

RE: P250290-01 Roof - HM Lot 175

Site Information:

Customer: Clayton Properties Project Name: P250290-01 Lot/Block: 175 Model: Basswo Address: 2766 SW 11th Terr Subdivision: Hig City: Lee's Summit State: MO

ne: P250290-01 Model: Basswood - Transitional 3 Car Subdivision: Highland Meadows State: MO

Seal#

167343678

167343679

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

No.

21

22

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 45.0 psf Design Program: MiTek 20/20 8.6 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 22 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	167343658	B1	8/6/2024
2	167343659	B2	8/6/2024
3	167343660	B3	8/6/2024
4	167343661	D1	8/6/2024
5	167343662	D2	8/6/2024
6	167343663	D3	8/6/2024
7	167343664	E1	8/6/2024
8	167343665	E4	8/6/2024
9	167343666	E5	8/6/2024
10	167343667	E6	8/6/2024
11	167343668	E7	8/6/2024
12	167343669	G1	8/6/2024
13	167343670	G2	8/6/2024
14	167343671	R1	8/6/2024
15	167343672	V1	8/6/2024
16	167343673	V2	8/6/2024
17	167343674	V3	8/6/2024
18	167343675	V4	8/6/2024
19	167343676	V7	8/6/2024
20	167343677	V8	8/6/2024

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision based on the parameters provided by . Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2025. Missouri COA: 001193

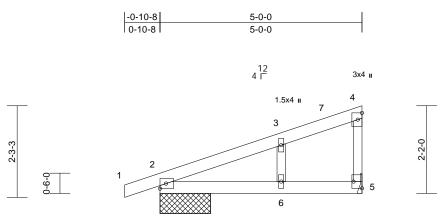
IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Truss Name

V9

V10

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200


Date

8/6/2024

8/6/2024

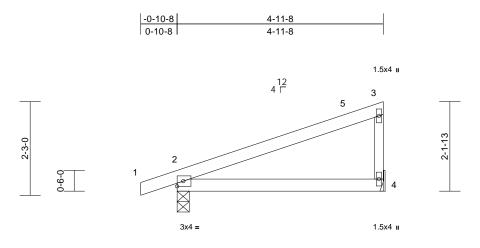
August 06, 2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - HM Lot 175	AS NOTED FOR PLAN REVIEW
305	11033	Truss Type	Quy	i iy	ROOT - THM LOT 175	DEVELOPMENT SERVICES 167343658
P250290-01	B1	Monopitch Supported Gable	1	1	Job Reference (optional	
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Jul 12 2 ID:rc4sjKzIJtfsErm8V	024 Print: 8 GMRJ_zww	630 S Jul 12 qN-RfC?PsB	2024 MiTek Industries, Inc. Mo 70Hq3NSgPqnL8w3uITXbGKV	n Aug 05 11 44 11/2025

1.5x4 🛚

3x4 ш

	5-0-0		
Scale = 1:28.5		I	
Plate Offsets (X, Y): [5:Edge,0-2-8]			


3x4 =

	(X, T): [0:Edg0,0 2 0]											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.25	Vert(LL)	0.05	2-6	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.28	Vert(CT)	-0.06	2-6	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014					-			Weight: 19 lb	FT = 20%
					-							
LUMBER				girder(s) for truss to								
TOP CHORD	2x4 SP No.2			mechanical connect								
BOT CHORD				plate capable of with	nstanding 6	61 lb uplift at	joint					
WEBS	2x3 SPF No.2			7 lb uplift at joint 2.								
OTHERS	2x3 SPF No.2			s is designed in acc								
BRACING			D000 4/	onal Residential Coo			and					
TOP CHORD			30.01	0.2 and referenced st	landard Al	NSI/TPLT.						
	5-0-0 oc purlins, ex			E(S) Standard								
BOT CHORD	0 0 ,	applied or 10-0-0 o	С									
	bracing.											
REACTIONS		5= Mechanical										
	Max Horiz 2=85 (LC											
	Max Uplift 2=-77 (LC											
	Max Grav 2=287 (L0	,, ()										
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension	0.4 50/40										
TOP CHORD	1-2=0/6, 2-3=-112/0 4-5=-111/124	, 3-4=-59/16,										
BOT CHORD		/56										
WEBS	3-6=-70/158	/50										
	3-0=-70/138											
NOTES		(0										
	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC											
	Cat. II; Exp C; Enclose										TATEOF	all
	one and C-C Exterior(2										F. OF	MISC
	I) 4-1-8 to 4-10-12 zone									1	750	W.O.
	osed ; end vertical left e									B	SCOT	N CONT
	and forces & MWFRS		:							R	-	
Lumber D	DOL=1.60 plate grip DC	DL=1.60								45.	SEV	
2) Truss de	signed for wind loads in	n the plane of the tru	ISS							NC.		
	r studs exposed to wind										TT	
	dard Industry Gable En										MUM	Service
	t qualified building desi	gner as per ANSI/TF	기 1.							NY	PE-2001	018807
	uds spaced at 2-0-0 oc.									N	The second secon	120
	s has been designed fo									Y	1 CPC	SNB -
	e load nonconcurrent wi										ESSIONA	TENA
	are assumed to be: Joi of 565 psi.	m 2 SP No.2 crushi	ng								CONF	
capacity (oi 505 psi.											ust 6,2024
											AUOL	

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 175	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 167343659
P250290-01	B2	Monopitch	3	1	Job Reference (optional	
Premier Building Supply (Springhill, KS), Spring Hills,	KS - 66083,	Run: 8.63 S Jul 12 2024 Print: 8. D:4QEzufucAXMxzh8xWxEVwD:	630 S Jul 1 zwwpA-RfC	2 2024 MiTek Industries, Inc. Mc ?PsB70Hq3NSgPqnL8w3uITXb	n Aug 05 11:24 16 1 1/26 25

4-11-8

Scale = 1:27.7												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.49	Vert(LL)	-0.03	2-4	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.27	Vert(CT)	-0.06	2-4	>958	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	n/a	-	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 18 lb	FT = 20%

LUMBER

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x3 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	5-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc

BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	2=0-3-8, 4= Mechanical
	Max Horiz	2=85 (LC 8)
	Max Uplift	2=-83 (LC 8), 4=-59 (LC 12)
	Max Grav	2=291 (LC 1), 4=204 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum

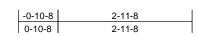
FORCES

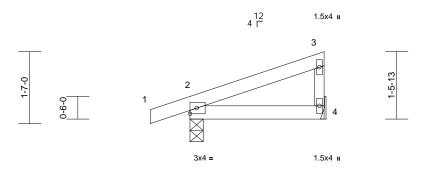
Tension TOP CHORD 1-2=0/6, 2-3=-100/45, 3-4=-157/228 BOT CHORD 2-4=0/0

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 4-10-4 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads. Bearings are assumed to be: Joint 2 SP No.2 crushing 3)
- capacity of 565 psi. 4)
- Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 59 lb uplift at joint 4 and 83 lb uplift at joint 2.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 175	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 167343660
P250290-01	В3	Monopitch	7	1	Job Reference (optional	LEELS SUMMIT MISSOURI

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Mon Aug 00 344 18 ID:k?UxzaFoLR0qy8sWjXGIcLzwwoj-RfC?PsB70Hq3NSgPqnL8w3uITXbGK VrCDoi73-2JO14

2-11-8

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	0.00	2-4	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	-0.01	2-4	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	n/a	-	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 11 lb	FT = 20%

LUMBER

Scale - 1.25.4

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x3 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	3-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.

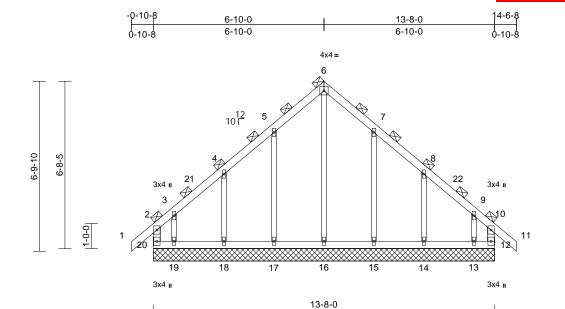
REACTIONS (size) 2=0-3-8, 4= Mechanical Max Horiz 2=56 (LC 8) Max Uplift 2=-72 (LC 8), 4=-32 (LC 12) Max Grav 2=207 (LC 1), 4=108 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/6, 2-3=-61/28, 3-4=-81/124 BOT CHORD 2-4=0/0

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Bearings are assumed to be: Joint 2 SP No.2 crushing capacity of 565 psi.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 4 and 72 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



August 6,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 175	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 167343661
P250290-01	D1	Common Supported Gable	1	1	Job Reference (optional	
Premier Building Supply (Springh	n Aug 05112411/11/2025					

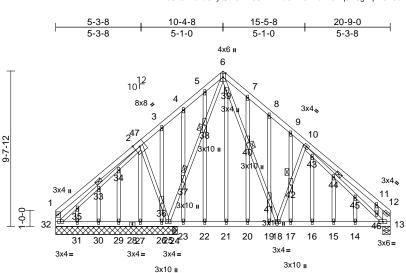
Scale =	1:46.1
---------	--------

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	4-0-0 1.15 1.15 NO IRC20 ⁷	18/TPI2014	CSI TC BC WB Matrix-R	0.20 0.17 0.40	Vert(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 71 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x3 SPF 2-0-0 oc verticals (Switchee Rigid ceil bracing.	lo.2 lo.2 No.2 d from shee ing directly 12=13-8-(15=13-8-(-0 max.), except el eted: Spacing > 2-8 applied or 10-0-0 c 0, 13=13-8-0, 14=13 0, 16=13-8-0, 17=13 1, 19=13-8-0, 20=13	2 -0). oc 3-8-0, 3 3-8-0, 3	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 11-10-0, Inte left and right exposed;C-C reactions shu DOL=1.60) Truss desigi only. For stu	7-16; Vult=11: n; TCDL=6.0ps t. II; Exp C; En and C-C Exte 1-8 to 6-10-0, rior (1) 11-10-1 exposed ; enc for members pown; Lumber D med for wind lo uds exposed to	5mph (3-sec sf; BCDL=6. closed; MW rior(2E) -0 Exterior(2R 0 to 14-6-8 z I vertical left and forces o ODL=1.60 pl ads in the p	cond gust) Opsf; h=35ft; (FRS (envelo 10-8 to 4-1-8) 6-10-0 to zone; cantilev and right & MWFRS fo ate grip lane of the tr thal to the face	pe) , ver r uss ≥),					
	Max Uplift	20=-423 (12=-247 (14=-203 (17=-198 (19=-389 (12=397 (L 14=396 (L 16=423 (L	LC 10) LC 9), 13=-364 (LC LC 13), 15=-196 (L LC 12), 18=-201 (L LC 12), 20=-330 (L .C 19), 13=388 (LC .C 20), 15=407 (LC .C 22), 17=410 (LC .C 19), 19=445 (LC	C 13), 4 C 13), 5 C 12), 6 C 8) (11), 7 (20), 8 (19), 10	or consult qu All plates are Gable requir Truss to be f braced agair Gable studs This truss ha chord live loa All bearings	nst lateral move spaced at 2-0- is been design ad nonconcurre are assumed t	designer as unless other bottom chor from one fac ement (i.e. c 0 oc. ed for a 10. ent with any	s per ANSI/T wise indicate rd bearing. ce or securely diagonal web 0 psf bottom other live loa	PI 1. d. /).					
FORCES	Tension 2-20=-34 3-4=-212 6-7=-276	kimum Com 9/228, 1-2= /205, 4-5=- /442, 7-8=-	pression/Maximum 0/91, 2-3=-335/302 178/286, 5-6=-276/ 162/269, 8-9=-170/ 1=0/91, 10-12=-30	2 <u>,</u> 454, 162,	joint 20, 247 201 lb uplift a uplift at joint		thstanding 3 t 12, 198 lb lb uplift at j	330 Îb uplift a uplift at joint oint 19, 196 I	t 17, b			H	STATE OF M	1 IVI.
BOT CHORD	19-20=-1 17-18=-1 15-16=-1	98/239, 18- 98/239, 16- 98/239, 14-	19=-198/239, 17=-198/239, 15=-198/239, 13=-198/239	1		Residential Conductor	ode sections standard AN	s R502.11.1 a NSI/TPI 1.			_	B	SEVI	Ser
WEBS	6-16=-41 4-18=-31	5/136, 5-17 6/290, 3-19 7/267, 8-14	′=-329/268,			ation of the pur 1.			5120			AS.	PE-2001	018807
NOTES	5.0 20												NA	LE

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com


August 6,2024

the

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 175	
P250290-01	D2	Roof Special Structural Gable	1	1	Job Reference (optional)	

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Mon Aug 05 11:44 15 ID:0Un07T0ZcCLyQZnshImJUDzwwdO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4z5c?f

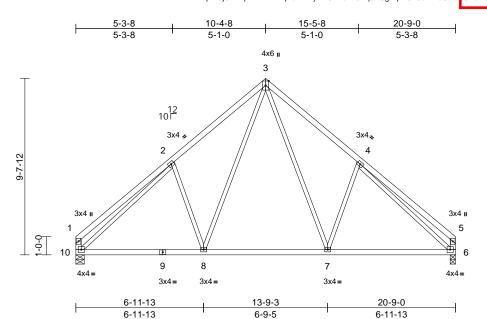
Scale = 1:71.5				<u>1-13</u> 1-13	7-4-12 0-4-15	<u>13-9-3</u> 6-4-7			<u>-9-0</u> 1-13				
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2	014	CSI TC BC WB Matrix-S	0.33 0.29 0.21	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.01	(loc) 15-16 15-16 13	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 165 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x3 SPF No.2 *Exc 13-12:2x6 SPF No. 2x3 SPF No.2 Structural wood sh 6-0-0 oc purlins, e Rigid ceiling directl bracing. 1 Brace at Jt(s): 33 37, 38, 40, 42, 44 (size) 13=0-5- 26=7-6-{ 30=2-7-{ 30=2-7	eathing directly applied xcept end verticals. y applied or 10-0-0 oc , 3, 24=0-3-8, 25=7-6-8, 27=7-6-8, 29=7-6-8, 3, 31=7-6-8, 32=7-6-8, 1, 21=7-6-8, 32=7-7-6-8, 32=7-7-6-8, 32=	d or WEBS (2), (2), (), (), (),	ORD	$\begin{array}{l} 31-32=-134/18\\ 29-30=-134/18\\ 26-27=-134/17\\ 24-25=-31/215\\ 22-23=-31/215\\ 18-19=-31/215\\ 16-17=-21/407\\ 14-15=-21/407\\ 14-15=-21/407\\ 6-39=-303/596\\ 40-41=-255/47\\ 18-42=-287/20\\ 25-37=-432/0,\\ 2-36=-174/19\\ 32-35=-177/15\\ 33-34=-178/15\\ 10-43=-164/34\\ 44-45=-169/13\\ 13-46=-162/13\\ 31-35=-2/2, 2-2\\ 26-36=-68/66,\\ 23-37=-152/10\\ 21-39=-40/117\\ 8-41=-114/60,\\ 17-42=0/43, 16\\ 14-45=-21/57,\\ \end{array}$	3, 27-29=-1: 4, 25-26=-1: , 23-24=-31; , 21-22=-31; , 17-18=-21; , 15-16=-21; , 39-40=-26; 5, 18-41=-2; 6, 10-42=-2; 37-38=-419; , 25-36=-23; 1, 33-35=-1; 2, 2-34=-20; , 43-44=-18; , 45-46=-17; 30-33=-3/4; 7=-166/104; 4-37=-160/14; 9, 5-38=-16; 19-41=-154; -43=0/87, 1	34/183, 34/174, /215, /215, /215, /407, /407, /407 3/487, 76/513, 75/207, 0, 6-38=-433 0/252, 76/150, 6/175, 3/12, 3/2,	32, , 24/36, 7/55,	only see or c 4) All 5) Tru bra 6) Gal 7) Thi chc 8) All cap 9) Proc bea 25, upli 27 10) Thi Inte	y. For s Standa consult of plates a ss to be ced aga ble stud: s truss h ord live lo bearing vide me aring pla 74 lb up ff at join and 190 s truss is ernationa 02.10.2	tuds ex rd Indu qualified re 1.5x fully sl inst lat s space bas bee bad nois s are as 565 ps chanic te capa blift at jult t 29, 2 lb upli s desig al Resid and ref	sposed to wind (n istry Gable End I d building design 4 MT20 unless of heathed from one eral movement (i ed at 1-4-0 oc. en designed for a nconcurrent with ssumed to be SP ii. al connection (by able of withstandi oint 32, 91 lb uplif 1 lb uplift at joint 32. ft at joint 24. ined in accordance dential Code sect ferenced standard ndard	any other live loads. No.2 crushing others) of truss to ng 83 lb uplift at joint ft at joint 13, 8 lb 31, 86 lb uplift at joint ee with the 2018 ions R502.11.1 and d ANSI/TPI 1.
FORCES TOP CHORD	(lb) - Maximum Con Tension 1-2=-210/156, 2-3= 4-5=-174/219, 5-6=	npression/Maximum -172/172, 3-4=-113/18 -160/248, 6-7=-455/33 -459/227, 9-10=-517/2 I-12=-491/77,	31, this 6 30, 2) Wind 209, Vaso 209, Ke= exte Inter 15-6 and	design d: ASC d=91m 1.00; C rior zor ior (1) i-2, Inte right e	d roof live loads F 7-16; Vult=11 ph; TCDL=6.0ps Cat. II; Exp C; En ne and C-C Exte 4-11-13 to 10-4- erior (1) 15-6-2 to xposed ; end ver -C for members	5mph (3-sec f; BCDL=6. closed; MW rior(2E) 0-1 8, Exterior(2 o 20-6-4 zor tical left and	cond gust) Dpsf; h=35ft; FRS (envelo -12 to 4-11-1 2R) 10-4-8 to he; cantilever I right	pe) 3, left		_		STATE OF I SCOT SEVI NUM PE-2001	len len z

reactions shown; Lumber DOL=1.60 plate grip

SSIONAL August 6,2024

E

RELEASE FOR CONSTRUCTION AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 167343662 LEE'S SUMMIT, MISSOURI


1/202

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

DOL=1.60

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - HM Lot 175	AS NOTED FOR PLAN REVIEW
300	11035	Truss Type	Giy	I IV		DEVELOPMENT SERVICES 167343663
P250290-01	D3	Common	7	1	Job Reference (optional	
Premier Building Supply (Spri	n Aug 0f 11:441/11/2025					

Scale =	1:63
---------	------

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.39	Vert(LL)	-0.05	6-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.43	Vert(CT)	-0.11	8-10	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.93	Horz(CT)	0.02	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 108 lb	FT = 20%
LUMBER		•	6) This truss is	s designed in ac	cordance w	ith the 2018		-				

TOP CHORD 2x4 SP No.2

BOT CHORD	2x4 SP No.2
WEBS	2x3 SPF No.2 *Except* 10-1,6-5:2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	5-6-4 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 6=0-3-8, 10=0-5-8
	Max Horiz 10=262 (LC 11)
	Max Uplift 6=-113 (LC 13), 10=-113 (LC 12)
	Max Grav 6=921 (LC 1), 10=921 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-351/173, 2-3=-970/312, 3-4=-970/310,
	4-5=-361/166, 1-10=-328/165, 5-6=-334/161
BOT CHORD	8-10=-166/796, 7-8=-19/537, 6-7=-89/731
WEBS	3-7=-210/461, 4-7=-311/300, 3-8=-211/460,
	2-8=-310/300, 2-10=-761/79, 4-6=-761/70

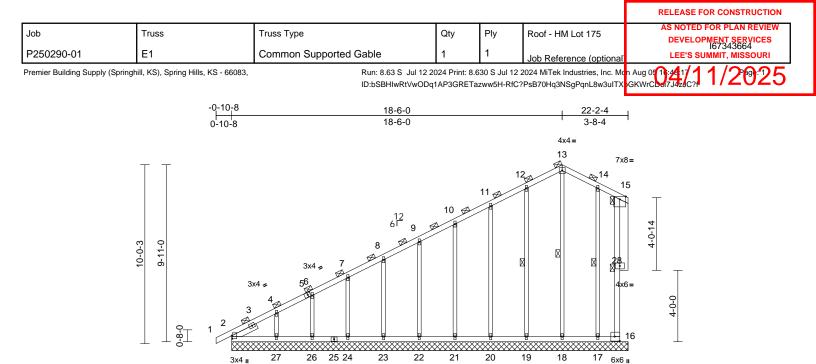
NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 5-2-14, Interior (1) 5-2-14 to 10-4-8, Exterior(2R) 10-4-8 to 15-6-2, Interior (1) 15-6-2 to 20-7-4 zone; cantilever left and right exposed ; end vertical right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing 4)

capacity of 565 psi.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 113 lb uplift at joint 10 and 113 lb uplift at joint 6.

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Plate Offsets (X, Y): [2:0-2-1,0-0-5], [5:0-1-12,0-1-8], [16:Edge,0-3-8]

Scale = 1:64.5

				,		-							-	-
Loading TCLL (roof) TCDL BCLL		(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	4-0-0 1.15 1.15 NO		CSI TC BC WB	0.87 0.51 0.40	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL		10.0	Code	IRC201	18/TPI2014	Matrix-S							Weight: 138 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD	2x4 SP N 2x4 SP 1 2x3 SPF Left 2x4 S 2-0-0 oc verticals	lo.2 650F 1.5E No.2 *Exce SP No.2 purlins (5-6	pt* 28-15:2x6 SPF I 1-6-7 i-9 max.), except er eted: Spacing > 2-8-	No.2 B	OP CHORD	1-2=0/11, 2-4=-99 6-7=-690/525, 7-8 9-10=-397/410, 10 11-12=-365/540, 13 -14=-395/613, 15-16=-388/528 2-27=-305/391, 26 24-26=-305/391, 2 22-23=-305/391, 2 20-21=-305/391, 2 4-20=-205/391, 2 20-21=-305/391, 2 2	3=-578/48 11=-36 12-13=-3 14-15=-4 27=-30 23-24=-3 21-22=-3 19-20=-3	95, 8-9=-471/4 5/426, 96/635, 50/603, 5/391, 05/391, 05/391, 05/391,	bacity of byide me aring pla 36 lb up ift at join at 21, 12 9 lb upliff ift at join s truss is	arings are assumed to be SP No.2 crushing ty of 565 psi. e mechanical connection (by others) of truss to g plate capable of withstanding 91 lb uplift at joint lb uplift at joint 2, 126 lb uplift at joint 18, 123 lb t joint 19, 126 lb uplift at joint 20, 122 lb uplift at 1, 123 lb uplift at joint 22, 121 lb uplift at joint 23, uplift at joint 24, 91 lb uplift at joint 26, 261 lb t joint 27 and 77 lb uplift at joint 17. uss is designed in accordance with the 2018				
BOT CHORD	Rigid ceil bracing.	ling directly	applied or 9-7-14 o	C	18-19=-305/391, 17-18=-305/391, International Residential Code sections R50 16-17=-305/391 R802.10.2 and referenced standard ANSI/T									
WEBS	1 Row at	midpt	15-16, 13-18, 12-19 14-17	9, V	WEBS 13-18=-377/221, 12-19=-298/197, 11-20=-279/206, 10-21=-280/193, 9-22=-280/193, 8-23=-280/193, 11) Graphical purlin representation does not depict the so or the orientation of the purlin along the top and/or bottom chord.									
	Max Horiz Max Uplift	18=22-2- 21=22-2- 24=22-2- 2=-36 (LC 2=-36 (LC 2=-36 (LC 17=-77 (L 19=-123 (21=-122 (23=-121 (26=-91 (L 2=475 (LC 17=310 (l 19=377 (l 21=360 (l 21=360 (l	16=22-2-4, 17=22- 4, 19=22-2-4, 20=22 4, 22=22-2-4, 23=22 4, 26=22-2-4, 27=22 C 9) C 8), 16=-91 (LC 8), C 13), 18=-126 (LC LC 12), 20=-126 (LC LC 12), 22=-123 (LC C 12), 27=-261 (LC C 20), 16=144 (LC 2 C 26), 18=370 (LC C 26), 18=370 (LC C 25), 20=359 (LC C 1), 22=360 (LC 2 C 1), 22=360 (LC 2 C 1), 22=360 (LC 2 C 1), 24=365 (LC 2)	-2-4, -2-4, N 11), 2 (12), (12), (12), (12), (12), (12), (19), (25), (5), (12), (12), (12), (13), (14), (14), (15), (15), (16), (1	this design. Wind: ASC Vasd=91m Ke=1.00; C exterior zor Exterior (2N 21-8-12 zor vertical left forces & M DOL=1.60	7-24=-282/202, 6- 4-27=-326/416, 14 d roof live loads hav	26=-270, 4-17=-33 ve been of 3CDL=6, sed; MW (3E) -0-1 Corner(3E mod right e C-C for r s shown; 0	208, 2/375 considered fo cond gust) Jpsf; h=35ft; FRS (envelop D-8 to 4-1-8, c) 18-6-0 to txposed ; end nembers and Lumber	be)		CASE(S) Sta		
FORCES	(lb) - Max Tension	26=341 (l	LC 1), 27=432 (LC 2 pression/Maximum		see Standa or consult o) All plates a) Gable requ	tuds exposed to wi and Industry Gable F qualified building de re 1.5x4 MT20 unle ires continuous bot s spaced at 2-0-0 o	End Deta esigner as ess other tom chor	ils as applical s per ANSI/TF wise indicated	ble, PI 1.				PE-2001	18807

- 6) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

MiTol

SSIONAL

E

August 6,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

												RELEASE FOR CONSTRUCTION	
Job	Truss			Truss Type			Qty		Ply	Roof - HM	1 Lot 175	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 167343665	
P250290-01	E4			Roof Special			8		1	Job Refer	ence (optional)		
Premier Building Supply (Springhill, KS), S	pring Hills, KS	- 66083,								ndustries, Inc. Mo IqnL8w3uITXbGk	n Aug 08 0 341/11/2025 WrcDoi79-42J0?	
			0-10-8 0-10-8	5-9-2 5-9-2		<u>13-9-</u> 8-0-0			<u>18-6-0</u> 4-8-14		<u>1-7-8</u> 22-2-4 3-1-8 0-6-12		
										4x6 ။ 7			
Scale = 1:68.5	10-0-3		2 4x4 II	3x4 = 3x4 = 14 3 5-9-2 5-9-2	3x4 = 4 12 1.5x4	6 ¹² 3x8 5 11 13-9- 8-0-0	11 3x4= 2	1.5x4 6 10 5x8=		<u>21-8-12</u> 7-11-10	4x8₅ 8 9 4x4= 4x6= 3x4= 22-2-4 0-5-8		
Loading	(psf)	Spacing		2-0-0		CSI		DEFL		in (loc)	l/defl L/d	PLATES GRIP	

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		Plate Grip DOL	1.15	тс	0.79	Vert(LL)	-0.11	9-10	>999	240	MT20	244/190
TCDL	10.0 I	Lumber DOL	1.15	BC	0.71	Vert(CT)	-0.23	9-10	>999	180		
BCLL	0.0 F	Rep Stress Incr	YES	WB	0.96	Horz(CT)	-0.03	13	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 121 lb	FT = 20%
LUMBER TOP CHORD												

BOLCHORD	2X4 SP NO.2 EXCEPT 9-8:2X3 SPF NO.2
WEBS	2x3 SPF No.2 *Except* 13-8:2x6 SPF No.2
SLIDER	Left 2x4 SP No.2 3-2-3
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	3-5-6 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 8-4-8 oc
	bracing.
WEBS	1 Row at midpt 4-10, 7-9
REACTIONS	(size) 2=0-5-8, 13=0-3-2
	Max Horiz 2=384 (LC 12)
	Max Uplift 2=-153 (LC 12), 13=-235 (LC 12)
	Max Grav 2=1036 (LC 1), 13=972 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/6, 2-4=-1623/208, 4-6=-943/120,
	6-7=-924/276, 7-8=-64/49, 9-13=-212/848,
	8-13=-124/66

of 425 psi.

5) Bearing at joint(s) 13 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 153 lb uplift at joint 2 and 235 lb uplift at joint 13.

This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

NOTES

WEBS

BOT CHORD

1) Unbalanced roof live loads have been considered for this design.

4-10=-680/274, 7-9=-822/263

9-10=-82/264

2-12=-483/1364, 10-12=-483/1364,

6-10=-521/308, 7-10=-338/1066, 4-12=0/277,

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 18-6-0, Exterior(2E) 18-6-0 to 21-7-8 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

OF MISSOL TATE SCOTT M. SEVIER DIME PE-2001018807 ESSIONAL ET August 6,2024

P 16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE	FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 175		D FOR PLAN REVIEW
P250290-01	E5	Roof Special	2	1	Job Reference (optional		DPMENT SERVICES 167343666 SUMMIT, MISSOURI
Premier Building Supply (Springh	ghill, KS), Spring Hills, KS - 66083,				2024 MiTek Industries, Inc. Mo		1/2025
	0.40	, , ,	gxh8rn6Ozw	/zW-RfC?PsE	370Hq3NSgPqnL8w3ulTXbGk	WrCDoi7 34 zJU?/	1,2020
	-0-10-8 - 0-10-8	552 1052		16-0-4 18 2-3-2 2-	5-12 3-1-8 0-6-12		
		, 			4x6 II		
		$ \begin{array}{c} 6^{12} \\ 3x8 = \\ 5 \\ 3x4 = \\ 3x4 = \\ 3x4 = \\ 4 \\ 3x4 = \\ 1.5x4 \\ 1.5x4$	3x 6 0 0 17 16 3x4= 5x6	14 14 15 1.5x4	$ \begin{array}{c} 8 \\ 4 \times 8_{\$} \\ 9 \\ 9 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$		
Scale = 1:71.7 Loading TCLL (roof) TCDL	(psf)Spacing25.0Plate Grip DOL10.0Lumber DOL		DEF 0.82 Vert 0.59 Vert	LL) -0.	0-5-8 in (loc) l/defl L/d 10 16-18 >999 240 22 16-18 >999 180	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0Rep Stress Incr10.0Code		0.73 Horz	, ,	04 19 n/a n/a	Weight: 134 lb	FT = 20%
SPF No.2 WEBS 2x3 SPF No. SLIDER Left 2x4 SP BRACING 3-10-14 oc p TOP CHORD Structural way and the second seco	2 *Except* 15-7,13-11,10-9:2x3 o.2 *Except* 19-9:2x6 SPF No P No.2 3-2-3 wood sheathing directly applied purlins, except end verticals. g directly applied or 6-0-0 oc	 exterior zone and C-C Exterior(2E) Interior (1) 4-1-8 to 18-6-0, Exterior zone; cantilever left and right expo exposed;C-C for members and for reactions shown; Lumber DOL=1.6 DOL=1.60 3) This truss has been designed for a chord live load nonconcurrent with 4) Bearings are assumed to be: Joint capacity of 565 psi, Joint 19 SPF N of 425 psi. 5) Bearing at joint(s) 19 considers pa using ANSI/TPI 1 angle to grain fo designer should verify capacity of 1 6) Provide mechanical connection (by bearing plate capable of withstand joint 2 and 235 lb uplift at joint 19. 7) This truss is designed in accordan International Residential Code sec R802.10.2 and referenced standart LOAD CASE(S) Standard 	PL=6.0psf; h ; MWFRS (j) -0-10-8 tot pr(2E) 18-6- based; end v roces & MWI 60 plate gri a 10.0 psf b any other t 2 SP No.2 No.2 crushi arallel to gra prmula. Bui bearing sui y others) of ding 153 lb acce with the ctions R502	=35ft; envelope) 4-1-8, 0 to 21-7-8 vertical left FRS for p ottom live loads. crushing ng capacity in value lding face. truss to uplift at 2018 .11.1 and	<i>H</i>	STATE OF M.	M.

1) anced roof live loads have been considered for this design.

> PE-20 August 6,2024

NUMBER

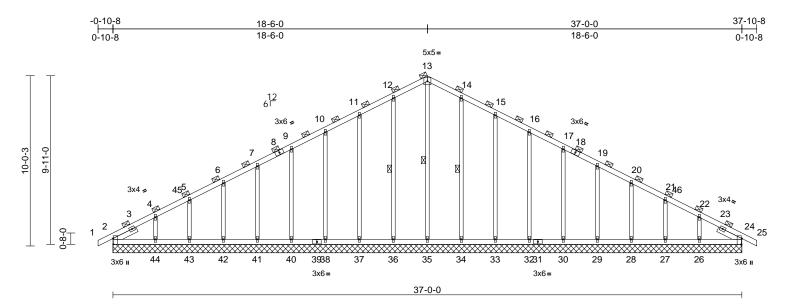
PE-2001018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

GI

								RELEA	SE FOR CON	STRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - HM L	ot 175		TED FOR PL/ ELOPMENT S 167343	
P250290-01	E6	Common		7	1	Job Referen	ce (optional)		167343 S Summit, N	
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,	•	Run: 8.63 S Jul 12 20			2024 MiTek Indu	ustries, Inc. Mo		/11/2	2025
			ID:TnZ3x61kRmd3IVZ	aqXdQQ5z\	wvtc-RfC?Ps	sB70Hq3NSgPqr	1L8w3ulTXbGl	(WrCDoi7⊌4zJ€?i	1 1/2	-020
-0-10-8	5-9-2	13-9-2	18-6-0	23-	2-14	. 3	31-2-14	1	37-0-0	37-10-8
0-10-8	5-9-2	8-0-0	4-8-14	4-8	3-14	1	8-0-0	I	5-9-2	0-10-8
⊢ Scale = 1:67.8	3x4 = 20 3x4 = 3 20 18 18 18 4x6= 5-9-2 5-9-2 19,0-3-8], [13:0-2-8,0-2-0], [1] (psf) 25.0 10.0 10.0 0.0 Rep Stress Incr	6 ¹² 5 3x8 = 4 4 17 17 17 17 17 17 17 13x6 = 4 13-9-2 8-0-0 3:0-2-8,0-2-0], [19:0-3-8,0-3 2-0-0 1.15 1.15 E	5x4 II 6 1x8= 23-2 9-5	90 Vert(1 1 4	in (loc) 19 15-16	3x8 8 8 31-2-14 8-0-0 1/defi L/d >999 240 >993 180 n/a n/a	3x4 9 13 4x6= PLATES MT20	21 37-0-0 5-9-2 GRIP 244/190	10 11 7x8 II
12-10:2x4 S SRACING "OP CHORD Structural w 3-4-13 oc p 3OT CHORD Rigid ceiling bracing, E 8-5-5 oc bri VEBS 1 Row at m REACTIONS (size) 1 Max Horiz 1 Max Horiz 1 Max Uplift 1 Max Grav 1 FORCES (lb) - Maxim Tension "OP CHORD 1-2=0/35,2 5-6=-2337// 7-9=-2365// 2-19=-1661 3OT CHORD 18-19=-249 15-16=-512// 9-13=-327// 9-15=-581// NOTES	2 2.2 *Except* 19-2:2x6 SPF No SP 1650F 1.5E vood sheathing directly applied urlins, except end verticals. g directly applied or 10-0-0 oc xcept: acing: 16-18. idpt 3-16, 9-15 2=0-5-8, 19=0-5-8 9=-166 (LC 17) 2=-276 (LC 13), 19=-278 (LC 2=1719 (LC 1), 19=1726 (LC 100 Compression/Maximum -3=-2848/431, 3-5=-2360/418 549, 6-7=-2343/549, 419, 9-10=-2884/437, 10-11=(/338, 10-12=-1654/334 //555, 16-18=-474/2474, //1561, 13-15=-312/2506, /613 308, 6-16=-325/1012, 366, 7-15=-511/308, 3-18=-52/- //1899, 3-16=-556/246, 1021, 2-18=-225/1934,	 2) Wind: ASCE 7- Vasd=91mph; T Ke=1.00; Cat. II 23-2-14, Interior (1) 4-1-5 23-2-14, Interior d or left and right ex exposed; C-C fo reactions shown DOL=1.60 3) The Fabrication 4) This truss has b chord live load I 5) All bearings are capacity of 565 6) Provide mechar bearing plate ca joint 12 and 278 7) This truss is des International Re R802.10.2 and //32, LOAD CASE(S) S 	nical connection (by apable of withstandir 3 lb uplift at joint 19. signed in accordance esidential Code secti referenced standard	=6.0psf; h WWFRS (-0-10-8 to 2R) 18-6- 0-8 zone; left and rig es & MWF 0 plate grip 0 = 16% 10.0 psf b any other I No.2 crusi others) of 19 276 lb u e with the ons R502	=35ft; envelope) 4-1-8, 0 to cantilever ght rRS for b ottom vive loads. ning truss to uplift at 2018 .11.1 and			SCO SE	MISSO TT M. VIER 1018807	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



August 6,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	DIV	Roof - HM Lot 175	AS NOTED FOR PLAN REVIEW
500	11035	Truss Type		i iy		DEVELOPMENT SERVICES 167343668
P250290-01	E7	Common Supported Gable	1	1	Job Reference (optional)	LEFTS SUMMIT MISSOURI

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Man Aug 07 13:41/1 1/20:25 ID:30TC0Xcr8WgF3uEpecUgNDzwyss-RfC?PsB70Hq3NSgPqnL8w3uITXbc WrCD0H4z.071

Scale = 1:67.8

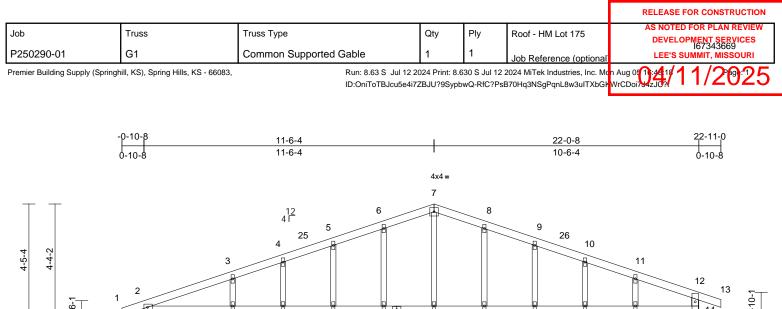
Plate Offsets (X, Y): [2:0-4-1,Edge], [18:0-0-0,0-0-0], [24:0-4-1,Edge]

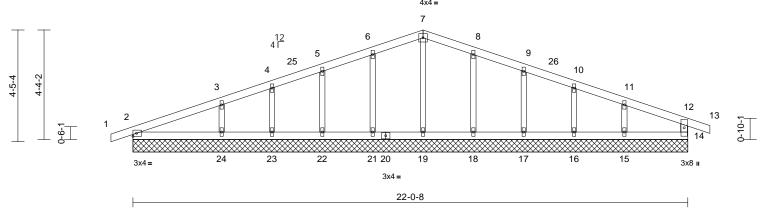
		; 51	1	,	0.										-
Loading		(psf)	Spacing	4-0-0		csi		DEFL	in	(lo	c) I/d	efl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		тс	0.20	Vert(LL)	n/a	(,		999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.12	Vert(CT)	n/a				999	-	
BCLL		0.0	Rep Stress Incr	NO		WB	0.40	Horz(CT)	0.02	2			n/a		
BCDL		10.0	Code	IRC20	18/TPI2014	Matrix-S		- (-)						Weight: 195 lb	FT = 20%
	-											-		•	
LUMBER				F	ORCES	(lb) - Maximum C	Compressi	on/Maximum						Vult=115mph (3	
TOP CHORD				-		Tension									_=6.0psf; h=35ft;
BOT CHORD				1	OP CHORD	1-2=0/11, 2-4=-4									MWFRS (envelope)
OTHERS	2x3 SPF					5-6=-257/209, 6-			317,					C-C Corner(3E)	
SLIDER		SP No.2 '	1-6-7, Right 2x4 SP N	lo.2		9-10=-146/373, 11-12=-222/588,								to 18-6-0, Corne	0-8 zone; cantilever
	1-6-7					13-14=-257/681,		,						sed ; end vertical	
BRACING						15-14=-257/661,		,							ces & MWFRS for
TOP CHORD		purlins (6-0				17-19=-117/259,		,			reaction	,0-0 s show	wn · I	umber DOL=1.6	a nlate arin
			eted: Spacing > 2-8-0			20-21=-147/62, 2		,			DOL=1.		wiii, L		o plate grip
BOT CHORD	0	ing directly	applied or 10-0-0 oc			22-24=-331/100,							ed fo	r wind loads in th	he plane of the truss
	bracing.		40.05 40.00 44.04	В	BOT CHORD	2-44=-96/385, 43									formal to the face),
WEBS	1 Row at	•	13-35, 12-36, 14-34			42-43=-96/385, 4									Details as applicable,
REACTIONS	(size)		, 24=37-0-0, 26=37-0	,		40-41=-96/385, 3		,							er as per ANSI/TPI 1.
			0, 28=37-0-0, 29=37-			37-38=-96/385, 3	36-37=-96	/385,		4) /	All plate	s are ·	1.5x4	4 MT20 unless o	therwise indicated.
			0, 32=37-0-0, 33=37- 0, 35=37-0-0, 36=37-	,		35-36=-96/385, 3	34-35=-96	/385,		5) (Gable re	quire	s cor	ntinuous bottom	chord bearing.
			0, 33=37-0-0, 30=37- 0, 38=37-0-0, 40=37-	,		33-34=-96/385, 3	32-33=-96	/385,		6) (Gable st	uds s	pace	ed at 2-0-0 oc.	
			0, 42=37-0-0, 43=37-	,		30-32=-96/385, 2								n designed for a	
		44=37-0-0		00,		28-29=-96/385, 2									any other live loads.
	Max Horiz					26-27=-96/385, 2								sumed to be SP	No.2 crushing
			C 13), 26=-211 (LC 13	3). V	VEBS	13-35=-425/84, 1		,		0	capacity	of 56	5 ps	i.	
			(LC 13), 28=-127 (LC			11-37=-279/208,									
			LC 13), 30=-123 (LC			9-40=-280/193, 7									
		32=-120 (LC 13), 33=-134 (LC	13),		6-42=-282/197, 5 4-44=-321/414, 5		,						200	TON
		34=-101 ((LC 13), 36=-109 (LC	12),		15-33=-279/208,		,						8 OF I	MICON
			(LC 12), 38=-121 (LC			17-30=-280/193,		,					4	9 TE	-0.0
			(LC 12), 41=-121 (LC			20-28=-282/197,							6	TATE OF M	NSY
			(LC 12), 43=-96 (LC 1	12),		22-26=-321/407							B	S = S(0)	$1 M. \qquad \forall \checkmark \forall \lambda$
		44=-238 (N	OTES							1	9	/ SEVI	IER \ Y
	Max Grav		C 21), 24=368 (LC 1)	, .		d roof live loads ha	ave heen	considered fo	r			Ľ			
			LC 26), 27=343 (LC 1),	this design										AD NO IN
			_C 26), 29=359 (LC 1 _C 26), 32=360 (LC 1											NUM	
			LC 26), 32=360 (LC 1 LC 26), 34=376 (LC 2										07		
		(LC 22), 34=376 (LC 2 LC 22), 36=376 (LC 2										N	PE-2001	018807
			LC 25), 38=360 (LC 1										V	Pa	154
		(LC 25), 41=359 (LC 1											A Stor	FN
			LC 25), 43=343 (LC 1											ESSIONA	L
		44=426 (l													
		- (,											Augu	st 6,2024
														- 3 -	•

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and KEAD KO LES ON THIS AND INCLUDED MILEK REFERENCE PAGE MIL-7473 rev. 17/2/2023 BEFORE USE. Design valid for use only with MITeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 175	
P250290-01	E7	Common Supported Gable	1	1	Job Reference (optional	DEVELOPMENT SERVICES 167343668 LEE'S SUMMIT, MISSOURI
Promior Building Supply ((Springhill KS) Spring Hills KS	66083 Run: 8.63 S J		630 S Jul 12	2024 MiTek Industries Inc. Mc	

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083


- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 2, 109 lb uplift at joint 36, 131 lb uplift at joint 37, 121 lb uplift at joint 38, 123 lb uplift at joint 40, 121 lb uplift at joint 41, 128 lb uplift at joint 42, 96 lb uplift at joint 43, 238 lb uplift at joint 44, 101 lb uplift at joint 34, 134 lb uplift at joint 33, 120 lb uplift at joint 32, 123 lb uplift at joint 30, 121 lb uplift at joint 29, 127 lb uplift at joint 28, 102 lb uplift at joint 27 and 211 lb uplift at joint 26.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


LOAD CASE(S) Standard

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Mon Aug 05 11:3417 1 1/269:25 ID:30TC0Xcr8WgF3uEpecUgNDzwvss-RfC?PsB70Hq3NSgPqnL8w3uITXbC KWrCD0W34zJC?f

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Scale = 1:45.8

Scale = 1.45.0		i											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.14 0.09 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 88 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=22-0-8, 16=22-0-4 23=22-0-1 Max Horiz 2=75 (LC Max Uplift 2=-56 (LC 15=-66 (LC 15=-66 (LC 15=-66 (LC 23=-37 (L Max Grav 2=204 (LC 15=200 (L 15=200 (L 15=200 (L 15=200 (L 15=200 (L 15=200 (L) 15=200 (L) 15=200 (L) 15=200 (L)	applied or 10-0-0 oc ,14=22-0-8, 15=22-0 8, 17=22-0-8, 18=22-8 8, 21=22-0-8, 22=22-8 8, 24=22-0-8 12) C 13), 16=-46 (LC 9) C 13), 18=-51 (LC 12 C 12), 22=-52 (LC 11 C 8), 24=-88 (LC 12) C 1), 14=183 (LC 21) C 1), 14=183 (LC 22 C 1), 18=190 (LC 22 LC 1), 23=131 (LC 25 LC 1), 24=188 (LC 25 LC 1), 25 LC 1	N d or 2 8, -0-8, -0, -0, -0, -0, -0, -0, -0, -0	 NOTES Unbalanced this design. Wind: ASCE Vasd=91mp Ke=1.00; Ca exterior zone Exterior zone Exterior (2N) 16-6-4, Exter left and right exposed;C-(reactions sh DOL=1.60) Truss design only. For strust design or consult quarter or consult quarter	7-19=-122/1, 6-2 4-23=-107/71, 3- 8-18=-150/134, § 10-16=-137/87, 1 roof live loads ha 5-7-16; Vult=115m h; TCDL=6.0psf; at. II; Exp C; Encl e and C-C Corne 4-1-8 to 11-6-4, n; roir(2N) 16-6-4 to t exposed; end v C for members ar own; Lumber DC uned for wind load uds exposed to w d Industry Gable ualified building d e 1.5x4 MT20 un res continuous bo spaced at 2-0-0 as been designed ad nonconcurren	24=-227/ -17=-139 11-15=-15 ave been nph (3-see BCDL=6. osed; MW r(3E)-0-1 (73E)-0-1 Corner(3E) o 22-11-0 retical left nd forces o 22-11-0 left nd forces o L=1.60 pl ds in the p vind (norm End Deta less other aless other oc. t for a 10. t with any	45, 128, 2/106 considered fo considered fo considered fo sond gust) 0psf; h=35ft; FRS (envelog -8 to 4-1-8, -8 10-4 to zone; cantilev and right & MWFRS for ate grip lane of the tr. al to the face by applical is as applical is per ANSI/TF wise indicated d bearing. D psf bottom other live loa	r ver), ole, PI 1. J.					
FORCES TOP CHORD BOT CHORD	4-5=-49/120, 5-6=-6 7-8=-75/187, 8-9=-6 10-11=-40/54, 11-12 12-14=-161/98	, 3-4=-50/91, 2/157, 6-7=-75/193, 2/137, 9-10=-50/89, 2=-41/21, 12-13=0/23 9/57, 22-23=-9/57, 9/57, 18-19=-9/57,	9 3, 1	 capacity of £ Provide mec bearing plate 14, 56 lb upl uplift at joint 24, 51 lb upl uplift at joint This truss is International 	chanical connecti e capable of with lift at joint 2, 52 lk 22, 37 lb uplift at lift at joint 18, 50 16 and 66 lb upl designed in acco I Residential Cod and referenced st	on (by oth standing 6 o uplift at j t joint 23, lb uplift at ift at joint ordance w le sections	ers) of truss t i3 lb uplift at j bint 21, 52 lb 38 lb uplift at joint 17, 46 lb 15. ith the 2018 5 R502.11.1 a	oint joint			K	NUM PE-2001	ER BER 018807

Courses August 6,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

								RELEA	SE FOR CONSTRU	CTION
Job	Truss	Truss Type		Qty	Ply	Roof - HN	Lot 175		TED FOR PLAN RE ELOPMENT SERVIO 167343670	
P250290-01	G2	Common		5	1	Job Refer	ence (optional	LEE	167343670 S SUMMIT, MISSO	URI
Premier Building Supply (S	Springhill, KS), Spring Hills, K	S - 66083,	Run: 8.63 S ID:dFDR6k5I	Jul 12 2024 Print: 8. VQ5m7TW0jeK7qm	.630 S Jul 1 typbwY-RfC	2 2024 MiTek lı ?PsB70Hq3NS	ndustries, Inc. Mo gPqnL8w3uITXb	n Aug 05 11:4611 KWrCDon J4zJe	/ <mark>11/2</mark> 0	25
	-0-10-8 0-10-8	<u>5-11-10</u> 5-11-10	<u>11-6-4</u> 5-6-10			<u>-0-14</u> 6-10		<u>22-0-8</u> 4-11-10	22-11-0 0-10-8	
-6-1 	1 2 4x4=		11	4x6 = 4 4 10 3x4 = 14-10-0		9 3x4=	4x4 z 14 5 15		4x4 II $6 7$ 8 $3x6 =$	0-10-1

Scale = 1:45.8 Plate Offsets (X, Y): [6:0-2-0.0-1-12]

Plate Offsets ()	X, Y): [6:0-2-0,0-1-12	2 <u>]</u>											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/T	FPI2014	CSI TC BC WB Matrix-S	0.57 0.76 0.44	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.29 0.06	(loc) 2-11 2-11 8	l/defl >999 >900 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 88 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce Structural wood she 3-4-11 oc purlins, e Rigid ceiling directly bracing.	ept* 8-6:2x4 SP No.2 Pathing directly applie Except end verticals. Applied or 8-2-11 oc	4) / 5) F t j d or 6) T	All bearings a capacity of 5 Provide mec bearing plate joint 2 and 2 This truss is International	are assumed to b 65 psi. hanical connectio capable of withs 15 lb uplift at joint designed in accoo Residential Code nd referenced sta	n (by oth tanding 2 8. rdance w sections	ers) of truss t 25 lb uplift at ith the 2018 5 R502.11.1 a	t					
	1 Row at midpt (size) 2=0-5-8, 4 Max Horiz 2=75 (LC Max Uplift 2=-225 (L Max Grav 2=1053 (I	12) .C 8), 8=-215 (LC 9)	I										
FORCES	(lb) - Maximum Com Tension	npression/Maximum											
TOP CHORD		′579, 3-4=-1814/486, =-421/147, 6-7=0/23,											
BOT CHORD	2-11=-500/1935, 9-1 8-9=-426/1693	11=-264/1312,											
WEBS	3-11=-409/241, 4-11 5-9=-270/198, 5-8=-	1=-92/566, 4-9=-61/4 ·1478/436	01,										~
this design 2) Wind: ASC	d roof live loads have E 7-16; Vult=115mph ph; TCDL=6.0psf; BC	(3-second gust)										STATE OF I	

Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 11-6-4, Exterior(2R) 11-6-4 to 16-6-4, Interior (1) 16-6-4 to 22-11-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

August 6,2024

OFFESSIONAL ET

PE-2001018807

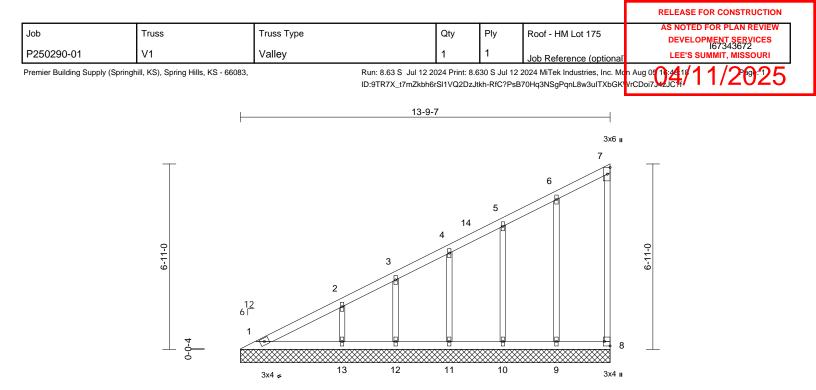
GI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

								LEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - HM Lot 175		DEVELOPMENT SERVICES 167343671
P250290-01	R1	Flat Girder		1	2	Job Reference (optio		LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,					2 2024 MiTek Industries, Inc sB70Hq3NSgPqnL8w3uITX		
	5-3-2	11	0-4-8		15-5-14	20)-9-0	
	5-3-2	l i	5-1-6	1	5-1-6	5	-3-2	I
AR	IDTH (SUCH AS COLUMN CAPS, BEAI RE THE RESPONSIBILITY OF THE TRU R THE BUILDING DESIGNER. 3x6 II			4x6= 7	×8 =	4x6 =		3х6 и
		15 2 16	⊠ 17 ⊠	318 4	19 ×	20 5 21	22 ⊠	6 ×
							*	
		11	10	9		8		
	MT18HS 9x18 =	3x4 u	4x6=	4x4 =		3x4 =		7

	5-3-2	10-4-8	15-5-14	20-9-0	
	5-3-2	5-1-6	5-1-6	5-3-2	
Scale = 1:46.6					

Plate Offsets (X, Y): [3:0-2-8,0-2-0], [5:0-2-8,0-2-0], [7:Edge,0-4-4]


Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.42	Vert(LL)	-0.11	9	>999	240	MT18HS	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.85	Vert(CT)	-0.20	9	>999	180	MT20	197/144
BCLL	0.0	Rep Stress Incr	NO		WB	0.62	Horz(CT)	0.07	7	n/a	n/a		
BCDL	10.0	Code	IRC2018/TP	12014	Matrix-S							Weight: 257 II	b FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x8 SPF No.2 2x6 SPF No.2 2x3 SPF No.2 *Exce No.2 2x4 SP No.2 2-0-0 oc purlins (5-1 end verticals. Rigid ceiling directly bracing. 1 Row at midpt (size) 7=0-5-8, 1 Max Uplift 7=-1154 (0-6 max.): 1-6, exce applied or 10-0-0 oc 5-7, 2-12 12=0-3-8, (req. 0-4-8) LC 8), 12=-1281 (LC	2) All ex CA SP pro un 3) Wi Va pt Ke ext an MV gri 4) Pro 8) 6) Th	loads are cept if note SE(S) sec ovided to d less otherwind: ASCE sd=91mph =1.00; Cat terior zone d right exp VFRS for n p DOL=1.6 ovide adeo plates are	considered equal ed as front (F) or th titon. Ply to ply co istribute only loac vise indicated. 7-16; Vult=115m ; TCDL=6.0psf; E t. II; Exp C; Enclo and C-C Corner oaced ;C-C for me eactions shown;	back (B) i nnection is noted bh (3-sec 3CDL=6.0 Sed; MW (3) zone; mbers ar Lumber [prevent v ess other	face in the LC s have been as (F) or (B), cond gust) Opsf; h=35ft; FRS (envelop ; cantilever le nd forces & DOL=1.60 pla water ponding wise indicate	pe) ft ate g.	pro lb d up ; dov at i dov up ; anc The resj LOAD (1) De Pl	vided su lown and at 2-9-0 vn and 2 8-9-0, 90 vn and 2 at 14-9- 1 902 lb e design, ponsibili CASE(S	fficient d 206 ll , 902 ll 03 lb u 02 lb do 03 lb u 0, and down a selecti ty of ot) Sta pof Live ease=1	r connection de t to support con b up at 0-9-0, § b down and 203 up at 6-9-0, 900 own and 203 lb up at 12-9-0, 90 902 lb down ar and 203 lb up at ion of such con thers. ndard e (balanced): Lu	b FI = 20% vice(s) shall be centrated load(s) 916 302 lb down and 203 lb 3 lb up at 4-9-0, 902 lb 2 lb down and 203 lb up up at 10-9-0, 902 lb 32 lb down and 203 lb ad 203 lb up at 16-9-0, t 18-9-0 on top chord. nection device(s) is the umber Increase=1.15,
FORCES	Max Grav 7=5155 (L (lb) - Maximum Com Tension 1-12=-1320/361, 1-2 2-3=-8293/2099, 3-5	pression/Maximum 2=-76/18, 5=-6403/1622,) chơ 7) W/ tha 8) All caj	ord live loa ARNING: F an input be bearings a pacity of 42	Id nonconcurrent Required bearing aring size. are assumed to be 25 psi.	with any size at jo e SPF No	other live loa int(s) 12 grea 5.2 crushing	ater	Co	Vert: 1- oncentra Vert: 13	6=-70, ted Lo =-916,	7-12=-20 ads (lb) , 14=-902, 15=-	902, 16=-902, 17=-902, 21=-902, 22=-902
BOT CHORD	5-6=-72/17, 6-7=-76 11-12=-1628/6426, 9 8-9=-2099/8293, 7-8	9-11=-1628/6426,	be	aring plate	nanical connectio capable of withs 154 lb uplift at jo	tanding 1							
WEBS	5-7=-7649/1939, 2-1 2-12=-7674/1945, 2- 3-9=-1153/373, 3-8= 5-8=-239/1336	1=0/188, ·9=-570/2256,	10) Th Int R8	is truss is o ernational 02.10.2 ar	designed in accor Residential Code nd referenced star rlin representation	dance w sections	s R502.11.1 a ISI/TPI 1.					THE OF	MISSO
(0.131"x3" Top chords oc, 2x8 - 2 Bottom cho staggered	to be connected toget) nails as follows: s connected as follows rows staggered at 0-5 ords connected as follo at 0-9-0 oc. ected as follows: 2x4 - 9-0 oc.	s: 2x4 - 1 row at 0-9-0 9-0 oc. ows: 2x6 - 2 rows	or bo		tion of the purlin							ST SCO SEV NUM PE-200 PE-200	IT M. VIER 1018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

August 6,2024

7x8 =

13-9-7

Scale =	1:43	

Plate Offsets (X, Y): [8:Edge,0-2-8]

┝

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.55	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.18	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.12	Horiz(TL)	0.00	8	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 61 lb	FT = 20%
	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=13-9-7, 13=13-9-7 Max Horiz 1=292 (LC Max Uplift 8=-38 (LC 10=-58 (L 12=-47 (L Max Grav 1=156 (LC 9=193 (LC 11=190 (L 13=294 (L	applied or 10-0-0 oc 8=13-9-7, 9=13-9-7, 7, 11=13-9-7, 12=13-5 7 C 9) S 9), 9=-67 (LC 12), C 12), 11=-65 (LC 12), C 12), 13=-100 (LC 1 C 12), 13=-100 (LC 1), C 1), 10=176 (LC 1), C 1), 10=176 (LC 1), LC 1), 12=138 (LC 1), LC 1)	2) 7, 3) 4) 5) (), 6) 2) 7) 8)	Vasd=91mph Ke=1.00; Ca exterior zone Interior (1) 5- right exposed for members Lumber DOL Truss design only. For stu see Standard or consult qu All plates are Gable requirin Gable studs This truss ha chord live loa All bearings a capacity of 5 Provide mec	7-16; Vult=115m, 1; TCDL=6.0psf; E t. II; Exp C; Enclo 9-15 to 13-8-11 z 4; end vertical lef and forces & MW =1.60 plate grip I ned for wind loads do ladustry Gable B ialified building de 1.5x4 MT20 unle es continuous bot spaced at 2-0-0 c is been designed ad nonconcurrent are assumed to b 65 psi. hanical connectio o capable of withs at joint 9, 58 lb u	CDL=6. Sect; MW r(2E) 0-7 cone; cann /FRS for DOL=1.66 s in the p nd (norm End Deta esigner as ses other tom chor oc. for a 10.0 with any e SP No. n (by oth tanding 3	Dpsf; h=35ft; FRS (envelop 9 to 5-9-15, tilever left and t exposed;C- reactions sho) ane of the tru al to the face; ils as applicat s per ANSI/TF wise indicated d bearing. D psf bottom other live loa 2 crushing ers) of truss t 8 lb uplift at ji	d C wn; ss , , ole, Pl 1. I. ds.					
FORCES	(lb) - Maximum Com Tension	pression/Maximum			7 lb uplift at joint 1								
TOP CHORD		357/213, 3-4=-312/19 198/158, 6-7=-124/11		This truss is International	designed in accor Residential Code nd referenced sta	sections	R502.11.1 a	nd				TATE OF I	MISSO
BOT CHORD	1-13=-132/143, 12-1 11-12=-132/143, 10- 9-10=-132/143, 8-9=	-11=-132/143,	L	DAD CASE(S)							A	SCOT SEV	
WEBS	6-9=-149/167, 5-10=		/173								ar.	they	louis
NOTES										đ	A P	NUM PE-2001	

August 6,2024


5

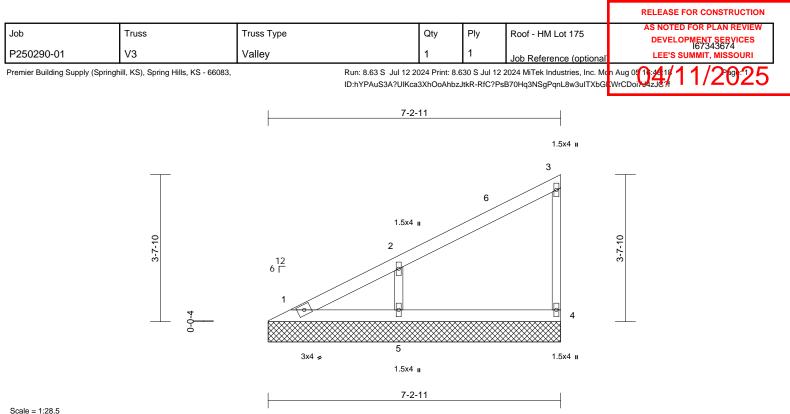
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

SIONAL ET

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - HM Lot 175	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 167343673
P250290-01	V2	Valley		1	1	Job Reference (optional	
Premier Building Supply (S	Springhill, KS), Spring Hills, KS - 6	6083,				2 2024 MiTek Industries, Inc. M sB70Hq3NSgPqnL8w3uITXbG	
				10-6-11			
						3x4 n	
	5-3-10		1.5x4 u 8	1.5 9	x4 II	4	5-3-10
		1 <u>2</u> 6 □	2				

TCLL (roof) TCDL BCLL BCDL	25.0 10.0 0.0 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr Code	1.15 1.15 YES IRC2018/	TPI2014	TC BC WB Matrix-S	0.32 0.13 0.08	Vert(LL) Vert(TL) Horiz(TL)	n/a n/a 0.00	(100) - - 5	n/a n/a n/a	999 999 n/a	MT20 Weight: 39 lb	244/190 FT = 20%	
	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=10-6-1 7=10-6-1 Max Horiz 1=220 (L Max Uplift 5=-37 (LC 7=-101 (I Max Grav 1=88 (LC	y applied or 10-0-0 or 1, 5=10-6-11, 6=10-6 1 C 9) C 9), 6=-137 (LC 12), C 12) 2 0), 5=140 (LC 1), 6	6) 7) ^{cd or} 8) c -11, LO	chord live loa All bearings a capacity of 50 Provide mech bearing plate 5, 137 lb uplit This truss is o International	nanical connec capable of with ft at joint 6 and designed in acc Residential Co nd referenced s	nt with any be SP No. tion (by oth hstanding 3 101 lb upli cordance w de sections	other live loa 2 crushing ers) of truss t 87 lb uplift at j ft at joint 7. ith the 2018 \$ R502.11.1 a	to joint						
FORCES	(lb) - Maximum Con	=296 (LC 1) npression/Maximum												
TOP CHORD	Tension 1-2=-377/217, 2-3= 4-5=-108/124	-294/184, 3-4=-137/1	11,											
BOT CHORD WEBS	1-7=-99/110, 6-7=-9 3-6=-315/302, 2-7=	,												
NOTES												San	an	
 Wind: ASC Vasd=91m Ke=1.00; C exterior zo Interior (1) right expos for membe Lumber DC Truss des only. For s see Stand or consult 	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(5-7-9 to 10-5-15 zon sed; end vertical left a ers and forces & MWF OL=1.60 plate grip DC signed for wind loads i studs exposed to wind ard Industry Gable Er qualified building des uires continuous botto	CDL=6.0psf; h=35ft; ed; MWFRS (envelop 2E) 0-7-9 to 5-7-9, e; cantilever left and and right exposed;C- RS for reactions sho DL=1.60 in the plane of the trud d (normal to the face) d Details as applicat igner as per ANSI/TF	C wn; ss ,							ر		NUM PE-2001	ER BER 018807	

4) Gable studs spaced at 4-0-0 oc.


Scale = 1:37.9

Loading

Conne August 6,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.23	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.08	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 25 lb	FT = 20%

1)	Provide mechanical connection (by others) of truss to
	bearing plate capable of withstanding 31 lb uplift at jo
	4 and 128 lb uplift at joint 5.

This truss is designed in accordance with the 2018 8)

International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 1=7-2-11, 4=7-2-11, 5=7-2-11 Max Horiz 1=146 (LC 9) Max Uplift 4=-31 (LC 12), 5=-128 (LC 12) 1=85 (LC 20), 4=141 (LC 1), 5=378 Max Grav (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension

Structural wood sheathing directly applied or

2x4 SP No.2

2x3 SPF No.2

2x3 SPF No.2

TOP CHORD 1-2=-280/164, 2-3=-126/93, 3-4=-111/141 BOT CHORD 1-5=-67/73 4-5=-67/73 WFBS 2-5=-294/316

NOTES

BOT CHORD

WEBS

OTHERS

BRACING

TOP CHORD

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-7-9 to 5-7-9, Interior (1) 5-7-9 to 7-1-15 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- 4) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 5)
- chord live load nonconcurrent with any other live loads. 6) All bearings are assumed to be SP No.2 crushing
- capacity of 565 psi.

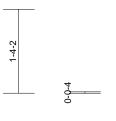
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

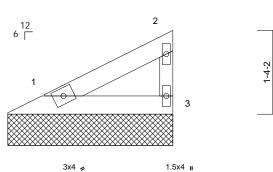
16023 Swingley Ridge Rd.

Chesterfield MO 63017 314.434.1200 / MiTek-US.com

								RELEASE FOR CONSTRUCTION
Job	Truss	j.	Truss Type		Qty	Ply	Roof - HM Lot 175	AS NOTED FOR PLAN REVIEW
P250290-01	V4		Valley		1	1	Job Reference (optior	DEVELOPMENT SERVICES 167343675 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Sp	vringhill, KS),	Spring Hills, KS - 66083,					2 2024 MiTek Industries, Inc.	c. Man Aug 0511:4418 1 1 / 🏸 🗐 🗇 5
				ID:9kzY5o4omouʁヒJ	jejF6JPEpzJI	tkQ-RtC?Psb	B70Hq3NSgPqnL8w3uITXb0	GKWrCDoi7JMzJC7
				3	8-10-11			
							1.5x4 u	
							0	
							2	
				12				
		1-11-10		1 <u>2</u> 6		//		
		<u>+</u>			//	-		<u>-</u>
				1				
			_		*****	*****	□ 3 Ⅲ 3	
		-						
				3x4 ≠			1.5x4 u	
				3.	3-10-11			
Scale = 1:20.9				 			 	
Loading	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC C	0.22 Vert		· · ·	L/d PLATES GRIP 999 MT20 244/190
TCLL (roof) TCDL	10.0	Lumber DOL	1.15	BC C	0.12 Vert	rt(TL) I	n/a - n/a 99	999
BCLL BCDL	0.0 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014		0.00 Horiz	riz(TL) 0.	0.00 3 n/a n	n/a Weight: 12 lb FT = 20%
				ss is designed in accordan				
TOP CHORD 2x4 SP I BOT CHORD 2x4 SP I	No.2		R802.10.	ional Residential Code sec 0.2 and referenced standar				
WEBS 2x3 SPF BRACING				E(S) Standard				
TOP CHORD Structur 3-11-3 c	oc purlins, e	eathing directly applied except end verticals.						
	eiling directly	ly applied or 10-0-0 oc						
REACTIONS (size)		11, 3=3-10-11 C 9)						
Max Uplif	ft 1=-22 (LC	.C 12), 3=-40 (LC 12) .C 1), 3=144 (LC 1)						
FORCES (Ib) - Ma	aximum Con	LC 1), 3=144 (LC 1) mpression/Maximum						
	1/68, 2-3=-1	112/145						
BOT CHORD 1-3=-33, NOTES	36							
 Wind: ASCE 7-16; V Vasd=91mph; TCDL 								
Ke=1.00; Cat. II; Exp	p C; Enclose	ed; MWFRS (envelope (2E) zone; cantilever let						
and right exposed ; e	end vertical							
reactions shown; Lu DOL=1.60								SE OF MISS
2) Truss designed for		in the plane of the trus d (normal to the face),						Bar Call
see Standard Indust	try Gable En	nd Details as applicable signer as per ANSI/TPI	ole,				1	SCOTT M.
3) Gable requires conti	inuous botto	om chord bearing.	1.				Ę	
4) Gable studs spaced5) This truss has been							2	1 ++3 Sources

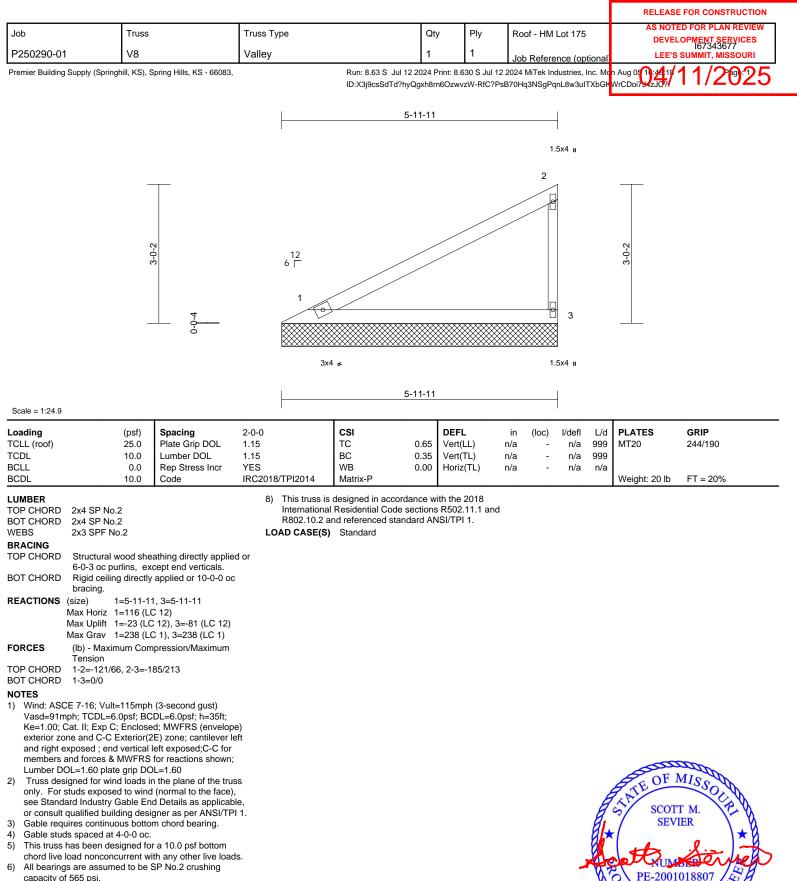
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 All bearings are assumed to be SP No.2 crushing capacity of 565 psi.


 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 1 and 40 lb uplift at joint 3. SCOTT M. SEVIER PE-2001018807 PE-2001018807 August 6,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 175	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 167343676
P250290-01	V7	Valley	1	1	Job Reference (optional	
Premier Building Supply (Spring	nill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Jul 12 2 ID:X3j9csSdTd?hyQg	024 Print: 8.0 gxh8rn6Ozwv	530 S Jul 12 /zW-RfC?PsE	2024 MiTek Industries, Inc. Mo 370Hq3NSgPqnL8w3uITXbGk	n Aug 0:11:441/11/2025

2-7-11


Scale = 1:18 4 _

Scale = 1:18.4											
Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.07 0.04 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a n/a	(loc) - - -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
BCDL 10.0 LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x3 SPF No.2 BRACING TOP CHORD TOP CHORD Structural wood she 2-8-3 oc purlins, ex BOT CHORD Structural wood she 2-8-3 oc purlins, ex BOT CHORD Structural wood she 2-8-3 oc purlins, ex BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 1=2-7-11, Max Horiz 1=43 (LC Max Grav 1=88 (LC FORCES (lb) - Maximum Com Tore CHORD 1-2=-46/25, 2-3=-68 BOT CHORD 1-2=-46/25, 2-3=-68 BOT CHORD 1-3=0/0 NOTES 1 1) Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BC Ke=1.00; Cat. II; Exp C; Enclose exterior zone and C-C Exterior(2 and right exposed ; end vertical members and forces & MWFRS Lumber DOL=1.60 plate grip DC 2) Truss designed for wind loads i onlonons see Standard Industry Gable En	Code athing directly applie cept end verticals. applied or 10-0-0 oc .3=2-7-11 12), 3=-30 (LC 12) 1), 3=88 (LC 1) pression/Maximum /81 (3-second gust) EDL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever li left exposed;C-C for for reactions shown; DL=1.60 n the plane of the tru I (normal to the face) d Details as applicat gner as per ANSI/TP m chord bearing. r a 10.0 psf bottom ith any other live load	IRC2018/TPI2014 8) This truss is Internationa R802.10.2 LOAD CASE(S) ed or be eft ss , ble, 11.	Matrix-P designed in accor I Residential Code and referenced star	dance w sections	ith the 2018 \$ R502.11.1 ar	:				Weight: 8 Ib	MISSOUR T M.
 All bearings are assumed to be scapacity of 565 psi. Provide mechanical connection bearing plate capable of withstar and 30 lb uplift at joint 3. 	(by others) of truss to								- W	PE-2001	L ENGINE

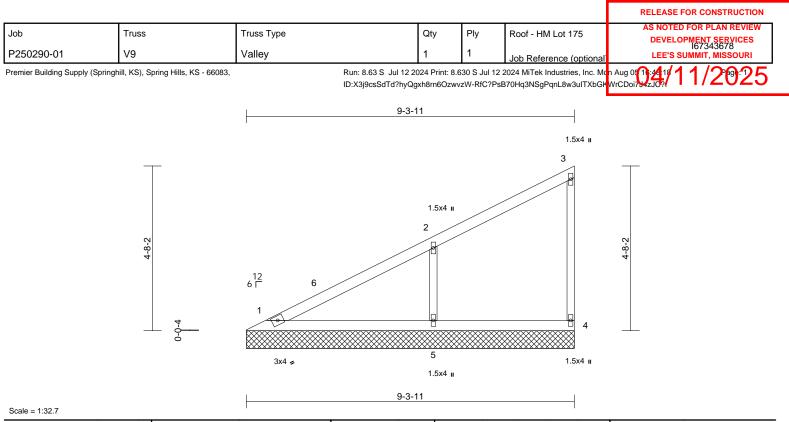
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

August 6,2024

capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 23 lb uplift at joint 1 and 81 lb uplift at joint 3.

August 6,2024


E

SSIONAL

0

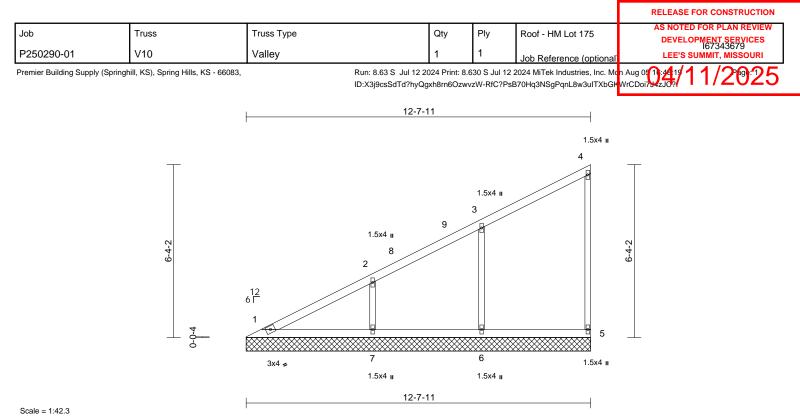
16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2	2014 C: TC BC W	C 0.34 C 0.18	Vert(TL)	in n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 33 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals.	bea 4 ar 8) This Inte R80 ed or LOAD C	ring plate ca nd 164 lb upli s truss is des rnational Res	signed in accordance s sidential Code section referenced standard A	42 lb uplift at vith the 2018 s R502.11.1	t joint					
REACTIONS	0	,										

Max Grav 1=169 (LC 1), 4=123 (LC 1), 5=483 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-241/113, 2-3=-84/29, 3-4=-97/97 BOT CHORD 1-5=-2/3 4-5=-2/3 2-5=-366/342 WFBS


NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-7-9 to 5-4-3, Interior (1) 5-4-3 to 9-2-15 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 4-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5)
- chord live load nonconcurrent with any other live loads. 6) All bearings are assumed to be SP No.2 crushing
- capacity of 565 psi.

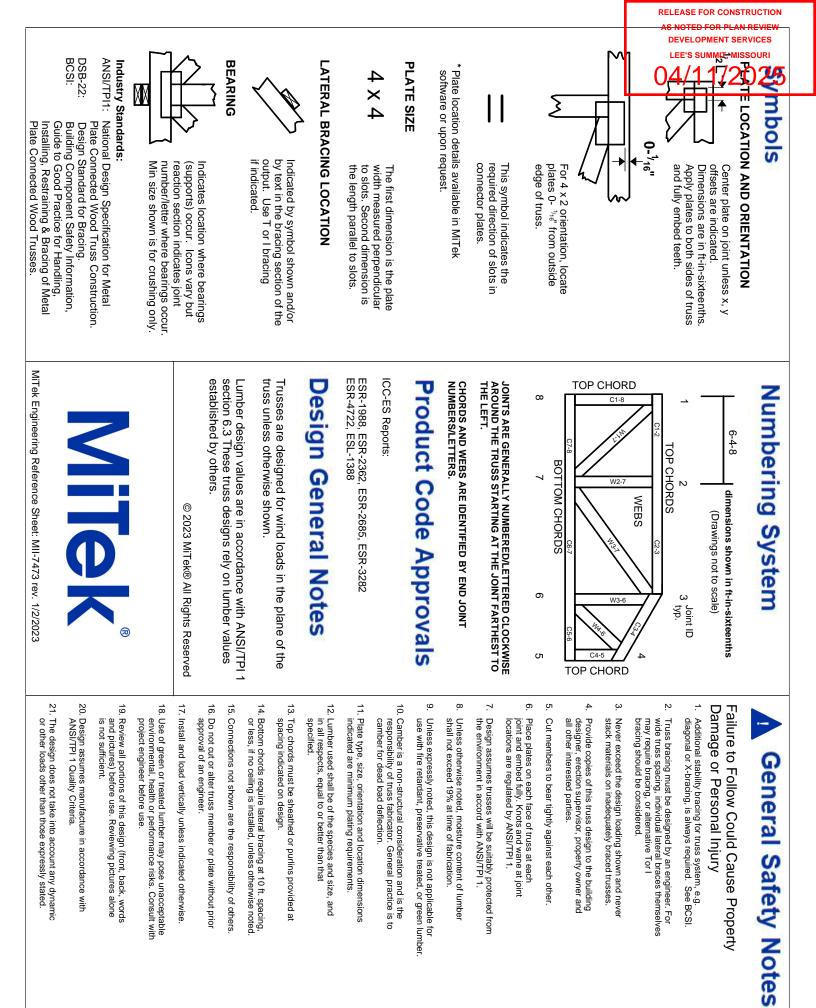
 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Scale = 1.42.3	5												
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.24 0.13 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code		3/TPI2014	Matrix-S	0.12	110112(112)	0.00	0	Π/a	n/a	Weight: 48 lb	FT = 20%
LUMBER TOP CHORE BOT CHORE WEBS OTHERS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 	athing directly applie cept end verticals. applied or 10-0-0 or 1, 5=12-7-11, 6=12-7 1 2 12), 6=-129 (LC 12	5) 6) 7) ed or 8) c 7-11, LC	This truss ha chord live lo: All bearings capacity of 5 Provide meo bearing plate 5, 129 lb upl This truss is International	as been designed ad nonconcurrent are assumed to be 65 psi. hanical connectio e capable of withs iff at joint 6 and 12 designed in accor Residential Code nd referenced star	with any e SP No. n (by oth tanding 4 38 lb upli rdance w sections	other live loa 2 crushing ers) of truss t 9 lb uplift at j ft at joint 7. ith the 2018 5 R502.11.1 a	o oint					
	Max Grav 1=149 (LC												
FORCES	(lb) - Maximum Com Tension	,. ,											
TOP CHORD		193/83, 3-4=-81/35,											
BOT CHORD WEBS	1-7=-2/3, 6-7=-2/3, 5 3-6=-299/245, 2-7=-												
NOTES	5 5- 200/2 10, 2 T=	000,211											
 Wind: AS Vasd=91 Ke=1.00; exterior z Interior (' right exp members Lumber I Truss de only. Foi see Stan 	SCE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose cone and C-C Exterior(2 1) 5-7-9 to 12-6-15 zone osed ; end vertical left e s and forces & MWFRS OOL=1.60 plate grip DC OOL=1.60 plate grip DC signed for wind loads in r studs exposed to wind dard Industry Gable En	DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-7-9 to 5-7-9, s; cantilever left and xposed;C-C for for reactions shown L=1.60 the plane of the true (normal to the face) d Details as applicat	;), ble,									STATE OF J SCOT SEV	ier Service

or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 4-0-0 oc.



SSIONAL E

August 6,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

