

RE: P250393-01 Roof - BY Lot 1330

Site Information:

Customer: Clayton Properties Project Name: P250393-01 Lot/Block: 1330 Model: Honeyd Address: 1308 SE Windbreak Dr. Subdivision: Ba City: Lee's Summit State: MO

ne: P250393-01 Model: Honeydew - Farmhouse Subdivision: Bailey Farms State: MO

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf Design Program: MiTek 20/20 8.6 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 30 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	167816471	B1	8/28/2024	21	167816491	V1	8/28/2024
2	167816472	B2	8/28/2024	22	167816492	V2	8/28/2024
3	167816473	C1	8/28/2024	23	167816493	V3	8/28/2024
4	167816474	C2	8/28/2024	24	167816494	V4	8/28/2024
5	167816475	C3	8/28/2024	25	167816495	V5	8/28/2024
6	167816476	C4	8/28/2024	26	167816496	V6	8/28/2024
7	167816477	D1	8/28/2024	27	167816497	V7	8/28/2024
8	167816478	D2	8/28/2024	28	167816498	V8	8/28/2024
9	167816479	E1	8/28/2024	29	167816499	V9	8/28/2024
10	167816480	E2	8/28/2024	30	167816500	V10	8/28/2024
11	l67816481	E3	8/28/2024				
12	167816482	E4	8/28/2024				
13	167816483	E5	8/28/2024				
14	167816484	G1	8/28/2024				
15	167816485	G2	8/28/2024				
16	167816486	G3	8/28/2024				
17	167816487	J1	8/28/2024				
18	167816488	J2	8/28/2024				
19	l67816489	J3	8/28/2024				
20	167816490	LAY1	8/28/2024				

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision based on the parameters provided by .

Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2025. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Sevier, Scott

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - BY Lot 1330	AS NOTED FOR PLAN REVIEW DEVELOPM <u>ENT SER</u> VICES
P250393-01	B1	Monopitch Structural Gable	1	1	Job Reference (optional	I67816471 LEE'S SUMMIT, MISSOURI

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Mon Aug 24 21:00 1 ID:rWJxjqbZji2jQJgbT3ticVy8RsK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWntDoi7J4zze?

Scale = 1:37.7

Loading		(psf)	Spacing	3-6-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.17	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.07	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0	Rep Stress Incr	NO		WB	0.03	Horz(CT)	0.00	7	n/a	n/a		
BCDL		10.0	Code	IRC20	18/TPI2014	Matrix-R							Weight: 23 lb	FT = 20%
LUMBER				3	 All plates are 	e 1.5x4 MT20 unles	ss other	wise indicated	4.					
TOP CHORD	2x4 SP N	0.2		4) Gable requir	es continuous bott	om choi	d bearing.						
BOT CHORD	2x4 SP N	10.2		Ę) Truss to be f	ully sheathed from	one fac	e or securely						
WEBS	2x3 SPF	No.2 *Exce	ept* 13-2:2x4 SP No.	2	braced again	nst lateral moveme	nt (i.e. c	liagonal web).						
OTHERS	2x3 SPF	No.2		- 6	6) Gable studs	spaced at 1-4-0 oc). `	o ,						
BRACING				7) This truss ha	s been designed f	or a 10.	0 psf bottom						
	2-0-0 00	nurline ov	cent and verticals		chord live loa	ad nonconcurrent v	vith any	other live loa	ds.					
	(Switche	d from shee	ted: Snacing > 2-8-	3 (C) All bearings	are assumed to be	SP No.	2 crushing						
BOT CHORD	Rigid cei	lina directly	applied or 10-0-0 or	5). 2	capacity of 5	i65 psi.								
	bracing.			ç	 Provide med 	hanical connection	ı (by oth	ers) of truss to	0					
REACTIONS	(size)	7=5-0-0, 8	3=5-0-0, 9=5-0-0,		bearing plate	e capable of withsta	anding 1	8 lb uplift at jo	oint					
	. ,	10=5-0-0,	11=5-0-0, 12=5-0-0	,		blift at joint 8.								
		13=5-0-0			0) N/A									
	Max Horiz	13=193 (l	_C 8)											
	Max Uplift	7=-18 (LC	28), 8=-8 (LC 8), 9=-	1 (LC										
		8), 10=-50	0 (LC 8), 11=-51 (LC	8),	1) This trucs is	designed in accord	tonco w	ith the 2019						
		12=-135 (LC 8)		International	Residential Code	soctions	R502 11 1 a	nd					
	Max Grav	7=22 (LC	1), 8=7 (LC 3), 9=56	6 (LC	R802 10 2 a	nd referenced stan		JSI/TPI 1	nu					
		1), 10=17	1 (LC 1), 11=233 (LC	C1), ,	2) Graphical pu	Indireferenced star	does n	of denict the s	ize					
		12=140 (l	_C 1), 13=264 (LC 1))	or the orient:	ation of the nurlin a	long the	ton and/or	120					
FORCES	(lb) - Max	kimum Corr	pression/Maximum		bottom chore	1	aong an							
	Tension				OAD CASE(S)	Standard								
TOP CHORD	1-2=0/56	, 2-3=-182/	20, 3-4=-121/40,			otandara								
	4-5=-68/3	33, 5-6=-32	/9, 6-7=-10/8,											
	6-9=-41/	19, 2-13=-2	29/1										and the second	ADD
BOT CHORD	12-13=-3	/0, 11-12=-	3/0, 10-11=-3/0,										8 OF	MIG
	9-10=-3/0	0, 8-9=0/0											BIE	0.0
WEBS	3-12=-11	5/114, 4-11	=-180/91, 5-10=-13	3/72								6	N	N SY
NOTES												B	SCOT	TM. YZY
1) Wind: AS	CE 7-16; Vu	ult=115mph	(3-second gust)									R	SEV.	IER \ Y
Vasd=91r	nph; TCDL=	=6.0psf; BC	DL=6.0psf; h=25ft;									8 ★		1 * 8
Ke=1.00;	Cat. II; Exp	C; Enclose	d; MWFRS (envelop	e)								90	11-	0 1
exterior z	one; cantile	ver left and	right exposed ; end								1	X	all.	Server
vertical le	It exposed;	Lumber DC	DL=1.60 plate grip								-	27	S/NOW	BEN
DOL=1.60)											YX (DE_2001	018807

Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

> 16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com) GI

0/202

August 28,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Otv	Plv	Roof - BY Lot 1330	AS NOTED FOR PLAN REVIEW
000	11000		aly	,		DEVELOPMENT SERVICES
P250393-01	B2	Monopitch	7	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Spring	nill, KS), Spring Hills, KS - 66083,	Run: 8.63 S	Jul 12 2024 Print: 8.6	30 S Jul 12 2	2024 MiTek Industries, Inc. Mo	
		ID:bNxLla0ivE	nDkYM7Pn01zkdv8	Rna-RfC2Ps	B70Ha3NSaPanl 8w3ulTXbG	

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Man Aug 2020 Rul ID:hNxUg0jyHnDkYM7Pn01zkdy8Rpa-RfC?PsB70Hq3NSgPqnL8w3uITXbG WrCDon+4.994

Scale = 1:34

Loading	(psf)	Spacing	2-0-0	CSI	32	DEFL	in 0.02	(loc)	l/defl ∖aaa	L/d 240	PLATES	GRIP
TCDL	10.0	Lumber DOL	1.15	BC 0:	20	Vert(CT)	-0.04	6-7	>999	180	101120	137/144
BCLL	0.0	Rep Stress Incr	YES	WB 0.0	.00	Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		· · /					Weight: 20 lb	FT = 20%
LUMBER			7) This truss is	designed in accordance	e wit	th the 2018						
TOP CHORD	2x4 SP No.2		International	Residential Code secti	ions	R502.11.1 ar	nd					
	2x4 SP No.2	opt* 7 2:2:4 CD No 2	R802.10.2 a	nd referenced standard	d AN	SI/TPI 1.						
	2X3 SPF N0.2 EXC	ept 7-2:2x4 SP No.2	LUAD CASE(S)	Standard								
TOP CHORD	Structural wood she	eathing directly applie	d or									
	5-0-0 oc purlins, ex	cept end verticals.										
BOT CHORD	Rigid ceiling directly bracing.	/ applied or 10-0-0 oc	:									
REACTIONS	(size) 6= Mecha	anical, 7=0-3-0										
	Max Horiz 7=110 (L	C 8)										
	Max Uplift 6=-74 (LC	C 1) 7=-32 (LC 5)										
FORCES	(lb) - Maximum Con	opression/Maximum										
IONOLO	Tension	npression/maximum										
TOP CHORD	1-2=0/32, 2-3=-109/	/36, 3-4=-2/0,										
	3-6=-146/92, 2-7=-2	252/69										
	6-7=-13/30, 5-6=0/0)										
1) Wind ASC	E 7-16: Vult=115mpt	(3-second gust)										
Vasd=91m	ph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft;										
Ke=1.00; 0	Cat. II; Exp C; Enclose	ed; MWFRS (envelop	e)									
exterior zo	ne; cantilever left and	I right exposed ; end										
Lumber D	1 exposed; porch left a	and right exposed;									000	TOP
2) This truss	has been designed fo	or a 10.0 psf bottom									OF M	Also
chord live l	load nonconcurrent w	ith any other live load	ls.							E	TIE	
 Bearings a 	re assumed to be: Jo	int 7 SP No.2 crushin	ig							B	SCOTT	M NON
 capacity of 4) Refer to gi 	i 565 PSI. rder(s) for truss to tru	ss connections								B	SEVI	FR VY
5) Provide me	echanical connection	(by others) of truss to)							81t		
bearing pla	ate capable of withsta	nding 74 lb uplift at jo	bint							X	147	
6.										1		FR
 One H2.5 I recomment 	Simpson Strong-Lie	connectors	0							87	PE-20010	18807 188
UPLIFT at	it(s) 7. This connection	on is for uplift only and	d							N	-200I	A A
does not c	onsider lateral forces.									V	0.50	NO. A
											ONA	LEI
											The	and a start

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

August 28,2024

						[RELEASE FOR CO	NSTRUCTION			
Job	Truss	Truss Type		Qty F	Ply Roof - BY	Lot 1330	AS NOTED FOR P DEVELOPM <u>EN</u> T	LAN REVIEW			
P250393-01	C1	Hip Girder		1 '	I Job Refer	ence (optional	LEE'S SUMMIT,	MISSOURI			
Premier Building Supply (Spr	Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083, ID:M5_tdokK1HGk81GsJtP9Vjy8NeJ-RfC?PsB70Hq3NSgPqnL8w3ulTXbG										
	-0-10-8 <u>3-10-8</u>	8-4-6	12-1-8	13-0-0	<u>17-7-10</u> 4-7-10	<u>22-1-8</u> 4-5-14	26-0-0	26-10-8			
	0-10-0	NAILED		NAILED			Special	0-10-8			
	12	oecial NAILED	NAILED NAILED	3x8 =	NAILED NAILED	NAILED N/	AILED				
4 v	ې 16	oxo= 17 18	1.5x4 I 4 19 2 <u>0</u>	3x4 =	1.5» _2122 7	4 II 23	6x6= 24 8				
0-1											
2-8-7 2-5-15 2-5-15	2							9 10			
	⊠ 4×4 =	6 25 26	15 27 28	14 13	29 30 12	31	32 11	⊠ 4x4 =			
		5x4 II	4x12=	3x4 II	4x1	2=	3x4 II				
	Т	IJU26 NAILED	NAILED NAILED	6x6	= NAILED	NAILED N/	AILED				
		NAILED		NAILED	NAILED		THJU26				
	3-8-12	<u>8-4-6</u> 4-7-10	4-7-10		4-7-10	22-3-4	26-0-0	———			
	0012	1 10	47-10			47-10	5.0-12				

Scale = 1:50.4

Plate Offsets (X, Y): [2:0-0-4,0-1-1],	[3:0-3-5,Edge], [8:0)-3-5,Edge], [9:0-0-4,0-1	-1]								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.99	Vert(LL)	-0.26	14	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.39	Vert(CT)	-0.48	14	>640	180		
BCLL	0.0	Rep Stress Incr	NO	WB	0.68	Horz(CT)	0.06	9	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 128 lb	FT = 20%
LUMBER			5) All bearing	s are assumed to	o be SP 240	0F 2.0E crus	shing		Vert: 3=	-87 (B), 16=-63 (B), 14=	=-23 (B), 6=
TOP CHORD	2x4 SP No.2		capacity of	805 psi.					8=-87 (B	3), 11=	-63 (B), 17=-42 (B), 18=-42
DOT OUODD				Simpoon Strong	Tio connor	otoro			10 12	(D) 20	- 40 (D) 01- 40	(D) 22 40

BOT CHORD	2X6 SP 2400F 2.0E
WEBS	2x3 SPF No.2 *Except* 16-3.11-8:2x4 SPF
	No 3
	110.5
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	3-3-11 oc purlins, except
	2-0-0 oc purling (2-0-5 max): 3-8
	Z-0-0 00 putiting (Z-0-0 max.). 5-0.
BOICHORD	Rigid celling directly applied or 9-9-7 oc
	bracing.
REACTIONS	(size) 2=0-5-8, 9=0-5-8
	Max Horiz 2=40 (LC 27)
	Max I Inlift 2364 (I C 8) 9364 (I C 9)
	Max Opint $2 = 001 (200), 0 = 001 (200)$
	Max Grav 2=1009 (LC 1), 9=1009 (LC 1)
FORCES	(Ib) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/11, 2-3=-2913/644, 3-4=-4191/994,
	4-6=-4189/993, 6-7=-4189/993,
	7-8=-4191/994, 8-9=-2913/644, 9-10=0/11
BOT CHORD	2-16=-542/2450, 15-16=-547/2433.
	14-15=-1133/4908. 12-14=-1133/4908.
	11-12=-522/2433. 9-11=-517/2450
WEBS	3-16=0/335, 3-15=-480/1968, 4-15=-475/235,
	6-15=-796/206, 6-14=0/303, 6-12=-796/205,
	7-12=-475/235, 8-12=-481/1968, 8-11=0/335
NOTES	,

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding. 3)
- This truss has been designed for a 10.0 psf bottom 4) chord live load nonconcurrent with any other live loads.

- One H2.5T Simpson Strong-Tie connectors 6)
- recommended to connect truss to bearing walls due to UPLIFT at jt(s) 9 and 2. This connection is for uplift only and does not consider lateral forces. 7)
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size 8) or the orientation of the purlin along the top and/or bottom chord.
- 9) Use Simpson Strong-Tie THJU26 (SGL & SGL SHORT RC 1-PLY) or equivalent at 3-10-14 from the left end to connect truss(es) to back face of bottom chord.
- 10) Use Simpson Strong-Tie THJU26 (SGL & SGL SHORT LC 1-PLY) or equivalent at 22-1-2 from the left end to connect truss(es) to back face of bottom chord.
- 11) Fill all nail holes where hanger is in contact with lumber.
- 12) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 187 Ib down and 142 lb up at 3-10-8, and 187 lb down and 142 lb up at 22-1-8 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-3=-70, 3-8=-70, 8-10=-70, 2-9=-20 Concentrated Loads (lb)

B), 14=-23 (B), 6=-42 (B), =-42 (B), 18=-42 (B), 19=-42 (B), 20=-42 (B), 21=-42 (B), 22=-42 (B), 23=-42 (B), 24=-42 (B), 25=-23 (B), 26=-23 (B), 27=-23 (B), 28=-23 (B), 29=-23 (B), 30=-23 (B), 31=-23 (B), 32=-23 (B)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with with the contractions. This design is based only door plantaters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

		1	T			1	RELEA	SE FOR CC	
Job	Truss	Truss Type		Qty	Ply	Roof - BY Lot 1330	DEV	ELOPMENT	SERVICES
P250393-01	C2	Нір		1	1	Job Reference (optio	nali LEE	'S SUMMIT,	, MISSOURI
Premier Building Supply (Sprin	nghill, KS), Spring Hills, KS - 66083,		Run: 8.63 S Jul 12 20 ID:61AQ0oWDAinBj_F	24 Print: 8.6 7fjb0a9y8KI	30 S Jul 12 D6-RfC?Psl	2024 MiTek Industries, Inc B70Hq3NSgPqnL8w3uITXt	:. Mon Aug 26 21:001 bGK VrCDoi7542304	/10/	2025
	-0-10-8 5-10-8		13-0-0			20-1-8	26-	0-0	26-10-8
	0-10-8 5-10-8	I	7-1-8	ļ		7-1-8	5-1	0-8	0-10-8
	12	6x6=		1.5x4 ॥			6x6=		
$+ \frac{5+1}{2}$	61			5 ⊠	\boxtimes		6 ◆		
ф <u></u>	3x4 ∠			B		/		3x4 👟	
P- 0 0-0	3x4 = 3							7 _{3x4}	*
3.6	2 8 6							CO LO	8
	1	8					8		9
± 0		13		12 1 [.]	1		10		× '
	4x6 n	1.5x4 u		3x10=			1.5x4 I		4x6 I
				3>	<4 =				
	5-9-4		13-0-0			20-2-12	26-	0-0	
	5-9-4	I	7-2-12	I		7-2-12	5-9	9-4	I

 $\frac{\text{Scale} = 1:50.5}{\text{Plote Offects}}$

Plate Offsets (X, Y): [2:0-3-9,0-1-5], [8:0-3-9,0-1-5]

Plate Offsets ((X, Y): [2:0-3-9,0-1-5],	[8:0-3-9,0-1-5]										-		
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.81 0.58 0.35	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.27 0.07	(loc) 12 10-12 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 112 lb	GRIP 197/144 FT = 20%	_
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalancd this design 2) Wind: ASG Vasd=91r Ke=1.00; exterior zz vertical lef grip DOL= 3) Provide at 4) This truss chord live	2x4 SP No.2 *Excep 1.5E 2x4 SP No.2 Left 2x4 SP No.2 Left 2x4 SP No.2 - 2 - 3-2-4 Structural wood she 2-2-0 oc purlins, exc 2-0-0 c purlins, exc 2-13-1957 (LC Max Uplift 2=-176 (LC Max Grav 2=1231 (L (b) - Maximum Com Tension 1-2=0/6, 2-4=-2000/ 5-6=-2531/383, 6-8 2-13=-195/1685, 12- 10-12=-157/1681, 8 4-13=0/268, 4-12=-2 6-12=-219/1028, 6-1 ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose on; cantilever left and it and right exposed; LL 1.60 dequate drainage to pri has been designed for load nonconcurrent wi	At* 4-6:2x4 SP 1650F 3-2-4, Right 2x4 SP 3-2-4, Right 2x4 SP 3-2-4, Right 2x4 SP 3-2-4, Right 2x4 SP 3-2-4, Right 2x4 SP 3-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	 5) 6) No.2 7) ed or 8) c LC) /246, /246, n ne) ate i. ds. 	All bearings capacity of 5 One H2.5T S recommende UPLIFT at jt(and does no This truss is International R802.10.2 at Graphical pu or the orient bottom chore DAD CASE(S)	are assumed to be 65 psi. Simpson Strong-Ti ad to connect truss (s) 8 and 2. This ci t consider lateral f designed in accor Residential Code nd referenced star rlin representation ation of the purlin a d. Standard	e SP No. ie connectio orces. dance w sections ndard AN n does no along the	2 crushing ctors ing walls due n is for uplift ith the 2018 \$ R502.11.1 a SI/TPI 1. ot depict the ot depict the top and/or	to only and size				STATE OF M STATE OF M SCOTT SEVI SCOTT SEVI PE-20010 PE-20010	MISSOUR M. ER DI8807 ST	,
												August	28,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job P250393-01 Premier Building Supply (Sp	Truss C3 ringhill, KS), Spring Hills, KS -	Truss Type Hip 66083,	Run: 8.63 S Jul ID:JKU_nZmu5S	Qty 1 12 2024 Print: 8.6 edRsFRDT0Flny&	Ply 1 330 S Jul 12 2 8KFM-RfC?Ps	Roof - BY Lot 1330 Job Reference (optional 024 MiTek Industries, Inc. Mo B70Hq3NSgPqnL8w3uITXb/	RELEASE FO AS NOTED F DEVELOPH LEE'S SUN n Aug 26 6 14 1 SKWrCD00 4 20 27 1	R CONSTRUCTION OR PLAN REVIEW MENT SERVICES 167816475 MIT, MISSOURI 0/2025
+	-0-10-8 0-10-8	7-10-8 7-10-8	13-0-0 5-1-8 6x6=	1.5x4 u 5	<u>18-1-8</u> 5-1-8	6x6= 6	<u>26-0-0</u> 7-10-8	26-10-8 0-10-8
4-8-7 4-5-9 4-5-9 4-5-9 0-1	3x4 =	3x4 = 3					3x4 = 7 3: 149	×4≈
_ C	Зх8 II		13 1.5x4	12 1 3x8=	1	10 1.5х4 и		Зх8 ш
	L	7-9-4	13-0-0	3	x4= 18-2-1	2	26-0-0	
		7-9-4	5-2-12	ł	5-2-12	2	7-9-4	1

Scale = 1:50.6

Plate Offsets (X, Y): [2:0-4-1,Edge], [8:0-4-1,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	ТС	0.98	Vert(LL)	-0.10	8-10	>999	240	MT20	197/144
TCDI	10.0	Lumber DOI	1 15	BC	0.65	Vert(CT)	-0.22	8-10	>999	180		
BCU	0.0	Ren Stress Incr	VES	WB	0.00	Horz(CT)	0.07	8	n/a	n/a		
BCDI	10.0	Code		2014 Matrix-S	0.20	11012(01)	0.07	0	n/a	11/4	Weight: 116 lb	FT - 20%
BCDL	10.0	Code		2014 Iviaultx-3								FT = 2076
LUMBER			6) On	e H2.5T Simpson Stror	ng-Tie conneo	ctors						
TOP CHORD	2x4 SP No.2		rec	commended to connect	truss to bear	ng walls due	e to					
BOT CHORD	2x4 SP No.2		UP	LIFT at jt(s) 8 and 2. Th	nis connectio	n is for uplift	only					
WEBS	2x3 SPF No.2		and	d does not consider late	eral forces.							
SLIDER	Left 2x4 SP No.2 4	4-3-11. Riaht 2x4 SP	7) Thi	s truss is designed in a	ccordance w	ith the 2018						
	No.2 4-3-11	, , ,	Inte	ernational Residential C	Code sections	R502.11.1 a	and					
BRACING			R8	02.10.2 and referenced	I standard AN	ISI/TPI 1.						
TOP CHORD	Structural wood shea	athing directly applie	d. 8)Gra	aphical purlin represent	ation does no	ot depict the	size					
	except		ort	the orientation of the pu	Irlin along the	top and/or						
	2-0-0 oc purlins (3-1	1-15 max.): 4-6.	bot	tom chord.								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	LOAD	CASE(S) Standard								
	bracing.											
REACTIONS	(size) 2=0-5-8, 8	8=0-5-8										
	Max Horiz 2=75 (LC	8)										
	Max Uplift 2=-174 (L	.C ['] 8). 8=-174 (LC 9)										
	Max Grav 2=1231 (L	_C 1), 8=1231 (LC 1)										
FORCES	(lb) - Maximum Com	nression/Maximum										
. 0.1020	Tension	procolori/Maximum										
TOP CHORD	1-2=0/6. 2-4=-1884/2	226. 4-5=-1856/229.										
	5-6=-1856/229, 6-8=	-1884/226.8-9=0/6										
BOT CHORD	2-13=-159/1566, 12-	-13=-161/1562,										
	10-12=-87/1562, 8-1	0=-85/1566										
WEBS	4-13=0/299, 4-12=-1	34/513, 5-12=-443/1	71,									
	6-12=-134/513, 6-10)=0/299									Con	ADDA
NOTES											A OF M	lise
1) Unbalance	ed roof live loads have	been considered for								1	750	- or M
this desig	n.									B	N/ SCOTT	MAN NO
2) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)								R	s scorr	INT. IS N
Vasd=91n	nph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft;								И.	/ SEVI	EK / X
Ke=1.00;	Cat. II; Exp C; Enclose	d; MWFRS (envelope	e)						1	Q 7		
exterior zo	one; cantilever left and	right exposed ; end								4 Y		
vertical lef	ft and right exposed; Lu	umber DOL=1.60 pla	te							JA-	Aptho	Son Men
grip DOL=	=1.60									147	DE 2001	10007
Provide a	dequate drainage to pre	event water ponding.								N.	2 PE-20010	1880/ 201
This truss	has been designed for	r a 10.0 psf bottom								V	(P)	154
chord live	load nonconcurrent wit	th any other live load	ls.								N'SIG	ENUR
5) All bearing	gs are assumed to be S	SP No.2 crushing									UNA NA	L
capacity o	of 565 psi.										laa	55

August 28,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

												RELE	SE FOR CON	STRUCTION
Job	Tr	russ		Truss	туре		Qty	Ply	Ro	oof - BY Lo	t 1330	AS NO	DTED FOR PLA	AN REVIEW ERVICES
P250393-01	C	4		Hip (Girder		1	3	Jo	b Referenc	ce (optional)	LEI	167816 E' <mark>S Summit, M</mark>	476 ISSOURI
Premier Building Supp	oly (Springhill, F	KS), Sp	oring Hills, KS - 6608	33,		Run: 8.63 S	Jul 12 2024 Prin	t: 8.630 S Jul	12 2024	MiTek Indus	stries, Inc. Mo	n Aug 26 2:00	/10/2	P@25
						U_d0? xdid:UI	8y9rBOrggn1Sq	YONIA-RIC?F	SB70Hq	3NSgPqnL8	W3UIIXDGKV	ICD017J42JC-1		
		<u> </u>	4-11-11		9-7-4		16-4-	·12			21-0-5 4-7-9		26-0-0	
			4-11-11		4-7-5	7.0	0-3-	0	-	70	4-7-5		4-11-11	
0 1					1	3	12		,	4				
0-1-2-1				1 <u>2</u> 6 Г					-					
				4x6								4x6 👟		
2 2				2								5		
5-5-) 5-3-1 5-3-1				P				\sim			/			
													\sim	
	1													
\perp \perp	8-		12		15 16		10		10	∐ °		7 22		
		5x8	=	14 11 3x1() II	10x10 =	10	9 MT18HS 6	(12 =	0 20	21	7 22 3x10 µ	23	5x8 =
			LUS26 LU	JS26	HUS	28 HUS28	HUS28	HUS28	1	10x10 =	HUS	26 HUS26	HUS26	
				LUS2	В				HUS26	6 HUS2	26			
			1-11-11		HUS28		16-6	-0			21-0-5		26-0-0	
0			4-11-11		4-6-5		7-0-	-0 ·0			4-6-5		4-11-11	
$\frac{\text{Scale} = 1.49}{\text{Plate Offsets (X, Y)}}$): [1:Edge,0-	0-5],	[3:0-4-0,0-2-12], [4:0-4-0,0-	2-12], [6:Edge,0·	-0-5], [8:0-5-0,0-	6-4], [10:0-2-8	8,0-6-0]						
Loading	(ps	sf)	Spacing	2-0-0		CSI	C	EFL	in	(loc) l	/defl L/d	PLATES	GRIP	
TCLL (roof)	25 10	.0 0	Plate Grip DOL	1.15 1.15		TC BC	0.56 V	ert(LL)	-0.19 -0.33	8-10 >	999 240	MT20 MT18HS	197/144 244/190	
BCLL	0	.0	Rep Stress Incr	NO		WB	0.81	lorz(CT)	0.08	6	n/a n/a			,
 LUMBER TOP CHORD 2x6 SPF No.2 BOT CHORD 2x6 SP 2400F 2.0E WEBS 2x3 SPF No.2 BACLING 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply top to pack (B) face in the LOAD CASE(S) section. Ply top top work is indicated. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply top top work is indicated. 3) Top CHORD SUBJECT 2000 purities (6:-00 max.): 3:-4. 4) Ubs and considered of this design. 4) Ubs and considered of this design. 4) Ubs and considered of this design. 4) Ubs and the origin of the SCE (1) of the scenario of the scenario of the loads have been considered of the scenario of the loads have been considered of the scenario of the loads have been considered of the scenario of the loads have been considered of the scenario of the loads have been considered of the scenario of the loads have been considered of the scenario of the loads have been considered of the scenario of the loads have been considered of the scenario of the loads and the scenario of the loads of the scenario of the scenario of the loads of the scenario of the scenario of the loads of the scenario of the scena								f at 2-0-0 13-11-4 to 5. ler, 4-16d starting at ct truss(es) ith lumber. line below ase=1.15, (F), 17=-1694 0 (F),						
												Aug	uəl 20,202	4
WARNING - Design valid for a truss system.	Verify design part r use only with M Before use, the	aramet liTek® building	ers and READ NOTES connectors. This desig g designer must verify	on THIS AN In is based o the applicab	ID INCLUDED MITEI	K REFERENCE PAG shown, and is for an eters and properly ind	E MII-7473 rev. 1/ individual buildin corporate this des	2/2023 BEFOR g component, ign into the ov	RE USE. not erall			M	iTe	K

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - BY Lot 1330	AS NOTED FOR PLAN REVIEW
	5.					DEVELOPMENT SERVICES I67816477
P250393-01	D1	Common Supported Gable	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springh	ill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Jul 12 20	h Aug 262: $1110/269:25$			
	WrCDoi794z39?					

13-8-0

Scale =	1:46.1
---------	--------

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	4-0-0 1.15 1.15 NO IRC2018	8/TPI2014	CSI TC BC WB Matrix-R	0.20 0.16 0.32	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 71 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	JMBER JP CHORD 2x4 SP No.2 DT CHORD 2x4 SP No.2 EBS 2x4 SP No.2 FIHERS 2x3 SPF No.2 RACING 2-0-0 oc purlins (6-0-0 max.), except end verticals OP CHORD 2-0-0 oc purlins (6-0-0 max.), except end verticals OP CHORD 2-0-0 oc purlins (6-0-0 max.), except end verticals OT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. EACTIONS (size) 12=13-8-0, 13=13-8-0, 14=13-8-0, 15=13-8-0, 15=13-8-0, 16=13-8-0, 15=13-8-0, 18=13-8-0, 19=13-8-0, 20=-33-8-0, 18=13-8-0, 19=13-8-0, 20=-33-4, 00, 18=13-8-0, 19=13-8-0, 20=-334 (LC 6) Max Horiz 20=-394 (LC 6) Max Uplift 12=-227 (LC 5), 13=-335 (LC 9), 17=-176 (LC 9), 17=-176 (LC 9), 17=-178 (LC 8), 18=-180 (LC 4), 19=-359 (LC 8), 20=-304 (LC 4) Max Grav 12=384 (LC 15), 13=-368 (LC 7), 14=-391 (LC 16), 15=-401 (LC 16), 16=-413 (LC 18), 17=-403 (LC 15), 18=-384 (LC 15), 18=-384 (LC 15), 18=-384 (LC 16), 10=-421 (LC 6)				 Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. All plates are 1.5x4 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing. Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 304 lb uplift at joint 20, 227 lb uplift at joint 12, 178 lb uplift at joint 17, 180 lb uplift at joint 18, 359 lb uplift at joint 17, 180 lb uplift at joint 18, 359 lb uplift at joint 17, 176 lb uplift at joint 15, 182 lb uplift at joint 14 and 335 lb uplift 								
FORCES TOP CHORD	(lb) - Maximum Com Tension 2-20=-338/210, 1-2= 3-4=-203/195, 4-5=- 6-7=-105/320, 7-8=-	npression/Maximum =0/91, 2-3=-312/281, 171/254, 5-6=-136/34 131/231, 8-9=-164/15	11 43, 12 56,	 a) This truss is International R802.10.2 ar) Graphical pu or the orienta 	designed in acco Residential Code nd referenced sta rlin representatio ation of the purlin	rdance w e sections indard AN n does no along the	ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the s top and/or	and size			A	STATE OF I	MISSOLIN T. M.
BOT CHORD	9-10=-250/213, 10-1 19-20=-184/209, 18- 17-18=-184/209, 16- 15-16=-184/209, 14- 13-14=-184/209, 12-	1=0/91, 10-12=-295/ -19=-184/209, -17=-184/209, -15=-184/209, -13=-184/209	156 LC	bottom chord. LOAD CASE(S) Standard									
WEBS	6-16=-332/0, 5-17=- 3-19=-249/262, 7-15 8-14=-312/240, 9-13	323/223, 4-18=-311/2 5=-321/222, 3=-229/250	239,								A.	PE-2001	018807
NOTES 1) Unbalance	ed roof live loads have	been considered for										SIONA	LEN
this design	n											lan	550

1) Unbalanced roof live loads have been considered for this design.

August 28,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

			-			
Job	Truss	Truss Type	Qty	Ply	Roof - BY Lot 1330	
P250393-01	D2	Common Girder	1	3	Job Reference (optional	

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Mon Aug 26 21:10 19 ID:8wizEoIJohfMAwcC2J?PBNy8KSt-RfC?PsB70Hq3NSgPqnL8w3uITXbGK WrCDoi7542J911

RELEASE FOR CONSTRUCTION AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 167816478 LEE'S SUMMIT, MISSOURI 0/202

5

	<u>6-10-0</u>	13-8-0	
	6-10-0	6-10-0	
Scale = 1:51.4			
Plate Offsets (X, Y): [4:Edge,0-2-8], [5:0-4-0,0-4-12]			

		-											
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.69 0.59	DEFL Vert(LL) Vert(CT)	in -0.08 -0.14	(loc) 5-6 5-6	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 197/144
BCLL	0.0	Rep Stress Incr	NO		WB	0.68	Horz(CT)	0.01	4	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 228 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) 3-ply truss (0.131"x3" Top chord: 0.131"x3" Top chord: 0.131"top chord:	2x4 SP No.2 2x6 SP 2400F 2.0E 2x3 SPF No.2 *Exce No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 4=0-5-8, Max Horiz 6=-173 (L Max Uplift 4=-701 (L Max Grav 4=5488 (I (Ib) - Maximum Con Tension 1-2=-5153/713, 2-3: 1-6=-3623/502, 3-4: 5-6=-463/2256, 4-5: 1-5=-277/1673, 3-5: 2-5=-713/5956 to be connected toge) nails as follows: s connected as follow: rows staggered at 0- ords connected as follow: rows staggered at 0- ords connected as follows: s connected as follows: rows staggered at 0- ords connected as follows: re considered equally oted as front (F) or ba section. Ply to ply conp o distribute only loads erwise indicated. ad roof live loads have n.	ept* 6-1,4-3:2x6 SPF eathing directly applie- iccept end verticals. ^a applied or 10-0-0 oc 6=0-5-8 .C 6) .C 9), 6=-747 (LC 8) LC 1), 6=5840 (LC 1) npression/Maximum =-5153/713, =-3638/504 =-301/1794, ther with 10d s: 2x4 - 1 row at 0-9-0 si 2x6 - 2 rows - 1 row at 0-9-0 oc. applied to all plies, ick (B) face in the LO, ick (B) face in th	4) d or 5) 6) 7) 8) 9) 10 LC 1) 0	Wind: ASCE Vasd=91mph Ke=1.00; Cat exterior zone vertical left au grip DOL=1.6 This truss ha chord live loa All bearings a capacity of 80 Two H2.5T S recommende UPLIFT at jt(and does not this truss is a International R802.10.2 ar Use Simpsor Truss) or equ 1.7-4 from th back face of) Fill all nail ho DA CASE(S) Dead + Roo Plate Increas Uniform Loa Vert: 1-2- Concentratte Vert: 7=-1 10=-1690	7-16; Vult=115mph ; TCDL=6.0psf; BC : II; Exp C; Enclose ; cantilever left and nd right exposed; L: i0 s been designed fo d nonconcurrent wi are assumed to be 9 05 psi. impson Strong-Tie d to connect truss t s) 6 and 4. This cor consider lateral for designed in accorda Residential Code s nd referenced stand i Strong-Tie HUS26 tivalent spaced at 2 e left end to 11-7-4 bottom chord. les where hanger is Standard of Live (balanced): L ise=1.15 ads (lb/ft) =-70, 2-3=-70, 4-6= id Loads (lb) 1690 (B), 8=-1690 (B),	(3-secc DL=6.() dc (MW right e umber r a 10.0 tith any SP 240 connection sections lard AN (14-16 -0-0 oc to connu- umber -20 B), 9=- 12=-10	ond gust) opps; h=25ft; FRS (envelo xposed ; envelo xposed ; envelo pops; h=25ft; FRS (envelo xposed ; envelo 0 psf bottom other live loo 0 F 2.0E cru tors ng walls due n is for uplift th the 2018 R502.11.1 (SI/TPI 1. d Girder, 4- max. startin hect truss(est tact with lun Increase=1 1690 (B), 390 (B)	ope) d ads. shing e to only and 16d ng at s) to nber. .15,		;		STATE OF M STATE OF M SCOTT SEVI SEVI PE-20010 PE-20010	$M_{ISSOLDE}$ M_{ER} BER M_{ER} $M_$

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

August 28,2024

									RELEASE FO	OR CONSTRUCTION	
Job	Truss	Truss Type		(Qty	Ply	Roof - BY Lot 1330		AS NOTED		1
P250393-01	E1	Common			1	1	Job Reference (optional		LEE'S SU	MENT SERVICES 167816479 MMIT, MISSOURI	
Premier Building Supply (Spring	nill, KS), Spring Hills, KS - 66083,		 Run: 8.63 S Jul ID:r6xWK1B2O9	12 202 v9t_N_	4 Print: 8.63 4S?y3Jy8L	30 S Jul 12 E4-RfC?Ps	2024 MiTek Industries, Inc. Mo B70Hq3NSgPqnL8w3ulTXbGP	n Aug 26 WrCDoi7	261/1	0/2025	
I	5-9-9	13-9-9	19-0-0		24-3-1	1	32-2-7		38-0-0	38-10-8	

	5-9-9	13-9-9	17-0-4	24-2-7	32-2-7	38-0-0
	5-9-9	8-0-0	3-2-11	7-2-3	8-0-0	5-9-9
Scale = 1:71.6						

Plate Offsets (X, Y): [1:0-3-9,0-1-5]	, [4:0-2-8,Edge], [20:3	3-10-11,Edge], [21:0-4	-0,0-2-8], [22:0-4-7	1,Edge], [2	2:3-1-15,0-1-	•8], [22:5	-4-11,0-	1-8]			
Loading	(psf)	Spacing	4-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.88	Vert(LL)	-0.18	36-38	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.80	Vert(CT)	-0.40	36-38	>516	180	MT18HS	197/144
BCLL	0.0	Rep Stress Incr	NO	WB	0.94	Horz(CT)	0.04	35	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 254 lb	FT = 20%
LUMBER			FORCES	(lb) - Maximum (Compressi	on/Maximum		2) Wir	nd: ASCI	E 7-16;	Vult=115mph (3	-second gust)
TOP CHORD	2x4 SP No.2 *Excep	ot* 4-1,16-23:2x4 SP	Tension					Vas	sd=91mp	oh; TCI	DL=6.0psf; BCDL	.=6.0psf; h=25ft;
	1650F 1.5E		TOP CHORD 1-3=-2187/280, 3-5=-660/258, 5-6=-439/309				9/309,	Ke=	=1.00; C	at. II; E	xp C; Enclosed;	MWFRS (envelo

lope) 2x4 SP 1650F 1.5E 6-7=-289/299, 7-8=-567/411, 8-9=-498/429, exterior zone; cantilever left and right exposed ; end BOT CHORD 9-10=-538/469, 10-11=0/762, 11-12=0/776, vertical left and right exposed; Lumber DOL=1.60 plate WEBS 2x3 SPF No.2 *Except* 3-36:2x4 SP 1650F 12-13=0/730, 13-14=0/750, 14-15=-19/732, grip DOL=1.60 1.5E 15-17=-72/750, 17-18=-146/792, Truss designed for wind loads in the plane of the truss 2x3 SPF No.2 *Except* 34-10:2x4 SP No.2 Left 2x4 SP No.2 -- 3-7-7, Right 2x4 SP No.2 3) OTHERS only. For studs exposed to wind (normal to the face), 18-20=-41/374, 20-21=-59/338, SLIDER 21-22=-143/387, 22-23=0/11 see Standard Industry Gable End Details as applicable, -- 5-8-2 BOT CHORD 1-38=-434/1801, 36-38=-434/1801, or consult qualified building designer as per ANSI/TPI 1. BRACING 35-36=-488/408, 34-35=-488/408, 33-34=-505/407, 32-33=-505/407, All plates are MT20 plates unless otherwise indicated. 4) TOP CHORD 2-0-0 oc purlins (4-2-13 max.) 5) All plates are 1.5x4 MT20 unless otherwise indicated. (Switched from sheeted: Spacing > 2-8-0). 31-32=-505/407, 29-31=-287/180, 6) Gable studs spaced at 2-0-0 oc. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc 28-29=-287/180, 27-28=-287/180, This truss has been designed for a 10.0 psf bottom 7) bracing, Except: 26-27=-287/180, 25-26=-287/180, chord live load nonconcurrent with any other live loads. 10-0-0 oc bracing: 1-38,36-38. 24-25=-287/180, 22-24=-285/176 8) Bearings are assumed to be: , Joint 31 SP 1650F 1.5E WEBS 1 Row at midpt 3-42, 10-34 WEBS 36-40=-550/1844, 39-40=-547/1856, crushing capacity of 565 psi, Joint 35 SP 1650F 1.5E JOINTS 1 Brace at Jt(s): 10, 10-39=-588/1976, 10-43=-262/52, crushing capacity of 565 psi. 39, 40, 42, 43, 44, 43-44=-261/52, 31-44=-260/51, Refer to girder(s) for truss to truss connections. 46, 47, 48 7-36=-725/459, 13-31=-237/122, 3-38=0/615, 10) Provide mechanical connection (by others) of truss to **REACTIONS** (size) 1= Mechanical, 22=21-1-8, 18-26=-214/132, 3-42=-1489/475 bearing plate capable of withstanding 187 lb uplift at 24=21-1-8, 25=21-1-8, 26=21-1-8, 41-42=-1583/523, 36-41=-1562/501 ioint 1. 27=21-1-8, 28=21-1-8, 29=21-1-8, 31=21-1-8, 32=21-1-8, 33=21-1-8, 10-34=-1759/284, 9-39=-376/151, 35-39=-240/105, 8-40=-22/0, 6-41=-64/70, 34=21-1-8, 35=21-1-8 5-42=-258/133, 11-43=-410/140, OF MISSO Max Horiz 1=-350 (LC 13) 33-43=-411/139, 12-44=-193/120, FE Max Uplift 1=-187 (LC 8), 22=-25 (LC 9), 32-44=-196/121, 14-45=-90/49, 24=-174 (LC 9), 26=-104 (LC 21), 15-46=-296/163, 29-46=-322/175, 28=-157 (LC 9), 29=-113 (LC 9), SCOTT M. 17-47=-377/208, 28-47=-364/202, 31=-144 (LC 9), 32=-90 (LC 9), SEVIER 27-48=-28/15, 20-25=-32/32, 33=-93 (LC 9), 34=-197 (LC 8), 21-24=-406/240, 31-45=-433/235, 35=-125 (LC 8) 45-46=-395/214, 46-47=-403/218, 1=1414 (LC 1), 22=324 (LC 22), Max Grav 47-48=-399/216, 18-48=-410/222 24=530 (LC 1), 25=75 (LC 22), NOTES OFFESSIONAL 26=243 (LC 22), 27=158 (LC 3), PE-2001018807 28=439 (LC 22), 29=424 (LC 22), 31=766 (LC 1), 32=242 (LC 22), 1) Unbalanced roof live loads have been considered for this design. 33=515 (LC 1), 34=1768 (LC 1), E 35=393 (LC 21)

August 28,2024

continued on page 2

WARNING - Verify design para eters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

						RELEASE FOR CONSTRUCTION
lob	Truce		Otv	DIV	Boof BV Lot 1220	AS NOTED FOR PLAN REVIEW
300	11055	Truss Type	Quy	гіу	R001 - DT L01 1330	DEVELOPMENT SERVICES
P250393-01	E1	Common	1	1	lah Defense (antional	LEE'S SUMMIT, MISSOURI
			· ·		Job Reference (optional	
Premier Building Supply (Springh	n Aug 262: All 1 1 1 / 2 All 262					
	WrCDoi794z3e?					

11) N/A

- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

											RELEASE	FOR CONSTRUCTION
Job	Truss		Truss Ty	ре		Qty	Ply	R	oof - BY Lo	ot 1330	AS NOTE	D FOR PLAN REVIEW
P250393-01	E2		Commo	n		4	1	Je	h Referen	ce (ontion:	LEE'S	I67816480 SUMMIT, MISSOURI
Premier Building S	Supply (Springhill, KS), S	Spring Hills, KS - 66083,			Run: 8.63 S Jul 12	2024 Pr	int: 8.630 S	Jul 12 2024	1 MiTek Indu	istries, Inc. N	//cn Aug 26 21:0019	10/2025
					ID:wUNQjmAij0My	35qXo_G	jBay8Mje-R	fC?PsB70ł	lq3NSgPqnl	L8w3ulTXbG	GkWrCDoi754z56?	10/2020
	5.0.0		12 0 0		10.0.0	-	4 2 7		22	27	28.0	o 38-10-8
	5-9-9		8-0-0		5-2-7		5-2-7		<u> </u>	2-7)-0	5-9-	9 0-10-8
тт					5× 6	5=						
			12 61 3x6	1.5x4 5	4 11			1.5x4 n				
-3-3		3x4 •	4						3	x8 ≈ 8	3x4~	
10	3x4 = 3x4 = 2	3									9	x4 .
۰ بې	1 1				//		//					3x4≈ 11 12 œ_
⊥ ± ¦±	6x6 II	18		17 16				15	14		13	
		1.5x4 u		4x6= 5x8=	=			5x8=	4x6=		1.5x4 ॥	
	5-9-9		<u>13-9-9</u> 8-0-0		24-2	<u>2-7</u> -14			32-	<u>2-7</u>)-0	38-0	-0 9
Scale = 1:69.6												
Plate Offsets (X	, Y): [1:0-3-9,0-0-5],	[11:0-3-9,0-0-5]										
Loading	(psf)	Spacing	2-0-0		CSI	0.74	DEFL	in	(loc)	I/defl L/		GRIP
TCLL (roof)	25.0 10.0	Lumber DOL	1.15		BC	0.74 0.79	Vert(LL) Vert(CT)	-0.26 -0.60	15-16	>999 24 >763 18	0 10120	244/190
BCLL BCDL	0.0 10.0	Rep Stress Incr Code	YES IRC2018/	/TPI2014	WB Matrix-S	0.91	Horz(CT)	0.15	11	n/a n/a	a Weight: 179 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP 1650F 1.5E	Code	3)	This truss ha chord live loa	is been designed for ad nonconcurrent wi	a 10.0 th any c	psf bottom ther live lo) ads.			Weight. 179 lb	F I = 20%
BOT CHORD	2x4 SP No.2 *Excep 1.5E	t* 17-14:2x4 SP 1650)F 4)	Bearings are crushing cap	assumed to be: , Jo acity of 565 psi.	bint 11 S	SP No.2					
WEBS SLIDER	BS 2x3 SPF No.2 5) Refer to girder(s) for truss to truss connections. DER Left 2x4 SP No.2 3-7-2, Right 2x4 SP No.2 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 212 lb uplift at											
BRACING TOP CHORD	Structural wood sheat 2-10-0 oc purlins.	athing directly applied	dor 7)	joint 1. One H2.5T S recommende	Simpson Strong-Tie	connect o bearir	ors Ig walls du	e to				
BOT CHORD	Rigid ceiling directly bracing.	applied or 8-10-8 oc		UPLIFT at jt(does not con	s) 11. This connecti sider lateral forces.	on is foi	uplift only	and				
WEBS 1 Row at midpt 9-15, 3-16 8) This truss is designed in accordance with the 2018 REACTIONS (size) 1= Mechanical, 11=0-5-8 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.												

LOAD CASE(S) Standard

NOTES

WEBS

FORCES

TOP CHORD

BOT CHORD

Unbalanced roof live loads have been considered for 1) this design.

11-13=-255/2648

Max Horiz 1=-176 (LC 9)

Tension

Max Uplift 1=-212 (LC 8), 11=-231 (LC 9) Max Grav 1=1714 (LC 1), 11=1776 (LC 1)

(lb) - Maximum Compression/Maximum

7-9=-2517/311, 9-11=-3118/382, 11-12=0/6

6-15=-292/1084, 7-15=-540/289, 9-13=0/255,

9-15=-582/229, 3-18=0/263, 3-16=-626/235

1-3=-3147/388, 3-5=-2526/313,

5-6=-2514/470, 6-7=-2508/468,

1-18=-437/2700, 16-18=-437/2700,

15-16=-82/1649, 13-15=-255/2648,

5-16=-535/288, 6-16=-294/1095,

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

OF MISSOL TE SCOTT M. SEVIER NUMBER PL-PH-SSIONAL EN PE-2001018807 August 28,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

										RELEASE	FOR CONSTRUCTION
Job		Truss		Truss T	уре	Qty	Ply	Roof - BY L	ot 1330.	AS NOTE DEVEL	D FOR PLAN REVIEW
P250393-01	1	E3		Roof S	pecial	1	1	Job Refere	nce (optional	LEE'S	I67816481 SUMMIT, MISSOURI
Premier Building	g Supply (Spring	hill, KS), S	pring Hills, KS - 66083,		Run: 8.63 S Jul	12 2024 Prin	t: 8.630 S Jul 12	2 2024 MiTek Ind	lustries, Inc. Mo	n Aug 26 2:00:19	10/2025
				1/	0.7.4			r sbronqsnogr	queowourixby	10000000000000000000000000000000000000	
		5	5-0-0 9-1 5-0-0 4-1	0-12 ¹¹ 0-12 0			24-2-7 5-2-7	<u>32</u> 8-	-2-7 -0-0	<u></u>	———————————————————————————————————————
						7x8=					
Т	Т			12	2						
				01	1.5x4 ∎ 3x6 ≠ 6		1.5	ix4 II			
	9 9			5	ix5 =			8 3x6.	*		
0-1	7-2			4	5	/		e de la companya de l			
10-2			4x8 =				100			3x4 .	
	+	3	x6 = 3	20						3x4	*
	0 0 0 0	: /x			0 0 8x10=				Ð		3x4
	° ''				21 17					9	
	-	5x5 I	22 4x8=		16 MT18HS 6x12 =		15 14 3x6= 6x ⁻	l 12=		13 1.5x4 µ	5x5 II
				3	x4 II 3x4 II 3x6 II						
		-			^{3x4} II 14-6-0						
		5	5-0-0 10 5-0-0 5-	- <u>0-0</u> 0-0	3-3-8 1-1-4 7	-6-0	2-2-7	<u> </u>	-2-7 -0-0	5-9-9	———————————————————————————————————————
$\frac{\text{Scale} = 1:74.1}{\text{Plate Offsets (}}$	(X, Y): [4:0-1-	8,0-2-4],	[18:0-4-12,0-4-0], [1	9:0-2-0,Ec	0-1-4 Ige], [20:0-8-0,0-3-8], [21:Edge,	0-2-8], [22:0)-2-8,0-2-0]				
Loading		(psf)	Spacing	2-0-0	CSI		DEFL	in (loc)	l/defl L/d	PLATES	 GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15	TC	0.79 V	/ert(LL) -	0.45 19-20	>999 240	MT20 MT18HS	244/190 197/144
BCLL		0.0	Rep Stress Incr	YES	WB Matrix C	0.88	lorz(CT)	0.48 12	n/a n/a	Waisht 202 lb	FT 200/
		10.0	Code	2)	Wind: ASCE 7-16: Vult-115m	nh (3-secon	nd aust)			Weight. 203 lb	FT = 20%
TOP CHORD	2x4 SP 165	0F 1.5E	+* 01 / 10 17·0v2 CE	_, _	Vasd=91mph; TCDL=6.0psf; I Ke=1.00: Cat. II: Exp.C: Enclo	BCDL=6.0ps	sf; h=25ft; SS (envelope)				
WERS	No.2, 20-18	:2x4 SP :	2400F 2.0E	D	exterior zone; cantilever left and right exposed	nd right exp	sed; end sed; end sed; end				
SUDED	No.2	No 2 C	0 2 Dight 2v4 SD N	, 10.2 3)	grip DOL=1.60 All plates are MT20 plates uni	ess otherwi	se indicated				
SLIDER	3-2-7	NU.2 2	-9-2, Right 284 9F 1	4)	This truss has been designed	for a 10.0 p	sf bottom				
TOP CHORD	Structural w	ood she	athing directly applie	d or 5)	Refer to girder(s) for truss to t	russ connec	tions.				
BOT CHORD	2-2-0 oc pu Rigid ceiling	directly	applied or 2-2-0 oc	0)	bearing plate capable of withs 1 and 211 lb uplift at joint 12	tanding 211	lb uplift at joi	nt			
WEBS	1 Row at m	idpt	10-14, 7-14, 4-18	7)	This truss is designed in acco	rdance with	the 2018 502 11 1 and				
REACTIONS	(size) 1 Max Horiz 1	= Mecha =-173 (L	nical, 12= Mechanica C 13)	il I C	R802.10.2 and referenced sta	ndard ANSI	/TPI 1.				
	Max Uplift 1 Max Grav 1	=-211 (L) =1710 (L	C 8), 12=-211 (LC 9) .C 1), 12=1710 (LC 1)							
FORCES	(lb) - Maxim Tension	ium Com	pression/Maximum								
TOP CHORD	1-3=-3081/3 4-6=-3849/4	370, 3-4= 164, 6-7=	-6366/847, -3857/577,								
	7-8=-2488/4 10-12=-311	464, 8-10 8/382	=-2505/312,							and a	and the
BOT CHORD	1-22=-423/2 4-20=-261/1	2603, 21- 1943, 19-	22=-3/42, 20-21=0/8 20=-751/5639,	9,						TE OF A	IISSO
	18-19=-748 16-17=-1/27	/5610, 17 7, 14-16=	7-19=-179/0, 0/41, 13-14=-259/26	49,					A	S SCOTI	M. TEN
WEBS	12-13=-259 16-18=0/41	/2649 0, 6-18=-	343/192, 8-14=-535/	285,					Box	SEVI	
	10-13=0/26 10-14=-594	6, 3-20=- /229, 7-1	329/3047, 8=-398/2571,						K	ott ;	Servier
	7-14=-327/5 4-18=-2536	593, 20-2 /488, 14-	2=-497/3027, 18=-105/1998.						- Xz		18807
NOTES	3-22=-1531	/335	,						V	THESO.	GITA
1) Unbalance	ed roof live loa	ids have	been considered for							NONA	LER
										August	28,2024

MiTek[®] 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

1-3=-3113/383, 3-5=-2511/311, 5-6=-2501/468, 6-7=-2501/468, 7-9=-2511/311, 9-11=-3113/383 BOT CHORD 1-17=-432/2653, 15-17=-432/2653, 14-15=-82/1642, 12-14=-260/2653,

11-12=-260/2653 WEBS 5-15=-538/289, 7-14=-538/288, 9-12=0/259, 3-17=0/259, 3-15=-593/230, 9-14=-593/231, 6-15=-293/1085, 6-14=-293/1085

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate arip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) Refer to girder(s) for truss to truss connections.

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

						RELEASE FOR CONSTRUCTION
loh	Trues		Otv	Plv	Roof - BV Lot 1330	AS NOTED FOR PLAN REVIEW
555	11033		Quy	i iy	1001 - DT LOC 1330	DEVELOPMENT SERVICES
P250393-01	E5	Common Supported Gable	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Mon Aug 2621:627 1 0/29:25 ID:MD0X0YZ_iRWnuocWc3PdL0y8KV7-RfC?PsB70Hq3NSgPqnL8w3uITXb KWrCD6rf Jazic?f1 0/29:25

Scale = 1:65

Plate Offsets (X, Y): [1:0-4-1,Edge], [7:0-3-0,Edge], [17:0-3-0,Edge], [23:0-4-1,Edge]

oading		(psf)	Spacing	4-0-0		CSI		DEFL	in	(lo	ic) I/o	defl	L/d	PLATES	GRIF	Р
FCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.28	Vert(LL)	n/a		-	n/a	999	MT20	244/*	190
FCDL		10.0	Lumber DOL	1.15		BC	0.14	Vert(TL)	n/a		-	n/a	999			
BCLL		0.0	Rep Stress Incr	NO		WB	0.43	Horiz(TL)	0.02	2	23	n/a	n/a	-		
BCDL		10.0	Code	IRC20	18/TPI2014	Matrix-S								Weight: 199 I	b FT =	20%
UMBER FOP CHORD SOT CHORD DTHERS SLIDER BRACING FOP CHORD BOT CHORD WEBS REACTIONS	LL 0.0 Rep Stress Incr NO DL 10.0 Code IRC2 MBER P CHORD 2x4 SP No.2 T CHORD 2x4 SP No.2 T CHORD 2x4 SP No.2 HERS 2x3 SPF No.2 IDER Left 2x4 SP No.2 1-7-11, Right 2x4 SP No.2 1-7-11 ACING P CHORD 2-0-0 oc purlins (6-0-0 max.) (Switched from sheeted: Spacing > 2-8-0). IT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. EBS 1 Row at midpt 12-33, 11-34, 13-32 ACTIONS (size) 1=38-0-0, 23=38-0-0, 24=38-0-0, 25=38-0-0, 30=38-0-0, 31=38-0-0, 32=38-0-0, 33=38-0-0, 34=38-0-0, 35=38-0-0, 40=38-0-0, 41=38-0-0, 42=38-0-0			IRC20 F T). E-0, 0-0, 0-0, 0-0, 0-0,	18/TPI2014 FORCES FOP CHORD	(ib) - Maximum Compression/Maximum Tension3)Truss designed for wind loads in the plan only. For studs exposed to wind (normal is see Standard Industry Gable End Details or consult qualified building designer as p 9-10=-146/421, 10-11=-146/475, $11-12=-150/516, 12-13=-150/500,$ $13-14=-146/131, 12=-146/132, 16-18=-146/181, 13-14=-20/319, 21-23=-300/54$ 3)Truss designed for wind loads in the plan only. For studs exposed to wind (normal is see Standard Industry Gable End Details or consult qualified building designer as p 9-10=-146/131, 16-18=-146/181, 13-14=-20/319, 21-23=-300/54 $13-14=-20/319, 30-32=-20/319, 30-32=-20/319, 33-34=-20/319, 32-33=-20/319, 33-34=-20/319, 32-33=-20/319, 32-33=-20/319, 32-33=-20/319, 33-34=-20/319, 32-33=-20/319, 33-34=-20/319, 32-33=-20/319, 22-22-20/319, 30-31=-20/319, 22-22-20/319, 30-31=-20/319, 22-22-20/319, 30-31=-20/319, 22-22-20/319, 30-31=-20/319, 22-22-20/319, 30-31=-20/319, 22-22-20/319, 32-32=-20/319, 32-$							20% le of the truss to the face), as applicable, er ANSI/TPI 1. se indicated. pearing. hsf bottom her live loads. crushing s) of truss to lb uplift at joint int 35, 106 lb 06 lb uplift at t at joint 41, 22, 440 lb uplift			
	Max Horiz Max Uplift Max Grav	35=38-0-0 39=38-0-0 42=38-0-0 1=346 (LC 25=-75 (LC 27=-106 (I 30=-105 (I) 32=-85 (LC 35=-116 (I) 35=-116 (I) 35=-116 (I) 35=-116 (I) 35=-116 (I) 42=-240 (I) 42=-240 (I) 42=-240 (I) 42=-240 (I) 1=329 (LC 24=532 (L) 28=361 (L) 33=395 (L) 33=360 (L) 33=361 (L) 40=373 (L) 40=373 (L)	, 36=38-0-0, 38=38- , 40=38-0-0, 41=38- , 40=38-0-0, 41=38- , 40=38-0-0, 41=38- , 40=38-0-0, 41=38- , 50, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2	, v ,)),)),)),)),)),),), 2), (1),),),),),),	VEBS IOTES) Unbalanced this design.) Wind: ASCE Vasd=91mp Ke=1.00; Ca exterior zone vertical left a grip DOL=1.	28-3020/319, 27-3 26-27=-20/319, 25-3 24-25=-20/319, 23-3 12-33=-340/0, 11-3- 10-35=-280/164, 9-3 8-38=-280/156, 6-33 5-40=-288/164, 4-4 3-42=-400/290, 13-3 14-31=-280/156, 18 19-26=-288/163, 20 21-24=-400/270 roof live loads have 57-16; Vult=115mpt h; TCDL=6.0psf; BC at. II; Exp C; Enclose e; cantilever left and and right exposed; L 60	28=-20/ 26=-20/ 24=-20/ 4=-294/ 36=-28/ 9=-278/ 1=-246/ 32=-29/ -30=-28/ -30=-28/ -30=-28/ -30=-28/ -27=-2 -25=-24 e been of (3-sector) (3-sector) (25) (25) (25) (25) (25) (25) (25) (25	319, 319, 319, 141, 1/154, 1154, 116, 4/133, 30/153, 78/154, 46/122, considered for cond gust) psf; h=25ft; FRS (envelop xposed ; end DOL=1.60 pla	e) te	10)	240 lb at joint 28, 106 uplift at This tru Interna R802.1	uplift 31, 1 6 lb uj t joint uss is tiiona 10.2 a	at joir 05 lb plift at 25 ar desig I Resi I Resi	tt 42, 85 lb uplift uplift at joint 30 joint 27, 114 lb dential Code se ferenced stands of the the the the the the the second stands of the the the the the the the second stands of the the the the the the the the second stands of the the the the the the the the the second stands of the	t at joint : , 108 lb c uplift at at joint 24 nce with ctions R: ard ANSI. MISS TT M. VIER	32, 119 lb uplift uplift at joint joint 26, 75 lb 4. the 2018 502.11.1 and /TPI 1. CULN

August 28,2024

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and KEAD KOTES ON THIS AND INCLUDED MITER KEERENCE PAGE MIL/473 rev. 1/2/20/3 BEFORE USE. Design valid for use only with MITeR® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION			
Job	Truss	Truss Type	Qtv	Plv	Roof - BY Lot 1330	AS NOTED FOR PLAN REVIEW			
						DEVELOPMENT SERVICES 167816483			
P250393-01	E5	Common Supported Gable	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI			
Premier Building Supp	y (Springhill, KS), Spring Hills, KS - (56083, Run: 8.63 S JL	Run: 8.63 S Jul 12 2024 Print: 8.63 S Jul 12 2024 MiTek Industries, Inc. Mon Aug 26 21 622 1 0/2 69:25						
	pKWICDon J42JC ?I								

 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

										RELEASE	FOR CONSTRUCTION	
Job	Truss		Truss Type		Qty	Ply	Roof - B	/ Lot 133	0	AS NOTE	D FOR PLAN REVIEW]
P250393-01	G1		Common Suppo	orted Gable	1	1	Job Refe	rence (or	otional	LEE'S	167816484 SUMMIT, MISSOURI	
Premier Building Supply (Spri	nghill, KS), Sp	pring Hills, KS - 66083,		Run: 8.63 S Ju ID:AzycPvC6m	ul 12 2024 Prir HtbUzexB?LS	nt: 8.630 S Jul 1 S2Sy8NuU-RfC	2 2024 MiTek PsB70Hq3NS	Industries, gPqnL8w3	Inc. Mo uITXbG	n Aug 26 23:06:20 KWrCDon+34230?f	10/2025	
			8-8-0					17-4-0			18-2-8	
			0-0-0					0-0-0			0-10-8	
					4x4	=						
5-1-3	0-8-0		6 2 19 19	4 4 4 4 4 4 4 4 4 4 4 4 4 4	5		6	7	, f	8 3x4 s 9 2	2 10 11 3x4 II	
Scale = 1:38.8					17-4-0)						_
Plate Offsets (X, Y): [10:)-2-1,0-0-5]									I		_
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	4-0-0 1.15 1.15 NO	CSI TC BC WB	0.25 0.12 0.15	D EFL /ert(LL) /ert(CT) Horz(CT)	in (loc n/a n/a 0.01 20	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144	
LUMBER TOP CHORD 2x4 SP N BOT CHORD 2x4 SP N OTHERS 2x4 SPF SLIDER Right 2x4 BRACING TOP CHORD 2-0-0 oc (Switchea BOT CHORD 2-0-0 oc bracing. REACTIONS (size) Max Horiz Max Uplift	10.0 5.2 5.2 No.3 SP No.2 purlins (6-0- I from sheet ng directly a 1=17-4-0, 13=17-4-0, 17=17-4-0 12=-174-0 1=-187 (LC 12=-129 (L 14=-108 (L 18=-95 (LC	1-6-6 0 max.) red: Spacing > 2-8-0). applied or 10-0-0 oc 10=17-4-0, 12=17-4-0 , 14=17-4-0, 15=17-4-0 , 14=17-4-0, 19=17-4-0 ; 9) (2 9), 10=-129 (LC 9), (C 9), 13=-105 (LC 9) (C 9), 13=-105 (LC 8) ; 8), 19=-149 (LC 8) ; 9), 10=-346 (LC 1)	2) Wind: AS Vasd=91 Ke=1.00 exterior : vertical I grip DOL 3) Truss dr only. Fo see Star or consu 4) All plates -0, 6) Gable re -0, 6) Gable st chord liv 8) All bearin capacity -9) Provide bearing 9 joint 1, 1	Matrix-S SCE 7-16; Vult=115m mph; TCDL=6.0psf; ; Cat. II; Exp C; Encl: zone; cantilever left a ff and right exposed .=1.60 signed for wind loac r studs exposed to w dard Industry Gable It qualified building d are 1.5x4 MT20 unl quires continuous bc uds spaced at 2-0-0 s has been designed e load nonconcurren ngs are assumed to b of 565 psi. mechanical connection late capable of with- 29 Ib uplift at joint 10	nph (3-secor BCDL=6.0p osed; MWFf and right exp i; Lumber Dr is in the plan rind (normal End Details esigner as p less otherwis totom chord oc. If for a 10.0 p t with any of be SP No.2 on (by other standing 13/ 0, 114 lb upli	nd gust) sf; h=25ft; RS (envelope bosed ; end DL=1.60 platu ne of the trus: to the face), as applicable per ANSI/TPI se indicated. bearing. osf bottom her live loads crushing s) of truss to 0 lb uplift at ft at joint 17, 1) 9 9, 1. 3.			vveignt: 81 lb	F I = 20%	_

12=460 (LC 22), 13=328 (LC 1), 14=389 (LC 22), 15=416 (LC 18), 17=393 (LC 21), 18=311 (LC 1), 19=502 (LC 21), 20=87 (LC 3) FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-137/254, 2-3=-111/317, 3-4=-78/367, 4-5=-71/415, 5-6=-71/399, 6-7=-60/307, 7-8=-69/219, 8-10=-111/126, 10-11=0/11 BOT CHORD 19-20=0/0, 18-19=0/0, 17-18=0/0, 15-17=0/0,

14-15=0/0, 13-14=0/0, 12-13=0/0, 10-12=0/0 WEBS 5-15=-338/0, 4-17=-310/164, 3-18=-242/137, 2-19=-390/216, 6-14=-306/156, 7-13=-259/150, 8-12=-347/185

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Ib uplift at joint 18, 149 lb uplift at joint 19, 108 lb uplift at joint 14, 105 lb uplift at joint 13 and 129 lb uplift at joint 12.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

										RELEASE FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	F	Roof - BY I	Lot 1330	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
P250393-01	G2		Common		1	1		lob Refere	ence (optiona	I67816485 LEE'S SUMMIT, MISSOURI
Premier Building Supp	ly (Springhill, KS),	Spring Hills, KS - 66083,		Run: 8.63 S Jul 1 ID:aOPk47C9VA	12 2024 Pi v?XRi.ItFF	int: 8.630 S 、 IHYv8No1-R	Jul 12 20 fC?PsB7	24 MiTek In 0Ha3NSaPa	dustries, Inc. M	In Aug 262:62/10/29:25
					, , , , , , , , , , , , , , , , , , ,			on qui togi t	1.1201104117100	
		4-1-7	·	8-8-0 4-6-9	+	<u>13-2-</u> 4-6-9	9 <u></u>)		17-4- 4-1-7	0 18-2-8
										0-10-8
					4x4 = 4					
Т	\top		12							
			6		\square	\searrow				
			1.5x4 s				\geq	1.5x4	-	
-1-3	0-0-0	3x4 ≠	, ,) Je		3x4 🖕
CJ		2				/				6
		1							Z	7
	0-8-0									
		4x6 u		10	9					
				3x4 =	3x8 =					
		I	8-8-0					17-4-0		
Scale - 1:41 1			8-8-0		+			8-8-0		
Plate Offsets (X, Y)	: [1:0-3-0,0-1-5]	, [7:0-3-9,0-1-5]								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	ir	n (loc)	l/defl L/d	PLATES GRIP
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC	0.34 0.76	Vert(LL) Vert(CT)	-0.11 -0.24	l 1-9 I 1-9	>999 240 >874 180	0 MT20 244/190
BCLL BCDL	0.0 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-S	0.21	Horz(CT)	0.03	3 7	n/a n/a	a Weight: 75 lb FT = 20%
LUMBER TOP CHORD 2x4 BOT CHORD 2x4 WEBS 2x3 SLIDER Lef 2 BRACING TOP CHORD Str	SP No.2 SP No.2 SPF No.2 2x4 SP No.2 -3-2 uctural wood she	2-3-2, Right 2x4 SP N eathing directly applied	 7) One H2.5T recommend UPLIFT at jt does not co 8) This truss is Internationa R802.10.2 at d or LOAD CASE(S) 	Simpson Strong-Tie ed to connect truss (s) 7. This connectinsider lateral forces designed in accord l Residential Code and referenced stan Standard	e connec to bearin ion is for s. dance wit sections idard AN	tors ng walls du uplift only a h the 2018 R502.11.1 SI/TPI 1.	e to and and			
5-3 BOT CHORD Rig	-9 oc purlins. id ceiling directly	y applied or 10-0-0 oc								
bra REACTIONS (size	cing.) 1= Mech	anical, 7=0-5-8								
Max Max	Horiz 1=-85 (LO Uplift 1=-95 (LO	C 13) C 8), 7=-116 (LC 9)								
Max FORCES (lb)	Grav 1=778 (L - Maximum Cor	C 1), 7=843 (LC 1)								
Ter TOP CHORD 1-3	nsion =-1228/192, 3-4	=-931/119, 4-5=-931/	20.							
5-7 BOT CHORD 1-9	=-1220/190, 7-8 =-187/1013, 7-9	=0/6 =-101/1006	,							
WEBS 4-9	=0/452, 5-9=-30	1/190, 3-9=-308/193								
 Unbalanced roc this design 	of live loads have	e been considered for								Jane
 this design. Wind: ASCE 7- Vasd=91mph; T Ke=1.00; Cat. II exterior zone; c vertical left and grip DOL=1.60 This truss has t chord live load Bearings are as capacity of 565 Refer to girder(Provide mechan bearing plate ca 1. 	16; Vult=115mpf CDL=6.0psf; BG l; Exp C; Enclose antilever left and right exposed; L been designed for nonconcurrent w ssumed to be: , J psi. s) for truss to tru nical connection apable of withsta	h (3-second gust) CDL=6.0psf; h=25ft; ed; MWFRS (enveloped d right exposed ; end .umber DOL=1.60 plater or a 10.0 psf bottom vith any other live load loint 7 SP No.2 crushi ss connections. (by others) of truss to inding 95 lb uplift at jo	e) s. ng							SCOTT M. SEVIER NUMBER PE-2001018807 ESSTONAL ENGLISH
WARNING -	Verify design naram				IL-7473 rov	1/2/2023 BEE				

WARNING - Verify design parameters and KEAD NOTES ON THIS AND INCLUDED MITEX REFERENCE PAGE MIL-/4/3 rev. 1/2/20/3 BEFORE USE. Design valid for use only with MiTeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Alt Tork Type Tork												RELEASE FOR CONSTRUCTION
<u>Passas 1 as a constrained product (Red)</u> , 103, 104, 104, 104, 104, 104, 104, 104, 104	Job	Truss		Truss Type		Qty	P	ly	Roof - B	Y Lot 133	0	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
Detext Basing Backy Backy Bills (25, Backy Bills, C5 - HR3) But 05.812 BJ 02.780 Bb 01: 6518 BJ 02.790 MB ta basines have Detay Detay BB 01: 00: 00: 00: 00: 00: 00: 00: 00: 00:	P250393-01	G3		Common		1	1		Job Refe	erence (or	otional	LEE'S SUMMIT, MISSOURI
Here 191 Here 192	Premier Building Supply (Sp	oringhill, KS), S	Spring Hills, KS - 66083,		Run: 8.63 S Jul ID:9flYp0k?i9lFid	12 2024 P wtlvpaFov	rint: 8.630 /8Mx6-RfC	S Jul 12 ?PsB70H	2024 MiTek la3NSaPan	Industries, L8w3uITXb	Inc. Mo GKWrC	n Aug 2621:02/10/269:25
$\frac{447}{44.7} + \frac{680}{44.9} + \frac{122}{44.9} + \frac{1740}{44.9} + \frac{1740}{6.10.3}$ $\frac{1740}{6.00.4} + \frac{1740}{6.00.4} + 1$					- -]-]-	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			15 1			40.00
Link Link Link Link Link Link Image: State of the s			4-1-7		8-8-0 4-6-9	+	<u>13-</u> 4-6	<u>2-9</u> 3-9			<u>17-4-0</u> 4-1-7	
Alter and a set of the set of												0-10-8
 A state sta						4x4 = 4						
Or CHOME 24 SP No 2 Section 2 Model (1) 10 Section 2 Mod	\top \top			12	/	. 食へ						
Image: State in the state				61		\square	\searrow					
Image: state in the state in thest the state in the state in the state in the				1.5x4 👟				\sim	1.5	<4 ≠		
Provide the set of the se	-0-0		3x4 =	3					×	0	3x	4 👟
Image: Stress for the stress of the stres	2 2		2		<u> </u>						6	
Image: State of the state			1								1E	7
Image: Head of the status Im		0-8-0			[
Add m Johe Johe Johe Johe Johe Johe Balance 8-8-0 77-4-0 8-8-0 8-8-0 8-8-0 Balance 8-8-0 8-8-0 8-8-0 8-8-0 Balance 100 100-10-2-5-0-1-13 100 100 100 PATES ORIP TOLL (root) 100 Reading Pate States 15 15 100 0.04 Vertil 1-0.11 1.04 9-800 200 PATES ORIP BCDL 10.0 Code Reading 100 100 PATES ORIP PATES <td></td> <td>-</td> <td></td> <td></td> <td>10</td> <td>9</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-			10	9						
B-8-0 174-0 Solve 1.11.1 Besco 8-8-0 8-8-0 Londing (25) Solve 1.01.1 10 Besco 24-0 TCDL (root) 10.0 Limber DOL 1.15 Solve 1.01.1 10 9-90.2 24-0 Markinski 2.0 TCDL (root) 10.0 Limber DOL 1.15 Solve 1.0 Not 1.15 Solve 1.0 1.15 Solve 1.0 1.15 Solve 1.0 Not 1.15 Solve 1.0 1.15 Solve 1.0 1.15 Solve 1.0 Not 1.15 Not			4x4 II		3x4 =	3x8 =						3х6 и
Solid = 141.1 88-0 17.4.0 Paile Offsets (X, Y): [1:Edge.0-0-10], [7:0-3-5.0-113] 0 0 0.00 1.15 0.00												
Seare 1-11.1 Inter Offset (X, Y): [1:Edgn-0-6-10], [7:0-3-5,0-1-13] Loading (pst) Spacing 2-0-0 CSI DEFL in (noc) Udet L/Z PLATES GRIP TOL (100) 2:00 Reg (100) 1:15 TC 0.34 Vert(L1) 0:11 1:9 598 2:0 M120 2:44/150 TOL (100) 0:00 Reg (100) CSI TC 0.34 Vert(L1) 0:11 1:9 598 2:0 M120 2:44/150 BCDL 10:00 Code FT 2:00 M120 2:44/150 M120 2:44/150 <td></td> <td></td> <td> </td> <td><u>8-8-0</u> 8-8-0</td> <td></td> <td>+</td> <td></td> <td></td> <td><u>17-4-0</u> 8-8-0</td> <td></td> <td></td> <td></td>				<u>8-8-0</u> 8-8-0		+			<u>17-4-0</u> 8-8-0			
Loading (ps) Spacing 2-0-0 CSI 0.3 VERL in (loc) (ldel) Lut TCDL 10.0 11.5 BC 0.3 Ver(T, 1) 14.9 >989 240 BCDL 10.0 Code Tr 0.3 Ver(T, 1) 0.23 7 Na Na BCDL 0.0 Rep Stress Incr YES 0.21 Horz(CT) 0.03 7 Na Na DCDL 0.0 Code IRC2018/TPI2014 Matrix S Description Descript	Scale = 1:41.1 Plate Offsets (X, Y): [1:	Edge,0-6-10)], [7:0-3-5,0-1-13]									
 TiCLL (roof) 25.0 Plate Ginp DOL 1.15 TC 0.04 Werl(L) -0.24 is -9899 240 MT20 244/190 Markin S 0.21 Werl(L) -0.24 is -9873 180 Weight: 75 lb FT = 20% One H2.5T Simpson Strong-Tie connectors recommended to connect trust to bearing walls due to UPUFT at (19.7. This is a designed to connect trust to bearing walls due to UPUFT at (19.7. This is a designed to connect trust to bearing walls due to UPUFT at (19.7. This is a designed to connect trust to bearing walls due to UPUFT at (19.7. This is a designed to connect trust to bearing walls due to UPUFT at (19.7. This is a designed to connect trust to bearing walls due to UPUFT at (19.7. This is a designed to connect trust to bearing walls due to UPUFT at (19.7. This is a designed to connect trust to bearing walls due to UPUFT at (19.7. This is a designed to connect trust to bearing walls due to UPUFT at (19.7. This is a designed to connect trust to bearing walls due to UPUFT at (19.7. This is a designed to connect trust to bearing walls due to UPUFT at (19.7. This is a designed to connect trust to bearing walls due to UPUFT at (19.7. This is to bearing walls due to UPUFT at (19.7. This is a designed to connect trust to bearing walls due to UPUFT at (19.7. This is up to a designed to connect trust to bearing walls due to UPUFT at (19.7. This is a designed to connect trust to bearing walls due to UPUFT at (19.7. This is a designed to connect trust to bearing walls due to UPUFT at (19.7. This is a designed to connect trust to bearing walls due to UPUFT at (19.7. This is a designed to connect trust to bearing walls due to UPUFT at (19.7. This is a designed to connect trust to bearing walls due to UPUFT at (10.7. This is a designed to connect trust to bearing walls due to UPUFT at (10.7. This is a designed to connect trust to bearing walls due to UPUFT at (10.7. This is a designed to connect t	Loading	(psf)	Spacing	2-0-0	CSI		DEFL		in (loc) l/defl	L/d	PLATES GRIP
 and the second second	TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.34	Vert(LL)	-0	.11 1-9) >999) >873	240	MT20 244/190
BLUE 10.0 Code IRCC018/1/P2014 Mattex-S Weight 75 is PI = 20% UNMERF TOP CHORD 24 SP No.2 Weight 75 is PI = 20% 00 CHORD 24 SP No.2 Pi = 20% Pi = 20% WEISS 24 SP No.2 Pi = 20% Pi = 20% WEISS 24 SP No.2 Pi = 20% Pi = 20% SUDER Left 24 SP No.2 Pi = 20% Pi = 20% WEISS 24 SP No.2 Pi = 20% Pi = 20% WEISS 24 SP No.2 Pi = 20% Pi = 20% SUDER Left 24 SP No.2 Pi = 20% Pi = 20% WEIS 24 SP No.2 Pi = 20% Pi = 20% SUDER Left 24 SP No.2 Pi = 20% Pi = 20% WEIS 24 SP No.2 Pi = 20% Pi = 20% SUDER Left 24 SP No.2 Pi = 20% Pi = 20% WEIS 24 SP No.2 Pi = 20% Pi = 20% TOP CHORD Structural wood sheathing directly applied or 10.0 code sections R502.11.1 and R502 Pi = 20% TOP CHORD 19 Holasianum Compression/Maximum Compression/Maximum Compression/Maximum Compression/Maximum Compression	BCLL	0.0	Rep Stress Incr	YES	WB	0.21	Horz(C1) -0 T) 0	.03	7 n/a	n/a	
The Chore D 24 SP No.2 BOT CHORD 24 SP No.2 BOT CHORD 24 SP No.2 Left 24 SP No.2 SLIDER Left 24 SP No.2 Left 24 SP No.2 SLIDER Left 24 SP No.2		10.0	Code	7) One H2 5T	Simpson Strong-Tid		tors					Weight: 75 lb $FI = 20\%$
 Control of the state o	TOP CHORD 2x4 SP	No.2		recommend	ed to connect truss	to beari	ng walls o	due to				
SuDER Left 23-32 BRACING TOP CHORN Structural wood sheathing directly applied or 5-39 oc purlins. BRACING Structural wood sheathing directly applied or 10-0-0 oc bracing. BRACING Structural wood sheathing applied or 10-0-0 oc bracing. BRACING Structural wood sheathing directly applied or 10-0-0 oc bracing. NOTES 10 Undalanced rool live loads have been considered for this design. Structural roof dive loads have been considered for this design. Structural roof dive loads have been considered for this design. Structural roof dive loads have been considered or chood live loads nanconcurrent with and right exposed ; lumber ODC-1.60 pair or pool live loads nonconcurrent with any other live loads. 9 Braving are assumed to be: Joint 75 Ph.02 cruching capacity of 566 ps. 9 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 95 lo upilit at joint 1. August 28, 2024	WEBS 2x3 SPF	No.2 No.2	2 E 4 Diabt 2x4 CD N	does not co	nsider lateral forces	3. Hance wi	th the 20	18				
 BRACING BRACING Structural wood sheathing directly applied or 5-39 oc purins. LOAD CASE(S) Standard Standard Standard Control (Size) Max Horiz 1	2-3-2	3F NU.2	2-3-4, Right 2x4 3F h	Internationa R802 10 2 a	I Residential Code	sections	R502.11	.1 and				
 b-3-9 oc putins. b-3-9 oc putins. BRACTONS (Size) 1 = Mechanical, 7=0-5-8 Max Horiz 1=-85 (LC 13) Max Uplift 1=-95 (LC 13), 7=146 (LC 9) Max Grav 1=778 (LC 1), 7=843 (LC 1) FORCES (b) - Maximum Compression/Maximum Tomsion TOP CHORD 1-3=-1220/192, 3-4=-931/120, 5-7=-1220/192, 3-4=-931/120, 5-7=-1220/192, 3-4=-931/120, 6-7=-1220/193 MOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vaad-91mph; TCDL=6.0pst; BCDL=6.0pst; h=250; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) extenior zone; cantilever left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 pst bottom chord live load noncouncent with any other live loads. 4) Bearings are assumed to be: , Joint 7 SP No.2 crushing capacity of 565 psi. 5) Refer to gride(s) for truss to truss connections. 6) Provide mechanical connection by others jof truss to bearing plate capable of withstanding 95 lb uplift at joint 1. 	TOP CHORD Structur	al wood she	eathing directly applie	d or LOAD CASE(S)	Standard		0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
REACTIONS (size) 1 = Mechanical, 7=0-5-8 Max Horiz 1=-85 (LC 13), 7=-116 (LC 9) Max Uplift 1=-95 (LC 13), 7=43 (LC 1) FORCES (b)- Maximum Compression/Maximum Tension TOP CHORD 1-3=-1220/192, 34=-931/120, 5-7=-1220/190, 7-8=0/6 BOT CHORD 1-3=-1320/192, 34=-931/120, 5-7=-1220/190, 7-8=0/6 BOT CHORD 1-3=-187/1014, 7-9=-101/1006 WEBS 4-9=04/52, 5==-301/190, 3-9=-309/193 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=60pst; BCDL=60pst; h=25ft; Ke=1.00; Cat. II; Exp. C: Enclosed; MWTRS (envelope) exterior zone; cantilever left and right exposed; end verical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Bearings are assumed to be: , Joint 7 SP No.2 crushing capacity of 565 psi. 5) Refer to grider(3) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 95 lb uplift at joint 1. August 28,2024	BOT CHORD Rigid ce	purlins.	/ applied or 10-0-0 oc									
Max Horiz 1=85 (LC 13) Max Upit 1=95 (LC 13), 7=116 (LC 9) Max Grav 1=778 (LC 1), 7=843 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1:3=-1220/192, 3:4=931/119, 4:5=:931/120, 5:7-1220/192, 3:4=931/119, 4:5=:931/120, 5:7-1220/192, 3:4=931/119, 4:5=:931/120, 5:7-1220/192, 3:4=:931/119, 4:5=:931/120, 5:7-1220/192, 3:4=:931/119, 4:5=:931/120, 5:7-1220/192, 3:4=:931/119, 4:5=:931/120, 5:7-1220/192, 3:4=:931/119, 4:5=:931/120, 5:7-1220/192, 3:4=:931/119, 4:5=:931/120, 5:7-1220/192, 3:4=:931/119, 4:5=:931/120, 5:7-1220/192, 5:4=:0:10, 5:4:5:4:5:4:4:4:4:5:4:5:4	REACTIONS (size)	1= Mecha	anical, 7=0-5-8									
Max Grav 1=778 (LC 1), 7=843 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-3=-1220/192, 3-4=-931/120, 5-7-1220/190, 7-8=-06 BOT CHORD 1-9=-187/1014, 7-9=-101/1006 WEBS 4-9=-0/452, 5-9=-301/190, 3-9=-309/193 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; B=25ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Bearings are assumed to be: , Joint 7 SP No.2 crushing capacity of 565 psi. 5) Refer to gitder(s) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 95 lb uplift at joint 1. August 28,2024	Max Hori Max Uplit	z 1=-85 (LC t 1=-95 (LC	C 13) C 8), 7=-116 (LC 9)									
Tension TOP CHORD 1-3=-1220/192, 3-4=-931/119, 4-5=-931/120, 5-7=-1220/190, 7-8=-00/6 BOT CHORD 1-9=-187/1014, 7-9=-101/1006 WEBS 4-9=0/452, 5-9=-301/190, 3-9=-309/193 NOTES 1) Unbalanced root live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; h=25ft; Ke=1.00; Cat. II; Exp C; Enclosed; WWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed ; lumber DOL=1.60 plate grip DOL=-1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Bearings are assumed to be: , Joint 7 SP No.2 crushing capacity of 565 psi. 5) Refer to grider(5) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 95 lb uplift at joint 1.	Max Grav	 1=778 (Li aximum Con 	C 1), 7=843 (LC 1)									
5-7=-1220/190, 7-8=0/6 BOT CHORD 1-9=-187/1014, 7-9=-101/1006 WEBS 4-9=0/452, 5-9=-301/190, 3-9=-309/193 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0pst; BCDL=6.0pst; h=25ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Bearings are assumed to be: , Joint 7 SP No.2 crushing capacity of 565 psi. 5) Refer to grider(s) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 95 lb uplift at joint 1.	Tension TOP CHORD 1-3=-12	20/192. 3-4=	' =-931/119. 4-5=-931/ [,]	20.								
 WEBS 4-9=0/452, 5-9=-301/190, 3-9=-309/193 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; BcDL=6.0psf;	5-7=-12 BOT CHORD 1-9=-18	20/190, 7-8= 7/1014, 7-9=	=0/6 =-101/1006									
 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; BCDL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Bearings are assumed to be: , Joint 7 SP No.2 crushing capacity of 565 psi. Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 95 lb uplift at joint 1. 	WEBS 4-9=0/4	52, 5-9=-30	1/190, 3-9=-309/193									
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Bearings are assumed to be: , Joint 7 SP No.2 crushing capacity of 565 psi. Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 95 lb uplift at joint 1. 	 Unbalanced roof live 	e loads have	e been considered for									Sumo
 Vasue 9 Impli, 1CDL=0.0pst, BCDL=0.0pst, BESUt, Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Bearings are assumed to be: , Joint 7 SP No.2 crushing capacity of 565 psi. 5) Refer to girder(s) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 95 lb uplift at joint 1. 	 Wind: ASCE 7-16; V Viand: 01mmb; TCDI 	ult=115mph	n (3-second gust)									E OF MISSO
 Severical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Bearings are assumed to be: , Joint 7 SP No.2 crushing capacity of 565 psi. 5) Refer to girder(s) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 95 lb uplift at joint 1. 	Ke=1.00; Cat. II; Ex	C; Enclose	ed; MWFRS (enveloped)	e)							A	SCOTT M.
 grip DUE=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Bearings are assumed to be: , Joint 7 SP No.2 crushing capacity of 565 psi. 5) Refer to girder(s) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 95 lb uplift at joint 1. August 28,2024 	vertical left and right	ever left and exposed; L	umber DOL=1.60 pla	e							B.	SEVIER
 chord live load nonconcurrent with any other live loads. Bearings are assumed to be: , Joint 7 SP No.2 crushing capacity of 565 psi. Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 95 lb uplift at joint 1. August 28,2024 	grip DOL=1.603) This truss has been	designed fo	r a 10.0 psf bottom								80	att Salis
capacity of 565 psi. 5) Refer to girder(s) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 95 lb uplift at joint 1. August 28,2024	4) Bearings are assum	oncurrent w ed to be: , J	ith any other live load oint 7 SP No.2 crushi	s. ng						-	W.	NUMBER 07
6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 95 lb uplift at joint 1. August 28,2024	capacity of 565 psi.5) Refer to girder(s) for	truss to true	ss connections.								N.	
1. August 28,2024	 6) Provide mechanical bearing plate capab 	connection le of withsta	(by others) of truss to nding 95 lb uplift at jo	nt							8	NAL ET
	1.											August 28,2024
	A											-

WARNING - Verify design parameters and KEAD NOTES ON THIS AND INCLUDED MITEX REFERENCE PAGE MIL-/4/3 rev. 1/2/20/3 BEFORE USE. Design valid for use only with MiTeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - BY Lot 1330	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
P250393-01	J1	Monopitch Girder		2	1	Job Reference (optional	I67816487 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Spring	nill, KS), Spring Hills, KS - 66083,		Run: 8.63 S Jul 12 20) 24 Print: 8.6 CSNhPlv8Ne	30 S Jul 12 2	2024 MiTek Industries, Inc. Mo 0Ha3NSaPanL8w3uITXbGKV	n Aug 26/2162/10/269:25

Scale = 1:37.6

Plate Offsets (X, Y): [3:0-2-3,0-1-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.42	Vert(LL)	-0.02	5-6	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.20	Vert(CT)	-0.03	5-6	>999	180		
BCLL	0.0	Rep Stress Incr	NO		WB	0.00	Horz(CT)	0.01	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/	TPI2014	Matrix-R							Weight: 20 lb	FT = 20%
LUMBER			7)	This truss is	designed in accord	ance w	ith the 2018						
TOP CHORD	2x4 SP No.2			International	Residential Code s	ections	R502.11.1	and					
BOT CHORD	2x4 SP No.2			R802.10.2 ar	nd referenced stand	dard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2 *Exc	ept* 6-2:2x4 SP No.2	8)	Gap betweer	i inside of top chore	d bearir	ng and first						
BRACING	ACING diagonal or vertical web shall not exceed 0.500in.												
TOP CHORD	Structural wood sh	eathing directly applie	dor ⁹⁾		licates 3-100 (0.14)	SX3)(Sauidli	or 2-120						
	5-4-4 oc purlins, e	cept end verticals.	10)	(0.146 X3.25	CASE(S) soction	oode o	nes.	faco					
BOT CHORD	Rigid ceiling directl bracing.	y applied or 10-0-0 oc	: 10)	of the truss a	re noted as front (F) or ba	ck (B).	lace					
REACTIONS	(size) 3= Mech	anical, 5= Mechanica	l, LO A	AD CASE(S) Dead + Roc	Standard	umber	Increase=1	15					
	6=0-7-6 Max Llaria 6, 01 (L	2.04)	• • • •	Plate Increa	se=1.15	Lambol	11010000-1	,					
	Max Holiz 0=91 (LC	(21)		Uniform Loa	ads (Ib/ft)								
	Max Opint $3=72$ (L	C(0), 0 = -0.9 (LC(4))	-220	Vert: 1-2=	=-70, 2-3=-70, 4-6=	-20							
		.C 1), 5=114 (LC 3), 6	=330	Concentrate	ed Loads (lb)								
FORCES	(lb) - Maximum Cor	mpression/Maximum		Vert: 8=5	(F=2, B=2)								
IONOLO	Tension	npression/maximum											
TOP CHORD	1-2=0/32, 2-3=-148	/9. 3-5=0/0. 2-6=-299	/130										
BOT CHORD	5-6=-22/70, 4-5=0/)											
NOTES													
1) Wind: AS	CE 7-16: Vult=115mp	h (3-second aust)											
Vasd=91r	nph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft;											
Ke=1.00;	Cat. II; Exp C; Enclos	ed; MWFRS (envelop	e)										Th
exterior zo	one; cantilever left and	right exposed ; end										OF M	ALC: NO
vertical le	ft exposed; Lumber D	OL=1.60 plate grip										ALE OF I	IIS'S
DOL=1.60)										6		1.5
2) This truss	has been designed for	or a 10.0 psf bottom									A	SCOTT	M. P.V.
chord live	load nonconcurrent v	vith any other live load	ls.								U	SEVI	ER VY
3) Bearings	are assumed to be: , .	ioint 6 SP No.2 crush	ing							1	Ba		
 A) Refer to a 	irder(e) for trues to tru	es connections									X		And a start
5) Provide m	hider(s) for truss to tru	(by others) of trues to	`							ø		con .	
bearing of	ate capable of withsta	inding 72 lb uplift at ic	, pint							-	5	NUMI	SER E
3.											N	OX PE-2001	018807
6) One H2.5	T Simpson Strong-Tie	connectors									V	The last	158
recomme	nded to connect truss	to bearing walls due t	0									S'SIG	ENUR
UPLIFT a	t jt(s) 6. This connecti	on is for uplift only an	d									WNA	LEY
does not o	consider lateral forces											Vaca	and a

UPLIFT at jt(s) 6. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

August 28,2024

						RELEASE FOR CONSTRUCTION
leb	Truce		011	DIV	Boof BV Lot 1220	AS NOTED FOR PLAN REVIEW
300	11055	Truss Type	Quy	гіу	R001 - BT L01 1330	DEVELOPMENT SERVICES
P250393-01	J2	Jack-Open	11	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Mon Aug 26 1624 1 0/2 19 20 ID:yWJk?nhRkMuAHZXHeIrSt5y8NeM-RfC?PsB70Hq3NSgPqnL8w3ulTXbG WrCDon44 2041 1 0/2 19 20

DUCTION

Scale =	1:28.1
---------	--------

3-10-8

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.22 0.14 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 3-10-8 oc purlins, e Rigid ceiling directly bracing. (size) 3= Mecha 5=0-5-8 Max Horiz 5=86 (LC Max Uplift 3=-63 (LC Max Grav 3=112 (LC	athing directly applie xcept end verticals. applied or 10-0-0 oc anical, 4= Mechanica 8) 5 8), 5=-29 (LC 8) C 1), 4=69 (LC 3), 5=	7) This truss is Internationa R802.10.2 a LOAD CASE(S) ed or ;	designed in accor l Residential Code and referenced star Standard	rdance w sections ndard AN	ith the 2018 s R502.11.1 a ISI/TPI 1.	ind					
 FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASK Vasd=91n Ke=1.00; exterior zz vertical lef grip DOL= 2) This truss chord live 3) Bearings a capacity of 4) Refer to g 5) Provide m bearing pl 3. 6) One H2.55 recommer UPLIFT at does not of 	(LC 1) (Ib) - Maximum Com Tension 2-5=-216/65, 1-2=0/: 4-5=0/0 CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one; cantilever left and ft and right exposed; Lu -1.60 has been designed for load nonconcurrent wi are assumed to be: , Jo f 565 psi. irder(s) for truss to trus techanical connection (ate capable of withstar T Simpson Strong-Tie to nded to connect truss to t jt(s) 5. This connection consider lateral forces.	apression/Maximum 32, 2-3=-73/39 (3-second gust) DL=6.0psf; h=25ft; d; MWFRS (envelop right exposed ; end umber DOL=1.60 pla r a 10.0 psf bottom th any other live loac bint 5 SP No.2 crush ss connections. (by others) of truss to rading 63 lb uplift at jc connectors o bearing walls due to n is for uplift only an	te) tte ds. ing bint to d								STATE OF M SCOT SEV NUM PE-20010 PE-20010 Augus	MISSOLUTION T.M. ER 018807 L ENGINA t 28,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job Truss Truss Type Qty Ply Roof - BY Lot	AS NOTED FOR PLAN REVIEW
P250393-01 J3 Jack-Open 4 1 Job Reference	ce (optional LEE'S SUMMIT, MISSOURI

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Man Aug 2021 Rev ID:yWJk?nhRkMuAHZXHeIrSt5y8NeM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDore4.2004

1-9-7

Scale = 1:25.9				_	1	1						
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	0.00	4-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	4-5	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 8 lb	FT = 20%

7) This truss is designed in accordance with the 2018

LOAD CASE(S) Standard

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LUMBER	
	2v4 SD No 2

.

	274 01 14	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x4 SP N	0.2
BRACING		
TOP CHORD	Structural 1-9-7 oc p	l wood sheathing directly applied or ourlins, except end verticals.
BOT CHORD	Rigid ceil bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	3= Mechanical, 4= Mechanical, 5=0-5-8
	Max Horiz	5=45 (LC 8)
	Max Uplift	3=-28 (LC 8), 5=-26 (LC 8)
	Max Grav	3=39 (LC 1), 4=29 (LC 3), 5=167 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	2-5=-146/	/42, 1-2=0/32, 2-3=-35/12
BOT CHORD	4-5=0/0	
NOTES		
1) Wind: AS0 Vasd=91n	CE 7-16; Vu nph; TCDL=	lt=115mph (3-second gust) 6.0psf; BCDL=6.0psf; h=25ft;

- Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom
- 2) chord live load nonconcurrent with any other live loads. Bearings are assumed to be: , Joint 5 SP No.2 crushing 3)
- capacity of 565 psi. 4)
- Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint
- One H2.5T Simpson Strong-Tie connectors 6) recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces.

10/202

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with with the contractions. This design is based only door plantaters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - BY Lot 1330	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
P250393-01	LAY1	Lay-In Gable	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springh	ill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Jul 12 20 ID:Qit7C7i3Vg00vj6T	024 Print: 8.6 CSNhPly8Ne	30 S Jul 12 2 L-RfC?PsB7	2024 MiTek Industries, Inc. Mo 0Hq3NSgPqnL8w3uITXbGKV	n Aug 24 25 27 10/29 25
					•	

18-0-0

Scale = 1:60.9															
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		25.0	Plate Grip DOL	1.15			0.11	Vert(LL)	n/a	-	n/a	999	M120	244/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.07	Vert(IL)	n/a	-	n/a	999			
BCLL		0.0	Rep Stress Incr	YES		WB	0.24	Horiz(TL)	0.01	9	n/a	n/a			
BCDL		10.0	Code	IRC201	8/1912014	Matrix-S							Weight: 98 lb	FT = 20%	
LUMBER				2)	Wind: ASCE	7-16; Vult=115mp	oh (3-seo	cond gust)							
TOP CHORD	2x4 SP N	0.2			Vasd=91mp	h; TCDL=6.0psf; B	CDL=6.	0psf; h=25ft;							
BOT CHORD	2x4 SP N	0.2	Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope)												
OTHERS	2x3 SPF No.2 exterior zone; cantilever left and right exposed; end														
BRACING	vericai lett and right exposed; Lumber DOL=1.60 plate														
TOP CHORD	Structural 6-0-0 oc p	l wood she purlins.	athing directly applie	ed or 3)	grip DOL=1. Truss desig	lane of the tru	uss								
BOT CHORD	Rigid ceili bracing.	ing directly	applied or 10-0-0 oc)	only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,										
WEBS	1 Row at	midpt	5-13		or consult qu	alified building de	signer a	s per ANSI/TF	기 1.						
REACTIONS	(size)	1=18-0-2.	9=18-0-2. 10=18-0-	2. ⁴⁾	All plates are	e 1.5x4 M120 unle	ss other	wise indicated	d.						
	()	11=18-0-2	2, 12=18-0-2, 13=18-	-0-2, 5)	Gable requir	es continuous bot	tom choi	rd bearing.							
		15=18-0-2	2, 16=18-0-2, 17=18	-0-2 5)	Gable studs	spaced at 0-0-0 o	C.	0							
	Max Horiz	1=-261 (L	C 4)	()	chord live lo	as been designed	with any	other live lea	de						
	Max Uplift	1=-86 (LC	6), 9=-50 (LC 7),	0)	8) All bearings are assumed to be SP No.2 crushing										
		10=-187 (LC 9), 11=-123 (LC	9), ⁰⁾	capacity of 5	are assumed to be	SP NU	.2 crushing							
		12=-133 (LC 9), 15=-135 (LC	8), a)		00 psi.									
		16=-122 (LC 8), 17=-187 (LC	8) 3)	N/A										
	Max Grav	1=237 (LC	C 8), 9=214 (LC 18),												
		10=291 (L	.C 16), 11=181 (LC 1	16),											
		12=220 (L	-C 16), 13=204 (LC 9	9),											
		15=223 (L	-C 15), 16=180 (LC	^{15),} 10) This truss is	designed in accor	dance w	ith the 2018							
		17=291 (L	.C 15)		International	Residential Code	sections	s R502.11.1 a	ind						
FORCES	(lb) - Max	imum Com	pression/Maximum		R802.10.2 a	nd referenced star	ndard AN	NSI/TPI 1.							
	Tension			L(DAD CASE(S)	Standard							San	ann	
TOP CHORD	1-2=-345/	/218, 2-3=-	181/138, 3-4=-147/1	08,									OF J	MISCH	
	4-5=-119/	171, 5-6=-	97/147, 6-7=-110/70	,								- /	4 SE		
	7-8=-155/	89, 8-9=-3	13/169									6	N	New	
BOT CHORD	1-1/=-119	9/257, 16-1	7=-119/257,									B	SCOT	TM. Yor Y	
	15-16=-1	19/257, 13-	15=-119/257,									R	SEV.	IER \ Y	
	10 11- 1	19/257,11-	·12=-110/207, 0_ 119/257									the the			
WERS	2 17- 22	10/201,9-1	0=-110/237									Ψ.	1. TT-	Xana 1	
WLD3	2-17=-22 4-1518	1/150 5-10									-			San I	
	6-1217	8/157 7-11										27	AV NOW	DER EA	
	8-10=-22	3/207	- 101/140,									N.	о <u>х</u> PE-2001	018807	
NOTES	5.5 LL											V	AT !!	158	
NULES													1 Part	100	

NOTES

1) Unbalanced roof live loads have been considered for

this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

August 28,2024

SIONAL EN

												RELEASE	FOR CONSTRUCTION
Job		Truss		Truss T	уре		Qty	Ply	Roof	- BY Lot 133	0	AS NOTE DEVEL	D FOR PLAN REVIEW
P250393-01		V1		Valley			1	1	Job R	eference (or	otional	LEE'S	SUMMIT, MISSOURI
Premier Building	Supply (Spring	hill, KS), S	pring Hills, KS - 66083,			Run: 8.63 S Jul 12 2	024 Print	t: 8.630 S Jul 12	2024 Mi	Tek Industries,	Inc. Mo	n Aug 26 2:022	10/2025
						ID:M63II?sLvSj_3fljr	9wRwDy8	8NRE-RfC?PsB7	70Hq3NS	gPqnL8w3ulT>	XbGKW	CDoi7J42JC H	10/2020
												10	21-8-12
		F		<u> </u>	-8-14 -8-14		2-3	1-14 3-0			<u>21-1-</u> 9-1-	<u>13</u> 15	0-6-15
													0010
~	_						3x4 =	3x4 =					
[÷ <u></u> 4							
4	0				2	•			\searrow	7			
					J								
9-0 9-0	5-5										\geq		
4-1	4	1	2									8	5
		6	ŕ									R	
	- 4		1					a					9
		Ŕ		*****					****		****		
			3x4 ≠ 15			14	1	3 12		11		10	3x4 👟
								3x4 =					
		⊢					21-8	8-12					
Scale = 1:41.6		I											1
Plate Offsets ()	K, Y): [4:0-2	-0,Edge],	[6:0-2-0,Edge]										
Loading		(psf)	Spacing	2-0-0		CSI	D	DEFL	in (loc) l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0 10.0	Lumber DOL	1.15		BC ().21 V).12 V	/ert(LL) /ert(TL)	n/a n/a	- n/a - n/a	999 999	MT20	244/190
BCLL BCDL		0.0 10.0	Rep Stress Incr Code	YES IRC201	8/TPI2014	WB (Matrix-S	0.10 H	loriz(TL) C	0.00	9 n/a	n/a	Weight: 76 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS	2x4 SP No. 2x4 SP No. 2x3 SPF No	2 2 5.2		2)	Wind: ASCE Vasd=91mph Ke=1.00; Cat exterior zone	7-16; Vult=115mph (ı; TCDL=6.0psf; BCD t. II; Exp C; Enclosed ; cantilever left and ri	3-secon L=6.0ps ; MWFR ght expo	nd gust) sf; h=25ft; RS (envelope) osed ; end					
BRACING	Structural v	vood shea	athing directly applied	lor	vertical left an grip DOL=1.6	nd right exposed; Lur 60	nber DC	DL=1.60 plate					
	6-0-0 oc pu 2-0-0 oc pu	Irlins, exc Irlins (6-0-	ept -0 max.): 4-6.	3)	Truss desigr only. For stu	ned for wind loads in ds exposed to wind (the plan normal t	e of the truss to the face),					
BOT CHORD	Rigid ceiling	g directly	applied or 10-0-0 oc		see Standard or consult qu	I Industry Gable End alified building desigr	Details a ner as pe	as applicable, er ANSI/TPI 1					
REACTIONS	(size) 1	I=21-8-12	2, 9=21-8-12, 10=21-8	3-12, 4) 5)	Provide adeo All plates are	uate drainage to pre 1.5x4 MT20 unless (vent wat	ter ponding. e indicated.					
	1	11=21-8-1 14=21-8-1	2, 13=21-8-12, 2, 15=21-8-12	6) 7)	Gable require	es continuous bottom	chord b	bearing.					
	Max Horiz 1 Max Uplift 1	l=-79 (LC l=-2 (LC §	9) 9), 10=-97 (LC 9),	8)	This truss ha	s been designed for a	a 10.0 ps	sf bottom					
	1	1=-100 (5=-96 (L0	LC 9), 14=-102 (LC 8 C 8)	^{),} 9)	All bearings a	are assumed to be SI	P No.2 c	crushing					
	Max Grav 1	I=106 (LC I0=319 (L	C 1), 9=106 (LC 1), .C 1), 11=371 (LC 22), 10) Provide mech	nanical connection (b	y others	s) of truss to					
	1	3=284 (L 5=319 (l	.C 1), 14=371 (LC 21) C 1)),	1, 102 lb upli	ft at joint 14, 96 lb up	ling 2 lb lift at joir	nt 15, 100 lb					
FORCES	(lb) - Maxim	num Com	pression/Maximum	11	uplift at joint) This truss is (11 and 97 lb uplift at designed in accordar	ice with	the 2018					
TOP CHORD	1-2=-150/2	9, 2-3=-16	64/67, 3-4=-160/105,		International R802.10.2 ar	Residential Code sed ad referenced standa	ctions R rd ANSI	502.11.1 and /TPI 1.				and a	ADDE
	4-5=-97/10 7-8=-164/4	3, 5-6=-97 2, 8-9=-13	7/104, 6-7=-160/98, 32/11	12	 Graphical pu or the orienta 	rlin representation do	es not d	depict the size				TE OF I	MISSO,
BOT CHORD	1-15=0/115 11-13=0/11	5, 14-15=0 5, 10-11=	0/115, 13-14=0/115, =0/115, 9-10=0/115		bottom chord	Oten dend	ig the te	p und/or			A	ST SCOT	TM.
WEBS	5-13=-205/ 2-15=-248/	39, 3-14= 137, 7-11	-289/152, =-289/150	LC	JAD CASE(S)	Standard					A.	SEV	
Notes	8-10=-248/	138	_00, 100,								gr	\$	13
NOTES 1) Unbalance	d roof live loa	ads have	been considered for									Cottom	Servery
this design											Ŋ	PE-2001	018807
											1	SSIONA	L ENGL
												Augus	t 28,2024

August 28,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH 10aulity Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

* 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITEk-US.com

														RELEASE	E FOR CONSTRUCTION
Job		Truss		т	russ Ty	/pe		Qty	Ply		Roof - BY	Lot 1330	C	AS NOTI DEVEL	ED FOR PLAN REVIEW
P250393-01		V3		N	/alley			1	1		Job Refere	ence (op	tional	LEE'S	I67816493 SUMMIT, MISSOURI
Premier Building	Supply (Springh	ill, KS), Sp	oring Hills, KS - 6	6083,			Run: 8.63 S Jul ID:Cub7zwA5Tel	12 2024 Pr Kf0F0UArs	int: 8.630 S J ml?y8NPY-R	lul 12 2 fC?Ps	2024 MiTek Ir B70Hq3NSgF	idustries, PqnL8w3u	Inc. Ma ITXbGl	n Aug 26 21:622 (WrCDoi) 94232 1f	10/2025
			F			6-1	0-6 0-6					<u>13-1-13</u> 6-3-7			13-8-12
						01	00		•			007			0-6-15
									4x4 = 3						
	3-5-7 3-1-11		6	1 <u>2</u>		2							1.5x	4 11	
		-4	- 6	1											5
		-	Ě												
				Зх	4 ≠	8 1.5x4 i	u		7 1.5x4 u				ь 1.5x	3x 4 u	4 😞
Scale = 1:32			ŀ				•		13-8-12						
Loading TCLL (roof) TCDL BCLL		(psf) 25.0 10.0 0.0	Spacing Plate Grip DC Lumber DOL Rep Stress In	2 IL 1 Cr Y	-0-0 .15 .15 ES		CSI TC BC WB	0.20 0.12 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	r r 0.	in (loc) n/a - n/a - 00 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No. Structural we 6-0-0 oc purl Rigid ceiling bracing. (size) 1= 7= Max Horiz 1= Max Uplift 1= 8= Max Grav 1= (L 21	2 bod shea ins. directly a 13-8-12 13-8-12 13-8-12 155 (LC 1 -110 (LC -110 (LC 72 (LC 1 C 22), 7=)	athing directly a applied or 10-0 , 5=13-8-12, 6= , 8=13-8-12 12) 9), 6=-110 (LC C 8) 1), 5=72 (LC 1) =312 (LC 1), 8=	pplied or -0 oc =13-8-12 9), , 6=345 (LC	6) 7) 8) r 9)	This truss ha chord live loa All bearings a capacity of 5 Provide mec bearing plate 1, 110 lb upli This truss is International R802.10.2 ar PAD CASE(S)	is been designed f ad nonconcurrent t are assumed to be 65 psi. hanical connectior e capable of withst ff at joint 8 and 11 designed in accor Residential Code nd referenced star Standard	for a 10.0 with any of a SP No.2 n (by othe anding 10 0 lb uplift dance wit sections ndard AN:	psf bottom ther live loa crushing rs) of truss 0 lb uplift at at joint 6. h the 2018 R502.11.1 a SI/TPI 1.	ads. to joint and					
FORCES	(lb) - Maximu Tension	ım Comp	pression/Maxim	num											
TOP CHORD	1-2=-76/38, 2 4-5=-59/29	2-3=-106	6/81, 3-4=-106/	65,											
BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m Ke=1.00; C exterior zor vertical left	1-8=0/51, 7-8 3-7=-228/39, d roof live load E 7-16; Vult=1 ph; TCDL=6.0 Cat. II; Exp C; I ne; cantilever and right exp	B=0/51, 6 , 2-8=-27 ds have b 115mph (psf; BCE Enclosed left and r osed; Lu	6-7=0/51, 5-6=0 '6/151, 4-6=-27 been considere (3-second gust DL=6.0psf; h=2 J; MWFRS (env ight exposed ; mber DOL=1.6	0/51 76/151 ed for) 5ft; velope) end 0 plate										STATE OF I	MISSOLAL T. M. HER
 grip DOL= 3) Truss desi only. For s see Standa or consult of 4) Gable requ 5) Gable stud 	1.60 igned for wind studs exposed ard Industry Ga qualified buildi uires continuou Is spaced at 4-	loads in to wind able End ng desig is bottom 0-0 oc.	the plane of th (normal to the f I Details as app ner as per ANS n chord bearing	e truss face), Ilicable, SI/TPI 1. J.								2	A A A A A A A A A A A A A A A A A A A	PE-2001	BER 018807

August 28,2024

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.30	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.18	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.06	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/T	PI2014	Matrix-S							Weight: 30 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly	athing directly applie	8) F b 1 9) T li d or F LOA	Provide mech pearing plate I, 44 lb uplift This truss is nternational R802.10.2 ar D CASE(S)	hanical connection capable of withs at joint 3 and 22 designed in acco Residential Code nd referenced star Standard	on (by oth standing 3 I b uplift a ordance w e sections andard AN	ers) of truss to 7 lb uplift at jo t joint 4. ith the 2018 s R502.11.1 at ISI/TPI 1.	o pint nd					
BOT CHORD	אופות cening urechy applied or 10-0-0 oc bracing.												
REACTIONS	itions 1=9-8-12, 3=9-8-12, 4=9-8-12 Max Horiz 1=38 (LC 8) Max Uplift 1=-37 (LC 8), 3=-44 (LC 9), 4=-22 (LC 8) (LC 21), 3=181 (LC 22), 4=-08 (LC 1)												
FORCES	(Ib) - Maximum Compression/Maximum Tension												
TOP CHORD	1-2=-111/55, 2-3=-1	11/40											
BOT CHORD	RD 1-4=-2/46, 3-4=-2/46												
WEBS	2-4=-279/72												
NOTES	NOTES												
1) Unbalance this design	 Unbalanced roof live loads have been considered for this design. Unbalanced roof Live loads have been considered for 												

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4) 5) Gable studs spaced at 4-0-0 oc.
- 6)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) All bearings are assumed to be SP No.2 crushing
- capacity of 565 psi.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - BY Lot 1330	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
P250393-01	V5	Valley		1	1	Job Reference (optional	I67816495 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Spring	nill, KS), Spring Hills, KS - 66083,	R	Run: 8.63 S Jul 12 20 D:c?HEjDX942gqD1M)24 Print: 8 MKNn6p56	.630 S Jul 12 /8N4Q-RfC?I	2024 MiTek Industries, Inc. M PsB70Hq3NSgPqnL8w3uITXb	n Aug 262162/10/2925 KWrCD0#J4200?f
		F	<u>2-10-</u> 2-10-	- <u>6</u> -6		5-1-13 2-3-7	5-8-12 0-6-15
					4x4 =		
	1-5-7	4-0-0 4			2		3

3x4 ዾ

1.5x4 u

5-8-12

3x4 👟

So

Scale = 1:22.6												-		
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.11 0.05 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 5-9-12 oc purlins. Rigid ceiling directly bracing. (size) 1=5-8-12,	athing directly applie applied or 10-0-0 or 3=5-8-12, 4=5-8-12	8) 9) ed or L c	 Provide med bearing plate 1, 28 lb uplif This truss is Internationa R802.10.2 a DAD CASE(S) 	hanical conn e capable of t t at joint 3 an designed in a Residential (nd reference Standard	ection (by oth withstanding 2 d 2 lb uplift at accordance w Code sections d standard AN	ers) of truss 4 lb uplift at joint 4. ith the 2018 R502.11.1 a ISI/TPI 1.	to joint and						

RE Max Horiz 1=-20 (LC 9) Max Uplift 1=-24 (LC 8), 3=-28 (LC 9), 4=-2 (LC 8) 1=107 (LC 1), 3=107 (LC 1), 4=196 Max Grav (LC 1)

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-52/29, 2-3=-52/20 BOT CHORD 1-4=-1/23, 3-4=-1/23 2-4=-139/36 WEBS

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6)
- chord live load nonconcurrent with any other live loads.
- 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com) 16023 Swingley Ridge Rd.

Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.21	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.12	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0	Rep Stress Incr	YES		WB	0.11	Horiz(TL)	0.00	5	n/a	n/a		
BCDL		10.0	Code	IRC20	18/TPI2014	Matrix-S							Weight: 49 lb	FT = 20%
LUMBER				(This truss h	as been design	ed for a 10.	0 psf bottom						
TOP CHORD	2x4 SP N	o.2			chord live lo	ad nonconcurre	ent with any	other live loa	ids.					
BOT CHORD	2x4 SP N	0.2		-	All bearings	are assumed t	o be SP No.	2 crushing						
OTHERS	2x3 SPF I	No.2			capacity of	565 psi.								
BRACING				8	Provide me	chanical conne	ction (by oth	ers) of truss	to					
TOP CHORD	Structural 6-0-0 oc r	l wood she ourlins.	athing directly applie	ed or	bearing plat 1, 11 lb upli	e capable of wi ft at joint 5, 177	ithstanding 3 ' Ib uplift at j	34 lb uplift at pint 8 and 17	joint 7 lb					
BOT CHORD	Rigid ceil bracing.	ing directly	applied or 10-0-0 o	с ş	uplift at joint) This truss is	t 6. designed in ac	cordance w	ith the 2018						
REACTIONS	(size)	1=12-11-8	3, 5=12-11-8, 6=12- ⁻ 3, 8=12-11-8	11-8,	R802.10.2 a	Il Residential Co and referenced	ode sections standard AN	s R502.11.1 a NSI/TPI 1.	and					
	Max Horiz	1=-132 (1	C 4)	1	OAD CASE(S)) Standard								
	Max Uplift	1=-34 (I C	$(4) 5 = -11 (1 \times 5) 6$	=-177										
	max opini	(LC 9), 8=	-177 (LC 8)											
	Max Grav	1=119 (LC	C 16), 5=102 (LC 15	i),										
		6=360 (LC	C 16), 7=257 (LC 1),	,										
		8=360 (LC	C 15)											
FORCES	(lb) - Max	imum Com	pression/Maximum											
	Tension													
TOP CHORD	1-2=-141/	/102, 2-3=-	171/112, 3-4=-167/8	38,										
	4-5=-123/	/67												
BOT CHORD	1-8=-39/9	5, 7-8=-39	/95, 6-7=-39/95,											
	5-6=-39/9	95												
WEBS	3-7=-172/	2, 2-8=-29	3/218, 4-6=-292/218	3										
NOTES													000	100

- NOTES
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

f)	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.40 0.24	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
	0.0	Rep Stress Incr	YES	WB	0.10	Horiz(TL)	0.00	3	n/a	n/a		
	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 37 lb	FT = 20%

Loading TCLL (roo TCDI BCLL BCDL

TOP CHORD	2x4 SP N 2x4 SP N	0.2 n 2
OTHERS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	6-0-0 oc p	ourlins.
BOT CHORD	Rigid ceili	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=10-6-11, 3=10-6-11, 4=10-6-11
	Max Horiz	1=106 (LC 5)
	Max Uplift	1=-40 (LC 8), 3=-53 (LC 9), 4=-8
		(LC 8)
	Max Grav	1=244 (LC 1), 3=244 (LC 1), 4=385
		(LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	

TOP CHORD 1-2=-202/94, 2-3=-201/74 BOT CHORD 1-4=-24/94, 3-4=-24/94 2-4=-236/58 WEBS

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6)
- chord live load nonconcurrent with any other live loads.
- 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 1, 53 lb uplift at joint 3 and 8 lb uplift at joint 4.

9)

This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with with the contractions. This design is based only door plantaters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

oading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.14	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.05	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 29 lb	FT = 20%

LUMBER		
TOP CHORD	2x4 SP No	0.2
BOT CHORD	2x4 SP No	0.2
OTHERS	2x3 SPF N	No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	6-0-0 oc p	ourlins.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=8-1-14, 3=8-1-14, 4=8-1-14
	Max Horiz	1=-80 (LC 4)
	Max Uplift	1=-41 (LC 8), 3=-51 (LC 9)
	Max Grav	1=201 (LC 1), 3=201 (LC 1), 4=265
		(LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-140/	69, 2-3=-134/54
BOT CHORD	1-4=-18/6	6, 3-4=-18/66
WEBS	2-4=-172/	41
NOTES		
1) Unhalance	ed roof live l	oads have been considered for

- this design
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- Gable studs spaced at 4-0-0 oc. 5)
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.
- 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 41 lb uplift at joint 1 and 51 lb uplift at joint 3.
- This truss is designed in accordance with the 2018 9) International Residential Code sections R502.11.1 and
- R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with with the contractions. This design is based only door plantaters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - BY Lot 1330	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
P250393-01	V9	Valley	1	1	Job Reference (optional)	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Spring	nill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Jul 12 2 ID:Wb10BXg6fXxJvn	024 Print: 8. hKzYDtTXLy	630 S Jul 12 8N86-RfC?Ps	2024 MiTek Industries, Inc. Mo sB70Hq3NSgPqnL8w3uITXbG	n Aug 2f 2; 62/10/2 ^{fg} 25
		2-10-9		1	5-9-1 5-4-15	
		2-10-9		Ι	2-6-7 0-4-2	

5-9-1

Scale = 1:26.5

Loading	(psf) 25.0	Spacing Plate Grin DOI	2-0-0		CSI TC	0.13	DEFL	in n/a	(loc)	l/defl n/a	L/d 999	PLATES	GRIP 244/190
TCDI	10.0	Lumber DOI	1.10		BC	0.06	Vert(TL)	n/a		n/a	999	1.1120	211/100
BCU	0.0	Ren Stress Incr	YES		WB	0.02	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-P	0.02	110112(112)	0.00	5	n/a	n/a	Weight: 20 lb	FT = 20%
LUMBER			6) Provide me	chanical conn	ection (by oth	ers) of truss	to					
TOP CHORD	2x4 SP No.2			bearing plat	e capable of v	withstanding 2	28 lb uplift at	joint					
BOT CHORD	2x4 SP No.2			1 and 34 lb	uplift at joint 3	3.							
OTHERS	2x3 SPF No.2		ç) This truss is	designed in a	accordance w	ith the 2018						
BRACING				Internationa	Residential	Code sections	s R502.11.1 a	and					
TOP CHORD	Structural wood she	athing directly appli	ed or	R802.10.2 a	and reference	d standard AN	ISI/TPI 1.						
	5-9-11 oc purlins.	at my arooty appr	L	OAD CASE(S)	Standard								
BOT CHORD	Rigid ceiling directly bracing.	/ applied or 10-0-0 o	С										
REACTIONS	(size) 1=5-9-1,	3=5-9-1, 4=5-9-1											
	Max Horiz 1=54 (LC	5)											
	Max Uplift 1=-28 (LC	C 8), 3=-34 (LC 9)											
	Max Grav 1=136 (L	C 1), 3=136 (LC 1),	4=179										
	(LC 1)	,, , , , ,											
FORCES	(lb) - Maximum Con	npression/Maximum											
	Tension												
TOP CHORD	1-2=-94/47, 2-3=-91	/37											
BOT CHORD	1-4=-12/45, 3-4=-12	2/45											
WEBS	2-4=-116/28												
NOTES													
1) Unholono	ad roof live loade hove	been considered fo											

ed roof live loads have been cons this design.

2-5-1

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- Gable studs spaced at 4-0-0 oc. 5)
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.
- 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

OF MISSOL TE SCOTT M. SEVIER MJM PE-2001018807 ESSIONAL ET August 28,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Trues	i					
	11033	Truss Type		Qty	Ply	Roof - BY Lot 1330	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
P250393-01	V10	Valley		1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springhi	nill, KS), Spring Hills, KS - 66083,		Run: 8.63 S Jul 12 2 ID:UPucjXYL99TJ?a	024 Print: 8 gl8H9qJ1y8	.630 S Jul 12 N5h-RfC?Psl	2024 MiTek Industries, Inc. Mo B70Hq3NSgPqnL8w3uITXbGK	n Aug 20262/10/2025
					<u>1-6-0</u> 1-6-0	3-0-0 2-10-0 1-4-0 0-2-0	
						3x4 =	
	1-5-1	0-3-11 1-5-1 0-3-11 1-1-5	0.2-1			2	

3-0-0

Scale = 1:22.8

Plate Offsets (X, Y): [2:0-2-0.Edge]

	(, T): [2:0 2 0,Edge]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.03 0.08 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%
BCDL LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS (FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Unbalancee this design. 2) Wind: ASCI Vasd=91mp Ke=1.00; C exterior zorn vertical left grip DOL=1 3) Truss desig only. For sis see Standa or consult q 4) Gable requi	10.0 2x4 SP No.2 2x4 SP No.2 Structural wood shea 3-4-14 oc purlins. Rigid ceiling directly bracing. (size) 1=3-4-4, 3 Max Horiz 1=28 (LC Max Uplift 1=-12 (LC Max Uplift 1=-12 (LC Max Uplift 1=-12 (LC (lb) - Maximum Com Tension 1-2=-94/30, 2-3=-94/ 1-3=-8/56 d roof live loads have E 7-16; Vult=115mph ph; TCDL=6.0psf; BCI iat. II; Exp C; Enclose he; cantilever left and and right exposed; Lu .60 gned for wind loads in tuds exposed to wind rd Industry Gable Enc ualified building desig ires continuous bottor	Code athing directly applie applied or 10-0-0 oc 3=3-4-4 5) 5 (a), 3=-12 (LC 9) 2 1), 3=117 (LC 1) pression/Maximum /30 been considered for (3-second gust) DL=6.0psf; h=25ft; d; MWFRS (envelop right exposed ; end umber DOL=1.60 pla n the plane of the true (normal to the face) d Details as applicab gner as per ANSI/TP m chord bearing.	IRC2018/TPI2014 9) This truss is Internationa R802.10.2 a LOAD CASE(S d or e) e) tte ss ble, 1.1.	Matrix-P s designed in acco al Residential Cod and referenced sta) Standard	ordance wi	th the 2018 R502.11.1 a SI/TPI 1.	ind			*	Weight: 10 lb	FT = 20%
 Gable studs This truss h chord live lo All bearings capacity of Provide me bearing plat 1 and 12 lb 	s spaced at 4-0-0 oc. nas been designed for oad nonconcurrent wil s are assumed to be \$ 565 psi. cchanical connection (te capable of withstar uplift at joint 3.	r a 10.0 psf bottom th any other live loac SP No.2 crushing /by others) of truss to nding 12 lb uplift at jo	ds. D							A Street	PE-2001	L ENGLES

August 28,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

<u>lek</u> 16023 Swingley Ridge Rd. Chesterfield, MO 63017

314.434.1200 / MiTek-US.com

