

132 Abbie Ave. Kansas City, KS 66103 P: 913.317.9500 ric-consult.com

April 13, 2018

Mike Weisenborn Project Manager, Development Center City of Lee's Summit 220 SE Green Street Lee's Summit, MO 64063

Re: 18-0129 Northpoint Summit Square II Apartments Sanitary Sewer Impact Statement

Mr. Weisenborn:

Per the requirements provided by the City of Lee's Summit's planning code regarding the final development plan submittal for the proposed Summit Square II Apartments, a sanitary sewer impact analysis has been conducted. The following is a report of the analysis.

PROJECT DESCRIPTION

An approximately 12.8-acre multi-family complex is currently being proposed at the southeast corner of NW Ward Road and NE Tudor Road in Lee's Summit, MO. A site location map has been provided as Exhibit A. The complex generally consists of five primary 4/5-story buildings, a courtyard, and associated parking facilities. The entire site is located within the Little Cedar Creek watershed. Refer to Exhibit B for a layout of the proposed complex.

METHODOLOGY

Based on the provisions outlined in the Lee's Summit Design and Construction Manual (LS DCM) 6500 for Sanitary Sewers, the peak sanitary sewer flow has been determined. Using as-builts and survey information on the existing sanitary sewer infrastructure, the existing sanitary sewer system has been analyzed to determine if the proposed flows will require any modifications to the existing system.

PROPOSED PEAK FLOW

In 2016, a preliminary design was approved for the Summit Technology Campus. This preliminary design identified primarily office space for the property. A preliminary sanitary impact report was prepared by THHinc at this time, providing an estimate of proposed sanitary peak flows based on this use. The lots proposed herein are identified as lots 1 and 5 in the 2016 THHinc sanitary impact report. A copy of the report has been enclosed with this statement as Exhibit C.

From the LS DCM 6500, the peak sanitary sewer flow is the summation of the peak base flow, the peak infiltration, and the peak inflow. A summary of the flows calculated for the proposed use has been provided in Table 1. Also provided in Table 1 are the peak flows estimated for the proposed use in the 2016 sanitary impact report and the increase in the estimated peak flows in the currently proposed design from the peak flows calculated in the 2016 plan. Refer to Exhibit D for details regarding the proposed peak flow calculations.

	Table 1. Summary of Sanitary Sewer Peak Flows								
			Peak	Peak	Proposed	Peak Flow	Increase in		
Lot	Area	Peak Base	Infiltration	Inflow	Peak Flow	Calculated in THHinc	Estimated		
Description	(ac.)	Flow (gpd)	(gpd)	(gpd)	(gpd)	Report (gpd)	Demand (gpd)		
Lot 1 (South)	8.1	12,150	4,050	153,914	170,114	89,018	81,096		
Lot 5 (North)	4.7	7,050	2,350	96,781	106,181	51,798	54,383		
Totals	12.8	19,200	6,400	250,695	276,295	140,816	135,479		

132 Abbie Ave. Kansas City, KS 66103 P: 913.317.9500 ric-consult.com

SANITARY IMPACT ANALYSIS

The capacities of the existing sanitary sewer infrastructure have been modeled to verify that the existing infrastructure is adequate to support the estimated peak sanitary sewer flows from the proposed site. Sanitary flows from buildings 1, 2, and 3 as labeled in Exhibit B (Lot 1 in the 2016 THHinc Sanitary Impact Report) are to be conveyed south to the existing sanitary sewer manhole north of Donovan Road at the southeast corner of the site. The existing sewer main immediately downstream of this manhole is an 8" PVC situated at a 1.15% slope. Flows from buildings 4 and 5 as labeled in Exhibit B (Lot 5 in the 2016 THHinc Sanitary Impact Report) are proposed to tie into the existing sanitary sewer manhole south of NE Tudor Road at the northeast corner of the site. The existing sewer main immediately downstream of this manhole is a 12" PVC situated at a 0.61% slope.

Based on the parameters of the existing sewer mains determined from the survey, the flow capacities of the existing pipes have been calculated using Manning's equation. A comparison of the flow capacities of the existing sewer mains and the design flow rates determined from the peak flow analysis has been summarized in Table 2. Refer to Exhibit E for details regarding the performance of the existing sanitary pipes under proposed conditions.

	Table 2. Summary of Existing Sanitary Flow Capacities									
Proposed Peak Flow Design Flow Rate Existing Pipe Capacity										
Lot Description	(gpd)	(cfs)	(cfs)							
Lot 1 (South)	170,114	0.263	1.88							
Lot 5 (North)	106,181	0.164	4.02							

SUMMARY

The proposed use identified herein results in an increase in the expected sanitary sewer flows as compared to the approved development plan and sanitary sewer impact report submitted in 2016 by THHinc. The existing infrastructure, however, is still adequate to receive and convey the flows from the proposed multi-family development. It is our opinion that no modifications to the existing public sanitary sewer infrastructure will be required to accommodate the flows from the proposed development.

If you have any questions or need additional clarification, please do not hesitate to contact us.

Sincerely,

Mick E. Slutter, P.E. <u>mslutter@ric-consult.com</u>

Kelsey L. Fitzpatrick, E.I. <u>kfitzpatrick@ric-consult.com</u>

RENAISSANCE INFRASTRUCTURE CONSULTING

April 2018

Exhibit A Site Location Map

	S Ex	heet hibit A
	Sanitary Sewer Impact Statement	18-0129 Northpoint Summit Fair II Apartments
		Site Location Map
		4/13/2018 AREVISION REVISION
	Renaissance	Consulting 913.317.9500 Rue 913.317.9500 Citry, Kansas 66103 www.ric-consult.com
$ \begin{array}{c} $		I32 ABBIE KANSAS CI

Exhibit B Proposed General Layout

Exhibit C

THHinc Sanitary Sewer Demand Report

SEWER DEMAND REPORT

for

116/16

Townsend Capital, LLC

Summit Orchard Lee's Summit, MO

March 2016

3]3]16 Date:

I hereby certify this engineering document was prepared by me or under my direct personal supervision and that i am a duly licensed Professional Engineer under the lave of the State of Missouri

John V. Huss, P.E.

License No. E-20579

My renewal date is December 31, 2017

-2016-039-Received

MAR 0 4 2015

formulation of many states and

Planning & Codes Admin

PREPARED BY

RHGINEERING CO

Introduction

This report details the preliminary design of the sewer system to support the Summit Orchard Preliminary Development Plan (PDP), a mixed-use development, at the Summit Technology Campus (STC) located in Lee's Summit, Missouri. See Figure 1 for a site location map.

Project Description

The Summit Orchard is located southeast of the Interstate-470/State Highway 50 interchange. The entire STC development covers approximately 367 acres, and is bordered to the south by Chipman Road, to the north by I-470, to the west by Blue Parkway, and to the east by the Union Pacific Railroad. The Summit Technology Campus is split by Ward Road which was opened to traffic in October 2008.

Townsend Capital LLC proposes improvements to the existing Summit Technology Campus, including the addition of a variety of mixed business commercial and residential uses along Ward Road. In this report, the site for these improvements will be referred to as the "50 Acre Tract." The current proposed building layout for the 50 Acre Tract can be found in the PDP.

Existing Sewer System

There is an existing sewer connection available along the South edge of Tudor Road, while the sewer is deep enough to serve the proposed development, extending the sewer would require existing sewer to have nearly thirty feet of cover.

The sewer demand for the existing development, within the Little Cedar Creek Watershed, was evaluated. In this analysis, it is assumed the projected flow pumped from the Tudor Road Pump Station to the Little Cedar Creek Interceptor is capped at 4 MGD. This analysis can be seen in Table 2 located in the Appendix.

Proposed Sewer Facilities:

To serve this development, we propose a new 8" PVC sewer line. The proposed 8" sewer will extend from an existing connection point East of the 50 Acre Tract at Manhole 23-120. The new sewer will run Westerly beneath existing railroad to a new manhole on Lot 4, West of the 50 Acre Tract property line.

The system includes two 8" PVC sewer lines extending from the new manhole located in Lot 4. One line runs Northerly and turns Westerly to Lot 1 to serve future development on the 50 Acre Tract. A second 8" PVC sewer line runs Southwesterly across the proposed Donovan Road onto and across Lot 3 to serve future developments on the 50 Acre Tract.

Page 2 of 4

All sewer facilities will be constructed in accordance with MoDNR and Lee's Summit standards and specifications.

Design and Methodology:

The total peak flow from the developed 50 Acre Tract is calculated using methods outlined in section 6500 of the City of Lee's Summit, Missouri Design Criteria. Once PBF is determined, additional demand is added to account for inflow & infiltration. Peak infiltration is assumed to be 250-gpd/acre for non-residential land use and 500-gpd/acre for residential areas. Peak inflow is calculated using the Q=KiA method.

Table 1 shows the peak flows that are estimated for development of the 50 Acre Tract.

Tract/Lot	Peak Base Flow (GPD)	Peak Infiltration (GPD)	Sewer Inflow (GPD)	Peak Flow (GPD)
Lot 1	9,450	2,025	77,543	89,018
Lot 2	17,426	2,153	95,636	115,215
Lot 3	32,970	1,870	87,236	122,076
Lot 4	20,415	6,805	245,552	272,772
Lot 5	5,400	1,165	45,233	51,798
Total Estimated Peak Flow				650,879

Table 1: Estimated Sewer Peak Flow 40 Acre Tract

*See Figure 2 for tract/lot locations

** Sewer Inflow Interpolated from the table in Section 6501.C.1.d of the City of Lee's Summit, Missouri Design Criteria

Results of Analysis:

Combining the results of Table 1 yields a peak flow of 650,879 gpd, or 1.0 cfs. This peak flow is added to the existing system downstream analysis shown in Table 3 and the resulting analysis is shown in Table 4 also located in the Appendix. The existing conditions plus the proposed development downstream analysis indicate that no pipes will be operating under surcharge.

Manning's Equation supports that a 8" PVC pipe at minimum grade has sufficient pipe flow capacity to carry this flow. The remainder of sewer lines serving various future developments is sized at 8" PVC.

Figure 3 in the Appendix shows the proposed route of the main 8" PVC sewer as well as the additional 8" PVC sewer services.

APPENDIX

	Pages
Figure 1 – Vicinity Map	1
Figure 2 – Service Area Map	1
Figure 3 – Sewer Layout	1
Table 2 - Existing Little Cedar Creek Watershed Downstream Sewer Analysis	: 1
Table 3 – Existing + 50 Acre Tract Downstream Sewer Analysis	1

Table 2 - Existing Little Cedar Creek Watershed Downstream Sewer Analysis

	Upstream	n Downstrear	n Diameter	Slope	Capacity	Projected	1	Capacit	Projected	
	МН	мн	(in.)	(ft/ft)	(mgd)	Flow (MGD)	Q/q	{cfs}	Flow (cfs)	
Ì	23-120	23-036	1	0 0.0	1 1.53	0.4	6 0.299	2.37	0.71	
	23-036	23-035	1	0 0.01	5 1.94	0,4	6 0,236	3.00	0.71	
	23-035	23-034	1	6 0.0	2 2.17	0.4	6 0.213	3.36	0.71	
	23-034	23-024	1	2 0.0	2 3.53	0.4	5 0.130	5.46	0.71	Į
	23-024	23-023	1	2 0.0	2.49	0.9	2 0.368	3.86	1.42	Ĺ
	23-023	23-622	1	2 0.0	2 3.53	0.9	z 0.260	5.45	1.42	l I
	23-022	23-021	1	2 0.0	3.53	0.9	0.260	5.46	1.42	1
	23-021	23-007		2 0.0	2.49	0.9	2 0.368	3.86	1.42	Í.
	23-005	23-006		0.03	53.73	8.14	0,151	83,13	12,59	
	23-000	23-118		0.0034	19.05	8.14	0.299	42.13	12.59	
ł	29-140	23-117		0.0052	26.47	0.14	0.025	56.42	12,35	
	23-002	23-001	36	0.0061	36.47	B 14	6 223	56.43	12.59	
	23-001	22-044		0.015	62.65	8.14	0.110	95.94	12.59	į.
Ē	2-044	22-043	36	0.0315	82.88	8.14	0.098	128.24	12.59	
Ē	22-043	22-042		0.0088	43.81	10.41	0.238	67.78	16.11	
Ŀ	2-042	22-041	36	0.0043	30.62	10.41	0.340	47.38	16.11	
1	2-041	22-040	36	0.038	91.03	10,41	0.114	140.85	15.11	
	2-040	22-039	36	0.0091	44.55	10.41	0.234	68.93	16.11	
2	2-039	22-038	36	0.0118	50.73	10.41	0,205	78.49	15.11	
2	2-098	00-001	36	0.0106	48.08	10.41	0.217	74.39	16.11	
0	0-001	00-002	36	0.0138	54.86	10,41	0.190	84.88	16.11	
0	0-002	E00-003	36	0.075	128.74	10.41	0.081	199.19	16.11	
10	0-003	00-004	36	0.0285	78.84	14,95	0.190	121.98	1 23.13	-
0	0-004	00-005	30	0.024	44.49	14.95	0.336	68.84	23.13	
2	0-005	00.006	30	0,0074	24,70	14.95	0.605	38.22	23.13	
0	0-006	100-007	30	0.0092	27.55	14.95	0.543	42.52	23.13	
10	0.007		30	0.0043	10.53	14.93	0.794	20.45	20.13	
ľ	0.000	00-003	20	0.0047	15.05	14.95	0.735	25.52	73 13	
ľ	0-000 0-010	00-010	30	0.0035	30.80	14.95	0.485	47.65	23,13	
0	0-011	00-012	30	0.0084	26.32	14.95	0.568	40.72	23.13	
ō	0-012	00-013	30	0.0084	26.32	16.34	0.621	40.72	25.28	~
Ø	0-013	00-014	30	0.0144	34.46	16.34	0.474	53.32	25.28	
O.	0-014	00-015	30	0.0093	27.70	16.34	0.590	42.85	25.28	
Ø	0-015	00-016	30	0.0099	28.57	16.34	0.572	44.21	25.28	
00	016	00-017	30	0.0101	28.86	16.34	0.566	44.66	25.28	
Ó	>017	00-018	30	0.0184	38.96	16,34	0.419	50.27	25.28	
00	N-018	00-019	- 30	0.0053	20.91	16.34	0.781	32.35	25.28	
00	1-019	00-020	30	0.0053	20.91	16.94	0.781	32.35	25,28	
00)-020	00-021	30	0.0161	36.44	16,34	0.448	56.3B	25.28	
00	-021	00-022	30	0.0222	42.79	16,34	0.382	66.21	25.28	
E	1022	00-023	30	0.0169	37.33	10,34	0.458	37.70	25.48	
	023	00.015		0.0006	28.14	16.34	0.581	43.34	25.20	
60	-025	00-025	30	0.000	28.14	16.34	0.501	43.54	25.28	
60	-026	00-027	301	0.00991	28.57	16.34	0,572	44,21	25.28	
00	-027	00-028	36	0,0047	92.02	16.34	0.510	49.54	25,28	
00	-028	00-030	36	0.0037	28.41	16.34	0.575	43.95	25.28	
00	-030	00-031	36	0.0039	29.16	16.34	0.560	45.12	25.28	
00	031	00-032	36	0.0086	43.31	16.34	0.377	67.01	25.28	
00	-032	00-033	36	0.0258	75.01	16.34	0.218	115.06	25.28	
60	-033	00-034	36	0.D128	52.83	16.34	0.309	81.75	25.28	
00	-034	00-035	36	0.0044	30.98	16.34	0.527	47.93	25.28	
00	-035	00-036	36	0.0045	31.33	16.34	0.521	48.47	25.28	
00	036	DG-037	36	0.0043	30.62	16.34	0.533	47.98	25.28	
00	037	00-038	42	0.002	31.50	15.34	0.519	48.74	25.28	
00	038	00-039	42	0.0022	33.04	16.34	0,494	51.12	25.28	
00-	039 0	30-040	42	0.002	31.50	16.34	0.519	48.74	25.28	
00-	040 0	00-041	42	0.0022	33.04	16.34	0.494	31.12	25.28	
00-	041 0	N-042	42	0.002	20.71	10,54	0.513	40./4	25.28	
00-	042	10-045	42	0.0019	31 50	10.34	0.332	47.31	12.20	
00-	043 K	0-044	42	0.002	31.50	16.34	0.519	48.74	25.20	
00-	045	0-046	A7	0,002	31.50	16.34	0,519	48.74	25.2B	
~	046	0.001045	471	0.0010	20 71	16.34	0 5 3 2	47 51	25.28	

~

Table 3 - Existing Little Ceder Creek Watershed Downstream Sewer Analysis

Upstream	Downstream	Diameter	Slope	Capacity	Projected	T	Capacity	Projected
мн	Мн	(in.)	(ft/ft)	(mgd)	Flow (MGD)	Q/4	(cfs)	Flow (cfs)
23-120	28-036	10	0.01	1.53	1.10	0.720	2,37	1.71
23-036	23-035	10	0.016	1.94	1.10	0.569	3.00	1.71
23-035	23-034	10	0.02	2.17	1.10	0.509	3.35	1.71
23-034	23-024	12	0.02	3.53	1.10	0.313	5.46	1.71
23-024	23-023	12	0.01	2,49	1.56	0.627	3.86	2.42
23-023	23-022	12	0.02	3.53	1.56	0.443	5.46	2.42
23-022	23-021	12	0.02	3.59	1.56	0,443	5.46	2.42
23-021	23-007	12	0,01	2.49	1.56	0.627	3,86	2.42
23-007	23-006	30	0.035	53.73	8.78	0.163	89.13	13.59
23-006	23-118	35	0.0034	27.23	8.78	0.323	42,13	13.59
23-118	23-117	24	0.0068	13.06	8.78	0.672	20.21	13.59
23-117	23-002	36	0.0061	36.47	8.78	0.241	56.43	13.59
23-002	23-001	36	0.0061	36.47	8.78	0,241	56.43	13.59
23-001	22-044	36	0.018	62.65	8.78	0,140	96.94	13.59
22-044	22-043	. 36	0.0315	82.88	8.78	0.106	128.24	19.59
22-043	22-042	36	0,0068	43,81	11,05	0.252	67.78	17.11
22-042	22-041	36	0.0043	30.62	11.06	0.361	47.38	17.11
22-041	22-040	36	0.038	91.03	11.06	0.121	140.85	17.11
22-040	22-039	36	0.0091	44.55	11.06	0.248	68.93	17.11
22-039	22-038	36	0.0118	50.73	11.05	0.218	78,49	17.11
22-038	00-001	36	0.0106	48.08	11.06	0.230	74,39	17.11
00-001	00-002	36	0.0138	54.86	11.06	0.202	84.88	17,11
00-002	00-003	36	0.076	128.74	11.06	0.086	199.19	17.11
00-003	00-004	36	0.0295	78.84	15.59	0.198	121.98	24.13
00-004	00-005	30	0,024	44.49	15.59	0.350	68.84	24.13
00-005	00-005	30	0.0074	24,70	15.59	0.631	98.22	24,13
00-006	00-007	30	0.0092	27.55	15,59	0.566	42.62	24.13
00-007	00-008	30	0,0043	18.83	15.59	0.828	29.14	24.13
00-008	00-009	30	0.0047	19,69	15.59	0.792	30.46	24,13
00-009	00-010	30	0.0033	16.50	15.59	0.945	25.53	24.13
00-010	00-011	30	0.0115	30.80	15.59	0,506	47,65	24,13
00-011	00-012	30	0.0084	26.32	15.59	0.592	40.72	24.19
20-012	00-013	30	0.0084	26.32	16.98	0.645	40.72	26.28
00-013	00-014	30	0.0144	34.46	16.98	0.493	53.32	26,28
0-014	00-015	30	0.0093	27,70	16.98	0.613	42.85	26.28
X0-015 (00-016	30	0.0099	28.57	15.98	0,594	44.21	26.2B
0-016 (00-017	30	0.0101	28.86	16.98	0.588	44.66	25.28
10-017 0	0-018	30	0.0184	38.96	16.98	0,436	60.27	26.28
0-018 (0-019	30	0.0053	20.91	16.9B	0.812	32,35	20.28
0-019 0	00-020	30	0.0053	20.91	16.9B	0.812	32.35	26.28
0-020 (ю-021	30]	0.0161	35.44	16.98	0.466	56.35	26,28
0-021	0-022	30	0.0222	42.79	16.98	0,397	66.21	26.28
0-022	0-023	30	0.0169	37.33	16.98]	0.455	57.76	20.20
0-023 0	x0-024	30	0.0096	28.14	16.98	0.604	43.54	26.28
0-024 0	0-025	30	0.0096	28.14	16.98	0.604	43.54	26,28
0-025 0	0-026	30	0.0096	28.14	16.98	0.604	40,34	20.48
0-026 0	-027	30	0.0099	28.57	16.98	0.594	44.44	20.28
0-027 0	0-028	96	0.0047	32.02	16.98	0.530	49.54	20.28
0-028 0	0.030	36	0.0037	28.41	16.98	845.0	43,95	40.28
0-030 0	0.031	36	0.0039	29.16	16.98	0.584	43.12	20.28
0-031 0	0-032	36	0.0086	43.31	16.98	0.392	110.00	20.48
0-032 0	0-033	36	0.0258	/5.01	16,98	0.225	110.00	40.48
0-033 0	0.034	36	0.0128	52.83	16.98	0.921	81.75	20.28
0-034 0	0-035	36	0.0044	30.98	16,98	0.548	47.93	26.28
0-035 0	0-036	36]	0.0045	31.33	16.98	0.542	48.47	20.26
0-036 0	0-037	36	0.0043	30.62	16.98	0,555	47.38	20.28
0-037 0	0-038	42	0.002	31.50	16,98	V,539	48./4	20.48
0 860-0	0-039	42	0.0022	.33.04	16.98	0.514	51,12	20.28
0-039 0	0-040	42	0.002	91.50	16.98	0.539	48.74	26.28
0-040 0	0-041	42	0.0022	33.04	16.98	0,514	51.12	26.28
9-041 D	0-042	42	0,002	31.50	16.98	0.539	46.74	10.28
3-042 0	0-043	42	0.0019	30.71	16.98	0.553	47.51	26.28
0-043 01	0-044	42	0.002	31.50	16.98	0.539	48.74	26.28
3-044 04	0-045	42	0,002	31.50	16.98	0.539	48,74	25.28
3-045 04	0-046	42	0.002	31.50	16.95	0.539	48.74	25.28
D-046 (00	0-001MS	4z	0.0019	30.71	15.98	0.553	47.51	26.28

Exhibit D Peak Flow Calculations

18-0129 Summit Square II Apartments Sanitary Sewer Impact Statement Exhibt D - Peak Flow Calculations

Peak Base Flow

From 6501.C.1.a.i, the peak base flow for residential land is calculated as 1,500 gallons per day per acre (gpd/ac) of the proposed residential property.

Thus, Lot 1 of the proposed property (8.1 acres) yields a peak base flow of:

$$PBF (Lot 1) = 1,500 \frac{gpd}{ac} * 8.1 ac = 12,150 gpd$$

Lot 5 of the proposed property (4.7 acres) yields a peak base flow of:

$$PBF (Lot 5) = 1,500 \frac{gpd}{ac} * 4.7 ac = 7,050 gpd$$

Peak Infiltration

From 6501.C.1.b.i, the peak infiltration for residential land is calculated as 500 gallons per day per acre (gpd/ac).

Thus, Lot 1 of the proposed property (8.1 acres) yields a peak infiltration:

Peak Infiltration (Lot 1) =
$$500 \frac{gpd}{ac} * 8.1 ac = 4,050 gpd$$

Lot 5 of the proposed property (4.7 acres) yields a peak infiltration:

Peak Infiltration (Lot 1) =
$$500 \frac{gpd}{ac} * 4.7 ac = 2,350 gpd$$

<u>Peak Inflow</u> From 6501.C.1.c, the peak inflow is calculated by the following equation: O = KiA

Where:

 $\begin{array}{l} \mathsf{Q} = \mathsf{peak inflow (cfs); 1 cfs} = 646,317 \; \mathsf{gpd} \\ \mathsf{K} = \mathsf{inflow factor (0.006 for residential land)} \\ \mathsf{i} = \mathsf{rainfall intensity corresponding to the tributary area's time of concentration (iph)} \\ \mathsf{T}_{c} \; (\mathsf{min}) = 18.56 \; (\mathsf{A})^{0.2524} \\ \mathsf{A} = \mathsf{tributary area (ac)} \end{array}$

The time of concentration for the Lot 1 (8.1 acres) has been determined as:

$$T_c = 18.56 * 8.1^{0.2524} = 31.47 min.$$

The time of concentration for the Lot 5 (4.7 acres) has been determined as:

$$T_c = 18.56 * 4.7^{0.2524} = 27.43 min.$$

Based on the time of concentrations calculated above, the rainfall intensity has been interpolated using the information provided in the table in 6501.C.1.d of the LS DCM. The 50-year rainfall intensity for lots 1 and 5 are 4.90

April 2018

April 2018

and 5.31 inches per hour, respectively. From this information, the peak inflow is calculated as follows:

$$Q (Lot 1) = KiA * 646,317 = 0.006 * 4.90iph * 8.1ac * 646,317 \frac{gpd}{ac} = 153,914 gpd$$
$$Q (Lot 5) = KiA * 646,317 = 0.006 * 5.31iph * 4.7ac * 646,317 \frac{gpd}{ac} = 96,781 gpd$$

Taking the summation of the peak base flow, peak infiltration, and peak inflow, the total peak flow for the property developed assuming residential land use is:

 $Peak \ Flow = PBF + Peak \ Infilatration + Peak \ Inflow \\ Peak \ Flow \ (Lot \ 1) = 12,150 \ gpd + 4,050 \ gpd + 153,914 \ gpd = 170,114 \ gpd \\ Peak \ Flow \ (Lot \ 5) = 7,050 \ gpd + 2,350 \ gpd + 96,781 \ gpd = 106,181 \ gpd \\ Peak \ Flow \ (Lot \ 5) = 7,050 \ gpd + 2,350 \ gpd + 96,781 \ gpd = 106,181 \ gpd \\ Peak \ Flow \ (Lot \ 5) = 7,050 \ gpd + 2,350 \ gpd + 96,781 \ gpd = 106,181 \ gpd \\ Peak \ Flow \ (Lot \ 5) = 7,050 \ gpd + 2,350 \ gpd + 96,781 \ gpd = 106,181 \ gpd \\ Peak \ Flow \ (Lot \ 5) = 7,050 \ gpd + 2,350 \ gpd + 96,781 \ gpd = 106,181 \ gpd \\ Peak \ Flow \ (Lot \ 5) = 7,050 \ gpd + 2,350 \ gpd + 96,781 \ gpd = 106,181 \ gpd \\ Peak \ Flow \ (Lot \ 5) = 7,050 \ gpd + 2,350 \ gpd + 96,781 \ gpd = 106,181 \ gpd \\ Peak \ Flow \ (Lot \ 5) = 7,050 \ gpd + 2,350 \ gpd + 96,781 \ gpd = 106,181 \ gpd \\ Peak \ Flow \ (Lot \ 5) = 7,050 \ gpd + 2,350 \ gpd + 96,781 \ gpd = 106,181 \ gpd \\ Peak \ Flow \ (Lot \ 5) = 7,050 \ gpd + 2,350 \ gpd + 96,781 \ gpd = 106,181 \ gpd \\ Peak \ Flow \ (Lot \ 5) = 7,050 \ gpd + 2,350 \ gpd + 96,781 \ gpd = 106,181 \ gpd \\ Peak \ Flow \ (Lot \ 5) = 7,050 \ gpd + 2,350 \ gpd + 96,781 \ gpd = 106,181 \ gpd \\ Peak \ Flow \ (Lot \ 5) = 7,050 \ gpd + 2,350 \ gpd + 96,781 \ gpd = 106,181 \ gpd \\ Peak \ Flow \ (Lot \ 5) = 7,050 \ gpd + 2,350 \ gpd + 96,781 \ gpd = 106,181 \ gpd \\ Peak \ Flow \ (Lot \ 5) = 7,050 \ gpd + 2,350 \ gpd + 96,781 \ gpd = 106,181 \ gpd \\ Peak \ Flow \ (Lot \ 5) = 7,050 \ gpd + 106,181 \ gpd \\ Peak \ Flow \ (Lot \ 5) \ gpd = 106,181 \ gpd \\ Peak \ Flow \ (Lot \ 5) \ gpd = 106,181 \ gpd \\ Peak \ Flow \ (Lot \ 5) \ gpd = 106,181 \ gpd \\ Peak \ Flow \ (Lot \ 5) \ gpd = 106,181 \ gpd \\ Peak \ Flow \ (Lot \ 5) \ gpd = 106,181 \ gpd \\ Peak \ Flow \ (Lot \ 5) \ gpd = 106,181 \ gpd \ gpd \\ Peak \ Flow \ (Lot \ 5) \ gpd \ g$

Proposed Sanitary Sewer Peak Flows:

		Peak			Peak Ir	nflow			Calculated in	Increase in	Peak Flow
	Area	Base	Peak	Concentration,	Intensity, i	Peak Inflow,	Peak Inflow	Peak Flow	THHinc Report	Estimated	Rate
	(Ac.)	Flow	Infiltration	T _c (min)	(iph)	Q (cfs)	(gpd)	(gpd)	(gpd)	Demand (gpd)	(cfs)
Lot 1 (South)	8.1	12,150	4,050	31.47	4.90	0.24	153,914	170,114	89,018	81,096	0.263
Lot 5 (North)	4.7	7,050	2,350	27.43	5.31	0.15	96,781	106,181	51,798	54,383	0.164
Total	12.8	19,200	6,400				250,695	276,295	140,816	135,479	0.427

Existing Sanitary Sewer Flow Capacity:

			Pipe Lenth	Pipe Slope	Pipe Size		Pipe Area	Wetted Perimeter	Hydraulic Radius	Flow Capacity
	US Flowline	DS Flowline	(ft)	(ft/ft)	(in.)	Manning's N	(ft²)	(ft.)	(ft.)	(cfs)
North	966.41	964.53	309.29	0.006	12	0.009	0.785	3.140	0.25	4.02
South	992.89	991.94	82.53	0.012	8	0.009	0.349	2.093	0.17	1.88

Exhibit E Existing Sanitary Sewer Impact

April 2018

Sanitary Sewer Design Flow (North)

Circular		Highlighted	
Diameter (ft)	= 1.00	Depth (ft) =	0.14
		Q (cfs) =	0.164
		Area (sqft) =	0.07
Invert Elev (ft)	= 100.00	Velocity (ft/s) =	2.43
Slope (%)	= 0.61	Wetted Perim (ft) =	0.77
N-Value	= 0.009	Crit Depth, Yc (ft) =	0.17
		Top Width (ft) =	0.70
Calculations		EGL (ft) =	0.23
Compute by:	Known Q		
Known Q (cfs)	= 0.16		

Reach (ft)

Sanitary Sewer Design Flow (South)

Circular		Highlighted	
Diameter (ft)	= 0.67	Depth (ft)	= 0.17
		Q (cfs)	= 0.263
		Area (sqft)	= 0.07
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.70
Slope (%)	= 1.15	Wetted Perim (ft)	= 0.71
N-Value	= 0.009	Crit Depth, Yc (ft)	= 0.24
		Top Width (ft)	= 0.58
Calculations		EGL (ft)	= 0.38
Compute by:	Known Q	()	
Known Q (cfs)	= 0.26		

Reach (ft)