

RE: P250041-01 - Roof - HM Lot 200 Site Information: Project Customer: Clayton Properties Proje Lot/Block: 200 S Model: Address: 1055 SW Fiord Dr City: Lee's Summit S General Truss Engineering Criteria & Desig Drawings Show Special Loading Condition Design Code: IRC2018/TPI2014	MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Subdivision: Highland Meadows State: MO gn Loads (Individual Truss Design s): Design Program: MiTek 20/20 8.6 Design Program: MiTek 20/20 8.6
Wind Speed: 115 mph	Floor Load: N/A psf
Roof Load: 45.0 psf Mean Roof Height (feet): 35	Exposure Category: C
No.Seal#Truss NameDateNo.1171039411A11/29/25352171039412A21/29/25363171039413A31/29/25374171039414A41/29/25385171039415A51/29/25396171039416A61/29/25407171039417A71/29/25418171039418A81/29/25418171039419A91/29/254310171039420A101/29/2543	Seal# Truss Name Date I71039445 J8 1/29/25 I71039446 J9 1/29/25 I71039447 J10 1/29/25 I71039448 J11 1/29/25 I71039449 J12 1/29/25 I71039450 J13 1/29/25 I71039451 J14 1/29/25 I71039452 J15 1/29/25 I71039453 J16 1/29/25 I71039454 J17 1/29/25 I71039453 J16 1/29/25 I71039454 J17 1/29/25
11 171039421 A11 $1729/25$ 4512 171039422 A12 $1/29/25$ 4613 171039422 A13 $1/29/25$ 4714 171039425 B1 $1/29/25$ 4916 171039425 B1 $1/29/25$ 5017 171039426 B2 $1/29/25$ 5017 171039427 B3 $1/29/25$ 5218 171039428 B4 $1/29/25$ 5219 171039429 B5 $1/29/25$ 5320 171039430 C1 $1/29/25$ 5521 171039431 C2 $1/29/25$ 5623 171039433 D1 $1/29/25$ 5724 171039435 E1 $1/29/25$ 5825 171039437 E3 $1/29/25$ 6027 17039437 E3 $1/29/25$ 6128 171039439 J2 $1/29/25$ 6330 171039440 J3 $1/29/25$ 6431 17039440 J3 $1/29/25$ 6633 171039443 J6 $1/29/25$ 34 171039444 J7 $1/29/25$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
The truss drawing(s) referenced above have been MiTek USA, Inc. under my direct supervision ba	prepared by sed on the parameters
provided by Premier Building Supply (Springhill, Truss Design Engineer's Name: Sevier. Scot	KS)20300 W 207th Street. SCOTT M.

My license renewal date for the state of Missouri is December 31, 2025.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

AS NOTED ON PLANS REVIEW DEVELOPMENT SERVICES LEE'S SUMMIT, MISSOURI 02/04/2025 11:09:47

Sevier, Scott

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	A1	Hip Girder	1	2	Job Reference (optional)	171039411

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:47 ID:oV_VxRczohk7XG80PcgnR?zb2L6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

02/04/2025 11:09:47

ΓΙΟΝ

IEW

January 29,2025

Scale = 1:72.4

Plate Offsets (ate Offsets (X, Y): [2:0-1-1,0-4-10], [5:0-5-4,Edge], [11:0-5-4,Edge], [13:Edge,0-1-11], [15:0-2-8,0-2-0], [16:0-1-8,0-2-4], [18:0-2-8,0-2-0], [21:0-4-0,0-2-4], [22:0-2-8,0-2-0]													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.74 0.45 0.90	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.47 -0.81 0.12	(loc) 18-19 18-19 13	l/defl >999 >588 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 470 lb	GRIP 197/144 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP 2400F 2.0E 2x8 SP 2400F 2.0E 2x3 SPF No.2 Left 2x4 SP No.2 Structural wood she 4-5-7 oc purlins, ex 2-0-0 oc purlins (3-1 Rigid ceiling directly bracing	1-7-13 eathing directly appli cept 11-13 max.): 5-11. r applied or 10-0-0 o	1) ed or 2) oc	2-ply truss to (0.131"x3") r Top chords o oc. Bottom chorn staggered at Web connec All loads are except if not CASE(S) see provided to c	be connected in aails as follows: connected as fol ds connected as 0-9-0 oc. ted as follows: 2 considered equed as front (F) o ction. Ply to ply distribute only lo	together wi llows: 2x4 s follows: 2 2x3 - 1 row Jally applie or back (B) connection ads noted	th 10d - 1 row at 0-9 x8 - 2 rows at 0-9-0 oc. d to all plies, face in the L0 s have been as (F) or (B),)-0 OAD	12) Use Tru 2-6 bao 13) Fill LOAD (1) De Pl Ur	e Simpso ss) or ec -2 from t k face o all nail h CASE(S ead + Ro ate Incre hiform Lo Vert: 1-3	on Stro quivale he left f botton oles w) Stan oof Live ease=1 bads (II 5=-70, ted Lo	ng-Tie LUS24 (4 nt spaced at 2-0 end to 37-5-14 tr m chord. here hanger is ir ndard 9 (balanced): Lur .15 5-11=-70, 11-14 arts (Ih)	-10d Girder, 2-10d 0 oc max. starting at 5 connect truss(es) to 1 contact with lumber. nber Increase=1.15, =-70, 2-13=-20	
REACTIONS	(size) 2=0-5-8, Max Horiz 2=-68 (LC Max Uplift 2=-1415 (Max Grav 2=5365 (I	13=0-5-8 C 17) (LC 9), 13=-1342 (L(LC 1), 13=5138 (LC	3) C 8) 4) 1)	unless other Unbalanced this design. Wind: ASCE	Concentrated Loads (lb) Concentrated Loads (lb) unless otherwise indicated. Vert: 22=-658 (B), 15=-329 (B), 27=-433 (Concentrated Loads (lb) Unbalanced roof live loads have been considered for this design. 28=-329 (B), 29=-329 (B), 30=-329 (B), 33=-329 (B), 33=-329 (B), 33=-329 (B), 38=-329 (B), 38=-								, 27=-433 (B), 329 (B), 31=-329 (B), 329 (B), 35=-329 (B), 329 (B), 39=-329 (B),	
FORCES	(lb) - Maximum Corr Tension 1-2=0/11, 2-4=-8945 5-6=-12718/3572, 6 7-9=-15014/4213, 9 10-11=-12478/3494 12-13=-8690/2331.	hpression/Maximum 5/2424, 4-5=-9382/2 -7=-12716/3570, -10=-12476/3492, , 11-12=-9041/2475 13-14=0/11	2588, ;,	Ke=1.00; Ca exterior zone Interior (1) 4 Interior (1) 1 40-10-8 zone vertical left a forces & MW	t. II; Exp C; Ence and C-C Exter -1-8 to 6-5-6, Ex 3-6-4 to 33-6-10 e; cantilever left ind right expose (CRS for reaction	, BCDL=0. closed; MW ior(2E) -0 kterior(2R)), Exterior(2R) and right e d;C-C for r	(FRS (envelo 10-8 to 4-1-8, 6-5-6 to 13-6 2E) 33-6-10 t exposed ; enc nembers and	pe) 5-4, co d		40=-329	9 (B), 4	1=-329 (B), 42=-	329 (B), 43=-433 (B)	
BOT CHORD	2-22=-2074/7579, 2 19-21=-4211/15159 16-18=-4152/15014 13-15=-1932/7290	1-22=-2306/8438, , 18-19=-4211/1515 , 15-16=-2145/8092	9, 5) , 6) 7)	DOL=1.60 pl Provide adec All plates are This truss ba	late grip DOL=1 quate drainage t MT20 plates u	.60 to prevent nless other	water ponding wise indicate	g. ed.				TE OF I	MISSO	
WEBS	5-22=-283/966, 11- 5-21=-1482/5137, 1 6-21=-475/203, 7-2' 7-19=-289/1212, 7- 9-18=-295/1223, 9- 10-16=-492/208, 12 4-22=-333/1170	15=-236/865, 1-16=-1527/5265, 1=-2921/845, 18=-215/70, 16=-3034/882, -15=-310/1103,	8) 9) 10	chord live loa All bearings capacity of 8 Provide mec bearing plate joint 2 and 1) This truss is	ad nonconcurren are assumed to 05 psi. hanical connect capable of with 342 lb uplift at jo designed in acc	nt with any be SP 240 tion (by oth histanding 1 pint 13. cordance w	other live loa 00F 2.0E crus ers) of truss (415 lb uplift) ith the 2018	ads. shing to at		đ		SCOT SEV.	I M. IER Server	7
NOTES			11	International R802.10.2 a) Graphical pu or the orienta	Residential Coo nd referenced s Irlin representati ation of the purli	de sections tandard AN ion does no in along the	S R502.11.1 a NSI/TPI 1. ot depict the set top and/or	and size			A.	PE-2001	018807	

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) DEVELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	A2	Hip	1	1	Job Reference (optional)	171039412

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:48 ID:HhYt9mdbY_s_9QjCyKB0_Czb2L5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

40-10-8 0-10-8 4-2-3 40-0-0 8-1-6 14-0-1 20-0-0 25-11-15 31-10-10 35-9-13 4-2-3 3-11-3 5-10-11 5-11-15 5-11-15 5-10-11 3-11-3 4-2-3 3x4= 3x4= 3x6= 3x4= 6¹² 5x5= 5x5= 0-1-10 -10 2 4 5 22 6 7 23 8 9 4-9-1 \boxtimes _ 4x6 🞜 4x6 👟 3 10 4-9-14 4-8-1 4-8-1 7x8= ²⁴ 11 21 2 12 0-0-13 + + 19 18 17 16 15 14 7x8= 3x8= MT18HS 3x10 = 3x4= 3x8= 3x4= MT18HS 3x10 = 8-0-2 16-0-1 23-11-15 31-11-14 40-0-0 8-0-2 7-11-15 7-11-15 7-11-15 8-0-2

Scale = 1:72.6

Plate Offsets (X, Y): [2:Edge,0-2-8], [13:Edge,0-2-8]	
---	--

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.67	Vert(LL)	-0.31	16-17	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.42	Vert(CT)	-0.59	16-17	>803	180	MT18HS	244/190
BCLL	0.0	Rep Stress Incr	YES		WB	0.78	Horz(CT)	0.15	13	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 176 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-16; Vult=115mpl	h (3-sec	ond gust)						
TOP CHORD	2x4 SP No.2			Vasd=91mpl	; TCDL=6.0psf; B0	DL=6.	Dpsf; h=35ft;						
BOT CHORD	2x4 SP 2400F 2.0E			Ke=1.00; Ca	t. II; Exp C; Enclose	ed; MW	FRS (envelo	pe)					
WEBS	2x3 SPF No.2 *Exce	pt* 20-2,13-11:2x4 S	P	exterior zone	and C-C Exterior	2E) -0-1	0-8 to 4-0-7,						
	No.2	-		Interior (1) 4-0-7 to 8-1-6, Exterior(2R) 8-1-6 to 15-2-4,									
BRACING				Interior (1) 15-2-4 to 31-10-10, Exterior(2R) 31-10-10 to									
TOP CHORD	Structural wood she	athing directly applie	d or	38-11-8, Inte	rior (1) 38-11-8 to	40-10-8	zone; cantile	ever					
	3-1-2 oc purlins, ex	cept end verticals, ar	nd	left and right	exposed ; end ver	ical left	and right	-					
	2-0-0 oc purlins (2-5	i-8 max.): 4-9.		exposed;C-C	ior members and	1 60 pl	x IVIVVFRS 10	ſ					
BOT CHORD	Rigid ceiling directly bracing.	applied or 9-9-7 oc		DOL=1.60	own; Lumber DOL=	= 1.60 pi	ate grip						
WEBS	1 Row at midpt	3-20, 10-13, 5-19, 8-	·14 ³⁾	Provide adec	juate drainage to p	revent	vater pondin	g.					
REACTIONS	(size) 13=0-5-8,	20=0-5-8	4)	All plates are	M120 plates unles	ss other	wise indicate	ed.					
	Max Horiz 20=-82 (L	C 10)	5)	I his truss ha	s been designed to	ora 10.0) pst bottom	ala					
	Max Uplift 13=-249 (LC 8), 20=-249 (LC 9	9) e)	All boorings	a nonconcurrent w	Ann any		ius.					
	Max Grav 13=1858	(LC 1), 20=1858 (LC	1) 0)	capacity of 8	ne assumed to be	3F 240	OF 2.0E CIUS	sning					
FORCES	(lb) - Maximum Com	pression/Maximum	7)	Provide med	nanical connection	(by oth	ers) of truss t	to					
	Tension		.,	bearing plate	capable of withsta	indina 2	49 lb uplift a	t					
TOP CHORD	1-2=0/32, 2-3=-718/	133, 3-4=-2942/492,		joint 20 and 2	249 lb uplift at joint	13.							
	4-5=-2578/458, 5-6=	-3881/708,	8)	, This truss is	designed in accord	lance w	ith the 2018						
	6-8=-3881/708, 8-9=	-2578/458,		International	Residential Code	sections	R502.11.1 a	and					
	9-10=-2942/492, 10-	-11=-718/133,		R802.10.2 a	nd referenced stan	dard AN	ISI/TPI 1.						
	11-12=0/32, 2-20=-5	542/169, 11-13=-542/	(169 9)	Graphical pu	rlin representation	does no	ot depict the	size					Th
BOT CHORD	19-20=-426/2521, 17	7-19=-663/3714,		or the orienta	tion of the purlin a	long the	top and/or					OF N	ALC AL
	16-17=-725/4068, 14	4-16=-623/3714,		bottom chord								ALE OF I	11SS
	13-14=-354/2521	00/044	LC	DAD CASE(S)	Standard						4		1.5
WEB5	4-19=-99/941, 9-14=	99/941, 42 - 2211/202									A	SCOTT	M. YP.V.
	3-20=-2311/302, 10-	-13=-2311/302, 150/263 5-1712/	112								.8	SEVI	ER VV
	5-19=-1477/372 6-1	7=-330/144	++ z ,								9 4	-/	···· \ ↓ \
	6-16=-330/144 8-16	S=-12/442									Zan		0
	8-14=-1477/372	· · -/ · ·,									NX	#13	· Jan 1
NOTES												NUM	and the second s
1) Unbalance	ed roof live loads have	been considered for									N	ON PE-20010	018807
the states	-										N	P.I.	120

this design.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

E

January 29,2025

SSIONAL

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	A3	Нір	1	1	Job Reference (optional)	171039413

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:48 ID:9SnO_8g5cDMQe20zB9Gy82zb2L1-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

q3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:72.8

Plate Offsets (X, Y): [2:Edge,0-2-8], [13:Edge,0-2-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.60 0.98 0.73	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.28 -0.55 0.19	(loc) 16-17 16-17 13	l/defl >999 >865 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 182 lb	GRIP 197/144 FT = 20%
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce 2400F 2.0E Structural wood she 2-8-10 oc purlins, e 2-0-0 oc purlins (2-1 Rigid ceiling directly	pt* 20-2,13-11:2x4 S athing directly applie xcept end verticals, a 1-5 max.): 4-9. applied or 2-2-0 oc	2) SP d or and	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 Interior (1) 1 37-3-8, Inter and right exp exposed;C-C reactions sh	r-r6, volt=113h ; TCDL=6.0psf; t. II; Exp C; Enclc and C-C Exteric c-1-8 to 9-9-6, Ext 6-10-4 to 30-2-10 ior (1) 37-3-8 to 4 oosed ; end vertic C for members an own; Lumber DO	BCDL=6.0 BCDL=6.0 Dosed; MW Dr(2E) -0-1 erior(2R) D, Exterior D, D, D	Dipsf; h=35ft; FRS (envelo) 10-8 to 4-1-8, 9-9-6 to 16-1 (2R) 30-2-10 one; cantileve I right & MWFRS for ate grip	pe) 0-4, to er left					
WEBS REACTIONS	bracing. 1 Row at midpt (size) 13=0-5-8, Max Horiz 20=-93 (L Max Uplift 13=-214 (Max Grav 13=1858	3-20, 10-13, 5-19, 8- 20=0-5-8 C 10) LC 8), 20=-214 (LC 9 (LC 1), 20=1858 (LC	-14 3) 4) 5) 1) 6)	DOL=1.60 Provide adeo This truss ha chord live loa All bearings capacity of 5 Provide med	quate drainage to as been designed ad nonconcurrent are assumed to b 65 psi. hanical connection	for a 10.0 with any oe SP No.	water ponding) psf bottom other live loa 2 crushing ers) of truss t	g. Ids.					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	0)	bearing plate	e capable of withs	standing 2	14 lb uplift at	t					
TOP CHORD	1-2=0/32, 2-3=-828/ 4-5=-2493/446, 5-6= 6-8=-3293/561, 8-9= 9-10=-2866/465, 10- 11-12=0/32, 2-20=-6	122, 3-4=-2866/465, 3293/561, 2493/446, -11=-828/122, 503/180, 11-13=-603/	7) (180	This truss is International R802.10.2 a Graphical pu or the orienta	designed in acco Residential Code nd referenced sta Irlin representation ation of the purlin	andard AN andard AN andorg the along the	ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the s top and/or	and size					
BOT CHORD	19-20=-398/2564, 17 16-17=-534/3411, 14 13-14=-360/2564	7-19=-501/3191, 4-16=-460/3191,	LC	bottom chord DAD CASE(S)	d. Standard	along the					- 1	TE OF M	AISSO
WEBS	4-19=-86/914, 9-14= 3-20=-2229/400, 10- 3-19=-105/211, 10-1 5-17=-25/382, 5-19= 6-17=-281/120, 6-16 8-16=-25/382, 8-14=	85/914, -13=-2229/400, 4=-106/211, 1081/287, 5=-281/120, 1081/287									R	SCOT SEVI	ER Service
NOTES	od roof live loads have	been considered for									87	PE-2001	018807 EA
	eu roor live loaus flave	Deen considered IOI									N	N.	124

this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE OR STRUCTION AS NOTED ON LANS REVIEW DEVELORMENT SERVICES LEE'S SUMMIT'S MISSOURI 02/04/2025 11:09:47

E

January 29,2025

SSIONAL

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	A4	Нір	1	1	Job Reference (optional)	171039414

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:48 ID:dfLmCUhkNXUHGCbAltnBhFzb2L0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-0-10-8 40-10-8 5-9-15 11-5-6 20-0-0 28-6-10 34-2-1 40-0-0 0-10-8 5-9-15 5-7-7 8-6-10 8-6-10 5-7-7 5-9-15 0-10-8 5x5= MT18HS 3x10 = 5x5= 3x8= 21 🖾 0-1-10 1-10 H 4 5 22 🖂 6 6-5-11 612 61 3x4 🞜 3x4 👟 3 8 6-5-14 6-4-1 6-4-1 23 20 9 0-6-0 10 N 74 49 П X 18 17 16 15 14 13 12 7x8= 7x8= 4x6 =3x8= 1.5x4 u 3x8= 4x6 =4x6 =4x6 =20-0-0 28-7-14 5-9-15 11-4-2 34-2-1 40-0-0 5-9-15 5-6-3 8-7-14 8-7-14 5-6-3 5-9-15

Scale = 1:73

Plate Offsets ((X, Y): [11:Edge,0-5-8	3], [12:0-2-8,0-2-0], [18	8:0-2-8,0-2	2-0], [19:Edge,	0-5-8]								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.72 0.96 0.95	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.24 -0.49 0.14	(loc) 15 13-15 11	l/defl >999 >976 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 182 lb	GRIP 197/144 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD WEBS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 *Excep 2.0E 2x4 SP No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 2-9-5 oc purlins, ex 2-0-0 oc purlins (4-0 Rigid ceiling directly bracing. 1 Row at midpt (size) 11=0-5-8, Max Horiz 19=-105 (Max Uplift 11=-216 (Max Grav 11=1858 (lb) - Maximum Com Tension 1-2=0/32, 2-3=-3033 4-5=-2397/468, 5-7= 7-8=-2767/479, 8-9= 2-19=-1784/361, 9-1 18-19=-209/622, 17 15-17=-400/3040, 13 12-13=-330/2623, 1 3-18=-106/90, 3-17= 5-17=-932/236, 5-15 7-13=-51/737, 8-13= 2-18=-240/2011, 9-1	ot* 4-6,6-7:2x4 SP 24(ept* 19-2,11-9:2x4 SP eathing directly applied cept end verticals, an -6 max.): 4-7. applied or 2-2-0 oc 5-17, 5-13 , 19=0-5-8 (LC 10) (LC 13), 19=-216 (LC (LC 1), 19=1858 (LC npression/Maximum 8/481, 3-4=-2765/478 e-2398/466, e-3032/478, 9-10=0/3 11=-1784/363 -18=-359/2625, 3-15=-400/3040, 1-12=-122/626 e-273/197, 4-17=-53/7 5=0/364, 5-13=-928/2 e-269/196, 8-12=-105 12=-236/2006	2) 00F d or d or 12) 6) 1) 7) 8) 2, 9) 743, 743, 1/20	Wind: ASCE Vasd=91mpf Ke=1.00; Ca exterior zone Interior (1) 4 Interior (1) 14 35-7-8, Interi and right exp exposed;C-C reactions shot DOL=1.60 Provide adec All plates are This truss ha chord live loa All bearing si capacity of 5 Provide mec bearing plate joint 19 and 2 This truss is International R802.10.2 ar Graphical pu or the orienta bottom chorc	7-16; Vult=115mp ; TCDL=6.0psf; B t. II; Exp C; Enclos and C-C Exterior 1-8 to 11-5-6, Ext 3-6-4 to 28-6-10, E or (1) 35-7-8 to 40 osed ; end vertical for members and own; Lumber DOL- guate drainage to p MT20 plates unle s been designed f ad nonconcurrent vare assumed to be 65 psi. hanical connectior capable of withst 216 Ib uplift at joind designed in accorre Residential Code nd referenced star rlin representation ation of the purlin at Standard	bh (3-sec CDL=6.0 sed; MW (2E) -0-1 erior(2R) Exterior(2)-10-8 zc il left and forces & =1.60 pla prevent to ass other for a 10.0 with any ⇒ SP No. h (by oth anding 2 t 11. dance to sections ndard AN a does no along the	ond gust) Dpsf; h=35ft; FRS (envelo 0-8 to 4-1-8, 11-5-6 to 18 R) 28-6-10 t ne; cantileve I right MWFRS for ate grip vater ponding wise indicate 0 psf bottom other live loa 2 crushing ers) of truss f 16 lb uplift at th the 2018 R502.11.1 a SI/TPI 1. t depict the s top and/or	pe) 3-6-4, o rrleft r g. d. ds. to size				STATE OF M STATE SCOTT SEVI	MISSOUR ER ER

1) Unbalanced roof live loads have been considered for

this design.

January 29,2025

E

NUMBER

PE-2001018807

SSIONAL

C

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	A5	Нір	1	1	Job Reference (optional)	171039415

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:48 ID:dfLmCUhkNXUHGCbAltnBhFzb2L0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:73.2

NOTES

this design.

Plate Offsets (X, Y): [10:Edge,0-5-8], [11:0-2-8,0-2-0], [17:0-2-8,0-2-0], [18:Edge,0-5-8]													
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.90 0.77 0.67	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.41 0.13	(loc) 14 14-16 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce No.2 Structural wood shere except end verticals, (2-2-0 max.): 4-6.	pt* 18-2,10-8:2x4 SF athing directly applie and 2-0-0 oc purlins	2) Wind: ASCE Vasd=91mp Ke=1.00; Cz exterior zon Interior (1) 4 20-0-0, Inter d, 26-10-10 to zone; cantilé and right ex	7-16; Vult=11 h; TCDL=6.0ps t. II; Exp C; Ext e and C-C Ext -1-8 to 13-1-6, ior (1) 20-0-0 t 33-11-8, Interior ever left and rig possed;C-C for i	5mph (3-sec sf; BCDL=6. hclosed; MW prior(2E) -0-1 Exterior(2R o 26-10-10, or (1) 33-11- ht exposed members an	ond gust) Dpsf; h=35ft; FRS (envelo 0-8 to 4-1-8) 13-1-6 to Exterior(2R) 8 to 40-10-8 c end vertical d forces &	ope) , I left						

BOT CHORD	Rigid ceiling directly applied or 9-10-1 oc									
	bracing.									
WEBS	1 Row at midpt 5-16, 5-12									
REACTIONS	(size) 10=0-5-8, 18=0-5-8									
	Max Horiz 18=116 (LC 11)									
	Max Uplift 10=-235 (LC 13), 18=-235 (LC 12)									
	Max Grav 10=1858 (LC 1), 18=1858 (LC 1)									
FORCES	(lb) - Maximum Compression/Maximum									
	Tension									
TOP CHORD	1-2=0/32, 2-3=-3058/484, 3-4=-2646/477,									
	4-5=-2272/472, 5-6=-2272/472,									
	6-7=-2646/477, 7-8=-3058/484, 8-9=0/32,									
	2-18=-1783/365, 8-10=-1783/365									
BOT CHORD	17-18=-264/701, 16-17=-355/2640,									
	14-16=-271/2630, 12-14=-271/2630,									
	11-12=-327/2640, 10-11=-162/701									
WEBS	3-17=-43/150, 3-16=-439/229, 4-16=-56/713,									
	5-16=-665/177, 5-14=0/283, 5-12=-665/177,									
	6-12=-56/713, 7-12=-439/229, 7-11=-43/150,									
	2-17=-219/1945, 8-11=-216/1945									

1) Unbalanced roof live loads have been considered for

and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. 3) 4) This truss has been designed for a 10.0 psf bottom

- chord live load nonconcurrent with any other live loads. 5) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 235 lb uplift at joint 18 and 235 lb uplift at joint 10.

This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

OF MISS SCOTT M. SEVIER UMBER PE-200101880' C SSIONAL E January 29,2025

Page: 1

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	A6	Нір	1	1	Job Reference (optional)	171039416

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:49 ID:5rv8PqiM8qc7tLAMJalQDTzb2L?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:73.4

Plate Offsets (X, Y): [2:Edge,0-2-4], [14:Edge,0-2-4]

Loading TCLL (roof) (psf) 25.0 Spacing Plate Grip DOL Lumber DOL 0.00 2-0-0 Lins CSI TC DEFL TC in (loc) // idell L/d PLATES GRP BCLL 0.00 Rep Stress Incr YES BC 0.80 WB 0.70 Virt(LL) 0.16 14 n/a n/a Weight: 196 lb FT = 2 UMBER TOP CHORD 2x4 SP No.2 Weight: 22-2,14-12:2x4 SP 2400F 2.0E 2////////////////////////////////////				_											
 LUMBER TOP CHORD 2x4 SP No.2 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0pst; h=35f; Vasd=91mph; TCDL=6.0pst; h=35f; Va	Loading FCLL (roof) FCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.57 0.80 0.76	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.36 0.16	(loc) 18 15-16 14	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 196 lb	GRIP 244/190 FT = 20%	
NOTES 1) Unbalanced roof live loads have been considered for PE-2001018807	LUMBER FOP CHORD SOT CHORD SOT CHORD SOT CHORD WEBS REACTIONS FORCES FOP CHORD SOT CHORD SOT CHORD WEBS WOTES I) Unbalance	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Excep 2400F 2.0E Structural wood sheat 3-1-2 oc purlins, exc 2-0-0 oc purlins (3-5- Rigid ceiling directly b bracing. 1 Row at midpt (size) 14=0-5-8, Max Horiz 22=128 (L Max Uplift 14=-253 (L Max Uplift 14=-253 (L Max Grav 14=1858 ((lb) - Maximum Comp Tension 1-2=0/32, 2-4=-821/1 5-6=-2468/492, 6-7=: 7-8=-2325/505, 8-9=: 9-10=-2909/497, 10- 12-13=0/32, 2-22=-61 21-22=-398/2585, 20 18-20=-192/2139, 16 15-16=-279/2449, 14 6-20=-97/495, 6-18=: 7-18=-459/197, 8-18: 8-16=-98/495, 4-22=: 10-14=-2263/320, 4- 5-21=-36/281, 5-20=: 9-16=-477/229, 9-15:	pt* 22-2,14-12:2x4 SP athing directly applied cept end verticals, and -8 max.): 6-8. applied or 9-3-0 oc 4-22, 10-14 22=0-5-8 .C 11) LC 13), 22=-253 (LC 1 (LC 1), 22=1858 (LC 1) pression/Maximum 183, 4-5=-2909/497, -2325/505, -2468/492, 12=-821/183, 07/207, 12-14=-607/20)-21=-306/2449, 5-18=-178/2139, 4-15=-340/2585 -142/494, -2263/320, 21=-95/169, -477/229, =-37/281, 10-15=-95/1 been considered for	2) or 3) 4) 12) 5) 6) 7) 8) 207 8) LC	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 21-10-4, Inte 25-2-10 to 3: cantilever lef right expose for reactions DOL=1.60 Provide aded This truss ha chord live lead All bearings capacity of 5 Provide mec bearing plate joint 22 and This truss is International R802.10.2 a Graphical pu or the orienta bottom chore	 7-16; Vult=115mp h; TCDL=6.0psf; B tt. II; Exp C; Enclose and C-C Exteriore t-1-8 to 14-9-6, Exteriore trand right exposed d;C-C for members shown; Lumber D quate drainage to p as been designed f ad nonconcurrent v are assumed to be 55 psi. chanical connection expable of withsta 253 lb uplift at joint designed in accord Residential Code nd referenced stan rdine for the purlin a d. Standard 	h (3-sec CDL=6.0 cDL=6.0 (2E) -0-1 erior(2R 25-2-10 2-3-8 to d; end v s and for OL=1.60 or event v or a 10.0 with any SP No. a (by oth anding 2 14. dance w sections dard AN does no long the	and gust) opsf; h=35ft; FRS (envelo 0-8 to 4-1-8, 14-9-6 to Exterior(2R 40-10-8 zon rertical left ar ces & MWFF 0 plate grip water pondin- 0 psf bottom other live loaz 2 crushing ers) of truss : 53 lb uplift ar ith the 2018 R502.11.1 a ISI/TPI 1. bt depict the se top and/or	pe) e; nd RS g. ads. to t size				STATE OF M SCOTT SEVI DE-20010	AISSOURCE M. ER Serve D18807	

this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building designer must verify the applicability of chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Quality Criteria, and DB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

E

January 29,2025

SSIONAL

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	A7	Нір	1	1	Job Reference (optional)	171039417

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:49 ID:2E1uqVjcgSsr7fKIQ?Luluzb2Kz-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:73.6

Plate Offsets (X, Y)	'late Offsets (X, Y): [2:Edge,0-2-4], [4:0-1-10,0-1-8], [10:0-1-10,0-1-8], [14:Edge,0-2-4]													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.61	Vert(LL)	-0.19	15-17	>999	240	MT20	244/190		
TCDL	10.0	Lumber DOL	1.15	BC	0.82	Vert(CT)	-0.39	15-17	>999	180				
BCLL	0.0	Rep Stress Incr	YES	WB	0.90	Horz(CT)	0.16	14	n/a	n/a				
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 196 lb	FT = 20%		
LUMBER 2) Wind: ASCE 7-16; Vult=115mph (3-second gust)														

LUMBER		2)	Wind: ASCE 7-16; Vult=115mph (3-second gust)
TOP CHORD	2x4 SP No.2		Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft;
BOT CHORD	2x4 SP No.2		Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope)
WEBS	2x3 SPF No.2 *Except* 21-2,14-12:2x4 SP		exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8,
	2400F 2.0E		Interior (1) 4-1-8 to 16-5-6, Exterior(2E) 16-5-6 to
BRACING			23-6-10, Exterior(2R) 23-6-10 to 30-7-8, Interior (1)
TOP CHORD	Structural wood sheathing directly applied or		30-7-8 to 40-10-8 zone; cantilever left and right
	3-0-5 oc purlins. except end verticals, and		exposed ; end vertical left and right exposed;C-C for
	2-0-0 oc purlins (4-0-8 max.): 6-8.		members and forces & MWFRS for reactions shown;
BOT CHORD	Rigid ceiling directly applied or 8-9-6 oc		Lumber DOL=1.60 plate grip DOL=1.60
	bracing.	3)	Provide adequate drainage to prevent water ponding.
WEBS	1 Row at midpt 3-21, 11-14, 7-18, 7-17	4)	This truss has been designed for a 10.0 psf bottom
REACTIONS	(size) 14=0-5-8, 21=0-5-8		chord live load nonconcurrent with any other live loads.
	Max Horiz 21=144 (LC 16)	5)	All bearings are assumed to be SP No.2 crushing
	Max Uplift 14=-269 (LC 13), 21=-269 (LC 12)	~	capacity of 565 psi.
	Max Grav 14=1858 (LC 1), 21=1858 (LC 1)	6)	Provide mechanical connection (by others) of truss to
FORCES	(lb) - Maximum Compression/Maximum		isint 21 and 260 lb unlift at isint 14
TOROLO	Tension	7)	Joint 21 and 209 ib upint at joint 14.
TOP CHORD	1-2=0/32 2-3=-893/213 3-5=-2886/501	()	International Residential Code sections R502 11 1 and
101 0110112	5-6=-2338/490, 6-7=-2011/475.		R802 10 2 and referenced standard ANSI/TPI 1
	7-8=-2011/475, 8-9=-2338/490,	8)	Graphical purlin representation does not depict the size
	9-11=-2886/501, 11-12=-893/213,	0)	or the orientation of the purlin along the top and/or
	12-13=0/32, 2-21=-649/222, 12-14=-649/222		bottom chord.
BOT CHORD	20-21=-437/2600, 18-20=-293/2386,	10	AD CASE(S) Standard
	17-18=-179/2072, 15-17=-266/2386,		
	14-15=-341/2600		
WEBS	6-18=-106/721, 8-17=-106/721,		
	3-21=-2201/308, 11-14=-2201/308,		
	7-18=-352/137, 7-17=-352/136,		
	3-20=-164/193, 5-20=-45/348,		
	5-18=-575/259, 9-17=-575/259,		
	9-15=-46/348, 11-15=-164/193		
NOTES			
AN 11 1 1	and we will be a low of a low on the same second data and data.		

Unbalanced roof live loads have been considered for 1) this design.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	A8	Нір	1	1	Job Reference (optional)	171039418

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:49 ID:h?iaC_Sprh5zUHeW8NxkPFzb2LJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:73.7

Plate Offsets (X, Y): [2:Edge,0-2-4], [11:Edge,0-2-4]

														_
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.69	Vert(LL)	-0.19	14-16	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.91	Vert(CT)	-0.42	14-16	>999	180			
BCLL	0.0	Rep Stress Incr	YES		WB	0.88	Horz(CT)	0.16	13	n/a	n/a			
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 193 lb	FT = 20%	
		1				10						-		-
LUMBER			2)	Wind: ASCE	7-16; Vult=115mpl	n (3-sec	cond gust)							
TOP CHORD	2x4 SP No.2			Vasd=91mpr	1; TCDL=6.0pst; BC	DL=6.	Jpsr; n=35rr;							
BOT CHORD	2x4 SP No.2			Ke=1.00; Ca	t. II; EXP C; Enclose	ea; ivivv	FRS (envelop	be)						
WEBS	2x3 SPF No.2 *Exce	ept* 20-2,13-11:2x4 S	SP	Interior (1) 4		2E) -0-	10-0104-1-0							
	N0.2			22-9-2 Exter	rior(2R) 22-9-2 to 2	0_0_15	_) 17-2-14 (0							
	o			29-9-15 to 40)-10-8 zone: cantile	ever left	and right							
TOP CHORD	Structural wood she	athing directly applie	d or	exposed : en	d vertical left and r	iaht exc	osed:C-C for							
	2-7-15 oc purlins, e	except end verticals, a	and	members and	d forces & MWFRS	for rea	ctions shown	:						
	2-0-0 oc punins (3-2	2-2 max.): 6-7.		Lumber DOL	=1.60 plate grip DO	DL=1.60)	,						
	bracing	applied of 6-5-9 oc	3)	Provide adec	uate drainage to p	revent	water ponding	1.						
WERS	1 Row at midnt	7-17 5-17 8-16 3-2	20 4)	This truss ha	s been designed fo	or a 10.0) psf bottom							
WEBO	i now at mapt	10-13	-0,	chord live loa	ad nonconcurrent w	ith any	other live loa	ds.						
REACTIONS	(size) 13-0-5-8	20-0-5-8	5)	All bearings a	are assumed to be	SP No.	2 crushing							
REAGING NO	Max Horiz 20=151 (I	(C 16)		capacity of 5	65 psi.									
	Max Inlift 13=-276 ((I C 13) 20=-276 (I C	(12) 6)	Provide mecl	hanical connection	(by oth	ers) of truss to	0						
	Max Grav 13-1858	$(1 \oplus 10), 20 = 210$ (10)	1)	bearing plate	capable of withsta	inding 2	76 lb uplift at							
FORCES	(lb) Maximum Corr	(20 1), 2021000 (20	'))	joint 20 and 2	276 Ib uplift at joint	13.	whee 0040							
FURGES	(ID) - Maximum Con Tension	ipression/waximum	7)	I his truss is	designed in accord	ance w	ith the 2018	nd						
	1-2=0/32 2-3=-837/	183 3-5=-2870/484		Pene 10.2 or	Residential Code s	dord AN	191/TDI 1	na						
	5-6=-2272/478.6-7=	=-1949/467.	8)	Graphical pu	rlin representation	does no	t denict the s	170						
	7-8=-2271/478, 8-10)=-2871/484,	0)	or the orients	ation of the nurlin al	long the	ton and/or	120						
	10-11=-837/183, 11	-12=0/32, 2-20=-613	/205,	bottom chord	l.	iong inc								
	11-13=-613/205			AD CASE(S)	Standard							CON	1000	
BOT CHORD	19-20=-467/2609, 1	7-19=-297/2344,		(U)	olandara							A OF M	AIS C	
	16-17=-128/1948, 1	4-16=-245/2344,									1	750	N.O.	
	13-14=-343/2609										8	SCOTT	M NA	
WEBS	6-17=-69/594, 7-17=	=-222/225,									R			
	7-16=-128/606, 3-19	9=-202/214,									b .	SEVI		
	5-19=-39/388, 5-1/=	=-617/273,									80	1	A 130	
	3 - 10 = -017/273, 8 - 14	+=-39/389,									849	1. #~	·> So a line to	
	10-14=-202/214, 3-2	20=-2203/332,									10	COLOM		
NOTES	10 10-2204/332									-	5	PE-20010	018807	
	od roof live loade beve	boon considered for									N	The second	12H	
this design	a roor live loads have										Y	080	O'H	
uns desigi												UN ONA	LETA	
												Un In		

TION

IEW

January 29,2025

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	A9	Нір	1	1	Job Reference (optional)	171039419

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:49 ID:jH71xCGyFKwE9WLqWNGeikz8PrB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:73.6

Plate Offsets (X, Y): [2:Edge,0-2-4],	[8:0-8-8,0-1-12], [15	:Edge,0-5	-8], [16:0-5-8,0	-1-12], [18:0-5-4,0-	2-0], [1	9:0-2-4,Edge]	, [20:Ed	lge,0-2-8	8], [21:0-	2-4,0-2	2-4], [23:0-2-12,0-	3-0]
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.73	Vert(LL)	-0.35	18-19	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.97	Vert(CT)	-0.63	18-19	>757	180		
BCLL	0.0	Rep Stress Incr	YES		WB	0.97	Horz(CT)	0.36	15	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 233 lb	FT = 20%
LUMBER			W	EBS 6	6-24=-116/765. 8-2	2=-111	/339.						
TOP CHORD	2x4 SP No.2			8	3-21=-2965/294, 19	-21=-2	92/3728,						
BOT CHORD	2x4 SP No.2 *Excep	t* 20-9,10-17:2x3 SF	۶F	8	3-19=-383/3745, 10)-19=-1	254/259,						
	No.2			1	6-18=-337/2739, 1	2-18=-	63/738,						
WEBS	2x3 SPF No.2 *Exce	ept*		1	2-16=-969/219, 3-	26=-22	19/320,						
	21-8,21-19,19-8,15-	13:2x4 SP No.2,		1	13-16=-190/1932, 7	-22=-2	67/142,						
	26-2:2x4 SP 2400F 2	2.0E		1	-24=-426/135, 3-2	5=-141	186,						
BRACING					0-20=-34/327, 0-24	=-546/2	.44						
TOP CHORD	Structural wood she	athing directly applie	dor N	OTES				_					
	2-3-12 oc purlins, e	xcept end verticals, a	and 1)	Unbalanced	root live loads have	e been (considered to	r					
	2-0-0 oc purlins (3-7 Bigid coiling directly	-8 max.): 6-8.	2)	Wind: ASCE	7-16: \/ult=115mpl	13-00	cond quet)						
BOTCHORD	bracing Except:	applied of 10-0-0 oc	<u> </u>	Vasd=91mpt	1 TCDI =6 0nsf: B(10-360	Insf: h=35ft:						
	8-10-14 oc bracing:	25-26		Ke=1.00: Ca	t. II: Exp C: Enclos	ed: MW	FRS (envelor	be)					
	6-0-0 oc bracing: 19	-20		exterior zone	and C-C Exterior(2E) -0-1	0-8 to 4-1-8,	- /					
	2-2-0 oc bracing: 18	-19.		Interior (1) 4-	1-8 to 15-9-13, Ex	erior(21	R) 15-9-13 to						
WEBS	1 Row at midpt	8-22, 8-21, 3-26, 7-2	22,	22-10-11, Int	erior (1) 22-10-11 t	o 24-2-	3, Exterior(2F	R)					
		7-24		24-2-3 to 31-	3-0, Interior (1) 31-	-3-0 to 4	10-10-8 zone;						
REACTIONS	(size) 15=0-5-8,	26=0-5-8		cantilever lef	t and right exposed	i; end v	ertical left an	d					
	Max Horiz 26=138 (L	_C 12)		for reactions	shown: Lumber D		Ces & MINTR	.5					
	Max Uplift 15=-263 (LC 13), 26=-263 (LC	12)	DOI = 1.60	Shown, Lumber Do	JL=1.00	plate grip						
	Max Grav 15=1858	(LC 1), 26=1858 (LC	1) 3)	Provide adec	uate drainage to p	revent	water ponding	1.					
FORCES	(lb) - Maximum Com	pression/Maximum	4)	All plates are	3x4 MT20 unless	otherwi	se indicated.	,-					Th
		107 0 5 0000/407	5)	This truss ha	s been designed fo	or a 10.0) psf bottom					OF N	ALL ALL
TOP CHORD	1-2=0/32, 2-3=-868/	197, 3-5=-2886/497,		chord live loa	ad nonconcurrent w	ith any	other live loa	ds.				AFUT	IISS W
	5-0=-2307/493, 0-7= 7-82157/492 8-9-		6)	All bearings a	are assumed to be	SP No.	2 crushing				A		N.S.
	9-10=-3269/602 10-	-12=-3837/618		capacity of 5	65 psi.						R	SCOTT	M. VEN
	12-13=-3052/476. 13	3-14=0/32.	7)	Provide mecl	hanical connection	(by oth	ers) of truss to	0			4	/ SEVI	ER \Y
	2-26=-634/214, 13-1	5=-1785/365		bearing plate	capable of withsta	inding 2	63 Ib uplift at			- 7	14	-1	1+4
BOT CHORD	25-26=-424/2593, 24	4-25=-297/2413,	8)	This trues is	designed in accord	20. ance w	ith the 2018				NO		0
	22-24=-193/2157, 2	1-22=-167/2083,	0)	International	Residential Code s	sections	R502 11 1 a	nd			M.	the	Vor Nat
	20-21=-8/77, 19-20=	-95/0, 9-19=-64/392	,	R802.10.2 ar	nd referenced stan	dard AN	ISI/TPI 1.	na			117	HOM	
	18-19=-335/3351, 17	7-18=0/104,	9)	Graphical pu	rlin representation	does no	ot depict the s	ize			N.	OX PE-20010	J18807 A
	10-18=-89/1016, 16-	-17=-1/56,	-,	or the orienta	ation of the purlin a	long the	top and/or				V	(B)	1SH
	10-10=-103/708			bottom chord	l	-						Slow.	EN
			L	DAD CASE(S)	Standard							WNA	L
												un	

January 29,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	A10	Нір	1	1	Job Reference (optional)	171039420

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:49 ID:F4ZfksFKU0oNYNmezfIPAWz8PrC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:73.3

late Offsets (X, Y): [12:0-3-0,0-2-4], [13:0-2-8,0-2-0], [19:0-2-8,0-2-0], [20:0-3-0,0-2-4]														
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.80 0.75 0.80	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.33 0.12	(loc) 16 16-18 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 191 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 *Excep 2.0E 2x4 SP No.2 2x3 SPF No.2 *Excep No.2 Structural wood she 2-2-0 oc purlins, ex 2-0-0 oc purlins, ex 2-0-0 oc purlins (3-3 Rigid ceiling directly bracing. (size) 12=0-5-8, Max Horiz 20=125 (I Max Uplift 12=-247 (Max Grav 12=1857 (Ib) - Maximum Com Tension 1-2=0/35, 2-4=-3021 5-6=-2409/507, 6-7- 7-8=-2545/474, 8-10 2-20=-1780/372, 10 19-20=-288/706, 18 16-18=-201/2174, 1: 13-14=-318/2601, 1: 4-19=-24/180, 4-18= 5-16=-150/543, 6-16 7-16=-150/543, 6-16 7-16=-150/543, 8-13 2-19=-205/1901, 10	bit* 3-5,7-9:2x4 SP 24 apt* 20-2,12-10:2x6 S athing directly applie cept end verticals, ar 3-0 max.): 5-7. applied or 9-11-1 oc , 20=0-5-8 _C 11) [LC 13), 20=-247 (LC (LC 1), 20=1857 (LC npression/Maximum 1/482, 4-5=-2545/474 -2409/507, D=-3021/482, 10-11= -12=-1780/372 -19=-347/2601, 4-16=-188/2174, 2-13=-178/706 =-513/249, 5-18=-51/ 3=-24/180, -13=-203/1901	2) 000F 3P d or nd 10 1) 6) 1, 7) 0/35, 8) 421,	Wind: ASCE Vasd=91mph Ke=1.00; Cat exterior zone Interior (1) 4- 21-2-11, Inte 25-10-3 to 32 cantilever left right exposed for reactions DOL=1.60 Provide aded This truss ha chord live loa All bearings a capacity of 50 Provide med bearing plate joint 20 and 2 This truss is o International R802.10.2 ar Graphical pu or the orienta bottom chord DAD CASE(S)	7-16; Vult=115mph ; TCDL=6.0psf; BC i. II; Exp C; Encloss and C-C Exterior(2 1-8 to 14-1-13, Ext rior (1) 21-2-11 to 2 2-9-13, Interior (1) 3 and right exposed d;C-C for members shown; Lumber DC uate drainage to p s been designed for d nonconcurrent w are assumed to be 65 psi. nanical connection capable of withsta 247 lb uplift at joint designed in accord Residential Code s d referenced stano- rlin representation tion of the purlin al Standard	n (3-sec CDL=6.(2d; MW 2E) -0-1 erior(2F 25-10-3 32-9-13 ; end v and for DL=1.60 revent v and for DL=1.60 revent v or a 10.0 rith any SP No. (by oth- nding 2 12. ance wise ections dard AN does no ong the	ond gust))psf; h=35ft; FRS (envelop 0-8 to 4-1-8, R141-13 to Exterior(2R) plate grip vater ponding psf bottom other live loa 2 crushing ers) of truss t 47 lb uplift at th the 2018 R502.11.1 a SI/TPI 1. t depict the s top and/or	pe)) one; dd RS g. ds. ds. size				STATE OF M STATE SCOTT	MISSOLIRI M. ER	
NOTES	ed roof live loads have	been considered for									ØS	8 45	ile ile	

this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

E

PE-2001018807

January 29,2025

SIONAL

0

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	A11	Нір	1	1	Job Reference (optional)	171039421

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:49 ID:nu?HXWEijjgWwDBSPyEAdJz8PrD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

27-6<u>-3</u> 6-4-3 17-4-9 22-7-7 33-7-13 40-0-0 12-5-13 6-4-3 6-1-11 4-10-12 5-2-13 4-10-12 6-1-11 6-4-3 3x4= 3x4= 5x5= 5x5= -10 -1 4 5 22 23 6 7 ,12 6 3x4 👟 3x4 🚽 3 8 21 24 20 25

Scale = 1:73.1

Plate Offsets ((X, Y): [11:0-3-0,0-2-4]], [12:0-2-8,0-2-0], [1	8:0-2-8,0-2	2-0], [19:0-3-0,	0-2-4]								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.86 0.79 0.68	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.42 0.13	(loc) 15 15-17 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 189 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce No.2 Structural wood shea except end verticals, (3-3-10 max.): 4-7. Rigid ceiling directly	pt* 19-2,11-9:2x6 Sf athing directly applie , and 2-0-0 oc purlins applied or 9-10-15 c	2) ed, s oc	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 19-6-11, Inte 27-6-3 to 34- cantilever lef right expose for reactions	7-16; Vult=115mp n; TCDL=6.0psf; B t. II; Exp C; Enclos and C-C Exterior 1-8 to 12-5-13, Ex rior (1) 19-6-11 to 7-0, Interior (1) 34 t and right expose d;C-C for members shown; Lumber D	oh (3-sec CDL=6.0 sed; MW (2E) -0-1 (terior(2F 27-6-3, 1 -7-0 to 4 d; end v s and for OL=1.60	ond gust))psf; h=35ft; FRS (envelop 0-8 to 4-1-8, 3) 12-5-13 to Exterior(2R) 0-10-8 zone; ertical left an ces & MWFR plate grip	d S					
WEBS REACTIONS	bracing. 1 Row at midpt (size) 11=0-5-8, Max Horiz 19=114 (L Max Uplift 11=-229 (I Max Grav 11=1857 (5-17, 6-13 19=0-5-8 .C 11) LC 13), 19=-229 (LC (LC 1), 19=1857 (LC	3) 4) 5) (12) (1) (1) (1)	Provide adec This truss ha chord live loa All bearings capacity of 5 Provide mec	quate drainage to p is been designed f ad nonconcurrent v are assumed to be 65 psi. banical connection	orevent v or a 10.0 with any e SP No.	vater ponding) psf bottom other live loa 2 crushing	g. ds.					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	ý 0)	bearing plate	capable of withst	anding 2	29 lb uplift at	0					
TOP CHORD	1-2=0/35, 2-3=-3003 4-5=-2288/466, 5-6= 6-7=-2288/466, 7-8= 8-9=-3003/477, 9-10 9-11=-1783/367	6/477, 3-4=-2661/473 2672/505, 2661/473, ==0/35, 2-19=-1783/3	3, 7) 367, 8)	This truss is International R802.10.2 a Graphical pu or the orienta	designed in accord Residential Code nd referenced star rlin representation ation of the purlin a	dance wi sections idard AN i does no along the	th the 2018 R502.11.1 a ISI/TPI 1. ot depict the s	nd size					
BOT CHORD	18-19=-234/616, 17- 15-17=-311/2641, 13 12-13=-322/2595, 11	18=-350/2595, 3-15=-286/2641, 1-12=-138/616	LO	bottom chord AD CASE(S)	I. Standard	liong inc						E OF M	AISSO
WEBS NOTES	3-18=-82/109, 3-17= 7-13=-79/791, 8-13= 2-18=-231/1987, 9-1 5-15=-15/181, 5-17= 6-13=-716/202	365/213, 4-17=-79/ 365/213, 8-12=-82/ 2=-228/1987, 716/202, 6-15=-15/	791, 109, 181,								S	SCOTI SEVI	ER Server

1) Unbalanced roof live loads have been considered for this design.

E

January 29,2025

PE-200101

SIONAL

Page: 1

40-10-8

0-10-8

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	A12	Нір	1	1	Job Reference (optional)	171039422

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:50 ID:IiRuJAE3yPYfl3cFrEjx55z8PrE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:72.9

Plate Offsets	(X, Y): [12:Edge,0-5-8]], [13:0-2-8,0-2-0], [19:0-2-8,0-	2-0], [20:Edge	,0-5-8]								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.70 0.91 0.70	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.24 -0.51 0.13	(loc) 16 14-16 12	l/defl >999 >932 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 182 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep 2.0E 2x3 SPF No.2 *Exce No.2 Structural wood shea 2-7-11 oc purlins, e: 2-0-0 oc purlins (2-7 Rigid ceiling directly bracing. 1 Row at midpt (size) 12=0-5-8, Max Horiz 20=101 (L Max Uplift 12=-208 (Max Grav 12=1858 ((lb) - Maximum Com Tension	ept* 17-15:2x4 SP 240 ept* 20-2,12-10:2x4 athing directly applia xcept end verticals, -14 max.): 4-8. applied or 8-8-9 oc 5-18, 6-14 20=0-5-8 -C 11) LC 13), 20=-208 (LC (LC 1), 20=1858 (LC upression/Maximum	2) 00F SP ed or and 3) 4) 5) C 12) C 12) C 1) 7)	Wind: ASCE Vasd=91mp Ke=1.00; Ca exterior zomu Interior (1) 4 17-10-11, In 29-2-3 to 36 cantilever le right expose for reactions DOL=1.60 Provide ade This truss ha chord live lo All bearings capacity of 5 Provide med bearing plat joint 20 and This truss is	7-16; Vult=115n h; TCDL=6.0psf; it. II; Exp C; Encl a and C-C Exterio -1-8 to 10-9-13, I terior (1) 17-10-1 -3-0, Interior (1) : ft and right expos d; C-C for membe s shown; Lumber quate drainage to a soccurren are assumed to l 665 psi. shanical connecti a capable of with 208 lb uplift at jo designed in acco	nph (3-sec BCDL=6. osed; MW or(2E) -0 Exterior(2I 1 to 29-2- 36-3-0 to 4 sed ; end 1 to 29-2- do prevent 1 d for a 10. t with any be SP No. on (by oth standing 2 int 12. ordance w	cond gust) Dpsf; h=35ft; FRS (envelo 10-8 to 4-1-8, R) 10-9-13 to 3, Exterior(2f 40-10-8 zone vertical left ar cres & MWFF 0 plate grip water ponding 0 psf bottom other live loa 2 crushing ers) of truss f 008 lb uplift at ith the 2018	pe) ?) ; id ?S g. dds. ;					
TOP CHORD	1-2=0/32, 2-3=-3022 4-5=-2428/459, 5-6= 6-8=-2427/459, 8-9= 9-10=-3022/476, 10- 2-20=-1784/360, 10- 19-20=-187/583, 18-	'4, ⁷⁾ 8) L(International R802.10.2 a Graphical pu or the orient bottom chor DAD CASE(S)	Residential Cod nd referenced st urlin representation ation of the purlir d. Standard	le sections andard AN on does no along the	S R502.11.1 a ISI/TPI 1. Dt depict the set top and/or	and size				Soft OF M	AISS	
16-18=-443/3030, 14-16=-414/3035, 13-14=-331/2619, 12-13=-105/585 WEBS 3-19=-132/86, 3-18=-234/188, 4-18=-79/858, 8-14=-79/860, 9-14=-231/188, 9-13=-132/86, 2-19=-248/2047, 10-13=-246/2044, 5-16=0/237, 5-18=-949/261, 6-16=0/230, 6-14=-954/262 NOTES 1) Unbalanced roof live loads have been considered for this design										2		SCOTT SEVI	ER BER D18807

nis design.

TION IEW DEVELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI 02/04/2025 11:09:48

E

January 29,2025

SIONAL

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	A13	Roof Special	1	1	Job Reference (optional)	171039423

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:50 ID:yke?GTAx8twMClkl2h7mO2z8PrJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:72.7

Plate Offsets ((X, Y): [2:0-1-4,0-5	-0], [6:0-2-12,Edge], [7	:0-4-0,0-2-1], [11:0-4-1,0-	0-5]								
Loading TCLL (roof) TCDL BCLL BCDL	(psi 25. 10. 0. 10.	 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code 	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.74 0.82 0.73	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.34 0.04	(loc) 15-17 15-17 11	l/defl >999 >675 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 190 lb	GRIP 197/144 FT = 20%
JODE	10.		11(02010	0/11/2014	Matrix 0				-			Weight. 150 lb	11 = 2070
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2x4 SP No.2 *Ex 2x4 SP No.2 2x3 SPF No.2 *E 18-2:2x4 SP 240 Right 2x4 SP No Structural wood 5-6-12 oc purlins 2-0-0 oc purlins	cept* 4-6,6-7:2x6 SPF xcept* 15-7:2x4 SP No 0F 2.0E .2 2-11-6 sheathing directly appli , except end verticals, 6-0-0 max.): 4-7.	2) No.2 .2, ed or and	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 14-1-13, Inte 29-8-0 to 34 cantilever lef right expose for reactions DOL=1.60	7-16; Vult=115mµ ;; TCDL=6.0psf; E t. II; Exp C; Enclose and C-C Exterior -1-8 to 9-1-13, Ext rior (1) 14-1-13 to -8-12, Interior (1) 3 t and right exposed d;C-C for member shown; Lumber E	oh (3-sec 3CDL=6.0 sed; MW (2E) -0-1 2erior(2R 29-8-0, 34-8-12 t ed; end v s and for 0OL=1.60	ond gust))psf; h=35ft; FRS (envelop 0-8 to 4-1-8,) 9-1-13 to Exterior(2R) 0 40-0-0 zone rertical left an rces & MWFR) plate grip	oe) o; d :S					
WEBS	bracing, Excep 6-0-0 oc bracing 1 Row at midpt	ctiy applied or 10-0-0 o :: : 15-17. 7-15	c 3) 4)	Provide adeo This truss ha chord live loa	quate drainage to as been designed ad nonconcurrent	prevent for a 10.0 with any	water ponding) psf bottom other live loa	j. ds.					
REACTIONS	(size) 11= N 18=0- Max Horiz 18=-9 Max Uplift 11=-1 18=-1 Max Grav 11=77 18=81	echanical, 15=0-3-8, 5-8 3 (LC 17) 45 (LC 13), 15=-399 (L0 79 (LC 12) 8 (LC 1), 15=2088 (LC 4 (LC 25)	5) C 12), 6) 7) 1),	Bearings are capacity of 5 of 565 psi. Refer to gird Provide mec bearing plate joint 11, 399	assumed to be: J 65 psi, Joint 15 Sl er(s) for truss to tr hanical connection capable of withst lb uplift at joint 15	loint 18 S P No.2 c russ conr n (by oth canding 1 5 and 17S	SP No.2 crush rushing capao nections. ers) of truss t 45 lb uplift at 0 lb uplift at jo	iing bity o int					
FORCES	(lb) - Maximum (Tension	Compression/Maximum	8)	This truss is International	designed in accor Residential Code	dance w sections	ith the 2018 R502.11.1 a	nd					~
TOP CHORD	1-2=0/32, 2-3=-4 4-5=-680/216, 5- 8-9=-713/185, 9- 2-18=-398/161	41/114, 3-4=-814/197, 7=-21/471, 7-8=-786/24 11=-1196/230,	45, 9)	R802.10.2 a Graphical pu or the orienta	nd referenced star Irlin representation ation of the purlin	ndard AN n does no along the	ISI/TPI 1. ot depict the s top and/or	ize			b	THE OF M	AISSOL
BOT CHORD	17-18=-263/877, 13-15=-10/650, 11-12=-132/977	15-17=-280/128, 2-13=-132/977,	LC	DAD CASE(S)	Standard						Ro.	S SCOTT	ER
NEBS	4-17=-125/113, 3 7-15=-1274/209, 8-13=-126/495, 9 3-18=-643/178, 5 5-17=-186/1020	5-15=-1281/452, 7-13=-214/185, 9-13=-479/195, 9-12=0/ 3-17=-243/183,	210,							4		NUME PE-20010	BER D18807
NOTES 1) Unbalance this design	ed roof live loads h n.	ave been considered fo	r									SIONA	L ENG.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

ΤΙΟΝ IEW DEVELOPMENT SERVICES LEE'S' SUMMIT'S MISSOURI 02/04/2025 11:09:48

January 29,2025

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	A14	Roof Special	1	1	Job Reference (optional)	171039424

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:50 ID:MJK8uVCpQoIx3lStkqgT?gz8PrG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:72.7

Plate Offsets (X, Y): [4:0-1-12,0-5-4]], [6:0-4-0,0-2-1], [10	:0-4-1,0-0-	5], [18:Edge,0	-6-8]								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.78 0.54 0.75	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.21 0.04	(loc) 10-11 10-11 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 186 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Excep 2x4 SP No.2 2x3 SPF No.2 *Exce No.2 Right 2x4 SP No.2 Structural wood shea 4-10-1 oc purlins, e: 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt (size) 10= Mech 18=0-5-8 Max Horiz 18=-98 (L Max Uplift 10=-141 (18=-180 (Max Grav 10=761 (L 18=794 (L	t* 3-4,4-6:2x6 SPF N pt* 14-6,18-2:2x4 SP - 2-11-7 athing directly applied xcept end verticals, a +0 max.): 3-6. applied or 6-0-0 oc 3-16, 6-14 hanical, 14=0-3-8, C 17) LC 13), 14=-399 (LC LC 12) C 1), 14=2127 (LC 1 C 25)	2) o.2 d or ind 3) 4) 5) 12), 6)), 7)	Wind: ASCE Vasd=91mph Ke=1.00; Car exterior zone Interior (1) 4- 12-5-13, Inte 29-8-0 to 34- cantilever lef right exposed for reactions DOL=1.60 Provide aded This truss ha chord live loa Bearings are capacity of 5 of 565 psi. Refer to girdd Provide med bearing plate	7-16; Vult=115mj ;; TCDL=6.0psf; E i: II; Exp C; Enclo- and C-C Exterior 1-8 to 7-5-13, Ext rior (1) 12-5-13 to 9-15, Interior (1) 3 and right expose t;C-C for member shown; Lumber E uate drainage to s been designed id nonconcurrent assumed to be: J 65 psi, Joint 14 Si er(s) for truss to tr nanical connection capable of withst built of the start of the start of the start shown; Lumber E 1-10, 1-10	bh (3-sec 3CDL=6.(sed; MW (2E) -0-1 terior(2R, 29-8-0, 34-9-15 t d; end \v s and for OCL=1.60 prevent \v for a 10.0 with any loint 18 § P No.2 c uss conr n (by oth tanding 1 and 20	oond gust) Dpsf; h=35ft; FRS (envelo 0-8 to 4-1-8, 7-5-13 to Exterior(2R) 0 40-0-0 zon- vertical left ar ces & MWFF 0 plate grip water ponding 0 psf bottom other live loa P No.2 crushing capa vections. ers) of truss for 41 lb uplift at in	pe) e; nd RS g. ds. hing city to					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	8)	14.	designed in accor	dance w	ith the 2018	лп					

International Residential Code sections R502.11.1 and

Graphical purlin representation does not depict the size

R802.10.2 and referenced standard ANSI/TPI 1.

or the orientation of the purlin along the top and/or

 TOP CHORD
 1-2=0/32, 2-3=-975/207, 3-5=-240/113, 5-6=-101/811, 6-7=-716/241, 7-8=-905/232, 8-10=-1133/246, 2-18=-730/230

 BOT CHORD
 17-18=-355/641, 16-17=-172/765, 14-16=-170/114, 12-14=-30/581, 11-12=0/556, 10-11=-146/927

 WEBS
 3-17=0/313, 3-16=-654/149, 5-16=-5/499, 5-14=-1414/418, 6-14=-1591/265,

6-12=-17/184, 7-12=-75/153, 7-11=-93/421, 8-11=-316/215, 2-17=-60/237

NOTES

1) Unbalanced roof live loads have been considered for this design.

January 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

9)

bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	B1	Hip Girder	1	1	Job Reference (optional)	171039425

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:50 ID:fovi0FVzmW7zkll3usvyLgzsQYc-RfC?PsB70Hg3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

TION

DEVELOPMEN SERVICES

LEE'S'SUMMIT'SMISSOURI 02/04/2025 11:09:48

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	B2	Нір	1	1	Job Reference (optional)	171039426

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:50 ID:fovi0FVzmW7zkll3usvyLgzsQYc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

L	UMBER		4)	This truss has been designed for a 10.0 psf bottom	
Т	OP CHORD	2x4 SP No.2 *Except* 3-4:2x4 SP 2400F		chord live load nonconcurrent with any other live loads.	
		2.0E	5)	Refer to girder(s) for truss to truss connections.	
В	OT CHORD	2x4 SP No.2	6)	Provide mechanical connection (by others) of truss to	
N	/EBS	2x3 SPF No.2 *Except* 6-5:2x4 SP No.2		bearing plate capable of withstanding 104 lb uplift at	
S	LIDER	Left 2x4 SP No.2 3-6-9	7)	Joint 1 and 98 ib uplift at joint 6.	
В	RACING		()	International Residential Code sections P502 11 1 and	
Т	OP CHORD	Structural wood sheathing directly applied or		R802 10 2 and referenced standard ANSI/TPI 1	
		4-2-15 oc purlins, except end verticals, and	8)	Graphical purlin representation does not depict the size	
Б		2-0-0 oc purins (6-0-0 max.): 3-4.	0)	or the orientation of the purlin along the top and/or	
Б	OT CHORD	kigid ceiling directly applied or 10-0-0 oc		bottom chord.	
W	/EBS	1 Row at midpt 3-7	LC	AD CASE(S) Standard	
R	FACTIONS	(size) 1= Mechanical 6= Mechanical			
		Max Horiz $1=71$ (LC 11)			
		Max Uplift 1=-104 (LC 12), 6=-98 (LC 13)			
		Max Grav 1=908 (LC 1), 6=908 (LC 1)			
F	ORCES	(Ib) - Maximum Compression/Maximum			
		Tension			
Т	OP CHORD	1-3=-1428/319, 3-4=-1132/329,			
		4-5=-1349/303, 5-6=-856/234			
В	OT CHORD	1-9=-232/1174, 7-9=-234/1170, 6-7=-109/250			
N	/EBS	3-9=0/308, 3-7=-167/106, 4-7=0/236,			
		5-7=-109/889			
N	OTES				A
1) Unbalanc	ed roof live loads have been considered for			BA
~	this desig	n. OF 7.40:) ():			AS
- 2) vvind: AS	CE 7-16; Vuit=115mpn (3-second gust)			<i>N</i> 1

2) Wind: ASCE 7-16; Vull=115mpn (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 5-0-0, Interior (1) 5-0-0 to 6-5-6, Exterior(2R) 6-5-6 to 13-6-4, Interior (1) 13-6-4 to 14-2-10, Exterior(2E) 14-2-10 to 20-2-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE IOR ON TRUCTION AS NOTED ON PLANS REVIEW DEVELORMENT SERVICES LEE'S SUMMIT MISSOURI 02/04/2025 11:09:48

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	B3	Нір	1	1	Job Reference (optional)	171039427

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:50 ID:7_T4DbWbXpFpMutFRZQBttzsQYb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:42.9

Plate Offsets (X, Y): [1:0-2-8,0-1-5], [5:Edge,0-7-13]

	() ()												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TF	PI2014	CSI TC BC WB Matrix-S	0.51 0.63 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.25 0.03	(loc) 1-9 1-9 6	l/defl >999 >968 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 89 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP 2400F 2.0E No.2 2x4 SP No.2 *Exce Left 2x4 SP No.2 *Exce Left 2x4 SP No.2 *Exce 6-0-0 oc purlins, ex 2-0-0 oc purlins, ex 2-0-0 oc purlins (5-6 Rigid ceiling directly bracing. (size) 1= Mecha Max Horiz 1=86 (LC Max Uplift 1=-121 (L Max Grav 1=908 (LC (lb) - Maximum Com Tension	*Except* 3-4:2x4 SP ept* 6-5:2x4 SP No.2 4-5-12 athing directly applie cept end verticals, ar -5 max.): 3-4. applied or 10-0-0 oc anical, 6= Mechanica 16) C 12), 6=-116 (LC 1: C 1), 6=908 (LC 1) apression/Maximum	4) TI ct 5) R 6) P be 7) TI nd R 8) G c c bc 1 LOAD	his truss has hord live loac efer to girde rovide mech earing plate init 1 and 11/ his truss is d itternational F 802.10.2 an- irraphical purt rthe orientat ottom chord. D CASE(S)	been designed f d nonconcurrent t r(s) for truss to tru anical connectior capable of withst 6 lb uplift at joint (lesigned in accorr Residential Code d referenced star lin representation ion of the purlin a Standard	for a 10.0 with any uss conr (by oth anding 1 6. dance w sections dard AN does no along the) psf bottom other live loz nections. ers) of truss : 21 lb uplift a ith the 2018 ; R502.11.1 a ISI/TPI 1. ot depict the e top and/or	ads. to and size					
TOP CHORD BOT CHORD WEBS	1-3=-1305/289, 3-4= 4-5=-1259/280, 5-6= 1-9=-190/1048, 7-9= 3-9=0/270, 3-7=-178	=-1017/318, =-831/243 =-192/1045, 6-7=-156 8/123, 4-7=-10/220,	6/444										
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=911 Ke=1.00; exterior za Interior (1 Exterior(2 20-2-4 zo vertical le forces & M DOL=1.60 3) Provide a	ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2)) 5-0-0 to 8-1-6, Exterior R) 12-6-10 to 19-7-8, I ne; cantilever left and r ft and right exposed;C- WWFRS for reactions s 0 plate grip DOL=1.60 dequate drainage to pr	been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-0-0 to 5-0-0, or(2E) 8-1-6 to 12-6- nterior (1) 19-7-8 to ight exposed ; end C for members and hown; Lumber event water ponding	e) 10,							1		TE OF M SCOT SEVI PE-20010 PE-20010	MISSOLA T.M. ER 018807

January 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	B4	Нір	1	1	Job Reference (optional)	171039428

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:51 ID:YZ9CsdYUqkdODMcq7h_uVWzsQYY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:53 Plate Offsets (X, Y): [1:0-3-8,Edge]

														_
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.32 0.85 0.87	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.44 0.04	(loc) 1-11 1-11 8	l/defl >999 >556 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	-
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 95 lb	FT = 20%	
LUMBER TOP CHORE BOT CHORE WEBS SLIDER BRACING TOP CHORE	 2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce Left 2x4 SP No.2 3 Structural wood she 5-2-6 oc purlins, exi 2-0-0 oc purlins (6-0) 	pt* 8-7:2x4 SP No.2 3-2-0 athing directly applie cept end verticals, ar -0 max.): 4-5.	4) 5) 6) d or 7) nd	This truss ha chord live loa Refer to girdd Provide mec bearing plate joint 1 and 13 This truss is International R802.10.2 ar Graphical pu	s been designed for ad nonconcurrent w er(s) for truss to tru hanical connection capable of withsta 31 lb uplift at joint 8 designed in accord Residential Code s nd referenced stand fin representation	or a 10.0 rith any ss conr (by oth nding 1 ance w sections dard AN does no) psf bottom other live loa iections. ers) of truss t 35 lb uplift at ith the 2018 i R502.11.1 a ISI/TPI 1. t depict the s	ds. o ind						-
301 CHORL	Rigid ceiling directly bracing	applied or 10-0-0 oc	; 0)	or the orienta	ation of the purlin al	ong the	top and/or	120						
REACTIONS	(size) 1= Mecha Max Horiz 1=102 (LC Max Uplift 1=-135 (L Max Grav 1=908 (LC	nical, 8= Mechanica C 16) C 12), 8=-131 (LC 13 C 1), 8=908 (LC 1)	l LC 3)	bottom chorc DAD CASE(S)	l. Standard									
FORCES	(lb) - Maximum Com Tension	pression/Maximum												
TOP CHORE	1-3=-1378/329, 3-4= 4-5=-897/266, 5-6=- 7-8=-309/113	1085/268, 1078/270, 6-7=-389/	88,											
BOT CHORE	0 1-11=-263/1135, 9-1 8-9=-230/1087	1=-100/906,												
WEBS	4-11=-56/318, 4-9=- 6-8=-955/244, 3-11=	166/101, 5-9=-75/27 -306/217, 6-9=-264/	5, 205									Contra Contra	ADD	
NOTES												OF N	AIS C	
1) Unbalan	ced roof live loads have	been considered for									1	750	N.O.	
this desi	gn.										B	N/ SCOT	M NA	
2) Wind: AS	SCE 7-16; Vult=115mph	(3-second gust)									R			
Vasd=91	mph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;									11	SEVI		
Ke=1.00	; Cat. II; Exp C; Enclose	d; MWFRS (envelop	e)								20	1 12 2	0.	
exterior 2	cone and C-C Exterior(2	E) 0-0-0 to 5-0-0,									W .		Xanana	5
Interior (1) 5-0-0 to 9-9-6, Exterio	or(2E) 9-9-6 to	4							*	AL.	NUM	SLA THE	/
10-10-10	, Exterior(∠R) 10-10-10	to 17-11-8, Interior (1)								N3	PE-2001	018807	

17-11-8 to 20-2-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

January 29,2025

SSIONAL

E

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	B5	Common	3	1	Job Reference (optional)	171039429

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries. Inc. Tue Jan 28 08:55:51 ID:yke?GTAx8twMClkl2h7mO2z8PrJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

LUMBER

Loading

TCDL

BCLL

BCDL

TOP CHORD	2X4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x3 SPF I	No.2 *Except* 7-6:2x4 SP No.2
SLIDER	Left 2x4 S	SP No.2 2-11-7
BRACING		
TOP CHORD	Structural	l wood sheathing directly applied or
	4-5-14 oc	purlins, except end verticals.
BOT CHORD	Rigid ceili	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1= Mechanical, 7= Mechanical
	Max Horiz	1=108 (LC 12)
	Max Uplift	1=-138 (LC 12), 7=-134 (LC 13)
	Max Grav	1=908 (LC 1), 7=908 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	1-3=-143	1/365, 3-4=-1255/381,

4-5=-1221/372, 5-6=-309/105, 6-7=-259/110 BOT CHORD 1-10=-295/1181, 8-10=-133/827, 7-8=-262/1123 WFBS 4-8=-103/405, 5-8=-249/200, 4-10=-114/460,

3-10=-289/212, 5-7=-1080/253

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 5-2-5, Interior (1) 5-2-5 to 10-4-0, Exterior(2R) 10-4-0 to 15-5-11, Interior (1) 15-5-11 to 20-2-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- 4) Refer to girder(s) for truss to truss connections.

joint 1 and 134 lb uplift at joint 7. This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

bearing plate capable of withstanding 138 lb uplift at

LOAD CASE(S) Standard

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	C1	Hip Girder	1	1	Job Reference (optional)	171039430

-0-10-8

0-10-8

3-1-6

3-1-6

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:51 ID:jPnxbZUjEutFVR9gmRtUFFzsQYe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-6-0

2-7-6

8-10-10

5-9-4

Page: 1

CTION **IEW**

DEVELOPMENT SERVICES LEE'S' SUMMIT'S MISSOURI 02/04/2025 11:09:48

Scale = 1:33.3

Plate Offsets (X, Y): [9:0-2-8,0-2-12]

		-											
Loading TCLL (roof) TCDL BCU	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO		CSI TC BC WB	0.98 0.50 0.26	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.10 0.01	(loc) 7-8 7-8	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S	0.20	1012(01)	0.01	0	n/a	n/a	Weight: 50 lb	FT = 20%
LUMBER TOP CHORD 3OT CHORD WEBS BRACING TOP CHORD 3OT CHORD REACTIONS FORCES TOP CHORD 3OT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m Ke=1.00; (exterior zo and right e exposed;C Oreations s DOL=1.60 3) Provide ad 4) This truss chord live 1 5) Bearings a capacity of 6) Refer to gi	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce Structural wood she 5-7-10 oc purlins, e 2-0-0 oc purlins (2-1 Rigid ceiling directly bracing. (size) 6= Mecha Max Horiz 9=59 (LC Max Uplift 6=-140 (L Max Grav 6=746 (LC (Ib) - Maximum Com Tension 1-2=0/32, 2-3=-981/ 4-5=-862/279, 2-9=- 8-9=-114/129, 7-8=- 3-8=0/171, 3-7=-134 2-8=-187/752, 5-7=- cd roof live loads have L E 7-16; Vult=115mph uph; TCDL=6.0psf; BC cat. II; Exp C; Enclose ne and C-C Exterior(2 xposed ; end vertical I -C for members and f shown; Lumber DOL=' lequate drainage to pr has been designed foi load nonconcurrent wi re assumed to be: Joi 565 psi. rder(s) for truss to trus	ept* 9-2,6-5:2x4 SP N athing directly applie xcept end verticals, a 0-13 max.): 3-4. applied or 10-0-0 oc nical, 9=0-5-8 11) C 13), 9=-168 (LC 12 C 1), 9=800 (LC 1) pression/Maximum 316, 3-4=-769/301, 691/288, 5-6=-631/20 286/853, 6-7=-40/45 V/47, 4-7=-69/131, 211/757 been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le eft and right orces & MWFRS for 1.60 plate grip event water ponding. r a 10.0 psf bottom th any other live load nt 9 SP No.2 crushin ss connections.	7) io.2 8) d or 9) 10] 11] 2) LO 11] 2) LO 58 e) sft s. g	Provide mecl bearing plate joint 9 and 14 This truss is a International R802.10.2 ar Graphical pu or the orienta bottom chorce) "NAILED" inc per NDS guid) In the LOAD of the truss a PAD CASE(S) Dead + Roc Plate Increas Uniform Loa Vert: 1-2: Concentrate Vert: 3=- 12=-134	hanical connection capable of withsta 40 lb uplift at joint 6 designed in accord Residential Codes and referenced stand tition of the purlin a discates Girder: 3-10 delines. CASE(S) section, re noted as front (If Standard of Live (balanced): use=1.15 ads (lb/ft) =-70, 2-3=-70, 3-4= ad Loads (lb) 19 (F), 4=-19 (F), 14	(by other inding 1 i. ance wisections dard AN does not long the od (0.14 loads ap F) or bar Lumber =-70, 4-5 0=-59 (=-19 (F)	ers) of truss 68 lb uplift a th the 2018 R502.11.1 a SI/TPI 1. t depict the top and/or 8" x 3") toe- pplied to the ck (B). Increase=1. 5=-70, 6-9=-2 F), 11=-59 (F	to t and size nails face 15, 20 E), F)				THE OF M STATE OF M SEVI PE-20010 PE-20010 DE DE 20010 DE 20010	MISSOLUE MER DI8807 L ENGINE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	C2	Нір	1	1	Job Reference (optional)	171039431

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:51 ID:jPnxbZUjEutFVR9gmRtUFFzsQYe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:30.1 Plate Offsets (X, Y): [9:0-2-8 0-2-12]

Plate Offsets (A, T). [9.0-2-0,0-2-12	.]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.31 0.17 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.03 0.00	(loc) 8-9 8-9 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 52 lb	GRIP 197/144 FT = 20%	
UMBER OP CHORD OT CHORD VEBS BRACING OP CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0	ppt* 9-2,6-5:2x4 SP N athing directly applie cept end verticals, au -0 max.): 3-4.	6) 7) No.2 8) ed or nd 9)	Refer to gird Provide mec bearing plate 9 and 63 lb u This truss is International R802.10.2 a Graphical pu	er(s) for truss to tru hanical connection e capable of withsta uplift at joint 6. designed in accord Residential Code nd referenced stan urlin representation	uss conr (by oth anding s dance w sections dard AN does no	ections. ers) of truss 4 lb uplift at 5 R502.11.1 at ISI/TPI 1. bt depict the	to joint and size						
BOT CHORD	Rigid ceiling directly bracing. (size) 6= Mecha	applied or 10-0-0 or anical, 9=0-5-8	c LC	or the orienta bottom chore DAD CASE(S)	ation of the purlin a d. Standard	long the	e top and/or							
	Max Horiz 9=70 (LC Max Uplift 6=-63 (LC Max Grav 6=501 (LC	11) C 13), 9=-94 (LC 12) C 1), 9=579 (LC 1)												
ORCES	(lb) - Maximum Com Tension	pression/Maximum												
OP CHORD	1-2=0/32, 2-3=-650/ 4-5=-610/240, 2-9=-	250, 3-4=-489/266, 533/286, 5-6=-458/2	217											
SOT CHORD VEBS	8-9=-217/268, 7-8=- 3-8=0/128, 3-7=-100 2-8=-17/266, 5-7=-9	179/510, 6-7=-76/12)/51, 4-7=-35/99, 3/375	22											
OTES														
) Unbalance this design !) Wind: ASC Vasd=91n Ke=1.00; exterior co	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 4-1.8 to 4-9-6 Exterior	been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-10-8 to 4-1-8, (2E) 4-9-6 to 11-4-	r be) 4									STATE OF I	MISSOUR I M. ER	

- grip DOL=1.603) Provide adequate drainage to prevent water ponding.4) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.5) Bearings are assumed to be: Joint 9 SP No.2 crushing

zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate

 Bearings are assumed to be: Joint 9 SP No.2 crushing capacity of 565 psi.

E

January 29,2025

NUMB

SSIONAL

PE-200101880

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	C3	Common	2	1	Job Reference (optional)	171039432

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:51 ID:QCkp2dODuPBpM36l6TR?6rz8Pr1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:33.1

Plate Offsets (X, Y): [7:Edge,0-4-13]

		-											
Loading	(psf)	Spacing Plate Grip DOI	2-0-0 1 15		CSI	0.48	DEFL	in -0.03	(loc)	l/defl	L/d	PLATES	GRIP
	10.0		1.15		BC	0.40	Vert(CT)	-0.05	6-7	~999	180	101120	137/144
BCU	0.0	Ren Stress Incr	VES		WB	0.00	Horz(CT)	0.00	5	>000 n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S	0.10	11012(01)	0.01	5	Π/a	Π/a	Weight: 51 lb	FT = 20%
	1010	0000		0,1112011	indian e							itoigini o'i io	2070
UMBER			6)	Provide mec	hanical connection	ı (by oth	ers) of truss	to					
FOP CHORE	2x4 SP No.2			bearing plate	capable of withst	anding 1	03 lb uplift a	t					
BOT CHORE	2x4 SP No.2		7)	joint / and /	3 Ib uplift at joint 5.		ith the 2010						
NEBS	2x3 SPF No.2 *Exce	ept* 7-2,5-4:2x4 SP N	No.2 /)	Inis truss is	Designed in accord	Jance w		nd					
BRACING					d referenced stan		191/TDI 1	anu					
FOP CHORE	Structural wood she	athing directly applie	ed or		Stondard	luaru Ar	131/TFTT.						
	6-0-0 oc purlins, ex	cept end verticals.		JAD CASE(S)	Stanuaru								
BOT CHORL	Rigid ceiling directly	applied or 9-5-7 oc											
	bracing.												
REACTIONS	(size) 5= Mecha	inical, 7=0-5-8											
	Max Horiz 7=79 (LC	11)	,										
	Max Uplift 5=-73 (LC	5 13), 7=-103 (LC 12))										
	Max Grav 5=501 (LC	51), 7=579 (LC1)											
ORCES	(lb) - Maximum Com Tension	pression/Maximum											
FOP CHORE	1-2=0/32, 2-3=-607/2	256, 3-4=-591/263,											
	2-7=-526/309, 4-5=-	453/241											
BOT CHORE	6-7=-388/401, 5-6=-	107/178											
NEBS	3-6=0/212, 2-6=-66/2	221, 4-6=-61/286											
NOTES													
) Unbalan	ced roof live loads have	been considered for	•										
this desig	jn.												
 Wind: A8 	CE 7-16; Vult=115mph	(3-second gust)										000	ADD
Vasd=91	mph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;										8 OF M	MIC.
Ke=1.00	Cat. II; Exp C; Enclose	d; MWFRS (envelop	e)									BIE	000
exterior 2	cone and C-C Exterior(2	(2D) = 0.10-8 to 4-1-8,	^								6	AT	N.S.
Interior (1) 4-1-8 10 6-0-0, Exterio	Dr(ZR) 6-0-0 to 11-0-	U, riaht								B	SCOT	ΓM. YEY
exposed	end vertical left and riv	the exposed C-C for	nynt								R	/ SEVI	ER \ Y
member	and forces & MWFRS	for reactions shown									21		\★Ŋ
Lumber	OOL=1.60 plate grip DO	L=1.60									X	1.45	:Xn when
	p g. p = 0												

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Bearings are assumed to be: Joint 7 SP No.2 crushing capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.

NUMBER PE-2001018807 January 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	D1	Hip Girder	1	1	Job Reference (optional)	171039433

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:51 ID:jPnxbZUjEutFVR9gmRtUFFzsQYe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f D---

51 Page: 1

Plate Offsets (X, Y): [2:0-2-1,0-0-5], [7:0-4-1,0-0-5]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.37	Vert(LL)	-0.02	2-10	>999	240	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15		BC	0.45	Vert(CT)	-0.03	2-10	>999	180			
BCLL	0.0	Rep Stress Incr	NO		WB	0.06	Horz(CT)	0.01	7	n/a	n/a			
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-P							Weight: 38 lb	FT = 20%	
JUMBER FOP CHORE 3OT CHORE WEBS SLIDER BRACING	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 1 No.2 1-8-3	I-8-14, Right 2x4 SP	6) 7) 8)	Provide mec bearing plate joint 2 and 1 This truss is International R802.10.2 and Graphical pu	hanical connection e capable of withsta 72 lb uplift at joint 7 designed in accord Residential Code and referenced stan rlin representation	(by oth anding 1 7. dance w sections dard AN does no	ers) of truss 65 lb uplift a ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the	to tt and size						
FOP CHORE	 Structural wood sheat 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0 	athing directly applie ept -0 max.): 4-5.	d or 9)	or the orienta bottom chore "NAILED" inc	ation of the purlin a d. dicates Girder: 3-10	llong the Dd (0.14	e top and/or 8" x 3") toe-	nails						
BOT CHORE	 Rigid ceiling directly bracing. 	applied or 10-0-0 oc	: 10	per NDS gui) In the LOAD	delines. CASE(S) section,	loads a	oplied to the	face						
REACTIONS	(size) 2=0-5-8, 7 Max Horiz 2=36 (LC Max Uplift 2=-165 (L Max Grav 2=620 (LC	7=0-3-8 12) C 12), 7=-172 (LC 13 C 1), 7=642 (LC 1)	L(3) 1)	of the truss a DAD CASE(S) Dead + Roo Plate Increa	are noted as front (Standard of Live (balanced): ase=1.15	F) or ba Lumbei	ck (B). Increase=1.	.15,						
ORCES	(lb) - Maximum Com Tension	pression/Maximum		Vert: 1-4	aus (ib/it) =-70, 4-5=-70, 5-8=	=-70, 2-	7=-20							
TOP CHORE	1-2=0/0, 2-4=-765/28 5-7=-742/280, 7-8=0	81, 4-5=-575/285, //0		Vert: 4=-	59 (F), 5=-59 (F), 1	10=-19 (F), 9=-19 (F)),						
3OT CHORE	2-10=-160/600, 9-10	=-161/592, 7-9=-154	1/583	11=-134	(F), 12=-134 (F)									
NEBS	4-10=0/182, 4-9=-53	6/24, 5-9=0/179												
NOTES													The	
 Unbaland this deside 	ed roof live loads have	been considered for										E OF I	MISSO	
2) Wind: AS Vasd=91 Ke=1.00; exterior z	, CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le	e) eft								AL.	STATE SCOT	T M. ER	à
and right exposed; reactions	exposed ; end vertical I C-C for members and for shown; Lumber DOL=1	eft and right prces & MWFRS for 1.60 plate grip								1	B.	att	Servie	

Provide adequate drainage to prevent water ponding.
 This truss has been designed for a 10.0 psf bottom

DOL=1.60

chord live load nonconcurrent with any other live loads.5) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

E

January 29,2025

PE-200101880'

SIONAL

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	D2	Common	4	1	Job Reference (optional)	171039434

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:51 ID:7jxefnJxXb6EpH4_yVdChlzsQYs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading

TCDL

BCLL

BCDL

WEBS

SLIDER

BRACING

FORCES

WEBS

NOTES

LUMBER

Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- All bearings are assumed to be SP No.2 crushing 4) capacity of 565 psi.

January 29,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	E1	Hip Girder	1	1	Job Reference (optional)	171039435

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:52 ID:7uXnimR7K8Ba_hMzXeDZ6Uzb?EV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

8

TION /IEW

DEVERSION SERVICES LEE'S'SUMMIT'S MISSOURI 02/04/2025 11:09:48

Scale = 1:42.3

Plate Offsets (X, Y):	[2:Edae.0-2-10].	[7:Edge.0-2-10]

				-											
Loading TCLL (roof) TCDL BCLL BCDL	((psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO	8/1701014	CSI TC BC WB Matrix-S	0.83 0.99 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.14 0.05	(loc) 12-13 12-13 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144	
BCDL		10.0	Code	IKC201	0/1712014	Iviatilix-5					-		weight. 91 ib	FT = 2076	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2.0E 2x6 SPF No.2 2x3 SPF No.2 Structural wo 3-3-12 oc pur 2-0-0 oc purli Rigid ceiling of bracing. (size) 2=(Max Horiz 2=(*Except 2 od shea rlins, exi ns (5-3- directly 0-3-8, 7 63 (LC	* 4-5:2x4 SP 2400F athing directly applied cept -8 max.): 4-5. applied or 9-7-3 oc =0-5-8 16)	2) d or 3) 4)	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 13-4-2, Exter to 21-6-8 zor vertical left a forces & MW DOL=1.60 pl Provide ader This truss ha chord live loa	7-16; Vult=115mpt ; TCDL=6.0psf; BC t. II; Exp C; Enclose and C-C Exterior(1-8 to 7-3-14, Exterior(2n) 13-4-2 to 2 he; cantilever left ar nd right exposed; C FRS for reactions s ate grip DOL=1.60 uate drainage to p s been designed for ad nonconcurrent ware are assumed to bo	n (3-sec CDL=6.0 cDL=6.0 ed; MW 2E) -0-1 rior(2E) 0-5-4, lind right -C for n shown; revent v or a 10.0 vith any SEE M:	ond gust) psf; h=35ft; FRS (envelop 0-8 to 4-1-8, 7-3-14 to nterior (1) 20- exposed ; en nembers and Lumber water ponding 0 psf bottom other live loa 2 c gusting	5-4 d g. ds.						
FORCES	Max Uplift 2=- Max Grav 2=- (lb) - Maximum	-301 (L0 1498 (L m Com	C 8), 7=-306 (LC 9) C 1), 7=1509 (LC 1) pression/Maximum	5) 6)	capacity of 4 Provide mec bearing plate	are assumed to be 25 psi. hanical connection capable of withsta	(by oth Inding 3	o.2 crusning ers) of truss t 01 lb uplift at	0						
TOP CHORD	1-2=0/6, 2-3= 4-5=-1977/54 6-7=-2718/69	=-2756/7 9, 5-6=- 6, 7-8=	704, 3-4=-2193/569, -2182/565, 0/6	7)	Joint 2 and 3 This truss is International R802.10.2 a	D6 lb uplift at joint 7 designed in accord Residential Code s ad referenced stand	ance w sections dard AN	ith the 2018 R502.11.1 a	nd						
BOT CHORD	2-13=-584/24 10-12=-412/1 7-9=-563/235	01, 12- 987, 9- 6	13=-584/2401, 10=-563/2356,	8)	Graphical pu or the orienta	rlin representation ation of the purlin al	does no long the	ot depict the s top and/or	ize						
WEBS	4-12=-72/458 3-12=-477/22 6-10=-439/21	8, 4-10≕ 21, 3-13∺ 6, 6-9≕	-142/124, 5-10=-56/4 =-87/426, -87/423	141, 9)	Use Simpson 2-10d Truss, 9-10-11 oc n	Strong-Tie LUS24 Single Ply Girder) nax. starting at 3-4-	4 (4-10c or equiv 10 from	lx1 1/2 Girder /alent spaced the left end t	, Lat				TE OF M	AISSO	
NOTES 1) Unbalance this design	ad roof live load: h.	is have i	been considered for	1(11 LC 1)	17-3-6 to cor) Fill all nail ho) In the LOAD of the truss a DAD CASE(S) Dead + Roo Plate Increa Uniform Lo Vert: 1-4 Concentrat Vert: 16= (F)	nect truss(es) to fr les where hanger i CASE(S) section, I re noted as front (F Standard of Live (balanced): I ase=1.15 ads (lb/ft) =-70, 4-5=-70, 5-8= ed Loads (lb) 278 (F), 17=-238 (ont face s in cor loads aj -) or ba Lumber 70, 2-1 (F), 18=	e of bottom ch tact with lumi pplied to the f ck (B). Increase=1. ⁻ 7=-20 238 (F), 19=	nord. ber. ace 15, 278		ļ		SCOTT SEVI NUM PE-20010 PE-20010 January	M. P. ER 18807 L ENGL 29,2025	כ

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	E2	Нір	1	1	Job Reference (optional)	171039436

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:52 ID:7uXnimR7K8Ba_hMzXeDZ6Uzb?EV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

28 08:55:52 Page: 1

Scale = 1:45.1

Plate Offsets (X, Y): [2:0-4-3,Edge], [9:0-4-3,Edge], [12:0-5-0,0-3-0]

	(psf)	Spacing	2-0-0		CSI	0.46	DEFL	in 0.21	(loc)	l/defl	L/d	PLATES	GRIP	
	25.0	Plate Grip DOL	1.10		IC PC	0.46	Vert(LL)	-0.21	2-13	>999	100	WI120	197/144	
	10.0	Lumber DOL	1.15			0.87	Ven(CT)	-0.43	2-13	>5/1	180			
BULL	0.0	Rep Stress Incr	TES	TDIAGAA	VVB	0.25		0.05	9	n/a	n/a		FT 000/	
BCDL	10.0	Code	IRC2018	TPI2014	Matrix-S							weight: 93 lb	FI = 20%	
TCDL BCLL BCDL LUMBER TOP CHORI BOT CHORI BOT CHORI BOT CHORI REACTIONS FORCES TOP CHORI BOT CHORI BOT CHORI BOT CHORI WEBS	10.0 0.0 10.0 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 Left 2x4 SP No.2 Left 2x4 SP No.2 Left 2x4 SP No.2 Computing (State 2-0-0 oc purling (State 2-0-3-8, State 2-0-3-8, State 2-0-3-8, State 2-0-3-8, State 2-0-3-8, State 2-0-3-8, State 2-0-0 oc purling (State 2-0-3-8, State 2-0-3-8, State 2-0-3	Lumber DOL Rep Stress Incr Code 2-6-11, Right 2x4 SP athing directly applied (ccept -1 max.): 5-6. applied or 10-0-0 oc 9=0-5-8 12) C 12), 9=-162 (LC 13 C 12), 9=991 (LC 1) pression/Maximum 388, 4-5=-1308/268, =-1310/268, ==0/0 -13=-110/1144, =-153/165, 6-11=-37/2 =-343/228	1.15 YES IRC2018, 4) 5) 6) d or 7) 8) 3) LO.	TPI2014 Provide adec This truss ha chord live loa All bearings a capacity of 5 Provide mecl bearing plate joint 2 and 16 Unis truss is s International R802.10.2 ar Graphical pu or the orienta bottom chord AD CASE(S)	BC WB Matrix-S upuate drainage to p s been designed for d nonconcurrent w are assumed to be 55 psi. nanical connection capable of withsta 22 lb uplift at joint 9 designed in accord Residential Codes and referenced stand rin representation tion of the purlin at Standard	0.87 0.25 revent to or a 10.0 ith any SP No. (by oth nding 1 ance w sections dard AN does no ong the	Vert(CT) Horz(CT) water ponding 0 psf bottom other live load 2 crushing ers) of truss to 62 lb uplift at ith the 2018 R502.11.1 at ISI/TPI 1. of depict the s top and/or	-0.43 0.05 J. ds. o nd ize	2-13 9	>571 n/a	180 n/a	Weight: 93 lb	FT = 20%	
1) Unhalan	ced roof live loads have	been considered for									A	N	Nes /	6
this desi											H	SCOT	M. YS	S
this desi 2) Wind: A Vasd=9 Ke=1.00 exterior Interior 10-11-5, 18-0-2 to end vert forces &	gn. SCE 7-16; Vult=115mph imph; TCDL=6.0psf; BC ; Cat. II; Exp C; Enclose zone and C-C Exterior(2 1) 4-1-8 to 9-8-11, Exter Exterior(2R) 10-11-5 to o 21-6-8 zone; cantilever cal left and right expose MWFRS for reactions sl	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop; E) -0-10-8 to 4-1-8, ior(2E) 9-8-11 to 18-0-2, Interior (1) 'left and right expose d;C-C for members a hown: Lumber	e) ed ; and									PE-20010	ER 1018807 E	
DOL=1.6	60 plate grip DOL=1.60											an	555	

January 29,2025

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	E3	Common Girder	1	2	Job Reference (optional)	171039437

Loading

TCDL

BCLL

BCDL

WEBS

BRACING

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

1)

2)

3)

LUMBER

TCLL (roof)

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:52 ID:7uXnimR7K8Ba_hMzXeDZ6Uzb?EV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

CTION

LEE'S'SUMMIT'SMISSOURI 02/04/2025 11:09:48

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	J1	Jack-Closed	17	1	Job Reference (optional)	171039438

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:52 ID:5aNjr0Uh8cTYLkN5pWVR1uzb2LG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:31.4
---------	--------

Plate Offsets (X, Y): [2:0-2-3,0-0-3]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.68	Vert(LL)	-0.23	2-5	>416	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.82	Vert(CT)	-0.45	2-5	>208	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 35 lb	FT = 20%

ER		LOAD CASE(S)	Standard
HORD 2x4 SP 2400	F 2.0E		
HORD 2x4 SP No.2			
2x3 SPF No.	2		
R Left 2x4 SP I	lo.2 4-2-8		
NG			
HORD Structural wo	od sheathing directly applied or		
6-0-0 oc purl	ns, except end verticals.		
HORD Rigid ceiling	directly applied or 9-10-2 oc		
bracing.			
TIONS (size) 2=	0-5-8, 5= Mechanical		
Max Horiz 2=	169 (LC 9)		
Max Uplift 2=	-82 (LC 12), 5=-94 (LC 12)		
Max Grav 2=	417 (LC 1), 5=349 (LC 1)		
ES (Ib) - Maximu	m Compression/Maximum		
Tension			
HORD 1-2=0/0, 2-4=	-197/136, 4-5=-271/296		
HORD 2-5=-75/81			
5			
nd: ASCE 7-16; Vult=1	15mph (3-second gust)		
sd=91mph; TCDL=6.0	psf; BCDL=6.0psf; h=35ft;		
=1.00; Cat. II; Exp C; I	Enclosed; MWFRS (envelope)		
erior zone and C-C E>	terior(2E) -0-10-8 to 4-1-8,		
HORD Structural we 6-0-0 oc purl HORD Rigid ceiling bracing. TIONS (size) 2= Max Horiz 2= Max Uplift 2= Max Grav 2= ES (Ib) - Maximu Tension HORD 1-2=0/0, 2-4= HORD 2-5=-75/81 Mat. ASCE 7-16; Vult=1 sd=91mph; TCDL=6.0 =1.00; Cat. II; Exp C; I erior zone and C-C Ex-	od sheathing directly applied or ns, except end verticals. directly applied or 9-10-2 oc 0-5-8, 5= Mechanical 169 (LC 9) -82 (LC 12), 5=-94 (LC 12) 417 (LC 1), 5=349 (LC 1) m Compression/Maximum -197/136, 4-5=-271/296 15mph (3-second gust) psf; BCDL=6.0psf; h=35ft; inclosed; MWFRS (envelope) terior(2E) -0-10-8 to 4-1-8,		

- Interior (1) 4-1-8 to 7-10-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom 2)
- chord live load nonconcurrent with any other live loads. 3) Bearings are assumed to be: Joint 2 SP No.2 crushing
- capacity of 565 psi. 4)
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 94 lb uplift at joint 5 and 82 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type Qty		Ply	Roof - HM Lot 200	
P250041-01	J2	Jack-Closed	1	1	Job Reference (optional)	171039439

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:52 ID:_rexsNnU7li5ga1UrOwPBlywoq9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:0-2-3,0-0-3]

						-						
Loading	(psf)	Spacing	2-0-0	cs	51	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.61	Vert(LL)	-0.23	2-6	>416	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.83	Vert(CT)	-0.45	2-6	>208	180		
BCLL	0.0	Rep Stress Incr	YES	W	B 0.08	Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI	2014 Ma	atrix-P						Weight: 35 lb	FT = 20%
LUMBER			6) Ref	er to girder(s)	for truss to truss co	nnections.						
TOP CHORD	2x4 SP No.2		7) Pro	vide mechani	cal connection (by ot	hers) of truss	to					
BOT CHORD	2x4 SP No.2		bea	iring plate cap	able of withstanding	67 lb uplift at	joint					
WEBS	2x3 SPF No.2		6 ai	nd 84 lb uplift	at joint 2.							
SLIDER	Left 2x4 SP No.2 3	3-0-4	8) Thi	s truss is desi	gned in accordance	with the 2018						
BRACING	International Residential Code sections R502.11.1 and R8002 10.2 and referenced endered AUS/URL1											
TOP CHORD	P CHORD Structural wood sheathing directly applied or R802.10.2 and referenced standard ANSI/TPI 1.											
	6-0-0 oc purlins, except end verticals, and 9) Graphical purlin representation does not depict the size											
	2-0-0 oc purlins: 4-5		or t	ne onentation	or the putith along th	ie top and/or						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc			ondord							
	bracing.		LUAD	JAJE(J) 30	anuaru							
REACTIONS	(size) 2=0-5-8, 6	6= Mechanical										
	Max Horiz 2=118 (LC	C 9)										
	Max Uplift 2=-84 (LC	C 12), 6=-67 (LC 9)										
	Max Grav 2=417 (LC	C 1), 6=349 (LC 1)										
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=0/0, 2-4=-263/14	40, 4-5=-54/59,										
	5-6=-80/65											
BOT CHORD	2-6=-205/176											
WEBS	4-6=-254/256											
NOTES												
1) Unbalanc	ed roof live loads have	been considered for									000	ADD
this desig	n.										8. OF I	MICON
2) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)								4	9 TE	0.0
Vasd=91r	mph; TCDL=6.0psf; BC	DL=6.0psf; n=35ft;	-)							6	N	N SY
Ke=1.00;	Cat. II; Exp C; Enclose		e)							B	SCOT	TM. YEY
Interior (1	14 1 9 to 5 6 7 Exterior	E) -0-10-0 10 4-1-0,	0							R	/ SEVI	ER \Y
zone: can	tilever left and right ext	onsed : end vertical l	o eft							21		
and right	exposed:C-C for memb	pers and forces &	on							1 A	ATTS-	· And · · · · · · · · · · · · · · · · · · ·
MWFRS	for reactions shown: Lu	mber DOL=1.60 plat	te						6		NUM	PEP
grip DOL	DOL=1.60											
3) Provide a	dequate drainage to pr	event water ponding								N.	PE-2001	10001 A
4) This truss	has been designed for	r a 10.0 psf bottom								Y	Pa	1.SA
chord live	load nonconcurrent wi	th any other live load	ds.								SION	TENE
5) Bearings	are assumed to be: Joi	nt 2 SP No.2 crushir	ng								WNA	L
capacity of	y of 565 psi.											

January 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	J3	Jack-Closed Girder	1	1	Job Reference (optional)	171039440

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:52 ID:_rexsNnU7li5ga1UrOwPBlywoq9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

NAILED

Page: 1

NAILED

7-11-4

NAILED

Scale = 1:29.5

Plate Offsets (X, Y): [2:0-2-3,0-0-3]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.57 0.64 0.21	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.24 -0.42 0.00	(loc) 2-6 2-6 6	l/defl >386 >226 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 33 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP 2400F 2.0E 2x3 SPF No.2 Left 2x4 SP No.2 - 1 Structural wood shea 6-0-0 oc purlins, exc 2-0-0 oc purlins; 4-5. Rigid ceiling directly a bracing.	-8-11 thing directly applie ept end verticals, a applied or 10-0-0 or	7) 8) ed or 9) nd 10	 Provide mec bearing plate joint 6 and 1 This truss is International R802.10.2 a Graphical pu or the orients bottom chore "NAILED" in per NDS gui 	chanical connect e capable of with 52 lb uplift at joi designed in acc Residential Co- nd referenced s urlin representat ation of the purli d. dicates Girder: 3 delines.	tion (by oth hstanding 1 int 2. cordance wi de sections tandard AN ion does no in along the 3-10d (0.14	ers) of truss 53 lb uplift a th the 2018 R502.11.1 a SI/TPI 1. ot depict the top and/or 8" x 3") toe-	to t and size nails					
REACTIONS	(size) 2=0-5-8, 6 Max Horiz 2=73 (LC 9 Max Uplift 2=-152 (LC Max Grav 2=517 (LC	= Mechanical)) C 8), 6=-153 (LC 9) 1), 6=453 (LC 1)) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). DAD CASE(S) Standard Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase 4 for										
FORCES	(lb) - Maximum Comp Tension	pression/Maximum		Uniform Lo	ads (lb/ft) .=-70_4-5=-70_2	2-6=-20							
TOP CHORD	1-2=0/0, 2-4=-410/28 5-6=-164/131	4, 4-5=-33/37,		Concentrat	ed Loads (lb)	E 0= 20)						
BOT CHORD WEBS	2-6=-312/308 4-6=-326/306			, on a), o oo (.	/						
NOTES													
 Unbalance this design Wind: ASC Vasd=91r Ke=1.00; exterior zo 	ed roof live loads have h n. CE 7-16; Vult=115mph f nph; TCDL=6.0psf; BCE Cat. II; Exp C; Enclosed one and C-C Exterior(2E	(3-second gust) DL=6.0psf; h=35ft; l; MWFRS (envelop) zone; cantilever I	r be) eft									STATE OF I	MISSOUR

and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3)

- Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 5) Bearings are assumed to be: Joint 2 SP 2400F 2.0E
- crushing capacity of 805 psi. 6) Refer to girder(s) for truss to truss connections.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com) DEVELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI 02/04/2025 11:09:49

PE-200101880

E

TION

IEW

January 29,2025

SIONAL

Job	Fruss Truss Type Qty Ply Roof - HM Lot		Roof - HM Lot 200			
P250041-01	J4	Jack-Open	6	1	Job Reference (optional)	171039441

-0-10-8

0-10-8

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:52 ID:hVjIO_h5mbp5LV_8wQImPGywoqG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x6 =

2-5-6

2-5-6

VERTICAL SUPPORT OF FREE END OF CHORD IS REQUIRED.

	2-5-6
2-0-8	
2-0-8	0-4-14

Scale = 1:27.3

Plate Offsets (X, Y): [5:Edge,0-4-13]

L oading TCLL (roof) TCDL 3CLL 3CDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.43 0.10 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 197/144 FT = 20%	
LUMBER TOP CHORD 30T CHORD WEBS BRACING TOP CHORD 30T CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep Structural wood she 2-5-6 oc purlins, ex Rigid ceiling directly bracing. (size) 4= Mecha Max Horiz 5=80 (LC Max Uplift 4=-39 (LC	t* 4-2:2x3 SPF No.2 athing directly applie cept end verticals. applied or 8-5-9 oc unical, 5=0-5-8 9) 2 9). 5=-30 (LC 9)	LOAD CASE(S)	Standard									
FORCES FOP CHORD 30T CHORD WEBS NOTES 1) Wind: AS Vasd=911 Ke=1.00; exterior zi and right exposed; reactions DOL=1.6(Max Grav 4=88 (LC (lb) - Maximum Com Tension 2-5=-168/142, 1-2=(4-5=-485/290 2-4=-297/497 CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical C-C for members and f shown; Lumber DOL= 0	1), 5=191 (LC 1) pression/Maximum)/32, 2-3=-72/0 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever I left and right orces & MWFRS for 1.60 plate grip	pe) eft							Ħ	THE OF M	AISSOUR	
 2) This truss chord live 3) Bearings capacity of 4) Refer to <u>c</u> 5) Provide m bearing p 5 and 39 6) This truss Internation R802.10.2 	b has been designed fo load nonconcurrent wi are assumed to be: Joi of 565 psi. jirder(s) for truss to tru techanical connection i late capable of withstar lb uplift at joint 4. is designed in accorda nal Residential Code so 2 and referenced stand	r a 10.0 psf bottom th any other live load int 5 SP No.2 crushin ss connections. (by others) of truss th nding 30 lb uplift at ju ance with the 2018 ections R502.11.1 a lard ANSI/TPI 1.	ds. ng bint						2		SCOT SEVI PE-2001 PE-2001 January	ER 018807 L ENGINE 29,2025	7
WAR	NING - Verify design parame	ters and READ NOTES C	N THIS AND INCLUDED MITEK	REFERENCE PAGE MI	I-7473 rev	. 1/2/2023 BEFO	RE USE.			[•	7

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MILEK REFERENCE PAGE MIL-14/3 rev. 1/2/20/3 BEFURE USE.
Design valid for use only with MITER® connectors. This design is based only upon parameters and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type		Ply	Roof - HM Lot 200		
P250041-01	J5	Jack-Closed	1	1	Job Reference (optional)	171039442	

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:52 ID:_rexsNnU7li5ga1UrOwPBlywoq9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:27.9 Plate Offsets (X_Y): [2:0-2-3.0-0-3]

Plate Olisets ()	A, F). [2.0-2-3,0-0-3]													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-P	0.61 0.83 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.23 -0.45 0.00	(loc) 2-6 2-6 6	l/defl >416 >208 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 35 lb	GRIP 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 3 Structural wood she 6-0-0 oc purlins; ex 2-0-0 oc purlins: 4-5 Rigid ceiling directly	3-0-4 athing directly applie cept end verticals, ar applied or 10-0-0 oc	6) 7) 8) nd 9)	Refer to gird Provide mecl bearing plate 6 and 84 lb u This truss is a International R802.10.2 ar Graphical pu or the orienta bottom chorc	er(s) for truss to the hanical connection capable of withst plift at joint 2. designed in accorr Residential Code ad referenced star rlin representation tion of the purlin a Standard	russ con a (by oth anding 6 dance w sections idard AN does no along the	nections. ers) of truss i 7 lb uplift at j ith the 2018 i R502.11.1 a ISI/TPI 1. ot depict the s top and/or	to joint and size						
REACTIONS	bracing. LOAD CASE(S) Standard ACTIONS (size) 2=0-5-8, 6= Mechanical Max Horiz 2=118 (LC 9) Max Horiz 2=118 (LC 12), 6=-67 (LC 9) Max Grav 2=417 (LC 1), 6=-349 (LC 1)													
	(lb) - Maximum Com Tension	pression/Maximum												
BOT CHORD	1-2=0/0, 2-4=-263/14 5-6=-80/65 2-6=-205/176	40, 4-5=-54/59,												
WEBS	4-6=-254/256													
NUIES 1) Unbalance	d roof live loads have	been considered for												
this design	l.											OF	ALC D	
 Wind: ASC Vasd=91m Ke=1.00; C exterior zo Interior (1) zone; canti and right e MWFRS fo grip DOL= Provide ad 	this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 5-6-7, Exterior(2E) 5-6-7 to 7-10-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 PE-2001018807													
 This truss I chord live I Bearings a capacity of 	Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Bearings are assumed to be: Joint 2 SP No.2 crushing capacity of 565 psi.													
												January	29,2025	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

TRUCTION **IEW** DEVELOPMEN SERVICES LEE'S' SUMMIT'S MISSOURI 02/04/2025 11:09:49

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	J6	Jack-Closed Girder	1	1	Job Reference (optional)	171039443

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:53 ID:S1CJ3jo6u2qyIjchO6Rekyywoq8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

7-11-4

Scale	= 1:29.5	

Plate Offsets (X, Y): [2:0-2-3,0-0-3]

Loading FCLL (roof) FCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO	PI2014	CSI TC BC WB Matrix-P	0.57 0.64 0.21	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.24 -0.42 0.00	(loc) 2-6 2-6 6	l/defl >386 >226 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144	
LUMBER TOP CHORD SOT CHORD WEBS SLIDER BRACING TOP CHORD SOT CHORD REACTIONS	2x4 SP No.2 2x4 SP 2400F 2.0E 2x3 SPF No.2 Left 2x4 SP No.2 1 Structural wood shea 6-0-0 oc purlins; 4-5 Rigid ceiling directly bracing. (size) 2=0-5-8, 6 Max Horiz 2=73 (LC Max Uplift 2=-152 (L Max Grav 2=517 (LC (b) - Maximum Com	I-8-11 athing directly applie cept end verticals, ar applied or 10-0-0 oc S= Mechanical 11) C 8), 6=-153 (LC 9) C 1), 6=453 (LC 1) pression/Maximum	7) P b jc 8) T Ir R dor 9) G id b 10) "f 11) Ir c LOAL 1)	Provide mecle earing plate bint 6 and 15 his truss is of the mational 802.10.2 ar Graphical pu r the orienta ottom chord NAILED" inc er NDS guid the LOAD the the truss a D CASE(S) Dead + Roce Plate Increa	hanical connection capable of withst 52 lb uplift at joint is designed in accorr Residential Code nd referenced star rlin representation ation of the purlin a l. dicates Girder: 3-1 delines. CASE(S) section, re noted as front (Standard of Live (balanced): ise=1.15	n (by oth anding 1 2. dance w sections idard AN does no along the 0d (0.14 loads aj F) or ba Lumber	ers) of truss t 53 lb uplift at th the 2018 R502.11.1 a ISI/TPI 1. ti depict the s top and/or 8" x 3") toe-r oplied to the f ck (B). Increase=1.	io ind size nails face 15,				weight. 33 lb	PT = 20%	
TOP CHORD BOT CHORD WEBS	Tension 1-2=0/0, 2-4=-410/28 5-6=-164/131 2-6=-312/308 4-6=-326/306	84, 4-5=-33/37,		Uniform Loa Vert: 1-4= Concentrate Vert: 7=-6	ads (lb/ft) =-70, 4-5=-70, 2-6 ed Loads (lb) 68 (B), 8=-68 (B),	=-20 9=-68 (E)							
 Unbalance this design Wind: AS Vasd=911 Ke=1.00; exterior z and right exposed; reactions 	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I c-C for members and for shown; Lumber DOL=1	been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le eft and right proces & MWFRS for 1.60 plate grip	e) ff									STATE OF M SEVI	AISSOLA T.M. ER	

- DOL=1.60 3) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom 4) chord live load nonconcurrent with any other live loads.
- 5) Bearings are assumed to be: Joint 2 SP 2400F 2.0E crushing capacity of 805 psi.
- 6) Refer to girder(s) for truss to truss connections.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

E

January 29,2025

PE-200101880

SIONAL

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	J7	Jack-Open	7	1	Job Reference (optional)	171039444

5-11-4

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:53 ID:bvV1s7KZIvE5RRfAVC8REWzsQYr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

-0-10-8

Scale = 1:26.7 Plate Offsets (X, Y): [2:0-1-8,0-0-3]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.78	Vert(LL)	-0.07	2-5	>987	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.44	Vert(CT)	-0.14	2-5	>493	180			
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.02	4	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 25 lb	FT = 20%	
LUMBER 6) This truss is designed in accordance with the 2018													

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
SLIDER	Left 2x4 S	SP No.2 3-2-14
BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	5-11-4 oc	purlins.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	2=0-3-8, 4= Mechanical, 5=
		Mechanical
	Max Horiz	2=123 (LC 12)
	Max Uplift	2=-52 (LC 12), 4=-121 (LC 12)
	Max Grav	2=330 (LC 1), 4=201 (LC 1), 5=118
		(LC 3)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	1-2=0/0, 2	2-4=-115/61
BOT CHORD	2-5=0/0	

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 5-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Bearings are assumed to be: , Joint 2 SP No.2 crushing capacity of 565 psi.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 121 lb uplift at joint 4 and 52 lb uplift at joint 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	J8	Jack-Open	2	1	Job Reference (optional)	171039445

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:53 ID:S1CJ3jo6u2qyIjchO6Rekyywoq8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:27.6

Plate Offsets (X, Y): [2:0-4-1,0-0-5]

Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC WB	0.35 0.44	DEFL Vert(LL) Vert(CT)	in -0.07 -0.14	(loc) 2-6 2-6	l/defl >999 >504	L/d 240 180	PLATES MT20	GRIP 197/144	
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-P	0.05	1012(01)	0.00	0	n/a	n/a	Weight: 28 lb	FT = 20%	
LUMBER FOP CHORD 30T CHORD WEBS SLIDER 3RACING FOP CHORD 3OT CHORD 3OT CHORD 3OT	2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 2 Structural wood shee 5-11-4 oc purlins, e 2-0-0 oc purlins; 4-5 Rigid ceiling directly bracing. (size) 2=0-3-8, 6 Max Horiz 2=108 (LC Max Uplift 2=-65 (LC Max Uplift 2=-65 (LC Max Grav 2=328 (LC (Ib) - Maximum Com Tension 1-2=0/0, 2-4=-194/91 2-6=-149/126 4-6=-171/216 d roof live loads have E 7-16; Vult=115mph ph; TCDL=6.0psf; BC cat. II; Exp C; Enclose ne and C-C Exterior(2 xposed ; end vertical I -C for members and fn hown; Lumber DOL= ⁻¹ equate drainage to pr nas been designed for oad nonconcurrent wi re assumed to be: Joi 565 psi. rder(s) for truss to tru-	2-5-6 athing directly applie xcept end verticals, a applied or 10-0-0 oc 5= Mechanical 2 9) 12), 6=-53 (LC 9) 2 1), 6=258 (LC 1) pression/Maximum 0, 4-5=-52/57, 5-6=-5 been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le eft and right prces & MWFRS for 1.60 plate grip event water ponding a 10.0 psf bottom th any other live load nt 2 SP No.2 crushin ss connections.	7) 8) d or 9) and 55/51 (55/51 (55/51) (55/51) (9) (55.)	Provide mecl bearing plate 6 and 65 lb u This truss is International R802.10.2 ar Graphical pu or the orienta bottom chorc PAD CASE(S)	hanical connection capable of withsta plift at joint 2. designed in accord Residential Codes and referenced stan- rlin representation ation of the purlin a l. Standard	(by oth anding 5 lance wi sections dard AN does no long the	ers) of truss i 3 lb uplift at j th the 2018 R502.11.1 a ISI/TPI 1. of depict the s top and/or	to joint and size				STATE OF M STATE OF M SEVI SEVI PE-20010 PE-2000 PE-20010 PE-20010 PE-20010	MISSOLATION T.M. ER DI8807	

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	J9	Jack-Closed Girder	2	1	Job Reference (optional)	171039446

2-7-4

2-7-4

-0-10-8

0-10-8

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:53 ID:S1CJ3jo6u2qyljchO6Rekyywoq8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-11-4

3-4-0

Page: 1

NAILED

5-11-4

NAILED

Scale =	1:31.4
---------	--------

Plate Offsets (X, Y): [6:0-1-8,0-4-12]

		-			_	-							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC20	18/TPI2014	CSI TC BC WB Matrix-P	0.33 0.58 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.16 0.00	(loc) 5-6 5-6 5	l/defl >884 >436 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 26 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce Structural wood she 5-11-4 oc purlins, e 2-0-0 oc purlins: 3-4 Rigid ceiling directly bracing	pt* 6-2:2x4 SP No.2 athing directly applie xcept end verticals, applied or 10-0-0 o	2 8 ed or and 2 c 2	 Provide me bearing plat 6 and 82 lb This truss is Internationa R802.10.2 a Graphical p or the orien bottom choi "NAILED" ir 	chanical connectii te capable of with: uplift at joint 5. designed in acco al Residential Cod and referenced str urlin representation tation of the purlin rd.	on (by oth standing 8 ordance w e sections andard AN on does no a along the -10d (0.14	ers) of truss 11 lb uplift at 15 R502.11.1 at ISI/TPI 1. bt depict the 15 top and/or 8" x 3") toe-	to joint and size nails					
REACTIONS	(size) 5= Mecha Max Horiz 6=82 (LC Max Uplift 5=-82 (LC Max Grav 5=298 (LC	nical, 6=0-3-8 9) : 9), 6=-81 (LC 12) C 1), 6=382 (LC 1)	l	per NDS gu 1) In the LOAE of the truss OAD CASE(S)	idelines. D CASE(S) section are noted as from Standard	n, loads a t (F) or ba	oplied to the ck (B).	face					
FORCES	(lb) - Maximum Com Tension 2-6=-180/208, 1-2=0 3-4=-34/37, 4-5=-12	pression/Maximum)/32, 2-3=-45/120, 9/103		Plate Incre Uniform Lo Vert: 1-2 Concentra	con Live (balanced ease=1.15 bads (lb/ft) 2=-70, 2-3=-70, 3- ted Loads (lb)	-4=-70, 5-	6=-20	15,					
BOT CHORD WEBS	5-6=-214/194 3-6=-233/84, 3-5=-2	17/214		Vert: 7=	-31 (F), 8=-36 (F)	, 9=-18 (F), 10=-13 (F))					
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=91r Ke=1.00; exterior zr and right exposed;(reactions DOI =1 60	ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and f shown; Lumber DOL= D	been considered fo (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever I eft and right orces & MWFRS for I.60 plate grip	r De) left							Ç	*	STATE OF I	MISSOLUTIAL

- Provide adequate drainage to prevent water ponding. 3)
- This truss has been designed for a 10.0 psf bottom 4)
- chord live load nonconcurrent with any other live loads. Bearings are assumed to be: Joint 6 SP No.2 crushing 5)
- capacity of 565 psi.
- 6) Refer to girder(s) for truss to truss connections.

PE-200101880 \sim SSIONAL E

January 29,2025

TION IEW

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	J10	Jack-Open	2	1	Job Reference (optional)	171039447

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:53 ID:hVjIO_h5mbp5LV_8wQImPGywoqG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-3-14

Scale	-	= 1:24	1.4		
				-	

Plate Offsets ()	<, Y):	[2:0-1-8,0-0-3]
------------------	--------	-----------------

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.20 0.12 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 0.00	(loc) 2-5 2-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD SLIDER	2x4 SP No 2x4 SP No Left 2x4 S	0.2 0.2 3P No.2 1	-9-14	6) This truss Internation R802.10.2 LOAD CASE(is designed in acco nal Residential Code and referenced sta S) Standard	ordance wi e sections andard AN	ith the 2018 R502.11.1 a ISI/TPI 1.	and					
TOP CHORD	P CHORD Structural wood sheathing directly applied or 3-3-14 oc purlins. T CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.												
REACTIONS	bracing. 2=0-5-8, 4= Mechanical, 5= Mechanical Mechanical Max Horiz 2=75 (LC 12) Max Uplifit 2=-37 (LC 12), 4=-68 (LC 12) Max Grav 2=216 (LC 1), 4=-106 (LC 1), 5=65 (LC 3) (LC 3)												
FORCES	(lb) - Maxi Tension	imum Com	pression/Maximum										
TOP CHORD BOT CHORD	1-2=0/0, 2 2-5=0/0	2-4=-72/35											
NOTES 1) Wind: AS(Vasd=91n Ke=1.00; ' exterior zc and right exposed;C reactions DOL=1.6C 2) This truss chord live 3) Bearings a capacity o	CE 7-16; Vul nph; TCDL= Cat. II; Exp (one and C-C exposed ; en C-C for mem shown; Lum) has been de load noncor are assumed f 565 psi.	It=115mph 6.0psf; BC C; Enclose Exterior(2 Id vertical I bers and for ber DOL=1 esigned for neurrent wi d to be: , Jo	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever I eft and right prces & MWFRS for I.60 plate grip r a 10.0 psf bottom th any other live load pint 2 SP No.2 crush	ee) eft ds. ing								STATE OF M SCOTT SEVI	MISSOLIA I M. ER Server
 A) Refer to a 	irder(s) for t	ruce to true	es connections							_	N		Jun In

Refer to girder(s) for truss to truss connections. 4) 5)

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 68 lb uplift at joint 4 and 37 lb uplift at joint 2.

> CTION /IEW DEVELOPMENT SERVICES LEE'S' SUMMIT'S MISSOURI 02/04/2025 11:09:49

PE-2001018807

SIONAL ET

January 29,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	J11	Jack-Open	2	1	Job Reference (optional)	171039448

2-6-5

3-3-14

-0-10-8

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:53 ID:hVjIO_h5mbp5LV_8wQImPGywoqG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-3-14

Page: 1

Fag

Scale = 1:23.8		
Dioto Offecto (V. V)	10.0 2 2 0 0 21	14.0 2 2 5

iate Unsets (X, Y): [2:0-2-3,0-0-3], [4:0-2-2,Edge]															
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.17 0.09 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 0.01	(loc) 2-6 2-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	IMBER 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 5 and 42 lb uplift at joint 2. IDER Left 2x4 SP No.2 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/TP1 1. YP CHORD Structural wood sheathing directly applied or 3-3-14 oc purlins; except 2-0-0 oc purlins; except 2-0-0 oc purlins; except araing. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/TP1 1. YT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard VEX.CIS (size) 2=0-3-8, 5= Mechanical, 6= Mechanical Max Horiz 2=62 (LC 12) Max Grav 2=-62 (LC 12) Fa=-39 (LC 12) Max Grav Max Grav 2=-216 (LC 1), 5=-101 (LC 1), 6=57 (LC 3) VEX.CES (lb) - Maximum Compression/Maximum Tension Tension 12=-00, 2-4=-73/17, 4-5=0/0 VP CHORD 2-6=-0/0														
FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/0, 2-4=-73/17, 4-5=0/0 BOT CHORD 2-6=0/0 NOTES 1) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; B-35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Bearings are assumed to be: , Joint 2 SP No.2 crushing capacity of 565 psi. 6) Refer to girder(s) for truss to truss connections.															

January 29,2025

RELEASE FOR DEVELOR METRUCTION AS NOTED ON PLANS REVIEW DEVELOR MENTS SERVICES LEE'S'SUMMIT'S MISSOURI 02/04/2025 11:09:49

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	J12	Jack-Open	6	1	Job Reference (optional)	171039449

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:53 ID:MS_2YsQaPMEyOgGjzuHJYBzsQYj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:24.8	-
Plate Offsets (X Y)	[2.0-1-8 0-0-3]

. . . .

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.30	Vert(LL)	-0.01	2-5	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.18	Vert(CT)	-0.03	2-5	>999	180			
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	4	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 17 lb	FT = 20%	
LUMBER 6) This truss is designed in accordance with the 2018													

3-11-4

TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
SLIDER	Left 2x4 S	SP No.2 2-1-14
BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	3-11-4 oc	purlins.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	2=0-5-8, 4= Mechanical, 5=
		Mechanical
	Max Horiz	2=86 (LC 12)
	Max Uplift	2=-41 (LC 12), 4=-81 (LC 12)
	Max Grav	2=243 (LC 1), 4=129 (LC 1), 5=78
		(LC 3)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/0, 2	2-4=-81/41
BOT CHORD	2-5=0/0	

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Bearings are assumed to be: , Joint 2 SP No.2 crushing capacity of 565 psi.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 81 lb uplift at joint 4 and 41 lb uplift at joint 2.

- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and
 - R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

January 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	J13	Jack-Closed Girder	2	1	Job Reference (optional)	171039450

3-6-7

3-6-7

-0-10-8

0-10-8

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:53 ID:aGzoDLkcqqKWp6lw9GNiZ6ywoqC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-11-4

2-4-13

Page: 1

Scale = 1:33.8

Plate Offsets (X, Y): [2:0-2-3,0-0-3]

Loading FCLL (roof) FCDL SCLL SCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	/TPI2014	CSI TC BC WB Matrix-P	0.23 0.15 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 0.00	(loc) 2-7 2-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 27 lb	GRIP 197/144 FT = 20%
LUMBER FOP CHORD 3OT CHORD WEBS SLIDER BRACING FOP CHORD 3OT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 Structural wood she 5-11-4 oc purlins, e-5 Rigid ceiling directly	1-9-15 athing directly applie xcept end verticals, applied or 10-0-0 or	6) 7) ed or 8) and 9)	Provide med bearing plate 6 and 76 lb This truss is International R802.10.2 a Graphical pu or the orient bottom chor "NAILED" in	chanical connection e capable of withst uplift at joint 2. designed in accor Residential Code nd referenced star urlin representatior ation of the purlin a d. dicates Girder: 3-1	n (by oth anding 7 dance w sections ndard AN n does no along the 0d (0.14	ers) of truss i 2 lb uplift at j ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the s top and/or 8" x 3") toe-	to joint and size nails					
REACTIONS	(size) 2=0-3-8, 6 Max Horiz 2=87 (LC Max Uplift 2=-76 (LC Max Grav 2=348 (LC	6= Mechanical 9) 2 12), 6=-72 (LC 9) C 1), 6=270 (LC 1)	10) LO 1)	per NDS gui In the LOAD of the truss a AD CASE(S) Dead + Ro	delines. CASE(S) section, are noted as front Standard of Live (balanced):	loads a (F) or ba Lumber	oplied to the ck (B). Increase=1.	face 15,					
	(lb) - Maximum Com Tension	pression/Maximum		Uniform Lo Vert: 1-4	ads (lb/ft) =-70, 4-5=-70, 2-6	i=-20							
BOT CHORD	5-6=-81/72 2-7=-160/223, 6-7=- 4-7=0/157, 4-6=-280	162/218)/174		Concentrat Vert: 8=-	ed Loads (lb) 17 (F), 9=-5 (F), 1	0=-11 (F), 11=1 (F)						
VOTES Vasd=911 Ke=1.00; exterior z and right exposed; reactions DOL=1.6 2) Provide a	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and f shown; Lumber DOL= 0 dequate drainage to pr	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever I left and right orces & MWFRS for 1.60 plate grip event water pondinc	eft									STATE OF M	AISSOLD MISSOLD MER

- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- Bearings are assumed to be: Joint 2 SP No.2 crushing 4) capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.

E

January 29,2025

TMP

PE-200101880

SSIONAL

 \sim

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	J14	Jack-Open	1	1	Job Reference (optional)	171039451

2-9-6

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries. Inc. Tue Jan 28 08:55:53 ID:hVjIO_h5mbp5LV_8wQImPGywoqG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x6 II

2-9-6

_oading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.16	Vert(LL)	0.00	3-4	>999	240	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	0.00	3-4	>999	180			
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 9 lb	FT = 20%	

Gap between inside of top chord bearing and first

diagonal or vertical web shall not exceed 0.500in.

8)

LOAD CASE(S) Standard

LUMBER

Scale = 1:21.3

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD WEBS 2x3 SPE No 2

WLD5	270 011 1	NU.2
BRACING		
TOP CHORD	Structural 2-9-6 oc p	wood sheathing directly applied or ourlins, except end verticals.
BOT CHORD	Rigid ceili bracing.	ng directly applied or 10-0-0 oc
REACTIONS	(size)	1= Mechanical, 2= Mechanical, 3= Mechanical, 4= Mechanical
	Max Horiz	1=-127 (LC 1), 4=127 (LC 1)

Max Uplift 1=-36 (LC 12), 2=-46 (LC 12) Max Grav 1=108 (LC 1), 2=75 (LC 1), 3=43 (LC 3), 4=62 (LC 3) FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

1-4=0/0, 1-2=-54/26 BOT CHORD 3-4=0/0

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) Refer to girder(s) for truss to truss connections.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 1 and 46 lb uplift at joint 2.
- N/A 6)
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200				
P250041-01	J15	Jack-Open	4	1	Job Reference (optional)	171039452			

Scale = 1:28

Loading

TCDL

BCLL

BCDL

LUMBER

SLIDER

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS

FORCES

NOTES 1)

2)

3)

4)

5)

capacity of 565 psi.

TOP CHORD

BOT CHORD

bracing.

Max Grav

Tension

2-5=0/0

(size)

TCLL (roof)

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries. Inc. Tue Jan 28 08:55:53 ID:qYc7ENMk_lafcKddgbwK0zb?Ec-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 4, 2, 5.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

E

January 29,2025

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	J16	Jack-Open	1	1	Job Reference (optional)	171039453

1-5-11

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:54 ID:hVjIO_h5mbp5LV_8wQImPGywoqG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:23.3

Plate Offsets (X, Y): [2:0-2-0,0-2-8]

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.12	Vert(LL)	0.00	4-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	-0.01	4-5	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 9 lb	FT = 20%
-												
LUMBER			Provide me	chanical connection	(by oth	ers) of truss	to					
TOP CHORD	2x4 SP No.2		bearing pla	e capable of withsta	inding 1	1 Ib uplift at	joint					
BOT CHORD	2x4 SP No.2		5 and 36 lb	uplift at joint 3.		:+h +h = 2010						
WEBS 2x3 SPF No.2 8) This truss is designed in accordance with the 2018 Interactional Designed in accordance with the 2018 100 million accordance with the 2018												
BRACING	RACING International Residential Code sections R502.11.1 and R02102 and referenced charderd ANSULTE1											
TOP CHORD	OP CHORD Structural wood sheathing directly applied or 0.002/10.2 and referenced standard ANS//TP11.											
	2-9-6 oc purlins, exc	cept end verticals, ar	nd 9) Graphicarp	tation of the nurlin a	long the	top and/or	size					
2-0-0 oc purlins: 2-3. Or the orientation of the purlin along the top and/or												
3OT CHORD Rigid ceiling directly applied or 10-0-0 oc bottom chord. bracing. LOAD CASE(S) Standard												
REACTIONS	(size) 3= Mecha 5=0-3-8	nical, 4= Mechanical	l,									
	Max Horiz 5=30 (I C	9)										
	Max Uplift 3=-36 (LC	9), 5=-11 (LC 12)										
	Max Grav 3=87 (LC	1), 4=51 (LC 3), 5=1	18									
	(LC 1)	// - (// -										
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD	1-5=-96/81, 1-2=-44/	/5, 2-3=0/0										
BOT CHORD	4-5=0/0											
NOTES												
1) Unbalance	ed roof live loads have	been considered for										
this desigr	n.											110
2) Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)									OF I	ALL
Vasd=91n	nph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;									ALE OF I	115S
Ke=1.00; 0	Cat. II; Exp C; Enclose	d; MWFRS (envelope	e)							4	N	N.S.
exterior zo	one and C-C Exterior(2	E) zone; cantilever le	eft							A	SCOT	TM. PY
and right e	exposed ; end vertical l	eft and right								H	SEV	IFR V V
exposed;C	C-C for members and for	orces & MWFRS for								8		
reactions	snown; Lumber DOL=1	1.60 plate grip								0		12.1
DUL=1.60) desuiste dreine de na										h ser	Sec. 1
 A) This trues 	bac been designed for	eveni water ponding.								J.S	CONNIM	and the second s
chord live	load nonconcurrent wit	th any other live load	le							N	PE-2001	018807
5) Bearings a	are assumed to be	bint 5 SP No 2 crushi	ina							N	mg l	18A
capacity o	of 565 psi.									X	6.50	NO'A
6) Refer to a	irder(s) for truss to trus	ss connections.									ONA	LEFA
, . .												

January 29,2025

RUCTION **VIEW**

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	J17	Jack-Open	1	1	Job Reference (optional)	171039454

2-9-6

2-9-6

12 6 Г

3x4 🍃 3

For

2-9-6

-0-10-8

0-10-8

2

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

2-1-14

0-6-0

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:54 ID:hVjIO_h5mbp5LV_8wQImPGywoqG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5

2-1-11

CASE(S) Structural wood sheathing directly applied or 2-9-6 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 2=0-3-8, 4= Mechanical, 5= Mechanical Max Horiz 2=78 (LC 12) Max Uplift 2=-26 (LC 12), 4=-65 (LC 12) Max Grav 2=193 (LC 1), 4=85 (LC 1), 5=54 (LC 3) (lb) - Maximum Compression/Maximum Tension 1-2=0/0, 2-4=-74/37 2-5=0/0Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Bearings are assumed to be: , Joint 2 SP No.2 crushing capacity of 565 psi. Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 65 lb uplift at joint 4 and 26 lb uplift at joint 2.

OF MISS E SCOTT M. SEVIER J PE-200101880 SIONAL E January 29,2025

DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI 02/04/2025 11:09:50

TION

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Scale = 1:24.7 F

BRACING TOP CHORD

BOT CHORD

FORCES

NOTES

1)

2)

3)

4)

5)

TOP CHORD

BOT CHORD

DOL=1.60

Plate Offsets (2	X, Y): [2:0-2-8,0-0-5]												
oading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.16	Vert(LL)	0.00	2-5	>999	240	MT20	244/190	
FCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	-0.01	2-5	>999	180			
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 13 lb	FT = 20%	
LUMBER FOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 1	s designed in ac al Residential Co and referenced	ccordance w ode sections standard AN	ith the 2018 R502.11.1 a ISI/TPI 1.	and								

3x6 II

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	J18	Jack-Closed Girder	4	1	Job Reference (optional)	171039455

1-6-7

1-6-7

12 5 Г

-0-10-8 0-10-8

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:54 ID:_rexsNnU7li5ga1UrOwPBlywoq9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-3-11

3-11-4

2-4-13

Page: 1

$4x8 \neq 1.5x4 \parallel$ $1.5x4 \parallel$ $1.5x4 \parallel$ $1.5x4 \parallel$ $3x4 \parallel 1.5x4 \parallel$ 3x4 =

NAILED

Scale = 1:29.9

Plate Offsets (X, Y): [2:0-1-8,0-0-3], [3:0-2-15,Edge]

1-3-14

0-8-0

-late Offsets (∧, т). [∠.0-1-8,0-0-3],	, [3.0-2-15,Edge]												
Loading FCLL (roof) FCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	/TPI2014	CSI TC BC WB Matrix-P	0.12 0.07 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 5-6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 19 lb	GRIP 197/144 FT = 20%	
CDL 10.0 Code IRC2018/TPI2014 Matrix-P Weight: 19 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 This true is designed in accordance with the 2018 This true is designed in accordance with the 2018 This true is designed in accordance with the 2018 This true is designed in accordance with the 2018 SLIDER Left 2x4 SP No.2 1-5-9 This true is designed in accordance with the 2018 This true is designed in accordance with the 2018 SRACING Structural wood sheathing directly applied or 3-11-4 oc purlins; except end verticals, and 2-0-0 oc purlins; except end verticals, and 2-0-0 oc purlins; 2-447 (LC 39) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or botom chord. 30T CHORD (size) 2=0-5-8, 5= Mechanical Max Horiz 10) "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails per NDS guidelines. 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). 10) "NAILED" indicates (Dift) vert: 1-3=-70, 2-55-20 CORCES (b) - Maximum Compression/Maximum Tension Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 FOP CHORD 1-2e/0, 2-3=-194/58, 3-4=-21/23, 4-5=-79/63 Uniform Loads (b)/ Vert: 7=21 (B) 30T CHORD 2-6=-90/146, 5-6=-90/146 Vert: 7=21 (B)														
 Unbalance this design this design (and construction) Wind: ASC Vasd=91n Ke=1.00; exterior z c and right é exposed; reactions : DOL=1.60 Provide ac DOL=1.60 Provide ac Provide ac chord live Bearings a capacity o Refer to g 	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed; end vertical >-C for members and f shown; Lumber DOL=) dequate drainage to pr has been designed fo load nonconcurrent wi are assumed to be: Joi of 565 psi. irder(s) for truss to tru	been considered for a (3-second gust) EDL=6.0psf; h=35ft; ad; MWFRS (envelop E) zone; cantilever le left and right forces & MWFRS for 1.60 plate grip revent water ponding, r a 10.0 psf bottom ith any other live load int 2 SP No.2 crushin ass connections.	e) ht is. g								* Pixes	STATE OF M SCOTT SEVI PE-20010 PE-20010 PE-20010 January	11550 M. ER D18807 L ENGINE 29,2025	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	J20	Jack-Open	1	1	Job Reference (optional)	171039456

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:54 ID:hVjIO_h5mbp5LV_8wQImPGywoqG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1/J4zJC?f


```
3x4 =
```


I	2-9-6	
Γ		

Scale = 1:26.8 Plate Offsets (X, Y): [2:0-4-1.0-0-5]. [4:0-2-0.0-2-8]

	(X, 1): [2:0 + 1,0 0 0];	[4.0 2 0,0 2 0]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/T	PI2014	CSI TC BC WB Matrix-P	0.11 0.06 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.01	(loc) 2-6 2-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
	1010	0000										110.9.1.12.10	
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD	 2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 1 Structural wood sheat 2-9-6 oc purlins, exc 2-0-0 oc purlins: 4-5 	1-5-11 athing directly applic æpt	7) P b 5 8) T Ir ed or R 9) G	Provide mech earing plate and 36 lb u This truss is o nternational 8802.10.2 ar Braphical put r the orienta	nanical connection capable of withst plift at joint 2. designed in accor Residential Code nd referenced star rlin representation tion of the purlin a	n (by oth anding 3 dance w sections ndard AN n does no along the	ers) of truss to 5 lb uplift at jo ith the 2018 R502.11.1 at ISI/TPI 1. ot depict the s top and/or	o oint nd iize					
BOT CHORD	 Rigid ceiling directly bracing. 	applied or 10-0-0 or		ottom chord D CASE(S)	Standard								
REACTIONS	(size) 2=0-3-8, 5 Mechanic Max Horiz 2=51 (LC Max Uplift 2=-36 (LC Max Grav 2=193 (LC (LC 3)	5= Mechanical, 6= al 12) 5 12), 5=-35 (LC 9) 5 1), 5=83 (LC 1), 6=	-47										
FORCES	(Ib) - Maximum Com	pression/Maximum											
TOP CHORD	Tension 0 1-2=0/0, 2-4=-70/6, 4	4-5=0/0											
NOTES	2-0=0/0												
 Unbalance this desig Wind: AS Vasd=91 Ke=1.00; exterior z and right exposed; reactions DOL=1.6 Provide a This trust 	ced roof live loads have gn. SCE 7-16; Vult=115mph mph; TCDL=6.0psf; BC ; Cat. II; Exp C; Enclose cone and C-C Exterior(2 exposed ; end vertical I C-C for members and for a shown; Lumber DOL=1 0 adequate drainage to pro s has been designed for	been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever I left and right orces & MWFRS for 1.60 plate grip event water ponding r a 10.0 psf bottom	r eft									STATE OF M SCOT SEVI	MISSOLA I M. LER STULAT
chord live5) Bearings capacity	e load nonconcurrent wi are assumed to be: , Jo of 565 psi.	ith any other live load oint 2 SP No.2 crush	ds. ing								Ø	FE-2001	ENGLE
6) Refer to	airder(s) for truss to trus	ss connections.										W UNA	LPY

January 29,2025

RELEASE ICROMETRUCTION AS NOTED ON LANS REVIEW DEVELOBINATION SERVICES LEETS SUMMITY MISSOURI 02/04/2025 11:09:50

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	J21	Jack-Open	3	1	Job Reference (optional)	171039457

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:54 ID:hVjIO_h5mbp5LV_8wQImPGywoqG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

OR CONSTRUCTION ON PLANS REVIEW

DEVERSION SERVICES LEE'S'SUMMIT'S MISSOURI 02/04/2025 11:09:50

RELEASE AS NOTED 1 46

3x4 =

1-1-6 0-11-7 0-11-7 0-1-15

Scale = 1:31.1

Plate Offsets (X, Y):	[4:Edge,0-1-8], [5:0-3-0,0-1-12]
-----------------------	----------------------------------

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.08 0.01 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 6 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=91m Ke=1.00; C exterior zo and right e exposed;C reactions s DOL=1.60 2) This truss chord live 3) Bearings a capacity of 4) Refer to gi 5) Provide m bearing pla 5, 12 lb up	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep Structural wood sheat 1-1-6 oc purlins, exx Rigid ceiling directly bracing. (size) 3= Mecha 5=0-5-8 Max Horiz 5=33 (LC Max Uplift 3=-5 (LC (LC 12) Max Grav 3=10 (LC (LC 12) (lb) - Maximum Com Tension 2-5=-143/114, 1-2=0 4-5=-69/17 2-4=-19/79 2C 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ne and C-C Exterior(2 exposed ; end vertical 1 C-f or members and for shown; Lumber DOL=1 has been designed for load nonconcurrent wi tre assumed to be: , Jo f 565 psi. rder(s) for truss to trus echanical connection (ate capable of withstar lift at joint 4 and 5 lb u	t* 4-2:2x3 SPF No.2 athing directly applied cept end verticals. applied or 10-0-0 oc nical, 4= Mechanical, 11) 1), 4=-12 (LC 12), 5=- 8), 4=19 (LC 3), 5=18 pression/Maximum //32, 2-3=-32/14 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope E) zone; cantilever le eft and right proces & MWFRS for 1.60 plate grip • a 10.0 psf bottom th any other live load bint 5 SP No.2 crushin ss connections. by others) of truss to iding 31 lb uplift at joi plift at joint 3.	 a) This truss is International R802.10.2 at LOAD CASE(S) b) d or c) an analysis of the second second	designed in accord Residential Code s nd referenced stand Standard	ance wi ections dard AN	th the 2018 R502.11.1 a SI/TPI 1.	nd				STATE OF M STATE OF M SCOTT SEVI DE-20010 RE-20010	MISSOLUTION F.M. ER DISSO7 L ENGINE
											January	29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	LG1	Lay-In Gable	1	1	Job Reference (optional)	171039458

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:54 ID:7jxefnJxXb6EpH4_yVdChlzsQYs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:31.5

Plate Offsets (X, Y): [3:Edge,0-3-2]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.03	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.04	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-P							Weight: 24 lb	FT = 20%
LUMBER			6)	This truss ha	is been designed	for a 10.0) psf bottom						
TOP CHORD	2x4 SP No.2			chord live loa	ad nonconcurrent	with any	other live loa	ds.					
BOT CHORD	2x4 SP No.2		7)	All bearings	are assumed to b	e SP No.	2 crushing						
OTHERS	2x3 SPF No.2			capacity of 5	65 psi.								
BRACING			8)	Provide mec	hanical connectio	on (by oth	ers) of truss t	0					
TOP CHORD	P CHORD Structural wood sheathing directly applied or bearing plate capable of withstanding 10 lb uplift at joint												
	5-7-5 oc purlins.												
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	c .	uplift at joint	6.								
	bracing.		9)	This truss is	designed in acco	rdance w	ith the 2018						
REACTIONS	(size) 1=5-7-5,	5=5-7-5, 6=5-7-5, 7=	=5-7-5	International	Residential Code	e sections	R502.11.1 a	nd					
	Max Horiz 1=-98 (LC	C 8)		R802.10.2 a	nd referenced sta	indard AN	ISI/TPI 1.						
	Max Uplift 1=-10 (LC	C 10), 5=-8 (LC 11),	LC	DAD CASE(S)	Standard								
	6=-142 (L	_C 13), 7=-143 (LC 1	12)										
	Max Grav 1=107 (L	C 21), 5=106 (LC 22	2),										
	6=189 (L	C 20), 7=191 (LC 19	9)										
FORCES	(lb) - Maximum Con Tension	npression/Maximum											
TOP CHORD	1-2=-148/136, 2-3= 4-5=-147/136	-51/11, 3-4=-51/10,											
BOT CHORD	1-7=-112/128.6-7=	-114/129. 5-6=-112/	128										
WEBS	2-7=-204/166, 4-6=	-204/166											
NOTES													
1) Unbalanc	ed roof live loads have	been considered fo	or										
, this desig	n.											A TI	and the second
2) Wind: AS	CE 7-16; Vult=115mph	n (3-second gust)										F. OF I	NISS OF
Vasd=91r	mph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;									6		N.S.
Ke=1.00;	Cat. II; Exp C; Enclose	ed; MWFRS (envelop	pe)								B	SCOT	TM XPN
exterior z	one and C-C Exterior(2	2E) zone; cantilever	left								R	SEV	
and right	exposed ; end vertical	left and right									a		
exposed;	C-C for members and	forces & MWFRS for	r								NX		
reactions	shown; Lumber DOL=	1.60 plate grip										ROL-	RONNIN
DOL=1.60	U Vanad far wind la!- !::	the slove of the two									NUM		
3) I russ des	signed for wind loads if	i the plane of the tru							N2	O PE-2001	018807		
See Store	ard Industry Cable En	d Details as applicat	i), hla								N	A	124
or consult	t qualified building desi	igner as ner ANSI/TI	PI 1								Y	A So.	C'H
4) Gable rec	uires continuous botto	m chord bearing										UN ONA	LEFA
		in chord bearing.										Un III	- 0

- or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 0-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

January 29,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	LG2	Lay-In Gable	1	1	Job Reference (optional)	171039459

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:54 ID:qYc7ENMk_lafcKddgbwK0zb?Ec-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-10-15

Scale = 1:46

Leading TCLL (root)(psf) 25.0Spacing Plate Grip DOL2-0-0 1.15CSI TCDEFLin(loc) $l/defL$ L/d PLATESPLATES GRIPBCLL0.00 BCDL10.01.15TC0.09 BCVert(TL) n/a - n/a 999 999BCLL0.00 BCDL10.0Reg Stress IncrYES CodeWB0.14Vert(TL) n/a - n/a 999 999Horiz(TL)0.007 n/a 999Wit20244/190LUMBER TOP CHORD2x4 SP No.2Structural wood sheathing directly applied or 6-0-0 oc purlins.20Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0pst; BCDL=6.0pst; BCDL=6.0pst; BCDL=6.0pst; BCDL=6.0pst; BCDL=6.0pst; BCDL=6.0pst; BCDL=6.0pst; BCDL=6.0pst; BCDL=6.0pst; Comerce and life transfer to zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed c: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60BOT CHORD CHORD1:10-10-15, 7=10-10-15, $12=10-10-15, 1=1-10-15, 3=10-10-15, 1=1-10-10, 1=2020 (LC 8)Signed for wind loads in the plane of the trussor onsult qualified building designer as per ANSUTPI 1.Max Upilit1=96 (LC 10), 7=72 (LC 11),B=199 (LC 13), 9=-156 (LC 13),1=238 (LC 12), 12=-198 (LC 13), 9=-156 (LC 13),1=238 (LC 12), 11=208 (LC 13), 11=206 (LC 13), 11=206 (LC 13),1=238 (LC 13), 11=206 (LC 13), 11=206 (LC 13),1=238 (LC 13), 11=206 (LC 13), 11=206 (LC 13), 11=206 (LC 13),1=238 (LC 13), 11=206 (LC 13), 11=206 (LC 13),1=238 (LC 13), 11=206 (LC 13), 11=206 (LC 13),1=238 (LC 13), $	
BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 1=10-10-15, 7=10-10-15, 8=10-10-15, 1=10-10-15, 12=10-10-15 Max Horiz 1=-202 (LC 8) Max Uplift 1=-96 (LC 10), 7=-72 (LC 11), 8=-199 (LC 12), 12=-198 (LC 12), 11=-158 (LC 12), 12=-198 (LC 12), 8=239 (LC 20), 9=204 (LC 20), 10=138 (LC 13), 11=206 (LC 19), 10=138 (LC 13), 11=206 (LC 19),	
REACTIONS(size)1=10-10-15, 7=10-10-15, 8=10-10-15, 8=10-10-15, 9=10-10-15, 11=10-10-15, 11=10-10-15, 11=10-10-15, 11=10-10-15, 10=10-10-15, 11=10-10-15, 10=10-10-15, 11=-010-15, 11=10-10-15, 10=10-10-15, 11=-010-15, 10=10-10-15, 11=-010-15, 10=10-10-15, 11=-010-15, 10=10-10, 10=10-10-15, 10=10-10, 10=10-10-15, 10=10-10, 10=10-10, 10=10-10, 10=10-10, 10=10-10, 10=10-10, 10=10-10, 10=10-10, 10=10-10, 10=10-10, 10=10-10, 10=10-10, 10=10-10, 10=10-10, 10=10-10, 10=1	
12=238 (LC 19) 1. 72 by uplify at joint 7 109 by uplify at joint 7.109	
FORCES (Ib) - Maximum Compression/Maximum Tension Tension (Ib) - Maximum Compression/Maximum uplift at joint 1, 198 ib uplift at joint 12, 158 ib ioint 11, 156 ib uplift at joint 12, 158 ib	
TOP CHORD 1-2=-286/199, 2-3=-142/103, 3-4=-128/118, 10) This truss is designed in accordance with the 2018	
H-3=-120/117, 5-0=-113/12, 6/192, 6/1=20/119 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. BOT CHORD 1-12=-146/199, 9-10=-146/199, 8-9=-146/199, 8-9=-146/199, 7-8=-145/198 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. WEBS 2-12=-249/215, 3-11=-206/182, 4-10=-130/100, 5-9=-206/180, 6-8=-249/216 LOAD CASE(S) Standard NOTES Scott M. SEVIER	8

Unbalanced roof live loads have been considered for 1) this design.

DEVELOPMENT SERVICES LEE'S'SUMMIT'S MISSOURI 02/04/2025 11:09:50

TION IEW

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	LG3	Lay-In Gable	1	1	Job Reference (optional)	171039460

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:54 ID:u9UNphKUSN2sPIAEVFZSFbzb?Ee-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-8-14

Scale = 1:27.7

	A, T). [3.0-2-0,1	Luyej,	[4.0-0-0,Euge]												
Loading FCLL (roof) FCDL BCLL BCDL	(r 2 1 1	psf) 25.0 0.0 0.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.05 0.03 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%	
UMBER FOP CHORD OT CHORD DTHERS SRACING FOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural woo 5-9-7 oc purlin Rigid ceiling d bracing. (size) 1=5 7=5 Max Horiz 1=- Max Uplift 6=-{ Max Grav 1=7 (LC	od shea hs. Jirectly 5-8-14, 5-8-14 66 (LC 83 (LC 76 (LC 20), 7	athing directly applied applied or 10-0-0 oc 5=5-8-14, 6=5-8-14, 8) 13), 7=-85 (LC 12) 21), 5=75 (LC 22), 6 =168 (LC 19)	6) 7) 8) d or 9) LC =166	This truss ha chord live loa All bearings a capacity of 5 Provide mech bearing plate 7 and 83 lb u This truss is International R802.10.2 ar	s been designed fo an onconcurrent w are assumed to be 65 psi. hanical connection capable of withsta plift at joint 6. designed in accord Residential Code s do referenced stand Standard	or a 10.0 rith any SP No. (by oth nding 8 ance w sections dard AN	D psf bottom other live load 2 crushing ers) of truss to 5 lb uplift at jo 15 lb uplift at jo 16 kg 2018 ith the 2018 ith the 2018 ith TPI 1.	ds. D Dint						
	(Ib) - Maximun Tension 1-2=-136/62, 2	n Com 2-3=-59	pression/Maximum 9/27, 3-4=-59/31,												
BOT CHORD	4-5=-111/62 1-7=-59/121, 6 2-7=-139/211,	6-7=-59 4-6=-1	9/121, 5-6=-59/121 139/174												
) Unbalance	d roof live loads	shave	been considered for												
 Wind: ASC Vasd=91m Ke=1.00; C exterior zo and right e exposed;C reactions s DOL=1.60 Truss desi only. For s see Standa or consult Gable requ Gable stud 	E 7-16; Vult=11 ph; TCDL=6.0p 2at. II; Exp C; Er ne and C-C Ext xposed ; end ve t-C for members shown; Lumber I gned for wind lo studs exposed to ard Industry Gat qualified building irres continuous Is spaced at 0-0	I5mph Isf; BCI nclosed erior(2l eritical less and fo DOL=1 pads in o wind ble Enco g desig botton I-0 oc.	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le eft and right prces & MWFRS for .60 plate grip the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TPI n chord bearing.	e) bft s le, l 1.							J		State OF M SCOTT SEVI PE-20010 PE-20010	AISSOLA M. ER 18807 E L ENGIN	
													January	29,2025	

RELEASE AS NOTE TRUCTION **IEW** DEVELOPMEN SERVICES LEE'S' SUMMIT'S MISSOURI 02/04/2025 11:09:50

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Plate Offsets (X, Y): [3:0-2-0.Edge], [4:0-0-0.Edge]

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	LG4	Lay-In Gable	1	1	Job Reference (optional)	171039461

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:54

Page: 1

ELOPMENT SERVICES

LEE'S'SUMMIT'S MISSOURI 02/04/2025 11:09:50

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	LG5	Lay-In Gable	1	1	Job Reference (optional)	171039462

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:55 ID:etr2ogjLIC3oao8X2rKEUhywoqE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

12=276 (LC 20), 13=194 (LC 20), 14=158 (LC 26), 15=190 (LC 25), 16=158 (LC 25), 17=201 (LC 19), 19=274 (LC 19)

FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-307/196, 2-3=-153/99, 3-4=-123/101, 4-5=-100/95, 5-6=-100/95, 6-7=-100/95, 7-8=-100/95, 8-9=-123/100, 9-10=-128/65, 10-11=-287/196 BOT CHORD 1-19=-150/224, 17-19=-151/225, 16-17=-151/225, 15-16=-151/225,

TCDL

BCLL

BCDL

14-15=-151/225, 13-14=-151/225, 12-13=-151/224, 11-12=-150/223

- 7) Gable studs spaced at 0-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 8)
- chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing 9)
- capacity of 565 psi. 10) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 88 lb uplift at joint 1, 64 lb uplift at joint 11, 232 lb uplift at joint 19, 135 lb uplift at joint 17, 36 lb uplift at joint 16, 55 lb uplift at joint 15, 14 lb uplift at joint 14, 129 lb uplift at joint 13 and 233 Ib uplift at joint 12.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

OF MISS SCOTT M. SEVIER OFT PE-200101880 SIONAL E January 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	LG6	Lay-In Gable	1	1	Job Reference (optional)	171039463

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:55 ID:etr2ogjLIC30ao8X2rKEUhywoqE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

26-10-15 4-11-0 21-11-15 26-8-5 4-11-0 0-2-10 17-0-14 4-8-6 3x4 🍬 5x5 = 3x4 💊 5 6 7 8 9 10 11 12 13 14 4 \bowtie \boxtimes \boxtimes \boxtimes \boxtimes \boxtimes \boxtimes \boxtimes T 3 15 2 16 12 15.6 Г

Scale = 1:49.4

6-1-5

6-5-0

Plate Offsets (X, Y): [4:0-1-4,Edge], [12:0-2-8,0-3-0], [14:0-1-4,Edge]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.04	Vert(TL)	n/a	-	n/a	999			
BCLL		0.0	Rep Stress Incr	YES		WB	0.13	Horiz(TL)	0.01	17	n/a	n/a			
BCDL		10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 142	lb FT = 20%	
LUMBER				Т	OP CHORD	1-2=-284/178, 2-3	3=-137/10	1, 3-4=-96/77	,	7) Ga	ble studs	s spac	ed at 0-0-0 oc.		
TOP CHORD	2x4 SP N	0.2				4-5=-76/73, 5-6=-	76/73, 6-	7=-76/73,		8) Th	is truss h	as bee	en designed fo	r a 10.0 psf bott	om
BOT CHORD	2x4 SP N	0.2				7-8=-76/73, 8-9=-	76/73, 9-	10=-76/73,		ch	ord live lo	oad no	nconcurrent w	ith any other live	loads.
OTHERS	2x3 SPF	No.2				10-11=-76/73, 11	-13=-77/7	3, 13-14=-77/	73,	9) Al	bearings	are a	ssumed to be	SP No.2 crushin	g
BRACING						14-15=-97/74, 15	-16=-117/	59,		ca	pacity of	565 ps	si.		
TOP CHORD	Structura	I wood she	athing directly applie	ed or		16-17=-260/170				10) Pr	ovide me	chanic	al connection	(by others) of tru	iss to
	6-0-0 oc i	purlins, exc	cept	B	OT CHORD	1-31=-123/194, 3	0-31=-124	4/194,		be	aring pla	te capa	able of withsta	nding 94 lb uplift	at joint
	2-0-0 oc	purlins (6-0	-0 max.): 4-14.			29-30=-124/195,	28-29=-12	24/195,		1,	64 lb upli	ft at jo	int 17, 204 lb ι	uplift at joint 31,	124 lb
BOT CHORD	Rigid ceil	ing directly	applied or 10-0-0 or	0		27-28=-124/195,	25-27=-12	24/195,		up	lift at join	t 30, 3	8 lb uplift at jo	int 29, 49 lb uplif	t at joint
	bracing.	0 ,				24-25=-124/195,	23-24=-12	24/195,		28	, 40 lb up	lift at j	oint 27, 34 lb ι	uplift at joint 25, 2	28 lb
REACTIONS	(size)	1=26-10-1	15. 17=26-10-15.			22-23=-124/195,	21-22=-12	24/195,		up	lift at join	t 24, 3	4 lb uplift at jo	int 23, 41 lb uplit	t at joint
	()	18=26-10	-15, 19=26-10-15,			20-21=-123/194,	19-20=-12	23/194,		22	, 44 lb up	lift at j	oint 21, 18 lb l	iplift at joint 20,	113 10
		20=26-10	-15, 21=26-10-15,	14		18-19=-123/194,	17-18=-12	22/193		up	lift at join	t 19 ar	nd 207 lb uplift	at joint 18.	10
		22=26-10	-15, 23=26-10-15,	VV	EBS	2-31 = -228/220, 3	-30=-167/	150,	CF	11) In	IS Truss IS	aesig	ned in accord	ance with the 20	18
		24=26-10	-15, 25=26-10-15,			9 25- 122/56 0 2	20=-145/7	10 22- 122/	00, 56			and ro	forenced store	And ANSI/TRI 1	. i anu
		27=26-10	-15, 28=26-10-15,			$11_{22} = 123/30, 92$	2-2114	5/68	50,	12) Cr	oz. 10.2 (anhical n	urlin re		does not depict (ho sizo
		29=26-10	-15, 30=26-10-15,			13-20-121/42 1	5-1015	3/139		12) Gi	apriicai p the orien	tation	of the nurlin al	ong the top and	or
		31=26-10	-15			16-18=-229/223	0 10- 10	<i>b</i> /100,		bo	ttom cho	rd		ong the top and	01
	Max Horiz	1=-184 (L	.C 8)	N	OTES	10 10- 220/220					CASE/S	u. N Sta	ndard		
	Max Uplift	1=-94 (LC	C 10), 17=-64 (LC 11), IN 1)		l roof live loade he	ve heen	ongidered for		LUAD	CASE(S) 31a	inuaru		
		18=-207 (LC 13), 19=-113 (LC	י C 13), יי	this design	11001 live loaus ha	ive been t								
		20=-18 (L	.C 9), 21=-44 (LC 9),	' 2)	Wind ASCI	= 7-16: \/ult=115m	nh (3-cor	ond quet)							
		22=-41 (L	C 9), 23=-34 (LC 8),	<u>ک</u>	Vasd-91mr	b: TCDI -6 Opsf: I	BCDI -6 (Inst h-35ft					-	con l	
		24=-28 (L	C 9), 25=-34 (LC 8),		Ke=1 00. C	at II: Exp C: Enclo	sed MW	FRS (envelop	e)				and the second	Am	
		27=-40 (L	(C 9), 28 = -49 (LC 8), (LC 8)		exterior zon	e and C-C Exterio	r(2F) 0-3	-9 to 4-11-3	0)				A. OI	MISC	
		29=-38 (L	.C 9), 30=-124 (LC 1	2),	Exterior(2R	4-11-3 to 11-11-1	12 Interio	r (1) 11-11-12	to			1	950		₽ I
	May Cray	31=-204 (LO IZ) 2 12) 17 104 (LC 1	2)	22-0-2. Exte	erior(2E) 22-0-2 to	26-7-12	zone: cantileve	er			B	N/ sco	TT M	N
	Max Grav	18_2/1 (LC	C 20) 10-102 (LC 1	3), 20)	left and righ	t exposed ; end ve	ertical left	and right				R	S SUC		~ Y
		20-161 (C 26) 21-185 (LC	20), 25)	exposed;C-	C for members an	d forces &	& MWFRS for				ha	SE SE	VIER	. X
		22=186 (L	C 26), 23=159 (LC	25), 25)	reactions sh	own; Lumber DOI	L=1.60 pla	ate grip				M/			× A
		24=123 (I	C(1) 25=159 (IC 2)	6)	DOL=1.60						(ℋ	Soll?	'ADAL	10D
		27=184 (1	C 25) 28=185 (I C	26) 3)	Truss desig	ned for wind loads	s in the pla	ane of the trus	S		/	W 7	NII	MBER	20
		29=164 (L	_C 25), 30=205 (LC	19).	only. For st	uds exposed to wi	ind (norm	al to the face)	,			14	DE 20	01010007	HA
		31=237 (L	_C 19)		see Standa	rd Industry Gable	End Deta	ils as applicab	le,			<i>S</i>	CALLE-20	0101000/	88
FORCES	(lb) - Max	imum Com	pression/Maximum		or consult q	ualified building de	esigner as	s per ANSI/TP	11.			Y	A Co	C.V.	A
	Tension			4)	Provide ade	quate drainage to	prevent v	vater ponding					V SION	INT ENS	7
				5)	All plates a	e 1.5x4 MT20 unle	ess other	wise indicated					APAN A	IAL	
				6)	Gable requi	res continuous bo	ttom chor	d bearing.					- March	000	

January 29,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	LG7	Lay-In Gable	2	1	Job Reference (optional)	171039464

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:55 ID:hVjIO_h5mbp5LV_8wQImPGywoqG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f ____

Page: 1

Scale = 1:31.1

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-P	0.30 0.04 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 4-7-13 oc purlins, e Rigid ceiling directly bracing.	athing directly applie xcept end verticals. applied or 10-0-0 or	6) 7) 8) ed or c LC	All bearings capacity of 4 Provide mer bearing plat 1, 47 lb upli This truss is Internationa R802.10.2 a DAD CASE(S)	are assumed t 665 psi. chanical conner e capable of wi ft at joint 4 and designed in ac I Residential Co and referenced Standard	o be SP No. ction (by oth ithstanding 2 149 lb uplift ccordance w ode sections standard AN	2 crushing ers) of truss 26 lb uplift at at joint 5. ith the 2018 5 R502.11.1 ISI/TPI 1.	to joint and					
REACTIONS	(size) 1=4-7-9, 4 Max Horiz 1=166 (LC Max Uplift 1=-26 (LC (LC 12) Max Grav 1=129 (LC 5=260 (LC	4=4-7-9, 5=4-7-9 C 9) C 8), 4=-47 (LC 9), 5: C 20), 4=80 (LC 19), C 19)	=-149 ,										
FORCES	(lb) - Maximum Corr Tension	pression/Maximum											
TOP CHORD	1-2=-430/227, 2-3=-	157/117, 3-4=-108/1	148										
BOT CHORD	1-5=-80/87, 4-5=-80	/87											

WEBS 2-5=-207/417

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. BELLEVIER BELLEVIER

January 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	LG8	Lay-In Gable	2	1	Job Reference (optional)	171039465

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:55 ID:nAYU8KogOXqrN5LNJ0xkNRywoEh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1.5x4 🛚

3-2-7

Scale = 1:32.8

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	018/TPI2014	CSI TC BC WB Matrix-P	0.26 0.03 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No. 2x3 SPF No. 2x3 SPF No. Structural wo 3-2-10 oc pu Rigid ceiling bracing.	2 2 ood shea urlins, ex directly	athing directly applie ccept end verticals. applied or 10-0-0 oc =3-2-7 5=3-2-7	d or	 All bearings capacity of § Provide mer bearing plat joint 1, 74 lb This truss is Internationa R802.10.2 a LOAD CASE(S) 	are assumed to 565 psi. chanical connect e capable of wi uplift at joint 4 designed in ac I Residential Co and referenced Standard	o be SP No. ction (by oth thstanding 1 and 175 lb ccordance w ode sections standard AN	2 crushing ers) of truss 00 lb uplift a uplift at joint th the 2018 R502.11.1 a ISI/TPI 1.	to it 5. and					
	Max Horiz 1= Max Uplift 1= 5= Max Grav 1= 5=	=155 (LC =-100 (LC =-175 (LC =153 (LC =218 (LC												
FORCES	(lb) - Maximu Tension	um Com	pression/Maximum											
	4 0 040/04	0 0 0 4	70/470 0 4 477/4	E 4										

TOP CHORD 1-2=-340/342, 2-3=-170/173, 3-4=-177/151 BOT CHORD 1-5=-73/79, 4-5=-75/82 WEBS 2-5=-249/256

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

- 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

OF MISS SCOTT M. SEVIER NUMBER PE-200101880' SIONAL E January 29,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	LG9	Lay-In Gable	1	1	Job Reference (optional)	171039466

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:55 ID:K34fr9Kk9C9?8rL0BFWY86zv80H-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

DEVELOPMENT SERVICES LEE'S'SUMMIT'S MISSOURI 02/04/2025 11:09:50

TION IEW

January 29,2025

Scale = 1:53.1	cale = 1:53.1
----------------	---------------

Plate Offsets (X, Y): [5:0-1-4,Edge], [9:0-1-4,Edge], [21:0-2-8,0-3-0]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0	Rep Stress Incr	YES		WB	0.24	Horiz(TL)	0.01	13	n/a	n/a		
BCDL		10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 100 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	2x4 SP N 2x4 SP N 2x3 SPF Structura 6-0-0 oc 2-0-0 oc	lo.2 lo.2 No.2 I wood shea purlins, exc purlins (6-0	athing directly applied ept -0 max.): 5-9.	BC	T CHORD 1	-22=-172/253, 20-2 9-20=-170/251, 18 7-18=-170/251, 16 5-16=-169/251, 14 3-14=-166/248 2-22=-180/166, 3-21 4-20=-172/164, 6-15 8-17=-116/33, 10-16	22=-174 -19=-1 -17=-1 -15=-1 =-256/ 9=-118/ 6=-169/	4/254, 70/251, 70/251, 68/250, /236, /58, 7-18=-15 /156,	1/80,	10) Pro bea join 210 upli 17, 149 11) This	vide me ring plat t 1, 149 I b uplift ft at join 132 lb u I b uplift s truss is	chanic te capa Ib uplif at join t 19, 56 plift at at join s desig	al connection (by ble of withstandi t at joint 13, 152 t 21, 139 lb uplift 3 lb uplift at joint 1 joint 16, 207 lb u t 14. ned in accordanc	others) of truss to ng 181 lb uplift at lb uplift at joint 22, at joint 20, 34 lb 18, 9 lb uplift at joint plift at joint 15 and we with the 2018
BOT CHORD	Rigid ceil bracing.	ing directly	applied or 10-0-0 oc	NC	TES	1-15=-249/232, 12	-14=-1	79/165		Inte R80	rnationa)2.10.2 a	al Resid	lential Code sect erenced standard	ions R502.11.1 and ANSI/TPI 1.
REACTIONS	(size) Max Horiz Max Uplift Max Grav	1=18-2-0, 15=18-2-0 18=18-2-0 21=18-2-0 1=-240 (L1 14=-149 (l 16=-132 (l 18=-56 (L1 20=-139 (l 22=-152 (l 1=340 (LC 14=187 (L 16=204 (L 18=191 (L 20=213 (L 20=213 (L 20=213 (L)	13=18-2-0, 14=18-2- 0, 16=18-2-0, 17=18-2- 0, 19=18-2-0, 20=18-2- 0, 22=18-2-0 C 8) C 10), 13=-149 (LC 1 LC 13), 15=-207 (LC LC 13), 17=-9 (LC 8) C 8), 19=-34 (LC 9), LC 12), 21=-210 (LC LC 12) C 12), 13=314 (LC 13) C 20), 15=241 (LC 2) C 20), 17=156 (LC 2) C 25), 19=158 (LC 2) C 19), 21=244 (LC 1) C 19)	.0, 1) 2-0, 2) 1), 2), 1), 13), . , 12), 3), 6), 6), 6), 6), 6), 6), 6), 6), 6), 6	Unbalanced this design. Wind: ASCE Vasd=91mph Ke=1.00; Car exterior zone Interior (1) 5- zone; cantile and right exp MWFRS for r grip DOL=1.6 Truss design only. For stu see Standard or consult qu Provide adec All plates are	roof live loads have 7-16; Vult=115mph ; TCDL=6.0psf; BC 11; Exp C; Enclose and C-C Exterior(2 1-1 to 6-4-5, Exterior ver left and right ext osed;C-C for memt eactions shown; LL 0 ed for wind loads in ds exposed to wind I Industry Gable En alified building desi juate drainage to pr 1.5x4 MT20 unless	been of (3-sec DL=6.0 d; MW 2E) 0-3 or(2E) posed opers an imber I the pla (norm d Deta gner as event of s other	considered for cond gust) Dpsf; h=35ft; FRS (envelop -9 to 5-1-1, 6-4-5 to 17-10; end vertical JODL=1.60 pla ane of the trus al to the face) ils as applicat is per ANSI/TF water ponding wise indicated	r D-14 left te SS), Dle, PI 1. J.	12) Gra or ti bott	iphical p he orien com choi CASE(S	urlin re tation o rd.) Star	presentation doe of the purlin along ndard	is not depict the size of the top and/or
F ORCES TOP CHORD	(Ib) - Max Tension 1-2=-428, 4-5=-134, 7-8=-108, 10-11=-1 12-13=-3	ximum Com /285, 2-3=-2 /114, 5-6=- /103, 8-9=- 26/65, 11-1 96/275	pression/Maximum 290/189, 3-4=-154/10 108/103, 6-7=-108/10 108/103, 9-10=-134/1 2=-259/166,	6) 7) _{03,} 8))3, 112,9)	Gable requirr Gable studs : This truss ha chord live loa All bearings a capacity of 5	es continuous botto spaced at 0-0-0 oc. s been designed fo d nonconcurrent w are assumed to be 65 psi.	m chor r a 10.(ith any SP No.	d bearing. 0 psf bottom other live load 2 crushing	ds.		لر		SCOTT SEVI NUMI PE-20010 PE-20010	T M. ER 018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	V1	Valley	1	1	Job Reference (optional)	171039467

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:55 ID:JQXnBLyXAxV04cePhiuF2Rzb?7O-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

15-5-7

15-5-7

Scale = 1:31.1

															_
Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD	2x4 SP No.2	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	018/TPI2014 4) Gable requir 5) Gable studs	CSI TC BC WB Matrix-S es continuous bc spaced at 4-0-0	0.22 0.11 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL) d bearing.	in n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 49 lb	GRIP 244/190 FT = 20%	
BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x3 SPF No. Structural wo 6-0-0 oc purl Rigid ceiling bracing	2 ood shea lins. directly a	athing directly applie applied or 10-0-0 oc	ed or	 This truss has chord live los of All bearings capacity of 5 Provide mec bearing plate 1, 10 lb uplifi 	as been designed ad nonconcurren are assumed to b 65 psi. hanical connection capable of with t at joint 5, 120 lb	t for a 10.0 t with any pe SP No. on (by oth standing 1 o uplift at jo) pst bottom other live loa 2 crushing ers) of truss t 2 lb uplift at j bint 8 and 120	ds. o oint 0 lb						
REACTIONS	(size) 1= 7= Max Horiz 1= Max Uplift 1= 6= Max Grav 1= (L 25	=15-5-7, =15-5-7, =-55 (LC =-12 (LC =-120 (LC =106 (LC .C 26), 7: 5)	5=15-5-7, 6=15-5-7, 8=15-5-7 17) 13), 5=-10 (LC 13), 2 13), 8=-120 (LC 12, 1), 5=106 (LC 1), 6 =315 (LC 1), 8=376	, 2) 5=376 (LC	uplift at joint 9) This truss is International R802.10.2 a LOAD CASE(S)	6. designed in acco Residential Cod nd referenced sta Standard	ordance w e sections andard AN	th the 2018 R502.11.1 a SI/TPI 1.	ind						
	(lb) - Maximu Tension		pression/Maximum												
BOT CHORD WEBS	1-2=-71/46,2 4-5=-53/35 1-8=-4/43, 7- 3-7=-235/87,	2-3=-87/ -8=-4/43 , 2-8=-29	104, 3-4=-87/98, , 6-7=-4/43, 5-6=-4/4)5/222, 4-6=-295/22;	43 2											
NOTES														The second second	
 Unbalance this design Wind: ASC Vasd=91n Ke=1.00; exterior zo 	ed roof live load n. CE 7-16; Vult=1 nph; TCDL=6.0 Cat. II; Exp C; I one and C-C E	ds have 115mph)psf; BCI Enclosed xterior(21	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-9-1 to 5-9-1,	ve)									STATE OF I	MISSOLAT	

3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

SSIONAL E January 29,2025 TION **IEW** DEVELOPMENT SERVICES

LEE'S'SUMMIT'SMISSOURI 02/04/2025 11:09:50

PE-2001018807

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	V2	Valley	1	1	Job Reference (optional)	171039468

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:55 ID:nc59Phy9xFetimDcEQPUbezb?7N-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-7-14

Page: 1

Scale	_	1.26.7
Scale	_	1.20.7

						-								
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.35 0.21 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x3 SPF Structura 6-0-0 oc Rigid ceil bracing. (size) Max Horiz	o.2 o.2 No.2 I wood she purlins. ing directly 1=10-7-1- 1=37 (LC	athing directly applie applied or 10-0-0 oc 4, 3=10-7-14, 4=10-7 12)	7) 8) ed or 9) c L(7-14	All bearings capacity of 5 Provide mec bearing plate 1, 52 lb uplift This truss is International R802.10.2 ai	are assumed to b 65 psi. hanical connectio capable of withs at joint 3 and 40 designed in acco Residential Code nd referenced sta Standard	be SP No. on (by oth standing 4 I b uplift a ordance w e sections andard AN	2 crushing ers) of truss t 15 lb uplift at j it joint 4. ith the 2018 is R502.11.1 a ISI/TPI 1.	o bint nd					
FORCES TOP CHORD BOT CHORD WEBS NOTES	Max Uplift Max Grav (lb) - Max Tension 1-2=-98/6 1-4=-2/40 2-4=-318/	1=-45 (LC 4=-40 (LC 1=191 (LC 4=458 (LC imum Corr 51, 2-3=-98 0, 3-4=-2/40 /225	2 12), 3=-52 (LC 13), 2 12) 2 25), 3=191 (LC 26) 2 1) npression/Maximum /66),										
1) Unbalance	ed roof live l	oads have	been considered for	r										

- this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

January 29,2025

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	V3	Valley	1	1	Job Reference (optional)	171039469

2-11-2

2-11-2

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:55 ID:nc59Phy9xFetimDcEQPUbezb?7N-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-1-14

2-2-12

5-10-4

0-8-6

IEW

DEVERSONNENCES LEE'S'SUMMIT'SMISSOURI 02/04/2025 11:09:51

.

5-10-4

Scale = 1:21.2

Plate Offsets (X, Y): [2:0-2-0,Edge]

Plate Offsets (X	, r): [2:0-2-0,Edge]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI20	CSI TC BC WB 14 Matrix-P	0.13 0.25 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS (N FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=91mp Ke=1.00; C: exterior 200 NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=91mp Ke=1.00; C: exterior 200 and right ex exposed;C- reactions sh DOL=1.60 3) Truss desig only. For st see Standal or consult q 4) Gable requi 5) Gable studs 6) This truss h chord live lo 7) All bearings capacity of st	2x4 SP No.2 2x4 SP No.2 Structural wood she 5-11-7 oc purlins. Rigid ceiling directly bracing. (size) 1=5-10-4 Max Horiz 1=18 (LC Max Uplift 1=-31 (LC Max Grav 1=200 (LI (lb) - Maximum Con Tension 1-2=-225/202, 2-3=- 1-3=-155/185 d roof live loads have E 7-16; Vult=115mpt bh; TCDL=6.0psf; BC at. II; Exp C; Enclose the and C-C Exterior(2 typosed ; end vertical C for members and f hown; Lumber DOL= uned for wind loads in tuds exposed to wind rd Industry Gable En uualified building desi irres continuous botto s spaced at 4-0-0 oc. has been designed fo bad nonconcurrent w a re assumed to be 565 psi.	eathing directly applie y applied or 10-0-0 oc , 3=5-10-4 12) 2 12), 3=-31 (LC 13) C 1), 3=200 (LC 1) apression/Maximum -225/210 e been considered for a (3-second gust) CDL=6.0psf; h=35ft; ad; MWFRS (envelop 2E) zone; cantilever le left and right forces & MWFRS for 1.60 plate grip a the plane of the truss 4 (normal to the face) d Details as applicab gner as per ANSI/TP m chord bearing. r a 10.0 psf bottom ith any other live load SP No.2 crushing	 8) Provi beari 1 and 9) This t Interr R802 cond C/ e) e) e) e) eft is is. 	de mechanical connectio gplate capable of withs 31 lb uplift at joint 3. russ is designed in accou ational Residential Code .10.2 and referenced sta .SE(S) Standard	n (by oth tanding 3 rdance wi e sections indard AN	ers) of truss t i1 lb uplift at j ith the 2018 i R502.11.1 a ISI/TPI 1.	to oint and				STATE OF J	MISSOLUE I M. ER 018807 I ENGINA
Design vali	NG - Verify design parame	eters and READ NOTES O	N THIS AND INCLUDE s based only upon par	D MITEK REFERENCE PAGE I ameters shown, and is for an in	MII-7473 rev	1. 1/2/2023 BEFC	DRE USE.					

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPH1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information
available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	V4	Valley	1	1	Job Reference (optional)	171039470

4-6-3

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:56 ID:64PQ00k_3WCfCyjjcZrT1vywoqD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-5-7

Page: 1

9-0-6

9-0-6

Scale	e = 1	:25.9

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.25 0.15 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood sh 6-0-0 oc purlins. Rigid ceiling directh bracing.	eathing directly applie y applied or 10-0-0 o	7) 8) ed or 9) c LQ	All bearings capacity of 5 Provide mec bearing plate 1, 46 lb uplift This truss is International R802.10.2 ai	are assumed to 65 psi. hanical connect capable of with a t joint 3 and 3 designed in acc Residential Coo nd referenced si Standard	be SP No. ion (by oth nstanding 3 0 lb uplift a cordance w de sections tandard AN	2 crushing ers) of truss 39 lb uplift at it joint 4. ith the 2018 \$ R502.11.1 a ISI/TPI 1.	to joint and					
REACTIONS	(size) 1=9-0-6, Max Horiz 1=37 (LC Max Uplift 1=-39 (L 4=-30 (L Max Grav 1=167 (L 4=375 (L (lb) - Maximum Cor Tension	3=9-0-6, 4=9-0-6 C 16) C 12), 3=-46 (LC 13) C 12) C 12), 3=167 (LC 26 C 1) mpression/Maximum	,)),										

TOP CHORD	1-2=-102/66, 2-3=-102/74
BOT CHORD	1-4=-3/43, 3-4=-3/43
WEBS	2-4=-256/193

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.
- 4)
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.

OF MISSO SCOTT M. SEVIER NUMBER PE-2001018807 C SSIONAL E January 29,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	V5	Valley	1	1	Job Reference (optional)	171039471

2-10-3

2-10-3

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

1-5-5

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:56 ID:64PQ00k_3WCfCyjjcZrT1vywoqD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-1-7

2-3-4

5-8-6

0-6-15

f

5-8-6

Scale = 1:22.6

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.11 0.05 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 5-9-6 oc purlins. Rigid ceiling directly bracing. (size) 1=5-8-6, 3 Max Horiz 1=21 (LC Max Uplift 1=-28 (LC (LC 12)	athing directly applie applied or 10-0-0 or 3=5-8-6, 4=5-8-6 16) 2 12), 3=-32 (LC 13),	7) 8) ed or 9) c L(, 4=-7	All bearings capacity of 5 Provide med bearing plate 1, 32 lb uplif This truss is International R802.10.2 a	are assumed to 565 psi. chanical connect e capable of wit t at joint 3 and i designed in ac I Residential Cc nd referenced s Standard	b be SP No. ttion (by oth thstanding 2 7 lb uplift at cordance w ode sections standard AN	2 crushing ers) of truss 8 lb uplift at joint 4. ith the 2018 is R502.11.1 a ISI/TPI 1.	to joint and					
FORCES TOP CHORD BOT CHORD	(LC 1) (Ib) - Maximum Compression/Maximum Tension D 1-2=-51/42, 2-3=-51/49 D 1-4=-1/23, 3-4=-1/23												

BOT CHORD 1-4=-1/23, 3-4 WEBS 2-4=-138/126

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITeM® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com) RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEVENDENT SERVICES LEE'S'SUMMIT'S MISSOURI 02/04/2025 11:09:51

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	V6	Valley	1	1	Job Reference (optional)	171039472

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries. Inc. Tue Jan 28 08:55:56 ID:64PQ00k_3WCfCyjjcZrT1vywoqD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scal	le –	1.27	73

BRACING

TOP CHORD

BOT CHORD

REACTIONS (size)

bracing.

Scale = 1:27.3			I										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.25	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.13	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	4	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 27 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2		 Provide me bearing pla 4 and 123 l This truss is International 	chanical connec te capable of wi b uplift at joint 5 s designed in ac al Residential Co	ction (by oth thstanding 2 cordance w ode sections	ers) of truss t 8 lb uplift at j ith the 2018 R502.11.1 a	to joint and						

7-11-15

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Æ	OF MIS
E.S.	e on ano
451	SCOTT M.
8 * 15	SEVIER
A la	# R
N 20 P	E-20010188
N. The	
No	Plan D

TM. TER 018807 ONAL January 29,2025

	Max Horiz	1=140 (LC 9)				
	Max Uplift	4=-28 (LC 12), 5=-123 (LC 12)				
	Max Grav	1=103 (LC 1), 4=137 (LC 1), 5=406				
		(LC 1)				
ORCES	(lb) - Max	imum Compression/Maximum				
	Tension					
TOP CHORD	1-2=-235/	/140, 2-3=-104/79, 3-4=-107/120				
BOT CHORD	1-5=-62/6	67, 4-5=-62/67				
VEBS	2-5=-316/	/303				
NOTES						
) Wind: AS	CE 7-16; Vu	It=115mph (3-second gust)				
Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft;						

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

1=8-0-9, 4=8-0-9, 5=8-0-9

Rigid ceiling directly applied or 10-0-0 oc

- Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-9-1 to 5-9-1, Interior (1) 5-9-1 to 7-11-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 4-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5)
- chord live load nonconcurrent with any other live loads. 6) All bearings are assumed to be SP No.2 crushing
- capacity of 565 psi.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	V7	Valley	1	1	Job Reference (optional)	171039473

5-7-2

5-7-2

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

2-4-4

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:56 ID:64PQ00k_3WCfCyjjcZrT1vywoqD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x4 🚅

2-4-4

Scale = 1:22.4 _

Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.52 0.28 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0 LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x3 SPF No.2 BRACING TOP CHORD Structural wood sheat 5-7-12 oc purlins, etc. BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 1=5-7-12, Max Horiz TOP CHORD Structural =194 (LC Max Uplift TOR CHORD (lb) - Maximum Com Tension	Code athing directly applie xcept end verticals. applied or 10-0-0 or 3=5-7-12 9) 5 12), 3=-56 (LC 12) C 1), 3=215 (LC 1) apression/Maximum	IRC2018/TPI2014 8) This truss is Internationa R802.10.2 a LOAD CASE(S) ed or	Matrix-P designed in accou Residential Code nd referenced sta Standard	rdance wi e sections indard AN	th the 2018 R502.11.1 a SI/TPI 1.	and				Weight: 18 lb	FT = 20%
 NOT CHORD 1-2=-12/1/02, 2-3=-11 BOT CHORD 1-3=-41/45 NOTES 1) Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCI Ke=1.00; Cat. II; Exp C; Enclose exterior zone and C-C Exterior(2 and right exposed; end vertical I exposed; C-C for members and for reactions shown; Lumber DOL=1 DOL=1.60 2) Truss designed for wind loads in only. For studs exposed to wind see Standard Industry Gable End or consult qualified building desig 3) Gable requires continuous bottor (1) Gable studs spaced at 4-0-0 oc. 5) This truss has been designed for chord live load nonconcurrent with 6) All bearings are assumed to be S capacity of 565 psi. 7) Provide mechanical connection (bearing plate capable of withstar 1 and 56 lb uplift at joint 3. 	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever l eff and right orces & MWFRS for 1.60 plate grip the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TF m chord bearing. r a 10.0 psf bottom th any other live load SP No.2 crushing (by others) of truss to daing 38 lb uplift at jo	be) eft ss ble, ble, ble, ble, ble, so le, le, le, le, ble, ble, ble, ble, ble								STATE OF J SCOT SEV NUM PE-2001	MISSOLUT T.M. IER BERCULER 018807

TION /IEW DEVELOPMEN SERVICES LEE'S' SUMMIT'S MISSOURI 02/04/2025 11:09:51

ARXING - Verify design parameters and READ ROTES ON THIS AND INCLUED MITER REFERENCE PAGE MIL-7473 rev. 17/2/2023 BEFORE USE. Design valid for use only with MITeR® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	V8	Valley	1	1	Job Reference (optional)	171039474

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:56 ID:64PQ00k_3WCfCyjjcZrT1vywoqD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1.5x4 🛚

Page: 1

3-2-6

3-2-6

1-4-4

RELEA

TRUCTION IEW

DEVELORMEN SERVICES LEE'S' SUMMIT'S MISSOURI 02/04/2025 11:09:51

Scale	_	1.1	8	5	

Scale = 1.16.5													
Loading FCLL (roof) FCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC 0 BC 0 WB 0).12).06).00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0	Code	IRC2018/1P12014	Matrix-P							weight: 9 lb	FT = 20%	
JUMBER FOP CHORD GOT CHOR	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she: 3-2-15 oc purlins, e: Rigid ceiling directly bracing. (size) 1=3-2-15, Max Horiz 1=47 (LC Max Uplift 1=-19 (LC Max Uplift 1=-19 (LC (Ib) - Maximum Com Tension 1-2=-62/42, 2-3=-84, 1-3=-21/22 2 F 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ne and C-C Exterior(2 xxposed ; end vertical I schown; Lumber DOL=1 gned for wind loads in studs exposed to wind ard Industry Gable End qualified building design ires continuous bottor ds spaced at 4-0-0 oc. has been designed for load nonconcurrent wi is are assumed to be S f 565 psi. echanical connection (ate capable of withstar o uplift at joint 3.	athing directly applie xcept end verticals. applied or 10-0-0 oc 3=3-2-15 9) (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le left and right orcces & MWFRS for 1.60 plate grip the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP m chord bearing. r a 10.0 psf bottom th any other live load SP No.2 crushing (by others) of truss to nding 19 lb uplift at jo	e) e) e) ft s international R802.10.2 a LOAD CASE(S) d or e) ft s i.e, i.1.	International Action of the second referenced standard Standard	rd AN	th the 2018 R502.11.1 ar SI/TPI 1.	nd				VVeignt: 9 10	MISSOLUE TM. IER BERROTAN 018807	
											Januar	y 29,2025	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	V9	Valley	1	1	Job Reference (optional)	171039475

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:56 ID:64PQ00k_3WCfCyjjcZrT1vywoqD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-4-12

3x4 🚅

1.5x4 🛚

Scale	- 1	1.23	7

Loading TCLL (roof) TCDL 3CLL 3CDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.73 0.40 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 30T CHORD	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=6-5-6, 3 Max Horiz 1=109 (LC Max Uplift 1=-44 (LC Max Uplift 1=-44 (LC Max Grav 1=251 (LC (lb) - Maximum Com Tension 1-2=-139/95, 2-3=-1 1-3=-48/52 CE 7-16; Vult=115mph ph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 5-9-1 to 6-4-2 zone; c end vertical left and rig and forces & MWFRS OL=1.60 plate grip DC igned for wind loads in studs exposed to wind studs exposed	athing directly applied cept end verticals. applied or 10-0-0 oc 3=6-5-6 C 9) C 12), 3=-66 (LC 12) C 1), 3=251 (LC 1) apression/Maximum 96/218 (G3-second gust) CDL=6.0psf; h=35ft; d; MWFRS (envelope 2E) 0-9-1 to 5-9-1, cantilever left and righ ght exposed;C-C for for reactions shown; DL=1.60 the plane of the trus: I (normal to the face), d Details as applicabl gner as per ANSI/TPI m chord bearing. r a 10.0 psf bottom thany other live load SP No.2 crushing (by others) of truss to noning 44 lb uplift at jo	 a) This truss is International R802.10.2 at LOAD CASE(S) b) d or a) at the second secon	designed in accorda Residential Code s nd referenced stand Standard	ance wi	th the 2018 R502.11.1 a ISI/TPI 1.	nd				STATE OF M STATE OF M SCOTT SEVI PE-20010 PE-20010 PE-20010 A January	MISSOLUE MISSOLUE ER Server L ENGINE
											,	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 200	
P250041-01	V10	Valley	1	1	Job Reference (optional)	171039476

3-11-15

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jan 28 08:55:56 ID:64PQ00k_3WCfCyjjcZrT1vywoqD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1.5x4 u

Page: 1

Scale	- 1	1 • 1	a	8	

3-11-15	

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.22	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 12 lb	FT = 20%	

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

LUMBER

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structural 4-0-9 oc r	wood sheathing directly applied or purlins. except end verticals.
BOT CHORD	Rigid ceili bracing.	ng directly applied or 10-0-0 oc
REACTIONS	(size)	1=4-0-9, 3=4-0-9
	Max Horiz	1=63 (LC 9)
	Max Uplift	1=-25 (LC 12), 3=-38 (LC 12)
	Max Grav	1=143 (LC 1), 3=143 (LC 1)

FORCES

	Tension
TOP CHORD	1-2=-82/55, 2-3=-112/132
BOT CHORD	1-3=-28/30

NOTES

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

(lb) - Maximum Compression/Maximum

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.6) All bearings are assumed to be SP No.2 crushing

capacity of 565 psi.7) Provide mechanical connection (by others) of truss t

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 1 and 38 lb uplift at joint 3.

SCOTT M. SEVIER NUMBER PE-2001018807

January 29,2025

ASE FOR CONST **OTED ON PLANS** VELOPMENT SER LEE'S SUMMIT, MISSOURI

11:09:5

02/04/2025