboratory data and observation of the samples.

Laboratory Testing

In the laboratory, water content, dry unit weight, and Atterberg limits were performed on selected samples. A pocket penetrometer was used to estimate the consistency of selected cohesive samples. The test results are provided on the boring logs included in **Exploration Results**.

The soil samples were classified in the laboratory based on visual observation, texture, plasticity, and the laboratory testing described above. The soil descriptions presented on the boring logs are in accordance with the enclosed General Notes and Unified Soil Classification System (USCS). The estimated USCS group symbols for native soils are shown on the boring logs, and a brief description of the USCS is included in this report.

The bedrock materials encountered in the borings were described in accordance with the appended Description of Rock Properties on the basis of drilling characteristics and visual classification of disturbed auger cuttings. Petrographic analysis and rock core may indicate other rock types.

SITE LOCATION AND EXPLORATION PLANS

SITE LOCATION

Summit Square II Apartments
Lee's Summit, MO
May 9, 2018
Terracon Project No. 02185057

DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

TOPOGRAPHIC MAP IMAGE COURTESY OF THE U.S. GEOLOGICAL SURVEY QUADRANGLES INCLUDE: LEES SUMMIT, MO (1/1/1996) and LAKE JACOMO, MO (1/1/1996).

EXPLORATION PLAN

Summit Square II Apartments
Lee's Summit, MO
May 9, 2018
Terracon Project No. 02185057

DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

AERIAL PHOTOGRAPHY PROVIDED BY MICROSOFT BING MAPS **EXPLORATION RESULTS**

	BORING LOG NO. B-1 Page 1 of 1											1 of 1			
	PR	OJECT:	Summit Square II Apartments		CLIENT: NorthPoint Development										
	SIT	E:	Donovan & Ward Road Lee's Summit, Missouri				RI	vers	side	, Missouri					
	GRAPHIC LOG	LOCATION	N See Exploration Plan .930207° Longitude: -94.391645° Approxim	ate Surface Elev: 985 (Ft.)) +/-	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	HAND PENETROMETER (tsf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits	
		<u>FILL</u>	- FAT CLAY, trace limestone fragments	s, brown	(Ft.)										
8				0	021/	-	-		13						
TE.GDT 5/11/1		FAT (CLAY (CH), brown to light brown, very s	tiff	02.1-	_	-		19		2.75	27	96	75-24-51	
EMPLA						5 –									
DATAT		6.0 6.5 LIME	STONE, gray, highly weathered	9 978	79+/- 3.5+/-	_			0	50/0"					
ED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 02185057 SUMMIT SQUARE II .GPJ TERR															
EPARAT	Stratification lines are approximate. In-situ, the transition may be gradual. Classification of rock materials has been estimated based on observation of disturbed samples. Core samples and/or petrographic analysis may reveal other rock types.								Har	nmer Type: Automati	C				
OG IS NOT VALID IF SE	Advan Cor Aband Bor	Jvancement Method: See Exploration and Te Continuous flight solid-stem augers description of field and I used and additional date see Supporting Informa pandonment Method: symbols and abbreviation Boring backfilled with Auger Cuttings and/or Bentonite Elevations were interpo					res for cedure nation o	a :s of phic	Note	es:	n driller's fie	ld log.			
SING LC	WATER LEVEL OBSERVATIONS Groundwater not encountered								Borin	g Started: 03-23-2018	Bori	ng Com	pleted:	03-23-2018	
HIS BOR				13910 W	96th 1	L L Fer			Drill F	Rig: B53	Drill	er: RM			
⊨	Lei								Proje	CT INO.: U2185057					

	BORING LOG NO. B-2 Page 1 of 1												
PR	OJECT:	Summit Square II Apartments		CL	IENT	: No Riv	orth vers	Poir side	nt Developmer , Missouri	nt			
SIT	E:	Donovan & Ward Road Lee's Summit, Missouri											
GRAPHIC LOG	LOCATIO	N See Exploration Plan .930282° Longitude: -94.391099° Approxima	ate Surface Elev: 985 (Ft.)) +/-	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	HAND PENETROMETER (tsf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits LL-PL-PI
	<u>FILL</u>	- FAT CLAY, with limestone fragments,	brown	(Ft.)									
	<u>1.5</u> FAT	CLAY (CH), brown, very stiff	983	3 <u>.5+/-</u>	_			10					
	5.0		98	80+/-	-			16		3.0	24	107	
	5.5 SHA	<u>E</u> , light brown, highly weathered	979	9.5+/-	5-								
		STONE, gray, highly weathered											
	Stratificati												
Stratification lines are approximate. In-situ, the transition may be gradual. Classification of rock materials has been estimated based on observation of disturbed								nai	ninei Type. Automati	C			
Advan Con Aband Bori	Advancement Method: Continuous flight solid-stem augers bandonment Method: Boring backfilled with Auger Cuttings and/or Bentonite			sting F abora a (If ai tion fo ons. ated f	Procedur Itory proo ny). or explan from a to	es for cedure ation c	a s of phic	Note All d	escriptions taken from	n driller's fie	ld log.		
	WATER LEVEL OBSERVATIONS							Boring	Boring Started: 03-23-2018 Boring Completed: 03-23-2018				
	Groundv	Groundwater not encountered						Drill F	Rig: B53	Drill	riller: RM		
			13910 W Lenex	96th a, KS	Ter S			Project No.: 02185057					

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 02185057 SUMMIT SQUARE II. GPJ TERRACON_DATATEMPLATE.GDT 5/11/18

	BORING LOG NO. B-3 Page 1 of 1												
PR	OJECT:	Summit Square II Apartments	6	CLIEN	F: No	orth	Poir	nt Developme	nt				
SIT	E:	Donovan & Ward Road Lee's Summit, Missouri			RI	ver	siae	, Missouri					
ы С	LOCATIO	V See Exploration Plan			EL DNS	ΡE	(In.)	t.	TER	(%	- در)	ATTERBER LIMITS	
HICL	Latitude: 38	.929654° Longitude: -94.391628°		LH (Ft	R LEV	Г <u>Г</u>	ΈRΥ	D TES	AND KOME	TER ENT (UNU HT (p		
GRAP		Approxir	mate Surface Elev: 992 (Ft.)	+/- B	VATE	AMPI		REG	ETEN ETEN	ND W	MEIG	LL-PL-PI	
 xxxx		EAT CLAY with limestone fragment	ELEVATION (Ft.)	>ō	S			뷥				
	1.0	- PAT CLAT, with innestone fragments	99 9	91+/-									
	<u>FAT</u>	CLAY (CH), brown and gray brown, ver	ry stiff										
							24		2.5	26	100		
							18						
				5-	-		ļ						
	6.0		98	36+/-									
	<u>Shai</u>	<u>_E</u> , gray brown, completely to highly w	eathered										
							17		4.5+	18	114		
					-								
						\bigtriangledown		40.00 50/01		10			
						\square	14	13-28-50/2"		16			
				10-									
					_								
	11.5 12.0 LIME	STONE, gray, highly weathered	980	<u>.5+/-</u> 30+/-									
	Auge	r Refusal at 12 Feet											
	Stratificati	on lines are approximate. In-situ, the transition r	may be gradual.				Ha	 mmer Type: Automat	ic				
	Classificat samples.	ion of rock materials has been estimated based Core samples and/or petrographic analysis may	ł										
Advan Con	cement Meth tinuous flight	od: solid-stem augers	See Exploration and Tes description of field and la used and additional data	aboratory proced (If any).	ures for ocedure	a s	Note All c	es: lescriptions taken fror	n driller's fie	eld log.			
Aband	onment Meth	nod:	 See Supporting Information symbols and abbreviation 	ion for expla ns.	ination o	of							
2 2 Elevations were interpolated from site plan.						phic							
							Borin	g Started: 03-23-2018	B Bor	ing Com	pleted:	03-23-2018	
	Groundwater not encountered			DC			Drill F	Rig: B53	Dril	ler: RM			
	13910 \ Lenv			10 W 96th Ter enexa, KS Project No.: 02185057									

	BORING LOG NO. B-4 Page 1 of 1											
PF	ROJECT	: Summit Square II Apartments	6	CLIEN	T: No	orth	Poir	nt Developme	nt		~	
SI	TE:	Donovan & Ward Road Lee's Summit, Missouri			RI	iver	siae	, Missouri				
IIC LOG	LOCATIC	DN See Exploration Plan 8.929634° Longitude: -94.391075°		H (Ft.)	LEVEL	Е ТҮРЕ	ERY (In.)	LTS	ND DMETER	TER NT (%)	UNIT T (pcf)	ATTERBER(LIMITS
GRAPH	DEPTH	Approxir	nate Surface Elev: 992 (Ft.) ELEVATION (+/- DEt)	WATER OBSERV	SAMPLE	RECOVE	FIELD	PENETR((ts	CONTE	DRY	LL-PL-PI
		FAT CLAY , with limestone fragments	s, brown)1+/_								
	SHA	LE , light brown to gray, completely wea	athered	<u>, , , , , , , , , , , , , , , , , , , </u>	_		18		3.5	25	103	
					_							
	- hig	hly weathered below 3.5 feet			_		11	21-50/6"		16		
				5	_							
							8	32-50/4"		19		
					_							
F.	8.5 8.8 LIM	ESTONE, gray, highly weathered	983	.5+/- 33+/-		~	0	50/1"				
	Stratifica	tion lines are approximate. In-situ, the transition r	nay be gradual.				Har	nmer Type: Automat	ic			
	Classifica samples.	l tine Dr	kung a 1		Note	26.						
	ntinuous flig	aboratory pr boratory pr (If any). ion for expla	aures for rocedure	r a es of	All d	lescriptions taken fror	n driller's fie	eld log.				
Bo	Boring backfilled with Auger Cuttings and/or Bentonite Elevations were interpol site plan.					aphic			<u> </u>			
נ פ ב	Groundwater not encountered					_	Boring	g Started: 03-25-2018	Bor	ing Com	pleted:	03-25-2018
							Drill F	Rig: B53	Dril	ler: RM		
	13910 Ler				W 96th Ter mexa, KS Project No.: 02185057							

				NC). I	3-{	5			F	Page	1 of 1		
	PR	OJECT:	Summit Square II Apartments		CLIENT: NorthPoint Development									
	SIT	E:	Donovan & Ward Road Lee's Summit, Missouri				Ri	ver	side	, Missouri				
	00	LOCATIO	See Exploration Plan				/EL	ΡE	(In.)	лт.	TER	(%)	۲ د()	ATTERBERG LIMITS
	HICL	Latitude: 38	.929073° Longitude: -94.390919°			TH (Ft	R LEV	Г Ц Ц	ΈRΥ	D TES	AND KOME	LTER ENT (HT (p	
	GRAF		Approximate S	Surface Elev: 1006.5 (Ft.)) +/-	DEP	VATE BSER	AMPI	ECO	FIELI	NETH (CONT	DRY	LL-PL-PI
			- FAT CLAY with limestone fragments	ELEVATION ((Ft.)		>0	S S	~		L L			
		gray	<u></u> ,,			_	-					24		
						_		\mathbb{N}	0	19-20-10 N=30				
11/18		3.5		100	03+/-	_	-	\vdash						
SDT 5		SHAL	<u>E</u> , light brown, completely weathered			_	_	\bigtriangledown		9-21-35				
-ATE.0						5		\square		N=56		20		
TEMPI						5								
DATA		- high	ly weathered below 6 feet			_	-	\bigtriangledown	12	29-50/6"		17		
ACON						_	-	\vdash						
TERR		- mor	lerately weathered, gray below 8 feet			_	-							
.GPJ		- 11100	lerately weathered, gray below o reet			_		\ge	5	50/5"		15		
IARE II														
T SQU						10-								
NMMUS						_	-							
5057 5						_								
- 0218														
) WELI		14.0		002	0.5+/-				2	50/6"		10		
OG-NC		Borir	ng Terminated at 14 Feet			_								
IART L														
EO SM														
RT. G														
.REPC														
GINAL														
M ORI														
D FRC														
ARATE	Stratification lines are approximate. In-situ, the transition may be gradual. Classification of rock materials has been estimated based on observation of disturbed samples. Core samples and/or netrographic analysis may reveal other rock types								Har	nmer Type: Automat	ic			
F SEP.	samples. Core samples and/or petrographic analysis may reveal other rock types. Advancement Method: Continuous flight solid-stem augers						res for	а	Note	es:				
/ALID	001	iuouo iliyili	Sour orden auguro	used and additional data	All descriptions taken from driller's field log.									
NOT \	Aband	onment Meth	od: with Auger Cuttings and/or Rentonite	See Supporting Informat symbols and abbreviatio	tion for ons.	explar	nation o	of						
OG IS	Elevations were interpolated site plan.					om a to	opogra	phic						
SING L	Groundwater not encountered				Boring Started: 03-24-2018 Boring Completed: 03-24					03-24-2018				
S BOR									Drill F	Rig: B53	Dri	ller: RM		
THIS	13910 W Lene:				W 96th Ter exa, KS Project No.: 02185057									

BORING LOG NO. B-6										Page 1 of 1			
PR	ROJECT:	Summit Square II Apartments	6	CLIENT: NorthPoint Development									
SI	TE:	Donovan & Ward Road Lee's Summit, Missouri			ĸ	lver	side	, Missouri					
GRAPHIC LOG	LOCATIOI Latitude: 38	N See Exploration Plan .928751° Longitude: -94.390961° Approxim	ate Surface Elev: 1001 (Ft.) ELEVATION () +/- DEPTH (Ft.)	WATER LEVEL	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	HAND PENETROMETER (tsf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS	
	FILL	- FAT CLAY, with limestone fragments	s, brown										
					_		8		2.0	15	111		
					_		12		2.0	15	121		
	6.0		Q	95+/- 5									
	LEAN	I CLAY (CL) , gray, very stiff	0	3317-	_		7	15-9-8 N=17		19		36-17-19	
] IEKK	8.5		992	2.5+/-	_								
	<u>SHAI</u>	<u>_E</u> , gray, moderately weathered			_	\mid	4	50/6"		10			
				10	-								
	13.8 Borii	ng Terminated at 13.8 Feet	9	87+/-			2	50/3"		9	<u> </u>		
ED FROM ORIGINAL REPORT. GEO SMART LOG													
PAKAI	Stratification lines are approximate. In-situ, the transition may be gradual. Classification of rock materials has been estimated based on observation of disturbed samples. Core samples and/or petrographic analysis may reveal other rock types.						Har	mmer Type: Automat	IC				
Advar Col Al Col Aband Bor	dvancement Method: See Exploration and Text Continuous flight solid-stem augers See Exploration of field and I used and additional data See Supporting Informa bandonment Method: symbols and abbreviation Boring backfilled with Auger Cuttings and/or Bentonite Elevations were interpol					or a res n of raphic	Note All d	es: lescriptions taken fror	n driller's fie	eld log.			
	WATER LEVEL OBSERVATIONS						Borin	g Started: 03-24-2018	Bori	ing Com	Completed: 03-24-2018		
BOKI	Groundw	rater not encountered		DC		٦	Drill F	Rig: B53	Dril	ler: RM			
NH N			13910 W Lenex	W 96th Ter exa, KS Project No.: 02185057									

				BORING LO	LOG NO. B-7								Page 1 of 1		
	PR	OJECT:	Summit Square II Apartments		CLI	ENT	: No	orth	Poir	nt Developmei	nt				
	SIT	E:	Donovan & Ward Road Lee's Summit, Missouri				RI	vers	side	, Missouri					
	PHIC LOG	LOCATIOI Latitude: 38	V See Exploration Plan 928534° Longitude: -94.390574°			отн (Ft.)	ER LEVEL RVATIONS	LE TYPE	VERY (In.)	LD TEST SULTS	HAND ROMETER (tsf)	ATER TENT (%)	Y UNIT GHT (pcf)		
	GRA	ПЕРТН	Approxim	ate Surface Elev: 999 (Ft.)) +/-	DEF	WATE OBSE	SAMF	RECO	FIEL	PENET	CONS	MEIG		
		FILL	- FAT CLAY, trace limestone fragments	s, brown											
		2.0	E gray highly weathered		97+/-	_	-		16			18	107		
1/18			r , gray, nigniy weathered			_									
SDT 5/1		- moo	lerately weathered below 3.5 feet			_		X	5	50/6"		11			
APLATE.G						5 —	-								
ATATEN						_	-								
COND						_	-	X	_3_	50/3"		10			
TERRA						_	-								
II.GPJ						_		\times	4	50/5"		9			
QUARE						10-									
AMIT SC															
157 SUN															
021850						_									
WELL		13.8		98	85+/-	_		X	2	50/3"		9			
OG-NO		Borir	g Terminated at 13.8 Feet												
MART L															
GEO SI															
PORT.															
VAL RE															
ORIGII															
FROM															
ARATED	Stratification lines are approximate. In-situ, the transition may be gradual. Classification of rock materials has been estimated based on observation of disturbed						<u> </u>		Har	l mmer Type: Automati	c		1	<u> </u>	
IF SEP,	samples. Core samples and/or petrographic analysis may reveal other rock types. Advancement Method: Continuous flight solid-stem augers						res for	a	Note	es:					
T VALID		J. J	-	used and additional data See Supporting Informat	a (If any	r). explan	ation	of	All d	escriptions taken fron	n driller's fi	eld log.			
ICN SI DO	Aband Bori	onment Meth ng backfilled	od: with Auger Cuttings and/or Bentonite	symbols and abbreviatio Elevations were interpole	ons. ated fro	om a to	pogra	phic							
ING LC		Groundw	R LEVEL OBSERVATIONS ater not encountered	1600					Boring	g Started: 03-24-2018	Во	ring Com	pleted:	03-24-2018	
S BOR							J		Drill F	Rig: B53	Dri	ller: RM			
THIS	0 13910 W 90 Lenexa,					96th Ter (a, KS Project No.: 02185057									

				BORING LO	OG N	D. I	B-8	3			F	Page	1 of 1
	PR	OJECT:	Summit Square II Apartme	nts	CLIEN	: No	orth	Poir	t Developme	nt			
	SIT	ſE:	Donovan & Ward Road Lee's Summit, Missouri			RI	ver	siae,	MISSOURI				
	GRAPHIC LOG	LOCATIO	N See Exploration Plan 3.928076° Longitude: -94.390684° Appro	ximate Surface Elev: 1002 (Ft.,	-/+ (DEPTH (Ft.)	WATER LEVEL DBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	HAND ENETROMETER (tsf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits LL-PL-Pi
-		DEPTH FILL	- FAT CLAY, with limestone fragme	ELEVATION (ents, brown	(Ft.)	-		H		4			
18		<u>FAT</u>	CLAY (CH), brown to light brown	1000	-			12	3-3-4 N=7				
TE.GDT 5/11/		3.5 LIME	STONE, gray, highly weathered	998	3.5+/-	_	X	1	50/1"				
ATATEMPLAT		5.5 SHA	L <u>E</u> , with limestone seams, gray, hig	996 hly weathered	<u>5 -</u> <u>5.5+/-</u>								
ERRACON_D.							\mid	13	20-50/3"				
ARE II . GPJ T					-	-		4	30-20-50 N=70				
UMMIT SQUA					10-	-							
L 02185057 S													
OG-NO WEL		13.6 Bori i	ng Terminated at 13.6 Feet	988	8.5+/-				50/1"				
GO SMART L													
L REPORT. G													
ROM ORIGINA													
ARATED F.		Stratificati	on may be gradual. sed on observation of disturbed	d			Har	nmer Type: Automati	c				
VALID IF SEF	Advan Con	samples. cement Meth atinuous fligh	core samples and/or petrographic analysis nod: t solid-stem augers	See Exploration and Tes description of field and l used and additional data	sting Procedu aboratory pro a (If any).	ires for ocedure	a	Note All d	s: escriptions taken fron	n driller's fi	eld log.		
OG IS NOT	Aband Bori	lonment Metl ing backfilled	nod: I with Auger Cuttings and/or Bentonite	See Supporting Informal symbols and abbreviatic Elevations were interpol site plan.	uon tor expla ons. ated from a t	nation o opogra	ot phic						
RINGL		Groundv	vater not encountered					Boring	started: 04-11-2018	Во	ring Com	pleted: (04-11-2018
S BOF								Drill R	lig: B53	Dri	ller: RM		
Ĩ				Lenex	a, KS			Projec	at No.: 02185057				

			BORING LO	OG N	D. I	B-9	9			F	Dage	1 of 1
PR	ROJECT:	Summit Square II Apartments		CLIENT	: No	orth	Poir	nt Developme	nt			
SI	TE:	Donovan & Ward Road Lee's Summit, Missouri			RI	ver	siae	, Missouri				
GRAPHIC LOG	LOCATION	V See Exploration Plan 928298° Longitude: -94.390934° Approxima	ate Surface Elev: 1004 (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	HAND PENETROMETER (tsf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits
		- FAT CLAY, with limestone fragments	, brown	(Ft.)					ш.			
				-	-		11	4-4-7 N=11				
				-								
				-	-			50/1"				
				5 -	-							
	7.0 SHAL	<u>E</u> , light brown to gray, highly to moder	99 ately weathered	97+/- -	-	\mathbb{X}	10	10-19-26 N=45		12		
				-		\sim	2	50/2"		14	/	
				10-								
				-	-							
	=13.7 Borin	g Terminated at 13.7 Feet	990	0.5+/-		\sim	2	50/2"		11		
פוואר הברטאו. פבט אשראו בטפ	Boring Terminated at 13.7 Feet											
LAKA	Stratification lines are approximate. In-situ, the transition may be gradual. Classification of rock materials has been estimated based on observation of disturbe samples. Core samples and/or petrographic analysis may reveal other rock types.						Har	nmer Type: Automat	IC			
Advar Li Cor	ncement Meth ntinuous flight	aboratory procedu aboratory pro a (If any).	ires for ocedure	a es	Note All d	es: escriptions taken fror	n driller's fie	ld log.				
Abanco Bor	donment Meth ring backfilled	od: with Auger Cuttings and/or Bentonite	ated from a t	opogra	iphic							
	3 feet wh	R LEVEL OBSERVATIONS	76				Boring	g Started: 03-24-2018	B Bori	ng Com	pleted:	03-24-2018
	11 feet up	pon completion	- 11CI (13910 W	96th Ter			Drill F	Rig: B53	Drill	er: RM		
Ē			Lenex	a, KS			Projec	ot No.: 02185057				

		BORING LO	G	NC). E	3-1	0			F	Page	1 of 1
	PR	OJECT: Summit Square II Apartments	CLI	IENT	: No	orth	Poir	nt Developmen	t			
	SIT	TE: Donovan & Ward Road Lee's Summit, Missouri			Ri	ver	side	, Missouri				
	g	LOCATION See Exploration Plan		_	NS NE	Щ	n.)	L	ER	(%)	t)	ATTERBERG LIMITS
	IIC FC	Latitude: 38.928349° Longitude: -94.391505°		H (Ft.)	LEVE	17	ERY (I	JLTS JLTS		NT (%	TINIT T (pd	
	RAPH	Approximate Surface Flaur 1009 F (Ft.)	.,	EPTI	SERV	MPLE	COVE	RESU	ETR((ts	WAT	DRY EIGH	LL-PL-PI
	5	DEPTH ELEVATION (F	+/- Ft.)		N OBS	SA	RE	Ľ,	PEN	Ö	->	
		FILL - FAT CLAY, trace limestone fragments, brown										
		1.0 1007. FAT CLAY , light brown, hard	.5+/-	-	1							
				_			11		4.5+	28	95	
80												
5/11/1				_								
GDT		1.5		-	-	X	5	5-50/4"		16		
LATE.		LIMESTONE, gray, highly weathered	J4+/-	5								
TEMP		5.5 100)3+/-	5								
DATA ⁻		STALL, gray, highly weathered		-	1							
Noc				_	-							
ERRA												
Γ		8.5 100 8.6 100 8.8 100 999)0+/- 5+/-	_]		2	50/2"				
<u>е</u> п. е		Auger Refusal at 8.8 Feet	.0 . /									
QUAR												
MIT S												
SUM												
35057												
- 021												
WELL												
G-NO												
RT LO												
SMAF												
GEO												
ORT												
NL REI												
(IGIN/												
M OF												
D FRO												
RATEI		Stratification lines are approximate. In-situ, the transition may be gradual. Classification of rock materials has been estimated based on observation of disturbed			1	1	Ha	mmer Type: Automatic	:	1	1	I
SEPAI	Advan	Stratification lines are approximate. In-situ, the transition may be gradual. Classification of rock materials has been estimated based on observation of disturbed samples. Core samples and/or petrographic analysis may reveal other rock types. Incement Method: See Exploration and Testing		roos du			Not					
ID IF	Con	tinuous flight solid-stem augers See Exploration and Less description of field and la used and additional data	aborate (If an	rocedu ory pro v)	cedure	es es	All o	lescriptions taken from	driller's fie	ld log.		
T VAL	AL	See Supporting Informati	ion for	· explar	nation	of						
IS NO	Aband Bori	ing backfilled with Auger Cuttings and/or Bentonite	ns. ated fr	om a tr	noara	nhic						
LOG		WATER LEVEL OBSERVATIONS		u ll	pogra	01.14	De -	- Otaria di 00 04 0040	. · ·		. ا. اما	04 44 0040
RING		Groundwater not encountered			זר		Borin	y Started: 03-24-2018	Bori	ng Com	pieted:	04-11-2018
IIS BO		13910 W	96th 1	Fer			Drill F	kig: B53	Drill	er: RM		
Ξ		Lenexa	a, KS				Proje	ct No.: 02185057				

			В	ORING LC)G N	Э. E	3-1	1			F	Page	1 of 1
	PR	OJECT:	Summit Square II Apartments		CLIEN	T: No	orth	Poir	nt Developme	nt		<u> </u>	
	SIT	E:	Donovan & Ward Road Lee's Summit, Missouri			RI	ver	siae	, Missouri				
	-06	LOCATION	V See Exploration Plan		t.)	/EL ONS	ΥΡΕ	(In.)	ST S	ETER	(%)	T ocf)	ATTERBERG LIMITS
	PHICI	Latitude: 38	.928644° Longitude: -94.391714°		TH (F	ER LE	LET	VERY	SULTS	HAND ROME (tsf)	ATER	NUNI GHT (F	
	GRA		Approximate	e Surface Elev: 1007 (Ft.))+/-	WATE	SAMF	RECO	FIEL	ENET -	SNON	DR	LL-PL-PI
	***	<u>FILL</u>	- FAT CLAY, with limestone fragments,	brown	<u>[Ft.]</u>								
						_			- 10 11				
						_	X	18	7-13-14 N=27	3.0	22		
1/18						_							
DT 5/1		3.5 LIME	STONE, gray, highly to moderately weat	1003 hered	5.5+/-		~	0	50/1"				
ATE.GI					_								
TEMPL					5		H						
DATA						-	H						
ACON						_	H		REC = 90% RQD = 90%				
TERR						_	H						
II.GPJ						_	H						
NARE		9.5 SHAL	<u>E</u> , brown to light brown, completely wea	997 thered	<u>.5+/-</u>				7 10 11				
MIT SC		11.0		99	96+/-			18	N=21				
NUS 73		Borin	ng Terminated at 11 Feet										
218505													
VELL 0													
V OV-5													
RT LOC													
D SMAI													
RT. GE(
REPOF													
GINAL													
M ORIG													
D FRO													
ARATE		Stratification Classification	on lines are approximate. In-situ, the transition main of rock materials has been estimated based or	y be gradual. n observation of disturbed	d l			Har	mmer Type: Automat	ic	-		
LID IF SEP	Advan Con	samples. cement Meth tinuous flight	Lore samples and/or petrographic analysis may re od: solid-stem augers	eveal other rock types. See Exploration and Tes description of field and la used and additional data	sting Procee aboratory p a (If any).	lures for ocedure	r a es	Note All d	es: lescriptions taken fror	n driller's fi	eld log.		
OT VAI	Aband	onment Meth	od:	tion for expl	anation	of							
IS IS N	Bori	ng backfilled	with Auger Cuttings and/or Bentonite	Elevations were interpol	ated from a	topogra	aphic						
NG LO		Groundw	R LEVEL OBSERVATIONS					Borin	g Started: 03-24-2018	B Bo	ring Com	pleted:	04-11-2018
S BORI		Groundw						Drill F	Rig: B53	Dri	ller: RM		
THIS				Lenex	som rer a, KS			Projec	ct No.: 02185057				

		E	BORING LC)G N(). E	3-1	2			F	Page	1 of 1
PF	ROJECT	: Summit Square II Apartments		CLIEN	Γ: Να Β	orth	Poir	nt Developme	nt			
SI	TE:	Donovan & Ward Road Lee's Summit, Missouri			RI.	ver	siue,	, MISSOUT				
GRAPHIC LOG		DN See Exploration Plan 38.929074° Longitude: -94.391665° Approximat	e Surface Elev: 1005 (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	HAND PENETROMETER (tsf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBER(LIMITS
	<u>EPTH</u>	L - FAT CLAY, with limestone fragments, y brown	brown and	Ft.)								
	<u>SH</u>	ALE, light brown, completely weathered	100	J4 +/-	_		18		4.5+	23	109	
	- hi	ghly weathered below 3 feet			_		14	19-25-35 N=60		18		
				5-	_							
					_	X	11	36-50/6"		16		
					_		9	34-50/4"		16		
	- m	oderately weathered, gray below 10 feet		10	_							
					_							
	=13.8 Bo i	ing Terminated at 13.8 Feet	99	91+/-		\geq	ω	50/4"		11		
ר לבייט אואא וייט												
AKAIE	Stratifica Classific	tion lines are approximate. In-situ, the transition ma ation of rock materials has been estimated based of Core samples and/or netrographic analysis may	1			Har	mmer Type: Automat	ic		•		
Advar Advar Co	ncement Me ntinuous flig	thod: ht solid-stem augers	aboratory proced aboratory pr (If any).	ures for ocedure	a es	Note All d	es: escriptions taken fror	n driller's fi	eld log.			
Aban Aban Bo	donment Me ring backfill	thod: ed with Auger Cuttings and/or Bentonite	non for explains. ated from a	topogra	ot Iphic							
אואפין	Ground	ER LEVEL OBSERVATIONS	There				Boring	g Started: 03-24-2018	Boi	ring Com	pleted: (03-24-2018
S BC			13910 W	96th Ter			Drill R	Rig: B53	Dri	ller: RM		
Ξ			Lenex	a, KS			Projec	ct No.: 02185057				

			B	ORING LC)G	NC). E	8-1	3			F	Dage	1 of 1
	PR	OJECT:	Summit Square II Apartments		CL	IENT	: No	orth	Poir	nt Developme	nt			
	SIT	ſE:	Donovan & Ward Road Lee's Summit, Missouri				RI	ver	side,	, Missouri				
	SOL	LOCATION	See Exploration Plan			(Ft.)	EVEL	гүре	Y (In.)	EST) 1ETER	R F (%)	UIT (pcf)	ATTERBERG LIMITS
	RAPHIC	Latitude: 38	928663° Longitude: -94.391145°	surface Elev: 1006 (Ft.)) +/-	DEPTH (ATER L	. ANPLE .	COVER	FIELD TI			DRY UN VEIGHT	LL-PL-PI
	ڻ 	DEPTH	- FAT CLAY , with limestone fragments,	ELEVATION (brown to dark	, , , (Ft.)	_	≥®	SP	RE	ш. 	E E	0	>	
		browr	1			-	-	N 7						
						-	-	X	12	4-4-4 N=8		21		
5/11/18						-	_							
LE.GDT		4.5		1001	1.5+/-	-	-	\mathbb{N}	15	7-10-32 N=42		21		
TEMPLAT		<u>SHAL</u>	<u>E</u> , light brown, completely to highly wea	thered		5 -								
CON_DATA						-	-	X	5	10-32-50/5"		15		
J TERRA		- moc	lerately weathered, gray below 8 feet			-	_							
E II .GP,		- moderately weathered, gray below 8 reet						\times	3	50/4"		12		
SQUAR							-							
SUMMIT						-	-							
2185057						-	_							
MELL 0	13.8 900					-		\times	3	50/3"		0		
ON-DO-		Borin	g Terminated at 13.8 Feet											
SMARTI														
RT. GEO														
L REPOF														
DRIGINA														
FROM (
ARATEC		Stratification lines are approximate. In-situ, the transition may be gradual. Classification of rock materials has been estimated based on observation of disturbe samples. Core samples and/or petrographic analysis may reveal other rock types.					1	I	Har	nmer Type: Automat	ic		1	1
ALID IF SE	Advan Con	cement Meth ntinuous flight	<mark>sting F</mark> aborat a (If ar	Procedu tory pro ty).	res for cedure	a s	Note All d	es: escriptions taken fror	n driller's	field log.				
G IS NOT V	Aband Bori	lonment Meth ing backfilled	od: with Auger Cuttings and/or Bentonite	See Supporting Informat symbols and abbreviatio Elevations were interpol	tion fo ons. lated f	r explar rom a to	nation o opogra	of phic						
NGLO		Groundw	R LEVEL OBSERVATIONS						Boring	g Started: 03-24-2018	В В	oring Com	pleted:	03-24-2018
BORI		Grounuw		nerra			J		Drill R	lig: B53	D	riller: RM		
THIS				13910 W Lenex	96th a, KS	Ier			Projec	ct No.: 02185057				

			E	ORING LC)G N	0.	В	-1-	4			F	Page	1 of 1
	PR	OJECT:	Summit Square II Apartments		CLIEN	NT:	No	rth	Poir	t Developmer	nt			
	SIT	E:	Donovan & Ward Road Lee's Summit, Missouri				RIV	/ers	side,	Missouri				
	Ö	LOCATIO	N See Exploration Plan				NS	РЕ	ln.)	F	TER	(%	ct)	ATTERBERG LIMITS
	HIC L	Latitude: 38	.929902° Longitude: -94.390829°		H (Ft.			ΕT	ERY (ULTS	en one	TER (TNIT (pq)	
	BRAP		Approxima	te Surface Elev: 988 (Ft.)) +/- DE DE -/+ (VTE	SER	AMPL	ECOV	FIELD RES	NE TR (t	WA	VEIG	LL-PL-PI
		DEPTH		ELEVATION ((Ft.)	\$	88	Ś	RE		BE	0	>	
		1.0	- FAT CLAY, with limestone fragments,	brown 9	87+/-									
	~~~~	SHAI	<u>_E</u> , light brown, completely to highly wea	thered										
						-			16					
/18														
F 5/11							ľ	$\bigvee$	11	30-25-18	2 75	19		
E.GD ⁻						-		$\square$		N=43	2.70			
IPLAT					5	-								
ATEN														
I_DAT														
ACON		7.2 7.2 <b>LIME</b>	STONE, gray, highly weathered	9	81+/- 81+/-	-		_						
TERR		Auge	er Refusal at 7.2 Feet											
GPJ														
RE II														
sQU⊿														
MMIT														
57 SUI														
18505														
LL 02														
O WE														
N-90														
ART L														
0 SM														
T. GE														
EPOR														
VAL R														
RIGI														
SOM C														
ED FR														
ARAT		Stratification lines are approximate. In-situ, the transition may be gradual. Classification of rock materials has been estimated based on observation of disturbed		d				Har	nmer Type: Automati	С				
F SEP.	Advan	Classification of rock materials has been estimated based on observation of disturbed samples. Core samples and/or petrographic analysis may reveal other rock types. Vancement Method: See Exploration and Tes		sting Proce	edures	s for a	a	Note	s:					
II DIT	Con	Sontinuous flight solid-stem augers description of field and la used and additional data			aboratory   a (If any).	proce	dures	5	All d	escriptions taken from	n driller's fie	eld log.		
OT V/	Aband	See Supporting Information See Supporting Information See Supporting See Support See S					ion o	f						
N SI 5	Bori	ng backfilled	Elevations were interpol	ated from	a topo	ograp	ohic							
G LOC		WATE	R LEVEL OBSERVATIONS	site plan.				-	Boring	Started: 03-25-2018	Bor	ing Com	pleted: (	03-25-2018
ORIN		Groundw	vater not encountered	llerra	DC		Π		Drill R	ia: B53	Dril	ler: RM		
'HIS B				13910 W	96th Ter		_	-	Proier	et No.: 02185057				

			E	BORING LC	)G	NO	). B	8-1	5			F	Page	1 of 1
	PR	OJECT:	Summit Square II Apartments		CL	IENT	: No	orth	Poir	nt Developme	nt			
	SIT	E:	Donovan & Ward Road Lee's Summit, Missouri				KI	ver	side	, Wissouri				
	90	LOCATION	See Exploration Plan				ONS PNS	ΡE	(In.)	t.o.	TER	(%	cf)	ATTERBERG LIMITS
	HICL	Latitude: 38.	929919° Longitude: -94.391815°			TH (Ft	R LEV	LETY	/ERY	D TES	AND ROME tsf)	ATER ENT (	HT (p	
	GRAF		Approximate	Surface Elev: 988.5 (Ft.)	) +/-	DEP	NATE	SAMPI	RECO/	REG	ENETH ()	CONT	DRY	LL-PL-PI
	×××	DEPTH	FAT CLAY . with limestone fragments.	ELEVATION (	(Ft.)		-0	0	Ľ.		8			
		1.0	,	987	7.5+/-	_	-							
		<u>SHAL</u> weath	<u>.E</u> , light brown and gray, completely to h lered	ighly										
						_			13					
/11/18						-		$\setminus$ /						
GDT 5						_	-	X	15	10-12-13 N=25		22		
LATE.(						5								
TEMPI						5								
DATA						_								
ACON						_	-							
TERR/						_	-							
GPJ		8.5 8.8 <b>LIME</b>	STONE, gray, highly weathered	98 979	80+/- 9.5+/-			~	0	50/1"				
ARE II		Auge	r Refusal at 8.8 Feet											
.sQU∕														
TIMML														
057 SL														
02185														
VELL														
NON-														
T LOG														
SMAR														
GEO														
PORT.														
AL REF														
RIGIN/														
PM OF														
ED FR														
ARATE		Stratification lines are approximate. In-situ, the transition may be gradual. Classification of rock materials has been estimated based on observation of disturb samples. Core samples and/or petrographic analysis may reveal other rock types.							Ha	mmer Type: Automati	c			
F SEP,	Advan	samples. ( cement Methe	eveal other rock types. See Exploration and Tes	sting P	rocedu	res for	а	Note	es:					
ALID I.	Con	unuous fiight	aborat a (If an	ory proo y).	cedure	s	All o	lescriptions taken from	n driller's fie	eld log.				
IOT V,	Aband	onment Meth	<mark>tion</mark> for ons.	r explan	ation o	of								
√G IS N	Bori	ng backfilled	with Auger Cuttings and/or Bentonite	Elevations were interpol	ated fr	rom a to	pogra	phic						
NG LO		WATE	R LEVEL OBSERVATIONS						Borin	g Started: 03-25-2018	Bor	ing Com	pleted:	03-25-2018
BORIN		Groundw	ater not encountered	lierr					Drill F	Rig: B53	Dril	ler: RM		
THIS				13910 W Lenex	′ 96th ⊺ ka, KS	Ter			Proje	ct No.: 02185057				

			E		G	NC	). B	8-1	6			F	Page	1 of 1
	PR	OJECT:	Summit Square II Apartments		CLI	ENT	: No	orth	Poir	nt Developmer	nt			
	SIT	E:	Donovan & Ward Road Lee's Summit, Missouri				RI	ver	side	, MISSOUR				
	<b>GRAPHIC LOG</b>	LOCATION	V See Exploration Plan 928925° Longitude: -94.391917° Approximate	e Surface Elev: 1002 (Ft.)	) +/-	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	HAND PENETROMETER (tsf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits LL-PL-PI
		FILL	- FAT CLAY, with limestone fragments,	brown	(Ft.)						<u> </u>			
/18						-	-		16		2.0	22	111	
PLATE.GDT 5/11		4.0 <b>SHAL</b>	<u>E</u> , light brown to gray, highly to modera	99 tely weathered	98+/-	- 5 -	-		14		4.5+	20	107	56-22-34
ERRACON_DATATEMF						-	-							
GPJ TE		8.9		99	93+/-	_		$\mathbf{\times}$	3	50/5"		12		
ATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 02185057 SUMMIT SQUARE		Stratificatio	on lines are approximate. In-situ, the transition ma	y be gradual.					Har	nmer Type: Automati	с			
SEPAR	Advor	Stratification lines are approximate. In-situ, the transition may be gradual. Classification of rock materials has been estimated based on observation of disturbed samples. Core samples and/or petrographic analysis may reveal other rock types. ement Method: See Exploration and Testin			d				NI-4					
OG IS NOT VALID IF S	Advan Con Aband Bori	onment Meth	sting Pr aborato a (If any tion for ons. ated fro	rocedur ory prod /). explar om a to	res for cedure nation c opogra	a s of phic	All d	es: lescriptions taken fron	n driller's fie	ld log.				
SING L		Groundw	R LEVEL OBSERVATIONS ater not encountered	There		-			Boring	g Started: 03-25-2018	Bori	ng Com	pleted: (	03-25-2018
THIS BOF				13910 W Lenex	96th T (a, KS	er			Drill F Proie	Rig: B53	Dril	er: RM		

			BORING LC	)G NC	). E	3-1	7			F	Page	1 of 1
PF	ROJECT	: Summit Square II Apartment	s	CLIENT	C: No	orth	Poir	nt Developme	nt			
SI	TE:	Donovan & Ward Road Lee's Summit, Missouri			RI	ver	side	, Missouri				
SRAPHIC LOG	LOCATIO	DN See Exploration Plan 38.928189° Longitude: -94.392013° Approxima	te Surface Elev: 1009.5 (Ft.)	DEPTH (Ft.)	ATER LEVEL	AMPLE TYPE	COVERY (In.)	FIELD TEST RESULTS	HAND NETROMETER (tsf)	WATER ONTENT (%)	DRY UNIT VEIGHT (pcf)	LIMITS
		FAT CLAY , with limestone fragment	ELEVATION (	Ft.)	≥≞	Ś	R		Ē	0	>	
	×	<u> </u>	,	-				40 50/48		00		
	X			-			6	10-50/1"		23		
	3.0 <b>LIM</b> 	<b>ESTONE</b> , with shale seams, gray, high	1006 ly weathered	<u>.5+/-</u>								
				5 -								
	7.5 <b>SH</b> /	<b>LE</b> , gray, highly weathered	100	- )2+/-	_							
	8.8		100	- )1+/-			3	50/3"				
	Stratifice	tion lines are approximate. In-situ, the transition	may be gradual				Han	mmer Type: Automat				
A -1	Classific samples	t				7						
Advar Co Aban Bo	ncement Me ntinuous flig donment Me ring backfille	rnoa: ht solid-stem augers thod: d with Auger Cuttings and/or Bentonite	See Exploration and Tes description of field and la used and additional data See Supporting Informat symbols and abbreviatio	sting Procedu aboratory pro (If any). tion for explains. ated from a t	nation	of	Note All d	es: lescriptions taken froi	n driller's fie	eld log.		
<u> </u>	WAT	ER LEVEL OBSERVATIONS	site plan.	aleu nom a t	opogra	ipnic	Borin	n Started: 02 25 2040		ng Com	nlotad	04-11 2010
	Ground	water not encountered	llerra		זכ		Drill F	Rig: B53	, Bori	ler: RM	pierea:	0 <del>1</del> -11-2018
			13910 W Lenex	96th Ter a, KS		-	Projec	ct No.: 02185057				

				BORING LO	)G	NC	). E	8-1	8			F	oage	1 of 1
	PR	OJECT:	Summit Square II Apartments	6	CL	IENT	: No	orth	Poir	nt Developme	nt			
	SIT	ſE:	Donovan & Ward Road Lee's Summit, Missouri		-		NI	ver	Side	, 191550011				
	HIC LOG	LOCATIO Latitude: 38	N See Exploration Plan 92797° Longitude: -94.391175°			H (Ft.)	(LEVEL	е туре	ERY (In.)	TEST	ND OMETER sf)	TER ENT (%)	UNIT HT (pcf)	ATTERBERG LIMITS
	GRAPH	DEPTH	Approxim	ate Surface Elev: 1008 (Ft. ELEVATION	) +/- (Ft.)	DEPT	WATEF OBSER\	SAMPL	RECOVI	FIELD	PENETR (tt	CONTE	DRY WEIGH	LL-PL-PI
		<b><u>FILL</u></b>	- FAT CLAY, with limestone fragments	s, brown 10	07+/-									
		FAT	CLAY (CH), light brown to gray, hard			-		$\mathbb{X}$	12	21-15-16 N=31		16		
IT 5/11/18						_	_		13	11-13-50/2"		16		
ATE.GD		4.2 LIME	STONE, with shale seams, gray, highl	y weathered	04+/-	_								
TEMPL						5 -								
L_DATA						-								
RACON						-								
J TER		8.5		999	9.5+/-	-								
EII.GP		^{8.7} <u>SHAI</u> Borii	LE, gray, highly weathered		9.5+/-			$\geq$	2	50/2"				
PARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 02185057 SUMMIT SQU		Stratification lines are approximate. In-situ, the transition may be gradual. Classification of rock materials has been estimated based on observation of disturbe samples. Core samples and/or petrographic analysis may reveal other rock types.							Har	nmer Type: Automat	ic			
IF SE	Advan Con	cement Meth	See Exploration and Ter description of field and I	<mark>sting F</mark> abora	Procedu tory pro	res for cedure	a	Note	es:	a duille de C	ما اد ت			
S NOT VALID	Aband Bori	onment Meth	nod: I with Auger Cuttings and/or Bentonite	used and additional data See Supporting Informa symbols and abbreviatio	a (If ar tion fo ons.	ny). or explar	nation	of	All d	escriptions taken from	n anner's fi	eia iog.		
LOG L		WATE	R LEVEL OBSERVATIONS	site plan.	iated f	rom a to	pogra	pnic	Borin	Retartade 02 05 0040	, h	ing Cara	plotad	04 11 2010
DRING		Groundw	vater not encountered	llerr			זנ			y Started: 03-25-2018	Dri BOI	ller: RM	hierea:	04-11-2018
THIS B(				13910 W Lenex	/ 96th xa, KS	Ter		-	Proje	ct No.: 02185057				

				BORING LC	)G	NC	). E	8-1	9			F	Dage	1 of 1
	PR	OJECT	: Summit Square II Apartments	i	CL	IENT	: No	orth	Poir	nt Developmer	nt			
	SIT	ſE:	Donovan & Ward Road Lee's Summit, Missouri				RI	ver	side	, MISSOUR				
	90	LOCATIO	<b>DN</b> See Exploration Plan			t.)	/EL ONS	ſΡΕ	(In.)	ŝT	ETER	(%)	T ocf)	ATTERBERG LIMITS
	PHIC I	Latitude: 3	8.928916° Longitude: -94.390398°			тн (F	ER LEV RVATI	LET	VERY	D TES SULTS	IAND ROME (tsf)	ATER	Y UNI GHT (p	
	GRA		Approxima	ate Surface Elev: 1003 (Ft.)	) +/-	DEF	WATE DBSEF	SAMF	RECO	FIEL	ENET	CON.	DR	LL-PL-PI
	****	DEPTH	- FAT CLAY, with limestone fragments	ELEVATION ( s, brown	(Ft.)									
		15		1001	5+/-	_	-							
		FAT	CLAY (CH), brown to light brown, stiff			_	-	$\bigtriangledown$	10	7-5-5				
/18						_		$\square$		N=10				
T 5/11		3.5 <b>SH/</b>	LE, with limestone seams, gray, highly	999 to moderately	).5+/-			$\sim$	2	50/2"				
TE.GD		wea	thered	,		_								
MPLA.						5 –	-							
ATATE						-	-							
						_	-	$\bigtriangledown$		28-30-50				
ERRA						_		$\square$	11	N=80				
GPJ T		8.6 <b>Bor</b>	ing Terminated at 8 6 Feet	994	.5+/-			~	1	50/1"				
ARE II .														
r squ														
LIMMU														
5057 S														
0218														
WELL														
ON-DO														
ART LO														
O SM/														
RT. GE														
REPO														
GINAL														
M ORIG														
D FROI														
RATEL		Stratification lines are approximate. In-situ, the transition may be gradual. Classification of rock materials has been estimated based on observation of disturbed					1	I	Hai	nmer Type: Automati	c	1	I	I
- SEPA	Advan	Classification of rock materials has been estimated based on observation of disturbed samples. Core samples and/or petrographic analysis may reveal other rock types. cement Method: tinuous flight solid-stem augers			sting F	Procedu	res for	а	Note	es:				
ALID IF	Con	itinuous flig	ht solid-stem augers	description of field and l used and additional data	aborat a (If ar	tory pro ny).	cedure	s	All c	lescriptions taken fron	n driller's fie	ld log.		
VOT V/	Aband	onment Method: se basifilled with Augus Cuttings and /cs Destantia					ation o	of						
JG IS I	Bori	ing backfille	nment Method: g backfilled with Auger Cuttings and/or Bentonite Elevations were interpol					phic						
ING LC		Ground	ER LEVEL OBSERVATIONS						Borin	g Started: 04-11-2018	Bori	ng Com	pleted:	04-11-2018
S BORI		Ciouna					J		Drill F	Rig: B53	Drill	er: RM		
THIS				13910 W Lenex	96th a, KS	ıer			Proje	ct No.: 02185057				

SUPPORTING INFORMATION

# **GENERAL NOTES**

#### DESCRIPTION OF SYMBOLS AND ABBREVIATIONS



#### DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

#### LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

	RELATIVE DENSITY OF COARSE-GRAINED SOILS (More than 50% retained on No. 200 sieve.) Density determined by Standard Penetration Resistance		CONSISTENCY OF FINE-GRAINED SOILS (50% or more passing the No. 200 sieve.) Consistency determined by laboratory shear strength testing, field visual-manual procedures or standard penetration resistance			
RMS	Descriptive Term (Density)	Standard Penetration or N-Value Blows/Ft.	Descriptive Term (Consistency)	Unconfined Compressive Strength Qu, (psf)	Standard Penetration or N-Value Blows/Ft.	
Ш Н	Very Loose	0 - 3	Very Soft	less than 500	0 - 1	
NGT	Loose	4 - 9	Soft	500 to 1,000	2 - 4	
<b>L</b> REI	Medium Dense	10 - 29	Medium Stiff	1,000 to 2,000	4 - 8	
ູ ເ	Dense	30 - 50	Stiff	2,000 to 4,000	8 - 15	
	Very Dense	> 50	Very Stiff	4,000 to 8,000	15 - 30	
			Hard	> 8,000	> 30	

#### RELATIVE PROPORTIONS OF SAND AND GRAVEL

Descriptive Term(s)				
of other constituents				
Trace				
With				
Modifier				

#### Percent of Dry Weight < 15 15 - 29 > 30

#### RELATIVE PROPORTIONS OF FINES

Descriptive Term(s) of other constituents Trace With Modifier Percent of Dry Weight < 5 5 - 12 > 12

#### **GRAIN SIZE TERMINOLOGY**

#### Major Component of Sample Boulders Cobbles

Gravel

Sand Silt or Clay Particle Size

Over 12 in. (300 mm) 12 in. to 3 in. (300mm to 75mm) 3 in. to #4 sieve (75mm to 4.75 mm) #4 to #200 sieve (4.75mm to 0.075mm Passing #200 sieve (0.075mm)

#### PLASTICITY DESCRIPTION

<u>Term</u> Non-plastic Low Medium High

Plasticity Index



# UNIFIED SOIL CLASSIFICATION SYSTEM

					Soil Classification	
Criteria for Assigning Group Symbols and Group Names Using Laboratory Tests ^A				Group Symbol	Group Name ^B	
	Gravels: More than 50% of coarse fraction retained on No. 4 sieve	Clean Gravels:	$Cu \ge 4$ and $1 \le Cc \le 3^{E}$		GW	Well-graded gravel F
		Less than 5% fines ^c	Cu < 4 and/or 1 > Cc > 3	E	GP	Poorly graded gravel F
		Gravels with Fines:	Fines classify as ML or MH		GM	Silty gravel F,G,H
Coarse Grained Soils: More than 50% retained		More than 12% fines ^c	Fines classify as CL or CH		GC	Clayey gravel F,G,H
on No. 200 sieve	Sands: 50% or more of coarse fraction passes No. 4 sieve	Clean Sands:	$Cu \ge 6$ and $1 \le Cc \le 3^{E}$		SW	Well-graded sand ¹
		Less than 5% fines ^D	$Cu < 6$ and/or $1 > Cc > 3^{E}$		SP	Poorly graded sand ¹
		Sands with Fines: More than 12% fines ^D	Fines classify as ML or MH		SM	Silty sand G,H,I
			Fines classify as CL or CH		SC	Clayey sand G, H, I
	<b>Silts and Clays:</b> Liquid limit less than 50	Inorganic:	$PI > 7$ and plots on or above "A" line $^{\rm J}$		CL	Lean clay ^{K,L,M}
			PI < 4 or plots below "A" line ^J		ML	Silt ^{K,L,M}
<b>F</b> i <b>o</b> i i <b>o</b> ii		Organic:	Liquid limit - oven dried	< 0.75	OL	Organic clay K,L,M,N
Fine-Grained Soils:			Liquid limit - not dried	< 0.75		Organic silt K,L,M,O
No. 200 sieve	Silts and Clays: Liquid limit 50 or more	Inorganic:	PI plots on or above "A" line		СН	Fat clay ^{K,L,M}
			PI plots below "A" line		MH	Elastic Silt K,L,M
		Organic:	Liquid limit - oven dried	< 0.75	ОН	Organic clay K,L,M,P
			Liquid limit - not dried			Organic silt ^{K,L,M,Q}
Highly organic soils:	Highly organic soils:         Primarily organic matter, dark in color, and organic odor         PT         Peat				Peat	

^A Based on the material passing the 3-inch (75-mm) sieve

- ^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.
- ^c Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- ^D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay

^E Cu = D₆₀/D₁₀ Cc = 
$$\frac{(D_{30})^2}{D_{10} \times D_{60}}$$

 $^{\sf F}$  If soil contains  $\geq$  15% sand, add "with sand" to group name.  $^{\sf G}$  If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- ^H If fines are organic, add "with organic fines" to group name.
- $^+$  If soil contains  $\geq$  15% gravel, add "with gravel" to group name.
- $^{\rm J}\,$  If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- ^K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- ^L If soil contains  $\ge$  30% plus No. 200 predominantly sand, add "sandy" to group name.
- ^M If soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- ^N  $PI \ge 4$  and plots on or above "A" line.
- ^o PI < 4 or plots below "A" line.
- ^P PI plots on or above "A" line.
- ^Q PI plots below "A" line.



llerracon

# **DESCRIPTION OF ROCK PROPERTIES**

WEATHERING					
Term	Description				
Unweathered	No visible sign of rock material weathering, perhaps slight discoloration on major discontinuity surfaces.				
Slightly weatheredDiscoloration indicates weathering of rock material and discontinuity surfaces. All the rock material m discolored by weathering and may be somewhat weaker externally than in its fresh condition.					
Moderately weathered	Less than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discolored rock is present either as a continuous framework or as corestones.				
Highly weathered	More than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discolored rock is present either as a discontinuous framework or as corestones.				
Completely weathered	All rock material is decomposed and/or disintegrated to soil. The original mass structure is still largely intact.				
Residual soil	All rock material is converted to soil. The mass structure and material fabric are destroyed. There is a large change in volume, but the soil has not been significantly transported.				

STRENGTH OR HARDNESS			
Description	Field Identification	Uniaxial Compressive Strength, PSI (MPa)	
Extremely weak	Indented by thumbnail	40-150 (0.3-1)	
Very weak	Crumbles under firm blows with point of geological hammer, can be peeled by a pocket knife 150-700 (1-5)		
Weak rock	Can be peeled by a pocket knife with difficulty, shallow indentations made by firm blow with point of geological hammer 700-4,000 (5-30)		
Medium strong	edium strong Cannot be scraped or peeled with a pocket knife, specimen can be fractured with single firm blow of geological hammer 4,000-7,000 (30-		
Strong rock Specimen requires more than one blow of geological hammer to fracture it 7,000-15,000 (50-10		7,000-15,000 (50-100)	
Very strong	Specimen requires many blows of geological hammer to fracture it	15,000-36,000 (100-250)	
Extremely strongSpecimen can only be chipped with geological hammer>36,000 (>250)			

DICCONTINU	IITV P	TION
		' I IC JIN

Fracture Spacing (Jo	ints, Faults, Other Fractures)	Bedding Spacing (May Include Foliation or Banding)		
Description	Spacing	Description	Spacing	
Extremely close	< ¾ in (<19 mm)	Laminated	< ½ in (<12 mm)	
Very close	³ ⁄ ₄ in – 2-1/2 in (19 - 60 mm)	Very thin	½ in − 2 in (12 − 50 mm)	
Close	2-1/2 in – 8 in (60 – 200 mm)	Thin	2 in – 1 ft (50 – 300 mm)	
Moderate	8 in – 2 ft (200 – 600 mm)	Medium	1 ft – 3 ft (300 – 900 mm)	
Wide	2 ft – 6 ft (600 mm – 2.0 m)	Thick	3 ft – 10 ft (900 mm – 3 m)	
Very Wide	6 ft – 20 ft (2.0 – 6 m)	Massive	> 10 ft (3 m)	

<u>Discontinuity Orientation (Angle)</u>: Measure the angle of discontinuity relative to a plane perpendicular to the longitudinal axis of the core. (For most cases, the core axis is vertical; therefore, the plane perpendicular to the core axis is horizontal.) For example, a horizontal bedding plane would have a 0 degree angle.

ROCK QUALITY DESIGNATION (RQD*)				
Description	RQD Value (%)			
Very Poor	0 - 25			
Poor	25 – 50			
Fair	50 – 75			
Good	75 – 90			
Excellent	90 - 100			

*The combined length of all sound and intact core segments equal to or greater than 4 inches in length, expressed as a percentage of the total core run length.

Reference: U.S. Department of Transportation, Federal Highway Administration, Publication No FHWA-NHI-10-034, December 2009 <u>Technical Manual for Design and Construction of Road Tunnels – Civil Elements</u>

