

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Re: Serenade - Craftsman FH 3-Car Serenade - Craftsman FH 3-Car

> 4421 SW Grindstone Cir Lees Summit MO, 64082

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Wheeler - Waverly.

Pages or sheets covered by this seal: I65799179 thru I65799216

My license renewal date for the state of Kansas is April 30, 2024.

Kansas COA: E-943

May 24,2024

Garcia, Juan

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

RELEASE FOR CONSTRUCTION AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES LEE'S SUMMIT, MISSOURI

03/20/2025

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Re: Serenade - Craftsman FH 3-Car Serenade - Craftsman FH 3-Car

> 4421 SW Grindstone Cir Lees Summit MO, 64082

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Wheeler - Waverly.

Pages or sheets covered by this seal: I65799179 thru I65799216

My license renewal date for the state of Missouri is December 31, 2024.

Missouri COA: Engineering 001193

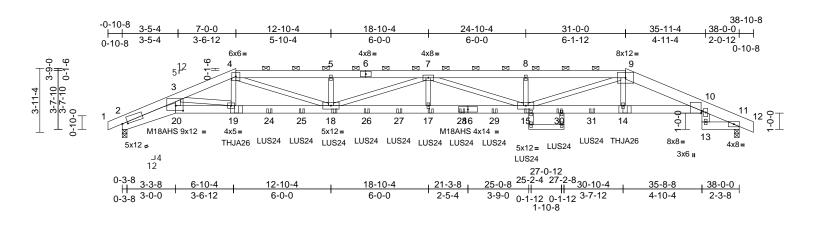
Garcia, Juan

May 24,2024

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

,Engineer

RELEASE FOR CONSTRUCTION AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES LEE'S SUMMIT, MISSOURI


03/20/2025

Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	
Serenade - Craftsman	A1	Hip Girder	1	3	Job Reference (optional)	165799179

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 14:07:35 ID:8GT8_f7kXJbYSdR78zEY2czym18-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 4421 SW Grindstone Cir Lees Summit MO, 64082

Page: 1

Scale = 1:71

Plate Offsets (X, Y): [2:0-4-0,0-1-0], [10:0-0-11,Edge], [20:0-5-8,0-3-12]

	(X, Y): [2:0-4-0,0-1-0],	[10.0-0-11,Edge], [2	0.0-5-8,0	-3-12]	1							1	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.64	Vert(LL)	-0.53	15-17	>855	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.50	Vert(CT)	-0.92	15-17	>493	240	M18AHS	186/179
BCLL	0.0*	Rep Stress Incr	NO		WB	0.48	Horz(CT)	0.39	11	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.46	15-17	>983	240	Weight: 715 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD	2400F 2.0E	·	Р	(0.131"x3") Top chords	b be connected to nails as follows: connected as follo t 0-9-0 oc, 2x8 - 2	ws: 2x6	- 2 rows	-0	Ínte R80 14) Gra	ernationa 02.10.2 a aphical p	al Resid and ref urlin re	erenced standard	ions R502.11.1 and ANSI/TPI 1.
	2400F 2.0E, 13-11:2 SPF No.2	2x6 SPF No.2, 21-22	:2x4	oc. Bottom chor	ds connected as f	ollows [.] 2	x8 - 2 rows		or t	he orien tom cho	tation of the second se	of the purlin along	
WEBS	2x4 SPF No.2 *Exce	ot* 10-13:2x6 SPF N	0.2	staggered a	t 0-9-0 oc, 2x6 - 2	rows sta	ggered at 0-9	-0	15) Use	e Simpso	on Stro	na-Tie THJA26 (THJA26 on 2 ply,
BRACING				oc.	, -				Rig	ht Hand	Hip) o	r equivalent at 7-	0-6 from the left end
TOP CHORD	Structural wood she 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0	ept	d or 2	0-9-0 oc, 2x All loads are	ted as follows: 2x 4 - 1 row at 0-9-0 considered equa	oc. Ily applie	d to all plies,		16) Use Tru	e Simpso ss) or eo	on Stro quivale	ng-Tie LUS24 (4 nt spaced at 2-0-	bottom chord.★ -10d Girder, 2-10d 0 oc max. starting at
BOT CHORD				CASE(S) se	ed as front (F) or l ction. Ply to ply co distribute only load	onnection	s have been	DAD	to b	ack face	e of bo	ttom cher 0001	62101 THJA26 on 2 ply, Left
REACTIONS	(size) 2=0-3-8, Max Horiz 2=-59 (LC Max Uplift 2=-990 (L Max Grav 2=4099 (L	28) C 4), 11=-950 (LC 5)	1)	unless other Unbalanced this design.	wise indicated. roof live loads ha	ve been	considered fo	r	Har con 18) Fill	nd Hip) o inect tru: all nail h	or equi ss(es) ioles w	valent at 30-11-1 to back lace of bo here hanger is in	0 from the left end to
FORCES	(lb) - Maximum Com		4		7-16; Vult=115m h; TCDL=6.0psf; E			Cat.	19) FIII6	er applie CASE(S	a to pi	y: I(Front)	
TOP CHORD	Tension 1-2=0/3, 2-3=-15823 4-5=-17147/4373, 5- 7-8=-17346/4361, 8- 9-10=-12680/3060, 1 11-12=0/6	-7=-17146/4372, ·9=-17346/4362,	5	cantilever le right expose Provide ade All plates are	nclosed; MWFRS ft and right expose d; Lumber DOL=1 quate drainage to e MT20 plates unl e 2x4 MT20 unles	ed ; end .60 plate prevent ess othe	vertical left an grip DOL=1. water ponding rwise indicate	d 60 g.	1) De Pl	ead + Ro ate Incre niform Lo	oof Live ease=1 oads (I	e (balanced): Lun .15 b/ft)	nber Increase=1.15,
BOT CHORD		, 17-18=-4804/19263 , 14-15=-2872/12204		 This truss has chord live lo * This truss 	as been designed ad nonconcurrent has been designe	for a 10. with any d for a liv	0 psf bottom other live loa ve load of 20.0					JUAN CE	BARCIA
WEBS	10-13=-64/341, 3-20 3-19=-1117/297, 4-1 9-14=-265/1398, 4-1 9-15=-1488/5584, 5- 7-18=-2333/561, 7-1 7-15=-2119/568, 8-1	9=-825/3642, 9=-454/1933, 8=-1484/5839, -18=-436/186, 7=-198/993,		3-06-00 tall chord and a 0) All bearings 1) Bearing at jo using ANSI/	m chord in all area by 2-00-00 wide w ny other members are assumed to b bint(s) 2 considers TPI 1 angle to gra	rill fit betv e SPF N parallel in formul	veen the botto o.2 . to grain value a. Building				A DITUTU	The LICE	952
NOTES	1 13-2113/300, 8-1	0- LJ 1 /LJL	1	2) Provide med	ould verify capacit chanical connectio e capable of withs	n (by oth	ers) of truss t					OR TAN	SAS GIN

bearing plate capable of withstanding 950 lb uplift at joint 11 and 990 lb uplift at joint 2.

Continued on page 2 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

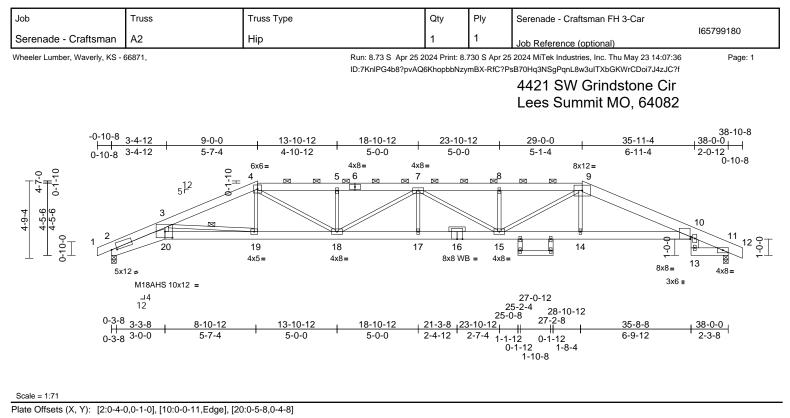
Gheetesfist Mon 63013 s 314.434.1200 / MiTek-US.cor 03/20/20

Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	105700470
Serenade - Craftsman	A1	Hip Girder	1	3	Job Reference (optional)	165799179

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 14:07:35 ID:8GT8_f7kXJbYSdR78zEY2czym18-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Vert: 1-4=-70, 4-9=-70, 9-12=-70, 2-20=-20, 10-20=-20, 11-13=-20


Concentrated Loads (lb)

Vert: 19=-786 (B), 14=-807 (B), 18=-278 (B), 15=-278 (B), 17=-278 (B), 24=-278 (B), 25=-278 (B), 26=-278 (B), 27=-278 (B), 28=-278 (B), 29=-278 (B),

30=-278 (B), 31=-278 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.81	Vert(LL)	-0.47	15-17	>954	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.59	Vert(CT)	-0.85	15-17	>530	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	YES	WB	0.53	Horz(CT)	0.49	11	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.35	17	>999	240	Weight: 220 lb	FT = 10%

LUMBER TOP CHORD	2x6 SPF No.2 *Except* 9-12:2x8 SP 2400F 2.0E	 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone;
BOT CHORD	2x6 SP 2400F 2.0E *Except* 2-20:2x8 SP 2400F 2.0E, 13-11:2x6 SPF No.2, 21-22:2x4 SPF No.2	cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.603) Provide adequate drainage to prevent water ponding.
WEBS	2x3 SPF No.2 *Except* 10-13:2x6 SPF No.2, 21-23,22-24:2x4 SPF No.2	 All plates are MT20 plates unless otherwise indicated. All plates are 2x4 MT20 unless otherwise indicated.
OTHERS	2x4 SP No.3	6) This truss has been designed for a 10.0 psf bottom
BRACING		chord live load nonconcurrent with any other live loads.
TOP CHORD	Structural wood sheathing directly applied or 2-2-4 oc purlins, except 2-0-0 oc purlins (3-0-4 max.): 4-9.	 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.	chord and any other members.8) All bearings are assumed to be SPF No.2 .
WEBS	1 Row at midpt 3-19	Bearing at joint(s) 2 considers parallel to grain value
1	(size) 2=0-3-8, 11=0-3-8 Max Horiz 2=-74 (LC 9) Max Uplift 2=-245 (LC 4), 11=-245 (LC 5) Max Grav 2=1768 (LC 1), 11=1768 (LC 1)	 using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 245 lb uplift at joint 2 and 245 lb uplift at joint 11.
FORCES	(lb) - Maximum Compression/Maximum Tension	 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and
TOP CHORD	1-2=0/3, 2-3=-6416/817, 3-4=-4254/622, 4-5=-4909/797, 5-7=-4907/795, 7-8=-4932/798, 8-9=-4932/798, 9-10=-4273/612, 10-11=-921/138, 11-12=0/6	 R802.10.2 and referenced standard ANSI/TPI 1. 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
BOT CHORD	2-20=-718/5770, 19-20=-672/5327, 18-19=-491/3910, 17-18=-768/5378, 15-17=-768/5378, 14-15=-485/4008, 10-14=-487/3999, 11-13=0/0	LOAD CASE(S) Standard
WEBS	10-13=-5/148, 3-20=-123/1544, 3-19=-1414/286, 4-19=0/510, 9-14=0/342, 4-18=-242/1322, 9-15=-235/1235, 5-18=-366/149, 7-18=-631/105, 7-17=0/237,	

1) Unbalanced roof live loads have been considered for this design.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE L
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not eters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

May 24

111 11 MIS

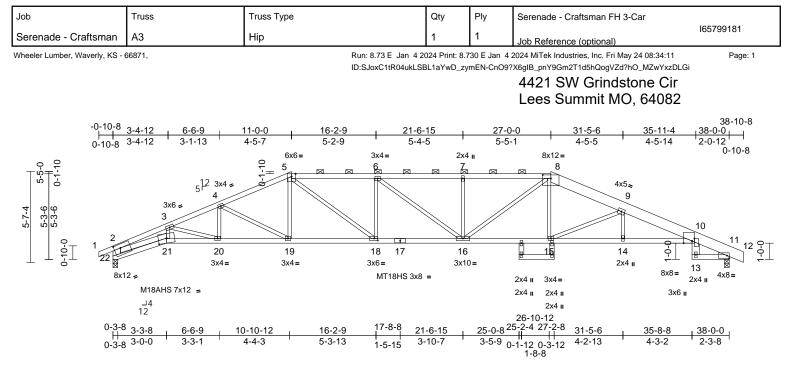
JUAN GARCIA

NUMBER

2000162101

GIT

MILLIN


0

F

S/ONAL S/ONAL UAN GARC/ CENSE/ 1695

NO * PROM

C

Scale = 1:71

00010 - 1.71													
Plate Offsets (2	X, Y): [8:0-6-0,0-2-10)], [10:0-6-4,Edge], [10:0-1-14	,0-1-11], [18:0-2	2-8,0-1-8], [21:0-6	5-0,0-3-7],	[22:0-4-12,0	-2-12]				-	
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.83	DEFL Vert(LL)	in -0.46	(loc) 16-18	l/defl >982	L/d 360	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.64	Vert(CT)	-0.83	16-18	>541	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	YES		WB	0.73	``'	0.52	11	n/a	n/a	MT18HS	197/144
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S	-	Wind(LL)	0.32	16-18	>999	240	Weight: 168 lb	FT = 10%
LUMBER				,	roof live loads ha	ave been	considered fo	or					
FOP CHORD	2x4 SPF No.2 *Exce 2.0E	ept* 8-12:2x8 SP 240	00F 2	this design. Wind: ASCE	7-16; Vult=115n	nph (3-sea	cond gust)						
BOT CHORD	2x4 SPF No.2 *Exce	ept* 21-17,17-10:2x4	SPF	Vasd=91mp	h; TCDL=6.0psf; nclosed; MWFRS	BCDL=6.	0psf; h=25ft;						
WEBS	2100F 1.8E 2x3 SPF No.2 *Exce	ept* 10-13,22-2:2x6	SPF	cantilever le	ft and right expos	sed; end v	ertical left ar	nd					
	No.2, 21-2:2x4 SPF 23-25,24-15:2x4 SP	2100F 1.8E,	3		ed; Lumber DOL= quate drainage to								
BRACING	23-23,24-15.284 3P	F NU.Z	4		e MT20 plates ur								1117.
TOP CHORD	Structural wood she				as been designed							NE OF	MISS
	1-11-9 oc purlins, e		and 6		ad nonconcurren has been designe							AT	0,1
BOT CHORD	2-0-0 oc purlins (2-3 Rigid ceiling directly			,	m chord in all are			оры			2	A	
BOT CHORD	bracing.	applied of 10-0-0 0	G		by 2-00-00 wide			om			2	JUA	
REACTIONS	0	/0-3-8, 22=1771/0-3-	8		ny other member						=*	GAR	
	Max Horiz 22=-82 (L		7	All bearings capacity of 4	are assumed to	be SPF N	o.2 crushing				=	÷	
	Max Uplift 11=-220		4) 8		pint(s) 22 conside	ers paralle	l to grain valu	le			=1		BER :
FORCES	(lb) - Maximum Con Tension	npression/Maximum		using ANSI/	TPI 1 angle to gra	ain formul	a. Building					E-20001	62101
TOP CHORD	1-2=0/30, 2-3=-544	4/609, 3-4=-4305/53	4, g		ould verify capaci chanical connecti			to			1		
	4-5=-3557/500, 5-6=	=-3942/609,	, 0		e capable of with							1.SSION	EN
	6-7=-3955/608, 7-8=				lb uplift at joint 11		·					- CINF	
	8-9=-3663/512, 9-10 10-11=-911/123, 11	,	1/246		designed in acco								
BOT CHORD	21-22=-123/444, 20	,	7240		I Residential Cod and referenced sta			and					un,
	19-20=-425/3973, 1	8-19=-343/3231,	1		urlin representation			size				IN AN C	ARC
	17-18=-472/3939, 1	,			ation of the purlir							1 30	A
	15-16=-343/3326, 1 10-14=-462/4402, 1			bottom chor								UCE	SED .
WEBS	10-13=0/60, 3-21=-3		8. L	OAD CASE(S)	Standard						-	UCE	1 2
	8-15=-31/611, 9-15		-,								-	1.00	150
	2-21=-493/4544, 4-1										-	10:	952 📔
	4-20=-6/370, 3-20=-		76,								-	PI:	4 :55
	8-16=-159/916, 6-18 5-18=-177/1023, 6-1											0.4	14:43
	7-16=-376/159											- AVAK	SAS
NOTES												S/ON	ALENIN
												1111	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

May 24,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

ACTION AC

Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	165799182
Serenade - Craftsman	A4	Нір	1	1	Job Reference (optional)	1037 33 102
Wheeler Lumber, Waverly, KS -	66871,				2024 MiTek Industries, Inc. Thu May 23 14:07:37 B70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 4421 SW Grindstone Cir Lees Summit MO, 64082	Page: 1
-0-10-8 	3-4-12 8-11-8 3-4-12 5-6-12	<u>13-0-0</u> <u>19-0-0</u> 4-0-8 <u>6-0-0</u>	6-	-0-0 0-0	<u>31-5-6</u> <u>38-0-0</u> 6-5-6 <u>6-10</u>	38-10-8 0-10-8
	5^{12} 3x6 = 3x6 = 3x6 = 19 12 = M18AHS 7x16 = -14 12 $3\cdot3\cdot8 =$ $8\cdot11\cdot8$ $3\cdot0\cdot0 =$ $5\cdot8\cdot0$	$\begin{array}{c} 6x6 = & 2x \\ 5 & 6x6 = & 2x \\ 7x6 = &$	0=		3x4 II 12 6x12=	9 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Scale = 1:71.1

Plate Offsets (X, Y):	Plate Offsets (X, Y): [11:0-3-0,0-5-0], [14:0-7-12,0-3-12], [19:0-8-0,0-3-7], [20:0-4-12,0-2-12]												
Loading	Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) I/defl L/d PLATES GRIP												
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.90	Vert(LL)	-0.34	15-17	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.85	Vert(CT)	-0.63	15-17	>715	240	M18AHS	142/136	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.95	Horz(CT)	0.34	11	n/a	n/a			
BCDL	ACDL 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.23 15-17 >999 240 Weight: 160 lb FT = 10%												
LUMBER 2) Wind: ASCE 7-16; Vult=115mph (3-second gust)													

	Veed 04mmh; TCDL C 0met DCDL C 0met h 25th Cet
	Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.
	II; Exp C; Enclosed; MWFRS (envelope) exterior zone;
	cantilever left and right exposed ; end vertical left and
2x3 SPF No.2 *Except* 20-2:2x6 SPF No.2,	right exposed; Lumber DOL=1.60 plate grip DOL=1.60
19-2:2x4 SPF 2100F 1.8E, 11-9:2x6 SP	Provide adequate drainage to prevent water ponding.
2400F 2.0E	All plates are MT20 plates unless otherwise indicated.
	5) This truss has been designed for a 10.0 psf bottom
Structural wood sheathing directly applied or	chord live load nonconcurrent with any other live loads.
	6) * This truss has been designed for a live load of 20.0psf
	on the bottom chord in all areas where a rectangle
	3-06-00 tall by 2-00-00 wide will fit between the bottom
5 5 7 1	chord and any other members.
	7) All bearings are assumed to be SPF No.2.
	8) Bearing at joint(s) 20 considers parallel to grain value
, , ,	using ANSI/TPI 1 angle to grain formula. Building
· · · · ·	designer should verify capacity of bearing surface.
	9) Provide mechanical connection (by others) of truss to
/lax Grav 11=1767 (LC 1), 20=1767 (LC 1)	bearing plate capable of withstanding 198 lb uplift at joint
(Ib) - Maximum Compression/Maximum	20 and 198 lb uplift at joint 11.
Tension	10) This truss is designed in accordance with the 2018
1-2=0/30, 2-3=-5547/594, 3-4=-3871/432,	International Residential Code sections R502.11.1 and
4-5=-3230/424, 5-6=-3347/478,	R802.10.2 and referenced standard ANSI/TPI 1.
6-7=-3345/476, 7-8=-3398/430,	11) Graphical purlin representation does not depict the size
8-9=-3176/340, 9-10=0/30, 2-20=-1790/230,	or the orientation of the purlin along the top and/or
9-11=-1696/229	bottom chord.
19-20=-109/373, 18-19=-586/4981,	LOAD CASE(S) Standard
17-18=-304/3533, 15-17=-240/2926.	LUAD CASE(S) Standard
7-14=-25/624, 12-13=-7/104, 11-12=-121/987	
	2400F 2.0E Structural wood sheathing directly applied or 1-10-13 oc purlins, except end verticals, and 2-0-0 oc purlins (2-20 max.): 5-7. Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Row at midpt 3-18 size) 11=0-3-8, 20=0-3-8 Max Horiz 20=-84 (LC 13) Max Uplift 11=-198 (LC 5), 20=-198 (LC 4) Max Grav 11=1767 (LC 1), 20=1767 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-2=0/30, 2-3=-5547/594, 3-4=-3871/432, 4-5=-3345/476, 7-8=-3398/430, 8-9=-3176/340, 9-10=0/30, 2-20=-1790/230, 9-11=-1696/229

NOTES

1) Unbalanced roof live loads have been considered for this design.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

1111 FMIS 0 WIN THE PROTI JUAN GARCIA NUMBER F -2000162101 8 6 2, ONALE mm 16952 BONNALENO

Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	
Serenade - Craftsman	A5	Нір	1	1	Job Reference (optional)	165799183
Wheeler Lumber, Waverly, KS	· 66871,				5 2024 MiTek Industries, Inc. Thu May 23 14:07:37 PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?	-
					4421 SW Grindstone Cir	
					Lees Summit MO, 64082	
-0-10-8	3-4-12 8-11-7	15-0-0 19-0-0	23-0-0		29-0-9 34-7-4	<u>38-0-0</u> 38-10-8
0-10-8	3-4-12 5-6-11	6-0-9 4-0-0	4-0-0	•	6-0-9 5-6-11	3-4-12 0-10-8
0-10-0 0-10-0 0-11-6 0-1-10 0-11-0 0-1-10 0-1-10 0-1-10 0-1-10 0-1-10 0-1-10	3x6 = 3 19	3x4 = 4 18 17 25	44= 5 ⊠ ⊠ 11 16 26 8 WB =	6x6= 7 15 3x10=	3x4x 8 3x4x 9 9 1 1 4 13 M18AH	10 11 0 57x16 =
	x12 = M18AHS 7x16 =			2	2x4 II 2x4 II 2x4 II 2x4 II 294 3/59 25-2-4 28-9-8	4∟ 8x12≈ 12 38-0-0
0-3 0-3 Scale = 1-71 2	8 <u>3-3-8</u> 8-11-7 83-0-0 5-7-15	<u>14-10-12</u> <u>19-3-8</u> 5-11-5 4-4-12	<u>23-1-4</u> 3-9-12	2 1-11-		37-8-8 3-0-0 0-3-8

Scale =	1:71.2
---------	--------

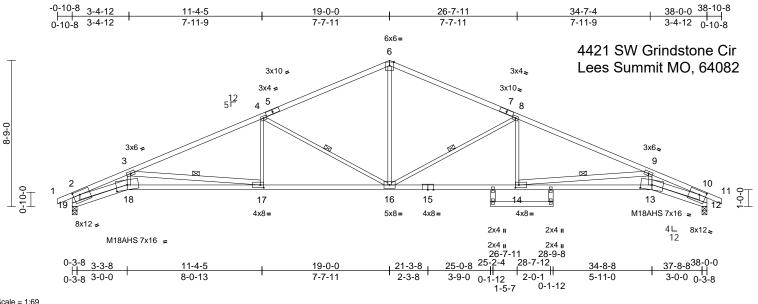
Plate Offsets (X, Y):	[12:0-4-12,0-2-12]	, [13:0-8-0,0-3-7], [1	19:0-8-0,0-3-7], [20:0-4-	-12,0-2-12]	

			_									1	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.81	Vert(LL)	-0.50	15-17	>909	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.72	Vert(CT)	-0.87	15-17	>519	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	YES		WB	0.51	Horz(CT)	0.47	12	n/a	n/a		
BCDL	10.0	Code	IRC2018	8/TPI2014	Matrix-S		Wind(LL)	0.24	15-17	>999	240	Weight: 153 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 *Exce 2100F 1.8E 2x3 SPF No.2 *Exce No.2, 19-2,13-10:2x. 21-23,22-24:2x4 SP 2x3 SPF No.2 Structural wood she 2-0-0 oc purlins, ex 2-0-0 oc purlins, ex 2-0-0 oc purlins (3-4 Rigid ceiling directly bracing. 1 Row at midpt (size) 12=0-3-8, Max Horiz 20=-94 (L Max Uplift 12=-209 (Max Grav 12=1819 (lb) - Maximum Com Tension 1-2=0/30, 2-3=-5743 4-5=-3118/335, 5-6= 6-7=-2805/330, 2-20 10-12=-1835/228, 7 8-9=-4038/373, 9-10 19-20=-137/460, 18: 17-18=-353/3703, 11 14-15=-248/3703, 11 2-13=-37/422 3-19=-45/788, 3-18= 4-17=-1008/266, 5-1	 apt* 19-16,16-13:2x4 apt* 20-2,12-10:2x6 S 4 SPF 2100F 1.8E, F No.2 athing directly applied cept end verticals, an -7 max.): 5-7. applied or 9-8-3 oc 3-18, 4-17, 8-15, 9-1 20=0-3-8 C 13) LC 9), 20=-209 (LC & E (LC 2), 20=1819 (LC pression/Maximum 3/669, 3-4=-4038/404 -2805/330, =-1835/258, 8=-3118/335,)=-5744/564, 10-11=(-19=-666/5151, 5-17=-184/2915, 3-14=-481/5151, :-1469/317, 4-18=0/4 7=-28/922, :-1008/252, 8-14=0/4 3=-4/788, :13=-451/4870, 	1) SPF 2) PF 3) 4) 5) d 6) 4 7) 8) 2) 9) , 10 ,/30 11 ,/30 64,	Unbalanced i this design. Wind: ASCE Vasd=91mpf II; Exp C; Enn cantilever leff right exposed Provide adec All plates are This truss ha chord live loa * This truss ha on the botton 3-06-00 tall bb chord and an All bearing at Bearing at joi value using A designer sho Provide mecl bearing plate 20 and 209 lt)) This truss is a International R802.10.2 ar	roof live loads have 7-16; Vult=115mp ; TCDL=6.0psf; BC closed; MWFRS (e and right exposed ; Lumber DOL=1.1 uate drainage to p MT20 plates unles s been designed for d nonconcurrent v as been designed for to chord in all areas y 2-00-00 wide will y other members, are assumed to be nt(s) 20, 12 consic NSI/TPI 1 angle to uld verify capacity nanical connection capable of withsta o uplift at joint 12. designed in accord Residential Code stan rlin representation tion of the purlin a	h (3-sec CDL=6. cnveloped d; end v 60 plate prevent v ss othel or a 10. vith any for a liv s where l fit betw with BC SPF N. ders par o grain f of bear (by oth anding 2 dance w sections dard AN	considered fc considered fc cond gust) 0psf; h=25ft; a) exterior zoo vertical left ar grip DOL=1. water pondin, wise indicate 0 psf bottom other live load e load of 20.0 a rectangle veen the bott CDL = 10.0psi o.2. allel to grain ormula. Buil- ing surface. ers) of truss f 209 lb uplift af ith the 2018 s R502.11.1 a ISI/TPI 1. ot depict the s	or Cat. ne; nd 60 g. ds. opsf ding f. ding to t joint				SS/ON/ BDD E-20001	MISSOUD CIA BER 62101 ALENO

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) Construction Co

[_	1	_			1
Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	165799184
Serenade - Craftsma	n A6	Нір	1	1	Job Reference (optional)	
Wheeler Lumber, Waverly, K	S - 66871,		•		5 2024 MiTek Industries, Inc. Thu May 23 14:07:37	•
		ID:dbIP89G	n r cOAdhto9uJGB2zy	m54-RfC?P	sB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 4421 SW Grindstone Cir	
					Lees Summit MO, 64082	
-0-10)-8 3-4-12 11-4	4-4 17-0-0	21-0-0	26-7-1		
0-10	-8 3-4-12 11-4 -8 3-4-12 7-1	1-8 5-7-12	4-0-0	5-7-1		<u>38-0-0</u> 38-10-8 3-4-12 0-10-8
0 0			6= 6×6=			
0-1-10 0-1-10		0 				
o o		3x4 =	N T	\sim	3x4	
		5^{12} 4			7	
999						
7-11-0 7-9-6 7-9-6	3x6 =			\$/	3x6	=
	3				8	
	2			/		9 10 0-
	18	17 16				⊥ 1T <u>_</u>
0	⊠ 8x12 ≠	4x8= 3x6	6= 3x6= 3x10	=	4x8= M18AH	
	M18AHS 7x16 =				2x4 u 2x4 u 2x4 u 2x4 u	4∟ 8x12 ≈ 12
0	-3-8 3-3-8 44	16 10 12	10-3-8 21 1 /	25-0 9	^{2x4} u ^{2x4} u 26-7-12 28-9-8 25-2-4 28-7-12 34-8-8	38-0-0 37-8-8
0	-3-8 3-3-8 11-4 	1-4 <u>16-10-12</u> 12 5-6-8	<u>19-3-8</u> 21-1-4 2-4-12 1-9-12)-1-12 2-0-0 5-11-0	<u> </u>
, i i i i i i i i i i i i i i i i i i i				·	1-5-8 0-1-12	
Scale = 1:71.3						
	0-4-12,0-2-12], [12:0-8-0,0-3-7	, [13:0-2-8,0-2-0], [16:0-2-8,0-1-8], [17:	0-2-8,0-2-0], [18:0-	8-0,0-3-7],	[19:0-4-12,0-2-12]	
Loading	(psf) Spacing	2-0-0 CSI	DEFI	_	in (loc) l/defl L/d PLATES	GRIP
TCLL (roof)	25.0 Plate Grip DOL	1.15 TC	0.74 Vert(,	.35 14-16 >999 360 MT20	197/144
TCDL BCLL	10.0 Lumber DOL 0.0* Rep Stress Incr	1.15 BC YES WB	0.72 Vert(0.62 Horz	,	.70 17-18 >643 240 M18AHS .48 11 n/a n/a	142/136
BCDL	10.0 Code	IRC2018/TPI2014 Matrix-S	Wind	. ,	.25 17-18 >999 240 Weight: 160 lb	FT = 10%
LUMBER			3-17=-1939/500, 4	-17=0/478	,	
TOP CHORD 2x4 SPF No.2	2100F 1.8E *Except* 5-6:2x4 \$		62, 5-16=-108/696, 3, 6-14=-52/697,			
BOT CHORD 2x4 SPF	No.2 *Except* 18-15,15-12:2x4	SPF 7-14=-1016/25	50, 7-13=0/476, 20, 8-12=0/742,			
	No.2 *Except*		20, 8-12=0/742, 45, 9-12=-619/4946			
	3,20-22,21-23:2x4 SPF No.2, 9:2x6 SPF No.2, 18-2,12-9:2x4	NOTES SPF 1) Unbalanced roof live loads	have been conside	ared for		
2100F 1.		this design.			NU'OF	MILL
BRACING TOP CHORD Structura	I wood sheathing directly appli	2) Wind: ASCE 7-16; Vult=11 ed or Vasd=91mph; TCDL=6.0p			NITEOF	SSO
2-8-12 o	purlins, except end verticals,	and II; Exp C; Enclosed; MWFI	RS (envelope) exte	rior zone;	SXP -	
	purlins (3-6-4 max.): 5-6. ling directly applied or 10-0-0 o	c cantilever left and right exp c right exposed; Lumber DO			JU. GAF	
bracing, 8-7-7 oc	Except: bracing: 17-18	 Provide adequate drainage All plates are MT20 plates 				×=
9-11-12	oc bracing: 12-13.	This truss has been design	ned for a 10.0 psf b	ottom	P. NUM	
WEBS 1 Row at REACTIONS (size)	midpt 3-17, 4-16, 7-14, 8- 11=0-3-8, 19=0-3-8	 13 chord live load nonconcurr 6) * This truss has been designed 				• 41-
Max Horiz	19=-109 (LC 13)	on the bottom chord in all	areas where a recta	angle		
	11=-226 (LC 9), 19=-226 (LC 11=1767 (LC 1), 19=1767 (LC 1)	' abord and any other memb		ie dottom	S/ON	ALENIN
FORCES (lb) - Mai	kimum Compression/Maximum	 7) All bearings are assumed 8) Bearing at joint(s) 19, 11 c 	to be SPF No.2 .	grain		iiiiii ii
Tension TOP CHORD 5-6=-239	8/287, 6-7=-2696/283,	value using ANSI/TPI 1 an	gle to grain formula	a. Building		un _n
7-8=-355	3/367, 8-9=-5709/692, 9-10=0/				11 UAN	GARC
	85/261, 9-11=-1785/226, 1-2=(8/813, 3-4=-3554/395,	bearing plate capable of w	ithstanding 226 lb ι		t SCE	NSE
4-5=-269	4/301	19 and 226 lb uplift at joint 10) This truss is designed in a		2018	St / Los	
	14/341, 17-18=-827/5141, 31/3215, 14-16=-121/2396,	International Residential C	ode sections R502	.11.1 and	E 10	050
13-14=-1	96/3214, 12-13=-613/5142,	R802.10.2 and referenced 11) Graphical purlin representa			10	952
11-12=0/	525	or the orientation of the pu bottom chord.	rlin along the top a	nd/or	EAL	· /#=
		LOAD CASE(S) Standard				NSAS
					SSION	VALENCII
						inne.
					Ma	v 24 2024

May 24,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	
Serenade - Craftsn	an B1	Roof Special	1	1	Job Reference (optional)	165799185

Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 14:07:37 ID:UzvNYmg1CzP7vKDHwiZDGqzymbt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:69

Plate Offsets (X, Y):	: [12:0-4-12,0-2-12], [13:0-8-0,0-3-7], [14:0-2-8,0-2-0], [17:0-2-8,0-2-0], [18:0-8-0,0-3-7], [19:0-4-12,0-2-12]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.67	Vert(LL)	-0.35	13-14	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.72	Vert(CT)	-0.71	13-14	>638	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	YES	WB	0.88	Horz(CT)	0.48	12	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.26	17-18	>999	240	Weight: 153 lb	FT = 10%

LUMBER TOP CHORD BOT CHORD	2x4 SPF 2100F 1.8E 2x4 SPF No.2 *Except* 18-15,15-13:2x4 SPF 2100F 1.8E	2)	Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft II; Exp C; Enclosed; MWFRS (envelope) exterior z cantilever left and right exposed ; end vertical left a
WEBS	2x3 SPF No.2 *Except*		right exposed; Lumber DOL=1.60 plate grip DOL=
	14-9,17-3,20-22,21-23:2x4 SPF No.2,	3)	
	19-2,12-10:2x6 SPF No.2, 18-2,13-10:2x4	4)	This truss has been designed for a 10.0 psf botton
	SPF 2100F 1.8E	C)	chord live load nonconcurrent with any other live lo
BRACING		5)	* This truss has been designed for a live load of 20
TOP CHORD	Structural wood sheathing directly applied or		on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bo
	2-11-15 oc purlins, except end verticals.		chord and any other members.
BOT CHORD	Rigid ceiling directly applied or 8-3-13 oc	6)	All bearings are assumed to be SPF No.2.
	bracing.	7)	Bearing at joint(s) 19, 12 considers parallel to grain
WEBS	1 Row at midpt 8-16, 9-14, 4-16, 3-17	• ,	value using ANSI/TPI 1 angle to grain formula. Bu
REACTIONS	(size) 12=0-3-8, 19=0-3-8		designer should verify capacity of bearing surface.
	Max Horiz 19=124 (LC 8)	8)	5 , I , 5
	Max Uplift 12=-242 (LC 9), 19=-242 (LC 8)		bearing plate capable of withstanding 242 lb uplift
	Max Grav 12=1767 (LC 1), 19=1767 (LC 1)		19 and 242 lb uplift at joint 12.
FORCES	(Ib) - Maximum Compression/Maximum	9)	This truss is designed in accordance with the 2018
TOP CHORD	Tension		International Residential Code sections R502.11.1
TOP CHORD	1-2=0/30, 2-3=-5684/871, 3-4=-3568/448, 4-6=-2454/302, 6-8=-2454/321,		R802.10.2 and referenced standard ANSI/TPI 1.
	8-9=-3568/416, 9-10=-5684/733, 10-11=0/30,	LO	AD CASE(S) Standard
	2-19=-1790/286, 10-12=-1790/245		
BOT CHORD	18-19=-143/361, 17-18=-891/5115,		
201 0110112	16-17=-398/3232, 14-16=-243/3232,		
	13-14=-647/5115, 12-13=-10/338		
WEBS	6-16=-93/1339, 8-16=-1232/311, 8-14=0/499,		
	9-14=-1896/406, 9-13=0/740,		
	4-16=-1232/326, 4-17=0/499,		
	3-17=-1896/497, 3-18=-55/740,		
	2-18=-767/4905, 10-13=-642/4905		
NOTES			
1) Unbalance	ed roof live loads have been considered for		

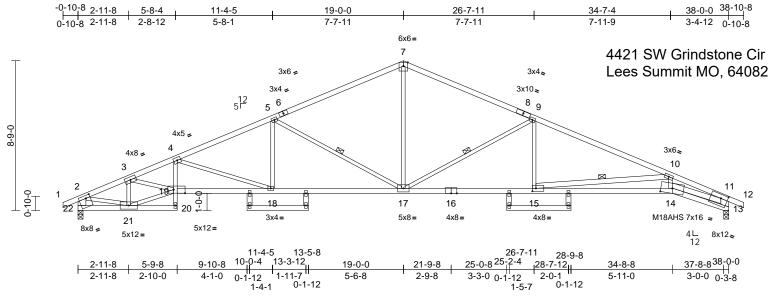
Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle

- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be SPF No.2 . 6)
- 7) Bearing at joint(s) 19, 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building
- designer should verify capacity of bearing surface. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 242 lb uplift at joint
- 19 and 242 lb uplift at joint 12. This truss is designed in accordance with the 2018 9) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

MI

this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

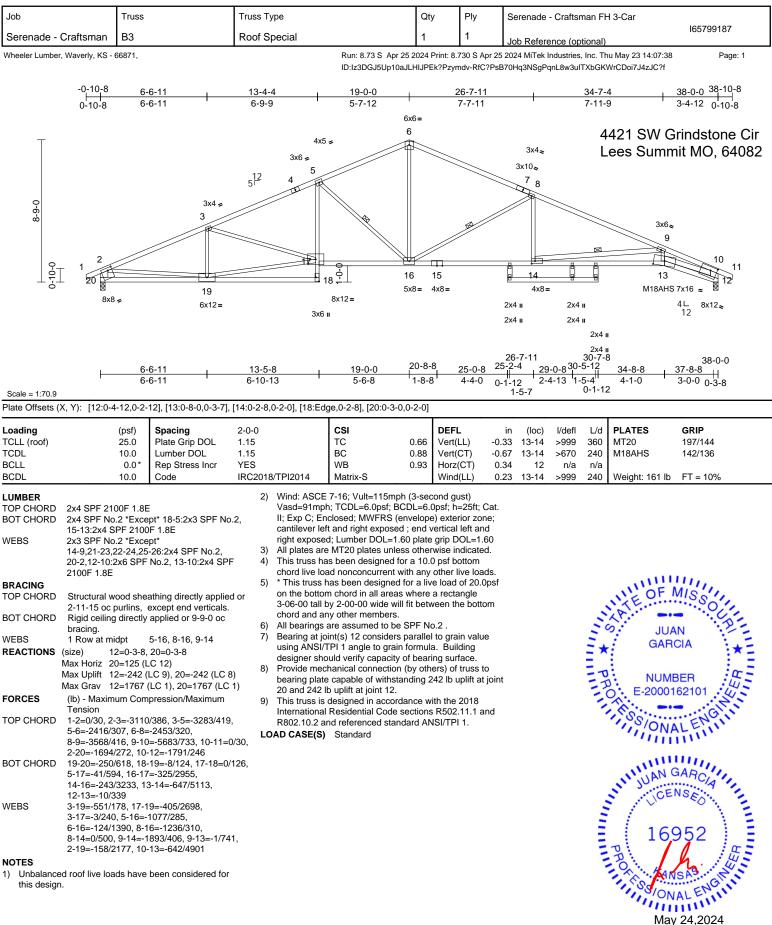

Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	
Serenade - Craftsman	B2	Roof Special	1	1	Job Reference (optional)	165799186

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 14:07:38 ID:b05a0y?X94TxptWjCf4KYEzymck-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4:07:38 Page: 1 zJC?f

May 24,2024

Gheererised Min 63013souri 314.434.1200/Mirek-US.com 03/20/2025



Scale = 1:67.3

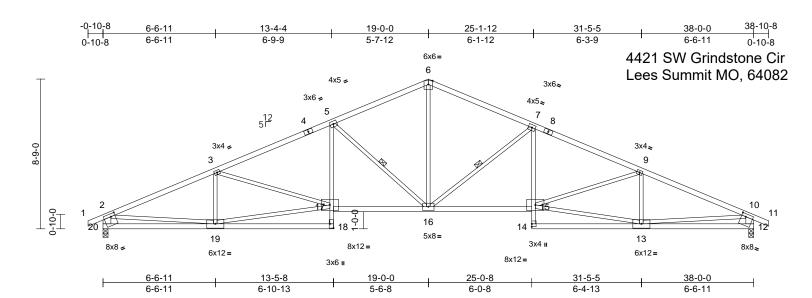
Plate Offsets (X, Y): [13:0-4-	-12,0-2-12], [14:0-8-0,0-3-7], [15:0-2-8,0	0-2-0], [19:0-8-0,0-2-8], [22:0-3-0,0-2-0]
--------------------------------	--	--

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	
Serenade - Craftsman	B3	Roof Special	1	1	Job Reference (optional)	165799187

May 24,2024

314.434.1200 / MiTek-US.co


03/20/2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	
Serenade - Craftsman	B4	Roof Special	2	1	Job Reference (optional)	165799188

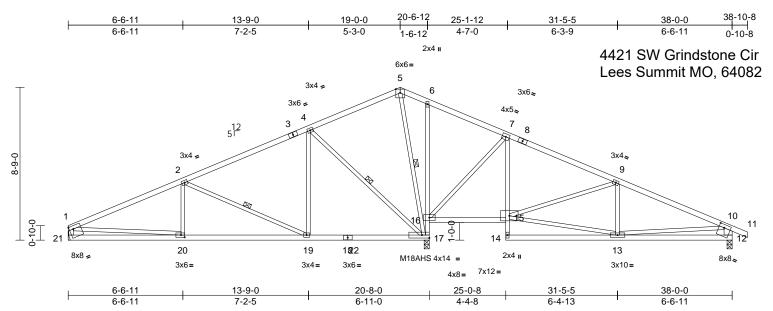
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 14:07:38 ID:erIP2mLzfg4WFgzB7gbzy7zymeu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:67.3

Plate Offsets (X, Y): [12:0-3-0,0-2-0], [18:Edge,0-2-8], [20:0-3-0,0-2-0]

	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1, [- · · J · /· · ·], [,	r										
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.74	Vert(LL)	-0.29	16-17	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15		BC	0.87	Vert(CT)	-0.55	15-16	>821	240			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.93	Horz(CT)	0.21	12	n/a	n/a			
BCDL	10.0	Code	IRC2018/TF	PI2014	Matrix-S		Wind(LL)	0.19	16-17	>999	240	Weight: 157 lb	FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 *Exce No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 2-2-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 12=0-3-8, Max Horiz 20=125 (I Max Uplift 12=-242 (Max Grav 12=1767	ept* 20-2,12-10:2x6 s athing directly applie cept end verticals. applied or 10-0-0 or 5-16, 7-16 20=0-3-8 _C 8) LC 9), 20=-242 (LC (LC 1), 20=1767 (LC	PF II; SPF ii; SPF ii; SPF ii; SPF ii; Ch SPF ii;	asd=91mph; Exp C; Enc Intilever left hit exposed; his truss has ord live load This truss has the bottom 06-00 tall by ord and any I bearings al ovide mech earing plate o and 242 lb his truss is d	7-16; Vult=115mj ; TCDL=6.0psf; E losed; MWFRS (and right expose ; Lumber DOL=1 s been designed d nonconcurrent as been designed chord in all area / 2-00-00 wide w y other members re assumed to b anical connection capable of withst uplift at joint 12. lesigned in accode	SCDL=6.0 (enveloped) ed ; end \ .60 plate for a 10.0 with any d for a 110 as where ill fit betw e SPF No n (by oth tanding 2 rdance w	Dpsf; h=25ft; a) exterior zo vertical left ar grip DOL=1. D psf bottom other live loz e load of 20. a rectangle veen the bott D.2. ers) of truss i 42 lb uplift ar ith the 2018	ne; nd 60 nds. Opsf om t joint				JU/ GAR	CIA	
FORCES	(lb) - Maximum Com Tension	pression/Maximum		302.10.2 and CASE(S)	d referenced star Standard	ndard AN	ISI/TPI 1.				=]	E-20001	•	Щ.
TOP CHORD	5-6=-2417/306, 6-7= 7-9=-3355/399, 9-10 2-20=-1693/272, 10	=-2424/322,)=-3099/384, 10-11= -12=-1692/273	9, :0/30,	.,							11	ESSION	LENGI	
BOT CHORD	19-20=-252/588, 18 5-17=-41/589, 16-17 15-16=-189/3035, 1 7-15=-22/594, 13-14 12-13=-144/611	7=-325/2955, 4-15=0/116,	//126,										GARCIA	11.
WEBS	3-19=-555/178, 17-1 3-17=-6/239, 5-16=- 6-16=-132/1427, 7-1 13-15=-273/2699, 9 9-13=-594/153, 2-19 10-13=-136/2173	1079/287, 6=-1124/279, -15=-33/286,									WITH IN	THE LOCE	[№] <i>€</i> 0 952	EH
	ed roof live loads have n.	been considered fo	r										SAS AL ENG 24,2024	



 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Gheetesfisid MMT63013 s 314.434.1200 / MiTek-US.cor 03/20/2025

Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	
Serenade - Craftsman	B5A	Roof Special	5	1	Job Reference (optional)	165799189
Wheeler Lumber, Waverly, KS -	66871,	Run: 8.73 S Apr 25 2	024 Print: 8.	730 S Apr 25	2024 MiTek Industries, Inc. Thu May 23 14:07:38	Page: 1

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 14:07:38 ID:911TRY5Mv167OrbPaYFpGPzymgV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:65.9

Plate Offsets (X, Y): [12:0-3-8,0-2-4], [20:0-2-8,0-1-8], [21:0-2-12,0-2-4]

- 1410 0110010 (1]; [=0:0 = 0;0 : 0]; [=		·]									
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.53 0.61 0.89	DEFL Vert(LL) Vert(CT) Horz(CT)	-0.14 0.02	(loc) 17-19 17-19 17	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 M18AHS	GRIP 197/144 142/136
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.04	19-20	>999	240	Weight: 159 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS		ept* 21-1:2x4 SPF No athing directly applie cept end verticals. applied or 10-0-0 oc 2-19, 4-17, 5-17 17=0-3-8, 21= al LC 9) LC 9) LC 9) LC 9) LC 8) .C 24), 17=-132 (LC 4 C 24), 17=2019 (LC	5.2, 3 4 4d or 5 5 5 6 7 7 8 8	Vasd=91mp II; Exp C; Er cantilever ler right expose All plates are This truss ha chord live lo * This truss l on the botton 3-06-00 tall I chord and an All bearings Refer to gird Provide mec bearing plate 21, 191 lb up	7-16; Vult=115mp h; TCDL=6.0psf; E iclosed; MWFRS (ft and right expose d; Lumber DOL=1 e MT20 plates unle as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w hy other members are assumed to be er(s) for truss to tr thanical connection e capable of withst olift at joint 12 and designed in accor	CDL=6. (enveloped); end v .60 plate ess other for a 10.) with any d for a liv is where ill fit betv, with BC e SPF N- russ conr n (by oth tanding 1 132 lb u	Opsf; h=25ft; a) exterior zo: vertical left ar grip DOL=1. wise indicate D psf bottom other live load e load of 20.1 a rectangle veen the bott DDL = 10.0psi b.2. erst) of truss 1 57 lb uplift at plift at joint 1 ith the 2018	ne; nd 60 dd. dds. Opsf f. ; joint 7.			·····	JUA GAR NUME O. E-20001	CIA *
FORCES	(lb) - Maximum Com Tension	pression/Maximum			Residential Code nd referenced star			ina			1	ESS.	
TOP CHORD	1-2=-1385/272, 2-4= 5-6=0/402, 6-7=0/42 9-10=-987/280, 10-1 10-12=-686/223	1, 7-9=-407/248,	ο,		Stanuaru								
BOT CHORD	20-21=-181/382, 19- 17-19=-120/571, 16- 6-16=-251/116, 15-1 7-15=-16/498, 13-14 2-20=0/230, 2-19=-7	-17=-928/266, 6=-44/295, 14-15=0, =-5/53, 12-13=-127/	377									UAN CLICE	NSED
	4-17=-1011/242, 5-1 7-16=-810/216, 13-1 9-15=-598/146, 9-13 1-20=-128/894, 10-1	7=-384/0, 5=-182/807, 3=-52/160,										169 PHO	952 52

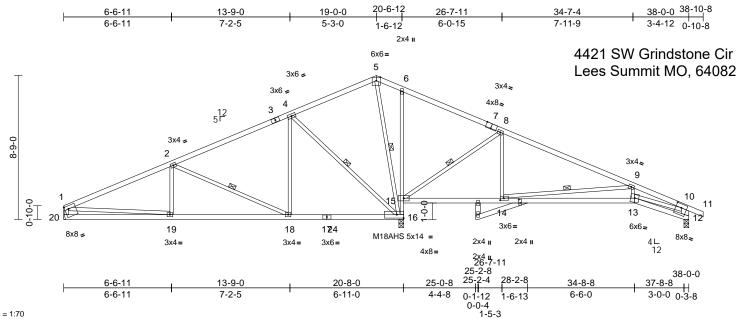
NOTES

1) Unbalanced roof live loads have been considered for this design.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

E ONAL

MILLIN N May 24,2024


Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	
Serenade - Craftsman	B6A	Roof Special	1	1	l6 Job Reference (optional)	65799190

Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 14:07:38 ID:N8vJvlz1pSOKkY_XeW4??ozymhy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

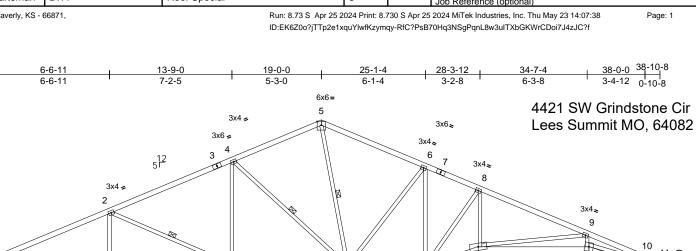
Page: 1

May 24,2024

Gheetesfisid MMT63013S 314.434.1200 / MiTek-US.con 03/20/2025

Scale =	1:70
---------	------

P


Plate Offsets (X, Y): [7:0-4-0,Edge], [12:0-4-0,0-2-12], [14:0-2-8,0-1-8], [20:0-2-12,0-2-4], [23:	0-2-8,0-1-0]
--	--------------

		1			· · · ·								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.71	Vert(LL)	-0.20	13-14	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.83	Vert(CT)	-0.39	13-14	>540	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	YES		WB	0.83	Horz(CT)	0.02	16	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	0.11	13-14	>999	240	Weight: 155 lb	FT = 10%
FORCES TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 *Exc 2x3 SPF No.2 *Exc No.2, 12-10:2x6 SP Structural wood she 3-9-13 oc purlins, e Rigid ceiling directly bracing, Except: 8-8-13 oc bracing: 1 1 Row at midpt (size) 12=0-3-8 Max Horiz 20=-132 Max Uplift 12=-175 20=-156 Max Grav 12=694 (20=839 ((lb) - Maximum Con Tension 1-2=-1336/269, 2-4: 5-6=0/477, 6-8=0/5: 9-10=-1979/508, 10 10-12=-671/174 19-20=-180/378, 18 16-18=-116/523, 15 6-15=-341/158, 14= 13-14=-445/1760, 1 2-19=0/233, 2-18=- 4-16=-1027/243, 5- 8-15=-975/240, 8-1 9-13=-0/413, 1-19=- 10-13=-448/1701 ed roof live loads have	eathing directly applied except end verticals. (* applied or 10-0-0 oc 13-14. 2-18, 4-16, 5-16, 8-1 9-14 , 16=0-3-8, 20= al (LC 9), 16=-135 (LC 8 (LC 8) LC 24), 16=2114 (LC LC 23) npression/Maximum =-656/200, 4-5=0/442 27, 8-9=-528/217, -11=0/30, 1-20=-758/ -19=-304/1175, -16=-998/295, 15=-57/412, 2-13=0/137 728/206, 4-18=0/622, 16=-420/0, 4=0/441, 9-14=-1357/ 125/852,	2.2 PF d or 5, (188, 188,	 Wind: ASCE Vasd=91mp II; Exp C; Er cantilever le right expose All plates ard chord live lo * This truss la chord live lo * This truss l on the bottoo 3-06-00 tall I chord and ai All bearings Refer to gird Bearing at jo using ANSI/ designer sho Provide mec bearing plate 20, 175 lb up This truss is International 	7-16; Vult=115mp h; TCDL=6.0psf; Bi closed; MWFRS (c it and right exposed d; Lumber DOL=1. MT20 plates unle us been designed fra ad nonconcurrent v has been designed m chord in all areas by 2-00-00 wide will hy other members, are assumed to be er(s) for truss to tru- int(s) 12 considers TPI 1 angle to grain- build verify capacity hanical connection a capable of withsta- blift at joint 12 and designed in accord Residential Code and referenced stan	CDL=6. enveloped c ; end v 60 plate so so the or a 10. vith any for a liv s where lift betw with BC SPF Ne uss com paralle of bear of bear of bear of bear 135 b u dance w sections	cond gust) opps; h=25ft; s) exterior zon vertical left an grip DOL=1. wise indicate o psf bottom other live loa e load of 20.1 a rectangle veen the bottu DL = 10.0psf o.2. hections. I to grain valu a. Building ing surface. ers) of truss t 56 lb uplift at plift at joint 10 ith the 2018 s R502.11.1 a	Cat. ne; id 60 d. ds. Dpsf om 5. e ijoint 5.				JUA GAR NUME E-20001	N CIA BER

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	
Serenade - Craftsman	B7A	Roof Special	3	1	Job Reference (optional)	165799191

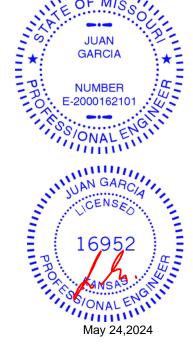
8-9-0

	8x8 =	19 3x4=		18 3x4=	1721 3x6=	₹ 16 3x10:		× 15 6x6 =		14 x12 =		13 6x6=	4L 8x8≈ 12
	<u>6-6-11</u> 6-6-11		13-9-0 7-2-5		<u>20-4-8</u> 6-7-8	20-6-4 0-1-12	2020		<u>8-2-8</u> 3-0-0	 	34-8 6-6	3-8 (-0	<u>37-8-8³⁸⁻⁰⁻⁰ H</u> 3-0-0 0-3-8
Scale = 1:67.6													
Plate Offsets ()	X, Y): [12:0-2-8,0-2-1	2], [20:Edge,0-2-8]]										
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.58	Vert(LL)	-0.08	13-14	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.50	Vert(CT)	-0.17	13-14	>916	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.98	Horz(CT)	0.04	12	n/a	n/a		
BCDL	10.0	Code	IRC2018	8/TPI2014	Matrix-S		Wind(LL)	0.04	18-19	>999	240	Weight: 151 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce No.2	əpt* 20-1,12-10:2x4	2) 4 SPF 3)	Vasd=91mpl II; Exp C; En cantilever let right expose	7-16; Vult=115 h; TCDL=6.0ps iclosed; MWFR ft and right expo d; Lumber DOL as been designo	f; BCDL=6.0 S (envelope osed ; end v =1.60 plate	Dpsf; h=25ft; e) exterior zo rertical left ar grip DOL=1	ne; nd					

BRACING		
TOP CHORD	Structural	I wood sheathing directly applied or
	5-0-6 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ing directly applied or 6-0-0 oc
	bracing.	
WEBS	1 Row at	midpt 2-18, 4-16, 5-16
REACTIONS	(size)	12=0-3-8, 15=0-3-8, 16=0-3-8, 20=
		Mechanical
	Max Horiz	20=-133 (LC 9)
	Max Uplift	12=-76 (LC 9), 15=-234 (LC 9),
	•	16=-267 (LC 8), 20=-118 (LC 8)
	Max Grav	12=354 (LC 22), 15=1049 (LC 22),
		16=1771 (LC 2), 20=715 (LC 23)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	1-2=-1090	0/190, 2-4=-384/111, 4-5=0/679,
	5-6=-2/86	0, 6-8=-20/816, 8-9=-59/601,
	9-10=-701	1/135, 10-11=0/27, 1-20=-646/151,
	10-12=-33	31/83
BOT CHORD	19-20=-17	74/359, 18-19=-231/937,
	16-18=-72	2/263, 15-16=-716/203,
	14-15=-52	20/174, 13-14=-100/600,
	12-13=-5/	/64
WEBS	6-15=-513	3/144, 8-15=-451/85, 8-14=0/199,
	9-14=-962	2/259, 9-13=0/255, 1-19=-58/645,
	10-13=-10	01/589, 2-19=0/254, 2-18=-769/216,
	4-18=-4/6	604, 4-16=-1002/246, 5-16=-893/82,
	6-16=-203	3/155

NOTES

1) Unbalanced roof live loads have been considered for this design.

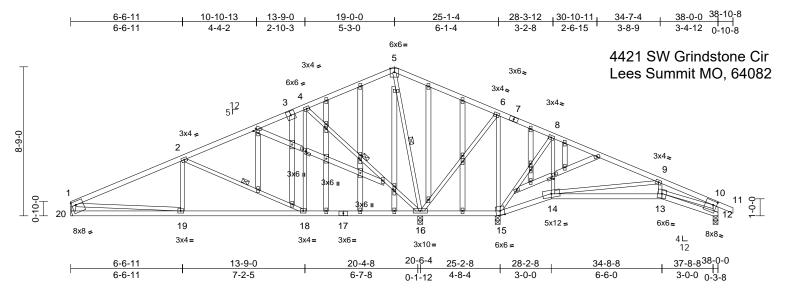

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) All bearings are assumed to be SPF No.2 . 6) Refer to girder(s) for truss to truss connections. 7) Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 8) Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 118 lb uplift at joint 20, 234 lb uplift at joint 15, 76 lb uplift at joint 12 and 267 lb uplift at joint 16.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

4)


MI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	
Serenade - Craftsman	B8A	Roof Special	1	1	I657 Job Reference (optional)	799192

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 14:07:39 ID:JyvoXcSxTSvd_?2WEV?DHYzymvX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:67.6

Plate Offsets ((X, Y): [12:0-2-8,0-2-1	2], [20:Edge,0-2-8], [21:0-1-0,0	-2-4], [22:0-1-4	4,0-1-0], [25:0-1	-4,0-1-0], [27:0-1-6,0-1-	0], [30:0	-1-6,0-1	-0], [34:0	0-1-6,0	-1-0]	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	-	3/TPI2014	CSI TC BC WB Matrix-S	0.58 0.39 0.97	Vert(CT) Horz(CT) Wind(LL)	-0.16 0.04	(loc) 13-14 13-14 12 18-19	l/defl >999 >978 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 221 lb	GRIP 197/144 FT = 10%
	No.2 2x4 SPF No.2 Structural wood she 5-0-6 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 12=0-3-8 Mechanic Max Horiz 20=-133 Max Uplift 12=-76 (L 16=-267 Max Grav 12=354 (I	2-23,24-25,25-26:2x4 eathing directly applied cept end verticals. / applied or 6-0-0 oc 2-18, 4-16, 5-16 , 15=0-3-8, 16=0-3-8, cal (LC 9) (LC 9) (LC 9), 15=-234 (LC 9) (LC 8), 20=-118 (LC 8)	SPF 3) d or 4) 5) 20= 7) 8) ;; ;; ;; 22), 9)	Vasd=91mph II; Exp C; En cantilever lef right exposed Truss design only. For stu see Standarc or consult qu All plates are Truss to be f braced again Gable studs This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar All bearings a	7-16; Vult=115 n; TCDL=6.0psf closed; MWFRS t and right expo d; Lumber DOL- ned for wind loa ids exposed to v d Industry Gable alified building (e 2x4 MT20 unle ully sheathed from st lateral mover spaced at 2-0-0 is been designed ad nonconcurrer nas been designed ad nonconcurrer as been designed ad nonconcurrer nas been designed ad nonconcurrer as been designed ad nonconcurrer ad nonconcurr	; BCDL=6. S (envelope sed ; end v esd ; end v esd ; end v esd ; end v esd ; end peta ess otherwi om one fac ment (i.e. d o oc. d for a 10.0 d for a 10.0 d for a 10.0 d for a liv eas where will fit betw rs.	Dpsf; h=25ft; a) exterior zo: vertical left ar grip DOL=1. Iane of the tri al to the face ils as applica s per ANSI/TI iagonal web) D psf bottom other live load e load of 20.1 a rectangle veen the botti D.2.	ne; nd 60 uss), ble, PI 1. / uds. 0psf				JUA GAR NUME -20001	CIA *
FORCES	(lb) - Maximum Con Tension	npression/Maximum) Bearing at jo	er(s) for truss to int(s) 12 conside FPI 1 angle to gr	ers paralle	to grain valu	ie				SSIONA	LENUI
TOP CHORD	5-6=-2/846, 6-8=-20	=-384/111, 4-5=0/654)/790, 8-9=-59/589, 11=0/27, 1-20=-646/1	12	designer sho) Provide mec bearing plate	hanical connect capable of with blift at joint 15, 7	city of bear tion (by oth Instanding 1	ing surface. ers) of truss t 18 lb uplift at	t joint				IN UAN C	AROUN SARO
BOT CHORD	19-20=-174/309, 18 16-18=-72/263, 15- 14-15=-492/174, 13 12-13=-5/61	16=-683/203,	13	lb uplift at joi) This truss is International		ordance w	ith the 2018 R502.11.1 a					UAN LOE	NSED
WEBS NOTES 1) Unbalance this design	4-16=-936/246, 5-16 6-16=-203/155, 6-19 8-15=-444/85, 8-14= 9-13=0/252, 1-19=-9 ed roof live loads have	5=-513/144, =0/195, 9-14=-956/25 58/645, 10-13=-101/5	9,	DAD CASE(S)			(U)/ I F I I.				1111VVV	Ortes Ion	ALENCIU

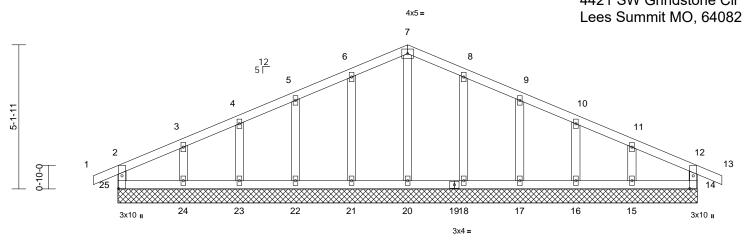
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

May 24,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	
Serenade - Craftsman	C1	Common Supported Gable	1	1	Job Reference (optional)	165799193
Wheeler Lumber, Waverly, KS - 6	66871,	Run: 8.73 S Apr 25 2	024 Print: 8.7	730 S Apr 25	2024 MiTek Industries, Inc. Thu May 23 14:07:39	Page: 1

10-4-0


10-4-0

-0-10-8

0-10-8

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 14:07:39 ID:pRvbEG8hlaWMk2g2kgbCjzzymzo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

21-6-8 20-8-0 10-4-0 0-10-8 4421 SW Grindstone Cir

~ ~		~
20	-8-	()

Scale = 1:41.1 Plate Offsets (X, Y): [14:0-5-8,0-1-8], [25:0-5-8,0-1-8]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.07	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	n/a	-	n/a	999	-	
BCLL	0.0*	Rep Stress Incr	YES		WB	0.05	Horz(CT)	0.00	14	n/a	n/a		
BCDL	10.0	Code	IRC2	018/TPI2014	Matrix-R		,					Weight: 80 lb	FT = 10%
LUMBER TOP CHORD	2x4 SPF No.2				7-20=-124/0, 6-21= 4-23=-140/66, 3-24	l=-143/9	1, 8-18=-151	/74,					
BOT CHORD					9-17=-138/73, 10-1	6=-140	/67, 11-15=-1	43/88					
WEBS	2x4 SPF No.2			NOTES									
OTHERS	2x4 SPF No.2			1) Unbalanced	roof live loads have	e been	considered fo	r					
BRACING				this design.									
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex	athing directly applied cept end verticals.	d or	Vasd=91mpl	7-16; Vult=115mp h; TCDL=6.0psf; B0	CDL=6.	0psf; h=25ft; (10
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc		cantilever lef	ft and right exposed	d;end י	ertical left an	d				NE OF	MISS
BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed ; unber DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.Max Horiz 25=62 (LC 12) Max Uplift 									CIA *				
FORCES	(lb) - Maximum Com	pression/Maximum			are assumed to be banical connection			0				1, 20	A
TOP CHORD	3-4=-37/72, 4-5=-30 6-7=-34/134, 7-8=-3 9-10=-30/80, 10-11= 12-13=0/27, 12-14= 24-25=-10/50, 23-24 21-22=-10/50, 20-21	/93, 5-6=-30/115, 4/128, 8-9=-30/102, 31/59, 11-12=-53/43 -154/49 4=-10/50, 22-23=-10/5 1=-10/50, 18-20=-10/5	 30/115, 25, 35 lb uplift at joint 14, 50 lb uplift at joint 14, 50 lb uplift at joint 23, 75 1-12=-53/43, 24, 50 lb uplift at joint 18, 50 lb uplift at joint 15, 50 lb uplift at joint 16, 50 lb uplift at joint 15, 50 lb uplift at joint 16, 50 lb uplift at join								out the	DE D	
	17-18=-10/50, 16-17 14-15=-10/50	7=-10/50, 15-16=-10/5	50,	LOAD CASE(S)		33.374						SSION	ALENGIII

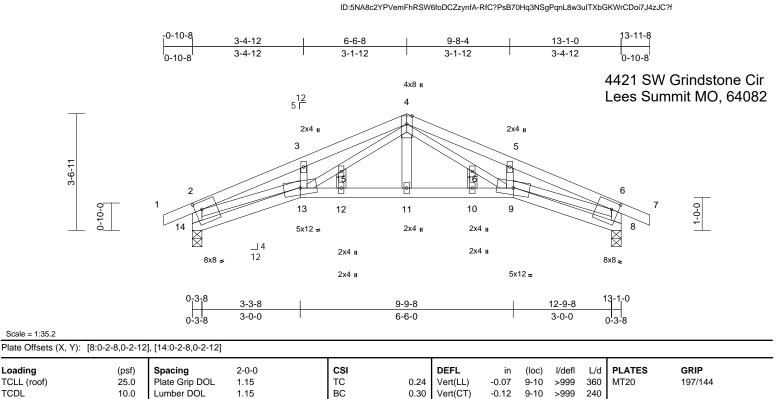
minin May 24,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Gheetesfield MMT63015S 314.434.1200 / MiTek-US.con 03/20/2025

Job	Truss		Truss Type		Qty	,	Ply	Seren	ade - Cra	ftsman	FH 3-Car	105700404
Serenade - Craftsmar	n C2		Common		1		1	Job R	eference	(optiona	al)	I65799194
Vheeler Lumber, Waverly, KS	66871,										Thu May 23 14:07:3 GKWrCDoi7J4zJC?f	
	-0-10-8	4-2-8	I	10-4-0	1			16-5-8		1	20-8-0	21-6-8
	0-10-8	4-2-8		6-1-8				6-1-8			4-2-8	0-10-8
—			12		4x8 4	3=						Grindstone C imit MO, 6408
			12 5 − 3x6 ≠			$\left\langle \right\rangle$				3	×6 =	
			3			/					5	
5-1-11	8	3x8 =	-					<		X		8x8 =
	2											6
0-10-0									\swarrow			
¦	12		1	1			10	L	 9			
				3x4 =			3x4 =		3x4 =			
	1	6-4-	13	1	14-3-	3			1		20-8-0	1
Capita 4:44 5	F	6-4-			7-10-						6-4-13	
Scale = 1:41.5 Plate Offsets (X, Y): [2:E	dge,0-3-0],	[6:Edge,0-3-0]										
oading	(psf)	Spacing	2-0-0	CSI		DEFL			oc) l/de			GRIP
rcll (roof) rcdl	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC	0.56 0.48	Vert(L Vert(C	,		-11 >99 -11 >99			197/144
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-S	0.70	Horz(C Wind(L).04).05 9	8 n -11 >99	/a n/a 99 240		FT = 10%
No.2 BRACING OP CHORD Structural 3-10-3 oc 3-03 oc BOT CHORD Rigid ceili bracing. REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Max Tension TOP CHORD 1-2=0/27,	No.2 No.2 *Exce purlins, e ing directly 8=0-3-8, * 12=62 (L0 8=-140 (L 8=988 (L0 imum Com 2-3=-271/		bearing p 12 and 14 7) This truss Internatio d or R802.10. LOAD CASE	Acchanical connect late capable of wit 40 lb uplift at joint is is designed in acc nal Residential Co 2 and referenced is (S) Standard	hstanding 1 8. cordance wi ode sections	40 lb up th the 2 R502.1	llift at joi 018 1.1 and	nt		winnin.	S JL GA	MISSOURIER
2-12=-279	9/73, 6-8=- 30/1358, 9										O E-2000	0162101
WEBS 4-9=-51/4	17, 5-9=-2 6/190, 3-12	56/190, 4-11=-51/417 2=-1323/197,	7,								///ON	ALEIN
 NOTES Unbalanced roof live I this design. Wind: ASCE 7-16; Vu Vasd=91mph; TCDL= II; Exp C; Enclosed; N cantilever left and righ right exposed; Lumbe This truss has been d chord live load noncoo * This truss has been d on the bottom chord in 3-06-00 tall by 2-00-0 chord and any other n 	loads have It=115mph 6.0psf; BC IWFRS (er nt exposed or DOL=1.6 esigned fo ncurrent wi designed f n all areas 0 wide will	(3-second gust) iDL=6.0psf; h=25ft; C ivvelope) exterior zond ; end vertical left and 0 plate grip DOL=1.6 r a 10.0 psf bottom ith any other live load or a live load of 20.0p where a rectangle	at. e; 0 s. ssf								16 PPROX 10	GARCIA ENSED 952 NALENGIN
WARNING - Verify de	esign parame	eters and READ NOTES OF	N THIS AND INCLUDED MI	TEK REFERENCE PAG	SE MII-7473 rev	. 1/2/2023	BEFORF	USE.				

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) ELE SETTOR CONTRUCTION ACAD TED FOR LAREVIEW DEVELOPMENT SERVICES (Creating of Microsoft Control 314.434.1200/MITCH-US.com 03/20/2025


Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	
Serenade - Craftsman	D1	Roof Special	1	1	Job Reference (optional)	165799195

Loading

TCDL

BCLL

TCLL (roof)

Horz(CT)

Wind(LL)

0.40

8

13 >999

n/a n/a

240

Weight: 51 lb

FT = 10%

0.09

0.05

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 14:07:39

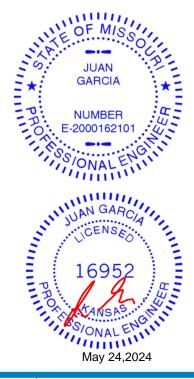
BCDL		10.0	Code	IRC2	2018	/TPI2014
				-	2)	Truco de
		N- 0			3)	Truss de only. For
TOP CHORD BOT CHORD						see Stan
WEBS				-		or consul
WEB5	2x3 SPF I No.2	NO.Z EXCE	pt* 14-2,8-6:2x4 SP	Г	4)	Truss to
OTHERS	2x4 SPF I				•)	braced a
	284 366	NU.2			5)	Gable stu
BRACING TOP CHORD	Christer		بالمحمد بالتحجيل حجال		6)	This trus
TOP CHORD			athing directly applie	aor	-,	chord live
BOT CHORD		,	cept end verticals. applied or 10-0-0 o		7)	* This tru
BOTCHORD	bracing.	ing unecuy	applied of 10-0-0 0		,	on the bo
REACTIONS	(size)	8=0-3-8, 1	4-0.2.9			3-06-00 t
REACTIONS	Max Horiz					chord an
			,		8)	All bearin
			9), 14=-96 (LC 8) 2 1), 14=647 (LC 1)		9)	Bearing a
			,. ,			using AN
FORCES	()	imum Com	pression/Maximum			designer
	Tension	0.0 4544	400 0 4 4500/00	<u> </u>	10)	Provide r
TOP CHORD			/189, 3-4=-1522/26			bearing p
		,	-1552/159, 6-7=0/2	<i>ι</i> ,		14 and 9
BOT CHORD		2/130, 6-8=	-652/120 3=-29/848,		11)	This trus
BOTCHORD			3=-29/848, 1=-28/849, 9-10=-2	0/0/0		Internatio
	8-9=-34/2		1=-20/043, 3-10=-2	5/043,		R802.10.
WEBS		5/666, 9-16	161/636		LO	AD CASE
112BC		119, 13-15				
		5/673, 3-13	,			
			=-77/1174, 4-11=0/	133.		
		6/74, 10-16		,		
NOTES						
1) Unbalance	ed roof live l	oads have	been considered fo	r		

0.0*

Rep Stress Incr

YES

- Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust)
- 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

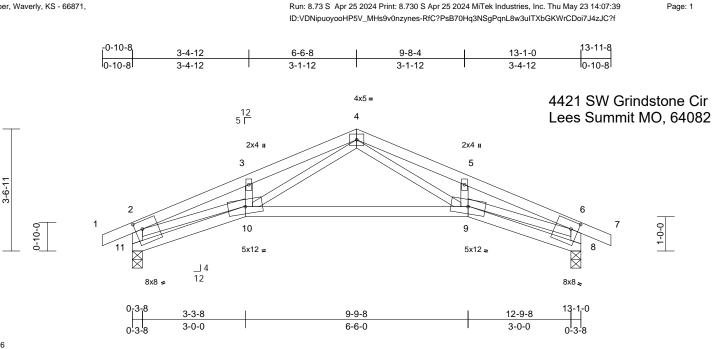

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Truss to be fully sheathed from one face or securely 4)
- braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc. 5)

WB

Matrix-S

- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 8) All bearings are assumed to be SPF No.2
- 9) Bearing at joint(s) 14, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 96 lb uplift at joint 14 and 97 lb uplift at joint 8.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

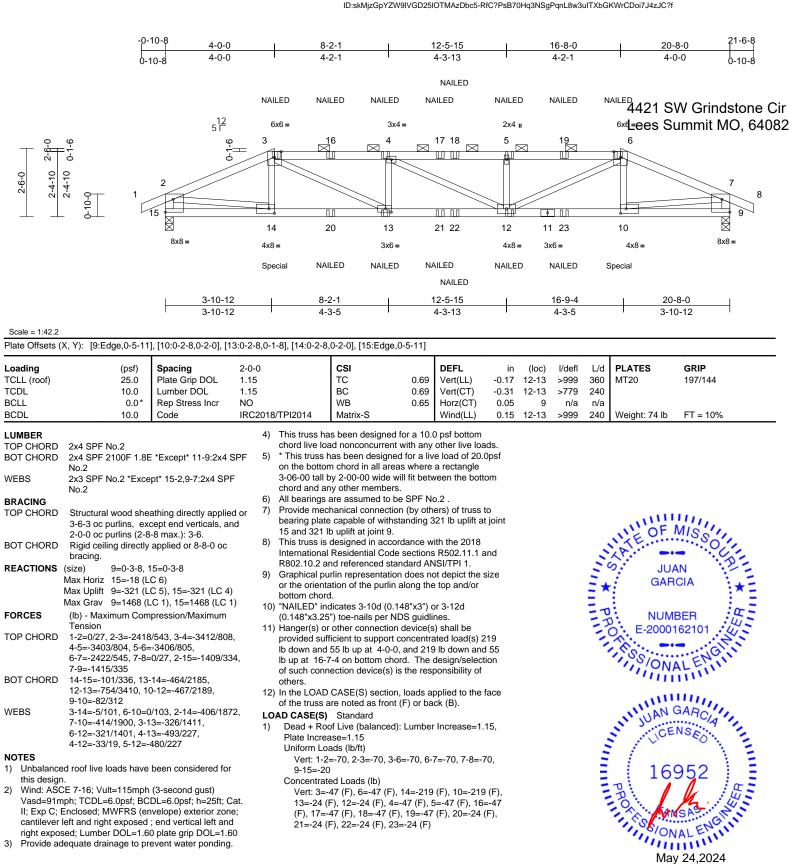


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	
Serenade - Craftsman	D2	Roof Special	1	1	Job Reference (optional)	165799196

Scale = 1:33.6


Plate Offsets (X, Y): [8:0-2-8,0-2-12], [11:0-2-8,0-2-12]

	(A, T). [0.0-2-0,0-2-12], [: :::::::::::::::::::::::::::::::::										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TP	CSI TC BC WB Matrix-S	0.25 0.44 0.43	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.10 -0.23 0.09 0.06	(loc) 9-10 9-10 8 9-10	l/defl >999 >656 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 47 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 4-5-3 oc purlins, exi Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 10-0-0 oc I1=0-3-8 C 9) S 9), 11=-96 (LC 8)	us de F 7) Pr be 11 ed or 8) Th Int 5 R8	earing at joint(s) 11, 8 ing ANSI/TPI 1 angle signer should verify c ovide mechanical cor aring plate capable o and 96 lb uplift at joi is truss is designed i rernational Residentia 302.10.2 and reference CASE(S) Standard	to grain formul apacity of bear nection (by oth f withstanding § nt 8. n accordance w I Code sections ad standard AN	a. Building ing surface. ers) of truss 6 lb uplift at ith the 2018 \$ R502.11.1 a	to joint			"IIII"	JUA GAR	
FORCES										Ξ*	GAI	*=
TOP CHORD	Tension TOP CHORD 1-2=0/27, 2-3=-1620/185, 3-4=-1595/259, 4-5=-1595/221, 5-6=-1620/147, 6-7=0/27, 2-11=-673/128, 6-8=-673/117 BOT CHORD 10-11=-71/218, 9-10=-50/788, 8-9=-34/218 WEBS 4-9=-130/810, 5-9=-172/123, 4-10=-153/810, 2-10=-173/1011, 2-10=08/1247, 6-0=65/1247										162101 . 4	
NOTES												102
 Solo=112121, 210=301247, 05=001247 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; A=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 5) All bearings are assumed to be SPF No.2. 												

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	
Serenade - Craftsman	G1	Hip Girder	1	1	Job Reference (optional)	165799197
Wheeler Lumber, Waverly, KS - 6	Run: 8.73 S Apr 25	2024 Print: 8.	730 S Apr 25	2024 MiTek Industries, Inc. Thu May 23 14:07:40	Page: 1	

Provide adequate drainage to prevent water ponding.

May 24,2024

4022451500 MiTek-US.co

03/20/20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

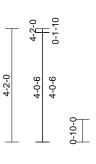
Job	Truss	Truss Type		Qty	Ply	Serenade ·	Craftsman FH	3-Car	105700400
Serenade - Craftsman	G2	Нір		1	1	Job Refere	nce (optional)		165799198
Wheeler Lumber, Waverly, KS -	66871,		Run: 8.73 S Apr 25 2 ID:V24FVNz4kCf2x67			sB70Hq3NSgPc 4421 \$		CDoi7J4zJC?f	Page: 1
		6-0-0 6-0-0	<u>10-4-0</u> 4-4-0			4-8-0 1-4-0		<u>20-8-0</u> 6-0-0	21-6-8 0-10-8
	1 1 12 8x8=	5 ¹² ° 3 6 11 3x		3x4=	×		4x5 = 5 9 3x10 =		6 8 8x8=
		-10-12		<u>14-9-4</u> 8-10-8				20-8-0 5-10-12	

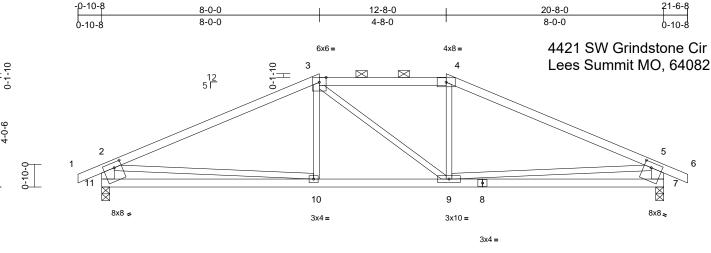
Scale = 1:42.3

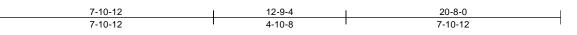
Plate Offsets (X_Y)	[8·Edge 0-5-11]	[12:Edge 0-5-11]

	(X, Y): [8:Edge,0-5-11]	, [12.Euge,0-0-11]	-										
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.47	Vert(LL)	-0.15	9-11	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.63	Vert(CT)	-0.32	9-11	>761	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.32	Horz(CT)	0.03	8	n/a	n/a		
BCDL	10.0	Code	IRC2018	/TPI2014	Matrix-S		Wind(LL)	0.05	9-11	>999	240	Weight: 73 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood sheat 4-3-4 oc purlins, exit 2-0-0 oc purlins (4-1 Rigid ceiling directly bracing. 	athing directly applie xept end verticals, ar 1-2 max.): 3-5. applied or 10-0-0 oc 2=0-3-8 C 13)	F 6) 7) d or nd 8) : 9)	on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate 12 and 134 I This truss is International R802.10.2 ai Graphical pu or the orienta bottom chord		ill fit betw e SPF No n (by oth tanding 1 rdance w sections ndard AN n does no	a rectangle veen the botto o.2. ers) of truss t 34 lb uplift at ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the s	om o ; joint ınd			- min	JUA GAR	
	Max Grav 8=988 (LC	1), 12=988 (LC 1)	' LO	AD CASE(S)	Standard						<u>=</u> *	GAN	*
FORCES	(lb) - Maximum Com	pression/Maximum									= 7		
TOP CHORD BOT CHORD WEBS	4-5=-1329/194, 5-6= 2-12=-941/158, 6-8=	-1530/187, 6-7=0/27 -941/158 1=-220/1598, 17/131, 4-9=-417/13	,								in in it	NUM E-2000	• 41.
NOTES	0 0 0,000,2 00	,021,00 00,021											
 this desig Wind: AS Vasd=91i II; Exp C; cantilever right expo Provide a This truss 	ced roof live loads have gn. SCE 7-16; Vult=115mph mph; TCDL=6.0psf; BC ; Enclosed; MWFRS (en r left and right exposed osed; Lumber DOL=1.60 adequate drainage to pro- s has been designed for e load nonconcurrent wi	(3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and o plate grip DOL=1.6 event water ponding a 10.0 psf bottom	Cat. e; d 50								annun.	LICE	952 NSEO NSEO NSAS

May 24,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)




Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	
Serenade - Craftsman	G3	Нір	1	1	Job Reference (optional)	165799199
Wheeler Lumber, Waverly, KS - 66871, Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 14:07:40						Page: 1

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 14:07:40 ID:9Moo0T6bvuALNy2fVop5LEzDbbj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:42.4

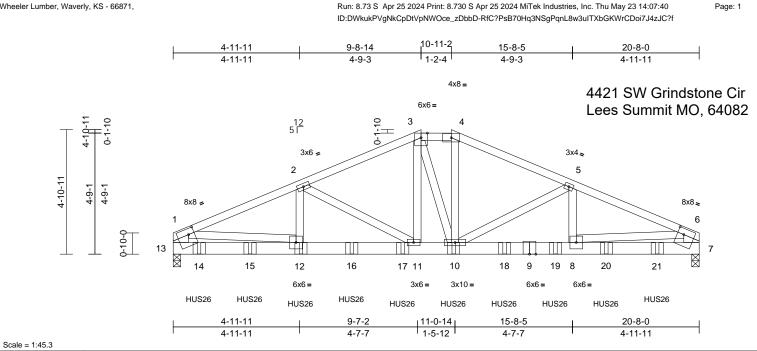

Plate Offsets (X, Y): [7:0-3-4.0-2-4]. [11:0-3-4.0-2-4]

Plate Offsets	(X, Y): [7:0-3-4,0-2-4],	[11:0-3-4,0-2-4]			-							-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁴	18/TPI2014	CSI TC BC WB Matrix-S	0.82 0.43 0.21	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.10 -0.21 0.03 0.03	(loc) 10-11 10-11 7 9-10	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 75 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	 2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 3-4-0 oc purlins, exit 2-0-0 oc purlins, (5-3) Rigid ceiling directly bracing. (size) 7=0-3-8, 1 Max Horiz 11=-43 (L Max Uplift 7=-122 (L Max Grav 7=987 (LC (Ib) - Maximum Com Tension 1-2=0/30, 2-3=-1401 4-5=-1401/150, 5-6= 5-7=-911/169 	athing directly applie cept end verticals, a -0 max.): 3-4. applied or 10-0-0 or 11=0-3-8 C 9), 11=-122 (LC 8 C 1), 11=987 (LC 1) pression/Maximum /150, 3-4=-1185/168 c0/30, 2-11=-911/169 0=-59/1185, 51/151, 4-9=0/220,	F 6 7 nd 8 c 9) L	on the botton 3-06-00 tail 11 chord and ai) All bearings) Provide mee bearing plate 11 and 122) This truss is International R802.10.2 a) Graphical pu		as where vill fit betw s. De SPF No on (by oth standing 1 ordance w e sections andard AN on does no	a rectangle ween the bott o.2. ers) of truss 22 lb uplift a ith the 2018 i R502.11.1 a ISI/TPI 1. ot depict the	to t joint			11111111111111111111111111111111111111	JU GAF SS/ON	BER 162101
 this desig Wind: AS Vasd=91 II; Exp C; cantilever right expo Provide a This trust 	ted roof live loads have n. GCE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er r left and right exposed osed; Lumber DOL=1.6 adequate drainage to pr s has been designed for a load nonconcurrent wi	(3-second gust) DL=6.0psf; h=25ft; (ivelope) exterior zor ; end vertical left and 0 plate grip DOL=1.6 event water ponding r a 10.0 psf bottom	Cat. le; d 60 l.								. THINK		GARCIA NSE0 952 VSA5 VALEN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	
Serenade - Craftsman	G4	Hip Girder	1	2	Job Reference (optional)	165799200

Plate Offsets (X, Y): [1:0-2-12,0-2-12], [6:0-3-0,0-2-12]

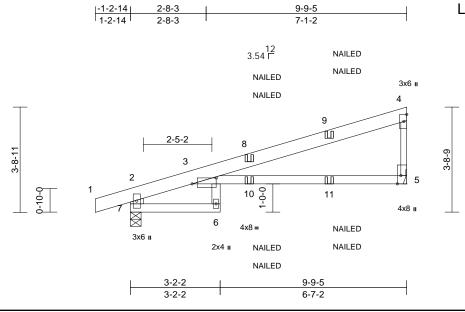
	(X, 1). [1.0 2 12,0 2 1	zj, [0.0 0 0,0 2 12]	-										
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.46	Vert(LL)		11-12		360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.42	Vert(CT)		11-12	>999	240	-	
BCLL	0.0*	Rep Stress Incr	NO		WB	0.61	Horz(CT)	0.03	7	n/a	n/a		
BCDL	10.0	Code	IRC20 ²	18/TPI2014	Matrix-S		Wind(LL)	0.09	11-12	>999	240	Weight: 232 lb	FT = 10%
LUMBER			2) All loads are	considered equ	ally applie	d to all nlies		11	niform Lo	nade (l	b/ft)	
TOP CHORD	2x4 SPF No.2		-		ed as front (F) or			DAD			· ·	3-4=-70, 4-6=-70	7-13=-20
BOT CHORD					ction. Ply to ply o					oncentra	,	,	,
WEBS		ept* 13-1,7-6:2x8 SP		provided to a	distribute only loa	ads noted	as (F) or (B),					(B), 10=-802 (B),	14=-818 (B),
	2400F 2.0E	,			wise indicated.					15=-818	3 (B), 1	6=-818 (B), 17=-8	818 (B), 18=-688 (B
BRACING			3	,	roof live loads h	ave been o	considered for	or		19=-688	3 (B), 2	20=-688 (B), 21=-0	688 (B)
TOP CHORD	Structural wood she	athing directly applie	ed or	this design.	7 40. 10.10 445.								
		except end verticals,	and 4		7-16; Vult=115r h; TCDL=6.0psf;			Cat					LL .
	2-0-0 oc purlins (5-3				iclosed; MWFRS							N'OF I	ALO'L
BOT CHORD	0 0 ,	applied or 10-0-0 or)		ft and right expos							NE	Sol
	bracing.		、		d; Lumber DOL=							18."	
REACTIONS	(size) 7=0-3-8, Max Horiz 13=-49 (L	13=0-3-8, (req. 0-4-1	⁾ 5		quate drainage t						-	JUA	N
	Max Uplift 7=-807 (L	,	、 6		as been designe								
	Max Grav 7=4448 (I		10)		ad nonconcurrer						= *	GAR	
FORCES	(lb) - Maximum Corr	<i></i>	7 (10)		has been design			0psf				1	
FORCES	Tension	ipression/maximum			m chord in all are by 2-00-00 wide			om			-7		SEB : C-
TOP CHORD		3=-6139/1127.			ny other member		veen the bott	UIII			-7	E-20001	• [] []
	3-4=-5582/1058, 4-5		8		Required bearing		int(s) 13 gre	ater				L-20001	102101
	5-6=-7380/1333, 1-1	13=-3785/727,		than input be	earing size.		., .					£	G
	6-7=-3555/674				are assumed to							S/ONIA	ENIN
BOT CHORD	,		1		hanical connect								inin'
	10-11=-957/5635, 8 7-8=-365/1955	-10=-1190/6769,			e capable of with b uplift at joint 7.		49 lb uplift a	t joint					
WEBS	2-12=-204/1419, 2-1	11=-1811/429.	1		designed in acc		ith the 2018						IIIII.
	3-11=-406/2162, 3-1				Residential Coc			and				IN AN C	ARC
	4-10=-392/2135, 5-1				nd referenced st							1 20	···· A .
	5-8=-111/945, 1-12=	895/5112,	1		Irlin representati			size				CE	NSED.
	6-8=-831/4884				ation of the purli	n along the	e top and/or				-	LICE TRO	~ \ E
NOTES			4	bottom chore		SOC (14 4)	d Cirdor 4	104			-	1	
	s to be connected toge ") nails as follows:	ther with 10d	1		n Strong-Tie HU uivalent spaced						-	: 169	952 : :
	ds connected as follows:	s [.] 2x4 - 1 row at 0-6-	0		ne left end to 19-						-	D:	1 ic=
	2 rows staggered at 0-		0		bottom chord.			,			-	-P.	Ma . 145
	nords connected as foll		1		oles where hang	er is in cor	tact with lum	ber.				- A KAN	SAS 25
	d at 0-9-0 oc.			OAD CASE(S)	-							1.58	GIN
Web conr	nected as follows: 2x4 ·	- 1 row at 0-9-0 oc.	1		of Live (balanced	d): Lumber	Increase=1.	15,				ON N	ALEN
				Plate Increa	ase=1.15							1111	unn.
												May	24 2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Gheetesfisid MMT63013 s 314.434.1200 / MiTek-US.cor 03/20/20 25

Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	
Serenade - Craftsman	J1	Diagonal Hip Girder	1	1	Job Reference (optional)	165799201

2-8-3


Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 14:07:40 ID:E8pjp5DOcWE6PV3pOholj8zyn49-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-9-5

4421 SW Grindstone Cir Lees Summit MO, 64082

Page: 1

Scale = 1:40.7

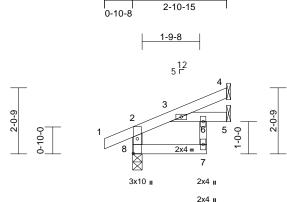
Plate Offsets (X, Y): [3:0-10-3,0-2-8], [5:0-3-8,Edge]

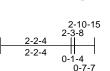
Plate Olisets (A, T). [3.0-10-3,0-2-6	j, [5.0-3-6,⊏ugej											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TP	2014	CSI TC BC WB Matrix-R	0.59 0.75 0.02	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.20 -0.46 0.14 0.18	(loc) 6 3-5 5 6	l/defl >572 >248 n/a >631	L/d 360 240 n/a 240	PLATES MT20 Weight: 42 lb	GRIP 197/144 FT = 10%
Vasd=91n II; Exp C; cantilever right expo 2) This truss chord live 3) * This truss on the bot 3-06-00 ta chord and 4) All bearing 6) Provide m bearing pl	2x6 SPF No.2 *Exce 6-3:2x4 SPF No.2 Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 7=134 (LC Max Uplift 5=-98 (LC Max Grav 5=557 (LC (lb) - Maximum Com Tension	athing directly applie cept end verticals. applied or 6-0-0 oc nical, 7=0-4-9 2 5) 8 8, 7=-127 (LC 4) 2 1), 7=617 (LC 1) pression/Maximum /29, 2-3=-177/16, 01/153 06 (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto SPF No.2. is connections. by others) of truss to	Cat. e; dor cat. e; dor cat. e; dor c cat. e; dor c c c c c c c c c c c c c c c c c c c	ernational I 02.10.2 an AILED" ind 148"x3.25" the LOAD d the truss ai CASE(S) ead + Roo ate Increa niform Loa Vert: 1-2= oncentrate Vert: 9=-8		sections dard AN t8"x3") c S guidlii loads aj F) or ba Lumber =-20, 3-5	R502.11.1 a (S)/TPI 1. or 2-12d nes. oplied to the f ck (B). Increase=1. 5=-20	ace 15,				PROPERTY	CIA BER 162101

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	
Serenade - Craftsman	J2	Jack-Open	2	1	Job Reference (optional)	165799202

2-10-15


-0-10-8

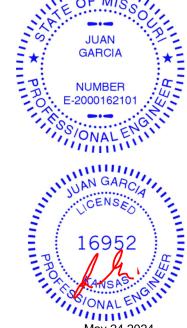

Wheeler Lumber, Waverly, KS - 66871,

Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 14:07:40 ID:T_47f_Ms2Ji?otvIP_5jzazynAQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4421 SW Grindstone Cir Lees Summit MO, 64082

Page: 1

Scale = 1:35.7

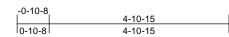

Plate Offsets (X, Y): [8:0-5-8,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	0.00	3	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	-0.01	3-6	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.01	Horz(CT)	-0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.01	3	>999	240	Weight: 10 lb	FT = 10%
BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 *Exce	pt* 7-6:2x3 SPF No		and referenced s) Standard								
BRACING												
BRACING TOP CHORD	Structural wood sheat 2-10-15 oc purlins, et al.	0 7 11										

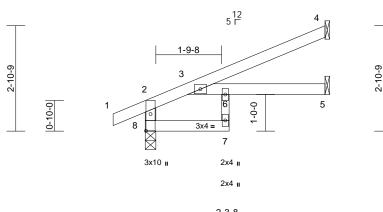
- REACTIONS (size) 4= Mechanical, 5= Mechanical, 8=0-3-8 Max Horiz 8=53 (LC 8) Max Uplift 4=-34 (LC 8), 8=-24 (LC 8) Max Grav 4=73 (LC 1), 5=65 (LC 3), 8=216 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-8=-197/45, 1-2=0/27, 2-3=-52/0, 3-4=-20/24
- BOT CHORD 7-8=0/0, 3-6=0/0, 5-6=0/0 6-7=0/42 WFBS

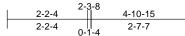
NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2. 4)
- Refer to girder(s) for truss to truss connections. 5)
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 24 lb uplift at joint 8 and 34 lb uplift at joint 4.


G

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)


Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	
Serenade - Craftsman	J3	Jack-Open	2	1	I657 Job Reference (optional)	799203

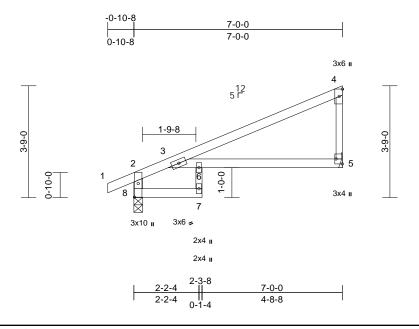

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 14:07:40 ID:uqlhrpcPKSEACyRbaASPnozynA6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4421 SW Grindstone Cir Lees Summit MO, 64082

Page: 1

Scale = 1:31.5

Plate Offsets (X, Y): [8:0-5-8,0-1-8]


Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.29	Vert(LL)	-0.03	(100)	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.24	Vert(CT)	-0.06	5-6	>885	240		101/111
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.04	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S	0.02	Wind(LL)	0.04	7	>999	240	Weight: 15 lb	FT = 10%
DODL	10.0	Code	11(02010/11/12014	Wath-0	-		0.04	1	2000	240	Weight. 15 lb	11 = 1078
LUMBER				s is designed in acc								
TOP CHORD	2x4 SPF No.2			onal Residential Co			and					
BOT CHORD				.2 and referenced s	tandard AN	NSI/TPI 1.						
WEBS	2x4 SPF No.2 *Exce	ept* 7-6:2x3 SPF No	0.2 LOAD CASE	(S) Standard								
BRACING												
TOP CHORD												
	4-10-15 oc purlins,											
BOT CHORD	Rigid ceiling directly bracing.	/ applied or 10-0-0 o	c									MIGH
REACTIONS	· · ·	anical, 5= Mechanica	al,								NE	SS
	8=0-3-8	•									· P ··· -·	
	Max Horiz 8=87 (LC									-	S. JU	NI : 7-
	Max Uplift 4=-64 (LC		205									
	Max Grav 4=139 (L0 (LC 1)	C 1), 5=93 (LC 3), 8	=305							=*	GAR	
FORCES	(Ib) - Maximum Con	proceion/Maximum								-	÷	
IOROLO	Tension									-7	NUM	
TOP CHORD		/27. 2-3=-93/0. 3-4=-	-48/44							-5	E-2000	• 41
BOT CHORD											C. E-2000	102101
WEBS	6-7=-5/48									1	A	
NOTES											1.SION	ENI
	CE 7-16; Vult=115mph	(3-second aust)									I,ON	ALLIN
	nph; TCDL=6.0psf; BC		Cat.									IIII.
II; Exp C;	Enclosed; MWFRS (er	nvelope) exterior zor	ne;									1111.
	left and right exposed										11.11	GAD
	sed; Lumber DOL=1.6		60								11 UAN	and Cla
	has been designed fo										S CE	NSA
	load nonconcurrent w									1	1	50
	ss has been designed t ttom chord in all areas		Jpsi							-		- A E
	all by 2-00-00 wide will		om							-	1 1 6	050
	any other members.	In between the bott	0111							-	10	952
	gs are assumed to be	SPF No.2 .								-	PRO 16	1 :4:
	irder(s) for truss to tru										-0.	n. 142
6) Provide m	nechanical connection	(by others) of truss t	0								- A Man	SAS
	late capable of withsta	nding 30 lb uplift at j	oint								1,56,	ENGIN
8 and 64 I	lb uplift at joint 4.										I NON	ALE
												IIII.
											Ma	v 24.2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

ED FOR PLAN REVIEW Gheetesfield MMT63015S 314.434.1200 / MiTek-US.con OURI 03/20/20 25

Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	
Serenade - Craftsman	J4	Jack-Closed	3	1	Job Reference (optional)	165799204

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 14:07:40 ID:bVPwOnc9fHglbnNW7XkOC0zynUm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:38.7

Plate Offsets (X, Y):	Plate Offsets (X, Y): [5:Edge,0-2-8], [8:0-5-8,0-1-8]													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.57	Vert(LL)	-0.11	5-6	>768	360	MT20	197/144		
TCDL	10.0	Lumber DOL	1.15	BC	0.49	Vert(CT)	-0.21	5-6	>386	240				
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.11	5	n/a	n/a				
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.11	5-6	>709	240	Weight: 22 lb	FT = 10%		

- LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 2x3 SPF No.2 *Except* 8-2:2x4 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS 5= Mechanical, 8=0-3-8 (size) Max Horiz 8=138 (LC 5) Max Uplift 5=-74 (LC 8), 8=-63 (LC 8) Max Grav 5=298 (LC 1), 8=381 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 2-8=-384/96, 1-2=0/27, 2-3=-165/0, 3-4=-136/13, 4-5=-192/84 7-8=0/0, 3-6=-31/66, 5-6=-31/66 BOT CHORD WFBS 6-7=-13/50
- NOTES
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 This trunce here designed for a 10 or for them.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 .
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 63 lb uplift at joint 8 and 74 lb uplift at joint 5.

- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and
 - R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

4421 SW Grindstone Cir

Lees Summit MO, 64082

May 24,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	
Serenade - Craftsman	J5	Jack-Closed	10	1	Job Reference (optional)	165799205

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 14:07:41 ID:EhvSy4jsHxrtDeddr9JMI?zynOA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-10-8 4421 SW Grindstone Cir 3-4-12 7-0-0 3-4-12 3-7-4 Lees Summit MO, 64082 0-10-8 3-3-8 3x6 II 12 5 Г 4 2x4 II 3 3-9-0 3-9-0 -8 -9 2 5 6 0-10-0 6x8 = 3x6 II \bigotimes _ 4 12 3x10 u 0-3-8 3-3-8 7-0-0

0-3-8 3-0-0 3-8-8

Scale = 1:36.6

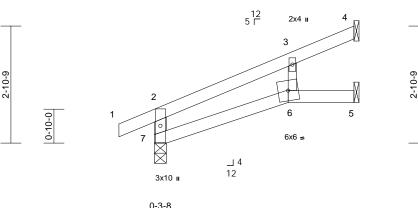
Plate Offsets (X, Y): [5:Edge,0-2-8]

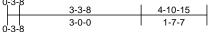
oading CLL (roof) CDL	(psf) Spacing 25.0 Plate Grip DOL 10.0 Lumber DOL		CSI TC BC	0.54	DEFL Vert(LL)	in -0.15	(loc) 6 6	l/defl >536	L/d 360 240	PLATES MT20	GRIP 197/144
CLL	10.0 Lumber DOL 0.0* Rep Stress Incr	1.15 r YES	WB	0.38 0.03	Vert(CT) Horz(CT)	-0.27 0.09	5	>302 n/a	240 n/a		
CDL	10.0 Code	IRC2018/TPI2014	Matrix-R	0.00	Wind(LL)	0.16	6	>511	240	Weight: 21 lb	FT = 10%
RACING OP CHORD Structural w 6-0-0 oc puu OT CHORD Rigid ceiling bracing. EACTIONS (size) 5 Max Horiz 7 Max Uplift 5 Max Grav 5 ORCES (b) - Maxim Tension OP CHORD 2-7=-324/71	2 2 *Except* 7-2:2x4 SPF I 2 *Except* 7-2:2x4 SPF I 2 *Except* 7-2:2x4 SPF I 2 *Except end verticals directly applied or 10-0-C Mechanical, 7=0-3-8 139 (LC 5) -74 (LC 8), 7=-63 (LC 8) 298 (LC 1), 7=381 (LC 1) 298 (LC 1), 7=381 (LC 1) 298 (LC 1), 7=381 (LC 1) m Compression/Maximu 1-2=0/27, 2-3=-178/0, 4-5=-190/71 5-6=-38/87 15mph (3-second gust) psf; BCDL=6.0psf; h=25f RS (envelope) exterior 7 posed ; end vertical left CL=1.60 plate grip DOL= gned for a 10.0 psf bottor rrent with any other live I igined for a live load of 2 areas where a rectangle ide will fit between the bothers. I to be SPF No.2. S to truss connections. iders parallel to grain val p grain formula. Building	7) Provide m bearing p 7 and 74 No.2 8) This truss Internatio R802.10.1 S. LOAD CASE 0 oc)) 1) um internatio R802.10.1 R802.10.1 R802.10.1 R802.10.1 Sit; Cat. Zone; and =1.60 m loads. 20.0psf le sottom	nechanical connection late capable of withs Ib uplift at joint 5. Is is designed in account and Residential Codu 2 and referenced sta (S) Standard	standing 6 rdance wi e sections	ers) of truss t 3 lb uplift at j ith the 2018 R502.11.1 a	o oint				DE DE JUJ GAR NUM E-2000 SS/ON ICE 16 PRORISS/ON	MISSOUR AN ICIA BER 162101 ALEN GARCIA NSEO 952

- 3 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 . 4)
- Refer to girder(s) for truss to truss connections. 5)
- Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building 6) designer should verify capacity of bearing surface.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Page: 1


Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	
Serenade - Craftsman	J6	Jack-Open	2	1	Job Reference (optional)	165799206


Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 14:07:41 ID:qOllusue_EcuvniJg6ZetyzynNy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

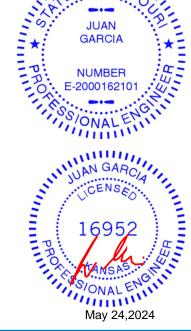
-0-10-8 3-4-12 4-10-15 0-10-8 3-4-12 1-6-3

4421 SW Grindstone Cir Lees Summit MO, 64082

Page: 1

Scale = 1:28.4

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.26	Vert(LL)	-0.03	6-7	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.24	Vert(CT)	-0.06	6-7	>923	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.03	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P		Wind(LL)	0.04	6-7	>999	240	Weight: 14 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 *Exce Structural wood she 4-10-15 oc purlins,	ept* 3-6:2x3 SPF No.: athing directly applie except end verticals. applied or 6-0-0 oc	bearing plate 7, 42 lb uplift 2 8) This truss is International P802 10 2	hanical connection e capable of withsta at joint 4 and 23 lt designed in accorc Residential Code s nd referenced stan Standard	anding 3 o uplift a dance w sections	7 lb uplift at it joint 5. ith the 2018 R502.11.1 a	joint					
REACTIONS	7=0-3-8 Max Horiz 7=86 (LC Max Uplift 4=-42 (LC (LC 8)	/	-37							*****	ALE OF	


FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-7=-225/53, 1-2=0/27, 2-3=-75/26, 3-4=-22/40 BOT CHORD 6-7=-25/14, 5-6=0/0 3-6=-62/64

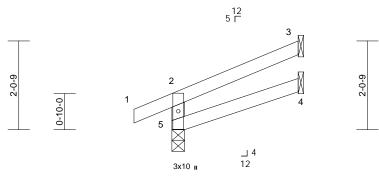
WEBS

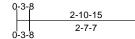
NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom 2)
- chord live load nonconcurrent with any other live loads. 3)
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 . 4)
- Refer to girder(s) for truss to truss connections. 5)
- Bearing at joint(s) 7 considers parallel to grain value 6) using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Cheetesfisid Mon 63013 314.434.1200 / MiTek-US.co 03/20/20


Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	
Serenade - Craftsman	J7	Jack-Open	2	1	Job Reference (optional)	165799207


Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 14:07:41 ID:fpeRjk94ZIVd9KykWRT1IpzynNb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4421 SW Grindstone Cir Lees Summit MO, 64082

Page: 1

Scale = 1:26.6

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.09	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	-0.01	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 9 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 Structural wood she 2-10-15 oc purlins, Rigid ceiling directly bracing.	except end verticals applied or 6-0-0 oc anical, 4= Mechanica 5) 5 8), 5=-29 (LC 8)	Internationa R802.10.2 a LOAD CASE(S) ad or	designed in accc I Residential Cod and referenced sta Standard	e sections	ith the 2018 R502.11.1 a	and			11.	TE OF	MISSOL
	(LC 1)	1), 4=50 (LC 3), 5=2	207							2	JU/ GAR	
FORCES	(lb) - Maximum Com	pression/Maximum								= *	GAH	
	Tension									Ξ.	1	
TOP CHORD	,	27, 2-3=-46/23								= 7	NUM	BER
BOT CHORD	4-5=-18/12									-)	E-2000	162101
NOTES										-	A	. 2.5
Vasd=91r II; Exp C; cantilever	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er r left and right exposed psed; Lumber DOL=1.6	DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an	ne; d								SSION	ALENGII
	s has been designed for		00									11111
	load nonconcurrent wi		ds.								11 AN	GARC
on the bo 3-06-00 ta chord and	ss has been designed f ttom chord in all areas all by 2-00-00 wide will d any other members.	where a rectangle fit between the botto									PR 16	NSED
	gs are assumed to be S									=	16	952
6) Bearing a	girder(s) for truss to tru at joint(s) 5 considers pa	arallel to grain value								-	P. 10	
	SI/TPI 1 angle to grain should verify capacity o										0. 1	MAINE
	nechanical connection (0								- ANA	VSA
bearing p	late capable of withstar lb uplift at joint 3.										NS/ON	VALENI
	,,.											24 2024

> EVIEW Gheetesfisid MMT63013 s 314.434.1200 / MiTek-US.cor OURI 03/20/20 25

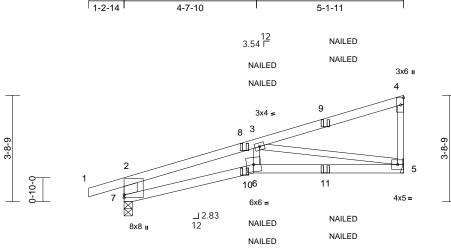
May 24,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	
Serenade - Craftsman	J8	Diagonal Hip Girder	1	1	Job Reference (optional)	165799208

4-7-10

-1-2-14


Wheeler Lumber, Waverly, KS - 66871,

Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 14:07:41 ID:4r8r7GByjPcjowNaBUou2Czyn84-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-9-5

4421 SW Grindstone Cir Lees Summit MO, 64082

Page: 1

90 alo - 1.40 2

Scale = 1:40.3													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.71	Vert(LL)	-0.16	5-6	>720	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.81	Vert(CT)	-0.28	5-6	>398	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.69	Horz(CT)	0.08	5	n/a	n/a		
BCDL	10.0	Code	IRC2018	/TPI2014	Matrix-S		Wind(LL)	0.15	5-6	>749	240	Weight: 32 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF 2100F 1.8E 2x4 SPF No.2 2x3 SPF No.2 *Exce 2.0E		,	bearing plate 7 and 152 lb This truss is Internationa	chanical connec e capable of wit o uplift at joint 5. designed in acc I Residential Co	hstanding 1 cordance w de sections	60 lb uplift a ith the 2018 R502.11.1 a	t joint					

BRACING							
TOP CHORD	Structural	wood	sheathing	dire	ctly	applie	d or
						1.1	

- 5-7-1 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 9-4-12 oc bracing.
- **REACTIONS** (size) 5= Mechanical, 7=0-3-7 Max Horiz 7=138 (LC 22) Max Uplift 5=-152 (LC 8), 7=-160 (LC 4) Max Grav 5=536 (LC 1), 7=584 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 2-7=-745/246, 1-2=0/29, 2-3=-1267/325, 3-4=-135/26, 4-5=-217/76 BOT CHORD 6-7=-384/1159, 5-6=-366/1092
- 3-6=-50/345, 3-5=-1043/341 WEBS

NOTES

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2
- Refer to girder(s) for truss to truss connections. 5)
- 6) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

- R802.10.2 and referenced standard ANSI/TPI 1.
- "NAILED" indicates 3-10d (0.148"x3") or 2-12d 9)
- (0.148"x3.25") toe-nails per NDS guidlines.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

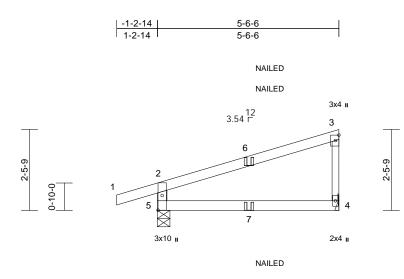
Uniform Loads (lb/ft)

Vert: 1-2=-70, 2-4=-70, 6-7=-20, 5-6=-20

Concentrated Loads (lb)

Vert: 9=-40 (F=-20, B=-20), 10=-5 (F=-3, B=-3), 11=-122 (F=-61, B=-61)

JUAN GARCIA NUMBER T F 2000162101 C JUAN GARCIA G MILLIN N


MI

 \cap

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com) 03/20/20

Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	
Serenade - Craftsman	Jə	Diagonal Hip Girder	2	1	Job Reference (optional)	165799209

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 14:07:41 ID:4ai7ufUYTjIMIMpvffQgv_zDbdp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

NAILED

5-6-6

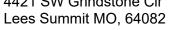
Scale = 1:35.1

Plate Offsets (X, Y): [5:0-5-6,0-1-8]

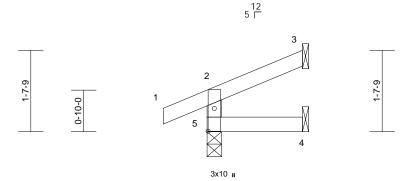
Loading (psf) Spacing 2-0-0 CSi DEFL in (loc) //defl L/d TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.40 Vert(LL) -0.03 4-5 >999 360 TCDL 10.0 Lumber DOL 1.15 BC 0.25 Vert(CT) -0.06 4-5 >991 240 BCLL 0.0* Rep Stress Incr NO WB 0.00 Horz(CT) 0.00 4 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-R Wind(LL) 0.01 4-5 >999 240	PLATES GRIP MT20 197/144 Weight: 16 lb FT = 10%
BCDL 10.0 Code IRC2018/TPI2014 Matrix-R Wind(LL) 0.01 4-5 >999 240	Weight: 16 lb FT = 10%
LUMBER 8) "NAILED" indicates 3-10d (0.148"x3") or 2-12d	
 TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BRACING 2x4 SPF No.2 *Except* 3-4:2x3 SPF No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 5-6-6 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 4 = Mechanical, 5=0-4-9 Max Horiz 5=99 (LC 5) Max Uplift 4=-49 (LC 8), 5=-103 (LC 4) Max Grav 4=224 (LC 1), 5=346 (LC 1) FORCES (ib) - Maximum Compression/Maximum Tension TOP CHORD 2-5=-305/141, 1-2=0/27, 2-3=-128/14, 3-4=-161/72 BOT CHORD 4-5=-26/50 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. I; Exp C; Enclosed; MWFRS (envelope) exterior zone; continent of cod with end 	JUAN GARCIA NUMBER E-2000162101 SS/ONAL ENGINE 16952

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)


Page: 1


4421 SW Grindstone Cir

Lees Summit MO, 64082


Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	
Serenade - Craftsman	J10	Jack-Open	4	1	Job Reference (optional)	165799210

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 14:07:41 ID:UtsrysJmmQXLcCkDqi9OL1zDbe1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-10-15

Scale =	1:23.1
---------	--------

Plate Offsets (X, Y): [5:0-5-8,0-1-8]

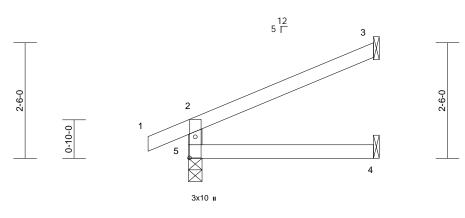
Plate Offsets (X, Y): [5:0-5-8,0-1-8]											
Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.07 0.02 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 0.00 0.00	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 6 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING TOP CHORD Structural wood she 1-10-15 oc purlins, BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 3= Mecha	athing directly applie	7) This truss is Internationa R802.10.2 ; LOAD CASE(S ed or	designed in acco I Residential Code and referenced sta	e sections	ith the 2018 R502.11.1 a	and				ILLE OF	MISSO
5=0-3-8 Max Horiz 5=41 (LC Max Uplift 3=-29 (LC Max Grav 3=44 (LC (LC 1)	2 8), 5=-32 (LC 4) 1), 4=32 (LC 3), 5=-	171							·····		AN RCIA
FORCES (Ib) - Maximum Com Tension TOP CHORD 2-5=-150/47, 1-2=0/ BOT CHORD 4-5=0/0 NOTES 1) Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BC	27, 2-3=-32/12 (3-second gust) :DL=6.0psf; h=25ft; (Philip	E-2000	ALENGINI
 II; Exp C; Enclosed; MWFRS (ercantilever left and right exposed; right exposed; Lumber DOL=1.6 2) This truss has been designed for chord live load nonconcurrent w 3) * This truss has been designed for the bottom chord in all areas 3-06-00 tall by 2-00-00 wide will 	; end vertical left an 0 plate grip DOL=1.0 r a 10.0 psf bottom ith any other live load or a live load of 20.0 where a rectangle	d 60 ds. ppsf								PHORE ICE	GARCIA NSEO
 chord and any other members. All bearings are assumed to be i Refer to girder(s) for truss to tru Provide mechanical connection bearing plate capable of withstar 5 and 29 lb uplift at joint 3. 	ss connections. (by others) of truss to								THUR .	11,56/01	952 NSA3 VAL ENGLISH

- 4) All bearings are assumed to be SPF No.2 .
- Refer to girder(s) for truss to truss connections. 5)
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 32 lb uplift at joint 5 and 29 lb uplift at joint 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permenter is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	
Serenade - Craftsman	J11	Jack-Open	8	1	Job Reference (optional)	165799211

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 14:07:41 ID:vSYzauMe2LvwUgToVrj5zfzDbe_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


4421 SW Grindstone Cir Lees Summit MO, 64082

May 24,2024

Ciperentisti Marcania Souri 314.454.1200/Milek-US.com 03/20/2025

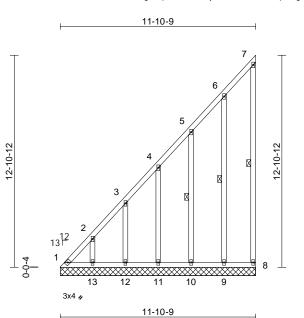
À

Page: 1

4-0-0

1

Scale = 1:24.9			
Plate Offsets (X, Y): [5:0-5-8,0-1-8]			


T

Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.20 0.13 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.02 0.01 0.01	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 11 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING TOP CHORD Structural wood shea 4-0-0 oc purlins, exi BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 3= Mecha 5=0-3-8 Max Horiz 5=71 (LC Max Uplift 3=-62 (LC Max Grav 3=117 (LC	cept end verticals. applied or 10-0-0 oc anical, 4= Mechanica 8) \$ 8), 5=-34 (LC 8)	Internation R802.10.2 LOAD CASE(S ed or	s designed in acco al Residential Cod and referenced sta) Standard	e sections	R502.11.1 a	and			Ing.	ZA E OF JUJ GAR	
 (LC 1) FORCES (Ib) - Maximum Com Tension TOP CHORD 2-5=-220/71, 1-2=0/2 BOT CHORD 4-5=0/0 NOTES 1) Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BC II; Exp C; Enclosed; MWFRS (er cantilever left and right exposed right exposed; Lumber DOL=1.60 2) This truss has been designed for chord live load nonconcurrent wii 3) * This truss has been designed for on the bottom chord in all areas 3-06-00 tall by 2-00-00 wide will chord and any other members. 4) All bearings are assumed to be 55 S Refer to girder(s) for truss to trus 0 Provide mechanical connection (bearing plate capable of withstar 5 and 62 lb uplift at joint 3. 	27, 2-3=-64/35 (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and 0 plate grip DDL=1.6 r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto SPF No.2. ss connections. (by others) of truss to	ne; d 30 ds. psf om							Philip Philippe	NUM E-2000 S/ON CE 16	162101

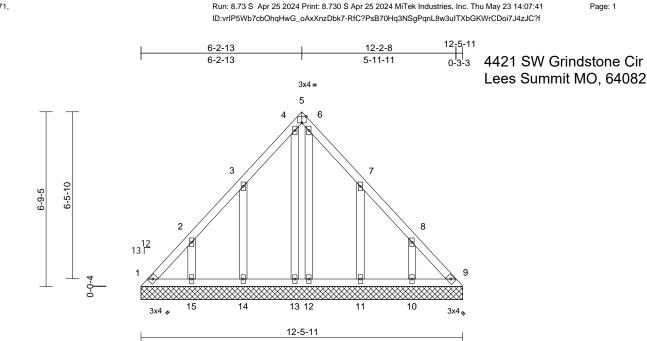
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	
Serenade - Craftsman	LAY1	Lay-In Gable	2	1	Job Reference (optional)	165799212

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 14:07:41 ID:QimbEXIPgtDQpcZcTTeraQzynM8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4421 SW Grindstone Cir Lees Summit MO, 64082

Page: 1


Scale - 1:70 1

Scale = 1:70.1				1									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.07 0.02 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 81 lb	GRIP 197/144 FT = 10%
	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. 1 Row at midpt (size) 1=11-10-5 10=11-10 Max Horiz 1=505 (LC Max Uplift 1=-160 (L 9=-129 (L 11=-129 (13=-131 (Max Grav 1=506 (LC (LC 15), 1	cept end verticals. applied or 10-0-0 oc 7-8, 5-10, 6-9 9, 8=11-10-9, 9=11-1 -9, 11=11-10-9, -9, 13=11-10-9 C 8), 8=-49 (LC 8), C 8), 8=-49 (LC 8), C 8), 10=-131 (LC 8) (LC 8), 12=-129 (LC 4) (LC 8)	6) 7) 0-9, 8) 9)), 8), 10 205 205 208	only. For stu see Standar, or consult qu All plates are Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar All bearings Provide mec bearing plate 1, 49 lb uplift uplift at joint 10 and)) This truss is International	ned for wind load uds exposed to w d Industry Gable ualified building d e 2x4 MT20 unles es continuous bo spaced at 2-0-0 d as been designed ad nonconcurrent nas been designed m chord in all are by 2-00-00 wide w hanical connectio e capable of withs t at joint 8, 131 lb 12, 129 lb uplift at joi designed in accor Residential Codu nd referenced sta Standard	ind (norm End Deta esigner a: so otherwittom chor bc. for a 10. with any d for a liv as where vill fit betw s. be SPF No n (by oth standing 1 uplift at ju t joint 11. m 9. we sections	al to the face) ils as applicat is per ANSI/TF se indicated. d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the botto c.2. ers) of truss tr 60 lb uplift at bint 13, 129 lb 131 lb uplift at ith the 2018 s R502.11.1 a), ole, 21 1. ds. ppsf pm pjoint joint				JU/ GAR SS/ON	CIA *
FORCES	(lb) - Maximum Com Tension		04									- 4411	inn.
TOP CHORD BOT CHORD	1-2=-704/278, 2-3=- 4-5=-319/132, 5-6=- 7-8=-60/56 1-13=0/0, 12-13=0/0	188/92, 6-7=-70/36,	,									Den 16	GARCIA
WEBS	9-10=0/0, 8-9=0/0 2-13=-163/148, 3-12 4-11=-165/153, 5-10		3/155										50
Vasd=91m II; Exp C; I	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed DOL=1.60	DL=6.0psf; h=25ft; C velope) exterior zon	e;								TIME.	ALSSION	952 NAL ENGINE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent college with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

ASNOTED FOR CONTRUCTION ASNOTED FOR LARREVIEW DEVELOPMENT SERVICES 19225 SWINGLEY RIGGE Rd. Gheetesfision Min 630135 314.434.1200 / MiTek-US.cor 03/20/2025

Job	Truss	Truss Type	Qty	Ply	Serenade - Craftsman FH 3-Car	
Serenade - Craftsman	LAY2	Lay-In Gable	1	1	I65799213 Job Reference (optional)	

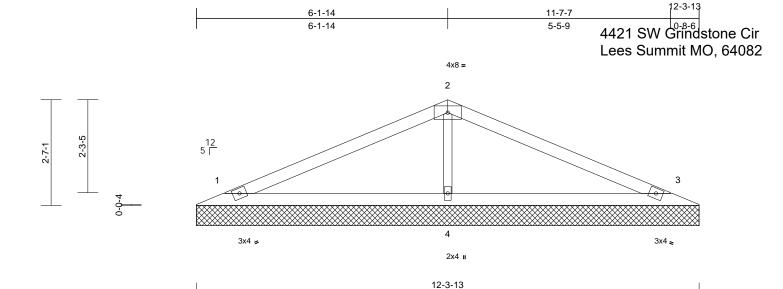
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 23 14:07:41

Scale = 1:44.7

Plate Offsets (X, Y): [5:Edge,0-3-0]

	() , []]												
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.03	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.06	Horiz(TL)	0.00	9	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 60 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS 1) Unbalanc this desig	 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=12-5-1: 11=12-5-: 15=12-5-: 15=12-5-: Max Horiz 1=-172 (L Max Uplift 1=-66 (LC 10=-130 (I 13=-18 (L 15=-130 (I 10=206 (I 12=-108 (I 14=215 (I 14=215 (I (1b) - Maximum Com 1-2=-210/150, 2-3=- 4-5=-25/74, 5-6=-31 7-8=-92/66, 8-9=-18 1-15=-74/149, 14-15 13-14=-74/149, 14-15 13-14=-74/149, 10-12 2-15=-161/148, 3-14 4-13=-100/35, 8-100 7-11=-175/164, 6-12 xed roof live loads have 	applied or 10-0-0 oc 1, 9=12-5-11, 10=12- 11, 12=12-5-11, 11, 14=12-5-11, 11, 14=12-5-11, 11, 12=12-5-11, 11, 12=12-5-11, 11, 12=12-5-11, 11, 12=12-5, 12=12, 12, 12=13, 12=12, 12=12, 12, 12=12, 12=12, 12=12, 14, 12=12, 12=	ed or 3) 5 4 -5-11, 4) 6) 7) 8) 9), 10), 10 18), 10 15) 10, 11 4/149	Vasd=91mp II; Exp C; Er cantilever le right expose Truss desig only. For st see Standar or consult qu () All plates are of Gable requir Gable studs () This truss h chord live lo chord live lo chord live lo 3-06-00 tall 1 chord and an () All bearing D) Provide mec bearing platt 1, 34 lb uplif uplift at joint 10 and () This truss is International	7-16; Vult=115m h; TCDL=6.0psf; icclosed; MWFRS ft and right expose d; Lumber DOL= ned for wind load uds exposed to w d Industry Gable Jalified building d e 2x4 MT20 unles es continuous bo spaced at 2-0-0 of as been designed an onconcurrent has been designed m chord in all are by 2-00-00 wide w ny other members are assumed to b thanical connectic de capable of withs t at joint 9, 130 lb 14, 18 lb uplift at 137 lb uplift at joi designed in acco Residential Coden nd referenced sta Standard	BCDL=6.((envelope ed; end v 1.60 plate is in the p ind (norm End Deta esigner as so otherwi totom chor oc. I for a 10.0 t with any ad for a liv as where will fit betw s. De SPF No on (by oth standing 6 uplift at jc joint 13, ' nt 11. ordance w e sections	Dipsf; h=25ft; (e) exterior zor ertical left an grip DOL=1. ane of the tru- al to the face Is as applical is per ANSI/TF se indicated. d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto 0.2. ers) of truss t 6 lb uplift at j bint 15, 137 lt 30 lb uplift a th the 2018 R502.11.1 a	ne; d 60 sss), oble, oble, oll 1. ds. opsf om opint ot					CIA *

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



Sealer Lamac, Would, KS. Harri, Build PT Build PT <t< th=""><th>Job</th><th>Truss</th><th></th><th>Truss Type</th><th></th><th>Qty</th><th>Ply</th><th></th><th>Serenade</th><th>- Craftsı</th><th>man FH</th><th>H 3-Car</th><th></th></t<>	Job	Truss		Truss Type		Qty	Ply		Serenade	- Craftsı	man FH	H 3-Car	
Part 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Serenade - Craftsman	V1		Valley		1	1		Job Refer	ence (or	tional)		165799214
8-14 19.27 19.37 4421 SW Crindstone Oucless Summit MO, 640 4	/heeler Lumber, Waverly, KS - 6	66871,							2024 MiTek	Industries	, Inc. Th		-
Image: Strate Imag					· · · · · · · · ·		,		1 13				
4421 SW Grindstone C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													
485 9 48 9 9 10				8-1-14			•			1	-0-9		W Grindstone C
Image: State and State an							4x5 =					Lees S	ummit MO, 6408
a a							3						
a a	\top \top												
Image: State in the s				2x4 II					\sim		2x4	F u	
Image: State in the s	- - - - - - - - - - - - - - - - - - -			2							4		
Add B 7 6 3/4 ± 3/4 ± 8 7 6 3/4 ± 2/4 ±<	ў. 2		12 5 [8							A		
Add B 7 6 3/4 ± 3/4 ± 8 7 6 3/4 ± 2/4 ±<			1										5
Set a 24 ii 24 iii 24 iii 24 iii 24 iiii 24 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	6						0				•		
Set a 24 ii 24 iii 24 iii 24 iii 24 iiii 24 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	0												
cale = 13.0 16-3-13 wring (1) (mod) (26) 250. Spacing (250. 2-0-0 (250. CSI (10.0) 10.0 PLATES (10.0) RIP (10.0) DL 0.00 Pacing (10.0) 10.0 CSI (10.0) 10.0 PLATES (10.0) RIP (10.0) DCL 0.00 PS intess lon (10.0) 10.0 PLATES (10.0) RIP (10.0) PLATES (10.0) RIP (10.0) PLATES (10.0) <t< td=""><td></td><td></td><td>3x4 🛥</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3x4 ≈</td></t<>			3x4 🛥										3x4 ≈
Case - 131.9 Spacing 2-0-0 CSI DEFL in (loc) Videl Ld PLATES ORIP 21L 0.0 Plac Grp DOL 1.15 BC 0.09 Vert(LL) na na <td></td> <td></td> <td></td> <td>2x4 II</td> <td></td> <td></td> <td>2x4 II</td> <td></td> <td></td> <td></td> <td>2x4</td> <td>l II</td> <td></td>				2x4 II			2x4 II				2x4	l II	
value (pst) DL (rod) Spacing 25.0 2-0-0 Plate Grip DOL 1.15 CSI TC DEFL TC in (loc) (loc) Idd PLATES GRIP DL 0.0 ¹ 0.0 ¹ 1.15 BC 0.19 VerifL1 n/a 9.99 MT20 197/144 DL 0.0 ¹ 0.0 ¹ Cd IRC2018/TPI2014 Matrix-S Md - n/a 9.99 MT20 197/144 MBER 0.0 ¹ 0.0 ¹ IRC2018/TPI2014 Matrix-S Md - n/a	Seele - 1:21 0					1	6-3-13						
DL (root) 25.0 (DL Piete Grip DOL (Lumber DOL 2LL 1.15 (Lumber DOL 2LL TC 0.19 (Well Vert(TL) n/a - n/a 998 (Weight: 41 lb TTO 197/144 DL 0.00 Code IRC2013/PTPD014 Marks S Horiz(TL) 0.00 5 n/a 989 (Weight: 41 lb FT = 10% IMBER DP CHORD 2x4 SPF No.2 Code IRC2013/PTPD014 Marks S Point bottom chord in all areas where a rectangle on the bottom chord in the all areas the thore a rectangle on the bottom chord in all areas where a rectangle		(205)	Creating	2.0.0	0.01				in (loo)	l/dofi			
21.L 0.0* Rep Stress Incr YES WB 0.06 Moriz (TL) 0.00 5 n/a n/a DDL 10.0 Code IRC2018/TPI2014 Matrix-S 0.06 Moriz (TL) 0.00 5 n/a n/a DP CHORD 2x4 SPF No.2	CLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.19	Vert(LL)	r	/a -	n/a	999		
 MBER PC CHORD Zx4 SPF No.2 This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 30600 tall by 20000 wide will the textuen the bottom chord and any other members. This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 30600 tall by 20000 wide will the textuen the bottom chord and any other members. Will bearings are assumed to be SPF No.2. Provide mechanical connection (by others) of truss to bearing plate capable of withshanding 101b uplit at joint 1, 121b uplit at joint 5, 111b uplit at joint 1, 121b uplit at joint 4, 111b uplit at joint 5, 111b uplit at joint 4, 111b uplit at joint 5, 111b uplit at joint 4, 111b uplit at joint 6, 110b uplit a	CLL	0.0*		YES	WB		. ,						
 DP CHORD 244 SPF No.2 on the bottom chord in all areas where a rectangle 30-600 tall by 20-000 vide will fit between the bottom chord and any other members. ACMNO PC CHORD Structural wood sheathing directly applied or 10-0-0 or bracing. TC HORD 26, 11-16-3-13, 5=16-3-13, 6=16-3-13, 7=16-3-13, 6=16-3-13, 7=16-3-13, 5=16-3-13,		10.0	Code									Weight: 41 lt	5 FT = 10%
Tension 1-2=-73/51, 2-3=-87/82, 3-4=-87/69, 4-5=-55/40 DT CHORD 1-8=0/43, 7-8=0/43, 5-6=0/43 EBS 3-7=-229/39, 2-8=-310/156, 4-6=-310/156 ONAL EWS Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vaad=91mph; TCDL=6.0psf; BCDL=6.0psf; BCDL=6.0psf	DTHERS 2x3 SPF No. BRACING OP CHORD Structural we 6-0-0 oc purl BOT CHORD Rigid ceiling bracing. REACTIONS (size) 1= 7= Max Horiz 1= Max Uplift 1= (Li Max Grav 1= (Li 21)	2 ood shea lins. directly =16-3-13 =16-3-13 =-55 (LC =-10 (LC C 9), 8= =126 (LC C 22), 7 1)	applied or 10-0-0 oc 3, 5=16-3-13, 6=16-3- 3, 8=16-3-13 13) 9), 5=-12 (LC 9), 6=- -111 (LC 8) C 1), 5=126 (LC 1), 6= =306 (LC 1), 8=398 (l	chord and ar 8) All bearings : 9) Provide mec bearing plate 1, 12 lb uplift uplift at joint 10) This truss is International R802.10.2 ar LOAD CASE(S) 398	y other members. are assumed to be S hanical connection (e capable of withstan : at joint 5, 111 lb upl 6. designed in accorda Residential Code se nd referenced standa	SPF No.2 by other iding 10 lift at joir ince with ections F	2 . s) of truss lb uplift at nt 8 and 11 n the 2018 8502.11.1	to joint I 1 Ib				S. J	UAN D
A 5-E-55/40 JT CHORD 1.8=0/43, 7-8=0/43, 6-7=0/43, 5-6=0/43 EBS 3-7=-229/39, 2-8=-310/156, 4-6=-310/156 JUbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0pst; BCDL=6.0pst; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; Lumber DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industy; Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.	Tension											•	• 41-
EBS 3-7=-229/39, 2-8=-310/156, 4-6=-310/156 DTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vaad=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 cc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.	4-5=-55/40										1	1	GINI
Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.	/EBS 3-7=-229/39,											1,5/01	VALEN
Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.) Unbalanced roof live load	ds have	been considered for										
right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.) Wind: ASCE 7-16; Vult=1 Vasd=91mph; TCDL=6.0 II; Exp C; Enclosed; MWI)psf; BCI FRS (en	DL=6.0psf; h=25ft; Ca velope) exterior zone									JUAN	GARCIA
or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.	right exposed; Lumber D	OL=1.60	0 plate grip DOL=1.60) S								1.	
or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.	only. For studs exposed	to wind	(normal to the face),								Ξ	16	9952 m
Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.	or consult qualified buildi	ing desig	gner as per ANSI/TPI								1	-Bi	M. HE
) Gable studs spaced at 4-	-0-0 oc.	-									1. Col	ANSA
May 24,2024				S.									
												Μ	ay 24,2024

WARNING - Verify design parameters and KEAD KOTES ON THIS AND INCLUDED MITER KEFEKANCE PAGE MIL/473 rev. 1/2/20/3 BEFORE USE. Design valid for use only with MiTeR® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) ASAN TED FIRST CONTRUCTION ASAN TED FIRST LARREVIEW DEVELOPMENT SERVICES Chepter Studie Rd. Chepter Studie Rd. 314.433.12007 Millek-US.com 03/20/2025

Job	Truss	Truss Type Qty Ply		Serenade - Craftsman FH 3-Car		
Serenade - Craftsman	V2	Valley	1	1	Job Reference (optional)	165799215
Wheeler Lumber, Waverly, KS -	66871.	Run: 8.73 S Apr 25 2	024 Print: 8.	730 S Apr 25	2024 MiTek Industries. Inc. Thu May 23 14:07:42	Page: 1

ID:bDwL8pqcjd1oMJqa7NSYs5zDbfy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

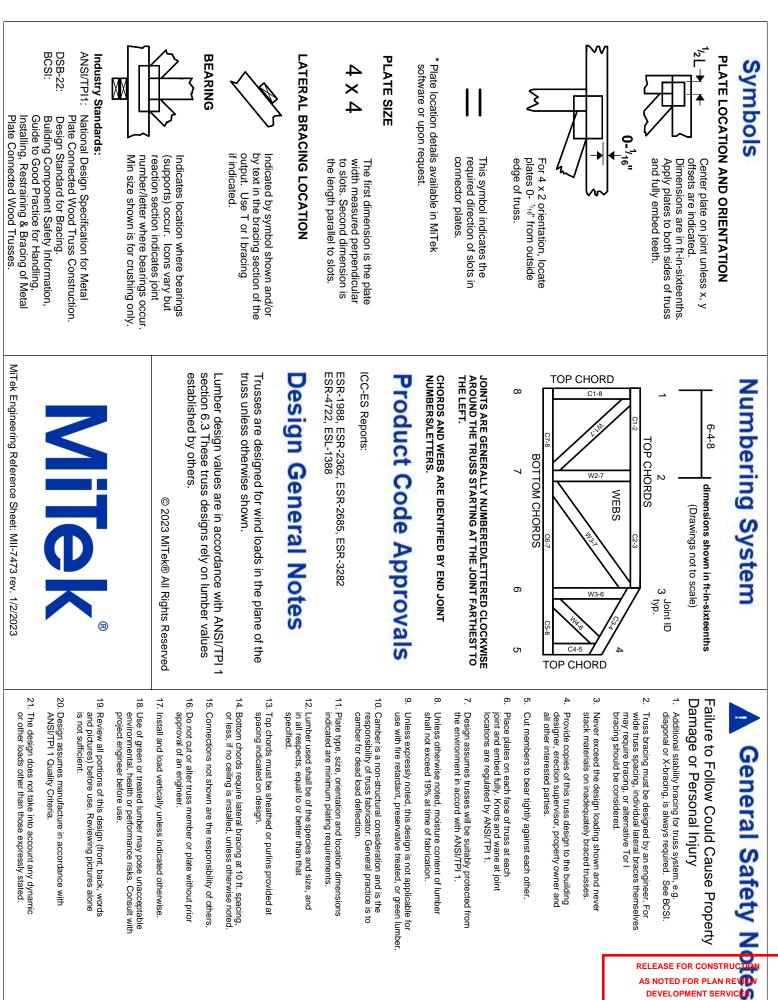
Scale = 1:28.2													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.42 0.25 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 29 lb	GRIP 197/144 FT = 10%
	6-0-0 oc purlins. Rigid ceiling directly bracing.	C 8), 3=-53 (LC 9), 4= C 21), 3=225 (LC 22)	² 1 3-13 ₌₋₃₄ L	on the bottor 3-06-00 tall b chord and ar) All bearings) Provide mec bearing plate 1, 53 lb uplift 0) This truss is International	has been designe In chord in all are- by 2-00-00 wide v y other members are assumed to be hanical connectic e capable of withs at joint 3 and 34 designed in acco Residential Code nd referenced sta Standard	as where will fit betw s. De SPF No on (by oth standing 2 Ib uplift a ordance w e sections	a rectangle veen the bott o.2. ers) of truss t l6 lb uplift at j at joint 4. ith the 2018 \$ R502.11.1 a	om to joint			- min	ZA. GAR	
this desigr	(lb) - Maximum Com Tension 1-2=-115/59, 2-3=-1 1-4=-2/46, 3-4=-2/46 2-4=-376/99 ed roof live loads have 1. CE 7-16; Vult=115mph	, 15/45 5 been considered for									* 85.00	GAH NUMI E-20001	BER U

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 16952 Bonnal English May 24,2024 VIIIIIIIIIII May 24,2024


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

	-													
ob	Truss		Truss Ty	/pe		Qt	/ F	Ply	Serenad	e - Crafts	man Fl	H 3-Car		105700010
Serenade - Craftsman	V3		Valley			1	1		Job Refe	rence (or	otional)			165799216
heeler Lumber, Waverly, KS -	66871,				Run: 8.73 S Apr ID:bDwL8pqcjd1									Page: 1
					<u>4-1-14</u> 4-1-14			4x5 =		<u>7-7-7</u> 3-5-9		4421	8-3-13 0-8-6 SW	Grindstone C mit MO, 6408
1-9-1	1-5-5	0-0-4-0-1		5 ¹²				2					3	
				2x	4 =	~~~~~	~~~~~	4 2x4 II	~~~~~~	~~~~~~	*****	2x4 s		2
icale = 1:23.8								3-13						-
pading CLL (roof) CDL CLL CDL	25.0 Pla 10.0 Lu 0.0* Re	bacing ate Grip DOL Imber DOL ep Stress Incr ode	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.22 0.10 0.04	DEFL Vert(LL) Vert(TL) Horiz(TI) n) n	in (loc /a /a 00 :	n/a n/a	L/d 999 999 n/a	PLATE MT20 Weight:		GRIP 197/144 FT = 10%
6-0-0 oc pu Rigid ceilin bracing. EACTIONS (size) Max Horiz Max Uplift 1 (Max Grav	5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.3 5.3 5.4 5.3 5.4 5.3 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4	second gust) 6.0psf; h=25ft; Ca ope) exterior zone d vertical left and ate grip DOL=1.60 g plane of the truss	10) -8 LO -308 at. -3, -3, -3, -3, -3, -3, -3, -3, -3, -3,	3-06-00 tall b chord and an All bearings a Provide mech bearing plate 1, 40 lb uplift This truss is c International	a chord in all area y 2-00-00 wide w y other members ire assumed to be hanical connection capable of withst at joint 3 and 8 lesigned in accor Residential Code d referenced star Standard	ill fit betv e SPF No n (by oth anding 3 o uplift at dance w sections	veen the I o.2. ers) of tru 6 lb uplift joint 4. ith the 20 5 R502.11	uss to at joint 18 .1 and				X S	JUA GAR NUMI -20001	CIA BER 62101

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Cut members to bear tightly against each other

RELEASE FOR CONS AS NOTED FOR PLAN RE DEVELOPMENT SERVI LEE'S SUMMIT, MISSOURI

- joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1. Place plates on each face of truss at each
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the camber for dead load deflection responsibility of truss fabricator. General practice is to
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- . Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.