

RE: P241267-01 Roof - HM Lot 178

Site Information:

Customer: Clayton Properties Project Name: P241267-01 Lot/Block: 178 Model: Charlott Address: 2754 SW 11th Ter Subdivision: Hig City: Lee's Summit State: MO

ne: P241267-01 Model: Charlotte - Craftsman 3Car Subdivision: Highland Meadows State: MO

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 45.0 psf Design Program: MiTek 20/20 8.6 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 35 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	165733273	A1	5/22/2024	21	165733293	V4	5/22/2024
2	165733274	A2	5/22/2024	22	165733294	V5	5/22/2024
3	165733275	A3	5/22/2024	23	165733295	V6	5/22/2024
4	165733276	A4	5/22/2024	24	165733296	V7	5/22/2024
5	165733277	A5	5/22/2024	25	165733297	V8	5/22/2024
6	165733278	B1	5/22/2024	26	165733298	V9	5/22/2024
7	165733279	B2	5/22/2024	27	165733299	V10	5/22/2024
8	165733280	B3	5/22/2024	28	165733300	V11	5/22/2024
9	165733281	B4	5/22/2024	29	165733301	V12	5/22/2024
10	165733282	C1	5/22/2024	30	165733302	V13	5/22/2024
11	165733283	C2	5/22/2024	31	165733303	V14	5/22/2024
12	165733284	D1	5/22/2024	32	165733304	V15	5/22/2024
13	165733285	D2	5/22/2024	33	165733305	V16	5/22/2024
14	165733286	D3	5/22/2024	34	165733306	V17	5/22/2024
15	165733287	E1	5/22/2024	35	165733307	V18	5/22/2024
16	165733288	E2	5/22/2024				
17	165733289	F1	5/22/2024				
18	165733290	V1	5/22/2024				
19	165733291	V2	5/22/2024				
20	165733292	V3	5/22/2024				

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision based on the parameters provided by . Truss Design Engineer's Name: Nathan Fox

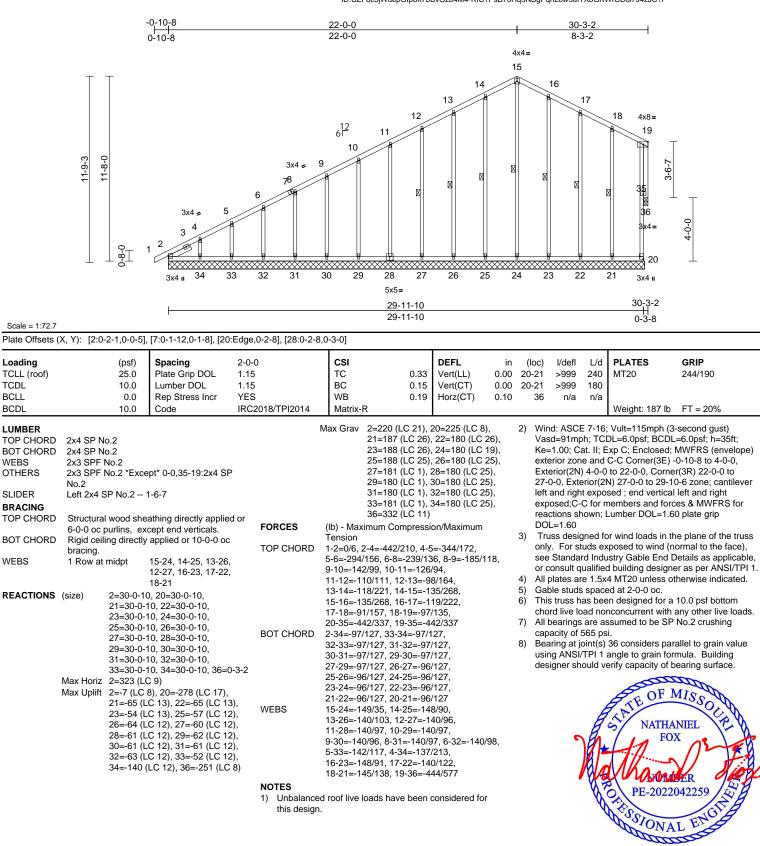
My license renewal date for the state of Missouri is December 31, 2026. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

	May 22, 2024
Nathan Fox	RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEVELOPMENT SERVICES LEE'S SUMMIT, MISSOURI 02/03/2025 4:51:05

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	A1	Common Supported Gable	1	1	Job Reference (optional)	165733273


Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:13 ID:UZF8c5jWdepGIp8ft7bBvOzb4M4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

May 22,2024

ELOPMENT SERV

LEE'S'SUMMIT'SMISSOURI 02/03/2025 4:51:05

Continued on page 2

Loading

TCDL

BCLL

BCDL

WEBS OTHERS

SLIDER

WEBS

LUMBER

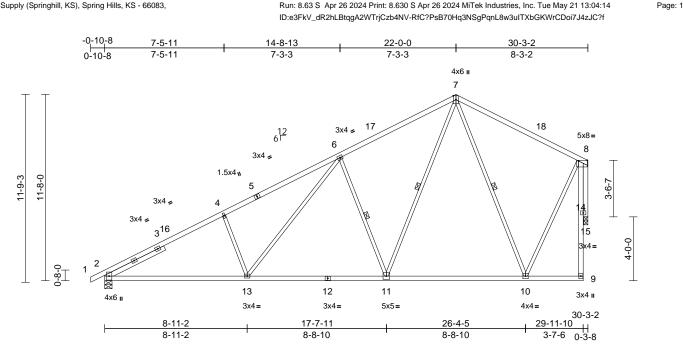
Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WAR Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	A1	Common Supported Gable	1	1	Job Reference (optional)	165733273

- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 278 lb uplift at joint 20, 7 lb uplift at joint 2, 57 lb uplift at joint 25, 64 lb uplift at joint 26, 60 lb uplift at joint 27, 61 lb uplift at joint 28, 62 lb uplift at joint 29, 61 lb uplift at joint 30, 61 lb uplift at joint 31, 63 lb uplift at joint 32, 52 lb uplift at joint 33, 140 lb uplift at joint 34, 54 lb uplift at joint 23, 65 lb uplift at joint 22, 65 lb uplift at joint 21 and 251 lb uplift at joint 36.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:13 ID:UZF8c5jWdepGlp8ft7bBvOzb4M4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss Type		Qty	Ply	Roof - HM Lot 178	
P241267-01	A2	Common	9	1	Job Reference (optional)	165733274

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:14

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Plate Offsets (X, Y): [2:0-3-9,0-1-5], [8:0-6-8,0-0-8]

Scale = 1:72.2

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.81	Vert(LL)	-0.16	2-13	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.86	Vert(CT)	-0.34	2-13	>999	180		
BCLL	0.0	Rep Stress Incr	YES		WB	1.00	Horz(CT)	0.28	15	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 162 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-16; Vult=115mp	oh (3-seo	ond aust)						
TOP CHORD	2x4 SP No.2 *Excep	ot* 7-8:2x4 SP 1650F	: ′	Vasd=91mpl	n; TCDL=6.0psf; B	CDL=6.	Opsf; h=35ft;						
	1.5E			Ke=1.00; Ca	t. II; Exp C; Enclos	sed; MW	FRS (envelop	pe)					
BOT CHORD	2x4 SP No.2			exterior zone	and C-C Exterior	(2E) -0-1	0-8 to 4-1-8,						
WEBS	2x3 SPF No.2 *Exce	pt* 9-8:2x4 SP No.2		Interior (1) 4	-1-8 to 22-0-0, Ext	erior(2R) 22-0-0 to						
OTHERS	2x4 SP No.2				or (1) 27-0-0 to 29			er left					
SLIDER	Left 2x4 SP No.2 4	Left 2x4 SP No.2 4-1-12 and right exposed ; end vertical left and right											
BRACING					c for members and			r					
TOP CHORD	Structural wood she	athing directly applie	ed or		reactions shown; Lumber DOL=1.60 plate grip								
	3-1-7 oc purlins, ex			DOL=1.60									
BOT CHORD	Rigid ceiling directly		3)		e 3x4 MT20 unless								
	bracing.		4)		is been designed f								
WEBS	1 Row at midpt	7-10, 7-11, 6-11		chord live load nonconcurrent with any other live loads.									
REACTIONS		15=0-3-2	5)	···· 5····· 5···· 5									
	Max Horiz 2=323 (LC			capacity of 5									
	Max Uplift 2=-240 (L	,	12) 6)		int(s) 15 considers			le					
	Max Grav 2=1418 (L			using ANSI/TPI 1 angle to grain formula. Building									
FORCES	(lb) - Maximum Com		7)	designer should verify capacity of bearing surface. Provide mechanical connection (by others) of truss to									
IONOLO	Tension	ipression/maximum	()		capable of withst								
TOP CHORD		366 4-62097/436			21 lb uplift at joint		40 ib upilit at						
	6-7=-1325/341, 7-8=				designed in accord		ith the 2018						
	8-14=-21/43	- 000/204, 0 14- 21/	-0, 0)		Residential Code			nd					
BOT CHORD	2-13=-531/1918, 11-	-13=-389/1359			nd referenced star			inu					
	10-11=-226/720, 9-1	,					1 01/1111.					and a	TO
WEBS	7-10=-731/221, 8-10		LC	OAD CASE(S)	Stanuard							S OF M	Alean
	7-11=-272/1013, 6-1										9	BAD	0.0
	6-13=-196/702, 4-13										B	N	N ST
	8-15=-1335/247										8	STATE OF M	NIEL YZY
NOTES											-12	FO	X V

NOTES

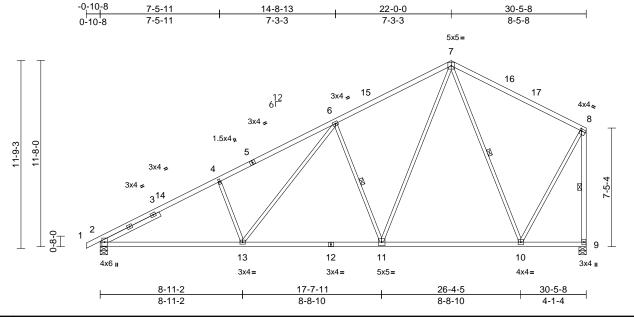
1) Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

E

May 22,2024

PE-20220422

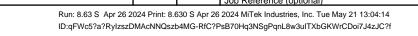

SIONAL

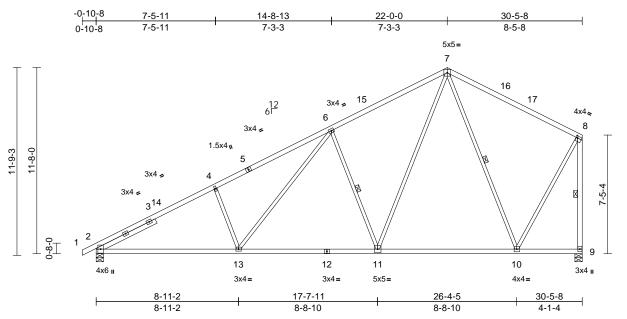
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	A3	Common	1	1	Job Reference (optional)	165733275

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:14 ID:qFWc5?a?RylzszDMAcNNQszb4MG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

7XbGKWrCDoi7J4zJC?f -5-8 5-8

RELEASE AS NOTE


Plate Offsets (X, Y): [2:0-3-9,0-1-5], [8:0-1-0,0-1-8]


Scale = 1:72.2

-							· · · · ·	-	-				
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.89	Vert(LL)	-0.16	2-13	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.86	Vert(CT)	-0.34	2-13	>999	180		
BCLL	0.0	Rep Stress Incr	YES		WB	1.00	Horz(CT)	0.06	9	n/a	n/a		
BCDL	10.0	Code	IRC2018/T	PI2014	Matrix-S		()					Weight: 158 lb	FT = 20%
LUMBER					is been designed f								
TOP CHORD	2x4 SP No.2 *Excep 1.5E	t* 7-8:2x4 SP 1650F			ad nonconcurrent are assumed to be			ds.					
BOT CHORD	2x4 SP No.2			apacity of 5									
WEBS	2x3 SPF No.2 *Exce	pt* 9-8:2x4 SP No.2			hanical connectior								
SLIDER	Left 2x4 SP No.2 4	4-1-12			capable of withst		256 lb uplift at						
BRACING			~ [′]		05 lb uplift at joint		:+h +h = 2010						
TOP CHORD					designed in accor Residential Code			nd					
	2-2-0 oc purlins, ex				nd referenced star			ina					
BOT CHORD	Rigid ceiling directly bracing.	applied or 7-8-0 oc		D CASE(S)			0/////						
WEBS		7-10, 6-11, 8-9											
REACTIONS	(size) 2=0-5-8, 9	9=0-5-8											
	Max Horiz 2=379 (LC												
	Max Uplift 2=-256 (L	C 12), 9=-205 (LC 12	2)										
	Max Grav 2=1426 (L	_C 1), 9=1363 (LC 1)											
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD		399 4-6=-2115/469											
		-659/294, 8-9=-1338	/277										
BOT CHORD	2-13=-572/1933, 11-	-13=-444/1374,											
	10-11=-283/738, 9-1	0=-131/144											
WEBS	7-10=-730/265, 7-11	=-271/1012,											Th
	6-11=-821/385, 6-13	,										ALE	and the
	4-13=-399/280, 8-10)=-154/934										F. OF I	NISS W
NOTES											A	TATE OF M	N.S.
 Unbalance this designation 	ed roof live loads have	been considered for									A	S/ NATHA	MEL 14 V
	 CE 7-16; Vult=115mph	(3-second gust)								•	N A	FO	X A
	mph; TCDL=6.0psf; BC										W1	1.1.1.	
Ke=1.00;	Cat. II; Exp C; Enclose	d; MWFRS (envelop	e)								XI	TH-	Tr Ba
	one and C-C Exterior(2										MA	XMAC	BER UDD
) 4-1-8 to 22-0-0, Exter									/	N Y		
	terior (1) 27-0-0 to 30-3		left								N.	FE-2022	59
	exposed ; end vertical I										Y	100	IN B
	C-C for members and for shown; Lumber DOL=1											UNIONIA	TENA
DOL=1.6		1.00 plate grip										PE-2022	
DOL-1.0	•											NA-	00 0004
												iviay	22,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	A4	Common	9	1	Job Reference (optional)	165733276

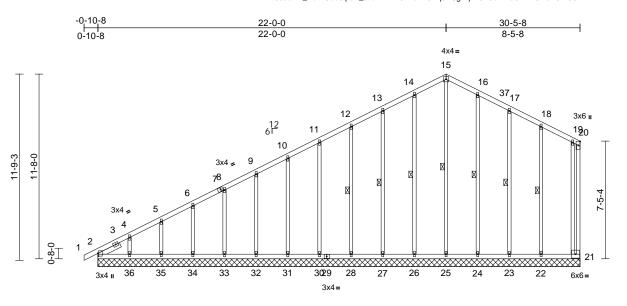
Plate Offsets (X, Y): [2:0-3-9,0-1-5], [8:0-1-0,0-1-8]

Scale = 1:72.2

		-										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.89	Vert(LL)	-0.16	2-13	>999	240	MT20 244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.86	Vert(CT)	-0.34	2-13	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	1.00	Horz(CT)	0.06	9	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		- (-)					Weight: 158 lb FT = 20%	
											- 3	
LUMBER				s has been designe								
TOP CHORD		ot* 7-8:2x4 SP 1650F		e load nonconcurrer			ds.					
	1.5E			ngs are assumed to	be SP No.	2 crushing						
BOT CHORD				of 565 psi.	ion (hu oth							
WEBS												
SLIDER												
BRACING	() This trues is designed in second res with the 2010											
TOP CHORD	Chord Structural wood sheathing directly applied of											
	2-2-0 oc purlins, ex			.2 and referenced st								
BOT CHORD	0 0 ,	applied or 7-8-0 oc		(S) Standard								
WEBS	bracing. 1 Row at midpt	7-10, 6-11, 8-9	20/10 0/101									
REACTIONS		, ,										
REACTIONS	(Size) 2=0-5-6, Max Horiz 2=379 (Li											
	Max Uplift 2=-256 (L		2)									
	Max Grav 2=1426 (I											
FORCES	(lb) - Maximum Con	,. , ,)									
FORCES	Tension	ipression/maximum										
TOP CHORD		/399, 4-6=-2115/469,										
		=-659/294, 8-9=-1338										
BOT CHORD		,										
	10-11=-283/738, 9-											
WEBS	7-10=-730/265, 7-1											
	6-11=-821/385, 6-13	3=-194/701,									Jonne	
	4-13=-399/280, 8-10	0=-154/934									OF MISC	
NOTES										4	THE OF MISSOL	
1) Unbalanc	ed roof live loads have	been considered for								8	NATHANIEL E	
this desig	n.									R	FOX	
	CE 7-16; Vult=115mph									NA	I I TON	
	mph; TCDL=6.0psf; BC										All All	
	Cat. II; Exp C; Enclose		e)							N/	a Then the	
	one and C-C Exterior(2									1 and	X WARBER J KAN	
) 4-1-8 to 22-0-0, Exte		1.64							N2	PE-2022042259	
	terior (1) 27-0-0 to 30- exposed ; end vertical		leit							N V		
	C-C for members and f									Y	N°Se Sol	
	shown; Lumber DOL=										SIONAL ENG	
DOL=1.60		pidto grip									Contractor	
											May 00 0004	

May 22,2024

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	A5	Common Supported Gable	1	1	Job Reference (optional)	165733277

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:14 ID:r36uoRB_RdkkUod9fpoK_czb4LT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

30-5-8

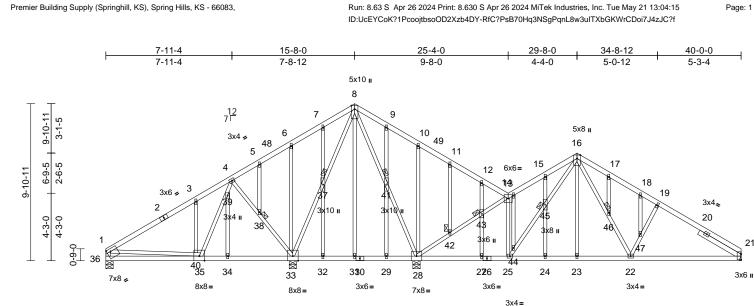
Scale = 1:72.8 Plate Offsets (X, Y): [2:0-2-1,0-0-5], [7:0-1-12,0-1-8]

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2 1,0 0 0]	[7:0 1 12,0 1 0]												
Loading TCLL (roof)		(psf) 25.0	Spacing Plate Grip DOL	2-0-(1.15		CSI TC	0.84	DEFL Vert(LL)	in n/a		- n/a	L/d 999	PLATES MT20	GRIP 244/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.27	Vert(CT)	n/a		- n/a	999			
			1 '				0.30	Horz(CT)	0.01	2	1 n/a	n/a			
BCDL		10.0	Code	IRC2	2018/TPI2014	Matrix-S							Weight: 188 lb	FT = 20%	
BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP N 2x3 SPF 2x3 SPF Left 2x4 S Structura 6-0-0 oc Rigid ceil bracing. 1 Row at (size) Max Horiz Max Uplift	0.0 10.0 10.2 10.2 No.2 No.2 SP No.2 Il wood she purlins, ex ling directly midpt 2=30-5-8 32=30-5-4 32=30-5-4 32=30-5-4 32=30-5-4 32=30-5-4 32=30-5-4 22=53 (L 22=-53 (L 28=-60 (L 33=-61 (L 33=-61 (L 33=-61 (L 22=199 (I	Rep Stress Incr Code 1-6-7 athing directly applier cept end verticals. applied or 10-0-0 oc 15-25, 14-26, 13-27, 12-28, 16-24, 17-23, 18-22 , 21=30-5-8, 22=30-5 8, 24=30-5-8, 22=30-5 8, 24=30-5-8, 22=30-5 8, 24=30-5-8, 32=30-5 8, 24=30-5-8, 32=30-5 8, 31=30-5-8, 32=30-5 1, 21, 32=-35 (LC 12, C 12), 32=-36 (LC 12, C 12), 30=-61 (LC 12, C 12), 30=-61 (LC 12, C 12), 30=-61 (LC 12, C 12), 36=-129 (LC 12, C 20), 21=109 (LC 20, 20), 21=109 (LC 20), 20), 21=109 (LC 20	YES IRC2 d or -8, 8, 8, 8, 5-8, 5-8, 5-5-8, 5-5-8, 3}, (), (), (2), (2), (2), (2), (2), (2),	EXAMPLE 2018/TPI2014 FORCES TOP CHORD BOT CHORD WEBS WEBS NOTES 1) Unbalanced this design. 2) Wind: ASCI Vasd=91m Ke=1.00; C	WB Matrix-S (lb) - Maximum Cor Tension 1-2=0/6, 2-4=-430/3 5-6=-282/241, 6-8= 9-10=-211/184, 10- 11-12=-179/243, 12 13-14=-215/354, 14 15-16=-229/399, 16 17-18=-188/292, 18 19-20=-214/283, 22 2-36=-148/195, 33 30-31=-148/195, 33 30-31=-148/195, 22 2-28=-148/195, 22 25-26=-148/195, 22 25-26=-148/195, 22 25-26=-148/195, 22 25-26=-148/195, 22 25-26=-148/195, 22 25-26=-148/195, 22 25-26=-148/195, 22 25-26=-148/195, 22 15-25=-257/113, 14 13-27=-140/107, 10- 9-32=-140/97, 8-33 5-35=-142/197, 4-33 16-24=-148/92, 17- 18-22=-152/197, 15 d roof live loads have E 7-16; Vult=115mp ph; TCDL=6.0psf; Bat. II; Exp C; Enclos	0.30 mpressi 301, 4-5 -242/22 -11=-19 2-13=-11 4-15=-2 3-19=-11 3-30=-14 3-34=-11 4-25=-11 4-25=-11 4-25=-11 4-25=-11 4-25=-11 4-26=-11 3-31=-14 5-27=-11 3-31=-14 5-27=-11 -228=-13 9-21=-11 e been of h (3-sec CDL=6.0, MW	Horz(CT) 	0.01 103, 198,	2 3)	In /a // // // // // // // // // // // //	n/a gned fit tuds e: ard Indu qualifie re 1.5% s space oad no s are a 565 ps coad no s are a 565 ps coad no s are a 565 ps coad no s are a 101ft at j tt 26, 6 bilft at j tt 28, 6 bilft at j tt 24, 7 s desig al Resi	xposed to wind (n ustry Gable End D d building designer (4 MT20 unless of ntinuous bottom of ed at 2-0-0 oc. en designed for a nconcurrent with ssumed to be SP si. eal connection (by able of withstandi oint 2, 35 lb uplift a lo uplift at joint 3: oint 35, 129 lb up 0 lb uplift at joint 3: oint 35, 129 lb up 0 lb uplift at joint 3: oint 35, 129 lb up	he plane of the truss hormal to the face), Details as applicable, er as per ANSI/TPI 1. therwise indicated. chord bearing. 10.0 psf bottom any other live loads. No.2 crushing r others) of truss to ng 36 lb uplift at joint at joint 25, 53 lb 27, 60 lb uplift at joint at joint 31, 61 lb 33, 63 lb uplift at joint lift at joint 36, 54 lb 23 and 53 lb uplift at ce with the 2018 tions R502.11.1 and d ANSI/TPI 1.	
	24=189 (LC 26), 25=196 (LC 19), 26=188 (LC 25), 27=180 (LC 25), 28=180 (LC 1), 30=180 (LC 25), 31=180 (LC 1), 32=180 (LC 25), 33=180 (LC 1), 34=180 (LC 25), 35=181 (LC 1), 36=180 (LC 25)				exterior zone and C-C Corner(3E) -0-10-8 to 4-0-0, Exterior(2N) 4-0-0 to 22-0-0, Corner(3R) 22-0-0 to 27-0-0, Exterior(2N) 27-0-0 to 30-4-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60					PE-2022042259 PE-2022042259 PE-2022042259 PE-2022042259 PE-2022042259 PE-2022042259					

May 22,2024

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	A5	Common Supported Gable	1	1	Job Reference (optional)	165733277
Premier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Apr 26 2	024 Print: 8.	630 S Apr 26	2024 MiTek Industries, Inc. Tue May 21 13:04:14	Page: 2


LOAD CASE(S) Standard

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:14 ID:r36uoRB_RdkkUod9fpoK_czb4LT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

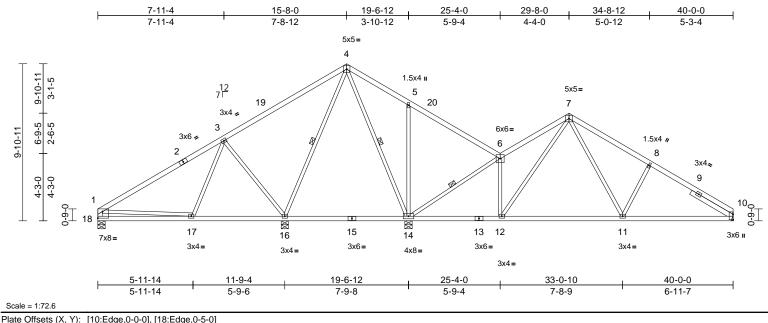
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	B1	Roof Special Structural Gable	1	1	Job Reference (optional)	165733278

	5-11-14	11-9-4	19-6-12	25-4-0	33-0-10	40-0-0
ſ	5-11-14	5-9-6	7-9-8	5-9-4	7-8-9	6-11-7
4.70.0						

Scale = 1:72.6

Plate Offsets (X, Y): [21:Edge,0-0-0], [36:0-2-12,0-2-0]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	1 1	1.15		TC	0.39	Vert(LL)		21-22	>999	240	MT20	244/190
TCDL	10.0		1.15		BC	0.44	Vert(CT)		21-22	>999	180		
BCLL	0.0		YES		WB	0.33	Horz(CT)	0.02	21	n/a	n/a		
BCDL	10.0	Code	IRC2018/T	PI2014	Matrix-S							Weight: 251 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD JOINTS	2x4 SP No.2 2x3 SPF No.2 *Exce 2x3 SPF No.2 Right 2x4 SP No.2	athing directly applied xcept end verticals.	WEB		35-39=-167/459, 4 4-38=-447/178, 33 33-37=-267/0, 8-37 28-41=-523/11, 28 42-43=-991/282, 1 13-25=-39/267, 25 13-25=-39/267, 25 13-25=-39/267, 25 22-46=-142/461, 2 19-47=-223/178, 1 35-40=-405/218, 6-37 34-39=0/59, 3-40=	-38=-464 7=-284/0 -42=-10 3-43=-99 -44=-114 46=-150/ 2-47=-30 -40=-23 -31=-2/1 3=-276/1 -335/219	5/189, , 8-41=-514/1 42/304, 96/288, 5/5, 44-45=-14 463, 07/221, 3/187, 38, 7-37=-45/, 61, 5-38=-22/ 9, 9-41=-86/54	46/5, 250, 14,	 cap of 5 psi. 9) Refe 10) Probe bea joint and 11) This Inte 	acity of 8 65 psi, J er to girc vide med ring plat t 21, 25 1 329 lb u s truss is rnationa	565 ps loint 28 der(s) f chanica e capa lb uplift uplift at desig I Resid	i, Joint 33 SP No. 8 SP No.2 crushin for truss to truss of al connection (by able of withstandir t at joint 36, 255 I t joint 28. ned in accordanc	others) of truss to ng 149 lb uplift at lb uplift at joint 33 e with the 2018 ions R502.11.1 and
REACTIONS	38, 41, 42, 43, 45, 46	anical, 28=0-5-8,			29-41=-77/53, 10-2 11-42=-91/37, 12-4 14-44=-2/38, 15-4 16-23=-2/91, 17-40	28=-271/ 43=-64/8 5=-61/68	(160, 6, 27-43=-73/ , 24-45=-54/6	96, 5,	LOAD				
	Max Grav 21=771 (L	LC 8) LC 13), 28=-329 (LC 1 LC 12), 36=-25 (LC 12	2) th 2) 2) W 26), 2) W 5) V	S nbalanced is design. 'ind: ASCE asd=91mp	roof live loads hav 7-16; Vult=115mp h; TCDL=6.0psf; B	re been o oh (3-sec CDL=6.0	considered for cond gust) Dpsf; h=35ft;						
FORCES	(lb) - Maximum Com Tension	<i>,,</i>	′ K		at. II; Exp C; Enclos e and C-C Exterior			e)					
TOP CHORD	1-3=-310/42, 3-4=-2 5-6=-28/425, 6-7=0/ 8-9=0/512, 9-10=0/4 11-12=-59/510, 12-1 13-14=-604/174, 14 15-16=-527/231, 16 17-18=-886/275, 18 19-21=-1059/229, 1-	.78, 10-11=-27/543, 3=-112/476, .15=-575/184, .17=-816/292, .19=-879/239, .36=-300/56	2 2 c; ri fc D 3) 1	0-6-11, Inte 0-6-15 to 3 antilever le ght expose r reactions OL=1.60 russ desig	-1-12 to 15-6-11, E prior (1) 20-6-11 to 4-9-9, Interior (1) 3 ft and right expose d;C-C for member: s shown; Lumber D ned for wind loads uds exposed to wir	29-6-15 34-9-9 to d ; end v s and for OL=1.60 in the pl	, Exterior(2R) 40-0-0 zone; vertical left and ces & MWFR) plate grip ane of the tru	d S ss				STATE OF M	
BOT CHORD		-33=-285/298,	55, 4) P 55, 5) A 6) G 7) T	e Standar consult qu ovide ade l plates are able studs his truss ha	d Industry Gable E ualified building de: quate drainage to p e 1.5x4 MT20 unle spaced at 2-0-0 or as been designed f ad nonconcurrent	ind Deta signer as prevent v ss other c. for a 10.0	ils as applicat s per ANSI/TP water ponding wise indicated) psf bottom	ole, 11 1.			SAN AND AND AND AND AND AND AND AND AND A	PE-20220	L ENGINE


May 22,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	B2	Roof Special	2	1	Job Reference (optional)	165733279

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:15 ID:piYm1thCwwhWBTMlj4UeL3zb4IF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.68	Vert(LL)	-0.07	11-12	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.53	Vert(CT)	-0.16	11-12	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.67	Horz(CT)	0.02	10	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 193 lb	FT = 20%

TOP CHORD	2x4 SP N 1.5E	o.2 *Except* 2-4:2x4 SP 1650F
BOT CHORD	2x4 SP N	0.2
WEBS	2x3 SPF I	No.2 *Except* 18-1:2x4 SP No.2
SLIDER	Right 2x4	SP No.2 3-0-11
BRACING	0	
TOP CHORD	Structural	wood sheathing directly applied or
		ourlins, except end verticals.
BOT CHORD	Rigid ceili	ing directly applied or 6-0-0 oc
	bracing.	
WEBS	1 Row at	midpt 4-16, 4-14, 6-14
REACTIONS	(size)	10= Mechanical, 14=0-5-8,
		16=0-5-8, 18=0-5-8
	Max Horiz	18=-275 (LC 10)
	Max Uplift	
		16=-181 (LC 12), 18=-60 (LC 12)
	Max Grav	10=758 (LC 26), 14=1617 (LC 1),
		16=871 (LC 19), 18=428 (LC 25)
FORCES		imum Compression/Maximum
	Tension	
TOP CHORD		/97, 3-4=0/444, 4-5=0/549,
		99, 6-7=-546/191, 7-8=-897/271,
		56/226, 1-18=-375/95
BOT CHORD		90/530, 16-17=-216/248,
	14-16=-29	96/291, 12-14=0/405, 11-12=0/472,
WEBS		
WEBS		57, 3-16=-666/331, 4-16=-230/3, D/72, 6-14=-995/276, 6-12=0/299,
		5/31. 7-11=-120/496.
		0/225, 1-17=-230/204,
	0 11010	5/220, 11 = 200/204,

- NOTES
- 1) Unbalanced roof live loads have been considered for this design.

5-14=-404/257

- Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 5-1-12, Interior (1) 5-1-12 to 15-8-0, Exterior(2R) 15-8-0 to 20-8-0, Interior (1) 20-8-0 to 29-8-0, Exterior(2R) 29-8-0 to 34-9-9, Interior (1) 34-9-9 to 40-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding. 3) 4) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. Bearings are assumed to be: Joint 18 SP No.2 crushing 5) capacity of 565 psi, Joint 16 SP No.2 crushing capacity of 565 psi, Joint 14 SP No.2 crushing capacity of 565
- psi.
- Refer to girder(s) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to 7)

bearing plate capable of withstanding 146 lb uplift at joint 10, 60 lb uplift at joint 18, 181 lb uplift at joint 16 and 359 lb uplift at joint 14.

This truss is designed in accordance with the 2018 8) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

May 22,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	B3	Roof Special	1	1	Job Reference (optional)	165733280

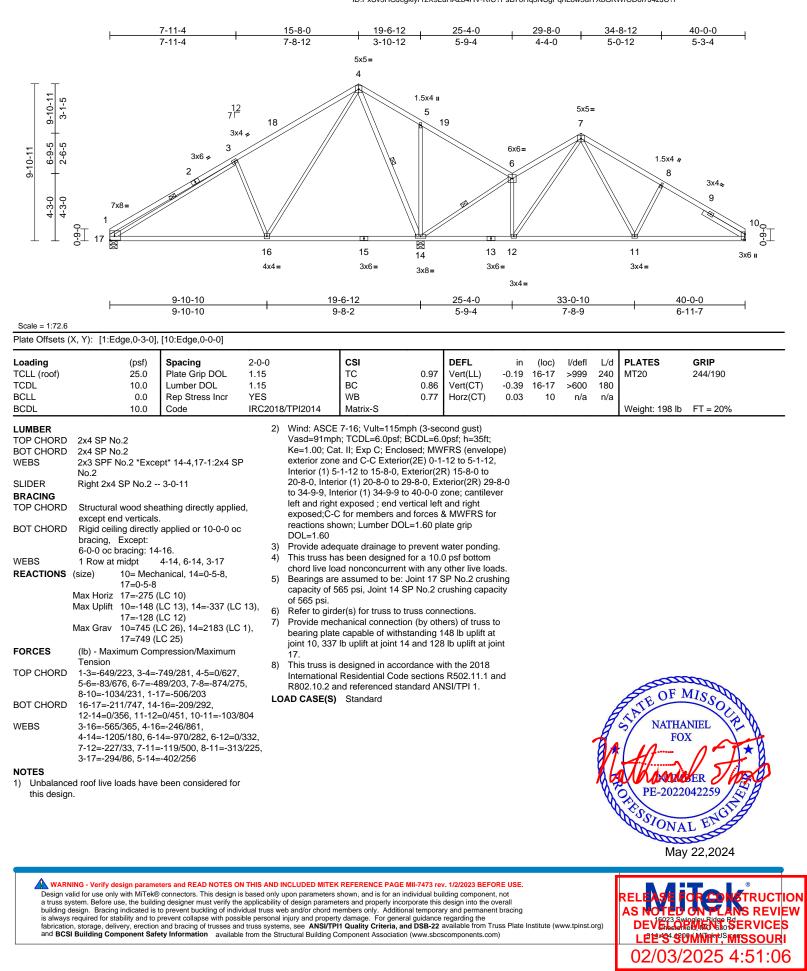
Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:15 ID:6J?q34_FGIi649CM77wGJ7zb4Ht-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

RELEASE AS NOTED

DEVELOPMEN SERVICES LEE'S' SUMMIT'S MISSOURI 02/03/2025 4:51:06

TRUCTION IEW


	F	7-11-4 7-11-4		<u>15-8-0</u> 7-8-12	<u>19-7-12</u> 3-11-12	<u>25-4-0</u> 5-8-4	<u> </u>) 3	34-8-12 5-0-12	40-0-0 5-3-4
					5x5=					
9-10-11 		3 2	7 ¹² 3x4 = x6 =	20			5x5= 6	5x5= 7	3×4	3 3 3 3 3 3 4 9 10 ₀
	C ⊠ 7x8=		18	17	16 15	14	13	12	11	3×0 1
			3x4=	3x		(4 II 4x4	l= 3x6=	3x8=	1.5	x4 II
					3x8=					
	 	7-11-4		15-8-0 7-8-12	19-7-12	23-8-8	29-8-0 5-11-8		84-8-12 5-0-12	40-0-0 5-3-4
Scale = 1:73.4				7-0-12	5-11-12	4-0-12	5-11-0	•	5-0-12	5-5-4
ate Offsets ((X, Y): [10:Edg	e,0-0-0], [19:Edg	e,0-5-0]							
oading CLL (roof)		(psf) Spacing 25.0 Plate Gr			CSI TC 0.	71 Vert(LL)	in (loc) -0.08 18-19	l/defl L >999 24	/d PLATES 40 MT20	GRIP 244/190
CDL		10.0 Lumber	DOL 1.1	5	BC 0.	54 Vert(CT)	-0.16 18-19	>999 18	30	211,100
CLL CDL		0.0 Rep Stre 10.0 Code		S 2018/TPI2014	WB 0. Matrix-S	74 Horz(CT)	0.02 10	n/a n	/a Weight: 1	98 lb FT = 20%
ORCES OP CHORD OT CHORD /EBS OTES	Right 2x4 SP Structural wo 5-10-1 oc pu Rigid ceiling bracing. 1 Row at mic (size) 10 Max Uplift 10 Max Grav 10 1-3=-571/165 5-6=-204/125 8-10=-1085/2 12-14=0/415 10-11=-104/8 4-16=-870/2 3-18=0/352, 5-14=-247/95 7-12=-65/271	 Mechanical, 15 =8-30, 19=0-5-8 =-275 (LC 8) =-155 (LC 13), 19 =-210 (LC 12), 13 =-210 (LC 12), 14 =-768 (LC 26), 15 =1475 (LC 1), 19 m Compression/l 5, 3-4=-5/633, 4-5 5, 6-7=-662/216, 7 :33, 1-19=-462/11 :63, 16-18=-243/2 :67, 14-15=-470/2 :11-12=-104/845 	ectly applied or verticals. r 6-0-0 oc 5, 3-16, 5-15 =8-3-0, 5=-223 (LC 13), 9=-93 (LC 12) =1005 (LC 26), =531 (LC 25) Maximum i=0/580, 7-8=-680/213, 36 3936, 267, , 5-16=-98/131, -15=-929/251, 3, 6-12=0/164, 8-11=0/209	 20-8-0, Interto 34-8-12, Il left and right exposed;C-C reactions shuddle DOL=1.60 3) Provide ader 4) This truss has chord live load 5) Bearings are capacity of 5 of 565 psi. 6) Refer to gird 7) Provide mec bearing plate joint 10, 93 Il and 223 Ib u 8) This truss is International 	1-12 to 15-8-0, Exteric or (1) 20-8-0 to 29-8-0 hterior (1) 34-8-12 to 4 exposed; end vertical for members and forco own; Lumber DOL=1.6 quate drainage to preve s been designed for a ad nonconcurrent with assumed to be: Joint 65 psi, Joint 15 SP No er(s) for truss to truss of hanical connection (by e capable of withstandi o uplift at joint 19, 210 oblift at joint 15. designed in accordance Residential Code sect and referenced standard Standard	, Exterior(2R) 29 -0-0 zone; canti left and right es & MWFRS fo 0 plate grip ent water pondin 10.0 psf bottom any other live loa 19 SP No.2 crus .2 crushing capa connections. others) of truss ng 155 lb uplift at b uplift at joint 1 e with the 2018 ions R502.11.1 a	ilever g. ads. hing hcity to t 6	T	A Ha	OF MISSOLUTION
this design									FESSIC	May 22,2024
					REFERENCE PAGE MII-747					

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com) sign parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	B4	Roof Special	2	1	Job Reference (optional)	165733281

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:15 ID:PxSv5HGJcgkiyr1zX9LuHAzb4HV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Jo	b	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P2	241267-01	C1	Common Supported Gable	1	1	Job Reference (optional)	165733282

10-4-0

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

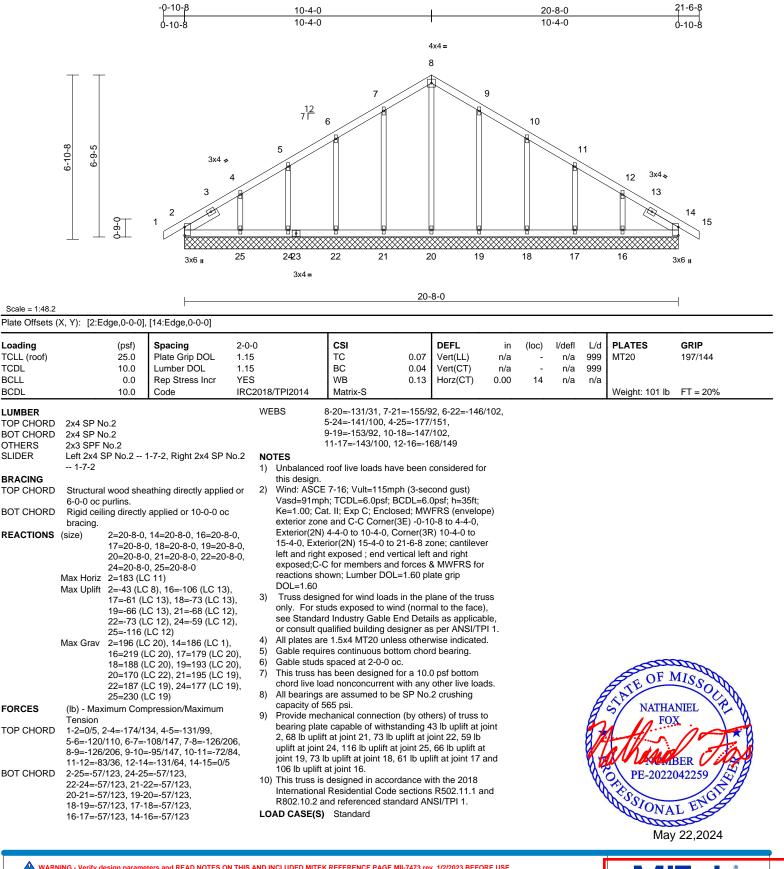
TCDL

BCLL

BCDL

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:15 ID:j_epFpPKx21ah23_Pq1PyVzb4Ek-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

20-8-0

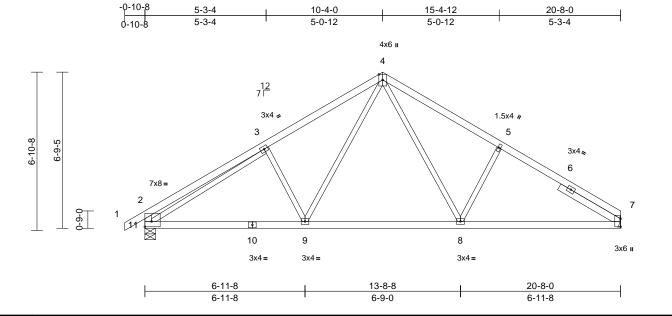

Page: 1

ΤΙΟΝ

DEVELOPMEN SERVICES

LEE'S'SUMMIT'SMISSOURI 02/03/2025 4:51:06

21-6-8



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	C2	Common	5	1	Job Reference (optional)	165733283

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:15 ID:nt2UOxbIPfwS_LjtnUow3gzb4EV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:Edge,0-2-12], [7:Edge,0-0-0]

Scale = 1:50

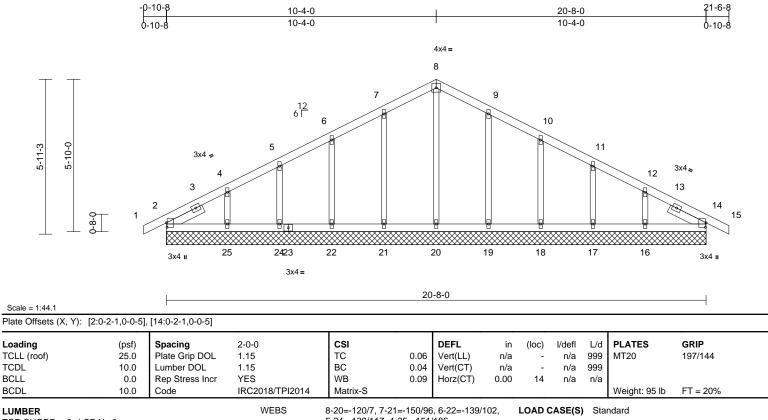
	, .). [=.=.ge,e = .=], [: .= .:g = ,= = -]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	/TPI2014	CSI TC BC WB Matrix-S	0.41 0.49 0.75	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.13 0.03	(loc) 7-8 7-8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 95 lb	GRIP 197/144 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce Right 2x4 SP No.2 Structural wood she 4-8-2 oc purlins, ex Rigid ceiling directly bracing. (size) 7= Mecha Max Horiz 11=-194 (Max Uplift 7=-135 (L Max Grav 7=922 (LG (lb) - Maximum Com Tension 1-2=0/36, 2-3=-521/ 4-5=-1178/263, 5-7= 2-11=-469/177	- 3-0-11 athing directly applic cept end verticals. applied or 10-0-0 or anical, 11=0-5-8 (LC 10) .C 13), 11=-160 (LC C 1), 11=997 (LC 1) apression/Maximum 171, 3-4=-1170/264	5) 5) ed or 7) c LO/ 12)	capacity of 5 Refer to gird Provide mec bearing plate joint 7 and 1 This truss is International	er(s) for truss to tru hanical connection capable of withsta 60 lb uplift at joint 1 designed in accord Residential Code s nd referenced stan	iss coni (by oth anding 1 1. lance w sections	nections. ers) of truss 35 lb uplift a ith the 2018 \$ R502.11.1 a	to t					
BOT CHORD WEBS	9-11=-201/1045, 8-9 4-8=-135/465, 5-8=- 3-9=-288/223, 3-11=	299/228, 4-9=-129/4											
this design 2) Wind: ASC Vasd=91m	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC	i (3-second gust) DL=6.0psf; h=35ft;									H	STATE OF I	MISSOLIAN NIEL

Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 10-4-0, Exterior(2R) 10-4-0 to 15-5-9, Interior (1) 15-5-9 to 20-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.

BER

PE-2022042259


SSIONAL E

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	D1	Common Supported Gable	1	1	Job Reference (optional)	165733284

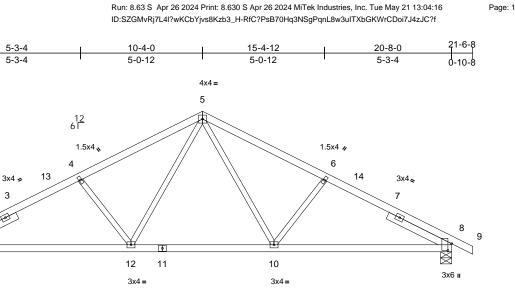
Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:16 ID:2_bDHPhE29NQ3tT0saL9Whzb3_K-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

LUMBER	0.4 00 M	- 0	VVE	EB3	8-20=-120/7, 7-21=-150/96, 6-22=-139/102, 5-24=-139/117, 4-25=-151/186,	LUAD CA
TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N				9-19=-150/96, 10-18=-139/102,	
OTHERS	2x4 SP N 2x3 SPF				11-17=-139/117, 12-16=-151/183	
SLIDER		SP No.2 1-6-7, Right 2x4 SP No.2	NO	TEO	11 17 133/117, 12 10 131/103	
SLIDER	1-6-7	5F N0.2 1-6-7, Right 2x4 5F N0.2		TES	a disa af live la side la sua la sua side es difere	
	1-0-7		1)		ed roof live loads have been considered for	
BRACING	a		2	this desig		
TOP CHORD		I wood sheathing directly applied or	2)		CE 7-16; Vult=115mph (3-second gust)	
	6-0-0 oc				mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft;	
BOT CHORD		ing directly applied or 10-0-0 oc			Cat. II; Exp C; Enclosed; MWFRS (envelope)	
	bracing.				one and C-C Corner(3E) -0-10-8 to 4-4-0,	
REACTIONS	(size)	2=20-8-0, 14=20-8-0, 16=20-8-0,			N) 4-4-0 to 10-4-0, Corner(3R) 10-4-0 to xterior(2N) 15-4-0 to 21-6-8 zone; cantilever	
		17=20-8-0, 18=20-8-0, 19=20-8-0,			ght exposed ; end vertical left and right	
		20=20-8-0, 21=20-8-0, 22=20-8-0,			C-C for members and forces & MWFRS for	
		24=20-8-0, 25=20-8-0			shown; Lumber DOL=1.60 plate grip	
		2=-106 (LC 17)		DOL=1.6		
	Max Uplift	2=-26 (LC 13), 14=-3 (LC 9),	3)		signed for wind loads in the plane of the truss	
		16=-86 (LC 13), 17=-56 (LC 13),	3)		studs exposed to wind (normal to the face),	
		18=-64 (LC 13), 19=-61 (LC 13),			dard Industry Gable End Details as applicable,	
		21=-62 (LC 12), 22=-63 (LC 12),			t qualified building designer as per ANSI/TPI 1.	
		24=-55 (LC 12), 25=-94 (LC 12)	4)		are 1.5x4 MT20 unless otherwise indicated.	
	Max Grav	2=179 (LC 1), 14=179 (LC 1),	4) 5)			
		16=200 (LC 26), 17=176 (LC 1),	- /		uires continuous bottom chord bearing.	
		18=180 (LC 1), 19=189 (LC 26),	6)		ds spaced at 2-0-0 oc.	
		20=160 (LC 22), 21=189 (LC 25),	7)		has been designed for a 10.0 psf bottom	
		22=180 (LC 1), 24=176 (LC 1),	•		load nonconcurrent with any other live loads.	
		25=200 (LC 25)	8)		gs are assumed to be SP No.2 crushing	
FORCES	(lb) - Max	timum Compression/Maximum	0)		of 565 psi.	
	Tension		9)		nechanical connection (by others) of truss to	
TOP CHORD	1-2=0/6, 2	2-4=-138/57, 4-5=-85/73,			late capable of withstanding 26 lb uplift at joint	
	5-6=-67/1	01, 6-7=-64/157, 7-8=-83/211,			plift at joint 21, 63 lb uplift at joint 22, 55 lb	
	8-9=-83/2	211, 9-10=-63/157, 10-11=-60/102,			int 24, 94 lb uplift at joint 25, 61 lb uplift at joint	
	11-12=-6	1/39, 12-14=-104/18, 14-15=0/6			uplift at joint 18, 56 lb uplift at joint 17, 86 lb	
BOT CHORD	2-25=-22	/119, 24-25=-22/119, 22-24=-22/119,	40)		int 16 and 3 lb uplift at joint 14.	
	21-22=-2	2/119, 20-21=-22/119,	10)		plate or shim required to provide full bearing	
	19-20=-2	2/119, 18-19=-22/119,			ith truss chord at joint(s) 14.	
	17-18=-2	2/119, 16-17=-22/119,	11)		is designed in accordance with the 2018	
	14-16=-2	2/119			nal Residential Code sections R502.11.1 and	
				R802.10.	2 and referenced standard ANSI/TPI 1.	

NATHANIEL FOX PE-2022042259 May 22,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	D2	Common	4	1	Job Reference (optional)	165733285

-0-10-8 0-10-8

3

3x6 II

		3x4 =		
	7-4-6	13-3-10	20-8-0	
	7-4-6	5-11-3	7-4-6	
Scale = 1:47.8				

Plate Offsets (X, Y): [2:0-3-5,0-1-13], [8:0-3-5,0-1-13]

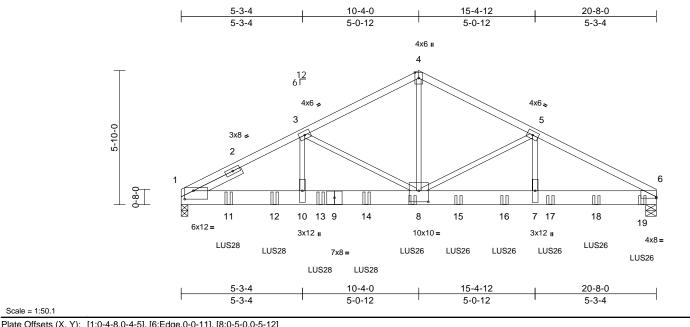
-8-0

5-11-3 5-10-0

		3, 6 3										-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	J/TPI2014	CSI TC BC WB Matrix-S	0.41 0.53 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.18 0.04	(loc) 8-10 8-10 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 92 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 2 No.2 2-11-0 Structural wood she 4-5-12 oc purlins. Rigid ceiling directly bracing. 	athing directly applie applied or 10-0-0 o 3=0-5-8 C 13) C 12), 8=-163 (LC 1	5) 6) ed or c	capacity of 5 Provide mec bearing plate joint 2 and 1 This truss is International	hanical connectio capable of withs 63 lb uplift at joint designed in accor Residential Code nd referenced star	n (by oth tanding 1 8. rdance w sections	ers) of truss 63 lb uplift a ith the 2018 5 R502.11.1 a	t					
FORCES	(lb) - Maximum Com Tension												
TOP CHORD	5-6=-1281/363, 6-8=	-1486/372, 8-9=0/6											
BOT CHORD	2-12=-254/1238, 10- 8-10=-247/1238	-12=-85/880,											
WEBS	5-10=-101/432, 6-10 5-12=-101/432, 4-12	,											
 this desig 2) Wind: AS Vasd=311 Ke=1.00; exterior z Interior (' 15-5-14, left and ri exposed; reactions DOL=1.6 3) This truss 	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC . Cat. II; Exp C; Enclose cone and C-C Exterior(2 1) 4-1-8 to 10-4-0, Exter Interior (1) 15-5-14 to 2 ight exposed ; end verti C-C for members and fi s shown; Lumber DOL=	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-10-8 to 4-1-8, ior(2R) 10-4-0 to 1-6-8 zone; cantilev cal left and right orces & MWFRS for 1.60 plate grip r a 10.0 psf bottom	oe) er									S NATHA	X 942 042259

DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)


May 22,2024

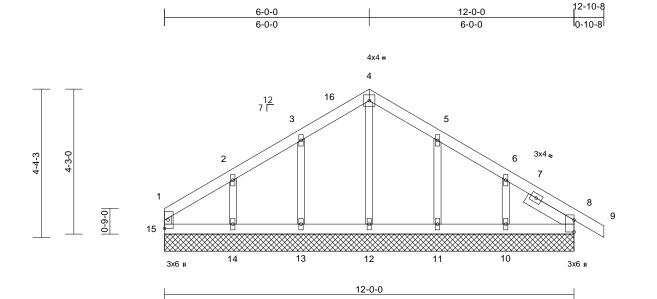
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	D3	Common Girder	1	2	Job Reference (optional)	165733286

Scale = 1:50.1

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:16 ID:HjddAUouwwV9eFfkuz0GObzb3_B-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Spacing2-0-Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIRC	5	CSI TC 0.64 BC 0.88 WB 0.78 Matrix-S 0.00000000000000000000000000000000000	DEFL in Vert(LL) -0.12 Vert(CT) -0.20 Horz(CT) 0.05	2 8-10 0 8-10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 208 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD 2x4 SP 1650F 1.5E BOT CHORD 2x8 SPF No.2 WEBS 2x3 SPF No.2 SLIDER Left 2x4 SP No.2 2 BRACING TOP CHORD Structural wood shea 4-6-4 oc purlins. BOT CHORD Rigid ceiling directly a bracing.	-3-9 thing directly applied or applied or 10-0-0 oc eq. 0-3-12), 6=0-5-8 16) 2 12), 6=-988 (LC 13) C 1), 6=5048 (LC 1) pression/Maximum =-5550/1184, =-7706/1606 10=-1282/6978, =-1322/6663 =-2386/482, 2024/549, her with 10d 2 2x4 - 1 row at 0-9-0 ws: 2x8 - 2 rows 1 row at 0-9-0 oc. applied to all plies, k (B) face in the LOAD ections have been noted as (F) or (B),	 Wind: ASCE 7 Vasd=91mph; Ke=1.00; Cat. exterior zone a Interior (1) 5-3 15-4-12, Interior left and right e exposed;C-C f reactions show DOL=1.60 This truss has chord live load WARNING: Re than input bearings ar capacity of 422 Provide mecha bearing plate o joint 1 and 988 This truss is de International R R802.10.2 and Use Simpson S Truss) or equiv 2-0-12 from th- back face of bo 11) Use Simpson S Truss, Single F oc max. startin to connect trus Fill all nail hole LOAD CASE(S) Dead + Roof Plate Increas Uniform Load 	7-16; Vult=115mph (3-se TCDL=6.0psf; BCDL=6 II; Exp C; Enclosed; MV and C-C Exterior(2E) 0- 4 to 10-4-0, Exterior(2F ior (1) 15-4-12 to 20-5-4 kyposed ; end vertical lef for members and forces wn; Lumber DOL=1.60 p been designed for a 10 d nonconcurrent with any equired bearing size at juring size. re assumed to be SPF N anical connection (by oth capable of withstanding B lb uplift at joint 6. esigned in accordance v Residential Code section d referenced standard A Strong-Tie LUS28 (6-10 valent spaced at 2-0-0 o valent spaced at 2-0-0 to ottom chord. Strong-Tie LUS26 (4-10 Ply Girder) or equivalent ng at 10-0-12 from the le ss(es) to back face of bo es where hanger is in co Standard Live (balanced): Lumbe se=1.15 ds (lb/ft) -70, 4-6=-70, 1-6=-20	Opsf; h=35ft; /FRS (envelope) -12 to 5-3-4, .) 10-4-0 to zone; cantilever and right & MWFRS for late grip 0 psf bottom other live loads. .oint(s) 1 greater 0.2 crushing hers) of truss to 335 lb uplift at with the 2018 is R502.11.1 and NSI/TPI 1. d Girder, 3-10d c max. starting at innect truss(es) to d Girder, 4-10d spaced at 2-0-0 ft end to 20-0-12 thom chord. ntact with lumber.		(B), 14=	e-902 (I	B), 11=-902 (B), B), 15=-738 (B), B), 19=-731 (B) B), 19=-731 (B) STATE OF J	12=-902 (B), 13=-902 16=-738 (B), 17=-748 MISSOLUTION ANIEL BER 042259


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	E1	Common Supported Gable	1	1	Job Reference (optional)	165733287

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:16 ID:KETyFjTv9OP31i_HgIAQcGzb4IX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

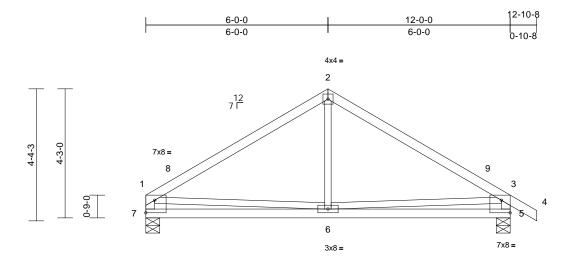
Scale = 1:33.8

Plate Offsets (X, Y): [8:Edge,0-0-0]

`	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.06 0.03 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 52 lb	GRIP 197/144 FT = 20%
	6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 8=12-0-0, 12=12-0-0 15=12-0-0 Max Horiz 15=-119 (Max Uplift 8=-31 (LC 11=-71 (L) 14=-91 (L) Max Grav 8=169 (LC 11=196 (L)	athing directly applied cept end verticals. applied or 10-0-0 oc 10=12-0-0, 11=12-0- 0, 13=12-0-0, 14=12-0- 0 LC 8) c 12), 10=-87 (LC 13) C 13), 13=-67 (LC 13) C 13), 13=-67 (LC 13) C 12), 15=-15 (LC 20), C 20), 12=144 (LC 20, C 20), 12=144 (LC 2)	d or 3) -0, -0, 4) 5) 6) , 7) 1), 8) 1), 0	Vasd=91mpf Ke=1.00; Cat exterior zone Exterior(2N) Exterior(2N) Fight exposed for members Lumber DOL Truss design only. For stu see Standard or consult qu All plates are Gable requirt Gable studs This truss ha chord live loa All bearings a capacity of 5 Provide mecl bearing plate	7-16; Vult=115m; ,; TCDL=6.0ps; E t. II; Exp C; Enclo: and C-C Corner(5-1-4 to 6-0-0, Cc 11-0-0 to 12-10-8 d; end vertical lefi and forces & MW =1.60 plate grip E hed for wind loads ids exposed to win d Industry Gable E alified building de a 1.5x4 MT20 unle es continuous bot spaced at 2-0-0 o s been designed at onconcurrent are assumed to bi 65 psi. hanical connection o capable of withsit f at joint 8, 67 lb i	CDL=6. sed; MW 3E) 0-1 yrner(3R) zone; cc t and righ /FRS for 0OL=1.6(s in the p nd (norm and Deta signer a: sis other tom chor c. for a 10.0 with any e SP No. n (by oth tanding 1	Dpsf; h=35ft; FRS (envelop 4 to 5-1-4, 6-0-0 to 11-0 nutlever left a tt exposed;C- reactions sho and to the truc lane of the truc al to the face ils as applical s per ANSI/TF wise indicated d bearing. D psf bottom other live loa 2 crushing ers) of truss t 5 lb uplift at ji	o)-o, Ind C Swm; Iss), ble, Pl 1. J. ds.					
FORCES	(lb) - Maximum Com Tension				14, 71 lb uplift at j			t at				STATE	and
TOP CHORD	1-15=-71/42, 1-2=-73 3-4=-109/188, 4-5=-7 6-8=-119/74, 8-9=0/5	109/189, 5-6=-85/111	10 I,) This truss is International	designed in accor Residential Code nd referenced star	sections	R502.11.1 a	nd			B	TATE OF I	MISSOL
BOT CHORD	14-15=-62/83, 13-14 11-12=-62/83, 10-11	=-62/83, 12-13=-62/8 =-62/83, 8-10=-62/83	· • • •	DAD CASE(S)							A	S NATHA	
WEBS	4-12=-104/8, 3-13=- 5-11=-157/148, 6-10	153/157, 2-14=-159/1)=-151/172	181,								Ø	1 ft	
NOTES 1) Unbalance this design	ed roof live loads have	been considered for										PE-2022	SER 042259

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

May 22,2024


ESSIONAL EN

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	E2	Common	1	1	Job Reference (optional)	165733288

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:16 ID:97loxyL0I01dD?fAXUTrgxzb4li-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

L	6-0-0	12-0-0	
	6-0-0	6-0-0	

Plate Offsets (X, Y): [1:Edge,0-5-0], [5:Edge,0-5-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.55	Vert(LL)	-0.02	5-6	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.32	Vert(CT)	-0.05	5-6	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.10	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 53 lb	FT = 20%

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Scale = 1:37.9

BOT CHORD	2x4 SP No.2
WEBS	2x3 SPF No.2 *Except* 7-1,5-3:2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 5=0-5-8, 7=0-5-8
	Max Horiz 7=-128 (LC 8)
	Max Uplift 5=-102 (LC 13), 7=-75 (LC 12)
	Max Grav 5=601 (LC 1), 7=524 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-608/150, 2-3=-615/154, 3-4=0/36,
	1-7=-472/156, 3-5=-550/216
BOT CHORD	6-7=-153/388, 5-6=-179/393
WEBS	2-6=0/243, 1-6=-51/204, 3-6=-112/229
NOTES	

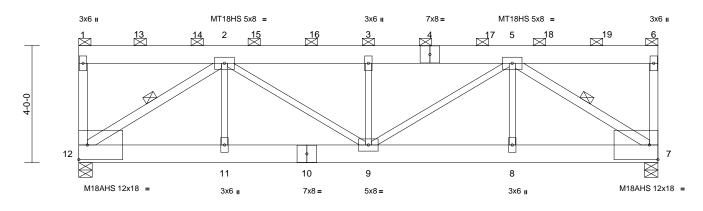
- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 5-1-12, Interior (1) 5-1-12 to 6-0-0, Exterior(2R) 6-0-0 to 11-0-0, Interior (1) 11-0-0 to 12-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.

All bearings are assumed to be SP No.2 crushing 4) capacity of 565 psi.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 75 lb uplift at joint 7 and 102 lb uplift at joint 5.

OF MISSO E NATHANIEL FOX PE-2022042259 SIONAL E May 22,2024



 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	F1	Flat Girder	1	2	Job Reference (optional)	165733289

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:16 ID:miq4sRyRQtnIgRJkpwM1Z_zb4Gd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

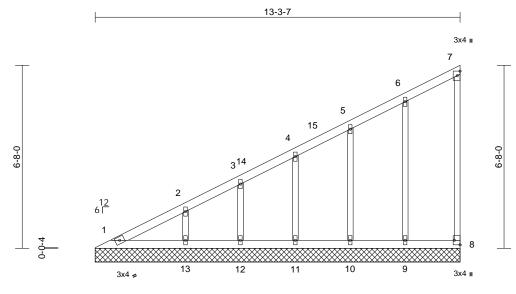
	1	4-11-12	1	9-10-12	1	14-9-12		1		19-9-8	I
Casla 4:20.4		4-11-12		4-11-0	1	4-11-0		1	4	l-11-12	
Scale = 1:39.4		· · · ·									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing2-IPlate Grip DOL1.7Lumber DOL1.4Rep Stress IncrNGCodeIR	5 5	PI2014 CSI TC BC WB Matrix-S	0.57 0.73 0.73	Vert(CT) -0	in (loc).12 9).21 9).06 7	>999 >999	L/d 240 180 n/a	PLATES MT20 M18AHS MT18HS Weight: 267 lb	GRIP 197/144 142/136 197/144 FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x3 SPF No.2 *Exce SP No.2 2-0-0 oc purlins (4-1 end verticals. Rigid ceiling directly bracing. 1 Row at midpt (size) 7=0-5-8, Max Uplift 7=-1066 (Max Uplift 7=-1066 (Max Grav 7=6618 (I (Ib) - Maximum Com Tension 1-12=-943/441, 1-2= 2-3=-10137/1855, 3 5-6=-114/92, 6-7=-1 11-12=-1568/7832, 1 8-9=-1503/7809, 7-8 5-7=-9429/1756, 2-1 2-12=-9463/1766, 2	LC 8) LC 9), 12=-1274 (LC 8) LC 1), 12=6455 (LC 1) apression/Maximum =-110/92, -5=-10137/1855, 059/249 9-11=-1568/7832, =-1503/7809 1=0/154,	 V K e a e f f<	Vind: ASCE 7-16; Vult=115mp /asd=91mph; TCDL=6.0psf; B (se=1.00; Cat. II; Exp C; Enclos exterior zone and C-C Corner (und right exposed; end vertica exposed; C-C for members and eactions shown; Lumber DOL: ODL=1.60 Provide adequate drainage to p All plates are MT20 plates unle 'his truss has been designed f hord live load nonconcurrent v All bearings are assumed to be apacity of 425 psi. Provide mechanical connection rearing plate capable of withsta- bint 12 and 1066 lb uplift at join 'his truss is designed in accord neternational Residential Code 8002.10.2 and referenced stan Graphical purlin representation or the orientation of the purlin a jottom chord. langer(s) or other connection of bodwn and 232 lb up at 0-1-1	CDL=6.1 ed; MW 3) zone I left and forces 4 =1.60 pl orevent so the orevent so the	Opsf; h=35ft; FRS (envelope) ; cantilever left d right & MWFRS for ate grip water ponding. wise indicated. D psf bottom other live loads. D.2 crushing ers) of truss to 274 lb uplift at ith the 2018 is R502.11.1 and USI/TPI 1. D depict the size to p and/or is) shall be ated load(s) 367 lb down and 185	9		58, 16 =		, 18=-1258, 19=-1258
 (0.131"x3" Top chord oc, 2x8 - 2 Bottom ch staggered Web conn 1 row at 0- All loads a except if n CASE(S) s provided tt 	-9-0 oc. ire considered equally	s: 2x4 - 1 row at 0-9-0 9-0 oc. ows: 2x8 - 2 rows - 1 row at 0-9-0 oc, 2x3 - applied to all plies, ck (B) face in the LOAD nections have been	1 1 1 2 1 3 5 LOAI 1)	b up at 2-0-12, 1258 lb down at 258 lb down and 189 lb up at 101 and 189 lb up at 8-0-12, 1258 0 -0-12, 1258 lb down and 185 0 down and 189 lb up at 14-0- 101 at 180 lb up at 16-0-12, and 180 up at 18-0-12 on top chord. Th 190 at 18-0-12 on top chord. Th 190 cASE(S) Standard Dead + Roof Live (balanced): Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-6=-70, 7-12=-20 Concentrated Loads (lb)	6-0-12, lb down lb up a 12, and 1258 lb ne desig e respoi	1258 lb down and 189 lb up a t 12-0-12, 1258 1258 lb down down and 189 lb in/selection of nsibility of others	t)		M	PE-2022	ANDEL AER D42259

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	V1	Valley	1	1	Job Reference (optional)	165733290

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:16 ID:UZF8c5jWdepGIp8ft7bBvOzb4M4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

SSIONAL EN

May 22,2024

DEVELOPMENT SERVICES LEE'S' SUMMIT'S MISSOURI 02/03/2025 4:51:06

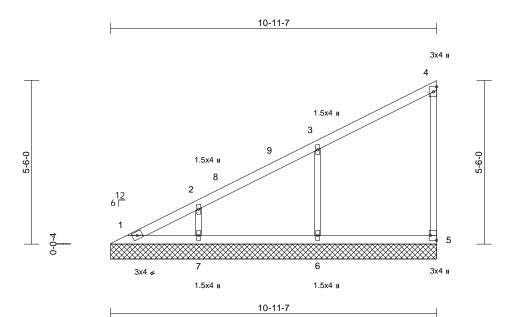
TION IEW

1	3	-3	3-	7

Scale = 1:42

Plate Offsets (X, Y): [8:Edge,0-2-8]

,			-										
Loading TCLL (roof) TCDL BCDL BCDL LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing.	Plate Grip DOL Lumber DOL Rep Stress Incr Code	1)	Vasd=91mpł Ke=1.00; Ca exterior zone Interior (1) 5- exposed ; en members an Lumber DOL Truss design only. For stu see Standard	CSI TC BC WB Matrix-S 7-16; Vult=115mp ; TCDL=6.0psf; B t. II; Exp C; Enclos and C-C Exterior 7-9 to 13-2-11 zoi d vertical left and d forces & MWFR =1.60 plate grip D ned for wind loads tds exposed to win d Industry Gable E	CDL=6.0 sed; MW (2E) 0-7 ne; canti right exp S for rea DOL=1.60 in the p nd (norm End Deta	Dpsf; h=35ft; FRS (envelop 9 to 5-7-9, lever left and losed;C-C for ctions shown) ane of the tru al to the face) ils as applicat	right ; iss), ble,	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 58 lb	GRIP 244/190 FT = 20%
	10=13-3-7 13=13-3-7 Max Horiz 1=281 (LC Max Uplift 8=-37 (LC 10=-58 (L 12=-53 (L Max Grav 1=140 (LC 9=193 (LC	7, 11=13-3-7, 12=13-3- 7 9), 9=-67 (LC 12), C 12), 11=-64 (LC 12), C 12), 13=-86 (LC 12) 2 20), 8=72 (LC 19), C 1), 10=177 (LC 1), .C 1), 12=156 (LC 1),	3) 4) 5) 6)	All plates are Gable require Gable studs This truss ha chord live loa All bearings capacity of 5 Provide mec bearing plate	hanical connectior capable of withst	s per ANSI/TPI 1. wise indicated. d bearing. 0 psf bottom other live loads. 2 crushing ers) of truss to							
FORCES	(lb) - Maximum Com Tension	,			at joint 9, 58 lb up 3 lb uplift at joint 1								
TOP CHORD		361/214, 3-4=-311/197 196/155, 6-7=-120/112		This truss is International	designed in accore Residential Code	sections	R502.11.1 a	nd				THE OF I	MISSO
BOT CHORD	1-13=-127/138, 12-1 11-12=-127/138, 10- 9-10=-127/138, 8-9=	11=-127/138,	LC	DAD CASE(S)		UU# I F I I.			_	Ø	S NATHA	NIEL Y	
WEBS		-138/111, 4-11=-144/1	04,								X	HP-	
NOTES									/	A	PE-2022	BER 442259	



Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	V2	Valley	1	1	Job Reference (optional)	165733291

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:17 ID:AshMlecpHNDKGg6_UoxcB_zb4NW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:38.7

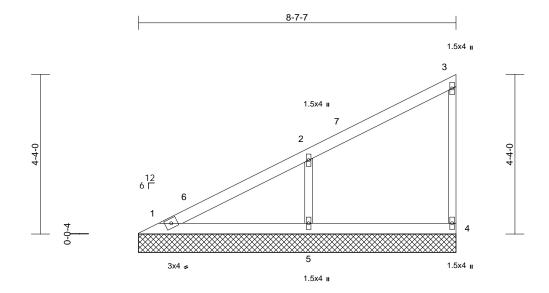
Plate Offsets (X, Y): [5:Edge,0-2-8]

	(X, Y): [5:Edge,0-2-8]											
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.34 0.13 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC2018/TPI201	4 Matrix-S							Weight: 41 lb	FT = 20%
LUMBER TOP CHORE BOT CHORE WEBS OTHERS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood sheat 6-0-0 oc purlins, exit Rigid ceiling directly bracing. (size) 1=10-11-7 7=10-11-7 Max Horiz 1=229 (LC Max Uplift 5=-38 (LC 7=-106 (L Max Grav 1=107 (LC 	cept end verticals. applied or 10-0-0 o 7, 5=10-11-7, 6=10- 7 2 9) 2 9), 6=-137 (LC 12) C 12)	chord I 6) All bea capaci 7) Provide bearing ed or 5, 137 8) This tru c Interna R802.1 11-7, LOAD CAS	iss has been designed ive load nonconcurrer rings are assumed to y of 565 psi. e mechanical connecti g plate capable of with b uplift at joint 6 and 1 uss is designed in acc tional Residential Coc 0.2 and referenced st SE(S) Standard	nt with any be SP No. ion (by oth istanding 3 106 lb uplit ordance w de sections	other live load 2 crushing ers) of truss to 8 lb uplift at jo t at joint 7. ith the 2018 R502.11.1 a	o oint				-	
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORE	Tension 1-2=-380/221, 2-3=-: 4-5=-108/123	294/185, 3-4=-139/	114,									
BOT CHORE	,	,	114									
WEBS	3-6=-314/298, 2-7=-2	239/225									227	an
Vasd=91 Ke=1.00; exterior z Interior (right exp for memt Lumber I 2) Truss de only. Foo see Stan or consul 3) Gable re	SCE 7-16; Vult=115mph mph; TCDL=6.0psf; BC ; Cat. II; Exp C; Enclose zone and C-C Exterior(2 1) 5-7-9 to 10-10-11 zon osed ; end vertical left a bers and forces & MWFf DOL=1.60 plate grip DO ssigned for wind loads ir r studs exposed to wind idard Industry Gable Enc It qualified building desig quires continuous bottor	DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-7-9 to 5-7-9, ne; cantilever left an ind right exposed;C- RS for reactions sho L=1.60 n the plane of the tru (normal to the face d Details as applical gner as per ANSI/TF	d C uswn; uss),						c ,		OF BSSIONA	BER 2042259

4) Gable studs spaced at 4-0-0 oc.

Cours May 22,2024

DEVELOPMENT SERVICES LEE'S' SUMMIT'S MISSOURI 02/03/2025 4:51:06


TION IEW

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

ſ	Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
	P241267-01	V3	Valley	1	1	Job Reference (optional)	165733292

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:17 ID:HWHie5xpfZfu2lkYGCro0nzb4Ge-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.3												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.32	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.16	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.08	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 31 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she	athing directly applie	bearing plat 4 and 151 ll 8) This truss is Internationa R802.10.2	chanical conne re capable of w o uplift at joint & s designed in a al Residential C and referenced) Standard	ithstanding 3 5. ccordance w ode sections	1 lb uplift at ith the 2018 R502.11.1 a	joint					

8-7-7

BRACING		
TOP CHORD	Structural	wood sheathing directly applied o
	6-0-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=8-7-7, 4=8-7-7, 5=8-7-7
	Max Horiz	1=177 (LC 9)
	Max Uplift	4=-31 (LC 9), 5=-151 (LC 12)
	Max Grav	1=142 (LC 20), 4=130 (LC 1),

5=446 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension

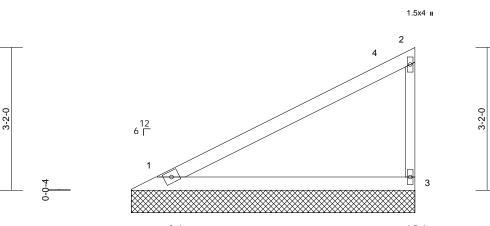
TOP CHORD 1-2=-303/184, 2-3=-130/101, 3-4=-106/130 BOT CHORD 1-5=-82/89. 4-5=-82/89 2-5=-346/343 WEBS

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-7-9 to 5-7-9, Interior (1) 5-7-9 to 8-6-11 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- 4) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 5)
- chord live load nonconcurrent with any other live loads. 6) All bearings are assumed to be SP No.2 crushing
- capacity of 565 psi.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

OF MISSO NATHANIEL FOX NUMBER PE-2022042259 SIONAL E May 22,2024


Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	V4	Valley	1	1	Job Reference (optional)	165733293

6-3-7

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:17 ID:HWHie5xpfZfu2lkYGCro0nzb4Ge-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-3-7

3x4 🍃

1.5x4 🛚

Scale = 1:25.5

Londing (pf) Spacing 2-0-0 CSi DFR in (no) Mail PLATS Q44/190 BCL 100 No Reg Pises from VES Vest(1) nois
TOP CHORD 2x4 SP No.2 International Residential Code sections RS02.11.1 and R802.11.2 and Referenced standard ANS//TP11. WEBS 2x3 SP F No.2 LOAD CASE(S) Standard BRACING Structural wood sheathing directly applied or 6-0-0 co bracing. 6-0-0 co purinis, except end verticals. BOT CHORD Structural wood sheathing directly applied or 10-0-0 co bracing. Factorians. REACTIONS Structural wood sheathing directly applied or 10-0-0 co bracing. Factorians. REACTIONS Structural wood sheathing directly applied or 10-0-0 co bracing. Factorians. REACTIONS Structural wood sheathing directly applied or 10-0-0 co bracing. Factorians. PORCES [(b) - Maximum compression/Maximum Tension Factorians. Factorians. TOP CHORD 1-3a-536(3 Factorians. Factorians. Factorians. NOTES 1 1-3a-58(63 Factorians. Factorians. Factorians. Noted of the ado fight expresed.Co for members and forces AMVFRS for reactions shown. Factorians. Factorians. Factorians. 1 Web ado forces AMVFRS for reactions shown. Factorians. Factorians. Factorians. 2 Truse designed for wind loads in the face). Factorians

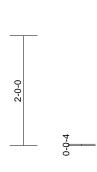
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

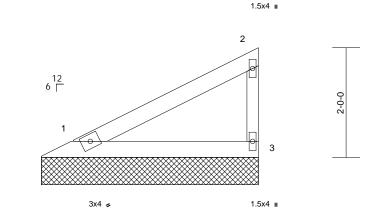
RELEA AS NO **TRUCTION IEW** DEVELOPMEN SERVICES LEE'S'SUMURTSMISSOURI 02/03/2025 4:51:06

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	V5	Valley	1	1	Job Reference (optional)	165733294

3-11-7

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,


Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:17 ID:miq4sRyRQtnlgRJkpwM1Z_zb4Gd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

GRIP

CTION 'IEW

DEVELOPMEN SERVICES LEE'S' SUMMIT'S MISSOURI 02/03/2025 4:51:06

					3-11-7			-			
Scale = 1:21											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES
TCLL (roof)	25.0 10.0	Plate Grip DOL	1.15 1 15	TC		Vert(LL)	n/a n/a	-	n/a n/a	999 999	MT20

	(psi)	Spacing	2-0-0	50		DEFL		(100)	i/ueii	L/u	FLATES	GRIF	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.23	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 13 lb	FT = 20%	
BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD NOTES 1) Wind: ASC Vasd=91m Ke=1.00; C exterior zon and right ei exposed;C reactions s DOL=1.60 2) Truss desi or consult of 3) Gable requ 4) Gable stud 5) This truss f chord live I 6) All bearing: capacity of 7) Provide me bearing pla	10.0 2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 3-11-15 oc purlins, - Rigid ceiling directly bracing. (size) 1=3-11-7, Max Horiz 1=73 (LC Max Grav 1=73 (LC Max Grav 1=147 (LC (lb) - Maximum Com Tension 1-2=-103/69, 2-3=-1 1-3=-34/37 EF 7-16; Vult=115mph ph; TCDL=6.0psf; BC 2at. II; Exp C; Enclose ne and C-C Exterior(2 xposed; end vertical I -C for members and fi shown; Lumber DOL=- igned for wind loads ir studs exposed to wind qualified building desig- uires continuous bottor is spaced at 4-0-0 oc. has been designed for bottor of the study of the study of the study are assumed to be Study of the study of the study of the study s are assumed to be Study of the study s are assumed to be Study of the study	Code athing directly applie except end verticals. applied or 10-0-0 oc 3=3-11-7 9) (12), 3=-41 (LC 12) (1), 3=-147 (LC 1) pression/Maximum 14/148 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le eft and right orces & MWFRS for 1.60 plate grip n the plane of the trus (normal to the face) d Details as applicab gner as per ANSI/TP m chord bearing. r a 10.0 psf bottom th any other live loac SP No.2 crushing (by others) of truss to	 8) This truss Internatio R802.10. LOAD CASE d or e) eft ess ie, i i. is. is. 	Matrix-P a is designed in acc nal Residential Coo 2 and referenced si (S) Standard	ordance w	ith the 2018 R502.11.1 a					STATE OF I STATE OF I NATHA FO PE-2022	MISSOLAR INIEL X MISSOLAR X MER 042259 S S H K S H K S H K S H K S H K S K S H K S K S	
											iviay	/ 22,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

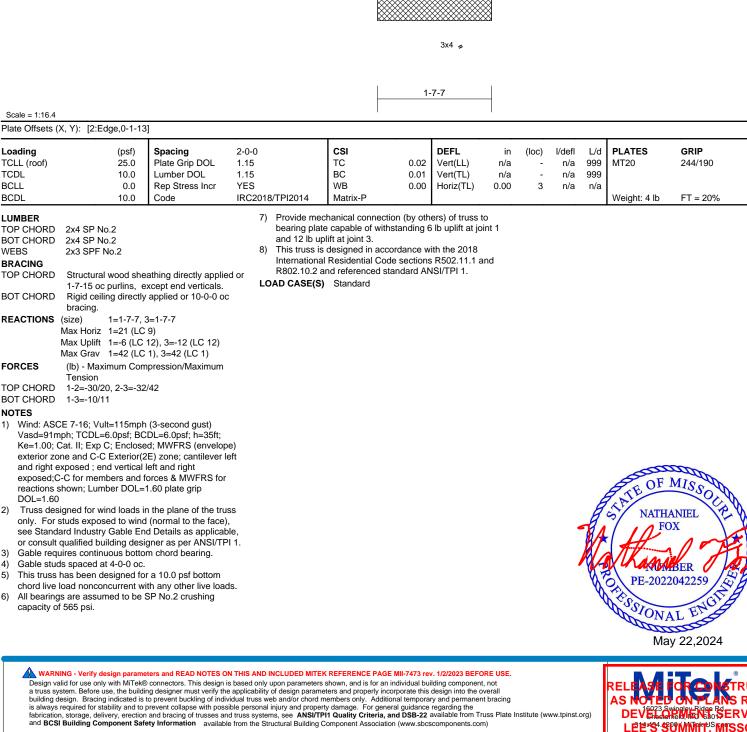
Job	Truss	Truss Type		Ply	Roof - HM Lot 178		
P241267-01	V6	Valley	1	1	Job Reference (optional)	165733295	

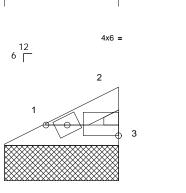
0-10-0

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:17 ID:miq4sRyRQtnlgRJkpwM1Z_zb4Gd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP


244/190


FT = 20%

E

LEE'S'SUMMIT'SMISSOURI 02/03/2025 4:51:07

τιοι

0-10-0

1-7-7

Scale = 1:16.4

Loading

TCDL

BCLL

BCDL

WEBS

LUMBER

BRACING

FORCES

NOTES

1)

2)

3)

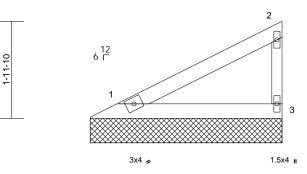
4)

5)

6)

TCLL (roof)

Plate Offsets (X, Y): [2:Edge,0-1-13]


Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	V7	Valley	1	1	I6 Job Reference (optional)	65733296

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:17 ID:nDhdE?d3NndOhPjCGqqs0bzb4DA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1.5x4 u

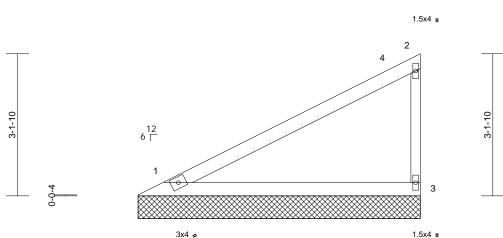
3-10-13

Scale	_	1:23.4	
Scale	-	1.23.4	

Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Plate Grip DOL1.1Lumber DOL1.1Rep Stress IncrYE	-0-0 .15 .15 ES RC2018/TPI2014	CSI TC BC WB Matrix-P	0.22 0.12 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x3 SPF No.2 BRACING TOP CHORD Structural wood shea 3-11-5 oc purlins, ei BOT CHORD Rigid ceiling directly bracing.	thing directly applied or cept end verticals. applied or 10-0-0 oc , 3=3-10-13 a) 12), 3=-41 (LC 12) 1), 3=144 (LC 1) bression/Maximum 2/145 (3-second gust) DL=6.0psf; h=35ft; t; MWFRS (envelope) 2) zone; cantilever left eff and right rces & MWFRS for .60 plate grip the plane of the truss (normal to the face), .0 petails as applicable, ner as per ANSI/TPI 1. n chord bearing. a 10.0 psf bottom h any other live loads. P No.2 crushing by others) of truss to	8) This truss is o International R802.10.2 an LOAD CASE(S)	designed in accorda Residential Code se id referenced stand	ections	R502.11.1 a	nd				STATE OF J	MISSOLIA MISSOLIA MISSOLIA BER 042259

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

CTION /IEW DEVELOPMEN SERVICES LEE'S'SUMMIT'SMISSOURI 02/03/2025 4:51:07


Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	V8	Valley	1	1	Job Reference (optional)	165733297

6-2-13

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:17 ID:nDhdE?d3NndOhPjCGqqs0bzb4DA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-2-13

Scale = 1:25.4												
Loading	(psf)	Spacing	2-0-0	CSI	·	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.72	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.39	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 21 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she	athing directly appli	Internationa R802.10.2 LOAD CASE(S	s designed in ac al Residential Co and referenced s) Standard	ode sections	s R502.11.1 a	and					
		Structural wood sheathing directly applied or S-0-0 oc purlins except end verticals										

BOT CHORD		ourlins, except end verticals. Ing directly applied or 10-0-0 oc
REACTIONS	(size)	1=6-2-13, 3=6-2-13
	Max Horiz	1=124 (LC 9)
	Max Uplift	1=-39 (LC 12), 3=-70 (LC 12)
	Max Grav	1=249 (LC 1), 3=249 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum

	Tension
TOP CHORD	1-2=-170/115, 2-3=-194/240
BOT CHORD	1-3=-57/62
-	

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-7-9 to 5-7-9, Interior (1) 5-7-9 to 6-2-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

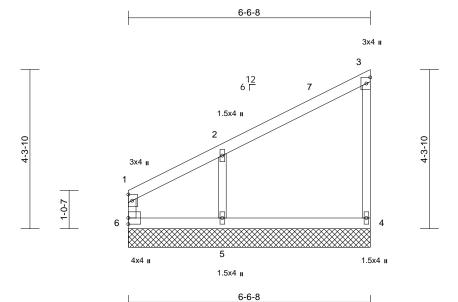
Gable requires continuous bottom chord bearing. 3)

Gable studs spaced at 4-0-0 oc. 4)

This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing 6)

capacity of 565 psi. 7)

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 1 and 70 lb uplift at joint 3.


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	V9	Valley	1	1	Job Reference (optional)	165733298

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:17 ID:nDhdE?d3NndOhPjCGqqs0bzb4DA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

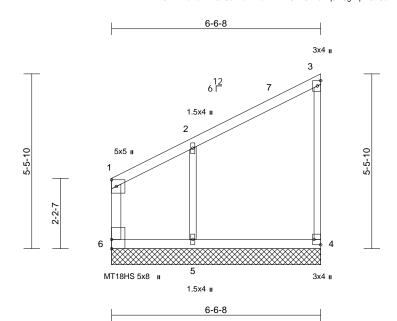
Scale = 1:31.1

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	(53)	Plate Grip DOL	1.15		TC	0.31	Vert(LL)	n/a	(100)	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.31	Vert(TL)	n/a	-	n/a	999	101120	137/144
BCLL	0.0	Rep Stress Incr	YES		WB	0.21	Horiz(TL)	0.00	-	n/a	999 n/a		
BCDL	10.0	Code		8/TPI2014	Matrix-R	0.09	TION2(TL)	0.00	4	n/a	n/a	Weight: 26 lb	FT = 20%
BCDL	10.0	Code	IKC201	0/1712014	Maultx-IX							Weight. 20 lb	FT = 20 /6
LUMBER			6)	This truss ha	as been designe	ed for a 10.0) psf bottom						
TOP CHORD	2x4 SP No.2		,		ad nonconcurre			ids.					
BOT CHORD	2x4 SP No.2		7)	All bearings	are assumed to	be SP No.	2 crushing						
WEBS	2x3 SPF No.2			capacity of 5	565 psi.								
OTHERS	2x3 SPF No.2		8)	Provide med	chanical connec	tion (by oth	ers) of truss t	to					
BRACING					e capable of wit			oint					
TOP CHORD	Structural wood she	athing directly appli	ed or		t at joint 4 and 7								
	6-0-0 oc purlins, ex		9)		designed in ac								
BOT CHORD	Rigid ceiling directly		с		Residential Co			and					
	bracing.				nd referenced s	standard AN	ISI/TPI 1.						
REACTIONS	(size) 4=6-6-8, 5	5=6-6-8, 6=6-6-8	LC	DAD CASE(S)	Standard								
	Max Horiz 6=173 (LO	C 9)											
	Max Uplift 4=-29 (LC	2 9), 5=-157 (LC 12)	, 6=-1										
	(LC 8)	,, , ,											
	Max Grav 4=147 (L0	C 1), 5=359 (LC 1),	6=115										
	(LC 20)												
FORCES	(lb) - Maximum Corr	pression/Maximum											
	Tension												
TOP CHORD	1-6=-143/69, 1-2=-3	11/184, 2-3=-129/9	7,										
	3-4=-113/143												
BOT CHORD	5-6=-77/83, 4-5=-77	/83											
WEBS	2-5=-280/379												
NOTES													

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-4 to 5-1-4, Interior (1) 5-1-4 to 6-5-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web).5) Gable studs spaced at 4-0-0 oc.

ATHANIEL NATHANIEL NATHANIEL NATHANIEL PE-2022042259 NAL ENGINE May 22,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	V10	Valley	1	1	Job Reference (optional)	165733299

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:17 ID:J17F1fcRdTVX3F80i7IdTNzb4DB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:36

Plate Offsets (X, Y): [4:Edge,0-2-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		8/TPI2014	CSI TC BC WB Matrix-R	0.57 0.58 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT18HS MT20 Weight: 30 lb	GRIP 244/190 244/190 FT = 20%
LUMBER TOP CHORE BOT CHORE WEBS OTHERS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.2 2x4 SP No.2 *Excep 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. 	athing directly applie cept end verticals. applied or 10-0-0 or 5=6-6-8, 6=6-6-8 C 9) S 9), 5=-186 (LC 12), S 8)	6) 2 7) 8) ed or 9) c 10	braced again Gable studs This truss ha chord live lo All bearings capacity of 5 Provide mec bearing platt 6, 31 lb uplif)) This truss is International	chanical connection e capable of withs t at joint 4 and 186 designed in accord Residential Code nd referenced sta	ent (i.e. c for a 10. with any e SP No. n (by oth tanding 3 6 lb uplift rdance w e sections	iagonal web).) psf bottom other live load 2 crushing ers) of truss tr 16 lb uplift at jo at joint 5. ith the 2018 : R502.11.1 a	ds. o oint					
FORCES	(lb) - Maximum Com Tension D 1-6=-246/141, 1-2=∹		110										
BOT CHORE WEBS	3-4=-113/141	,	,										
Vasd=91 Ke=1.00; exterior z Interior (exposed members Lumber [SCE 7-16; Vult=115mph Imph; TCDL=6.0psf; BC ; Cat. II; Exp C; Enclose zone and C-C Exterior(2 1) 5-1-12 to 6-5-4 zone; ; end vertical left and ris s and forces & MWFRS DOL=1.60 plate grip DO	DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-1-12 to 5-1-12, cantilever left and ri ght exposed;C-C for for reactions shown DL=1.60	ight ;								A.	STATE OF STATE	INIEL YE Y

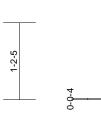
2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

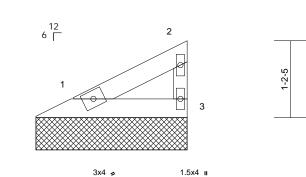
- All plates are MT20 plates unless otherwise indicated. 3)
- 4) Gable requires continuous bottom chord bearing.

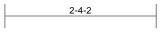
MALBER PE-2022042259 SSIONAL EN May 22,2024

> DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI 02/03/2025 4:51:07

TION




Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	V11	Valley	1	1	Job Reference (optional)	165733300


Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:17 ID:J17F1fcRdTVX3F80i7IdTNzb4DB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1.5x4 🛚

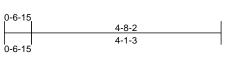
Page: 1

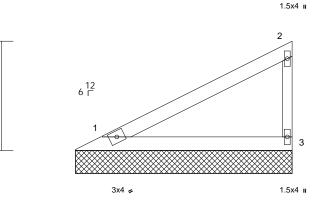
2-4-2

Scale =	1:17.9

LUMBER 2x4 SP No.2 DOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x3 SPF No.2 BRACING Structural wood sheathing directly applied or 2x-410 co putines, except end verticals. LOAD CASE(S) Standard BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. Bracking (size) 1=2-42, 3=2-4-2 Max Holit 1=74 (LC 12), 3=74 (LC 12) Max Grav 1=74 (LC 13), 3=74 (LC 10) PORCES (b)- Maximum Compression/Maximum Tension TOP CHORD 1:3=-17/19 NOTES 1 Notes 2:1 O T tude disgrad for wind loads in the plane of the truss only. For stude seposed on wind loads in the plane of the truss only. For stude seposed to wind (normal to the face), see Standard Industry Gale for a longer as application, compare as application, compare as application, compare and plane graves and to the set on set on set on wind loads in the plane of the truss only. For stude seposed to wind (normal to the face), see Standard Industry Gale for a longer as application, compare and plane application, compare application, compare application, compare applicatin dipting disegram application, compare and plane appli
 All bearings are assumed to be SP No.2 crushing capacity of 565 psi. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 1 and 21 lb uplift at joint 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)




Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	V12	Valley	1	1	Job Reference (optional)	165733301

-4-5

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:18 ID:nDhdE?d3NndOhPjCGqqs0bzb4DA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-8-2	

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.35	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.19	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 15 lb	FT = 20%

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

LUMBER

Scale - 1.24 9

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x3 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	4-8-10 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 1=4-8-2, 3=4-8-2
	Max Horiz 1=89 (LC 9)

Max Uplift 1=-28 (LC 12), 3=-50 (LC 12) Max Grav 1=179 (LC 1), 3=179 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-126/85, 2-3=-139/180 1-3=-41/45

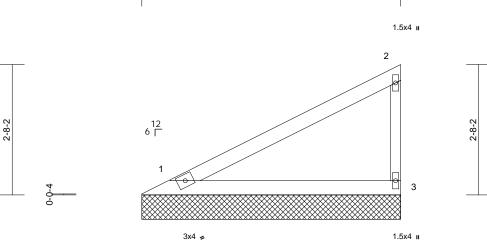
BOT CHORD

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 4-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing 6)

capacity of 565 psi. 7) Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 28 lb uplift at joint 1 and 50 lb uplift at joint 3.


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	V13	Valley	1	1	Job Reference (optional)	165733302

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:18 ID:nDhdE?d3NndOhPjCGqqs0bzb4DA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-3-12

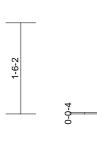
5-3-12

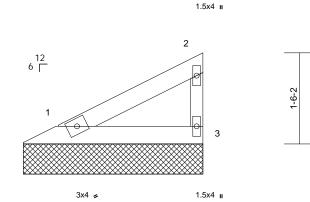
1.5x4 u

Soft CHORD 5-4-4 oc purlins, Rigid ceiling dire bracing. REACTIONS (size) 1=5-3 Max Horiz Max Uplift 1=-32 Max Grav Max Uplift 1=-32 Max Grav 1=208 FORCES (lb) - Maximum (Tension 1-2=-145/97, 2-3 BOT CHORD BOT CHORD 1-3=-48/52 NOTES 1) Wind: ASCE 7-16; Vult=115r; Vasd=91mph; TCDL=6.0psf; Yult=105	LC 12), 3=-58 (LC 12) (LC 1), 3=208 (LC 1) ompression/Maximum 162/207	R802.10.2 a LOAD CASE(S)	Residential Coc nd referenced st	de sections	s R502.11.1 a	and				
5-4-4 oc purlins, BOT CHORD Rigid ceiling dire bracing. REACTIONS (size) 1=5-3 Max Uplift 1=-32 Max Grav 1=206 FORCES (lb) - Maximum (Tension TOP CHORD 1-2=-145/97, 2-3 BOT CHORD 1-3=-48/52 NOTES 1) Wind: ASCE 7-16; Vult=115r Vasd=91mph; TCDL=6.0psf;	except end verticals. tly applied or 10-0-0 oc (LC 9) LC 12), 3=-58 (LC 12) (LC 1), 3=-208 (LC 1) ompression/Maximum 162/207	Π Π								
REACTIONS (size) 1=5-3 Max Horiz 1=103 Max Uplift 1=-32 Max Grav 1=208 FORCES (lb) - Maximum (International Tension 1=2-145/97, 2-3 BOT CHORD 1-2=-145/97, 2-3 BOT CHORD 1-3=-48/52 NOTES 1) Wind: ASCE 7-16; Vult=115r Vasd=91mph; TCDL=6.0psf; 1	(LC 9) LC 12), 3=-58 (LC 12) (LC 1), 3=208 (LC 1) pmpression/Maximum 162/207									
Tension TOP CHORD 1-2=-145/97, 2-3 BOT CHORD 1-3=-48/52 NOTES 1) Wind: ASCE 7-16; Vult=115r Vasd=91mph; TCDL=6.0psf;	-162/207									
NOTES 1) Wind: ASCE 7-16; Vult=115r Vasd=91mph; TCDL=6.0psf;	nh (3-second quist)									
 Wind: ASCE 7-16; Vult=115r Vasd=91mph; TCDL=6.0psf; 	nh (3-second qust)									
Ke=1.00; Cat. II; Exp C; Enc exterior zone and C-C Exteri and right exposed ; end verti exposed;C-C for members a reactions shown; Lumber DC DOL=1.60	3CDL=6.0psf; h=35ft; sed; MWFRS (envelope) r(2E) zone; cantilever left al left and right d forces & MWFRS for								ST OF	MISS
 Truss designed for wind loar only. For studs exposed to v see Standard Industry Gable or consult gualified building of 	nd (normal to the face), End Details as applicable,							ł	STATE OF J	ANIEL Y
3) Gable requires continuous b	tom chord bearing.							4A	1H	1-1+1
 Gable studs spaced at 4-0-0 This truss has been designed 									Ahan	1 stores
 chord live load nonconcurrer All bearings are assumed to capacity of 565 psi. 	with any other live loads.							N.	PE-2022	BER 2042259
 Provide mechanical connect bearing plate capable of with 1 and 58 lb uplift at joint 3. 								Y	ESSIONA	L ENGLASS y 22,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	V14	Valley	1	1	Job Reference (optional)	165733303


2-11-12


Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:18 ID:nDhdE?d3NndOhPjCGqqs0bzb4DA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

20%

Scal	_	1	- 1	0	1	

Loading TCLL (roof)

TCDI BCLL BCDL

						I					
(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
25.0	Plate Grip DOL	1.15	тс	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
10.0	Lumber DOL	1.15	BC	0.06	Vert(TL)	n/a	-	n/a	999		
0.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 9 lb	FT = 20%

8) This truss is designed in accordance with the 2018

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

International Residential Code sections R502.11.1 and

2-11-12

LUMBER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x3 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly appl

lied or 3-0-4 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 1=2-11-12, 3=2-11-12 Max Horiz 1=51 (LC 9) Max Uplift 1=-16 (LC 12), 3=-29 (LC 12)

Max Grav 1=103 (LC 1), 3=103 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-72/49, 2-3=-80/104 1-3=-24/26

BOT CHORD

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 4-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing 6)

capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 16 lb uplift at joint 1 and 29 lb uplift at joint 3.

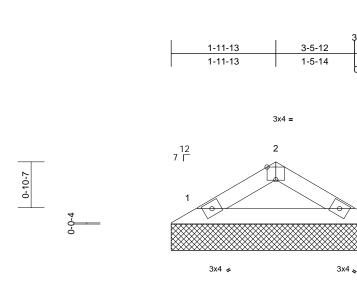
OF MISSO NATHANIEL FOX MBER PE-2022042259 SIONAL E

May 22,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	V15	Valley	1	1	Job Reference (optional)	165733304

1-2-2


Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:18 ID:sEKIKxrIPPsRoi0IdNEDVIzb4JL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-11-11

11-11

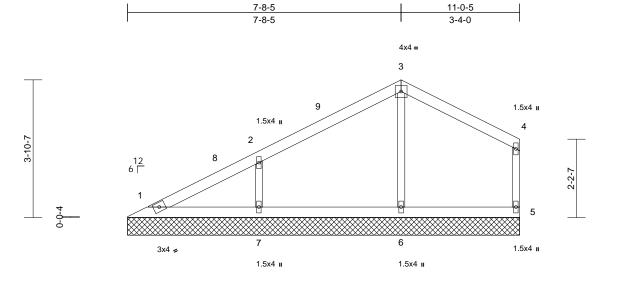
3

Page: 1

Scale = 1:21.9

Plate Offsets (X, Y): [2:0-2-0,Edge]

			1	-							
Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.05 0.11 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING TOP CHORD Structural wood shea 4-0-8 oc purlins. BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 1=3-11-11 Max Horiz 1=-24 (LC Max Uplift 1=-20 (LC Max Grav 1=133 (LC FORCES (b) - Maximum Com Tension TOP CHORD 1-2=-124/87, 2-3=-12 BOT CHORD 1-3=-43/89 NOTES 1) Unbalanced roof live loads have this design. 2) Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BC Ke=1.00; Cat. II; Exp C; Enclose exterior zone and C-C Exterior(2 and right exposed ; end vertical 1 exposed; C-C for members and for reactions shown; Lumber DOL=1 DOL=1.60 3) Truss designed for wind loads ir only. For studs exposed to wind see Standard Industry Gable Env or consult qualified building desig 4) Gable requires continuous bottor 5) Gable studs spaced at 4-0-0 oc. 6) This truss has been designed for chord live load nonconcurrent wi 7) All bearings are assumed to be S capacity of 565 psi.	 applied or 10-0-0 or 1, 3=3-11-11 2 10) 2 12), 3=-20 (LC 13) C 1), 3=133 (LC 1) npression/Maximum 24/87 been considered for a (3-second gust) DL=6.0psf; h=35ft; ad; MWFRS (envelop 2E) zone; cantilever I left and right forces & MWFRS for 1.60 plate grip n the plane of the trut d (normal to the face) d Details as applicat gner as per ANSI/TFm m chord bearing. r a 10.0 psf bottom it any other live load 	r bearing pla 1 and 20 lt 9) This truss i Internation R802.10.2 LOAD CASE(S r be) left sss), ple, Pl 1.	echanical connection the capable of withs o uplift at joint 3. Is designed in acco al Residential Cod and referenced sta 5) Standard	standing 2 ordance w e sections	20 lb uplift at j ith the 2018 s R502.11.1 a	joint			D	NATHLE FC	BER 2042259


Design valid for use only with MTeK become tors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	V16	Valley	1	1	Job Reference (optional)	165733305

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:18 ID:pX4Fy8nG9cNI054YKGV1rNzb3_C-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

11-0-5

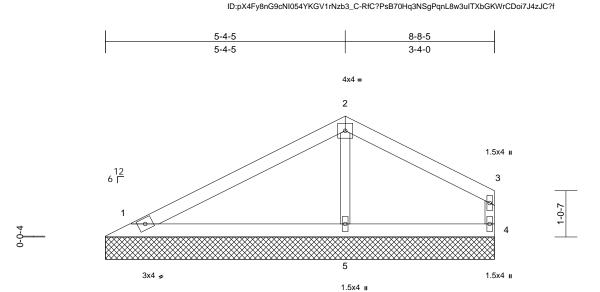
Scale = 1:32.4

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC BC	0.23	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL BCLL	10.0 0.0	Lumber DOL Rep Stress Incr	1.15 YES		WB	0.10 0.08	Vert(TL) Horiz(TL)	n/a 0.00	- 5	n/a n/a	999 n/a		
BCDL	10.0	Code		18/TPI2014	Matrix-S	0.08		0.00	5	n/a	∏/a	Weight: 39 lb	FT = 20%
		Į.											
			4		es continuous bo spaced at 4-0-0 d		d bearing.						
TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2		5		spaced at 4-0-0 d is been designed) nsf hattam						
NEBS	2x4 SF No.2 2x3 SPF No.2				ad nonconcurrent			ds.					
OTHERS	2x3 SPF No.2		7		are assumed to b								
BRACING				capacity of 5									
TOP CHORD	Structural wood she	athing directly applie	ed or ⁸		hanical connection								
	6-0-0 oc purlins, ex				e capable of withs t at joint 5, 2 lb up								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	с	uplift at joint		at joir	t o anu 134 il)					
	bracing.	F 44 0 F 0 44 0 F	. 9		designed in acco	rdance w	ith the 2018						
REACTIONS	(SIZE) 1=11-0-5 7=11-0-5	, 5=11-0-5, 6=11-0-5	о,		Residential Code			nd					
	Max Horiz 1=109 (L	C 9)			nd referenced sta	andard Al	ISI/TPI 1.						
	Max Uplift 1=-2 (LC		=-2 L	OAD CASE(S)	Standard								
		7=-134 (LC 12)											
	Max Grav 1=106 (L		i),										
	`	C 1), 7=380 (LC 25)											
FORCES	(lb) - Maximum Con Tension	pression/Maximum											
TOP CHORD	1-2=-146/77, 2-3=-1	02/120 3-486/116	3										
	4-5=-116/120	02/120,0 1= 00/110	,										
BOT CHORD	1-7=-36/40, 6-7=-36	6/40, 5-6=-36/40											
WEBS	3-6=-238/176, 2-7=-												
NOTES													~
1) Unbalanced roof live loads have been considered for												Soon	all
 this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-7-9 to 5-7-9, 												TATE OF	MISSO
											A	The second se	1.5
											A	S NATH	ANIEL EN
											4	FO	X V
	5-7-9 to 7-8-13, Exte										UT.		- ATA
10-11-9 zone; cantilever left and right exposed ; end											8	Atter	~ / A A
	t and right exposed;C										NA	Mar Man	MAR UMPEN

DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

forces & MWFRS for reactions shown; Lumber

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)


PE-2022042259

SSIONAL ET

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	V17	Valley	1	1	Job Reference (optional)	165733306

2-8-7

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:18 ID:DX4Fv8nG9cNI054/KGV1rNzb3_C_RfC2PeR70HorNSoPont 8wa/ITX5GKWrCDoi7 44 Jr 2f

8-8-5

<u> </u>	
Scale =	= 1:25.7

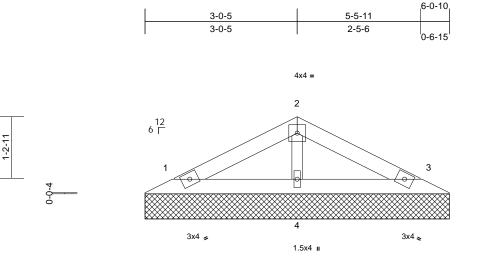
															_
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.52	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.19	Vert(TL)	n/a	-	n/a	999			
BCLL		0.0	Rep Stress Incr	YES		WB	0.06	Horiz(TL)	0.00	4	n/a	n/a			
BCDL		10.0	Code	IRC20	18/TPI2014	Matrix-P							Weight: 29 lb	FT = 20%	_
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	P CHORD 2x4 SP No.2 choi T CHORD 2x4 SP No.2 7) All b BS 2x3 SPF No.2 7) All b HERS 2x3 SPF No.2 8) Provide ACING 5 CHORD Structural wood sheathing directly applied or 8-8-13 oc purlins, except end verticals. 9) T CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 8 9					s been designed ad nonconcurren are assumed to 65 psi. hanical connecti c capable of with at joint 4 and 22 designed in acco Residential Cod nd referenced st Standard	at with any be SP No. on (by oth standing 5 2 Ib uplift a ordance w le sections	other live loa 2 crushing ers) of truss t 1 lb uplift at j t joint 5. ith the 2018 R502.11.1 a	o oint						
	i (size) 1=8-8-5, 4=8-8-5, 5=8-8-5 LOAD CASE(3) Standard Max Horiz 1=57 (LC 9) Max Uplift 1=-51 (LC 12), 4=-55 (LC 13), 5=-22 (LC 12) Max Grav 1=205 (LC 1), 4=132 (LC 1), 5=383 (LC 1)														
FORCES		, ,	pression/Maximum												
TOP CHORD		1, 2-3=-52/	/85, 3-4=-113/121												
BOT CHORD															
WEBS	2-5=-280/2	222													
, this desigr	۱.		been considered for (3-second gust)										COST	alle	

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 178	
P241267-01	V18	Valley	1	1	Job Reference (optional)	165733307


1-6-7

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 13:04:18 ID:pX4Fy8nG9cNI054YKGV1rNzb3_C-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-0-10

zJC?f

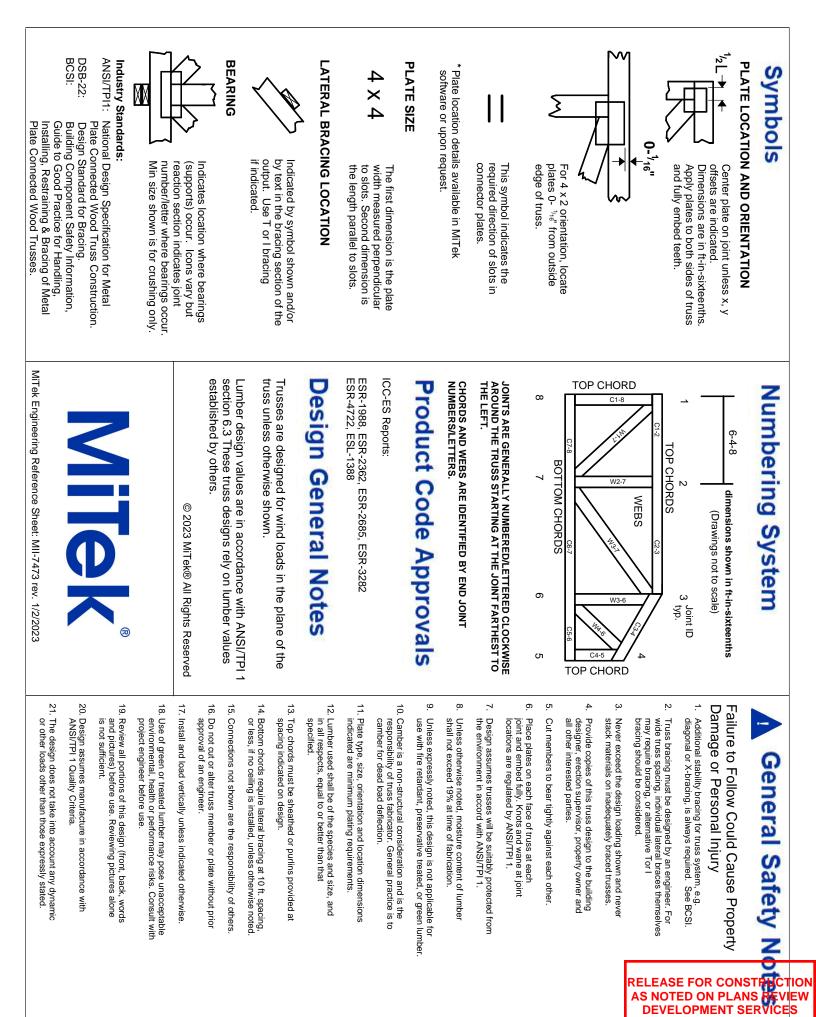
-				
Scal	e =	= 1:	22.9	

Loading TCLL (roof) (psf) 25.0 (10.0) Spacing 25.0 (10.0) 2-0-0 Plate Grip DOL 1.15 CSI TC DEFL TC in (loc) //defl Na Ld PLATES NT20 GRIP 244/190 TCDL 10.0 0.00 Plate Grip DOL 1.15 1.15 BC 0.06 Vert(LL) n/a n/a 999 MT20 244/190 BCDL 0.00 0.00 Rep Stress Incr YES WB 0.03 Na n/a 999 MT20 244/190 BCDL 0.00 Code IRC2018/TP12014 Matrix-P Na Na n/a n/a 999 Mt20 244/190 EQDL 0.00 2x4 SP No.2 SP rovide mechanical connection (by others) of truss to bearing plate capable of withstanding 30 louplift at joint 4. No this truss is designed in accordance with the 2018 International Residential Code sectors R502.11.1 and R802.10.2 and referenced standard ANS/JTP1 1. SR ACINOS Nis truss is designed in accordance with the 2018 International Residential Code sectors R502.11.1 and R802.10.2 and referenced standard ANS/JTP1 1. SR ACINOS Standard Standard Standard Max Grav 1=15 (00010 = 1.22.0													
BCDL 10.0 Code IRC2018/TPI2014 Matrix-P Weight: 18 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 8) BOT CHORD 2x4 SP No.2 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 30 lb uplift at joint 1, 34 lb uplift at joint 3 and 7 lb uplift at joint 4. 8) BACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard REACTIONS (size) 1=6-0-10, 3=6-0-10, 4=6-0-10 Max Horiz Max Uplift 1=-30 (LC 12), Max Grav 1=-115 (LC 1), 3=-115 (LC 1), 4=-210	TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.06	Vert(LL) Vert(TL)	n/a n/a	-	n/a n/a	999 999	-	
TOP CHORD 2x4 SP No.2 capacity of 565 psi. BOT CHORD 2x4 SP No.2 8) Provide mechanical connection (by others) of truss to DTHERS 2x3 SPF No.2 BRACING 9 TOP CHORD Structural wood sheathing directly applied or 6-0-0 cc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 cc bracing. REACTIONS (size) 1=6-0-10, 3=6-0-10, 4=6-0-10 Max Horiz Max Horiz 1=23 (LC 12) Max Grav 1=115 (LC 1), 3=115 (LC 1), 4=210					3/TPI2014		0.03	Horiz(TL)	0.00	3	n/a	n/a	Weight: 18 lb	FT = 20%
	TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x3 SPF No.2 Structural wood sh 6-0-0 oc purlins. Rigid ceiling directl bracing. (size) 1=6-0-1(Max Horiz 1=23 (LC Max Uplift 1=-30 (L (LC 12)) Max Grav 1=115 (L	y applied or 10-0-0 or 0, 3=6-0-10, 4=6-0-10 C 12) C 12), 3=-34 (LC 13),	8) ed or 9) c LC	capacity of 5 Provide mec bearing plate 1, 34 lb uplif This truss is International R802.10.2 a	65 psi. hanical conne capable of w t at joint 3 and designed in a Residential C nd referenced	ection (by oth rithstanding 3 I 7 Ib uplift at ccordance w code sections	ers) of truss 0 lb uplift at joint 4. ith the 2018 5 R502.11.1 a	joint					

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD	1-2=-55/45, 2-3=-55/52
BOT CHORD	1-4=-1/25, 3-4=-1/25
WEBS	2-4=-149/134
-	

NOTES


 Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

ASE FOR CONST **OTED ON PLANS** VELOPMENT SER LEE'S SUMMIT, MISSOURI 02/03/2025 4:51:07