

DESIGN MEMO

	Overnight
	Regular Mail
	Hand Delivery
\square	Other: email

TO:	Jim Eden 220 SE Green St. Lee's Summit, MO 64063
FROM:	Adam Hilgedick, PE Olsson Associates
RE:	Kessler Ridge Apartments, Water Line Design
DATE:	6/12/2018
OA PROJECT #:	017-3697

NOTES:

This memo identifies the purpose and procedure for developing a water model for the proposed development and infrastructure improvements at Kessler Ridge Apartments in Lee's Summit, Jackson County, Missouri.

The City of Lee's Summit (City) provides water around the proposed 5.5-acre residential development including apartments and townhouses. Plans for private water service extensions to the project site will be designed in accordance with City and Missouri Department of Natural Resources (MDNR) standards.

The Developer intends to extend a 10-inch private service around the building and branch to 8inch private services within the development, tying into the existing system along SW Longview Boulevard. The private services will be routed around the proposed buildings to provide fire suppression water needs. A backflow preventer will be installed after the connection to the public main. Domestic needs will be served from the existing public mains surrounding the development.

The hydraulic model was created with H2ONET software and calibrated using hydrant tests provided by the City, included as Appendix A. The hydrant tests yielded pressures from 84 to 90 pounds per square inch (psi) static and 80 to 84 psi residual, with observed flows ranging from 1,374 to 1,444 gallons per minute (gpm).

The static and residual pressures, and flow rates from this test were used to calibrate the water model to conditions experienced by the system. A *reservoir* was used to represent the existing distribution system and *junctions* were used to connect *pipes* and represent service connections, fittings, and hydrants. Elevations from Google Earth were used throughout the model at *junctions*. When the base model is constructed, flows obtained from field testing are entered as a demand at a *junction* and the corresponding pressure at an adjacent *junction* is compared to the residual pressure from the field test. Once calibrated to existing conditions, proposed improvements were added into the model. Two scenarios, steady state and fire flow analysis, have been analyzed using the modeling software. Exhibit 1 (attached) illustrates the hydraulic model.

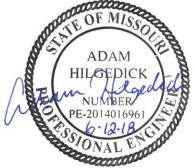
The steady state scenario represents how the system is performing in its current condition, with no additional demands placed on the system. This is comparable to the static pressures experienced at hydrants during testing. Results of the steady state scenario are presented in Appendix B, which includes information about *junctions*, *pipes*, and *reservoirs*.

A domestic demand was applied to *junctions* representing water usage on a peak day. Residential and commercial rates were assumed, based on the building use and corresponding Equivalent Dwelling Unit determinations. A peaking factor of 5 was applied to the flow rates. Multiple residences and businesses are accounted for on individual *junctions*.

For the fire flow analysis, a fire flow demand of 800 gpm was applied to five *junctions* which represent new private hydrants within the development. Domestic demands were also included in the fire flow analysis at the assumed peak day demand. Results of the fire flow analysis are presented in Appendix C. The analysis shows sufficient capacity in the private service line to provide required demand while meeting statutory pressure requirements. Water velocities in the pipes of this test were under the maximum recommended 20 feet per second, and pressures in all junctions were at least 20 psi, satisfying safety requirements of MDNR.

Flow reports with negative values are representative of the direction of flow and do not indicate water loss. Water loss has not been calculated in this model. Headloss calculations were determined using the Hazen-Williams method. Roughness coefficients of 140 were used which correspond to the age, material, and condition of water mains within the existing and proposed system. The majority of the pipe in the model area is recently constructed PVC and is expected to be in good condition.

The proposed private service extension, as analyzed, has capacity to provide a sufficient flow volume, in the event of a fire and during a peak day condition for domestic demands. While maintaining pressure in the line greater than the minimum design standard.


Should you have any questions regarding this memo, please contact me at 816.299.4364 or ahilgedick@olssonassociates.com.

Sincerely,

lgedide

Adam Hilgedick, PE

cc. Nick Heiser– Olsson Associates

Ĕ.

APPENDIX "A" Hydrant Test Information

Project Name: Kessler Ridge Apartments Project Number: 017-3697

Date:	6/12/2018
By:	AKH

	Pi	ressure (ps	i)	Inches		Flow	(GPM)	(psi)	
Hydrant #	Static	Residual	Pitot	Orifice Size	Coefficient	Observed	Available	pressure	drops
1	84	80	67	2.5	0.9	1373	6138	64	4
2	90	85	74	2.5	0.9	1443	6002	70	5
3	88	84	74	2.5	0.9	1443	6666	68	4
			р	d	С	Q/Q _F	Q _R	h _r	h _f

Residual Baseline 20 psi

 $Q = 29.83 \text{ cd}^2 \sqrt{p}$

 $Q_{\rm R} = Q_{\rm F} \times \frac{{\rm h}_{\rm r}^{0.54}}{{\rm h}_{\rm f}^{0.54}}$

STATIC PRESSURE

Pressure reading before water flows.

RESIDUAL PRESSURE

Pressure reading while water is flowing (from an outlet other than the flow outlet.)

PITOT PRESSURE

Reading taken by a pitot gauge inserted into the center of the flowing outlet, at a distance away from the lip of the outlet of about half the nozzle's diameter.

COEFFICIENT

Since hydrant nozzles typically don't produce perfect discharge columns, this is a correction factor which is often used to compensate for errant pitot readings. Hydrant manufacturers should be able to provide coefficients for their products. For hydrants where the coefficient is unknown, we use .95 or .9 depending upon how uniform the discharge stream looks when the hydrant is opened. If a flow tube or "stream straightner" is used on the hydrant, the coefficient would be 1.

RESIDUAL BASELINE

A pressure which you determine is the lowest that the hydrant would be pulled down during actual use. NFPA states that the basis for fire flow calculations will be 20 psi residual, however in low pressure areas they allow calculations based on one-half the static pressure. Ergo, flow from a hydrant that has only a 30 psi static pressure can be calculated on a basis of drawing it down to 15 psi rather than 20.

OBSERVED FLOW

This is a calculation in GPM of the actual flow from one outlet flowing fully opened.

AVAILABLE FLOW

This is the calculated maximum capacity of the hydrant if it is pumped down to the basis residual pressure (usually 20 psi).

Q FORMULA

The Q formula produces a value in GPM based on the nozzle diameter and pitot pressure (solving

for "Q".)

 $Q = 29.83 \text{ cd}^2 \sqrt{p}$

Where Q=observed flow, c=coefficient, d=outlet diameter, p=pitot pressure.

HAZEN-WILLIAMS FORMULA

This formula calculates available flow based on the readings taken before and during the single outlet flow test (solving for "QR".)

$$Q_R \; = \; Q_F \times \frac{h_r^{0.54}}{h_f^{0.54}}$$

Where Q_F=observed flow, h_r is the drop in pressure from the static pressure to the desired residual baseline and h_f is the drop in psi from static pressure to the actual residual pressure that was measured during the test. Please note that we are calculating to the .54 power (a fractional number.)

We loaded these formulas into a computer program to make them practical to work, however a programmable scientific calculator can also provide efficient results. **Note:**

In most instances the Hazen-Williams formula will calculate available flows that are greater than observed flows. However on extremely weak water mains hydrants may fall below the baseline residual when an outlet is opened up. If there is sufficient residual pressure to take an accurate reading, the formula will still calculate what the hydrant produces at 20 psi (or half the static pressure) which in these cases will be slightly less than the observed flow. According to NFPA, these hydrants are to be rated at their available flows at the appropriate residual pressure so the lower GPM reading is the one to be used for rating the hydrant. If the residual pressure is too low to take accurate readings discharging an "open butt" outlet, a small smooth bore tip can be attached to the outlet, the calculations based on the size of the tip, and the formula will still work.

APPENDIX "B" Steady State Scenario

	-	2	3	4	2	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25 [26
9	J10	J12	J14	J16	J18	J20	J22	J24	J26	J28	J30	J32	J34	J36	J38	J40	J42	J44	J46	J48	J50	J52	J54	J56	J58	J60
Demand (gpm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Elevation (ft)	950.00	969.00	1,015.00	1,006.00	973.00	990.00	982.00	986.00	982.00	1,006.00	1,005.00	1,011.00	1,007.00	995.00	978.00	982.00	00.066	1,000.00	1,008.00	1,007.00	1,007.70	997.00	996.00	992.50	996.00	994.70
Head (ft)	1,203.30	1,203.30	1,203.30	1,203.30	1,203.30	1,203.30	1,203.30	1,203.30	1,203.30	1,203.30	1,203.30	1,203.30	1,203.30	1,203.30	1,203.30	1,203.30	1,203.30	1,203.30	1,203.30	1,203.30	1,203.30	1,203.30	1,203.30	1,203.30	1,203.30	1,203.30
Pressure (psi)	109.75	101.52	81.59	85.49	99.79	92.42	95.89	94.16	95.89	85.49	85.92	83.32	85.06	90.26	97.62	95.89	88.52	88.09	84.62	85.06	84.75	89.39	89.82	91.34	89.82	90.39

d)
å
۵.
1
e
ta
S
1
ac
te
S

sal Count																																
Status Flow Reversal Count	0	0	0	0	C	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Status	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Onen
HL/1000 (ft/k-ft)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	000
Headloss (ft)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	000
Velocity (ft/s)	00.0	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	000
(gpm)	00.0	00.0	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Roughness	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00
Diameter (in)	16.00	16.00	16.00	8.00	8.00	12.00	12.00	12.00	8.00	8.00	8.00	8.00	8.00	8.00	12.00	12.00	12.00	12.00	8.00	8.00	8.00	8.00	8.00	12.00	16.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00
(ft)	4,000.00	416.00	1,195.00	1,940.00	1,102.00	1,160.00	421.00	4,000.00	341.00	524.00	389.00	282.00	361.00	298.00	605.00	257.00	360.00	553.00	435.00	590.00	353.00	238.00	1,567.00	1,168.00	108.19	655.01	374.36	310.03	51.39	203.83	225.61	220.69
Fo Node	J10	J12	J14	J18	J20	J22	J24	J24	J26	J42	J40	J34	J36	J32	J30	J46	J28	J28	J16	J44	J28	J38			J48	J48	J50	J52	J54	J56	J58	J60
From Node To Node	RES9000	J10	J12	J16	J18	J20	J22	RES9002	J12	J26	J42	J40	J34	J34	J32	J30	J46	J14	J28	J26	J44	J40	J38	J20	J14	J16	J30	J50	J52	J54	J52	J58
₽	P11	P13	P15	P19	P21	P23	P25	P27	P29	P31	P33	P35	P37	P39	P41	P43	P45	P47	P49	P51	P53	P55	P57	P59	P61	P63	P65	P67	P69	P71	P73	P75
		2	С 1	4	2	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32

Date: Tuesday, June 12, 2018, Time: 11:19:12, Page 1

Steady State - Reservoir

₽	(gpm)	Head (ft)
RES9000	0.00	1,203.30
RES9002	0.00	1.203.30

Date: Tuesday, June 12, 2018, Time: 11:19:23, Page 1

APPENDIX "C" Fire Flow Analysis

Fire Flow with Domestic - 10in Header w/ 8in Branches - Junction

	0	Demand (gpm)	Elevation (ft)	(ft)	Pressure (psi)
-	J10	0.00	950.00	1,184.19	101.47
2	J12	0.00	969.00	1,182.20	92.38
3	J14	3.00	1,015.00	1,178.99	71.06
4	J16	53.00	1,006.00	1,176.08	73.70
5	J18	0.00	973.00	1,175.63	87.80
9	J20	0.00	00.066	1,175.37	80.32
2	J22	0.00	982.00	1,179.37	85.52
8	J24	0.00	986.00	1,181.65	84.77
6	J26	30.00	982.00	1,178.07	84.96
10	J28	0.00	1,006.00	1,175.11	73.28
1	J30	0.00	1,005.00	1,167.48	70.40
12	J32	345.00	1,011.00	1,170.73	69.21
13	J34	178.00	1,007.00	1,172.50	71.71
14	J36	0.00	995.00	1,172.50	76.91
15	J38	0.00	978.00	1,175.78	85.70
16	J40	0.00	982.00	1,175.23	83.73
17	J42	0.00	00.666	1,176.44	76.89
18	J44	9.00	1,000.00	1,176.19	76.34
19	J46	214.00	1,008.00	1,170.37	70.36
20	J48	0.00	1,007.00	1,178.97	74.52
21	J50	800.00	1,007.70	1,141.02	57.77
22	J52	22.00	997.00	1,126.48	56.10
23	J54	800.00	996.00	1,124.53	55.69
24	J56	800.00	992.50	1,122.38	56.28
25	J58	800.00	996.00	1,117.90	52.82
26	J60	800.00	994.70	1,115.58	52.38

Date: Tuesday, June 12, 2018, Time: 11:15:48, Page 1

Status Flow Reversal Count	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Status Flow	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	Open	
HL/1000 (ft/k-ft)	4.78	4.78	2.69	0.23	0.23	3.45	5.41	5.41	12.12	3.11	3.11	9.69	0.00	5.93	5.37	11.24	13.16	7.01	2.22	3.18	3.06	2.29	2.29	3.97	0.15	4.42	70.70	46.89	38.02	10.53	00 00
Headloss (ft)	19.11	1.99	3.21	0.45	0.26	4.00	2.28	21.65	4.13	1.63	1.21	2.73	0.00	1.77	3.25	2.89	4.74	3.88	0.97	1.88	1.08	0.55	3.59	4.64	0.02	2.89	26.47	14.54	1.95	2.15	01.0
Velocity (ft/s)	5.16	5.16	3.78	0.65	0.65	3.61	4.60	4.60	5.51	2.64	2.64	4.88	0.00	3.75	4.58	6.83	7.44	5.29	2.21	2.68	2.62	2.24	2.24	3.89	0.80	3.19	16.43	13.16	10.21	5.11	10.01
Flow (gpm)	3,231.81	3,231.81	2,368.90	101.94	101.94	-1,271.07	-1,622.19	1,622.19	862.91	413.72	413.72	764.84	0.00	586.84	1,614.86	-2,407.14	-2,621.14	1,865.49	-345.46	419.19	410.19	-351.12	-351.12	1,373.01	500.41	-500.41	4,022.00	3,222.00	1,600.00	800.00	1 800 00
Roughness	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00 -	140.00 -	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00	140.00
Diameter (in)	16.00	16.00	16.00	8.00	8.00	12.00	12.00	12.00	8.00	8.00	8.00	8.00	8.00	8.00	12.00	12.00	12.00	12.00	8.00	8.00	8.00	8.00	8.00	12.00	16.00	8.00	10.00	10.00	8.00	8.00	8 00
Length (ft)	4,000.00	416.00	1,195.00	1,940.00	1,102.00	1,160.00	421.00	4,000.00	341.00	524.00	389.00	282.00	361.00	298.00	605.00	257.00	360.00	553.00	435.00	590.00	353.00	238.00	1,567.00	1,168.00	108.19	655.01	374.36	310.03	51.39	203.83	225.61
Fo Node	J10	J12	J14	J18	J20	J22	J24	J24	J26	J42	J40	J34	J36	J32	J30	J46	J28	J28	J16	J44	J28	J38	J22	J32	J48	J48	J50	J52	J54	J56	J58
From Node To Nod	RES9000	J10	J12	J16	J18	J20	J22	RES9002	J12	J26	J42	J40	J34	J34	J32	J30	J46	J14	J28	J26	J44	J40	J38	J20	J14	J16	J30	J50	J52	J54	J52
₽	P11	P13	P15	P19	P21	P23	P25	P27	P29	P31	P33	P35	P37	P39	P41	P43	P45	P47	P49	P51	P53	P55	P57	P59	P61	P63	P65	P67	P69	P71	P73
		2	33	4	2	9		0	6	10	1	12	13	14	15	16	17	18	19	20	3	22	23	24	25	26	27	28	29	200	31

Fire Flow with Domestic - 10in Header w/ 8in Branches - Pipe

Date: Tuesday, June 12, 2018, Time: 11:40:58, Page 1

Fire Flow with Domestic - 10in Header w/ 8in Branches - Reservoir

	₽	Flow (gpm)	(ft)
1	RES9000	-3,231.81 1,203.30	1,203.30
2	RES9002	-1,622.19 1,203.30	1,203.30

Date: Tuesday, June 12, 2018, Time: 11:16:19, Page 1