

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Re: Avalon - Craftsman Avalon - Craftsman

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Wheeler - Waverly.

Pages or sheets covered by this seal: I65139922 thru I65139974

My license renewal date for the state of Kansas is April 30, 2024.

Kansas COA: E-943

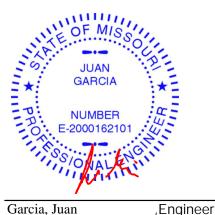
April 25,2024

Garcia, Juan

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEVELOPMENT SERVICES LEE'S SUMMIT, MISSOURI 01/31/2025 5:03:41

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200


Re: Avalon - Craftsman Avalon - Craftsman

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Wheeler - Waverly.

Pages or sheets covered by this seal: I65139922 thru I65139974

My license renewal date for the state of Missouri is December 31, 2024.

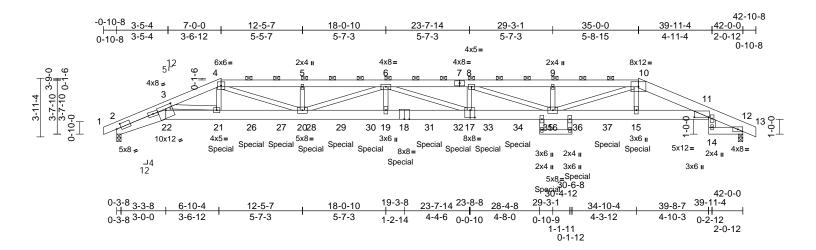
Missouri COA: Engineering 001193

April 25,2024

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEVELOPMENT SERVICES LEE'S SUMMIT, MISSOURI 01/31/2025 5:03:41

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	A1	Hip Girder	1	4	Job Reference (optional)	165139922


Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:29 ID:xxQ6yM2cQGDKA8yJM4PdpizNXbG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

April 25,2024

DEVELORMENT: SERVICES LEE'S'SUMWIT! MISSOURI 01/31/2025 5:03:41

ΤΙΟΝ

IEW

Scale = 1:77.3

Plate Offsets (X, Y):	[2:0-3-13,0-3-0], [11:0-11-8,Edge], [17:0-3-12,0-6-0], [22:0-5-8,0-3-12]	

- 1410 0110010 ((/1, /). [2:0 0 10;0 0 0	,], [∶o : : o,⊇ogo],	1.1.0 0 1.	=,0 0 0], [<u>=</u> 0 0	, 0,0 0 .=]								
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.72		-0.54		>923	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.45	Vert(CT)	-0.94	17-19	>532	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.47	Horz(CT)	0.38	12	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	0.34	17-19	>999	240	Weight: 1160	b FT = 10%
) 4			4.404						
		*=			be connected rails as follows:		th 10d						ce with the 2018 tions R502.11.1 and
TOP CHORD	2x6 SP 2400F 2.0E 2400F 2.0E	Except 10-13:2x8	58		connected as fo		- 2 rows					ferenced standa	
BOT CHORD		*Excent* 14-12:2x6	SP		t 0-9-0 oc, 2x8 -			9-0	12) Gra	aphical r	ourlin r	epresentation do	es not depict the size
Bor onone	2400F 2.0E, 23-24:2		01	oc.			55		or	the orier	tation	of the purlin alor	ig the top and/or
WEBS	2x4 SPF No.2 *Exce		No.2	Bottom chor	ds connected as	s follows: 2	x8 - 2 rows		bot	tom cho	rd. 🔊	18	
BRACING				staggered at	t 0-9-0 oc, 2x6 -	2 rows sta	ggered at 0-9	9-0	13) Ha	nger(s) (or othe	connection de	vice(s) shall be centrated load(s) 785
TOP CHORD	Structural wood she	athing directly applie	ed or	OC.					pro	vided su	ufficien	t to support conc	centrated load(s) 785
	6-0-0 oc purlins, exc				ted as follows:		s staggered a	at					78 lb down and 38 lb
	2-0-0 oc purlins (6-0				4 - 1 row at 0-9- / 1/2" diam. bolt		207) in the						lb up at 11-0-12, 278 278 lb down and 38 lb
BOT CHORD	0 0 7	applied or 10-0-0 o	С		member w/was								8 15 up at 17-0-12.
	bracing.		2		considered equ								12,278 b down and
REACTIONS					ed as front (F) o			DAD	38	lb up at	21-0-	. 278 lb down a	nd 38 lb up at
	Max Horiz 2=-35 (LC Max Uplift 2=-497 (L		-)		ction. Ply to ply				22-	11-4, 27	78 lb de	wn and 38 lb up	at 24-11-4, 278 lb
	Max Grav 2=4546 (L				distribute only lo	ads noted	as (F) or (B),		dov	wn and 3	38 lb u	o at 26-31-4,26	0 lb down and 47 lb up up at 30-11-4, and
FORCES	(lb) - Maximum Corr	<i>.</i>	,		wise indicated.				at	28-11-4	, 278 II	o down and 38 lt	1-4, and 818 lb down
FORCES	Tension	ipression/iviaximum	3	this design.	roof live loads h	have been	considered fo	or					m chord. The design/
TOP CHORD	1-2=0/3, 2-3=-17242	2/1903. 3-4=-14805/	1712, 4		7-16; Vult=115	mph (3-ser	cond aust)					connection device	
	4-5=-19682/2215, 5		, ,		h; TCDL=6.0psf			Cat.		ponsibili			
	6-8=-23506/2614, 8				closed; MWFR							y: 1(Front)	
	9-10=-19955/2247,		,	and right exp	bosed ; end vert	ical left and	d right expose		LOAD	CASE(S) Sta	indard	
DOTOLODD	11-12=-2841/320, 12				_=1.60 plate grip					•			
BOT CHORD	2-22=-1692/15529, 20-21=-1527/13719				quate drainage			g.					III.
	16-19=-2547/23530				as been designe			مام				ALL AN	GAR
	11-15=-1566/14255		,		ad nonconcurre has been desigr							NUM	······································
WEBS	11-14=-83/883, 3-22		'		m chord in all ar			opsi				CE.	NSE.
	4-21=-289/2420, 10	-15=-184/1642,			by 2-00-00 wide			om					10 1 2
	4-20=-668/6510, 5-2			chord and ar	ny other membe	ers.						1.1	1 2
	6-20=-4142/428, 6-1		7/90, 8		are assumed to							16	952
	8-17=-51/959, 8-16=		g		pint(s) 2 conside)			-	19	552
	9-16=-233/164, 10-1 3-21=-428/89	10=-039/0027,			TPI 1 angle to g							Indard	
NOTES	0 21-420/03		4		ould verify capao hanical connect			to				-0.4	VAL ENGIN
NOTES			I		e capable of with							A A	NSA ST
					uplift at joint 12		ion io upint a					1,95/01	VAL ENIN
												1111	
													1 25 2024

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/ITP/1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	A1	Hip Girder	1	4	Job Reference (optional)	165139922
Wheeler Lumber, Waverly, KS - 6	66871,	Run: 8.73 S Apr 3 2	024 Print: 8.7	'30 S Apr 3 2	2024 MiTek Industries, Inc. Wed Apr 24 12:41:29	Page: 2

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:29 ID:xxQ6yM2cQGDKA8yJM4PdpizNXbG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-4=-70, 4-10=-70, 10-13=-70, 2-22=-20, 11-22=-20, 12-14=-20

Concentrated Loads (lb)

Vert: 18=-278 (B), 21=-785 (B), 15=-818 (B),

26=-278 (B), 27=-278 (B), 28=-278 (B), 29=-278 (B), 30=-278 (B), 31=-278 (B), 32=-278 (B), 33=-278 (B),

34=-278 (B), 35=-260 (B), 36=-278 (B), 37=-278 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	A2	Нір	1	1	Job Reference (optional)	165139923

Run: 8,73 E Jan 4 2024 Print: 8,730 E Jan 4 2024 MiTek Industries, Inc. Thu Apr 25 14:28:00 ID:z5TmPe?5Zi29cVg_rNJ0ddzNX_b-_fufWjdGUiwGJ9seNiejTSd?UG3i8kuO5dkCMEzN8v?

0-1-12 0-1-12

42-10-8 42-0-0 9-0-0 14-10-8 20-10-12 26-11-0 33-0-0 39-5-12 2-6-40-10-8 5-6-12 5-10-8 6-0-4 6-5-12 6-0-4 6-1-0 2x4 II 4x8= 4x8= 6x8= 2x4 II 8x12= 1-10 H 4-7-0 8 🖂 0-1-10 **⊸**5 6 9 7 4 26 M ₅12 T T 1.0 4-1-5 4-5-6 4-9-4 10 + è 21 20 19 18 17 16 15 14 4x5= 5x12= 2x4 II M18AHS 4x14 = 2x4 II 13 8x8= 5x12 = M18AHS 4x14 = 5x12= 2x4 II 5x8 II M18AHS 10x12 = 2x4 II 2x4 II 4x8 =」4 12 42-0-0 39-8-8 0-3-8 3-3-8 14-10-8 17-3-8 20-10-12 24-0-6 39-5-12 8-10-4 6-7-8 0-3-8 3-0-0 5-6-12 6-0-4 2-5-0 3-7-4 3-1-10 0-2-12

Scale = 1:77.4

Plate Offsets (X, Y): [2:0-4-0,0-1-0],	[10:0-2-10,Edge], [1	1:0-2-2,0-	0-9], [13:0-2-10	0,1-7-12], [21:0-5-	12,0-4-8]							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.56 0.59 0.77	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.90 0.42	(loc) 17-19 17-19 11 11 17-19	l/defl >999 >557 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18AHS Weight: 307 lb	GRIP 197/144 186/179 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS LBR SCAB BRACING TOP CHORD BOT CHORD	2400F 2.0E 2x6 SP 2400F 2.0E SP 2400F 2.0E, 22-2 2x4 SPF No.2 *Exce 9-12 SP 2400F 2.0E	*Except* 2-21,13-11: 23:2x4 SPF No.2 pt* 10-13:2x6 SPF N i one side athing directly applie ept -14 max.): 4-9. applied or 10-0-0 oc	P :2x8 No.2 2) 3) d or	2400F 2.0E spaced 9" o. 9, nail 2 row end at joint 9 Unbalanced this design. Wind: ASCE Vasd=91mpl II; Exp C; En cantilever lef right expose Provide adeo	11-6 scab 9 to 12, with 2 row(s) of 10 c.except : starting (s) at 7" o.c. for 2-(), nail 2 row(s) at 4 roof live loads hav 7-16; Vult=115mp n; TCDL=6.0psf; B closed; MWFRS (t and right expose d; Lumber DOL=1. quate drainage to p MT20 plates unle	d (0.131 at 0-3-1 0-0; start r o.c. for e been oh (3-sec CDL=6.0 cCDL=6.0 envelope d; end 0.60 plate prevent	"x3") nails 4 from end at ing at 6-7-7 f r 3-11-7. considered for cond gust) Dpsf; h=25ft; e) exterior zoo vertical left an grip DOL=1. water ponding	; joint rom or Cat. ne; nd 60 g.			n _{in} .	TE OF /	2017 · · · · · · · · · · · · · · · · · · ·	
REACTIONS	0	·3-8, 11=1952/0-3-8 13)	,	All plates are This truss ha chord live loa	2x4 MT20 unless is been designed f ad nonconcurrent has been designed	otherwi for a 10.0 with any	se indicated.) psf bottom other live loa	ıds.			*			
FORCES	(lb) - Maximum Com Tension 1-2=0/3, 2-3=-7265/9 4-5=-5970/994, 5-6= 6-7=-5968/993, 7-8= 8-9=-6013/999, 9-26 10-26=-4777/680, 10 11-12=0/11	968, 3-4=-4811/726, -5968/993, -6012/998, =-4611/707,	9)	on the bottor 3-06-00 tall b chord and ar All bearings capacity of 4) Bearing at jo using ANSI/T	n chord in all area by 2-00-00 wide wi ny other members. are assumed to be 25 psi. int(s) 2 considers IPI 1 angle to grai	s where ill fit betv SPF No parallel t n formula	a rectangle veen the botto c.2 crushing to grain value a. Building	om			The second se	E-20001	• [] 1	11.
BOT CHORD	2-21=-856/6544, 20- 19-20=-591/4434, 18 17-18=-991/6573, 14 15-16=-991/6573, 14 10-14=-577/4471, 11	3-19=-991/6573, 5-17=-991/6573, 4-15=-573/4481,) Provide mec bearing plate 2 and 276 lb) This truss is	uld verify capacity hanical connection capable of withst uplift at joint 11. designed in accord	n (by oth anding 2 dance w	ers) of truss t 278 lb uplift at ith the 2018	i joint			-	THE TOP	ARCIA NSEO	
WEBS	10-13=-11/195, 3-21 9-14=0/327, 4-19=-3 7-19=-768/130, 7-17 8-15=-421/179, 9-15 3-20=-1481/294	=-173/1840, 4-20=0, 43/1868, 5-19=-454, =0/256, 7-15=-721/1	/183, 13 119,	R802.10.2 a) Graphical pu		ndard AN does no	ISI/TPI 1. ot depict the s				THINK.	OR SION	25,2024	WHIT

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Page: 1

2-3-8

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	A3	Нір	1	1	Job Reference (optional)	165139924

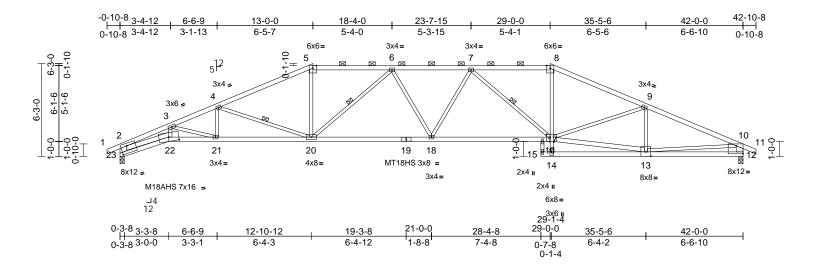
Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:30 ID:kNVnBm0TZ6NgxIz7LGABBEzNWnf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

42-10-8 -0-10-8 <u>3-4-12</u> 0-10-8 <u>3-4-12</u> 42-0-0 15-10-8 20-10-12 7-2-15 11-0-0 25-11-0 31-0-0 35-4-4 39-11-4 2-0-12 0-10-8 3-10-3 3-9-1 4-10-8 5-0-4 5-0-4 5-1-0 4-4-4 4-7-0 3x6= 6x6= 3x10= 8x12= 1-10 1− 0-1-10 ¹⁰ 31 5-5-0 5 7 8 g 5¹² 3x4 -Гŧ 4x5 👟 11 3x6 -5-3-6 5-0-14 5-7-4 3 12 П 13 П 0-2-8 u 17 ę 25 24 23 22 21 20 19 18 16 4x5= 4x5= 4x8= 6x8= 4x8= 15 8x8= 8x12 🚅 4x8 =6x8= 4x5= 3x6 II M18AHS 7x12 = __4 12 30-10-12 30-4-12 28-6-4 1-8 30-6-8 25-11-0 28-4-8 0-3-8 3-3-8 H 0-3-8 3-0-0 17-3-8 7-2-15 10-10-12 15-10-8 20-10-12 23-8-8 35-4-4 39-8-8 42-0-0 2-5-8 0-1-12 0-1-12 3-11-7 3-7-13 4-11-12 3-7-4 2-9-12 2-2-8 4-5-8 4-4-4 2-3-8 1-5-0 1-10-8 0-4-4

Scale = 1:77.5

DI : 0// · 0/ >0		~ 7
Plate ()ttsets (X, Y).	[10:0-6-0,0-2-10], [12:0-0-7,Edge], [26:0-5-0,0-6	-01
	[1010 0 0,0 2 10]; [1210 0 1,2490]; [2010 0 0,0 0	~J

	oj, [12.0-0-7,∟ugej, [2	0.0-3-0,0-0-0]	- 1	-						1	
Loading (psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 25.0	Plate Grip DOL	1.15	TC	0.87	Vert(LL)	-0.51	20-22	>986	360	MT20	197/144
TCDL 10.0	Lumber DOL	1.15	BC	0.94	Vert(CT)	-0.91	20-22	>546	240	M18AHS	142/136
BCLL 0.0*	Rep Stress Incr	YES	WB	0.63	Horz(CT)	0.44	13	n/a	n/a		
BCDL 10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.37	20-22	>999	240	Weight: 264 lb	FT = 10%
LUMBER TOP CHORD 2x4 SPF No.2 *Excep 2.0E BOT CHORD BOT CHORD 2x4 SPF No.2 *Excep 2400F 2.0E, 21-19:23 WEBS 2x3 SPF No.2 *Excep No.2, 25-2:2x4 SPF 27-29,28-30:2x4 SPF LBR SCAB 10-14 SP 2400F 2.0 BRACING TOP CHORD Structural wood shear	pt* 10-14:2x8 SP 240 pt* 25-21,19-12:2x6 S x6 SPF No.2 pt* 12-15,26-2:2x6 SF 2100F 1.8E, = No.2 E one side athing directly applied comax.): 5-10. applied or 10-0-0 oc -22,18-20. 26=0-3-8 C 13) LC 5), 26=-257 (LC 4) LC 1), 26=1951 (LC 1) pression/Maximum /739, 3-4=-4799/636, -4683/743, -4711/744, 11=-4260/624, 2-13=-998/140, 77/277 25=-643/5529, 2-23=-445/3789, 3-20=-666/5021, 3-17=-557/4888,	WEBS WEBS WEBS WOTES 1) Attached or 2400F 2.(spaced 9' 10, nail 2 from end 2) Unbalanc this desig 3) Wind: AS Vasd=91n II; Exp C; cantilever right expC 4) Provide a 5) All plates 7) This truss chord live 8) * This trus on the bo 3-06-00 tt chord and 9) All bearing a using AN: designer 11) Provide n	12-15=0/48, 3-25 10-17=-31/644, 1 2-25=-609/5151, 4-23=-735/176, 5 6-22=-419/161, 7 7-18=-503/80, 9- 10-18=-199/1126 3-24=-1141/216 13-1-6 scab 10 to 1- DE with 2 row(s) of 1 ' o.c. except : starting row(s) at 4" o.c. for at joint 10, nail 2 row ed roof live loads ha	1-17=-10 11-16=-5 -22=-220 -22=-539 18=-344/1, , 4-24=-8 4, front fa 0d (0.131 g at 8-6-1 2-0-0; sta v(s) at 7" we been y(s) at 7" we been y(s	, 5-23=-52/58 86/195, 3/91, /1257, /88, 7-20=0/2 149, /386, ce(s) 2x8 SP "x3") nails 2 from end at riting at 10-9-1 o.c. for 2-0-0. considered fo cond gust) 0psf; h=25ft; (9) exterior zor vertical left an grip DDL=1. water ponding wise indicate se indicate. Se indicate se indicate	3, 31, joint 9 r Cat. he; d 60 g. d. ds. Dpsf om e o	12) Thi Inte R80 13) Gra or t bot	s truss is ernationa 02.10.2 a aphical p	s design al Resiand ref urlin re- tation (rd.) Sta	ned in accordance dential Code sect ferenced standarc apresentation doe of the purlin along ndard UUA GARC NUME E-20001 SS ONA GARC NUME C-20001	e with the 2018 ons R502.11.1 and ANSI/TPI 1. s not depict the size the top and/or


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Page: 1

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	A4	Нір	1	1	Job Reference (optional)	165139925

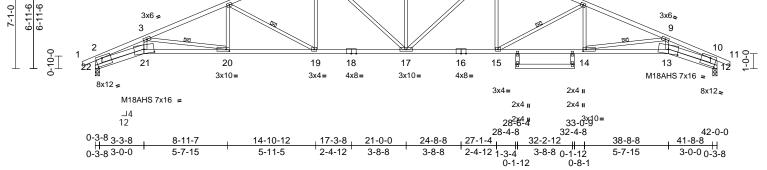
Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:30 ID:AMpSFYh9FvFj?ARzUQYstxzNWdI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:77.7

Plate Offsets (X, Y): [12:Edge,0-6	-8], [16:0-3-0,0-2-4], [22:0-8	-0,0-3-7], [23:0-5-0	,0-6-0]								
Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0' BCDL 10.0	Spacing 2-0 Plate Grip DOL 1.1 Lumber DOL 1.1 Rep Stress Incr YE Code IRC	5	CSI TC BC WB Matrix-S	0.64 0.66 0.85	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.77 0.35	(loc) 17-18 17-18 12 12 17-18	l/defl >999 >649 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18AHS MT18HS Weight: 165 lb	GRIP 197/144 142/136 197/144 FT = 10%
LUMBER TOP CHORD 2x4 SPF 2100F 1. No.2 BOT CHORD 2x4 SPF No.2 *Ex 2100F 1.8E, 17-15 WEBS 2x3 SPF No.2 *Ex No.2, 22-2:2x4 SP SPF No.2 BRACING TOP CHORD Structural wood sf 2-7-2 oc purlins, (2 BOT CHORD Structural wood sf 2-7-2 oc purlins, (2 BOT CHORD Rigid ceiling direc bracing, Except: 6-0-0 oc bracing: WEBS 1 Row at midpt REACTIONS (size) 12=0-3 Max Horiz 23=-79 Max Uplift 12=-23 Max Grav 12=194 FORCES (lb) - Maximum Co TOP CHORD 1-2=0/30, 2-3=-60 4-5=-3794/505, 5- 6-7=-4020/580, 7- 8-9=-3761/502, 9- 2-23=-2023/259, 1 BOT CHORD 22-23=-150/555, 2 20-21=-457/4517, 17-18=-448/3971,	BE *Except* 5-8:2x4 SPF cept* 22-19,19-16:2x4 SPF :2x3 SPF No.2 sept* 23-2,12-10:2x6 SPF F 2100F 1.8E, 16-13:2x4 eeathing directly applied or ixcept end verticals, and -6-11 max.): 5-8. ly applied or 10-0-0 oc 4-15. 4-20, 6-20, 7-16 8, 23=0-3-8 (LC 13) C(LC 5), 23=-232 (LC 4) 7 (LC 1), 23=1947 (LC 1) mpression/Maximum 14/628, 3-4=-4880/566, 5=-3410/489, 3=-3410/488, 10=-3482/408, 10-11=0/30, 0-12=-1868/264 1-22=-536/5372, 18-20=-447/3974,	WEBS NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=91mpl II; Exp C; En cantilever lef right expose 3) Provide aded 4) All plates are 5) This truss ha chord live loc 6) * This truss ha chord live loc 6) * This truss fa on the bottor 3-06-00 tall the chord and ar 7) All bearings 8) Bearing at jo using ANSI/ designer sho 9) Provide mec bearing plate 23 and 232 I 10) This truss is International R802.10.2 a 11) Graphical pu	3-22=-58/740, 4-20 3-22=-58/740, 4-20 3-22=-68/1046, 14 9-13=-614/152, 2-2 10-13=-242/2480, 3-21=-893/148, 6- 6-20=-913/181, 7- 9-16=-24/510, 13- roof live loads haw 7-16; Vult=115mp h; TCDL=6.0psf; B iclosed; MWFRS (ft and right exposed d; Lumber DOL=1 quate drainage to [a MT20 plates unle as been designed ft and nonconcurrent to a MT20 plates unle as been designed ad nonconcurrent to abe MT20 plates unle as been designed ad nonconcurrent to as been designed ad nonconcurrent to a MT20 plates unle as been designed ft and nonconcurrent to a m chord in all area by 2-00-00 wide winy to ther members. are assumed to be sint(s) 23 considers TP1 1 angle to grai b uplift at joint 12. designed in accorn Residential Code nd referenced star urlin representation ation of the purlin a d.	In the sections and a constraints of the sections and and and a constraints of the sections and and and a constraints of the sections and and an and and an and and an and and	288, 10, 8-16=-69, 4953, 390, 03, 7, 7-16=-905 3029 considered for ond gust) 0psf; h=25ft; e) exterior zo ertical left ar grip DOL=1. vater pondin. wise indicate e load of 20. a rectangle rectangle recen the bott 0, 2. to grain valu a. Building ng surface. ars) of truss i 32 lb uplift ar th the 2018 R502.11.1 a SI/TPI 1.	/1031, //183, or Cat. ne; nd .60 g. ads. Opsf om Je to t joint and	17-18	>999		JUAN C	MISSOUR NCIA BER 62101

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	A5	Нір	1	1	Job Reference (optional)	165139926


0-1-10

ę

7-1

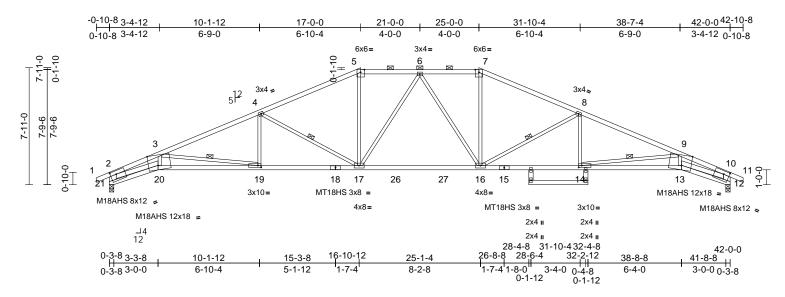
-0-10-8 3-4-12 0-10-8 3-4-12 Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:30 ID:q5HqtzhfPb1JIXYhfa?Y3kzNWbA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

42-0-042-10-8 8-11-7 15-0-0 21-0-0 27-0-0 33-0-9 38-7-4 5-6-11 6-0-9 6-0-0 6-0-0 6-0-9 5-6-11 3-4-12 0-10-8 2x4 II 6x6= 6x6= -10 5 7 6 3x4 👟 3x4 ₅12 4 8

Scale = 1	1:77.8
-----------	--------

Plate Offsets ((X, Y): [12:0-5-0,0-6-4], [13:0-8-0,0-3-7], [1	4:0-2-8,0	-1-8], [20:0-2-8	,0-1-8], [21:0-8-0),0-3-7], [2	2:0-5-0,0-6-4]					
.oading CLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.93	DEFL Vert(LL)	in -0.48	(loc) 17	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
CDL (1001)	10.0	Lumber DOL	1.15		BC	0.93	Vert(LL)	-0.46 -0.87	15-17	>999 >570	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	YES		WB	0.75	. ,	0.54	13-17	>370 n/a	n/a		142/150
BCDL	10.0	Code		18/TPI2014	Matrix-S	0.00	Wind(LL)	0.32	17	>999	240	Weight: 168 lb	FT = 10%
UMBER			1) Unbalanced	roof live loads h	ave been o	considered fo	or					
OP CHORD	2x4 SPF No.2			this design.									
OT CHORD	2x4 SPF No.2 *Exce	ept* 21-18,16-13:2x4	SPF 2		7-16; Vult=115r			• ·					
(550	2100F 1.8E	** ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~			n; TCDL=6.0psf; closed; MWFRS								
VEBS	2x3 SPF No.2 *Exce No.2, 21-2,13-10:2x4	ept* 22-2,12-10:2x6 S	PF		t and right expos								
	23-25,24-26:2x4 SP				d; Lumber DOL=								
RACING	20 20,2 1 20,241 01		3		quate drainage to								
OP CHORD	Structural wood she	athing directly applie	d 4) All plates are	MT20 plates ur	nless other	wise indicate	d.				, unit	1111
		, and 2-0-0 oc purling			is been designe							Nº OF	MISSI
	(2-2-0 max.): 5-7.	, I			ad nonconcurrer						1	NYE	0/1
OT CHORD		applied or 9-6-15 oc	6		nas been design			Upst			5	X	
	bracing.				n chord in all are by 2-00-00 wide			om				S: JUA	N .
/EBS	1 Row at midpt	3-20, 4-19, 8-15, 9-1	4		y other member		veen the bott	om			24	GAR	CIA 📜
	· · · · · · · · · · · · · · · · · · ·	22=0-3-8	7		are assumed to		o.2 .						
	Max Horiz 22=-94 (L		. 8		int(s) 22, 12 con							:	:~
	Max Uplift 12=-213 (Max Grav 12=1947				ANSI/TPI 1 angle			ding			= +	NUME	BER :
			,		ould verify capac						1	O: E-20001	62101 .4
ORCES	(lb) - Maximum Com Tension	pression/iviaximum	9		hanical connecti						1	A	
OP CHORD	1-2=0/30, 2-3=-6154	1/685 3-44412/463			e capable of with		13 lb uplift at	i joint				1. So	
or onone	4-5=-3482/436, 5-6=		,		b uplift at joint 12 designed in acc		ith the 2019					I, ONF	LEIN
	6-7=-3479/486, 2-22		1		Residential Coc			nd				1111	
	10-12=-1982/232, 7-				nd referenced st			and					
)=-6154/580, 10-11=	0/30 1		rlin representati			size				, un	
OT CHORD	21-22=-138/430, 20-			or the orient	ation of the purlir	n along the	top and/or					IN JUAN C	ARC
	19-20=-363/4040, 1			bottom chore	ł.							Nº SUITE	NO
	15-17=-238/3132, 14		L	OAD CASE(S)	Standard							ICE .	ED .
/EBS	13-14=-495/5526, 12	2-13=-37/430 =-1507/322, 4-20=0/4	31								-	THE LOCE	1 A A
ILD3	4-19=-1023/261, 5-1	,	51,								-	1	
	5-17=-105/670, 6-17										=	: 169	952 !
	7-17=-105/670, 7-15										-	D	A : C.
	8-15=-1023/246, 8-1										-	-P.	H
	9-14=-1507/259, 9-1											- ANA	SAS . A
	2-21=-560/5227, 10-	-13=-477/5227										1.500	GUN
IOTES												ON	ALEN
												1111	IIIII.

April 25,2024


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITeM® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

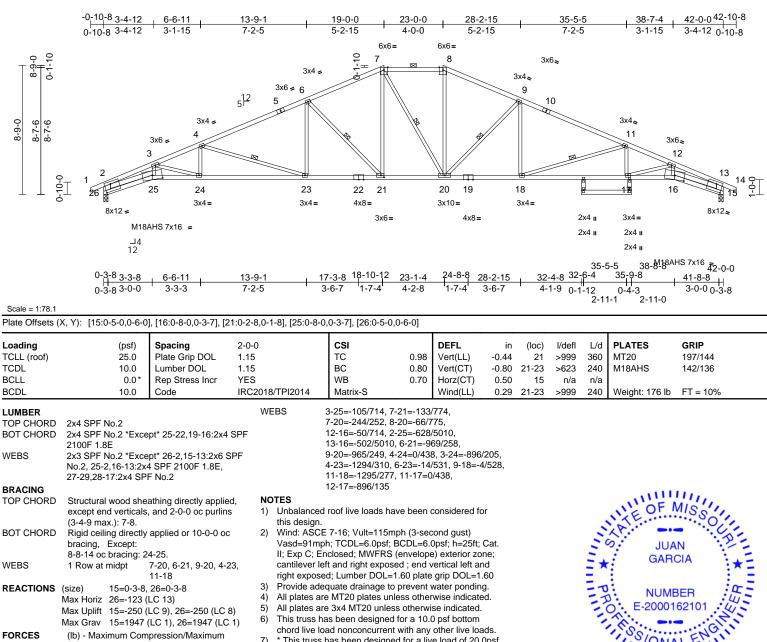
Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	A6	Нір	1	1	Job Reference (optional)	165139927

Run: 8,73 E Jan 4 2024 Print: 8,730 E Jan 4 2024 MiTek Industries, Inc. Thu Apr 25 14:31:08 ID:GNEEB7nAflqmZ7HxHPc7aDzNWYT-QDMUOhwSl4sJ6MO9Wc2GAWVSXrrOffRMoBIF1DzN8s1

Scale = 1:78

Plate Offsets ((X, Y): [12:0-4-12,0-2-	12], [13:0-7-12,Edge	e], [14:0-	2-8,0-1-8], [19:0	-2-8,0-1-8], [20:0	0-7-12,Edg	e], [21:0-4-12	2,0-2-12]				-	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.63	Vert(LL)	-0.54	16-17	>919	360	MT20	197/144
CDL	10.0	Lumber DOL	1.15		BC	0.83	Vert(CT)	-0.94	16-17	>531	240	MT18HS	197/144
CLL	0.0*	Rep Stress Incr	YES		WB	0.80	Horz(CT)	0.55	12	n/a	n/a	M18AHS	142/136
BCDL	10.0	Code	IRC20)18/TPI2014	Matrix-S		Wind(LL)	0.26		>999	240	Weight: 169 lb	FT = 10%
UMBER				WEBS	3-20=-53/902, 3	8-19=-1763/	/399, 4-19=0	/508,					
OP CHORD	2x4 SPF 2100F 1.8E	E *Except* 5-7:2x4 S	PF		4-17=-1139/298	8, 5-17=-31/	/1000,						
	No.2				7-16=-31/1000,	8-16=-113	9/283, 8-14=	0/508,					
OT CHORD	2x4 SPF No.2 *Exce	ept*			9-14=-1763/324	, 9-13=-5/9	02,						
	20-18,15-13,18-15:2	x4 SPF 2100F 1.8E			2-20=-660/5453	s, 10-13=-5	52/5453,						
VEBS	2x3 SPF No.2 *Exce	ept* 21-2,12-10:2x6 \$	SPF		6-17=-417/109,	6-16=-417/	/110						
	No.2, 20-2,13-10:2x4			NOTES									
	22-24,23-25:2x4 SP	F No.2		1) Unbalanced	l roof live loads h	nave been o	considered fo	or					
BRACING				this design.									1111
OP CHORD	Structural wood she	athing directly applie	ed or		E 7-16; Vult=115							NE OF	VISSI
	2-7-0 oc purlins, ex		nd		h; TCDL=6.0psf							Xr.	0,1
	2-0-0 oc purlins (3-2	2-11 max.): 5-7.			nclosed; MWFRS						-	X	-
OT CHORD	Rigid ceiling directly	applied or 10-0-0 or	;		ft and right expo							S: JUA	N :2-
	bracing, Except:				ed; Lumber DOL:						-	GAR	
	8-10-6 oc bracing: 1				quate drainage t						= *	. ann	*
/EBS	1 Row at midpt	3-19, 4-17, 8-16, 9-			e MT20 plates u			ed.			=	:	
EACTIONS	(lb/size) 12=1947/	0-3-8, 21=1947/0-3-	8		as been designe						- 7	NUM	
	Max Horiz 21=-109 ((LC 13)			ad nonconcurre						= 5	•	• 41.
	Max Uplift 12=-232 ((LC 9), 21=-232 (LC	8)		has been desigr			0psf			-	E-20001	62101
	Max Grav 12=2009	(LC 2), 21=2009 (LC	2)		m chord in all ar		0				1	A	
ORCES	(lb) - Maximum Com	pression/Maximum			by 2-00-00 wide							1.000	
	Tension				ny other membe			t.				, ONA	ALEIN
TOP CHORD	1-2=0/30, 2-3=-6449	9/785. 3-4=-4410/447	7.		are assumed to	be SPF No	5.2 crushing						un.
	4-5=-3373/357, 5-6=			capacity of			- 11 - 1 - 4						
	6-7=-3029/352, 2-21			, ,	pint(s) 21, 12 cor		0						IIIII.
	10-12=-2049/246, 7-	-8=-3373/357,			ANSI/TPI 1 angl			aing				IN AN C	GARC
	8-9=-4410/415, 9-10)=-6449/665, 10-11=	0/30		ould verify capac			4.0				N. 70	····· A
BOT CHORD	20-21=-148/535, 19-	-20=-790/5784,		-,	chanical connect e capable of with							CE	NSEN.
	18-19=-395/4038, 17	7-18=-395/4038,			lb uplift at joint 1		SZ ID UPIIIT A	i joint					
	17-26=-177/3124, 26	6-27=-177/3124,			designed in acc		ith the 2019					1.1	
	16-27=-177/3124, 15	5-16=-257/4038,			I Residential Co			and			-	160	952
	14-15=-257/4038, 13	3-14=-577/5784,			and referenced s			and			=	10:	952 : :
	12-13=-31/492				urlin representati			size			11111	P:	
					tation of the purli			0.20			-	-01	n : #:
				bottom cho		along the						- A AN	SAS SS
				LOAD CASE(S								1.506	GN
					Januaru							ON	ALEN
												1111	IIIII
													1 25,2024
												Арп	20,2027

besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

ION DEVELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI 01/31/2025 5:03:42

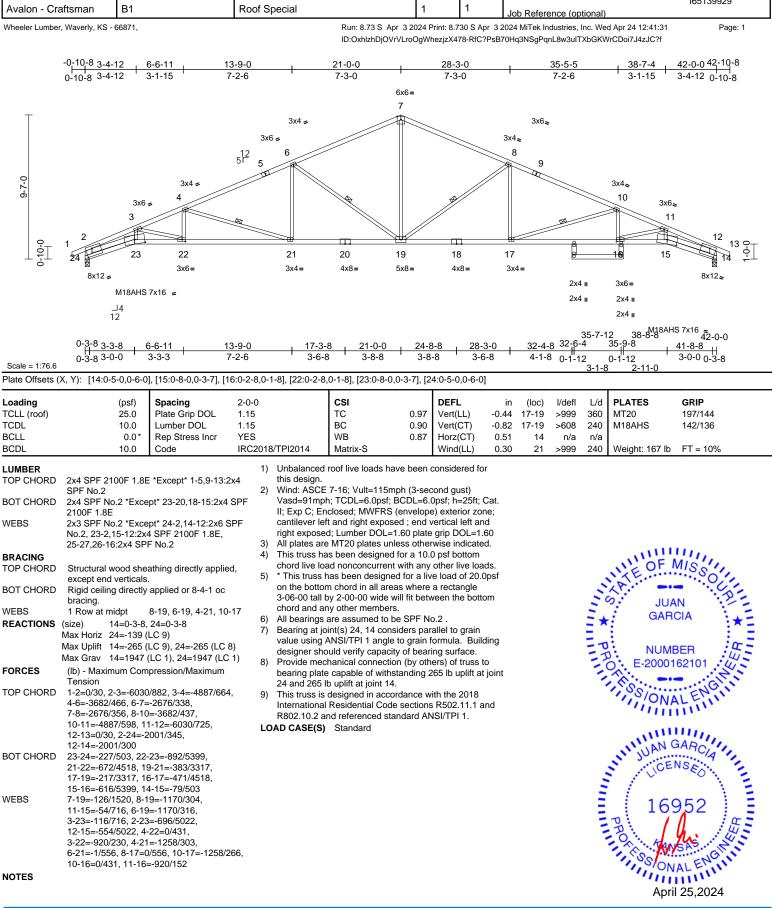
Page: 1

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	A7	Нір	1	1	Job Reference (optional)	165139928

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:31 ID:UqqDauCh0iUc?cPKMLBUYuzNWU2-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

- TOP CHORD
 1-2=0/30, 2-3=-6023/808, 3-4=-4898/615, 4-6=-3668/416, 6-7=-2911/338, 7-8=-2612/320, 8-9=-2913/319, 9-11=-3667/390, 11-12=-4899/556, 12-13=-6023/609, 13-14=0/30, 2-26=-2003/325, 13-15=-2003/285
 8)
 All b

 BOT CHORD
 25-26=-209/508, 24-25=-809/5391, 23-24=-612/4532, 21-23=-317/3298,
 10)
 Prov
- 20-21=-135/2609, 18-20=-170/3297, 17-18=-434/4532, 16-17=-564/5391, 15-16=-78/508
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 8) All bearings are assumed to be SPF No.2.
- Bearing at joint(s) 26, 15 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 250 lb uplift at joint 26 and 250 lb uplift at joint 15.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard



LEE'S'SUMWIT,SMISSOURI 01/31/2025 5:03:42

Page: 1

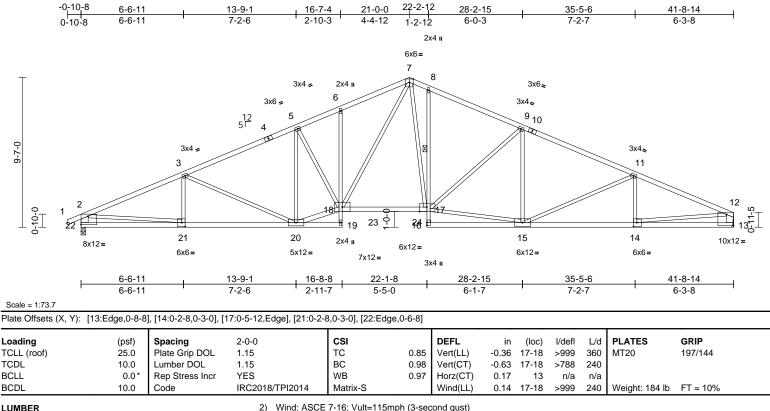
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPP1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	B1	Roof Special	1	1	Job Reference (optional)	165139929

NOTES

12-15=-554/5022, 4-22=0/431, 3-22=-920/230, 4-21=-1258/303, 6-21=-1/556, 8-17=0/556, 10-17=-1258/266,

10-16=0/431, 11-16=-920/152


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	B2	Roof Special	4	1	Job Reference (optional)	165139930

Run: 8,73 S Apr 3 2024 Print: 8,730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:31 ID:s8F8B0EM9ozMz?NbEECtVxzX477-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

LUMBER

LOWIDER	
TOP CHORD	2x4 SPF No.2
BOT CHORD	2x3 SPF No.2 *Except* 22-19:2x4 SPF
	2100F 1.8E, 18-17,16-13:2x4 SPF No.2
WEBS	2x3 SPF No.2 *Except* 22-2,13-12:2x6 SPF
11LD0	No.2, 18-20:2x4 SPF No.2
	10.2, 10-20.224 011 10.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied,
	except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing, Except:
	6-0-0 oc bracing: 19-20
	2-2-0 oc bracing: 14-15.
1 Row at midp	6
REACTIONS	(size) 13= Mechanical, 22=0-3-8
	Max Horiz 22=87 (LC 8)
	Max Uplift 13=-26 (LC 9), 22=-39 (LC 8)
	Max Grav 13=1929 (LC 2), 22=1995 (LC 2)
FORCES	
FORCES	Max Grav 13=1929 (LC 2), 22=1995 (LC 2) (lb) - Maximum Compression/Maximum Tension
	(lb) - Maximum Compression/Maximum Tension
FORCES	(lb) - Maximum Compression/Maximum Tension 1-2=0/30, 2-3=-3598/58, 3-5=-3189/65,
	(lb) - Maximum Compression/Maximum Tension 1-2=0/30, 2-3=-3598/58, 3-5=-3189/65, 5-6=-3289/82, 6-7=-3268/125, 7-8=-2807/96,
	(lb) - Maximum Compression/Maximum Tension 1-2=0/30, 2-3=-3598/58, 3-5=-3189/65, 5-6=-3289/82, 6-7=-3268/125, 7-8=-2807/96, 8-9=-2875/63, 9-11=-3162/63,
	(lb) - Maximum Compression/Maximum Tension 1-2=0/30, 2-3=-3598/58, 3-5=-3189/65, 5-6=-3289/82, 6-7=-3268/125, 7-8=-2807/96, 8-9=-2875/63, 9-11=-3162/63, 11-12=-3480/56, 2-22=-1874/71,
TOP CHORD	(lb) - Maximum Compression/Maximum Tension 1-2=0/30, 2-3=-3598/58, 3-5=-3189/65, 5-6=-3289/82, 6-7=-3268/125, 7-8=-2807/96, 8-9=-2875/63, 9-11=-3162/63, 11-12=-3480/56, 2-22=-1874/71, 12-13=-1818/56
	(lb) - Maximum Compression/Maximum Tension 1-2=0/30, 2-3=-3598/58, 3-5=-3189/65, 5-6=-3289/82, 6-7=-3268/125, 7-8=-2807/96, 8-9=-2875/63, 9-11=-3162/63, 11-12=-3480/56, 2-22=-1874/71, 12-13=-1818/56 21-22=-127/652, 20-21=-86/3251,
TOP CHORD	(lb) - Maximum Compression/Maximum Tension 1-2=0/30, 2-3=-3598/58, 3-5=-3189/65, 5-6=-3289/82, 6-7=-3268/125, 7-8=-2807/96, 8-9=-2875/63, 9-11=-3162/63, 11-12=-3480/56, 2-22=-1874/71, 12-13=-1818/56 21-22=-127/652, 20-21=-86/3251, 19-20=-42/31, 18-19=0/8, 6-18=-166/59,
TOP CHORD	(lb) - Maximum Compression/Maximum Tension 1-2=0/30, 2-3=-3598/58, 3-5=-3189/65, 5-6=-3289/82, 6-7=-3268/125, 7-8=-2807/96, 8-9=-2875/63, 9-11=-3162/63, 11-12=-3480/56, 2-22=-1874/71, 12-13=-1818/56 21-22=-127/652, 20-21=-86/3251, 19-20=-42/31, 18-19=0/8, 6-18=-166/59, 17-18=0/2427, 16-17=0/103, 8-17=-260/91,
TOP CHORD	(lb) - Maximum Compression/Maximum Tension 1-2=0/30, 2-3=-3598/58, 3-5=-3189/65, 5-6=-3289/82, 6-7=-3268/125, 7-8=-2807/96, 8-9=-2875/63, 9-11=-3162/63, 11-12=-3480/56, 2-22=-1874/71, 12-13=-1818/56 21-22=-127/652, 20-21=-86/3251, 19-20=-42/31, 18-19=0/8, 6-18=-166/59, 17-18=0/2427, 16-17=0/103, 8-17=-260/91, 15-16=-1/88, 14-15=-12/3153, 13-14=-19/367
TOP CHORD	(lb) - Maximum Compression/Maximum Tension 1-2=0/30, 2-3=-3598/58, 3-5=-3189/65, 5-6=-3289/82, 6-7=-3268/125, 7-8=-2807/96, 8-9=-2875/63, 9-11=-3162/63, 11-12=-3480/56, 2-22=-1874/71, 12-13=-1818/56 21-22=-127/652, 20-21=-86/3251, 19-20=-42/31, 18-19=0/8, 6-18=-166/59, 17-18=0/2427, 16-17=0/103, 8-17=-260/91, 15-16=-1/88, 14-15=-12/3153, 13-14=-19/367 5-18=0/294, 7-18=-103/1195, 7-17=-91/1106,
TOP CHORD	(lb) - Maximum Compression/Maximum Tension 1-2=0/30, 2-3=-3598/58, 3-5=-3189/65, 5-6=-3289/82, 6-7=-3268/125, 7-8=-2807/96, 8-9=-2875/63, 9-11=-3162/63, 11-12=-3480/56, 2-22=-1874/71, 12-13=-1818/56 21-22=-127/652, 20-21=-86/3251, 19-20=-42/31, 18-19=0/8, 6-18=-166/59, 17-18=0/2427, 16-17=0/103, 8-17=-260/91, 15-16=-1/88, 14-15=-12/3153, 13-14=-19/367
TOP CHORD	(lb) - Maximum Compression/Maximum Tension 1-2=0/30, 2-3=-3598/58, 3-5=-3189/65, 5-6=-3289/82, 6-7=-3268/125, 7-8=-2807/96, 8-9=-2875/63, 9-11=-3162/63, 11-12=-3480/56, 2-22=-1874/71, 12-13=-1818/56 21-22=-127/652, 20-21=-86/3251, 19-20=-42/31, 18-19=0/8, 6-18=-166/59, 17-18=0/2427, 16-17=0/103, 8-17=-260/91, 15-16=-1/88, 14-15=-12/3153, 13-14=-19/367 5-18=0/294, 7-18=-103/1195, 7-17=-91/1106,
TOP CHORD	(lb) - Maximum Compression/Maximum Tension 1-2=0/30, 2-3=-3598/58, 3-5=-3189/65, 5-6=-3289/82, 6-7=-3268/125, 7-8=-2807/96, 8-9=-2875/63, 9-11=-3162/63, 11-12=-3480/56, 2-22=-1874/71, 12-13=-1818/56 21-22=-127/652, 20-21=-86/3251, 19-20=-42/31, 18-19=0/8, 6-18=-166/59, 17-18=0/2427, 16-17=0/103, 8-17=-260/91, 15-16=-1/88, 14-15=-12/3153, 13-14=-19/367 5-18=0/294, 7-18=-103/1195, 7-17=-91/1106, 9-17=-475/112, 2-21=0/2618, 12-14=0/2806,
TOP CHORD	(lb) - Maximum Compression/Maximum Tension 1-2=0/30, 2-3=-3598/58, 3-5=-3189/65, 5-6=-3289/82, 6-7=-3268/125, 7-8=-2807/96, 8-9=-2875/63, 9-11=-3162/63, 11-12=-3480/56, 2-22=-1874/71, 12-13=-1818/56 21-22=-127/652, 20-21=-86/3251, 19-20=-42/31, 18-19=0/8, 6-18=-166/59, 17-18=0/2427, 16-17=0/103, 8-17=-260/91, 15-16=-1/88, 14-15=-12/3153, 13-14=-19/367 5-18=0/294, 7-18=-103/1195, 7-17=-91/1106, 9-17=-475/112, 2-21=0/2618, 12-14=0/2806, 3-21=-135/104, 3-20=-479/87, 5-20=-654/33,

NOTES

Unbalanced roof live loads have been considered for 1) this design.

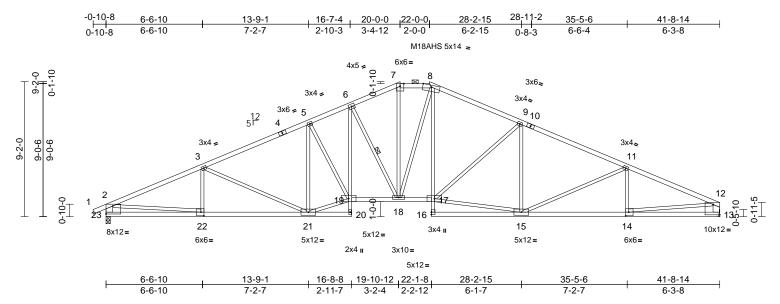
Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be SPF No.2 . 5)

- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 22 and 26 lb uplift at joint 13.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	В3	Нір	1	1	Job Reference (optional)	165139931

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:32 ID:1FPIUnMFZBMonijiN1vSSFzX46y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:78.4

Plate Offsets (X, Y): [13:Edge,0-8-8], [14:0-2-8,0-3-0], [22:0-2-8,0-3-0], [23:Edge,0-6-8]

Plate Olisets (.	A, T). [13.Euge,0-6-6		2.0-2-6,0-3-0j, [23.Euge	,0-0-0]								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.86 0.88 0.96	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.29 -0.52 0.18 0.14	(loc) 18-19 18-19 13 19	l/defl >999 >958 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18AHS Weight: 188 lb	GRIP 197/144 142/136 FT = 10%
	No.2 Structural wood she except end verticals (3-7-7 max.): 7-8. Rigid ceiling directly bracing. 1 Row at midpt	apt* 23-2,13-12:2x6 S athing directly applied , and 2-0-0 oc purlins applied or 10-0-0 oc 6-18 nanical, 23=0-3-8 C 8) C 9), 23=-34 (LC 8)	Vasd=91mp PF II; Exp C; Er and right ex Lumber DO 3) Provide ade 4) All plates ar d, 5) This truss h chord live lo 6) * This truss on the botto 3-06-00 tall chord and a 7) All bearings 8) Refer to girc 9) Provide mee bearing plat	F-16; Vult=115m h; TCDL=6.0psf; B closed; MWFRS posed; end vertic: =1.60 plate grip I quate drainage to e MT20 plates unl as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members are assumed to b ler(s) for truss to t chanical connectioe e capable of withs puplifit at joint 13.	BCDL=6.(enveloped al left and DOL=1.6(prevent v ess other for a 10.0 with any d for a liv as where vill fit betw 3. e e SPF No russ conn- on (by oth	Opsf; h=25ft; a); cantilever d right expose water ponding wise indicate D psf bottom other live load e load of 20.0 a rectangle ween the bott c.2. nections. ers) of truss f	left g. g. d. ds. Opsf om				JUA GAR	
FORCES	(lb) - Maximum Com Tension 1-2=0/30, 2-3=-3473 5-6=-3136/72, 6-7=- 8-9=-2745/49, 9-11= 11-12=-3359/46, 2-2 12-13=-1785/52	3/50, 3-5=-3070/55, 2696/59, 7-8=-2467/6 3051/53,	 This truss is Internationa R802.10.2 a Graphical pi or the orient bottom chor 	designed in account Residential Code and referenced state arlin representation ation of the purlin d.	e sections indard AN n does no	R502.11.1 a SI/TPI 1. ot depict the s				1111	E-20001	62101
BOT CHORD	22-23=-120/600, 21- 20-21=-8/110, 19-20 18-19=0/2831, 17-18	-22=-73/3123,)=0/14, 6-19=-53/770 8=0/2439, 16-17=0/10 }=0/179, 14-15=-3/30	04,	Standard							UCE	ARCIA
WEBS	5-19=-1/288, 9-17=- 12-14=0/2694, 6-18= 9-15=-135/106, 11-1 15-17=0/2583, 11-14	4=-208/83, =-477/88, 5-21=-629	/338,							THINK .	PHO 169	952 SAS
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for									SION	ALENGIII

April 25,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Page: 1

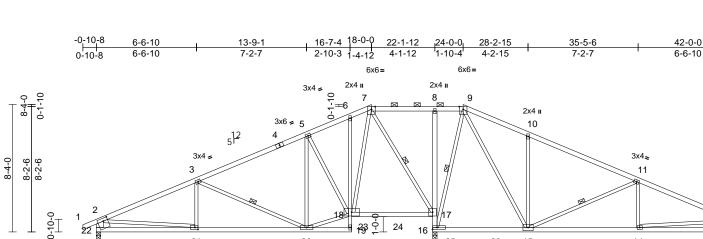
Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	B4	Нір	1	1	Job Reference (optional)	165139932

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:32 ID:dgk9slKNGG_DwE_7ivMlqdzX47?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

12

13


8x8 🕿

42-0-0

42-0-0

14

3x4=

2x4 II

6x12=

22-0-0

20

3x10=

16-8-8

21

3x6=

13-9-1

8x8 ≤

6-6-10

16 Ø

6x6=

25

3x10=

26

28-2-15

15

5x8=

35-5-6

	L 0-	-6-10	13-9	-1	16-8-8	22-0-0		8-2-15		35-5-6		42-0-0	
	6-	-6-10	7-2-	7	2-11-7	5-3-8	6	6-2-15		7-2-7	I	6-6-10	I
Scale = 1:75.4													
Plate Offsets ((X, Y): [13:0-3-8,0-2-4]], [21:0-2-8,0-1-8], [2	22:0-3-8,0	-2-4]									
		1			1								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in (loc		L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.54	Vert(LL)	-0.10 20-21		360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15		BC	0.57	Vert(CT)	-0.19 20-21		240	-		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.61	Horz(CT)	-0.04 16		n/a			
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S	5	Wind(LL)	0.04 20-21	>999	240	Weight: 186 lt	FT = 10%	
LUMBER			1	Unbalanced	roof live lo	oads have been	considered f	or					
TOP CHORD	2x4 SPF No.2			this design.									
BOT CHORD	2x4 SPF No.2 *Exce	ept* 19-6:2x3 SPF N	o.2 2)			t=115mph (3-sed							
WEBS	2x3 SPF No.2 *Exce	pt* 22-2,13-12:2x6	SPF			6.0psf; BCDL=6.							
	No.2					WFRS (envelope							
BRACING						d vertical left and		ied;					
TOP CHORD	Structural wood shea					te grip DOL=1.60 nage to prevent							
	4-4-5 oc purlins, exc		nd 3			esigned for a 10.						IIII.	
BOT CHORD	2-0-0 oc purlins (10- Rigid ceiling directly		- ,			current with any					N'OF	MIS	
BUICHURD	bracing, Except:	applied of 10-0-0 of	5			designed for a liv					NYE		
	6-0-0 oc bracing: 19-	-20.15-16.				all areas where				1	18	-	2
WEBS		9-16, 7-17, 11-15, 3	3-20) wide will fit betw				-	S:	AN .2	1
REACTIONS	(size) 13= Mech	anical, 16=0-3-8,				embers, with BC		sf.		-			-
	22=0-3-8	, ,				ned to be SPF N				= *		1014	* =
	Max Horiz 22=72 (LC	C 10)	7)			uss to truss conr		to		Ξ.	4		
	Max Uplift 13=-69 (Le		-,			of withstanding 6				=7	NUN	IBER :	r =
	Max Grav 13=827 (L		C 2),	22 and 69 lt			or no apine at	Jourie			E-2000	• 4	1-
	22=1004 (9)	This truss is	designed	in accordance w	ith the 2018			-	A		5
FORCES	(Ib) - Maximum Com	pression/Maximum				al Code sections		and		1	1.000	G.	
TOP CHORD	Tension 1-2=0/30, 2-3=-1535	5/10/ 2 5- 969/117				iced standard AN					IN ON	ALENI	
TOF CHORD	5-6=-561/140, 6-7=-4					sentation does no		size			- 111	iiiiii ii	
	8-9=0/298, 2-22=-93	,	,	bottom chor		e purlin along the	e top and/or						
	9-10=-595/231, 10-1			DAD CASE(S)		d						unn.	
	11-12=-1306/148		-	OAD CASE(S)	Stanual	u					1 JAN	GARC	
BOT CHORD	21-22=-118/412, 20-	,									1 20	A	-
	19-20=-55/4, 18-19=		7/00								CI CI	INSED.	1
	17-18=0/296, 16-17= 15-16=-96/32, 14-15		97/66,							-		1 N	-
	13-14=-29/304									-	1		=
WEBS	5-18=-585/80, 9-16=	-858/16. 2-21=0/96	1.								LICE THE LOCE	952	=
	12-14=-64/848, 7-18	,	.,							-	D:	1 :0	r =
	7-17=-1015/28, 10-1	5=-440/131,									B	4. 14	15
	11-15=-723/80, 11-1		1073,								- A HA	NGASL AND	5
	3-21=0/228, 3-20=-6	690/80, 5-20=0/266,									1.500.00	GU	21
	18-20=-20/805										0/0	VALE	
NOTES											111	unu.	
											qA	ril 25,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	B5	Hip	1	1	Job Reference (optional)	165139933

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:32 ID:9UAnfQJIVysMI4Px8CqWIPzX470-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

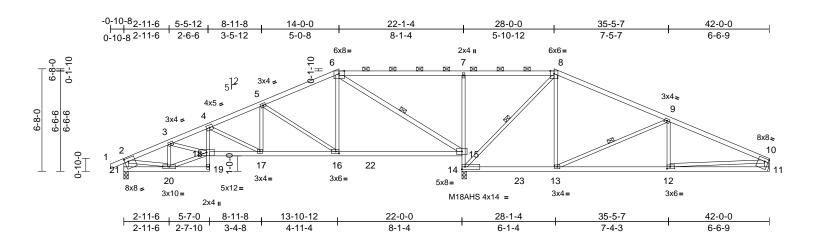
16-0-0 26-0-0 33-10-12 42-0-0 8-1-4 22-1-4 7-10-12 7-10-12 8-1-4 6-1-4 3-10-12 8-1-4 6x8= 2x4 II 6x6= 0-1-10 -10 10 4 5 6 7-6-0 \boxtimes ₅12 3x4 🚽 3x4**≈** 3 6-4-6 7-4-6 7 7-6-0 8x8= 8 16²⁰ 栫山 12 q ĕ 18 17 11 10 4x8= 8x8= 2x4 II 5x8= 4x8= 3x6= 3x4= M18AHS 5x14 = 3x6 II 2x4 **I** 16-8-8 16-0-0 0-1-4 15-10-12 22-0-0 26-1-4 33-10-12 42-0-0 8-1-4 8-1-4 7-9-8 5-3-8 4-1-4 7-9-8 8-1-4 0-8-8

Scale = 1:74.9

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.83	Vert(LL)	-0.10	18-19	>999	360	MT20	197/144
FCDL	10.0	Lumber DOL	1.15		BC	0.60	Vert(CT)	-0.21	18-19	>999	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	YES		WB	0.82	Horz(CT)	-0.03	12	n/a	n/a		112,100
BCDL	10.0	Code		8/TPI2014	Matrix-S		Wind(LL)		17-18	>999	240	Weight: 170 lb	FT = 10%
UMBER	2x4 SPF No.2		,	Vasd=91mpł	7-16; Vult=115n a; TCDL=6.0psf; closed; MWFRS	BCDL=6.	0psf; h=25ft; (
BOT CHORD	No.2	ept* 16-14,5-12:2x3 S	PF		osed ; end vertic								
WEBS		ept* 19-2:2x4 SPF 210 lo.2	00F 3)		=1.60 plate grip Juate drainage to			g.					
BRACING			4)		MT20 plates un			d.					
TOP CHORD		athing directly applied xcept end verticals, a .0-0 max): 4-6	nd	chord live loa	s been designed id nonconcurren as been designe	t with any	other live loa					VU'OF A	MISSI
BOT CHORD		applied or 10-0-0 oc			n chord in all are			om				ATE	0/1
WEBS	0	4-13, 6-12, 7-11, 3-1	5		y other member						-	JUA	N
		anical, 12=0-3-8, 19=0	7)	All bearings a	are assumed to I	be SPF N	o.2 .				-		
	Max Horiz 19=65 (L0		(8)	Refer to gird	er(s) for truss to	truss coni	nections.				= *	GAR	
	Max Uplift 9=-66 (LC		9)		nanical connecti								
	Max Grav 9=842 (L0 19=1021	C 22), 12=2128 (LC 2)		19 and 66 lb	capable of with uplift at joint 9.			oint			EP	NUME	• [] []
FORCES	(lb) - Maximum Corr Tension	· /	10	International	designed in acco Residential Cod nd referenced sta	le sections	s R502.11.1 a	nd				E-20001	62101
TOP CHORD	4-5=0/276, 5-6=0/27 7-8=-1290/147, 2-19 8-9=-754/108, 1-2=0 3-4=-769/107	9=-927/101,) Graphical pu or the orienta bottom chore	rlin representation tion of the purlin	on does n	ot depict the s	size				SS/ONA	LENGIN
BOT CHORD	18-19=-142/621, 17- 16-17=-20/81, 14-16 13-14=0/626, 12-13-	-18=-7/113,)=-249/0, 14-15=0/58(=-1265/30, 5-13=-395 =-80/1112, 9-10=-41/4), /92,	DAD CASE(S)	Standard							JUAN C	ARCIA
WEBS	4-13=-1176/0, 6-12= 7-11=-928/103, 7-10 8-10=-39/676, 3-18=		04,									169	952
NOTES											-	PA	Λ : Ξ

1) Unbalanced roof live loads have been considered for this design.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



April 25 ONALENG

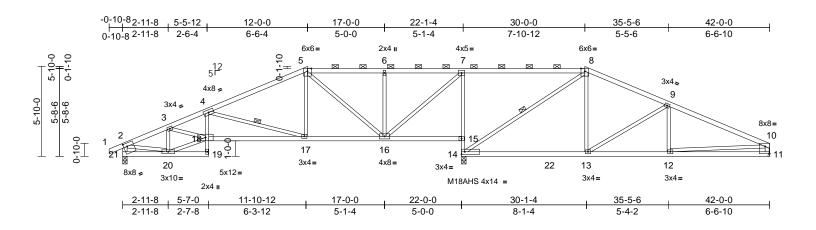
April 25,2024

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	B6	Нір	1	1	Job Reference (optional)	165139934

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:32 ID:hHcPR4I6kekWhwrkaUJHICzX471-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:75

						-						_	
_oading	(psf)	Spacing	2-0-0		CSI TC	0.05	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
FCLL (roof) FCDL	25.0	Plate Grip DOL Lumber DOL	1.15 1.15		BC	0.85 0.73	Vert(LL) Vert(CT)		15-16 15-16	>999 >995	360 240	MT20 M18AHS	197/144
BCLL	10.0 0.0*	Rep Stress Incr	YES		WB	0.73	Horz(CT)	-0.26	15-16	>995 n/a	240 n/a	WITBARS	142/136
BCLL BCDL	10.0	Code		8/TPI2014	Matrix-S	0.70	Wind(LL)		17-18	>999	240	Weight: 165 lb	FT = 10%
UMBER OP CHORD OT CHORD VEBS RACING OP CHORD OT CHORD VEBS REACTIONS	2x4 SPF No.2 *Exce No.2 2x3 SPF No.2 *Exce SPF No.2 Structural wood she 3-9-15 oc purlins, e 2-0-0 oc purlins (9-1 Rigid ceiling directly bracing. 1 Row at midpt	pt* 15-6,21-2,11-10:2 athing directly applied ccept end verticals, a 0-3 max.): 6-8.	F 2) 2x4	this design. Wind: ASCE Vasd=91mp II; Exp C; Er and right exp Lumber DOI Provide ade All plates ard This truss ha chord live Io * This truss on the botto 3-06-00 tall	roof live loads h 7-16; Vult=115r h; TCDL=6.0psf; closed; MWFRS boosed; end verti action of the set of the set object of the set of the set action of the set of the set action of the set of the set the set of the set of the set of the set the set of the set of the set of the set of the set the set of the	nph (3-sec BCDL=6. 6 (envelope cal left and DOL=1.60 o prevent v hless other d for a 10.0 d for a 10.0 d twith any ed for a liv eas where will fit betw	cond gust) Dpsf; h=25ft; cantilever d right exposed water pondin wise indicate) psf bottom other live loa e load of 20. a rectangle veen the bott	Cat. left ed; g. ed. ads. 0psf			un.	S JUA	
DRCES	21=0-3-8 Max Horiz 21=56 (LC Max Uplift 11=-58 (L Max Grav 11=849 (L 21=1015 (lb) - Maximum Com Tension 1-2=0/27, 2-3=-1444 4-5=-1654/118, 5-6=	2 8) C 9), 21=-50 (LC 8) C 22), 14=2138 (LC LC 21) pression/Maximum	10	All bearings Refer to gird Provide med bearing plate 21 and 58 lb) This truss is International R802.10.2 a) Graphical pu	ny other member are assumed to ler(s) for truss to shanical connection e capable of with uplift at joint 11. designed in acc Residential Coc nd referenced st urlin representati ation of the purli	be SPF No truss conr on (by oth standing 5 ordance w le sections andard AN on does no	b.2. dections. ers) of truss 0 lb uplift at th the 2018 R502.11.1 a ISI/TPI 1. ot depict the	to joint and			* 80.00	NUME E-20001	BER U
BOT CHORD	4-18=0/364, 17-18=- 16-17=-72/1507, 15- 14-15=-1324/65, 7-1	0=-8/81, 18-19=0/61, 120/2066, 16=0/874,	LC	bottom chor DAD CASE(S)	d.							LICE	ARCIA NSEO
VEBS	8-14=-1018/0, 8-13= 9-12=0/235, 10-12=-	-676/79, 3-18=-31/78										PROCE	52 SR3
IOTES												Apri	AL ENTIT


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	B7	Нір	1	1	Job Reference (optional)	165139935

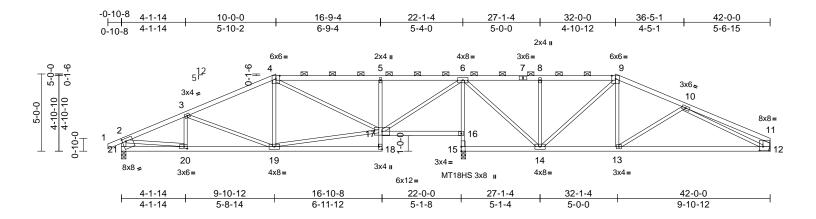
Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:32 ID:D520EkHUzLcf3mGY0no2C_zX472-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:74.8

Plate Offsets (X, Y): [10:Edge,0-5-11], [21:0-2-12,0-2-8]

·					-								
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.82	Vert(LL)	-0.15	13-14	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.83	Vert(CT)	-0.29	13-14	>804	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	YES		WB	0.92	Horz(CT)	0.03	11	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.05	17-18	>999	240	Weight: 160 lb	FT = 10%
BCDL LUMBER TOP CHORD BOT CHORD WEBS BOT CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x4 SPF No.2 *Exce No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 3-7-5 oc purlins, ex 2-0-0 oc purlins (5-1 Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 15 1 Row at midpt (size) 11= Mech 21=0-3-8 Max Horiz 21=47 (LC Max Uplift 11=-36 (L 21=-33 (L 21=-33 (L 21=-31) (L) Max Grav 11=882 (L 21=1031) (lb) - Maximum Com	2pt* 19-4,7-14:2x3 SF 2pt* 21-2,11-10:2x4 S 2pt* 21-2,11-10:2x4 S 2pt end verticals, ar 0-6 max.): 5-8. 2pplied or 10-0-0 oc -16. 4-17, 8-14 2plied or 10-0-0 oc -16. 4-17, 8-14 20, 14=0-3-8, C 8) C 9), 14=-43 (LC 5), C 8) C 22), 14=2053 (LC (LC 21)	1) SPF 2) SPF d or 3) hd 4) 5) (6) 7) 8) 9) 2)	Unbalanced this design. Wind: ASCE Vasd=91mpl II; Exp C; En and right exp Lumber DOL Provide aded All plates are This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall th chord and ar All bearings Refer to gird Provide mec bearing platt 21, 43 lb upl)) This truss is International	Matrix-S roof live loads ha 7-16; Vult=115m h; TCDL=6.0psf; (closed; MWFRS bosed; end vertic =1.60 plate grip l quate drainage to a MT20 plates uni as been designed ad nonconcurrent has been designed ad nonconcurrent has been designed at nonconcurrent hanical connectic e capable of withs ift at joint 14 and designed in acco Residential Code nd referenced sta	ph (3-sec BCDL=6. (envelope al left and DOL=1.60 prevent ' less other for a 10. t with any ed for a liv as where vill fit betts s, with BC es SPF N. truss conro on (by oth standing 3 36 lb upli ordance we e sections	considered for cond gust) Dpsf; h=25ft; a); cantilever d right expos water pondin wise indicate 0 psf bottom other live load of 20. a rectangle veen the bott DL = 10.0ps o.c. eections. ers) of truss 3 lb uplift at ft at joint 11. th the 2018 s R502.11.1 at	or Cat. left ed; g. ed. ads. Opsf om f. to	17-18	>999	240	UVeight: 160 lb	N CIA BER
TOP CHORD	,	759/73, 6-7=-757/71, 4/81, 9-10=-1395/81,	,					size				IN UAN C	ARCIA
BOT CHORD	20-21=-57/217, 19-2 4-18=0/387, 17-18=- 15-16=-178/34, 14-1 7-15=-1284/125, 13- 12-13=-30/1226, 11-	-85/2227, 16-17=0/11 5=-1349/98, -14=0/778,										UNN CLICE	952 E
WEBS	4-17=-1088/128, 5-1 7-16=-2/1182, 8-14= 9-13=-524/86, 9-12= 3-20=-672/48, 3-18=	7=0/529, 5-16=-556/ =-1076/0, 8-13=0/578 =0/164, 10-12=-6/858	s, s,								LUN-	AN	SAB NOTIN
NOTES												1111	inni,


April 25,2024

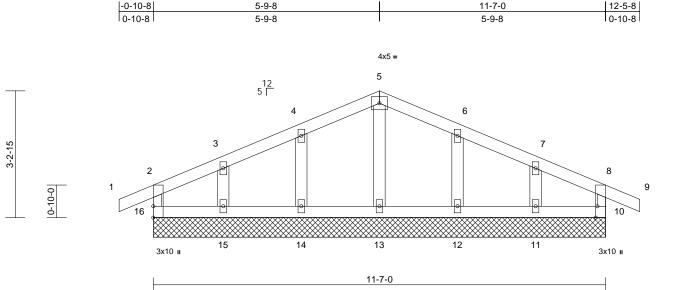
 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

TION IEW DEVELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI 01/31/2025 5:03:42

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	B8	Нір	1	1	Job Reference (optional)	165139936

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:33 ID:IvUe0OHsC1UoRdhMT3HpgnzX473-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:74.6


Plate Offsets (.	X, Y): [11:0-2-12,0-3-	0], [18:Edge,0-2-8], [2	20:0-2-8,0	0-1-8], [21:0-2-	12,0-2-4]								
oading CLL (roof) CDL CLL CDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.56 0.71 0.80	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.45 -0.01	(loc) 12-13 12-13 15 19-20	l/defl >999 >519 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT18HS Weight: 163 lb	GRIP 197/144 197/144 FT = 10%
	2.0E, 12-11:2x6 SPF Structural wood she 4-4-1 oc purlins, ex 2-0-0 oc purlins (4-9 Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 16 (size) 12= Mech 21=0-3-8 Max Horiz 21=39 (LC Max Uplift 12=-27 (L 21=-27 (L 21=-27 (L 21=-27 (2) (b) - Maximum Com Tension 1-2=0/27, 2-3=-1596 4-5=-1013/109, 5-6= 8-9=-638/93, 9-10= 2-21=-976/47, 11-12 20-21=-36/204, 19-2 17-18=0/123, 5-17= 15-16=-1911/81, 6-1 14-15=-148/12, 13-1 3-19=-320/85, 4-19= 4-17=-143/29, 6-17= 9-13=0/380, 2-20=-8	pt* 21-2:2x4 SPF 24(No.2 athing directly applied cept end verticals, an -10 max.): 4-9. applied or 10-0-0 oc -17,14-15. anical, 15=0-3-8, C 10) C 9), 15=-51 (LC 5), C 8) .C 20), 15=1952 (LC (LC 19) pression/Maximum /41, 3-4=-1298/59, -1007/104, 6-8=-636 1044/51, 10-11=-441 =-319/34 0=-44/1427, 18-19=0(472/110, 16-17=-161 6=-1836/112, 4=0/899, 12-13=-52/ :0/255, 17-19=0/1059 -39/1388, 9-14=-370 /1236, 10-12=-918/1	F 2) DOF 1 or 3) d 5) d 5) (0, 1), 10, 10, 11, 10, 1155 , 0, 01, 11, 12, 12, 12, 12, 12, 12, 1	 this design. Wind: ASCE Vasd=91mpl II; Exp C; En and right exp Lumber DOL Provide adee All plates are This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar All bearings Refer to gird Provide mec bearing plate 21, 51 lb upil This truss is International R802.10.2 are 		nph (3-see BCDL=6. (envelopt cal left and DOL=1.6(b prevent tiless other d for a 10. t with any ed for a live sas where will fit betw s. be SPF Ni truss conr on (by oth standing 2 27 lb upli ordance w e sections andard AN on does no	cond gust) Dpsf; h=25ft; s); cantilever d right expos water pondiri wise indicate D psf bottom other live los e load of 20. a rectangle veen the bot D.2. hections. ers) of truss 7 Ib uplift at it at joint 12. ith the 2018 it R502.11.1 b) JUTPI 1. b) depict the	Cat. left ed; g. ed. ads. 0psf tom to joint				JUA GARG NUME E-20001 JUAN C LICE 165	CIA BER 62101
NOTES	8-14=-369/87, 6-14= 10-13=-295/120	-16/1042, 3-20=-107	60,									SSION	AL ENGIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE OR CONTLANS REVIEW DEVELORMENT SERVICES LEETS SUMMIT'S MISSOURI 01/31/2025 5:03:43

	Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
	Avalon - Craftsman	C1	Common Supported Gable	1	1	Job Reference (optional)	l65139937
Wheeler Lumber, Waverly, KS - 66871,		66871,	Run: 8.73 S Apr 3 20	2024 MiTek Industries, Inc. Wed Apr 24 12:41:33	Page: 1		

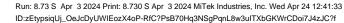
Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:33 ID:zEtypsiqUj_OeJcDyUWIEozX4oP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

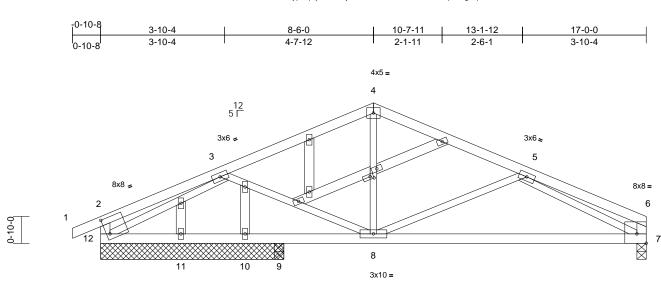
Scale = 1:29.5

Plate Offsets (X, Y): [10:0-3-8,Edge]

	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.02	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.02	Horz(CT)	0.00	10	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-R							Weight: 40 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig	 2x4 SPF No.2 2x3 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 cc purlins, ex Rigid ceiling directly bracing. (size) 10=11-7- 10=11-7- 13=11-7- 13=11-7- 16=11-7- Max Horiz 16=-30 (L Max Uplift 10=-43 (L 12=-51 (L Max Grav 10=149 (I 12=197 (I 14=197 (I 16=149 (I 16=149 (I (lb) - Maximum Con Tension 2-16=-134/53, 1-2=(3-4=-21/57, 7-8=-26 8-10=-134/52 15-16=-10/25, 14-1! 12-13=-10/25, 14-1! 12-13=-10/25, 14-1! 12-13=-10/25, 14-1! 2-13=-129/0, 4-14=- 6-12=-156/77, 7-11= 	Cept end verticals. / applied or 6-0-0 oc 0, 11=11-7-0, 12=11 0, 14=11-7-0, 15=11 0 C 9), 11=-51 (LC 9) C 9), 11=-51 (LC 9) C 9), 14=-51 (LC 8) C 9), 14=-51 (LC 8) C 9), 16=-43 (LC 4) LC 22), 13=169 (LC LC 22), 13=169 (LC LC 21), 15=156 (LC LC 21), 15=156 (LC LC 21) 1026, 2-3=-29/42, N78, 5-6=-28/74, N39, 8-9=0/26, 5=-10/25, 13-14=-10 2=-10/25, 10-11=-10 -156/76, 3-15=-117/5 =-117/69	3) ed or 4) -7-0, 5) -7-0, 6) 7, 9) 1), 7, 1), 10 1), 10 11 11 12 /25, 10 /25, 10	Vasd=91mpi II; Exp C; En cantilever led right expose Truss desig only. For stu see Standar or consult qu All plates are Gable requir Truss to be f braced agai Gable studs This truss ha chord live loo * This truss ha chord and ar 0) All bearings I) Provide mec bearing plate 16, 43 lb upl uplift at joint joint 11.	7-16; Vult=115n h; TCDL=6.0psf; iclosed; MWFRS ft and right expose d; Lumber DOL= ned for wind load dis exposed to w d Industry Gable alified building d e 2x4 MT20 unlei es continuous bo fully sheathed fro hist lateral moven spaced at 2-0-0 as been designed ad nonconcurren has been designed ad nonconcurren has been designed and nocnocurren has been designed and nochord in all are by 2-00-00 wide i hanical connecti e capable of with iff at joint 10, 51 15, 51 lb uplift ai designed in acco Residential Cod nd referenced st Standard	BCDL=6.6 (envelope sed; end v 1.60 plate ds in the p vind (norm End Deta lesigner as so otherwit ottom chor m one fac nent (i.e. d oc. d for a 10.0 tt with any ed for a liv as where will fit betv 's. be SPF Nd on (by oth standing 4 lb uplift at t joint 12 a ordance w le sections	Dpsf; h=25ft; a) exterior zo: ertical left ar grip DOL=1. ane of the tru- al to the face- ils as applica- s per ANSI/TI se indicated. d bearing. e or securely iagonal web) D psf bottom other live loa- e load of 20.1 a rectangle veen the botth b.2. ers) of truss t joint 14, 53 II nd 51 Ib uplif th the 2018 R502.11.1 a	ne; d 60 iss), ble, PI 1. ds. Opsf om ooint o t at				PROPERTY SION	BER

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)




April 25,2024

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	C2	Common Structural Gable	1	1	Job Reference (optional)	l65139938

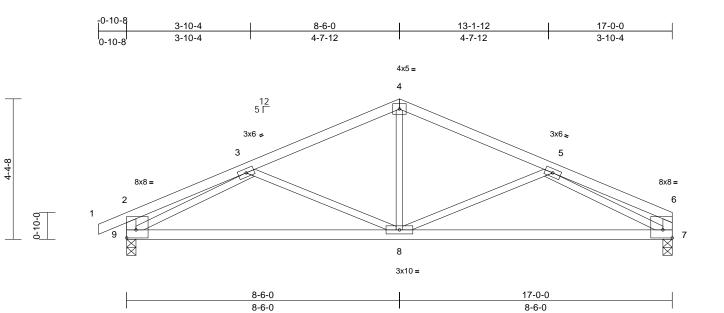
4-4-8

Scale = 1:35.9

5-6-12	8-6-0	17-0-0	1
5-6-12	2-11-4	8-6-0	1

Plate Offsets (X, Y): [2:0-1-4,0-6-0], [6:Edge,0-3-8], [14:0-1-4,0-1-0]

Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.29	DEFL Vert(LL)	in -0.13	(loc) 7-8	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.53	Vert(CT)	-0.26	7-8	>514	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.43	Horz(CT)	0.03	7	n/a	n/a		
BCDL	10.0	Code	IRC2	018/TPI2014	Matrix-S		Wind(LL)	0.03	7-8	>999	240	Weight: 71 lb	FT = 10%
12-2,7-6,1 2x4 SPF N BRACING TOP CHORD Structural 5-9-4 oc p BOT CHORD Rigid ceili bracing. REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Maxi Tension TOP CHORD 1-2=0/27, 4-5=-877/ 6-7=-200/ BOT CHORD 11-12=-20 9-10=-207 WEBS 4-8=0/326	No.2 No.2 *Exce 13-14,14-15 No.2 I wood shead ourlins, exc ing directly 7=0-3-8, 9 11=5-8, 12=56 (LC 7=-99 (LC (LC 1), 12 7=722 (LC (LC 3), 11 1) imum Com 2-3=-179/0 /122, 5-6=-: /35 07/936, 10- 7/936, 8-9= 6, 5-8=-292 4/154, 5-7= loads have It=115mph 66.0psf; BC MWFRS (ern t exposed	2:2x4 SPF No.2 athing directly applie cept end verticals. applied or 10-0-0 oc 3=0-3-8, 10=5-8-8, 12=5-8-8 5 (12) 9), 9=-44 (LC 8), 10 =-150 (LC 8) 1), 9=91 (LC 1), 10 =94 (LC 3), 12=745 pression/Maximum 52, 3-4=-876/124, 289/0, 2-12=-244/86 11=-207/936, 7-8=-161/ /181, 3-8=-257/188, -865/216 been considered for (3-second gust) DL=6.0psf; h=25ff; C velope) exterior zon ; end vertical left and	ed or D=-33 D=72 (LC \$, /971 r Cat. ne; d	 only. For stissee Standar or consult qu All plates are 5) Truss to be braced again 6) Gable studs 7) This truss ha chord live lo 8) * This truss lo on the botton 3-06-00 tall 10) Provide mechor and an 9) All bearings 10) Provide mechor and an uplift at joint 11) This truss is international 	designed in acco Residential Cod nd referenced sta	ind (norm End Deta esigner a ss otherwin m one fac nent (i.e. c oc. I for a 10. t with any d for a liv as where will fit betw s. oe SPF N. on (by oth standing 1 uplift a fi uplift a fi	al to the face ils as applica s per ANSI/T se indicated. e or securely liagonal web 0 psf bottom other live loa e load of 20. a rectangle veen the bott 0.2. ers) of truss 50 lb uplift a oint 10 and 4 ith the 2018 s R502.11.1 a	 able, PI 1. y ads. Opsf to to t joint 4 lb 				PAO	BER


Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclasse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Page: 1

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	C3	Common	4	1	Job Reference (optional)	l65139939

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:33 ID:w0foK9PmdPsEGJ1Tct_Oc5zX46u-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1	1:35.9
-----------	--------

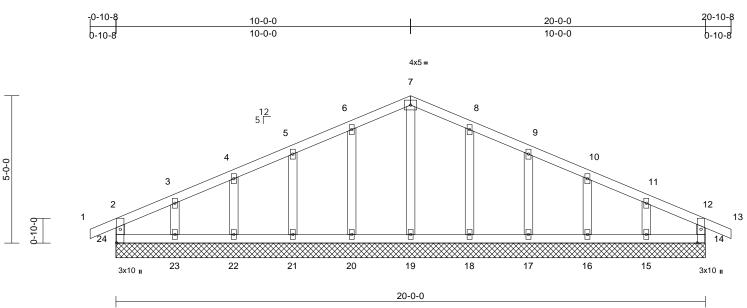
Plate Offsets (X, Y): [2:Edge,0-3-0], [6:Edge,0-3-0]

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.29	Vert(LL)	-0.10	8-9	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.61	Vert(CT)	-0.20	8-9	>978	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.44	Horz(CT)	0.03	7	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2	2014 Matrix-S		Wind(LL)	0.02	8	>999	240	Weight: 60 lb	FT = 10%
LUMBER			6) Pro	vide mechanical connection	on (by oth	ers) of truss t	to					
TOP CHORD	2x4 SPF No.2			ring plate capable of withs	standing 1	19 lb uplift at	t joint					
BOT CHORD				id 95 lb uplift at joint 7.								
WEBS	2x3 SPF No.2 *Exce	pt* 9-2,7-6:2x4 SPF	Inte	truss is designed in acco rnational Residential Code	e sections	R502.11.1 a	ind					
BRACING			R80	2.10.2 and referenced sta	andard AN	ISI/TPI 1.						
TOP CHORD	Structural wood she	athing directly applie	ed or LOAD C	ASE(S) Standard								
	5-6-4 oc purlins, ex											10.
BOT CHORD	0 0 ,	applied or 10-0-0 o	с								IN OF	MICH
	bracing.										NE	Sol
REACTIONS	· · · ·									- 5	18	
	Max Horiz 9=56 (LC Max Uplift 7=-95 (LC									-0	JU/	AN P
	Max Opilit 7=-95 (LC Max Grav 7=750 (LC									-	GAR	
FORCES	(lb) - Maximum Com									= *	GAR	i∪iA .★:
TOROLO	Tension	pression/maximum								Ξ.	:	· · · · · · · · · · · · · · · · · · ·
TOP CHORD		17, 3-4=-955/112,								= 7	NUM	BER :
	4-5=-955/112, 5-6=-	262/5, 2-9=-282/69,	,							-7	E-2000	• 41.
	6-7=-193/37									-	A	. 2.
BOT CHORD	,									1	1. Co.	GN
WEBS	4-8=0/393, 5-8=-276	,	,								I,SON	ALENN
	3-9=-928/185, 5-7=-	953/200									- 444	iiiii
NOTES	ad reaf live leads have	haan aanaidanad fa	-									• •
this design	ed roof live loads have	been considered to	or									IIIII.
	CE 7-16; Vult=115mph	(3-second qust)									11 UAN	GARC
	nph; TCDL=6.0psf; BC		Cat.								1 20	A 1
	Enclosed; MWFRS (er										CE	NSED
	left and right exposed									-		
	sed; Lumber DOL=1.6		60							=	1	
	has been designed for										UCE	952 : =
	load nonconcurrent wi									-	DI	1
4) * This trus	s has been designed f	or a rive load of 20.0	Jhai							-	1:	1 1 1 .

signed for a live load of 20. on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be SPF No.2 .

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


April 2 ONAL ENG

April 25,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	D1	Common Supported Gable	1	1	Job Reference (optional)	165139940

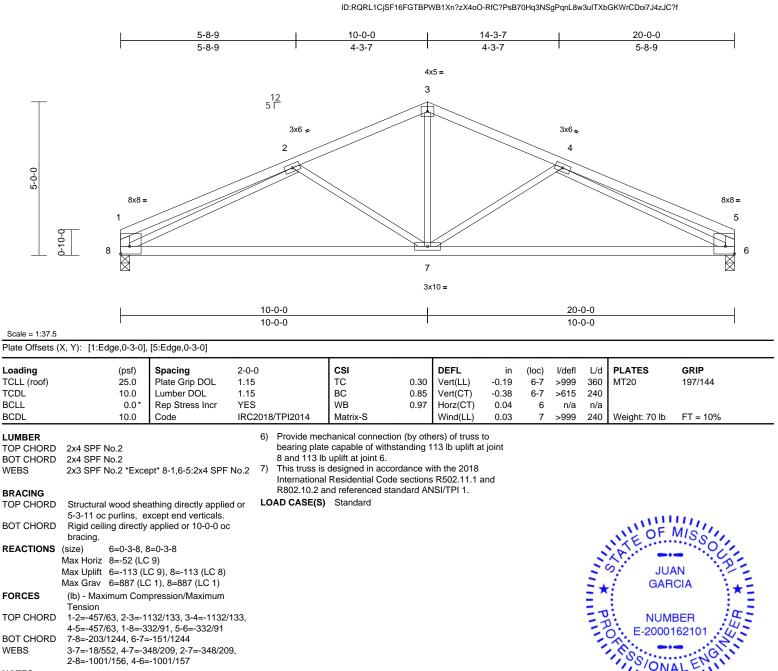
Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:33 ID:zEtypsiqUj_OeJcDyUWIEozX4oP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:39.1

Plate Offsets (X, Y): [14:0-5-8,0-1-8], [24:0-5-8,0-1-8]

		1										-	
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.07	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.02	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.05	Horz(CT)	0.00	14	n/a	n/a		
BCDL	10.0	Code	IRC20	018/TPI2014	Matrix-R							Weight: 77 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 14=20-0-1 17=20-0-1 20=20-0-1	Pathing directly applie cept end verticals. applied or 6-0-0 oc 0, 15=20-0-0, 16=20- 0, 18=20-0-0, 19=20- 0, 21=20-0-0, 22=20-	d or 0-0, 0-0,	WEBS 7 NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=91mpř II; Exp C; En cantilever lef right exposed 3) Truss design only. For stu	7-19=-129/0, 6-20= 4-22=-144/69, 3-23 3-17=-137/72, 10-1 roof live loads have 7-16; Vult=115mpl 1; TCDL=6.0psf; BC closed; MWFRS (et t and right exposed d; Lumber DOL=1. ned for wind loads tds exposed to winn	=-126/8 6=-144 e been h (3-sec CDL=6. nvelope d ; end v 60 plate in the p d (norm	4, 8-18=-151 70, 11-15=-1 considered fo cond gust) Dpsf; h=25ft; (a) exterior zor vertical left an grip DOL=1. lane of the tru al to the face	/74, 26/81 r Cat. ne; id 60 uss),			nn.	KRE OF JUA	MISSOUR
	23=20-0-1 Max Horiz 24=-60 (L Max Uplift 14=-33 (L 18=-50 (L 21=-49 (L 23=-72 (L Max Grav 14=160 (I 16=184 (I 18=191 (I 20=191 (I	0, 24=20-0-0 .C 9) .C 5), 15=-66 (LC 9), .C 9), 17=-49 (LC 9), .C 9), 20=-50 (LC 8), .C 8), 22=-42 (LC 8), .C 8), 24=-34 (LC 4) LC 22), 15=166 (LC 1 LC 21), 19=169 (LC 1 LC 21), 21=177 (LC 1 LC 21), 23=166 (LC 1)),),),	or consult qu All plates are Gable requir. Truss to be f braced again Gable studs This truss ha chord live loa on the bottor 3-06-00 tall b	d Industry Gable Er lailfied building des a 2x4 MT20 unless es continuous bott ully sheathed from ist lateral movemer spaced at 2-0-0 oc is been designed for ad nonconcurrent w has been designed n chord in all areas by 2-00-00 wide wil by other members.	igner as otherwi om chor one fac nt (i.e. c or a 10.0 vith any for a liv s where	s per ANSI/TF se indicated. d bearing. e or securely iagonal web) 0 psf bottom other live loa e load of 20.0 a rectangle	⊃I 1. ds. Dpsf			* 85.11	GAR NUMI E-20001	CIA *
FORCES	(lb) - Maximum Com	,			are assumed to be							IN JUAN	AACIA .
TOP CHORD	12-13=0/27, 12-14= 23-24=-12/50, 22-23 20-21=-12/50, 19-20	5/87, 5-6=-25/108, 29/122, 8-9=-25/95, =-24/53, 11-12=-46/4	1, 50, 50, 50,	bearing plate 24, 33 lb upli uplift at joint 23, 50 lb upli uplift at joint 12) This truss is International	hanical connection e capable of withsta fit at joint 14, 50 lb 21, 42 lb uplift at joint ft at joint 18, 49 lb 16 and 66 lb uplift designed in accord Residential Code s nd referenced stand Standard	anding 3 uplift at vint 22, uplift at at joint lance w sections	4 lb uplift at j joint 20, 49 lb 72 lb uplift at joint 17, 44 lb 15. ith the 2018 5 R502.11.1 a	oint o joint o			WITHIN	PROCESSION	952 ALENGIII

April 25,2024


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	D2	Common	5	1	Job Reference (optional)	l65139941

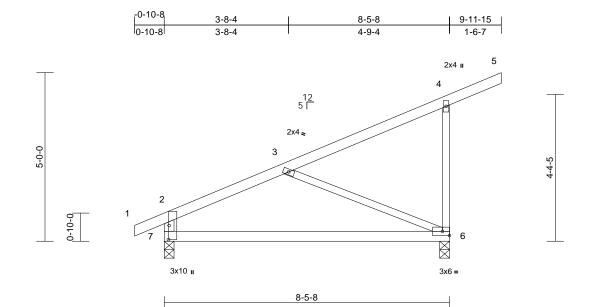
Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:33

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 . 5)

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



MILLIN N April 25,2024

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	E1	Monopitch	3	1	Job Reference (optional)	165139942

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:33 ID:KKpWOME_w65Da9ynnxk628zX476-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [7:0-5-0,0-0-4]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.32	Vert(LL)	-0.17	6-7	>569	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.56	Vert(CT)	-0.34	6-7	>291	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.23	Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	-0.01	6-7	>999	240	Weight: 31 lb	FT = 10%

LOAD CASE(S) Standard

or

LUMBER TOP CHORD BOT CHORD	
WEBS	2x3 SPF No.2 *Except* 7-2:2x4 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied
	6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 6=0-3-8, 7=0-3-8
	Max Horiz 7=209 (LC 5)
	Max Uplift 6=-142 (LC 8), 7=-57 (LC 8)
	Max Grav 6=491 (LC 1), 7=434 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=0/27, 2-3=-413/84, 3-4=-136/54,
	4-5=-44/0, 4-6=-287/123, 2-7=-343/107
BOT CHORD	6-7=-131/334
WEBS	3-6=-346/178

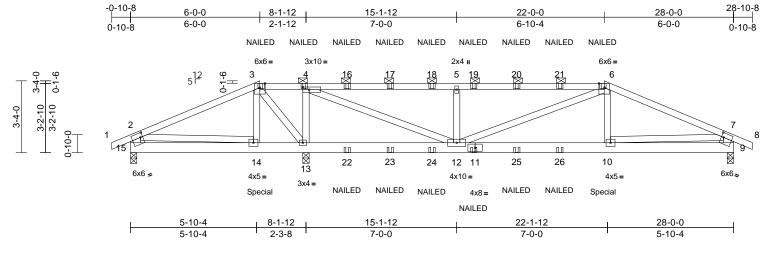
NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 This terms has been desired for a 40 or act house.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 .
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 142 lb uplift at joint 6 and 57 lb uplift at joint 7.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

JUAN GARCIA NUMBER E-2000162101 SS/ONALENCIUM JUAN GARCIA JOENSES 16952 BORNALENCIUM April 25,2024

MI

0


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

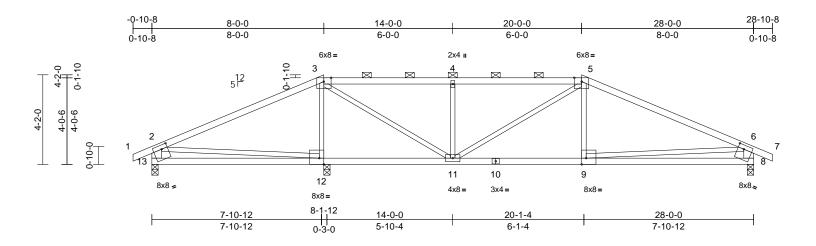
Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	G1	Hip Girder	1	2	Job Reference (optional)	165139943

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:34 ID:oouJAWSGgeNgkwKErj2KnxzX46q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:53.5

Plate Offsets (X, Y): [4:0-3-8,0-1-8], [9:0-1-4,0-2-8], [15:0-1-4,0-2-8]


	· · ·	,, [0.0 · · ·, 0 <u>_</u> 0], [.0.		-									
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.62	Vert(LL)		10-12		360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.33	Vert(CT)		10-12		240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.44	Horz(CT)	0.01	9	n/a	n/a		
BCDL	10.0	Code	IRC2018	8/TPI2014	Matrix-S		Wind(LL)	0.05	10-12	>999	240	Weight: 260 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SPF No.2 2x4 SPF No.2 *Ext No.2 Structural wood sh 6-0-0 oc purlins, e 2-0-0 oc purlins, e 2-0-0 oc purlins, e Rigid ceiling direct bracing. (size) 9=0-3-8 Max Horiz 15=31 (Max Uplift 9=-303 15=-225	ly applied or 6-0-0 oc . 13=0-3-8, 15=0-3-8 .C 8) (LC 9), 13=-659 (LC 4 (LC 27) (LC 1), 13=3211 (LC	F 3) ed or 4) nd 4) 5)), 6)	except if note CASE(S) see provided to c unless other Unbalanced this design. Wind: ASCE Vasd=91mpl II; Exp C; En cantilever lef right expose Provide aded This truss ha chord live loa * This truss h on the bottor	considered equa ed as front (F) or ction. Ply to ply co listribute only load wise indicated. roof live loads ha 7-16; Vult=115m r; TCDL=6.0psf; I closed; MWFRS t and right expose d; Lumber DOL=1 quate drainage to is been designed ad nonconcurrent nas been designe n chord in all area	back (B) i princection ds noted i ve been of ph (3-sec BCDL=6.0 (envelope ed; end v for a 10.0 with any d for a liv as where	face in the LC s have been as (F) or (B), considered fo cond gust) Dpsf; h=25ft; (e) exterior zor vertical left an grip DOL=1. water ponding D psf bottom other live loa e load of 20.0 a rectangle	r Cat. he; d 60 g. ds. Dpsf	, D	late Incre Iniform L Vert: 1- 9-15=-2 concentra Vert: 3= (B), 10= (B), 18=	ease=1 .oads (I .2=-70, 20 ated Lo =-112 (I =-419 (=-112 (I =-52 (B	.15 b/ft) 2-33-70, 3-6∓-7(B), 6=-112 (B), 1/, B), 4=-38 (B), 16 B), 19=-112 (B), 3, 19=-112 (B), 23=-52 (B), 24	We ¹ 752 (B), 14=2419 =112 (B), 17=-112 20=112 (B), 21± 112 =-52 (B), 25=-52 (B), BER
FORCES		mpression/Maximum			by 2-00-00 wide w by other members		veen the botto	om					
TOP CHORD	4-5=-2065/489, 5-0	5/715, 3-4=-232/1269, 6=-2069/491, 3=0/30, 2-15=-79/262,	3)	All bearings Provide mec bearing plate	are assumed to b hanical connection capable of withs olift at joint 9 and 0	e SPF No on (by oth tanding 2	ers) of truss t 25 lb uplift at	joint					
BOT CHORD			10	International	designed in acco Residential Code nd referenced sta	e sections	R502.11.1 a	nd				MINN (GARO
WEBS	3-14=-75/457, 6-10 7-10=-332/1760, 4 3-13=-1144/255, 6 5-12=-985/472, 4-	-12=-236/88,	, II) Graphical pu or the orienta bottom chore	rlin representatio ation of the purlin	n does no along the	ot depict the s top and/or	ize				UAN LOE	NSED
NOTES					") toe-nails per N							1.0	952
(0.131"x3 Top chord oc, 2x6 - 2 Bottom ch staggered	s to be connected tog ") nails as follows: Is connected as follow 2 rows staggered at C ords connected as fo I at 0-9-0 oc. nected as follows: 2x4	vs: 2x4 - 1 row at 0-9- -9-0 oc. Illows: 2x6 - 2 rows	0	Hanger(s) or provided suff Ib down and Ib up at 21-1	other connection ficient to support 91 lb up at 6-0-0 1-4 on bottom ch ection device(s) i	device(s concentra , and 419 ord. The) shall be ated load(s) 4) lb down and e design/selec	91			III.	OAKSE/ON	ISAS C

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE IOR ON TRUCTION AS NOTED ON TLANS REVIEW DEVELORMAN SERVICES LEE'S SUMMIT'S MISSOURI 01/31/2025 5:03:43

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	G2	Нір	1	1	Job Reference (optional)	165139944

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:34 ID:sPmZlqR0916yVdAsjl0siWzX46s-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:53.6

Plate Offsets (2	X, Y): [3:0-4-2,Edge],	[5:0-4-2,Edge], [8:0-	-3-4,0-2-4], [9:0-2-8,Edge	e], [12:0-2-8,Edg	e], [13:0-3	-4,0-2-4]						
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ²	8/TPI2014	CSI TC BC WB Matrix-S	0.80 0.47 0.98	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.09 -0.18 0.03 0.04	(loc) 8-9 8-9 8 9-11	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 101 lb	GRIP 197/144 FT = 10%
	2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood shei 3-7-0 oc purlins, exi 2-0-0 oc purlins (5-6 Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 11	athing directly applie cept end verticals, ar -1 max.): 3-5. applied or 10-0-0 oc -12. (2=0-3-8, 13=0-3-8 C 13) C 9), 12=-153 (LC 4) LC 8) C 1), 12=1339 (LC 1) .C 21) pression/Maximum 58, 3-4=-967/238, 1316/193, 6-7=0/30, -872/179	5 F nd or 6 nd 7 ; 8), 9	 chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate 13, 153 lb up This truss is International R802.10.2 ar Graphical put 		it with any ed for a liv eas where will fit betw rs. be SPF No on (by oth standing 1 id 134 lb u ordance wi le sections andard AN on does no	other live loz e load of 20. a rectangle veen the bott 0.2. ers) of truss i 34 lb uplift at plift at joint 8 rsto2.11.1 a R502.11.1 a sl/TPI 1.	Opsf om to t joint and				JUA GARI NUME SS/ONA	BER
this design 2) Wind: ASC Vasd=91m II; Exp C; E cantilever right expos	9-11=-105/1106, 8-9 3-12=-1118/229, 3-1 4-11=-481/194, 5-11 2-12=-677/219, 6-9= ed roof live loads have b. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.60 dequate drainage to pro-	1=-204/1279, =-199/38, 5-9=0/274 0/569 been considered for (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left anc 0 plate grip DOL=1.6	Cat. e; d								. THUNK	PROCESSION	ARCIA NSEO 52 HJ

April 25,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	G3	Hip Girder	1	2	Job Reference (optional)	165139945

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:34 ID:0hlod5rQsMHx345fsG3xMezNVpv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:41.7

Plate Offsets (X, Y): [1:Edge,0-5-8], [5:0-4-2,Edge], [8:0-2-0,0-4-4], [9:0-3-8,0-4-0]

		1											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.59	Vert(LL)	-0.12	9-10	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.44	· · ·	-0.21	9-10	>999	240	-	
BCLL	0.0*	Rep Stress Incr	NO		WB	0.67	Horz(CT)	0.03	7	n/a	n/a		
BCDL	10.0	Code		8/TPI2014	Matrix-S		Wind(LL)	0.08	9-10	>999	240	Weight: 231 lb	FT = 10%
	10.0	0000	11(0201	0/11/12/011	Matrix 0		Wind(EE)	0.00	0 10	2000	210	Wolght. 201 lb	11-10/0
LUMBER			2)	All loads are	considered equa	lly applie	d to all plies,		13) Har	nger(s) c	or othe	r connection devi	ce(s) shall be
TOP CHORD	2x4 SPF No.2				ed as front (F) or			DAD					entrated load(s) 867
BOT CHORD	2x6 SP 2400F 2.0E				ction. Ply to ply co				lb d	own and	125	lb up at 2-0-12, 8	67 lb down and 125
WEBS	2x4 SPF No.2 *Exc	ept* 11-1:2x6 SP 240	0F		listribute only load	ds noted	as (F) or (B),						25/10 up at 6-0-12,
	2.0E				vise indicated.								12, 828 lb down and
BRACING			3)		roof live loads ha	ve been	considered fo	or				12, 926 lb down a	
TOP CHORD	Structural wood she	eathing directly applie	d or	this design.					12-	0-12, 89	7 lb d	own and 70 lb µp	at 14-0-12, and 892
	4-1-1 oc purlins, ex	cept end verticals, ar	nd ⁴⁾		7-16; Vult=115m			. .					nd 876 lb down and
	2-0-0 oc purlins (5-	6-0 max.): 3-5.			n; TCDL=6.0psf; E							2 on bottom choi	
BOT CHORD	Rigid ceiling directly	/ applied or 10-0-0 oc			closed; MWFRS							connection device	e(s) is the
	bracing.				t and right expose d; Lumber DOL=1					onsibili			
REACTIONS	(size) 7=0-3-8,	(req. 0-3-9), 11=0-3-8	³ , 5)		uate drainage to				LOAD			i uuu	• 41.
	(req. 0-3-		5)		s been designed			y.					nberlindrease≠1.45,
	Max Horiz 11=163 (-,		ad nonconcurrent			de	PI	ate Incre niform Lo	ease=	1.15	
	Max Uplift 7=-489 (as been designe				U				EN CIN
	Max Grav 7=4580 (LC 1), 11=4704 (LC 1) ''		n chord in all area			0001	C/	ven: 1-	3=-70,	3-5 ≠ -70, 5 0 ∓-7 0 bads (lb)	12-10=-20
FORCES	(lb) - Maximum Cor	npression/Maximum			y 2-00-00 wide w			om		Vort 9		(ID)	13=-867 (B), 14=-867
	Tension				y other members								17=-820 (B), 18=-809
TOP CHORD	,	,	8)		Required bearing		oint(s) 11, 7			(B), 19=			17 = 020 (B), 10 = 000
		=-4889/555, 5-6=-144			input bearing size					(_),		(-)	
	1-11=-3936/493, 6-				are assumed to b								
BOTCHORD	10-11=-365/1999, 9 8-9=-653/5661, 7-8		10		hanical connectio								
WEBS	2-10=-162/1272, 2-				capable of withs	tanding 5	567 lb uplift at	t joint					
WEDO	3-9=-302/2871, 3-8				o uplift at joint 7.								IIII.
	4-8=-456/152, 5-7=		1		designed in acco Residential Code			nd				NN C	GARO
	1-10=-606/5434, 5-				nd referenced sta			inu				N JUM	
NOTES			1:		rlin representation			size				CE	NSE
	to be connected toge	ther with 10d			ation of the purlin			5120				PHO PHO	10 1 2
) nails as follows:			bottom chord							-	1.1	1 2
	s connected as follow	s: 2x4 - 1 row at 0-6-)									160	952
	2 rows staggered at 0-										-	10:	952
Bottom ch	ords connected as fol	lows: 2x6 - 2 rows										PI:	153
	at 0-9-0 oc.											PHO	14:45
Web conn	ected as follows: 2x4	- 1 row at 0-9-0 oc.										AN	ISAS. RAN
												1,981	ENGIN
												ON	ALEIN
													nne.
												Apri	l 25,2024
												-	

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Page: 1

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	G4	Monopitch Girder	1	2	Job Reference (optional)	165139946

4-1-12

4-1-12

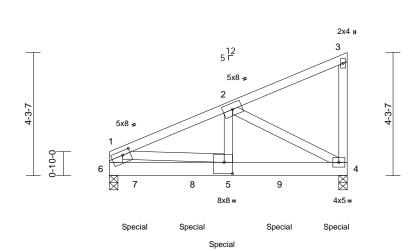
4-1-12

4-1-12

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:34 ID:BAIOWzILIPprf5eA1excASzNVrK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-3-8


4-1-12

8-3-8

4-1-12

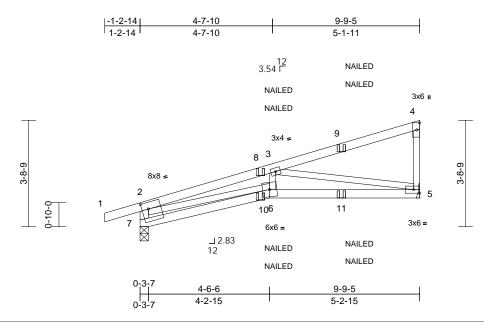
Page: 1

Pa

Scale = 1:40.2

Plate Offsets (X, Y): [1:0-3-4,0-1-12], [5:0-3-8,0-4-12]

		_], [0:0 0 0,0 :]											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.30	Vert(LL)	-0.05	5-6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.46	Vert(CT)	-0.08	5-6	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.62		0.01	4	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-P		Wind(LL)	0.02	5-6	>999	240	Weight: 90 lb	FT = 10%
 (0.131"x3 Top chorc oc, 2x6 - 2 Bottom ch staggerec Web conr 2) All loads a except if CASE(S) provided ti unless ott 3) Wind: AS Vasd=91r II; Exp C; cantilever 	 2x6 SP 2400F 2.00 2x4 SPF No.2 *Ex Structural wood sh 5-2-4 oc purlins, e Rigid ceiling direct bracing. (size) 4=0-3-8 0-4-0) Max Horiz 6=165 (Max Uplift 4=-175 Max Grav 4=5289 (lb) - Maximum Co Tension 1-2=-5770/158, 2-1 -1-6=-3035/115 5-6=-162/15, 4-5= 2-5=-41/4853, 2-4: s to be connected tog brods connected as follows: ds connected as follows: ds connected as follows: 2 rows staggered at (hords connected	cept* 6-1:2x6 SPF No. eathing directly applie except end verticals. ly applied or 10-0-0 oc , (req. 0-4-2), 6=0-3-8, LC 5) (LC 8), 6=-135 (LC 8) (LC 15), 6=5107 (LC 9) (LC 15), 6=5107 (LC 9)	5; 2 5; 6 or 6; c 7; 9, (req. 8; 9; 18) 11 3, 11 5353 L (5353 L) (5353 L) (5355 L) (chord live loa chord live loa this truss h on the bottor 3-06-00 tall t chord and ar WARNING: I than input be All bearings Provide mec bearing plate 4 and 135 lb This truss is International R802.10.2 a Hanger(s) or provided suf lb down and 203 lb down and 223 lb down and 223 lb down and 224 design/selec responsibility Dead + Roo Plate Increa: Uniform Lo Vert: 1-3 Concentrat 	are assumed to b chanical connection c capable of withs uplift at joint 6. designed in acco Residential Code nd referenced star other connection ficient to support 36 lb up at 0-10- 0-12, 2033 lb dow down and 38 lb u 8 lb up at 8-1-122 ction of such conn y of others. Standard of Live (balanced) ase=1.15 ads (lb/ft) =-70, 4-6=-20 ed Loads (lb) 1845 (F), 5=-1833	with any d for a liva as where vill fit betw. s. size at jc e SPF N- n (by oth tanding 1 rdance w e sections ndard AN e device(s concentra -12, 2033 p at 5-11 on botton ection de	other live load e load of 20. a rectangle veen the bott int(s) 4, 6 gru- o.2. ers) of truss 75 lb uplift a ith the 2018 s R502.11.1 a NSI/TPI 1. s) shall be ated load(s) 2 lb down and lb up at 3-1 I-4, and 1845 n chord. The vice(s) is the	ads. Opsf tom eater to t joint and 2037 1 38 1-4, 5 lb 2 2037				PROKE SO/ON	GARCIA NSEO 952


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE ICREDIATRUCTION AS NOTED ON PLANS REVIEW DEVELOPMENTS SERVICES LEE'S'SUMWIT'S MISSOURI 01/31/2025 5:03:43

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	J1	Diagonal Hip Girder	1	1	Job Reference (optional)	165139947

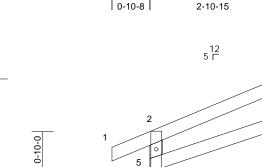
Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:35 ID:?ZIMXg1MuezcxqpwEfN9kHzNXbI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.3

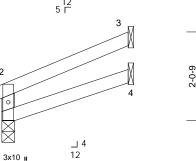
Plate Offsets (X, Y): [2:0-2-12,0-2-12]

	(X, T). [2.0-2-12,0-2-1	<u></u>			-									
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.62	Vert(LL)	-0.08	6	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15		BC	0.65	Vert(CT)	-0.15	5-6	>744	240			
BCLL	0.0*	Rep Stress Incr	NO		WB	0.92	Horz(CT)	0.05	5	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2	014	Matrix-S		Wind(LL)	0.07	6	>999	240	Weight: 35 lb	FT = 10%	
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=91m II; Exp C; 1 cantilever right expos 2) This truss chord live 3) * This truss on the bot 3-06-00 ta chord and 4) All bearing 5) Refer to gi 6) Bearing at using ANS	2x4 SPF No.2 2x3 SPF No.2 *Exce Structural wood she 4-6-3 oc purlins, exx Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 7=138 (LC Max Uplift 5=-130 (L Max Grav 5=535 (LC (lb) - Maximum Com Tension 2-7=-571/184, 1-2=C 3-4=-151/32, 4-5=-1	athing directly applie cept end verticals. applied or 8-11-7 oc anical, 7=0-3-7 C 5) C 8), 7=-147 (LC 4) C 1), 7=578 (LC 1) apression/Maximum 0/27, 2-3=-1565/360, 99/94 417/1425 =0/337, 3-5=-1395/40 (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto SPF No.2 . ss connections. arallel to grain value formula. Building	bea 5 ar 2 8) This Inte R80 9) "NA (0.1 10) In th 01 1 10 In th Of th LOAD C 1) De Pla Un Co Co 04	ring plate d 147 lb truss is mational 2.10.2 ar ILED" inn 48"x3.25 e LOAD e truss a ASE(S) ad + Roo tte Increa form Loa Vert: 1-2 ncentrato	hanical connection e capable of withs uplift at joint 7. designed in acco Residential Cod nd referenced sta dicates 3-10d (0. ") toe-nails per N CASE(S) section re noted as front Standard of Live (balanced ase=1.15 ads (lb/ft) =-70, 2-4=-70, 6- ed Loads (lb) 97 (F=-48, B=-48 F=-28, B=-28)	standing 1 prdance w e sections andard AN 148"x3") c IDS guidli n, loads aj t (F) or ba I): Lumber	30 lb uplift a ith the 2018 i R502.11.1 a ISI/TPI 1. or 2-12d nes. opplied to the ck (B). Increase=1. δ=-20	t joint and face				PROPERTY OF	BER 162101	


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE OR CONTRUCTION AS NOTED ON PLANS REVIEW DEVELORMENT SERVICES LEETS SUMMIT'S MISSOURI 01/31/2025 5:03:43

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	J2	Jack-Open	2	1	Job Reference (optional)	165139948


Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:35 ID:hskaECvfZNNgvinFrLja0tzNXck-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-0-9

-0-10-8

2-10-15

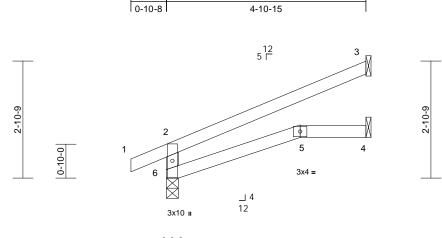
Scale = 1:26.6

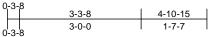
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.09	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	-0.01	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 9 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 2-10-15 oc purlins, Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-8 Max Horiz 5=53 (LC Max Uplift 3=-45 (LC Max Grav 3=80 (LC	athing directly applie except end verticals applied or 6-0-0 oc nical, 4= Mechanica 5) : 8), 5=-29 (LC 8)	8) This truss is Internationa R802.10.2 a LOAD CASE(S)	designed in acco Residential Cod and referenced sta	e sections	ith the 2018 R502.11.1 a				in.	XAE OF	MISSOL
FORCES	(LC 1) (Ib) - Maximum Com	propoion/Movimum								24	GAR	
FURGES	(ib) - Maximum Com Tension	pression/waximum								2.0	1	10 2
TOP CHORD	2-5=-181/56, 1-2=0/2	27. 2-3=-46/23								=	· · · · · · ·	in =
BOT CHORD	4-5=-18/12	,									NUM	• []].
NOTES										-	C: E-2000	162101
1) Wind: ASC Vasd=91mj II; Exp C; E cantilever le right expose	E 7-16; Vult=115mph ph; TCDL=6.0psf; BC inclosed; MWFRS (er eft and right exposed ed; Lumber DOL=1.6 nas been designed for	DL=6.0psf; h=25ft; (ivelope) exterior zor ; end vertical left and 0 plate grip DOL=1.6	le; d								NSS/ON	AL ENGLIST
	oad nonconcurrent wi		ds.								IL AN	GARO
 * This truss on the bott: 3-06-00 tall chord and a All bearings Refer to gir Bearing at jusing ANSI designer sh Provide me bearing pla 	has been designed f om chord in all areas l by 2-00-00 wide will any other members. s are assumed to be S der(s) for truss to tru- joint(s) 5 considers pa //TPI 1 angle to grain hould verify capacity of echanical connection (te capable of withstar uplift at joint 3.	or a live load of 20.0 where a rectangle fit between the botto SPF No.2 . ss connections. arallel to grain value formula. Building of bearing surface. by others) of truss to	psf m D							CHIIIN.	PROPERTY OF	952

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

April 25,2024

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	J3	Jack-Open	2	1	Job Reference (optional)	165139949


-0-10-8


Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:35 ID:6RQisEyXsImFm9VqWTHHdWzNXch-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

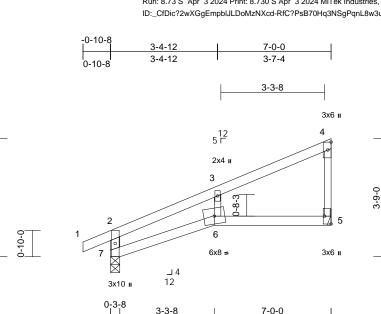
4-10-15

Scale = 1:28.4

Scale = 1.20.4												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.34	Vert(LL)	-0.02	5-6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.19	Vert(CT)	-0.05	5-6	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.03	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.03	5-6	>999	240	Weight: 14 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 4-10-15 oc purlins, Rigid ceiling directly bracing. (size) 3= Mecha 6=0-3-8 Max Horiz 6=86 (LC Max Uplift 3=-77 (LC Max Grav 3=147 (LC	athing directly applie except end verticals applied or 6-0-0 oc anical, 4= Mechanica 8) 2 8), 6=-37 (LC 8)	8) This truss Internation R802.10.2 LOAD CASE(ed or	is designed in accornal Residential Cod	le sections	ith the 2018 R502.11.1 a			2000	240	Vergine. 14 is	MISSOU
	(LC 1)									Ξ.	GAR	
FORCES	(lb) - Maximum Com	pression/Maximum								- *		×-
TOP CHORD	Tension 2-6=-253/82, 1-2=0/3	27 2 2 70/11								=	1	
BOT CHORD	5-6=-31/6, 4-5=0/0	27, 2-3=-70/44								=	NUMI	BER :
NOTES	5-0=-51/0, 4-5=0/0										C . E-20001	62101 :4
	CE 7-16; Vult=115mph	(2 second quist)								-1	A	
Vasd=91m II; Exp C; I cantilever	nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6	DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an	ne; d								SS/ON	
	has been designed for											IIIII.
 This trus on the bot 3-06-00 ta chord and All bearing Refer to gi Bearing at using ANS designer s Provide m 	load nonconcurrent wi is has been designed f tom chord in all areas il by 2-00-00 wide will any other members. gs are assumed to be s irder(s) for truss to tru t joint(s) 6 considers pa SI/TPI 1 angle to grain should verify capacity of echanical connection of	or a live load of 20.0 where a rectangle fit between the botto SPF No.2. ss connections. arallel to grain value formula. Building of bearing surface. (by others) of truss to)psf om o								I DE	952
	ate capable of withstar b uplift at joint 3.	nding 37 lb uplift at jo	oint									AL ENTIT

April 25,2024

DEVELORMENT: SERVICES LEE'S SUMMIT'S MISSOURI 01/31/2025 5:03:44


TION IEW

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	J4	Jack-Closed	11	1	Job Reference (optional)	165139950

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:35 ID:_CfDic?2wXGgEmpbIJLDoMzNXcd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:36.6

Plate Offsets (X, Y): [5:Edge,0-2-8]

3-9-0

- 1000 0 110010	(,,, :): [e:=dgete = e]											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.54	Vert(LL)	-0.15	6	>536	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.38	Vert(CT)	-0.27	6	>302	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.09	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.11	6	>737	240	Weight: 21 lb	FT = 10%
LUMBER			7) Provide me	echanical connecti	ion (by oth	ers) of truss	to					
TOP CHORD	2x4 SPF No.2		bearing pla	ate capable of with	nstanding 1	4 lb uplift at j	oint					
BOT CHORD	2x4 SPF No.2			o uplift at joint 5.								
WEBS	2x3 SPF No.2 *Exce	pt* 7-2:2x4 SPF No		s designed in acc								
BRACING				al Residential Coc			and					
TOP CHORD	Structural wood she	athing directly applie	ed of	and referenced st	tandard AN	ISI/TPI 1.						
	6-0-0 oc purlins, ex	cept end verticals.	LOAD CASE(S	 Standard 								
BOT CHORD	0 0 ,	applied or 10-0-0 o	С									111.
	bracing.										IN OF	MICH
REACTIONS	(nical, 7=0-3-8									NE	Solution
	Max Horiz 7=107 (LC	,									18	
	Max Uplift 5=-26 (LC										2 · · · ·	·
	Max Grav 5=298 (LC									-	o JU	
FORCES	(lb) - Maximum Com	pression/Maximum								= *	GAF	
	Tension										÷	
TOP CHORD	,	, ,								= 1		
BOT CHORD	3-4=-101/17, 4-5=-1										NUM	• 41.
WEBS	6-7=-27/82, 5-6=-24, 3-6=-31/83	187								- 1	C: E-2000	162101
	3-0=-31/03										A	
NOTES		(a									1, 50,	
	CE 7-16; Vult=115mph		Cat								ON N	ALEIN
	mph; TCDL=6.0psf; BC ; Enclosed; MWFRS (er											inne.
	exposed ; end vertical l											
	DOL=1.60 plate grip DO		,								, initi	
	s has been designed for										MAIN	GARC
	e load nonconcurrent wi		ds.								N 30	No
3) * This true	ss has been designed f	or a live load of 20.0	Opsf								, JOE	NOED
on the bo	ottom chord in all areas	where a rectangle										1 1 2
	all by 2-00-00 wide will	fit between the botto	om							-	1	I E
	d any other members.										LICE DE 16	952 : =
	igs are assumed to be S									=	П. Т	
5) Refer to c	airdar(e) for trues to true	e connections								-		

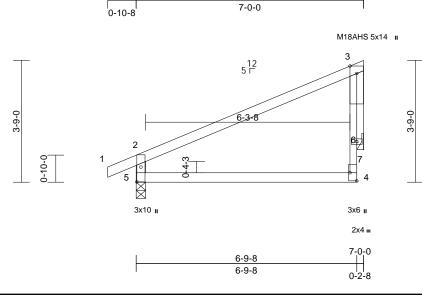
- 4 5) Refer to girder(s) for truss to truss connections.
- Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building 6) designer should verify capacity of bearing surface.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

April 2

April 25,2024

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	J5	Jack-Closed	1	1	Job Reference (optional)	165139951


7-0-0

-0-10-8

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:35 ID:6iy8Q29BsXvqImI50X4Gp5zNXcQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

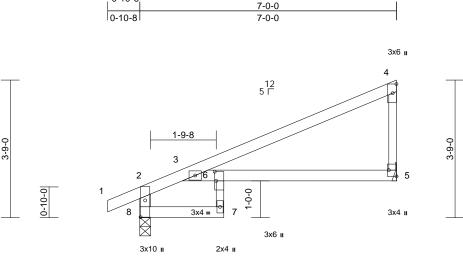
. ...

Scale = 1:35.5

Plate Offsets (X, Y): [4:Edge,0-2-8], [5:0-5-8,0-1-8]

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Page: 1


Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	J6	Jack-Closed	3	1	Job Reference (optional)	165139952

-0-10-8

Wheeler Lumber, Waverly, KS - 66871,

Run: 8,73 S Apr 3 2024 Print: 8,730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:35 ID:6iy8Q29BsXvqImI50X4Gp5zNXcQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

7-0-0 2-3-8 2-3-8 4-8-8

Scale = 1:31.4

Plate Offsets (X, Y): [5:Edge,0-2-8], [6:0-3-0,0-0-8], [8:0-5-8,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	l /d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.54	Vert(LL)	-0.10	5-6	>809		MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.55	Vert(CT)	-0.20	5-6	>399	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.09	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.07	5-6	>999	240	Weight: 22 lb	FT = 10%
	10.0	0000		s designed in ac	cordance w				2000	210	Wolght. 22 lb	11-10/0

LOWIDER		
TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2 *Except* 7-6:2x3 SPF No.2
WEBS	2x4 SPF I	No.2 *Except* 4-5:2x3 SPF No.2
BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	6-0-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 6-0-0 oc
	bracing.	
REACTIONS	(size)	5= Mechanical, 8=0-3-8
	Max Horiz	8=106 (LC 5)
	Max Uplift	5=-26 (LC 8), 8=-14 (LC 8)
	Max Grav	5=298 (LC 1), 8=381 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	2-8=-375/	/37, 1-2=0/27, 2-3=-233/11,
	3-4=-131/	(12, 4-5=-187/45
BOT CHORD	7-8=-45/1	29, 6-7=-5/48, 3-6=-64/50,
	5-6=-19/6	5

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 .
- Refer to girder(s) for truss to truss connections. 5)
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 14 lb uplift at joint 8 and 26 lb uplift at joint 5.

International Residential Code sections R502.11.1 and

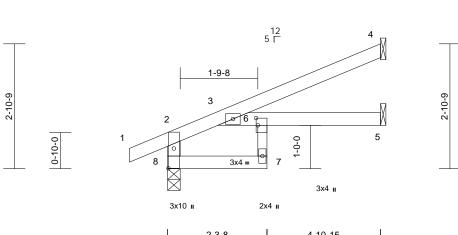
R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

April 25,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	J7	Jack-Open	2	1	Job Reference (optional)	165139953


-0-10-8

0-10-8

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:35 ID:?ZIMXg1MuezcxqpwEfN9kHzNXbI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-3-8	4-10-15
2-3-8	2-7-7

4-10-15

4-10-15

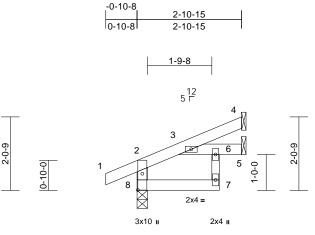
Scale = 1:26.6

Plate Offsets (X, Y): [6:0-2-0,0-0-8], [8:0-5-8,0-1-8]

	, , , , , , , , , , , , , , , , , , , ,											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.26	Vert(LL)	-0.03	5-6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.28	Vert(CT)	-0.06	5-6	>984	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.03	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.03	5-6	>999	240	Weight: 15 lb	FT = 10%
UMBER			7) This truss is	designed in acco	ordance wi	ith the 2018						
OP CHORD	2x4 SPF No.2		Ínternationa	I Residential Code	e sections	R502.11.1 a	and					
OT CHORD	2x4 SPF No.2 *Exce	ept* 7-6:2x3 SPF No	.2 R802.10.2 a	and referenced sta	andard AN	ISI/TPI 1.						
/EBS	2x4 SPF No.2		LOAD CASE(S	Standard								
RACING												
OP CHORD	Structural wood she	athing directly applie	ed or									
	4-10-15 oc purlins,	except end verticals	i.									
SOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc										111.
	bracing.										IN OF	MICH
REACTIONS		anical, 5= Mechanica	al,								NE	SS
	8=0-3-8										A	
	Max Horiz 8=87 (LC	,									~··	
	Max Uplift 4=-61 (LC									2	JUA	
	Max Grav 4=133 (L0	C 1), 5=97 (LC 3), 8=	=305							-+	GAR	CIA
	(LC 1)										:	: 2 =
ORCES	(lb) - Maximum Com Tension	pression/Maximum								= 1		
OP CHORD	2-8=-293/58, 1-2=0/2	27 2-3153/0								= 5	NUMI	• []].
or onone	3-4=-49/41	27, 2 0= 100/0,								- (C: E-20001	162101
OT CHORD	7-8=-46/76, 6-7=-4/4	46, 3-6=-76/46, 5-6=	:0/0							1	· · · · ·	
IOTES											1.5/00	ENIN
	CE 7-16; Vult=115mph	(3-second aust)									UN	ALLIN
	ph; TCDL=6.0psf; BC		Cat.									10.
II; Exp C; E	Enclosed; MWFRS (er	nvelope) exterior zor	ne;									
	left and right exposed										IN UAN	
right expos	sed; Lumber DOL=1.6	0 plate grip DOL=1.	60								NUAN	AAACI

- 2) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 . 4)
- Refer to girder(s) for truss to truss connections. 5)
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 30 lb uplift at joint 8 and 61 lb uplift at joint 4.

169: BORNOVAL ENGINAL April 25,20 VIIIIII I TION


> DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI 01/31/2025 5:03:44

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	J8	Jack-Open	2	1	Job Reference (optional)	165139954

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:35 ID:?ZIMXg1MuezcxqpwEfN9kHzNXbI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

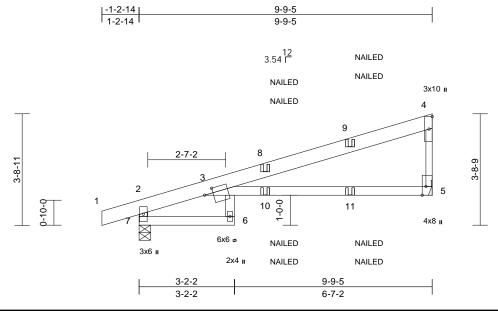
2x4 II

Scale = 1:32.1

Plate Offsets (X, Y): [8:0-5-8,0-1-8]

Loading		(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		25.0	Plate Grip DOL	1.15	тс	0.08	Vert(LL)	0.00	3	>999	360	MT20	197/144	
TCDL		10.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	0.00	3-6	>999	240			
BCLL		0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	5	n/a	n/a			
BCDL		10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	3	>999	240	Weight: 10 lb	FT = 10%	
				7) This trucs is	designed in second		ith the 2019							
	IBER 7) This truss is designed in accordance with the 2018 P CHORD 2x4 SPF No.2 International Residential Code sections R502.11.1 and													
BOT CHORE			ina											
WEBS	2x4 SPF No.2 *Except* 7-6:2x3 SPF No.2 R802.10.2 and referenced standard ANSI/TPI 1. 2x4 SPF No.2 LOAD CASE(S)													
BRACING														
TOP CHORE) Structura	Structural wood sheathing directly applied or												
	2-10-15 oc purlins, except end verticals.													
BOT CHORI													n	
	bracing.													
REACTIONS (size) 4= Mechanical, 5= Mechanical, 01 A Mechanical, 5=												ISS		
8=0-3-8												A		
Max Horiz 8=53 (LC 8)														
Max Uplift 4=-30 (LC 8), 5=-2 (LC 8), 8=-24														
(LC 8) Max Grav 4=66 (LC 1), 5=72 (LC 3), 8=216 GARCIA ★ GARCIA														
Max Grav 4=00 (LC 1), 5=72 (LC 3), 8=216 (LC 1)														
FORCES	(lb) - Max	kimum Corr	pression/Maximum								- 7		BEB : C -	
Transfer								E-20001	• [] []					
TOP CHORD 2-8=-196/45, 1-2=0/27, 2-3=-69/0, 3-4=-21/21														
BOT CHORI	D 7-8=-16/2	25, 6-7=0/4	2, 3-6=-25/16, 5-6=0/	/0								S	GN	
NOTES												1,S/ONI	EPIN	
			(3-second gust)									1111	i i i i i i i i i i i i i i i i i i i	
			DL=6.0psf; h=25ft; C											
			velope) exterior zon										1111.	
			; end vertical left and 0 plate grip DOL=1.6									NN C	GARO	
			r a 10.0 psf bottom	0								N. 70	····· A	
			th any other live load	s.								CE	NSE	
	on the bottom chord in all areas where a rectangle									11111	1			
3-06-00 tall by 2-00-00 wide will fit between the bottom												169	952	
chord and any other members.											1	11 17		
	 All bearings are assumed to be SPF No.2. Experimental products of the second seco										-	D.	h : i =	
 5) Refer to girder(s) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to 											14-1 St ?			
bearing plate capable of withstanding 24 lb uplift at joint												1 ColV	G	
8, 30 lb uplift at joint 4 and 2 lb uplift at joint 5.											ONAL ENTIN			
-,	,,											1111	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	
													125 2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



April 25,2024

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	J9	Diagonal Hip Girder	1	1	Job Reference (optional)	165139955

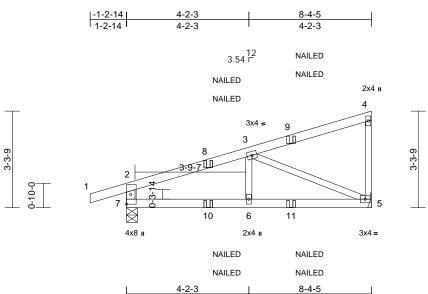
Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:35 ID:Tlskl01_fy5TZ_O7oNuOHVzNXbH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:38.4

Plate Offsets (X, Y): [3:0-3-7,0-1-14], [5:0-3-8,Edge]

RIP
97/144
T = 10%
1 - 1070
55011
*
R
101 .4
-NO'N
EIII
11.
n.
Palli
CIA
F

- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 .
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 148 lb uplift at joint 7 and 111 lb uplift at joint 5.
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



11111111

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	J10	Diagonal Hip Girder	2	1	Job Reference (optional)	165139956

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:36 ID:WRzgi7NtKUUfPrluxlQh?TzX46x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

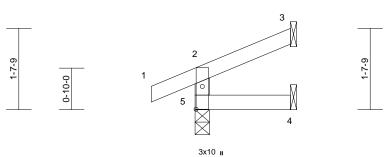
Page: 1

Scale = 1:39.3

Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0* BCDI 10.0	Plate Grip DOL1.Lumber DOL1.Rep Stress IncrN	10	CSI TC BC WB Matrix-S	0.46 0.32 0.24	Vert(CT) Horz(CT)	in -0.03 -0.06 0.01 0.02	(loc) 5-6 5-6 5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20	GRIP 197/144 FT = 10%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE ICREDIATRUCTION AS NOTED ON PLANS REVIEW DEVELOPMENTS SERVICES LEE'S'SUMMIT'S MISSOURI 01/31/2025 5:03:44


Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	J11	Jack-Open	4	1	Job Reference (optional)	165139957

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:36 ID:KKpWOME_w65Da9ynnxk628zX476-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-10-15

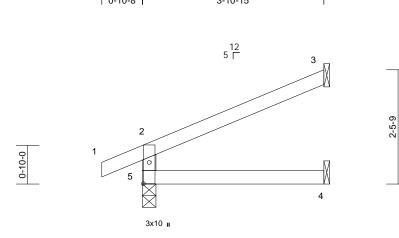
Scale	_	1.00 1	
Scale	=	1:23.1	

Plate Offsets (X, Y): [5:0-5-8,0-1-8]

	(X, 1): [0:0 0 0;0 1 0]											
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.07	DEFL Vert(LL)	in 0.00	(loc) 4-5	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	4-5	>999	240	-	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 6 lb	FT = 10%
LUMBER				is designed in acc								
TOP CHORD				al Residential Coc			and					
BOT CHORD				and referenced st	tandard AN	ISI/TPI 1.						
WEBS	2x4 SPF No.2		LOAD CASE(5) Standard								
BRACING		athing disastly appli										
TOP CHORD		except end verticals										
BOT CHORD		applied or 10-0-0 o										
201 0110112	bracing.		•									1911
REACTIONS		anical, 4= Mechanica	al,								NEOF	MISS
	5=0-3-8	_									A	
	Max Horiz 5=41 (LC	,								-		AN
	Max Uplift 3=-29 (LC		474							2		
	Max Grav 3=44 (LC (LC 1)	5 1), 4=32 (LC 3), 5=	171							= *	GA	
FORCES	(lb) - Maximum Con	npression/Maximum								=	1	
1 ONOLO	Tension									- 7	NUN	IBER :
TOP CHORD	2-5=-150/47, 1-2=0/	/27, 2-3=-32/12								-7	E-2000	• 41.
BOT CHORD	4-5=0/0										L-2000	102101
NOTES										1	S	G
	CE 7-16; Vult=115mph										INS/ON	ALENI
	mph; TCDL=6.0psf; BC										- 111	îi în v
	Enclosed; MWFRS (e											
	r left and right exposed osed; Lumber DOL=1.6											
	s has been designed fo		00								AN	GARC
	e load nonconcurrent w		ds.								1 20	NO.A I
	ss has been designed		Opsf								, ilor	NSED .
	ttom chord in all areas									-	1.1	1 5
	all by 2-00-00 wide will	fit between the botto	om							-	1	a-a 1 =
	d any other members.										: 16	952 : :
	girder(s) for truss to tru									-	D	<u>i</u> <u>a</u> :
	nechanical connection		0							-	B	h. 145
	late capable of withsta										- ~ · · · · · · · · · · · · · · · · · ·	NSA9
5 and 29	lb uplift at joint 3.										1.00	-NO N
											1,00	VALE
											1111	nnn.
											Ap	ril 25,2024

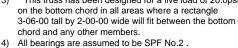
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

April 25,2024


Page: 1

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	J12	Jack-Open	4	1	Job Reference (optional)	165139958

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:36 ID:KKpWOME_w65Da9ynnxk628zX476-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


3-10-15

Scale =	1:24.8

Plate Offsets (X	, Y):	[5:0-5-8,0-1-8]
------------------	-------	-----------------

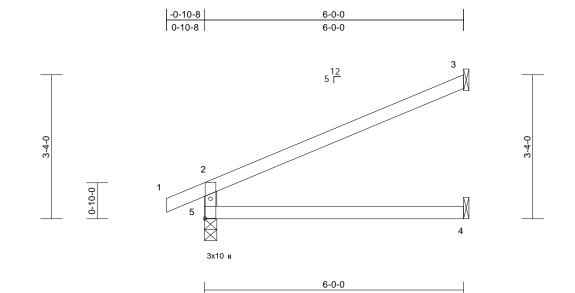
2-5-9

Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC 0.1 BC 0.1	· · ·	in -0.01 -0.02	(loc) 4-5 4-5	l/defl >999 >999	L/d 360 240	PLATES MT20	GRIP 197/144
BCLL	0.0*	Rep Stress Incr	YES	WB 0.0		0.01	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R	Wind(LL)	0.01	4-5	>999	240	Weight: 11 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD		athing directly applie except end verticals. applied or 10-0-0 oc	International R802.10.2 a LOAD CASE(S)	designed in accordance Residential Code sectic nd referenced standard . Standard	ns R502.11.1						
201 0110112	bracing.									NUCE.	MICH
	5=0-3-8 Max Horiz 5=70 (LC Max Uplift 3=-61 (LC Max Grav 3=114 (LC (LC 1)	C 8), 5=-34 (LC 8) C 1), 4=70 (LC 3), 5=									
FORCES	(lb) - Maximum Com Tension	pression/Maximum							= 7		
TOP CHORD BOT CHORD	2-5=-217/69, 1-2=0/	27, 2-3=-62/34							111	E-2000	• []]
Vasd=91n II; Exp C; cantilever right expo 2) This truss chord live 3) * This trus	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 has been designed fo load nonconcurrent w is has been designed fi ttom chord in all areas	iDL=6.0psf; h=25ft; C nvelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 r a 10.0 psf bottom ith any other live load for a live load of 20.0	e; d 60 ds.							UCE	GARCIA

Refer to girder(s) for truss to truss connections. 5)

6) Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 34 lb uplift at joint 5 and 61 lb uplift at joint 3.


11111

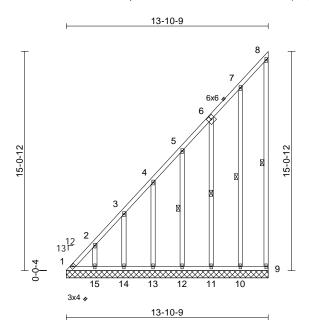
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	J13	Jack-Open	9	1	Job Reference (optional)	165139959

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:36 ID:KbKxyASevKEp7ml2H?X5EkzX46r-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:26.7

Plate Offsets (X, Y): [5:0-5-8,0-1-8]


Loading (psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 25.0	Plate Grip DOL	1.15	TC	0.54	Vert(LL)	-0.05	4-5	>999	360	MT20	197/144
TCDL 10.0	Lumber DOL	1.15	BC	0.32	Vert(CT)	-0.12	4-5	>593	240		
BCLL 0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.05	3	n/a	n/a		
BCDL 10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.06	4-5	>999	240	Weight: 16 lb	FT = 10%
6-0-0 oc purlins, ex BOT CHORD Rigid ceiling directly bracing.	v applied or 10-0-0 o anical, 4= Mechanica C 8) C 8), 5=-43 (LC 8)	Internation R802.10.2 LOAD CASE(S ed or c al,	is designed in acco al Residential Code and referenced sta 5) Standard	e sections	R502.11.1 a	and			1111	JU GAF	
FORCES (Ib) - Maximum Con Tension	,. , , , , , , , , , , , , , , , , , ,	5-556									<u> </u>
TOP CHORD 2-5=-295/98, 1-2=0/ BOT CHORD 4-5=0/0	/27, 2-3=-96/55								==	E-2000	• 41.
									1	A	- 17:
 NOTES Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BC II; Exp C; Enclosed; MWFRS (e cantilever left and right exposed right exposed; Lumber DOL=1.6 This truss has been designed for chord live load nonconcurrent w * This truss has been designed for chord live load nonconcurrent w * This truss has been designed for chord live load nonconcurrent w * This truss has been designed for chord live load nonconcurrent w * This truss has been designed for chord and nonconcurrent w * This truss has been designed for chord and any other members. All bearings are assumed to be Refer to girder(s) for truss to tru (b) Provide mechanical connection bearing plate capable of withsta 5 and 92 lb uplift at joint 3. 	EDL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an 60 plate grip DOL=1. r a 10.0 psf bottom ith any other live loa for a live load of 20.0 where a rectangle fit between the botto SPF No.2. iss connections. (by others) of truss t	ne; d 60 ds. Dpsf om o							annun.	PROFESSIO	GARCIA 952 VSAS

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

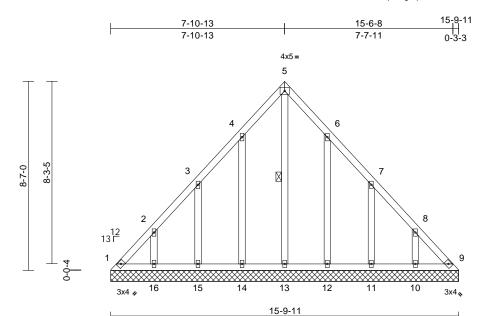
Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	LAY1	Lay-In Gable	2	1	Job Reference (optional)	165139960

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:36 ID:vc?jEYk40KE6tdmb4uYmKDzX4oN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:79.2

						-						
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.08	Vert(LL)	n/a	-	n/a	999	MT20	197/144
CDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(TL)	n/a	-	n/a	999		
CLL	0.0*	Rep Stress Incr	YES	WB	0.12	Horiz(TL)	0.00	9	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 103 lb	FT = 10%
UMBER TOP CHORD 30T CHORD WEBS DTHERS BRACING TOP CHORD 30T CHORD WEBS REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood sh 6-0-0 oc purlins, e Rigid ceiling directl bracing. 1 Row at midpt (size) 1=13-10 11=13-1 13=13-1 (size) 1=593 (I Max Horiz 1=593 (I Max Uplift 1=-195 (10=-133 12=-122 14=-129 Max Grav 1=600 (I 10=214 12=198 14=205	eathing directly applie xcept end verticals. y applied or 10-0-0 oc 8-9, 5-12, 6-11, 7-1(9, 9=13-10-9, 10=13 0-9, 12=13-10-9, 0-9, 14=13-10-9, 0-9 .C 8) LC 6), 9=-48 (LC 8), (LC 8), 13=-131 (LC (LC 8), 15=-131 (LC	 Truss de only. For see Stan-or consul All plates Gable rst. Gable st. Gable st. This truss chord live This truss Chord live This truss Chord and All bearing p 9 Provide m Bal, joint 12, 1 10, This truss Internation This truss All bearing p Solution 12, 1 This truss Chord and All bearing p Solution 12, 1 This truss Internation This truss Internation Chord and All bearing p Solution 12, 1 All bearing p Solution 12, 1 Solution 12, 1 All bearing p Solution 12, 1 Solution 12, 1 All bearing p Solution 12, 1 Solution 12, 1 All 10, 1 A	signed for wind loa studs exposed to v dard Industry Gable qualified building of are 2x4 MT20 unle puires continuous b ds spaced at 2-0-0 has been designe load nonconcurrer load nonconcurrer shas been design tom chord in all are all by 2-00-00 wide d any other membe gs are assumed to nechanical connect late capable of with uplift at joint 1, 131 int 14, 131 lb uplift 31 lb uplift at joint 1 is designed in acc nal Residential Coo 2 and referenced st (S) Standard	vind (norm End Deta designer a sss otherwio totom chor oc. d for a 10. tt with any ed for a liv ass where will fit betw rs. be SPF N ion (by oth standing 4 lb uplift at at joint 13 11 and 13 ordance w de sections	al to the face ils as applical s per ANSI/TF se indicated. d bearing. D psf bottom other live loa e load of 20.0. e load of 20.0. c.2. ers) of truss t 8 lb uplift at jo int 15, 129 122 lb uplift at jo ith the 2018 s R502.11.1 a), ble, ble, ble, ble st. bpsf bom o bom b bom b b t t int				JUA GARI SS/ONA	MISSOUDI NN CIA
TOP CHORD		32/326, 2-3=-709/278 -447/179, 5-7=-321/1									UAN CICE	
BOT CHORD	1-15=-2/2, 14-15=-	2/2, 13-14=-2/2, 2/2, 10-11=0/0, 9-10)=0/0							ŝ	, LICE	63
WEBS	2-15=-163/148, 3-1 4-13=-166/155, 5-1 6-11=-166/155, 7-1	4=-166/155, 2=-158/146,								111W	169	952
NOTES										-	D.	
 Wind: ASC Vasd=91m II; Exp C; E 	Enclosed; MWFRS (e	h (3-second gust) CDL=6.0psf; h=25ft; C envelope) exterior zon d ; Lumber DOL=1.60	ie;									AL ENGINE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



April 25,2024

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	LAY2	Lay-In Gable	1	1	Job Reference (optional)	165139961

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:36 ID:oWMuciFchQD4CJXzLeFLbMzX475-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-

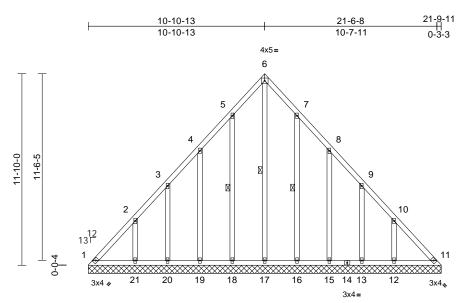
Scale = 1:52.3

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.06 0.04 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 78 lb	GRIP 197/144 FT = 10%
	6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 1=15-9-11 11=15-9-1 13=15-9-1 13=15-9-1 Max Horiz 1=-220 (L Max Uplift 1=-94 (LC 10=-130 (12=-127 (15=-132 (Max Grav 1=203 (LC 10=208 (L 12=210 (L	5-13 , 9=15-9-11, 10=15-5 1, 12=15-9-11, 1, 14=15-9-11, 1, 16=15-9-11 C 4) 6), 9=-58 (LC 7), LC 9), 11=-132 (LC 9 LC 9), 14=-129 (LC 8 LC 8), 16=-131 (LC 8 C 8), 9=179 (LC 9), C 16), 11=205 (LC 11), C 16), 13=196 (LC 9), C 16), 13=196 (LC 2) C 15), 15=204 (LC 12)	4) 3-11, 5) 6) 7) 8)), 8)), 9) 10 6),	Vasd=91mph II; Exp C; En cantilever lef right exposed Truss design only. For stu see Standard or consult qu All plates are Gable requird Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha on the botton 3-06-00 tall b chord and an All bearings a) Provide mecl bearing plate 1, 58 lb uplift uplift at joint	7-16; Vult=115mp ;; TCDL=6.0psf; Bi closed; MWFRS (et t and right exposed t and right exposed t umber DOL=1. ned for wind loads wids exposed to wind a Industry Gable Ei alified building des 2x4 MT20 unless es continuous botts spaced at 2-0-0 oc s been designed f ad nonconcurrent v nas been designed n chord in all areas by 2-00-00 wide will y other members. are assumed to be hanical connections a capable of withsta at joint 9, 131 lb u 15, 129 lb uplift at lb uplift at joint 11	CDL=6. enveloped 5 end v 60 plate in the p d (norm nd Deta signer a: otherwin om chor or a 10. vith any for a liv s where Il fit betw SPF N. (by oth anding S plift at j joint 14.	Opsf; h=25ft; (a) exterior zor vertical left an grip DOL=1. lane of the tru- al to the face ils as applical s per ANSI/TF se indicated. d bearing. D psf bottom other live loa te load of 20.0. a rectangle veen the botto b.2. ers) of truss t 14 lb uplift at j bint 16, 132 lt 130 lb uplift at j	ne; d 60 iss ble, Pl 1. ds. opsf om o o o t at				JUA GAR NUMI E-20001	CIA *
FORCES TOP CHORD		' 169/140, 3-4=-136/10		International	designed in accord Residential Code and referenced stan	sections	s R502.11.1 a	nd				IN AN C	GARO
BOT CHORD	4-5=-108/164, 5-6=-2 7-8=-141/91, 8-9=-24 1-16=-96/203, 15-16 14-15=-96/203, 13-1 12-13=-96/203, 11-1 10-11=-96/203, 9-10	60/139 =-96/203, 4=-96/203, 2=-96/203,	LC	DAD CASE(S)	Standard							THE LOCE	NSEO
,	2-16=-163/149, 3-15 4-14=-173/152, 8-10 7-11=-166/158, 6-12 ed roof live loads have	=-165/157, =-163/149, =-171/150, 5-13=-173	3/21								THE PARTY	PROX	ISAS NOTIN
this desigr	1.											Apri	125,2024

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

 \vdash


CTION **IEW** DEVELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI 01/31/2025 5:03:45

April 25,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	LAY3	Lay-In Gable	1	1	Job Reference (optional)	165139962

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:36 ID:oWMuciFchQD4CJXzLeFLbMzX475-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

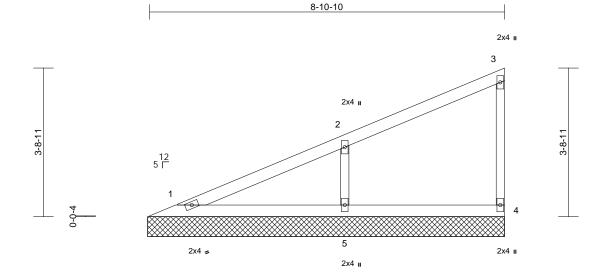
21-9-11

Scale =	1.71 2

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.10 0.07 0.15	Vert(TL)	in n/a n/a 0.01	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 127 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 1=21-9-1 12=21-9-1 15=21-9-1 17=21-9-1	athing directly applied applied or 10-0-0 oc 6-17, 5-18, 7-16 1, 11=21-9-11, 11, 13=21-9-11, 11, 16=21-9-11, 11, 20=21-9-11, 11	dor N 1)	OTES Unbalanced this design. Wind: ASCE Vasd=91mp II; Exp C; Er cantilever le right expose Truss desig only. For stu see Standar	6-17=-260/38, 5-1 4-19=-167/161, 3- 2-21=-214/196, 7- 8-15=-169/162, 9- 10-12=-215/196 roof live loads ha is 7-16; Vult=115m h; TCDL=6.0psf; I hclosed; MWFRS ft and right expose d; Lumber DOL= ned for wind load ds exposed to wid d lndustry Gable I	20=-150 16=-171 13=-150 ve been ph (3-sec 3CDL=6. (enveloped c) end v 1.60 plate s in the p nd (norm End Deta	(139, (145, (139, considered fo cond gust) (ppsf; h=25ft; (a) exterior zor vertical left an grip DOL=1. (ahe of the tru al to the face) ils as applical	Cat. he; d 60 liss), ble,			ing.	S. JUA	
	Max Horiz 1=-307 (L Max Uplift 1=-121 (L 12=-176 (15=-139 (18=-124 (20=-114 (Max Grav 1=278 (LC 12=279 (L 15=211 (L 17=284 (L	C 4) C 6), 11=-70 (LC 7), LC 9), 13=-114 (LC 9 LC 9), 16=-121 (LC 9 LC 8), 19=-137 (LC 6 LC 8), 21=-176 (LC 8 C 8), 11=245 (LC 9), C 16), 13=182 (LC 1 C 6), 18=214 (LC 15	9), 6) 3), 7) 3) 8) 6), 6),), .	All plates and Gable require Gable studs This truss hat chord live loo * This truss loo the bottoo 3-06-00 tall li chord and and	Jalified building de e 2x4 MT20 unles es continuous boi spaced at 2-0-0 c as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w ny other members	s otherwittom chor bc. for a 10. with any d for a liv as where <i>i</i> ill fit betw s.	se indicated. d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto	ds.)psf					• 41.
FORCES TOP CHORD BOT CHORD	19=209 (L 21=279 (L (lb) - Maximum Com Tension 1-2=-406/263, 2-3=-	LC 15), 20=182 (LC 1 LC 15) pression/Maximum 239/190, 3-4=-174/1/ 120/228, 6-7=-94/201 23/79, 9-10=-193/12 21=-136/289, -17=-136/289, -15=-136/289,	5), 9) 10 48, 5, 1, 1 ²	All bearings)) Provide mec bearing plate 1, 70 lb uplif uplift at joint joint 21, 121 114 lb uplift 1) This truss is International	are assumed to b chanical connectic e capable of withs t at joint 11, 124 ll 19, 114 lb uplift at lb uplift at joint 16 at joint 13 and 177 designed in acco Residential Code nd referenced sta	e SPF No on (by oth tanding 1 o uplift at t joint 20 6, 139 lb 6 lb uplift rdance w e sections	ers) of truss to 21 lb uplift at joint 18, 137 176 lb uplift at uplift at joint 1 at joint 12. ith the 2018 \$ R502.11.1 a	joint Ib at 5,			. THUNK	PROCESSION	ARCIA NSEO

April 25,2024

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type		Ply	Avalon - Craftsman	
Avalon - Craftsman	V1	Valley	1	1	Job Reference (optional)	165139963

Run: 8,73 S Apr 3 2024 Print: 8,730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:36 ID:oWMuciFchQD4CJXzLeFLbMzX475-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

8-10-10

Scale	- 1	1.28	Q

Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.26	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.14	Vert(TL)	n/a	-	n/a	999		101/111
BCLL	0.0*	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	4 Matrix-P							Weight: 24 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she	athing directly applie	bearing 4 and 1 9) This true Internat R802.10	mechanical connec plate capable of wit 21 lb uplift at joint 5. ss is designed in acc ional Residential Co 0.2 and referenced s E(S) Standard	hstanding 2 cordance wi de sections	3 lb uplift at j ith the 2018 5 R502.11.1 a	oint					
BOT CHORD	6-0-0 oc purlins, exe Rigid ceiling directly bracing.	cept end verticals.									anu	<u>ци.</u>
	•	5), 5=-121 (LC 8)								1111	JUA GAR	
FORCES	(lb) - Maximum Com Tension	pression/Maximum								Ξ*	GAR	*=
TOP CHORD	1-2=-115/70, 2-3=-1	,								EP		BER C
BOT CHORD WEBS	1-5=-48/36, 4-5=-48, 2-5=-353/181	/36								=	E-20001	62101
Vasd=91m	CE 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er	DL=6.0psf; h=25ft; C									SS/ONA	LENGHIN

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3) Gable studs spaced at 4-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads. 6)
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SPF No.2 .

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16952 Porto Sonal English April 25,2024

	1_		1			1					
Job	Truss		Truss Type		Qty	Ply	Avalon - C		165139964		
Avalon - Craftsman	V2		Valley	1	1	1	Job Refere	ence (op	tional)		100100004
Wheeler Lumber, Waverly, H	(S - 66871,			Run: 8.73 S Apr 3 2024							Page: 1
				ID:oWMuciFchQD4CJX:		2X475-RfC?P	sB70Hq3NSg	PqnL8w3	ulTXbG	KWrCDoi7J4zJC?†	
	2-10-11	0-0-4	5 ¹² 5 ⁻					2 2	4 II 3	2-10-11	
			2.4								
			2x4 =					2x4	+ 11		
Scale = 1:24.5				6-10-1	10						
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.74 BC 0.44 WB 0.00 Matrix-P	0 Vert(LL) ı TL) ı	in (loc) n/a - n/a - 00 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 197/144 FT = 10%
	No.2 No.2 al wood she	athing directly applie xcept end verticals.	International R802.10.2 a LOAD CASE(S)	designed in accordance Residential Code sectio nd referenced standard / Standard	ns R502	.11.1 and					
		applied or 10-0-0 oc									
Max Uplif Max Grav FORCES (Ib) - Ma Tension TOP CHORD 1-2=-99/	2 1=111 (L0 t 1=-40 (L0 1=274 (L0 ximum Com	C 8), 3=-62 (LC 8) C 1), 3=274 (LC 1) pression/Maximum							········	S JUA GARG	N
 II; Exp C; Enclosed; cantilever left and rig right exposed; Lumb Truss designed for v 	ult=115mph =6.0psf; BC MWFRS (er ht exposed er DOL=1.6 wind loads in	DL=6.0psf; h=25ft; C hvelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6	e; 1 50 55						Philip	NUME E-20001	• [1]
see Standard Indust or consult qualified bGable requires contiGable studs spacedThis truss has been	ry Gable En uilding desi nuous botto at 4-0-0 oc. designed fo oncurrent w n designed f in all areas 00 wide will members. umed to be s	d Details as applicab gner as per ANSI/TP m chord bearing. r a 10.0 psf bottom ith any other live load or a live load of 20.0 where a rectangle fit between the botto SPF No.2.	le, I 1. Is. psf m						. thurse	LICE	ARCIA NSEO 952
	e of withsta	nding 40 lb uplift at jo								April	AL ENGINE

- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be SPF No.2 . 7)
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 8) 1 and 62 lb uplift at joint 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

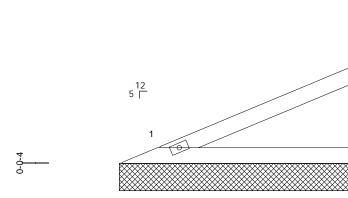
OR CONSTRUCTION ON PLANS REVIEW RELEASE AS NOTED DEVELORMEN SERVICES LEE'S' SUMMIT'S MISSOURI 01/31/2025 5:03:45

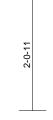
Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	V3	Valley	1	1	Job Reference (optional)	165139965

4-10-10

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:37 ID:oWMuciFchQD4CJXzLeFLbMzX475-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


2x4 🛛


3

2x4 🛚

2

Page: 1

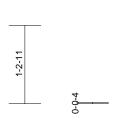
2-0-11

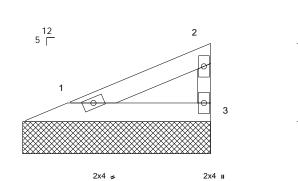
2x4 ≠		
	4-10-10	

Scale - 1.21 3

Scale = 1:21.3												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.31 0.17 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 12 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood shea 4-11-4 oc purlins, e: Rigid ceiling directly bracing. (size) 1=4-11-4, Max Horiz 1=75 (LC Max Uplift 1=-27 (LC	athing directly applie xcept end verticals. applied or 10-0-0 or 3=4-11-4 5) : 8), 3=-42 (LC 8)	9) This truss is Internationa R802.10.2 a LOAD CASE(S) ed or	designed in acco Residential Code nd referenced sta	e sections	R502.11.1 a	nd				IN OF	MISSO
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m II; Exp C; E cantilever right expos 2) Truss des	Max Grav 1=184 (LC (lb) - Maximum Com Tension 1-2=-67/44, 2-3=-14: 1-3=-24/18 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en left and right exposed sed; Lumber DOL=1.60 igned for wind loads ir	(3-second gust) DL=6.0psf; h=25ff; (ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1.0 the plane of the tru	ne; d 50 iss								5 JU/ GAR NUMI E-2000	CIA BER 162101
 see Standa or consult Gable required Gable stuct This truss chord live * This truss on the bott 3-06-00 tal chord and All bearing Provide mu bearing plate 	studs exposed to wind and Industry Gable Enr qualified building desig uires continuous bottor ds spaced at 4-0-0 oc. has been designed for load nonconcurrent wi s has been designed fi tom chord in all areas v II by 2-00-00 wide will any other members. Is are assumed to be S echanical connection (ate capable of withstar b uplift at joint 3.	d Details as applicating gner as per ANSI/TF m chord bearing. a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto SPF No.2. by others) of truss to	ole, ol 1. ds. opsf om							THINK .	PROPERTY OF THE STORE	952 SAS

April 25,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	V4	Valley	1	1	Job Reference (optional)	165139966

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:37 ID:oWMuciFchQD4CJXzLeFLbMzX475-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

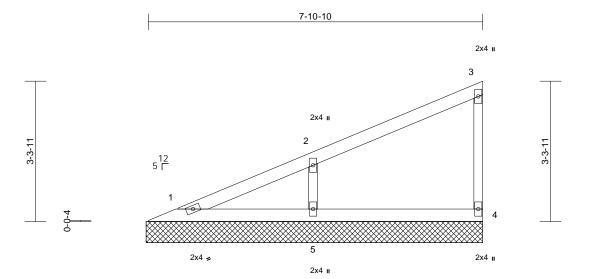
2x4 🛛

2-10-10

2-10-10

Sca	e –	1.1	8

Scale = 1:18												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.07 0.04 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 7 lb	GRIP 197/144 FT = 10%
LUMBER			9) This truss is	s designed in acco								
TOP CHORD				al Residential Code and referenced sta			and					
BOT CHORD WEBS	2x4 SPF No.2 2x3 SPF No.2		LOAD CASE(S			NOI/ IFT I.						
BRACING			20/12 0/102(0) olandara								
TOP CHORD			ed or									
	2-11-4 oc purlins, e											
BOT CHORE	 Rigid ceiling directly bracing. 	applied or 10-0-0 o	С									
REACTIONS		, 3=2-11-4										MICH
	Max Horiz 1=38 (LC Max Uplift 1=-14 (LC										NE	SSO
	Max Grav 1=94 (LC									1	18	
FORCES	(lb) - Maximum Com									20	S JU	AN ??
	Tension									24	GAF	RCIA
TOP CHORD BOT CHORD		/34								= ^	1	1 E
NOTES	0 1-3=-12/9									= 7	NUN	
	SCE 7-16; Vult=115mph	(3-second gust)								= 5	E-2000	• 41.
Vasd=91	mph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft; (E-2000	102101
	; Enclosed; MWFRS (er										158 ····	G
	r left and right exposed osed; Lumber DOL=1.6										I,ON	ALENN
	esigned for wind loads in										1111	inn,
	r studs exposed to wind											un.
	dard Industry Gable En It qualified building desig										ALL AN	GARO
	quires continuous botto		11.								11 JUAN	CIA "
 Gable stu 	uds spaced at 4-0-0 oc.										CE	NSED
	s has been designed for									-	l X	~ ^ ~ E
	e load nonconcurrent wi Iss has been designed f									=	1	0.50
	ottom chord in all areas		1 00							=	: 16	952 🗧
	tall by 2-00-00 wide will	fit between the botto	om							-	P	
	d any other members.	SPE No 2									0.	M. 43
	mechanical connection (0								- A	VSAS
bearing p	plate capable of withstar										5/01	VALENIN
1 and 21	lb uplift at joint 3.										1111	minin
												il 25 2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	V5	Valley	1	1	Job Reference (optional)	165139967

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:37 ID:oWMuciFchQD4CJXzLeFLbMzX475-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

7-10-10

Scale :	= 1:27.2

00010 = 1.27.2												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.21	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI201	4 Matrix-P							Weight: 21 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x3 SPF No.2		bearing 4 and 1 9) This tru	mechanical connecti plate capable of with 07 lb uplift at joint 5. ss is designed in acc	istanding 2 ordance w	24 lb uplift at j ith the 2018	joint					
OTHERS	2x3 SPF No.2			ional Residential Cod 0.2 and referenced st			and					
BRACING	.			E(S) Standard	andard AN	NSI/TPLT.						
TOP CHORD			ed or LOAD CAS	E(S) Stanuaru								
BOT CHORD	6-0-0 oc purlins, ex Rigid ceiling directly bracing.		с									00.
REACTIONS	Max Horiz 1=129 (LC Max Uplift 4=-24 (LC Max Grav 1=98 (LC (LC 1)	C 8), 5=-107 (LC 8) 1), 4=138 (LC 1), 5=								in the	S JU	
FORCES	(lb) - Maximum Com Tension	pression/Maximum								= 7		×=
TOP CHORD		4/31, 3-4=-108/43								= 7	NUM	
BOT CHORD	1-5=-42/32, 4-5=-42	/32								-5	E-2000	• 41.
WEBS	2-5=-312/160									-1	C. E-2000	102101
NOTES										-		- GIN
Vasd=91n II; Exp C; cantilever	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6	DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an	ne; Id								IN UAN	IIII.
2) Truss des	signed for wind loads ir	n the plane of the tru	ISS								NAU	GARCIN

- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.6) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SPF No.2 .

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

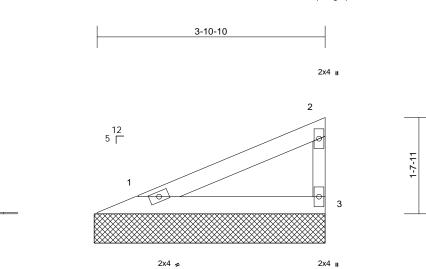
Job	Trus	s	Truss Type		Qty	Ply	Avalon - C	raftsmar	ı		
Avalon - Cra	iftsman V6		Valley		1	1	Job Refere	ence (op	tional)		165139968
Wheeler Lumber,	Waverly, KS - 66871,		•	Run: 8.73 S Apr 3 20		•	2024 MiTek In	dustries, I	nc. Wee	•	Page: 1
				ID:oWMuciFchQD4CJ	XzLeFLbMz	X475-RfC?P	sB70Hq3NSg	PqnL8w3i	ulTXbG	KWrCDoi7J4zJC?f	
			I	5-10	-10			I.			
								2x4 🛛			
								2			
		_						1			
								2			
	_		10							_	
	2-5-11		12 5	/						2-5-11	
	У									Ń	
			1								
		4	0					<u>-</u> З			
						*****		× -			
			2x	4 =				2x4 🛛			
				5-10	-10						
Scale = 1:22.9											
oading	(psf)	Spacing	2-0-0	CSI	DEFL		in (loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC 0.: BC 0.:	· ·	,	n/a - n/a -	n/a n/a	999 999	MT20	197/144
BCLL	0.0	* Rep Stress Incr	YES	WB 0.		,	.00 3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P						Weight: 15 lb	FT = 10%
				designed in accordanc							
OP CHORD	2x4 SPF No.2 2x4 SPF No.2			Residential Code sectind referenced standard							
/EBS	2x3 SPF No.2		LOAD CASE(S)	Standard							
RACING OP CHORD			4 o								
		neathing directly applied except end verticals.									
OT CHORD	Rigid ceiling direc bracing.	tly applied or 10-0-0 oc									
REACTIONS	. ,	4, 3=5-11-4								WE OF !	
	Max Horiz 1=93 (L Max Uplift 1=-33 (.C 5) LC 8), 3=-52 (LC 8)								NE	SSO
	Max Grav 1=229	LC 1), 3=229 (LC 1)							3	Y	-
ORCES	(lb) - Maximum Co Tension	ompression/Maximum							3	JUA	
TOP CHORD	1-2=-83/55, 2-3=-	178/82							<u>=</u> *	GAR	
SOT CHORD	1-3=-30/23								= 0	NUME	
) Wind: ASC	E 7-16; Vult=115m								=1	- E-20001	
		CDL=6.0psf; h=25ft; C envelope) exterior zone							-	1.	
		ed ; end vertical left and								1.55	ENGIN

- cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 4-0-0 oc. 4)
- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be SPF No.2 . 7)

Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 33 lb uplift at joint 1 and 52 lb uplift at joint 3.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

ONALEN 16952 April 25,2024 April 25,2024



Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	V7	Valley	1	1	Job Reference (optional)	165139969

Scale

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:37 ID:oWMuciFchQD4CJX2LeFLbMzX475-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

3-10-10

e = 1:19.6			

2-0-C

1-7-11

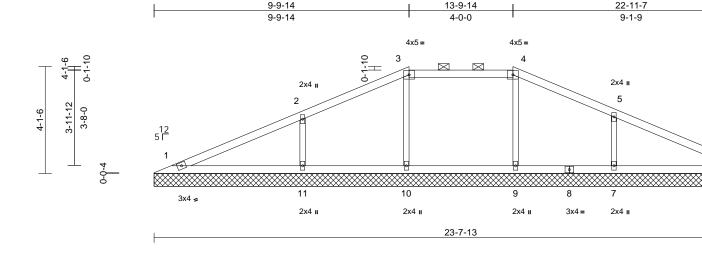
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.1' BC 0.09 WB 0.00 Matrix-P 0.00	Vert(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 9 lb	GRIP 197/144 FT = 10%
LUMBER 9) This truss is designed in accordance with the 2018 TOP CHORD 2x4 SPF No.2 International Residential Code sections R502.11.1 and BOT CHORD 2x4 SPF No.2 R802.10.2 and referenced standard ANSI/TPI 1. WEBS 2x3 SPF No.2 BRACING LOAD CASE(S) Standard BOT CHORD Structural wood sheathing directly applied or 3-11-4 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 1=3-11-4, 3=3-11-4 Max Horiz Max Horiz 1=57 (LC 5) Max Uplit 1=-20 (LC 8), 3=-32 (LC 8) Max Grav Max Grav 1=139 (LC 1) UC 1)											
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m II; Exp C; E cantilever 1 right expos 2) Truss desi only. For s see Standa or consult 3) Gable requ 4) Gable stud	Max Grav 1=139 (LC (lb) - Maximum Com Tension 1-2=-50/33, 2-3=-104 1-3=-18/14 E 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er eft and right exposed sed; Lumber DOL=1.6f igned for wind loads ir studs exposed to wind ard Industry Gable End qualified building desig uires continuous bottor Is spaced at 4-0-0 oc.	C 1), 3=139 (LC 1) pression/Maximum 8/50 (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zone ; end vertical left and 0 plate grip DOL=1.6 the plane of the trus (normal to the face), d Details as applicabl gner as per ANSI/TPI n chord bearing.	e,						"III * Phone	JUA GAR D. E-20001	CIA *
 chord live I * This truss on the bott 3-06-00 tal chord and All bearing Provide me bearing pla 	has been designed for oad nonconcurrent wi s has been designed for om chord in all areas I by 2-00-00 wide will any other members. s are assumed to be S echanical connection (ate capable of withstar o uplift at joint 3.	th any other live load or a live load of 20.0p where a rectangle fit between the bottor SPF No.2 . by others) of truss to	n						and the second sec	16 PROFILE BROCKSSON	952

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 25,2024

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	V8	Valley	1	1	Job Reference (optional)	165139970

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:37 ID:GjwGp2GESjMxqT69vMma7ZzX474-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

23-7-13

0-8-6

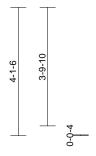
6

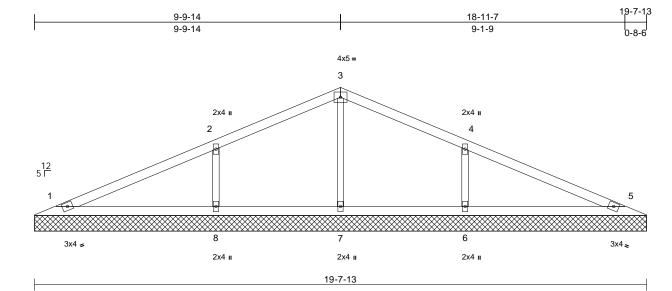
3x4 🛼

Scale = 1:44.4

 LUMBER TOP CHORD 2x4 SPF No.2 Provide adequate drainage to prevent water ponding. Gable requires continuous bottom chord bearing. Gable studs speed at 4-0-0 continues bottom chord bearing. Gable studs speed at 4-0-0 continues bottom chord bearing. Gable studs speed at 4-0-0 continues bottom chord bearing. This truss has been designed for a 10.0 pst bottom chord and any other members. This truss has been designed for a live load of 200 pst bottom chord and any other members. Hashing and any other members. Hashing and any other members. All bearing are assumed to be SPF No.2. Provide mechanical connection (by others) of truss to bearing place calling directly applied or 10-0-0 context (by others) of truss to bearing place calling directly applied or 10-0-0 context (by others) of truss to bearing place calling directly applied or 10-0-0 context (by others) of truss to bearing place calling directly applied or 10-0-0 context (by others) of truss to bearing place calling directly applied or 10-0-0 context (by others) of truss to bearing place calling directly applied or 10-0-0 context (by others) of truss to bearing place calling directly applied or 10-0-0 context (by others) of the split at joint 1.3 bit upilit at joint 1.1 bit upilit at joint 1.3 bit upilit at joint 1.2 bit upilit at joint 1.2 bit applit at joint 1.2 bit upilit at joint 1.2 bit upilit at joint 1.2 bit applit at joint 1.2 bit applit at joint 0.2 bit applit at joint 1.2 bit upilit at joint 1.2 bit applit applit applit applit applit applit appl	Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TP	12014	CSI TC BC WB Matrix-S	0.32 0.18 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 63 lb	GRIP 197/144 FT = 10%
	TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=911 II; Exp C; cantilever right expo 3) Truss de only. For see Stand	2x4 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, exi 2-0-0 oc purlins, (6-C Rigid ceiling directly bracing. (size) 1=23-7-1: 11=23-7- Max Horiz 1=66 (LC Max Uplift 1=-12 (LC (LC 9), 9: 4), 11=-1: Max Grav 1=190 (Li (LC 1), 9: 21), 11=4 (lb) - Maximum Con Tension 1-2=-89/77, 2-3=-86 4-5=-86/87, 5-6=-69 1-11=-1/54, 10-11=: 7-9=-2/55, 6-7=-2/5 3-10=-253/66, 2-11: 5-7=-378/192 ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; Lumber DOL=1.6 signed for wind loads i studs exposed to winc dard Industry Gable En	cept -0 max.): 3-4. / applied or 10-0-0 oc 3, 6=23-7-13, 7=23-7 3, 10=23-7-13, 12 28), 6=-27 (LC 9), 7= =-15 (LC 5), 10=-18 (I 38 (LC 8) C 1), 6=199 (LC 1), 7: =307 (LC 22), 10=327 190 (LC 1) mpression/Maximum 5/98, 3-4=-27/99, 3/63 -1/54, 9-10=0/54, 5 =-374/191, 4-9=-240/6 e been considered for (3-second gust) CDL=6.0psf; h=25ft; C mvelope) exterior zonu- ; end vertical left and 50 plate grip DOL=1.6 n the plane of the trus 4 (normal to the face), d Details as applicab	5) Ga 6) Ga 7) Th ch 3-1 100 Pr 9) All 10) Pr be 1, at -133 11) Th e-13, 10) Pr be 1, at -139 12) Gr or bo LOAD 50, at. a; 0 iss le,	ble require ble studs : is truss ha ord live loz his truss h the botton 6-00 tall b ord and ar bearings a bvide meci aring plate 27 lb uplift joint 11, 15 is truss is ernational 02.10.2 ar aphical pu the orienta ttom chorc	es continuous bot spaced at 4-0-0 o is been designed ad nonconcurrent nas been designer n chord in all area by 2-00-00 wide w ny other members are assumed to b hanical connectio o capable of withs at joint 6, 18 lb u 5 lb uplift at joint 9 designed in accor Residential Code nd referenced staar rilin representation dt.	tom chor c. for a 10. with any d for a liv is where e SPF N- n (by oth tanding 1 plift at joi and 139 dance w sections ndard AN n does no	d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto D.2. ers) of truss t 2 lb uplift at jo lb uplift at jo ith the 2018 c R502.11.1 a ISJ/TPI 1. bt depict the s	ds. Dpsf om oint uplift int 7.				GAR NUMI E-2000 SS/ON JCE 169 PBO KS/ON	CIA BER 62101 ALEN SARCIA NSEO 052 Halen SAS

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)


Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	V9	Valley	1	1	Job Reference (optional)	165139971


Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:37 ID:oWMuciFchQD4CJXzLeFLbMzX475-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

CTION

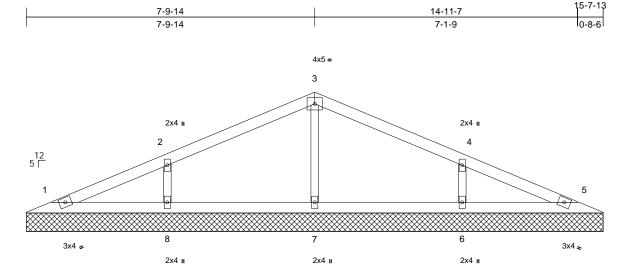
IEW

DEVELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI 01/31/2025 5:03:46

Scale = 1:37

Scale = 1:37													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.31 0.17 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 51 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 15 lb uplift at joint 8 and 138 lb uplift at joint 6. 10) This truss is designed in accordance with the 2018 (LC 9), 8=-138 (LC 10), 6=-138 (LC 9), 8=-138 (LC 1), 6=508 (LC 21) 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard													
FORCES	(lb) - Maximum Corr Tension	npression/Maximum								PF	NUM	• 41	E
TOP CHORD	1-2=-87/79, 2-3=-90 4-5=-67/66	/100, 3-4=-90/90,									E-2000	162101	5
BOT CHORD WEBS	,	4, 6-7=-2/54, 5-6=-2/9 86/193, 4-6=-386/19									SS/ON	ENGIN	
NOTES											1111	iiiii	
1) Unbalance	ed roof live loads have	been considered for	r										
Vasd=91m II; Exp C; I cantilever right expos 3) Truss des only. For s see Standa or consult 4) Gable requ 5) Gable stuc 6) This truss	h. E 7-16; Vult=115mph pph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 igned for wind loads ii studs exposed to wind ard Industry Gable En qualified building desi uires continuous botto is spaced at 4-0-0 oc. has been designed fo load nonconcurrent wind and nonconcurrent wind bas been besigned for load bas	iDL=6.0psf; h=25ff; C nvelope) exterior zon ; end vertical left and i0 plate grip DOL=1.6 in the plane of the tru l (normal to the face) d Details as applicate gner as per ANSI/TP m chord bearing. r a 10.0 psf bottom	ne; d 50 ss , ole, 21.							"THINK	PROPROVIDE TO	952 952 125,2024	ANNULLIN,

- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- Gable studs spaced at 4-0-0 oc. 5)
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	V10	Valley	1	1	Job Reference (optional)	165139972

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:37 ID:oWMuciFchQD4CJXzLeFLbMzX475-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

15-7-13

Scale = 1:31.3

Scale = 1.51.5													
Loading	(psf)	Spacing	2-0-0		CSI	0.40		in n/n	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.18	· · ·	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.09	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.06	Horiz(TL)	0.00	5	n/a	n/a		FT 400/
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 39 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	• • • • •	10	on the bottom 3-06-00 tall b chord and an All bearings a Provide mecl bearing plate 1, 9 lb uplift a uplift at joint) This truss is a	designed in accord	s where II fit betv SPF No (by oth anding 1 olift at joi dance w	a rectangle veen the botto c.2. ers) of truss to 0 lb uplift at ju nt 8 and 107 ith the 2018	o o oint Ib					997.
	7=15-7-13 Max Horiz 1=52 (LC Max Uplift 1=-10 (LC (LC 9), 8= Max Grav 1=111 (LC (LC 22), 7 21)	107 LC		Residential Code nd referenced stan Standard			nd			*****	JUA GAR		
FORCES	(lb) - Maximum Com Tension	pression/Maximum									Ph	NUME	• 41.
TOP CHORD	1-2=-70/46, 2-3=-87/ 4-5=-53/36	, ,										E-20001	62101
BOT CHORD	1-8=0/42, 7-8=0/42,	6-7=0/42, 5-6=0/42										1. So	
WEBS	3-7=-234/42, 2-8=-2	98/150, 4-6=-298/150)									ONA ONA	LEIN
NOTES												1111	ini.
,	ed roof live loads have	been considered for											
Vasd=91m II; Exp C; E	n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er	DL=6.0psf; h=25ft; C velope) exterior zone	e;									JUAN C	ARCIA NSED

II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face),

see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)

Gable studs spaced at 4-0-0 oc. 5)

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. "In PROINT BOK April 25

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

1111111

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	V11	Valley	1	1	Job Reference (optional)	l65139973

5-9-14

5-9-14

Wheeler Lumber, Waverly, KS - 66871,

2-1-10

0-0-4

2-5-6

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:38 ID:oWMuciFchQD4CJXzLeFLbMzX475-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-11-7

5-1-9

11-7-13

0-8-6

3

3x4 👟

4x8 = 2 12 5 P 4 3x4 🚅 2x4 II 11-7-13

Scale	- '	1.27	6

Scale = 1:27.6													1
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁷	18/TPI2014	CSI TC BC WB Matrix-S	0.37 0.22 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	applied or 10-0-0 or 3, 3=11-7-13, 4=11-7 2 13) 2 8), 3=-50 (LC 9), 4= C 21), 3=211 (LC 22 C 1)	^C 1 7-13 =-32 L	 on the bottor 3-06-00 tall li chord and an All bearings Provide mec bearing plate 1, 50 lb uplif On this truss is International 	Residential C nd referenced	areas where de will fit betw pers. to be SPF No ection (by oth ithstanding 4 32 lb uplift a ccordance w ode sections	a rectangle veen the bott c.2. ers) of truss t 4 lb uplift at j t joint 4. ith the 2018 5 R502.11.1 a	iom to joint			Ing.	S. JUA GAR	
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC	Tension 1-2=-108/56, 2-3=-1 1-4=-2/43, 3-4=-2/43 2-4=-353/93 ed roof live loads have	08/42 } been considered for (3-second gust)									C Philip	NUM E-20001	• 41.

II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)

5)

Gable studs spaced at 4-0-0 oc. 6)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. ONAL JUAN GAR LICENS 1F JUAN GARCIA MILLIN . April 25

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Avalon - Craftsman	
Avalon - Craftsman	V12	Valley	1	1	Job Reference (optional)	165139974

1-3-10

1-7-6

ID:oWMuciFchQD4CJXzLeFLbMzX475-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 3-9-14 6-11-7 7-7-13 3-9-14 3-1-9 0-8-6 4x5 = 2 12 5 Г 3 0-C

4

7-7-13

2x4 II

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Wed Apr 24 12:41:38

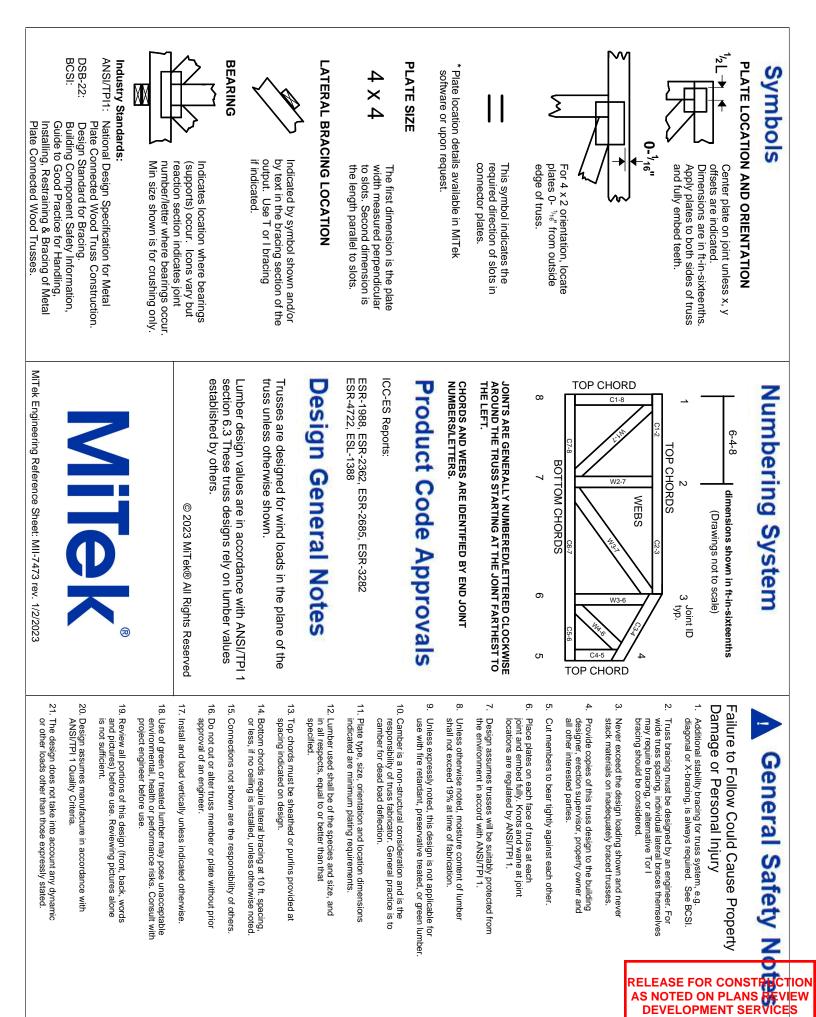
Scale = 1:23.2

00010 = 1.20.2														
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.17 0.08 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 197/144 FT = 109	%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=7-7-13, Max Horiz 1=-23 (LC Max Uplift 1=-33 (LC (LC 8) Max Grav 1=142 (LC (LC 1)	C 8), 3=-37 (LC 9), 4= C 1), 3=142 (LC 1), 4	10 7 LC	on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate 1, 37 lb upliff)) This truss is International	as been designe n chord in all are by 2-00-00 wide v y other members are assumed to b hanical connectio capable of withs at joint 3 and 7 I designed in acco Residential Code nd referenced sta Standard	as where will fit betw s. De SPF No on (by oth standing 3 b uplift at ordance w e sections	a rectangle veen the botto o.2. ers) of truss to 33 lb uplift at ju joint 4. ith the 2018 \$ R502.11.1 a	om o pint			"III.	JU, GAF		11 B
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance	(lb) - Maximum Com Tension 1-2=-57/33, 2-3=-57 1-4=-1/24, 3-4=-1/24 2-4=-200/54 ed roof live loads have	/23 4									P P P	NUM E-2000	BER 162101	INVER X

2x4 -

- this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone;
- cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3)
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc. 6)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

ONAL 16952 Portos MANSA April 25,2024 MILLIN .


2x4 👟

Page: 1

April 25,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

ASE FOR CONST **OTED ON PLANS** VELOPMENT SER LEE'S SUMMIT, MISSOURI 01/31/2025 5:03:46