

RE: P241241-01 - Roof - MH Site Information: Project Customer: Clayton Pro Lot/Block: 201 Model: Westport - Modern Pro Address: 1059 SW Fiord Dr City: Lee's Summit General Truss Engineering Ci	operties Project Name: Subdivisio airie State: MC riteria & Design Loads	h: Highland Meadows
Drawings Show Special Load Design Code: IRC2018/TPI20 Wind Code: ASCE 7-16 Wind Speed: 115 mph Roof Load: 45.0 psf Mean Roof Height (feet): 35		Design Program: MiTek 20/20 8.6 Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16 Floor Load: N/A psf Exposure Category: C
No. Seal# Truss Name 1 170321878 A1 2 170321879 A2 3 170321880 A3 4 170321881 A4 5 170321882 A5 6 170321884 A7 8 170321884 A7 8 170321884 A7 8 170321886 A9 10 170321887 A10 11 170321887 A10 12 170321886 A11 12 170321887 A10 11 170321889 A12 13 170321890 A13 14 170321890 A13 14 170321894 A17 18 170321895 A18 19 170321897 A20 21 170321898 A21 22 170321890 B1 23 170321900 B2 24 170321901	12/20/24 35 1703219	6 V2 12/20/24 7 V3 12/20/24


Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2025.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

December 20,2024

Plate Offsets	(X, Y): [3:0-3-4,0-1-12	2], [9:0-3-4,0-1-12], [1	3:0-2-0,0	-3-0], [15:0-2-8	,0-2-0], [16:0-2-8	8,0-2-0], [1	8:0-2-8,0-2-0	1					
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.43 0.96 0.63	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.55 -1.01 0.11	(loc) 15-16 15-16 10	l/defl >858 >470 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 577 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP 1650F 1.5E 2400F 2.0E 2x8 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, exo 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	*Except* 3-6,6-9:2x4 athing directly applie sept -0 max.): 3-9. applied or 10-0-0 oc 10=0-5-8 12) .C 8), 10=-981 (LC 9	2, SP 3, d or 4, ;	 All loads are except if not CASE(S) se provided to unless other Unbalanced this design. Wind: ASCE Vasd=91mp Ke=1.00; Ca exterior zonu- Interior (1) 3 Interior (1) 3 Interior (1) 1 41-1.10, Inte left and right 	considered equ ed as front (F) o ction. Ply to ply o distribute only lo: wise indicated. roof live loads h f; T-16; Vult=115r h; TCDL=6.0psf; t. II; Exp C; Enc e and C-C Exteri -1-8 to 5-11-4, E 3-0-2 to 34-0-12 arior (1) 41-1-10 c for members a	r back (B) connection ads noted nave been of mph (3-sec ; BCDL=6. losed; MW ior(2E) -1- Exterior(2R c, Exterior(2 K, Exterior(2 to 41-10-8 vertical left	face in the LC s have been as (F) or (B), considered for cond gust) Dpsf; h=35ft; FRS (envelo 10-8 to 3-1-8,) 5-11-4 to 13 2R) 34-0-12 t zone; cantile and right	r pe) 3-0-2, o ever	(0.1 LOAD (1) De Pl Un Ca	148"x3.2 CASE(S ead + Re ate Increaniform Lu Vert: 1 oncentra Vert: 3= (B), 12= (B), 23= (B), 28= (B), 33= (B), 39= 43=-39	5") toe 5 Sta 5	s 3-10d (0.148"x -nails per NDS g ndard e (balanced): Lun 1.5 b/ft) 3-9=-70, 9-11=-7 ads (lb) B), 6=-115 (B), 12 B), 9=-115 (B), 12 B), 24=-115 (B), 13 B), 34=-115 (B), 13 B), 34=-139 (B), 45=-39 (B), 45=-39	3") or 3-12d uidlines. hber Increase=1.15, (0, 2-10=-20 7=-39 (B), 19=-343 4=-39 (B), 22=-115 26=-115 (B), 27=-115 30=-115 (B), 31=-115 35=-115 (B), 38=-39 =-39 (B), 42=-39 (B),
FORCES	(lb) - Maximum Con Tension 1-2=0/28, 2-3=-8496 4-5=-15492/4279, 5 7-8=-12882/3604, 8 9-10=-8509/2366, 1	- 6/2362, 3-4=-12964/3 -7=-15508/4284, -9=-12886/3606,	6	reactions sh DOL=1.60 Provide ade This truss ha chord live lo	own; Lumber DC quate drainage t as been designe ad nonconcurrer	DL=1.60 pl to prevent v d for a 10.0 nt with any	ate grip water ponding) psf bottom other live loa	g.		47=-39	(B), 48	3=-39 (B)	
BOT CHORD	2-19=-2116/7888, 1 16-18=-3505/12959 13-15=-4157/15508 10-12=-2128/7900	8-19=-2115/7862, , 15-16=-4163/15492 , 12-13=-2126/7872,	, c,	capacity of 4 Provide med bearing plate joint 2 and 9	hanical connect capable of with 81 lb uplift at joir	ion (by oth nstanding 9 nt 10.	ers) of truss t 82 lb uplift at					TATE OF I	MISSO
WEBS	3-19=-32/598, 9-12= 3-18=-1507/5520, 9 4-18=-1821/696, 4-' 5-16=-734/390, 5-15 7-13=-2832/761, 8-'	-13=-1476/5427, 16=-731/2732, 5=-25/59, 7-15=0/455	9) 5, 1(Internationa R802.10.2 a) Graphical pt	designed in acc Residential Coo nd referenced st urlin representati ation of the purli	de sections tandard AN ion does no	R502.11.1 a SI/TPI 1. ot depict the s					ST SCOT SEVI	
(0.131"x3 Top chorc oc. Bottom ch staggered	s to be connected toge ") nails as follows: Is connected as follow: nords connected as foll 1 at 0-9-0 oc. nected as follows: 2x3 -	s: 2x4 - 1 row at 0-9- ows: 2x8 - 2 rows	0 1:	bottom chorn 1) Use Simpso Right Hand end to conne 2) Use Simpso Hand Hip) o connect trus		JA26 (THJ nt at 5-11-1 pack face o JA26 (THJ 4-0-6 from ce of bottor	A26 on 2 ply 0 from the le f bottom choi A26 on 2 ply the left end t n chord.	ft rd. , Left o		-	and the second sec	PE-2001	018807

December 20.2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - MH Lot 201	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 170321879
P241241-01	A2	Нір	1	1	Job Reference (optiona	
Premier Building Supply	(Springhill, KS), Spring Hills, KS - 66				26 2024 MiTek Industries, Inc sB70Hq3NSgPqnL8w3uITXb	
	- <u>1-10-8 4-1-9 7-11-</u> 1-10-8 4-1-9 3-9-1			<u>26-1-0</u> 6-1-0	<u>32-0-12</u> 5-11-12	<u>35-10-7</u> <u>40-0-0</u> <u>41-10-8</u> 3-9-11 <u>4-1-9</u> <u>1-10-8</u>
-9 -12	4 ¹² 0	5x5= 4x4=	3x4=	3x6=		5x5= 9
	1.5x4s 5= 21 3			7 23		1.5x4 = 10 24 3x10 = 11 or
-0 ^{3.2}	220		~			11 2512
	6x6=	19 18 17		16	15	14 7x8=
	0x0=	4x8= MT18HS 5x8 =		4x4=		4x8= 7x0= 5x5=
	7-10-0	4x4= 15-11-5	24-0-11	MT	18HS 5x8 = 32-2-0	40-0-0

Plate Offsets ()	X, Y): [2:Edge,0-2-10], [12:0-1-9,0-3-8], [1 -	2:Edge,0-	3-2]									
.oading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.96 0.58 0.93	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.54 -0.99 0.14	(loc) 16-17 16-17 12	l/defl >875 >480 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS	GRIP 197/144 244/190
BCDL	10.0	Code	IRC201	3/TPI2014	Matrix-S							Weight: 197 lb	FT = 20%
UMBER OP CHORD OT CHORD VEBS SLIDER BRACING OP CHORD	2x4 SP 1650F 1.5E 2x6 SP 2400F 2.0E 2x3 SPF No.2 Right 2x4 SP No.2 Structural wood shea 2-2-0 oc purlins, exc	athing directly applie	2) d or	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 3- Interior (1) 15 39-1-10, Inte left and right	7-16; Vult=115 n; TCDL=6.0psi t. II; Exp C; End and C-C Exter 1-8 to 7-11-4, I 5-0-2 to 32-0-12 rior (1) 39-1-10 exposed ; end	; BCDL=6.0 closed; MW ior(2E) -1-1 Exterior(2R) 2, Exterior(2 to 41-10-8 vertical left	Desf; h=35ft; FRS (envelo 0-8 to 3-1-8, 17-11-4 to 15 2R) 32-0-12 t zone; cantile and right	5-0-2, o ever					
		applied or 9-1-6 oc 5-19, 8-14 12=0-5-8 12)	3) 4) 5)	reactions sho DOL=1.60 Provide adec All plates are This truss ha chord live loa	tor members a pwn; Lumber D uate drainage MT20 plates u s been designed nonconcurre	OL=1.60 pla to prevent v inless other ed for a 10.0 nt with any	ate grip vater pondin wise indicate) psf bottom other live loa	g. :d. ids.					
	Max Grav 2=1927 (L	_C 1), 12=1927 (LC	1) 0)	capacity of 8				U					
ORCES	(lb) - Maximum Com Tension	pression/Maximum	7)		hanical connec capable of wit								
OP CHORD	1-2=0/24, 2-3=-3972 4-5=-3804/904, 5-6= 6-8=-5911/1365, 8-9 9-10=-4027/930, 10- 12-13=0/24	=-5907/1365, 9=-3795/906,	2, 8)	joint 2 and 4 This truss is International R802.10.2 ar	76 lb uplift at joi designed in acc Residential Co nd referenced s rlin representat	int 12. cordance wi de sections tandard AN	th the 2018 R502.11.1 a	ind					
OT CHORD	2-19=-838/3592, 17- 16-17=-1316/6213, 1 12-14=-826/3527		9)	or the orienta bottom chord	ation of the purl			5126				STE OF M	AISSO
/EBS OTES	12-14=-826/3527 4-19=-130/911, 9-14 5-19=-2100/528, 6-1 6-16=-428/183, 8-16 8-14=-2109/526, 3-1 10-14=-28/502	7=-433/183, 5=-8/498,	488, LC	DAD CASE(S)	Standard					۲ م	S	Store Sevi	ER ER

1) Unbalanced roof live loads have been considered for this design.

FRSSIONAL EN December 20,2024

O

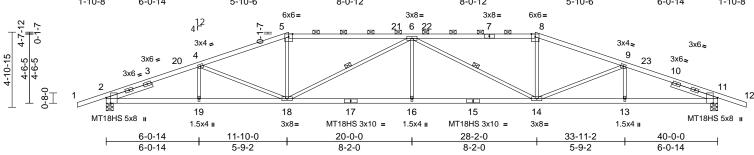
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

C

PE-2001018807

										RELEAS		NSTRUCTION
Job	Truss		Truss Type			Qty	Ply	Roof - MH L	ot 201		ED FOR PL LOPMENT 17032	AN REVIEW
P241241-01	A3		Hip			1	1	Job Referen	ce (optional)		17032 S SUMMIT, I	
remier Building Supply	v (Springhill, KS), Spring	Hills, KS - 66083	9					26 2024 MiTek In PsB70Hq3NSgPq		nu Dec 9)9:16: WrCDoir-4z.c?f	07/2	2025
	-1-10-8 <u>5-2-4</u> 1-10-8 <u>5-2-4</u>		<u>11-4</u>	<u>16-7-5</u> 6-8-1		<u>23-4-11</u> 6-9-5		<u>30-0-12</u> 6-8-1		9-12 9-0	<u>40-0-0</u> 5-2-4	41-10-8
-9		4 ¹²	6x6= ආ 5		3x8=	3x6=	3x4=		6x6= 9			
- <u>-</u>	0.40	1.5x4 👟	6-5 		© 621g		228			1.5x4 ≠	0.40	
<u>1-2-15</u> <u>3-10-3</u> <u>3-10-3</u>	3x10 = 320 2	4		A				R		10	3x10 <i>≥</i> 23 ₁₁	12
			19	18	17		16	15	14		~	
	5x5=		19 4x8=	18 MT18HS 5x				T18HS 5x8 =	14 4x8=		8	3x8=
	8x8=				3x4 I							5x5=
				16-7-5		23-4-11		30-2-0		40-0-0		
	L	<u>9-10-0</u> 9-10-0		6-9-5		6-9-5		6-9-5		9-10-0		

Plate Offsets ()	X, Y): [2:0-1-9,0-4-0],	[2:Edge,0-3-2], [12:0	-1-9,0-4-0	J], [12:Edge,0-	3-2]								
_oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.91	Vert(LL)	-0.46	16-17	>999	240	MT20	197/144
CDL	10.0	Lumber DOL	1.15		BC	0.94	Vert(CT)	-0.84	16-17	>568	180	MT18HS	197/144
CLL	0.0	Rep Stress Incr	YES		WB	0.84	Horz(CT)	0.18	12	n/a	n/a		
CDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 182 lb	FT = 20%
IMBER			2)	Wind: ASCE	7-16; Vult=115	mph (3-sec	ond gust)						
OP CHORD	2x4 SP 1650F 1.5E			Vasd=91mpl	; TCDL=6.0psf;	BCDL=6.0	Dpsf; h=35ft;						
OT CHORD	2x6 SPF No.2			Ke=1.00; Ca	t. II; Exp C; Enc	losed; MW	FRS (envelo	pe)					
/EBS	2x3 SPF No.2			exterior zone	and C-C Exteri	ior(2E) -1-1	0-8 to 3-1-8,						
LIDER	Left 2x4 SP No.2 2	2-5-15, Right 2x4 SP		Interior (1) 3-	1-8 to 9-11-4, E	xterior(2R	9-11-4 to 17	7-0-2,					
	No.2 2-5-9	, 0			7-0-2 to 30-0-12								
RACING					rior (1) 37-1-10			ever					
OP CHORD	Structural wood she	athing directly applied	or	left and right	exposed ; end v	vertical left	and right						
	1-11-5 oc purlins, ex		01		for members a			r					
	2-0-0 oc purlins (2-8				own; Lumber DC	DL=1.60 pla	ate grip						
OT CHORD	Rigid ceiling directly			DOL=1.60									
01 0110112	bracing.		3)		quate drainage t								
'EBS		6-19, 8-14	4)		MT20 plates u			ed.					
	(size) 2=0-5-8, 2	,	5)		s been designe								
	Max Horiz 2=73 (LC				ad nonconcurrer			ids.					
	Max Uplift 2=-469 (L		6)		are assumed to	be SPF No	0.2 crushing						
	Max Grav 2=1927 (L			capacity of 4									
	•		7)		hanical connect								
ORCES	(lb) - Maximum Com	pression/Maximum			capable of with		69 lb uplift a	t					
	Tension				69 lb uplift at joir								
OP CHORD	,	4/1046, 4-5=-3908/934	l, 8)		designed in acc								
	5-6=-3674/920, 6-8=				Residential Coo			and					
	8-9=-3675/917, 9-10				nd referenced st								
	10-12=-4005/1038,		9)		rlin representati			size					m
OT CHORD	2-19=-889/3642, 17-	,			ation of the purli	n along the	top and/or					STATE OF M	AL ON
	16-17=-1063/4950,	14-16=-1051/4942,		bottom chord								A E OF I	ISS W
	12-14=-892/3642		LC	DAD CASE(S)	Standard						4	T.M.	NSV
EBS		-1554/383, 6-17=0/2									B	SCOTT	N. N.
		6=0/250, 8-14=-1544/3	879,								R	SEVI	
	9-14=-93/784, 4-19=	=0/326, 10-14=0/327									0	SEVI	
DTES											63		×
Unbalance	d roof live loads have	been considered for									25		
											11		


this design.

UNIN PE-200101000 And and a second December 20,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

								RE	LEASE FOR CO	NSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Roof - MH Lot 201		S NOTED FOR PI DEVELOPMENT 17032	
P241241-01	A4		Нір		1	1	Job Reference (option		LEE'S SUMMIT,	21881 MISSOURI
Premier Building Supply	y (Springhill, KS), Spi	ing Hills, KS - 66083,					6 2024 MiTek Industries, In 370Hq3NSgPqnL8w3uITXb			2025
	-1-10-8 6.							_		41-10-8
	0	0-14 0-14	<u>11-11-4</u> 5-10-6	<u>20-0-0</u> 8-0-12		<u>28-0-12</u> 8-0-12	<u> </u>		<u>40-0-0</u> 6-0-14	1-10-8
$ \begin{array}{c c} & 4 - 10 - 15 \\ \hline & 4 - 6 - 5 \\ \hline & 4 - 6 - 5 \\ \hline & - 4 - 6 - 5 \\ \hline & - 1 - 7 \\ \hline & - 1 \\ \hline \end{array} $	3 3x6 = 2		6x6=			3xi	8		3x6 23 3x6 10	11 12
- O	MT18HS 5x8	19	18	17	16	15	14	13	МТ	18HS 5x8 u

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d		GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.91	Vert(LL)	-0.41	16	>999	240		197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.80	Vert(CT)	-0.77	14-16	>625	180	MT18HS	244/190
BCLL	0.0	Rep Stress Incr	YES		WB	0.87	Horz(CT)	0.25	11	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 174 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER	2x4 SP 2400F 2.0E 2x4 SP 1650F 1.5E 2x3 SPF No.2 Left 2x4 SP No.2 3 3-2-0	3-2-0, Right 2x4 SP N	2) No.2	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 3	7-16; Vult=115m h; TCDL=6.0psf; It. II; Exp C; Encle e and C-C Exterio -1-8 to 11-11-4, E ior (1) 19-0-2 to 2	BCDL=6. osed; MW or(2E) -1- Exterior(2	Dpsf; h=35ft; FRS (envelo I0-8 to 3-1-8, R) 11-11-4 to	. ,					
BRACING	3-2-0				5-1-10, Interior (1			one:					
TOP CHORD	Structural wood she 2-10-4 oc purlins, ex 2-0-0 oc purlins (2-2		d or	cantilever lef right expose for reactions	ft and right expos d;C-C for membe shown; Lumber I	ed ; end vers and fo	vertical left ar	nd					
BOT CHORD	Rigid ceiling directly bracing.	applied or 7-5-0 oc	3)		quate drainage to								
WEBS	1 Row at midpt	6-18, 6-14	4)		MT20 plates un			ed.					
REACTIONS	(size) 2=0-5-8,	11=0-5-8	5)		as been designed								
	Max Horiz 2=86 (LC	16)	6)		ad nonconcurrent are assumed to b								
	Max Uplift 2=-453 (L Max Grav 2=1931 (L	,, , , , , , , , , , , , , , , , , , , ,		capacity of 5				Ū					
FORCES	(lb) - Maximum Com Tension		, i)	bearing plate	e capable of withs 53 lb uplift at joint	standing 4							
TOP CHORD		9/1030, 4-5=-3776/95 3547/949	8, 8)	, This truss is	designed in acco Residential Code	ordance w		and					
		=-3347/949, I=-4147/1029, 11-12=	-0/18		nd referenced sta			DITE					
BOT CHORD	,	-19=-878/3796, 4-16=-933/4351,	9)	Graphical pu	Irlin representatio ation of the purlin	on does no	ot depict the	size				OF N	
WEBS		293/199, 5-18=-83/68 16=0/337, 14=-81/675,	3, L(DAD CASE(S)								STATE OF M	T M. ER
NOTES											Ø/*		0

1) Unbalanced roof live loads have been considered for this design.

NUMBER PE-2001018807 0 HESSIONAL ET December 20,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

							RE	ELEASE FOR CO	ONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - MH Lot 201		S NOTED FOR I DEVELOPMEN 1703	
P241241-01	A5	Hip		1	1	Job Reference (option		1703 LEE'S SUMMIT	
Premier Building Supply	(Springhill, KS), Spring Hills, k	KS - 66083,	•			26 2024 MiTek Industries, Ind B70Hq3NSgPqnL8w3uITXb0			2025
	1-10-8 7-0-14	13-11-4	20-0-0		6-0-12	32-11-2		40-0-0	41-10-8
	1-10-8 7-0-14	6-10-6	6-0-12		6-0-12	6-10-6	•	7-0-14	1-10-8
-9-12		12 4 Г 3х6≠ Ф		x8= 7 <u>2</u> 3		6x6= 8	3x4 ≈		
		$4^{12} 3x6 = 0$		' & R		+11	x6=		
2	3x6 =	5	\square			·] ── `	q		
က် က်	3x6 =	4					10	3x6 <i>≈</i>	
5-6-15 5-2-3 5-2-3	2β		#		1 and a second s			124 3x6	1.
	2							19	,≈ 12
				-					13
		20		7	16	15	14		
	MT18HS 5x8 II	1.5x4 I	3x8= 1.	5x4 I	MT18HS 3x	10 =	1.5x4 u	M	Г18HS 5x8 ॥
			MT18HS 3x10 =			3x8=			
	7-0-14	13-10-0	20-0-0		26-2-0	32-11-2		40-0-0	
	7-0-14	6-9-2	6-2-0	,	6-2-0	6-9-2	•	7-0-14	

Plate Offsets (X, Y): [2:0-4-5,Edge], [12:0-4-5,Edge]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
FCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.86	Vert(LL)	-0.36	17	>999	240	MT20	244/190
CDL	10.0	Lumber DOL	1.15		BC	0.91	Vert(CT)		17-19	>724	180	MT18HS	244/190
BCLL	0.0	Rep Stress Incr	YES		WB	0.76	Horz(CT)	0.23	12	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 177 lb	FT = 20%
UMBER OP CHORD	No.2	·		Vasd=91mp Ke=1.00; Ca exterior zone	7-16; Vult=115n h; TCDL=6.0psf; t. II; Exp C; Encl e and C-C Exterio -1-8 to 13-11-4, I	BCDL=6.0 losed; MW or(2E) -1-1	0psf; h=35ft; FRS (envelo 0-8 to 3-1-8	,					
VEBS	2x3 SPF No.2			()	ior (1) 21-0-2 to 2	· ·	,	,					
SLIDER	Left 2x4 SP No.2 3 3-8-5	3-8-5, Right 2x4 SP	No.2	26-0-12 to 3 cantilever le	2-11-2, Interior (t and right expos	1) 32-11-2 sed ; end v	to 41-10-8 z ertical left ar	nd					
BRACING					d;C-C for membe			RS					
TOP CHORD	Structural wood she 2-11-1 oc purlins, ex 2-0-0 oc purlins (2-2	kcept	3	DOL=1.60 Provide ade	shown; Lumber quate drainage to	o prevent v	vater pondin						
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-7-10 or	5 4 5) This truss ha	e MT20 plates ur as been designed	d for a 10.0) psf bottom						
VEBS	1 Row at midpt	7-19, 7-15			ad nonconcurren								
REACTIONS	(size) 2=0-5-8,	12=0-5-8	6		are assumed to	be SP 165	0F 1.5E crus	shing					
	Max Horiz 2=-98 (LC	2 13)	-	capacity of 5									
	Max Uplift 2=-443 (L	.C 8), 12=-443 (LC 9) '		hanical connecti capable of with								
	Max Grav 2=1931 (I				43 lb uplift at joir		43 ID UPIIIT a	t					
ORCES	(lb) - Maximum Corr		,		designed in acco		th the 2018						
0.1020	Tension	iprocolori, maximum	0		Residential Cod			and					
OP CHORD	1-2=0/18, 2-4=-4196	6/1039, 4-6=-3558/93	37,		nd referenced sta			ana					
	6-7=-3320/932, 7-8= 8-10=-3558/937, 10 12-13=0/18		9) Graphical pu	Irlin representation of the purlir	on does no	t depict the	size				OF	
BOT CHORD		5-17=-794/3708,	L	OAD CASE(S)							A	STATE OF M	M. TE
WEBS	4-20=0/276, 4-19=-5 7-19=-701/180, 7-17	577/244, 6-19=-83/6	179,								R.	SEVI	
NOTES										_	JA A	ott .	Berle
) Unbalance this design	ed roof live loads have n.	been considered for									N.	PE-2001	018807
											Y	SSIONA	L ENGLIS
												December	

December 20,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

							RELEASE FOR	CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - MH Lot 201		R PLAN REVIEW NT SERVICES 0321883
P241241-01	A6	Hip		1	1	Job Reference (optional		0321883 IIT, MISSOURI
Premier Building Supply (Springhill, KS), Spring Hills, KS - 6	6083,				2024 MiTek Industries, Inc. 0Hq3NSgPqnL8w3uITXbGK		/2025
								44,40,0
	1-10-8 8-2-4 1-10-8 8-2-4		15-11-4 7-9-0	<u>24-0-12</u> 8-1-8		31-9-12 7-9-0	<u>40-0-0</u> 8-2-4	41-10-8 1-10-8
	021		7x8		5x8=	100	021	1 10 0
	3x6 = 3x6 = 19 3 2 E	4 ¹² 3x4 = 3x6 = 4 20	6- 		22 7	3x6z 3x4 8 23 7 23 7 23 7 23 7 23 7 23 7 23 7 23 7	-	11 12 11 12
⊥ 0 ŀ	MT18HS 5x8 ∎	18 1.5х4 ш	17 16 MT18HS 3x10 = 3x4		3x8=	14 13 1.5 3HS 3x10 =	3 x4 u	⊠ ~ MT18HS 5x8 ∎
	8-2-4		15-10-0	24-2-0		31-9-12	40-0-0	
	8-2-4	1	7-7-12	8-4-0	I	7-7-12	8-2-4	I I

Plate Offsets	(X, Y):	[2:0-4-5,Edge], [11:0-4-5,Edge]
---------------	-------	----	---------------------------------

		1											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	1.00	Vert(LL)	-0.32	16-18	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.74	Vert(CT)	-0.64	15-16	>752	180	MT18HS	244/190
BCLL	0.0	Rep Stress Incr	YES		WB	0.50	Horz(CT)	0.22	11	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 175 lb	FT = 20%
LUMBER			2	Wind: ASCE	7-16; Vult=115m	ph (3-seo	cond gust)						
TOP CHORD	2x4 SP 2400F 2.0E	*Except* 1-5,8-12:2x	4 SP		h; TCDL=6.0psf; I		· · · ·						
BOT CHORD	1650F 1.5E 2x4 SP 1650F 1.5E				t. II; Exp C; Enclo and C-C Exterio								
WEBS	2x4 SP 1650F 1.5E				-1-8 to 15-11-4, E								
SLIDER		4-3-6, Right 2x4 SP N	10.2		ior (1) 23-0-2 to 2								
SLIDER	4-3-6	+-5-0, Night 2x+ 51 1	10.2		1-1-10, Interior (1			one;					
BRACING	100				t and right expos								
TOP CHORD	Structural wood she	athing directly applie	Ч	right expose	d;C-C for membe	rs and fo	rces & MWFI	RS					
	except	at mig an ootly applies	а,		shown; Lumber I	DOL=1.6) plate grip						
	2-0-0 oc purlins (2-2	-0 max.): 6-7.		DOL=1.60									
BOT CHORD	Rigid ceiling directly		3		quate drainage to								
	bracing.		4		e MT20 plates unl			ed.					
WEBS	1 Row at midpt	4-16, 6-15, 9-15	5)		is been designed								
REACTIONS	(size) 2=0-5-8, 2	11=0-5-8			ad nonconcurrent								
	Max Horiz 2=111 (L0	C 12)	6)		are assumed to b	De SP 165	OF 1.5E Crus	sning					
	Max Uplift 2=-431 (L	C 8), 11=-431 (LC 9)	7	capacity of 5	hanical connectio	n (hu oth	oro) of truco	to					
	Max Grav 2=1931 (I	_C 1), 11=1931 (LC 1) ''		capable of withs								
FORCES	(lb) - Maximum Com	pression/Maximum			31 lb uplift at joint			·					
	Tension		8		designed in acco		ith the 2018						
TOP CHORD	1-2=0/18, 2-4=-4154	4/1043, 4-6=-3362/91	7, '		Residential Code			and					
	6-7=-3113/923, 7-9=	-3363/917,		R802.10.2 a	nd referenced sta	andard AN	ISI/TPI 1.						
	9-11=-4153/1043, 1		9	Graphical pu	Irlin representatio	n does n	ot depict the	size					The
BOT CHORD	2-18=-878/3809, 16			or the orienta	ation of the purlin	along the	top and/or					A	and
	15-16=-651/3112, 1	3-15=-885/3809,		bottom chore	d.							B.F. OF I	AISSO
	11-13=-885/3809		_ L [,]	OAD CASE(S)	Standard						4	9.0	NSON
WEBS	,	787/288, 6-16=-13/50	,								B	STATE OF A	N XX
		5=-2/507, 9-15=-786/2	289,								И	SEVI	
	9-13=0/316										81	J SEVI	
NOTES											10	5	1 ~ 2
1) Unbalance	ed roof live loads have	been considered for									8	19	2 ~ 1

this design.

NOMOLA PE-200101000 Aller . December 20,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

liTek® 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

								RELEASE FOR C	ONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Roof - MH Lot 201	AS NOTED FOR	
P241241-01	A7		Hip		1	1	Job Reference (optiona	DEVELOPMEN 1703 LEE'S SUMMIT	
Premier Building Sup	ply (Springhill, KS), Sprin	g Hills, KS - 66083,					26 2024 MiTek Industries, Inc. PsB70Hq3NSgPqnL8w3uITXb0		2025
		-14	<u>12-1-6</u> 6-0-8	<u>17-11-4</u> 5-9-14	<u>22-0-12</u> 4-1-8		10-10 33-11-3 9-14 6-0-8	<u> </u>	41-10-8
					6x6=	5x5=			
⊢ 6-10-15 – 1 – 6-6-3 6-7-12 0-8-0 – 1-9	$3x_{3x6} =$ 3 1	6= 1.5x4	3x6= 21 5	3x4 = 0 6 4 4 4		8	3x4z 9 22 3x0 11		x6z
	MT18HS 5x8 ॥		20 3x4=			17 16 3x8= 4x6=	15 3x4=	Ν	T18HS 5x8 ॥
	ŀ	9-4-0 9-4-0		<u>17-10-0</u> 8-6-0	<u>22-2-0</u> 4-4-0	+	<u>30-8-0</u> 8-6-0	<u>40-0-0</u> 9-4-0	——

Plate Offsets (X, Y):	[2:0-4-5,Edge],	[13:0-4-5,Edge]									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.71	Vert(LL)	-0.33	18-20	>999	240	MT20
TCDL	10.0	Lumber DOL	1.15	BC	0.95	Vert(CT)	-0.67	18-20	>718	180	MT18HS
BCLL	0.0	Rep Stress Incr	YES	WB	0.41	Horz(CT)	0.22	13	n/a	n/a	
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 179 I

Wind: ASCE 7-16; Vult=115mph (3-second gust)

2)

LUMBER	
TOP CHORD	2x4 SP 1650F 1.5E *Except* 7-8:2x4 SP
	No.2, 1-5,10-14:2x4 SP 2400F 2.0E
BOT CHORD	2x4 SP 1650F 1.5E *Except* 19-16:2x4 SP
	No 2
WEBS	2x3 SPF No.2
SLIDER	Left 2x4 SP No.2 3-3-7, Right 2x4 SP No.2
SLIDER	3-1-14
	3-1-14
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	2-9-12 oc purlins, except
	2-0-0 oc purlins (3-2-14 max.): 7-8.
BOT CHORD	Rigid ceiling directly applied or 2-2-0 oc
	bracing.
WEBS	1 Row at midpt 6-18, 9-17
REACTIONS	(size) 2=0-5-8, 13=0-5-8
	Max Horiz 2=123 (LC 12)
	Max Uplift 2=-418 (LC 8), 13=-418 (LC 9)
	Max Grav 2=1931 (LC 1), 13=1931 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/18, 2-4=-4130/1010, 4-6=-3884/943,
	6-7=-3064/849, 7-8=-2838/854,
	8-9=-3066/863, 9-11=-3882/963,
	11-13=-4126/1029, 13-14=0/18
BOT CHORD	2-20=-857/3778, 18-20=-757/3473,
	17-18=-539/2837, 15-17=-785/3474,
	13-15=-882/3775
WEBS	7-18=-102/618, 7-17=-250/254,
	8-17=-100/604, 4-20=-208/210, 6-20=0/420,
	6-18=-815/282, 9-17=-814/280, 9-15=0/418,
	11-15=-206/210
NOTES	
NULES	

1) Unbalanced roof live loads have been considered for this design.

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-10-8 to 3-1-8, Interior (1) 3-1-8 to 17-11-4, Exterior(2E) 17-11-4 to 22-0-12, Exterior(2R) 22-0-12 to 29-1-10, Interior (1) 29-1-10 to 41-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. 3) All plates are MT20 plates unless otherwise indicated. 4) 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) All bearings are assumed to be SP 1650F 1.5E crushing capacity of 565 psi. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 418 lb uplift at joint 2 and 418 lb uplift at joint 13. This truss is designed in accordance with the 2018 8) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Graphical purlin representation does not depict the size 9) or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard

GRIP

lb

244/190

244/190

FT = 20%

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

							RELEASE FOR	CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - MH Lot 201		R PLAN REVIEW ENT SERVICES 70321885
P241241-01	A8	Common		3	1	Job Reference (optional)		0321885 /IT, MISSOURI
Premier Building Supply	r (Springhill, KS), Spring Hills, KS - 66	6083,				3 2024 MiTek Industries, Inc. B70Hq3NSgPqnL8w3uITXbC		/2025
	<u>-1-10-8 6-2-11</u> 1-10-8 6-2-11	<u>13-4-2</u> 7-1-7	20-0-0		<u>26-7-14</u> 6-7-14	33-9-6	40-0-0	41-10-8
	1-10-0 0-2-11	7-1-7	0-7-14	5x5=	0-7-14	7-1-7	0-2-11	1-10-8
			3x4 =	7		3x6≈		
		3x6 12	i 19 6		20	0		
	2	41 5	e A			89		
7-7-3	^{3x6} = 1.5 3x6 = 4	x4.					1.5x4 ≠ 10 3x6≤	
	3						×	3x6≈
	2							12 13
	MT18HS 5x8 ॥	18	17	16	15	14		MT18HS 5x8 II
	9-5-7	3x4=	4x6= 20-0-0	4x8=	4x6= 30-6	3x4=	40-0-0	
	9-5-7		10-6-9		10-6	-	9-5-7	———————————————————————————————————————

Plate Offsets (X, Y): [2:0-4-5,Edge], [12:0-4-5,Edge]

	,, , ,, [<u>_</u> .e , e, <u>_</u> ege],	[12:0 1 0;2090]			1	-							
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.97	Vert(LL)	-0.34	14-16	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.83	Vert(CT)	-0.74	14-16	>645	180	MT18HS	244/190
BCLL	0.0	Rep Stress Incr	YES		WB	0.62	Horz(CT)	0.22	12	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 173 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Excep 2400F 2.0E 2x4 SP 1650F 1.5E 2x3 SPF No.2 Left 2x4 SP No.2	t* 1-5,9-13:2x4 SP 3-4-14, Right 2x4 SP athing directly applie applied or 8-0-10 oc 6-16, 8-16 12=0-5-8 C 16) C 8), 12=-403 (LC 9 .C 1), 12=1931 (LC - apression/Maximum 3/913, 4-6=-3865/825 -2812/701, -12=-4154/913,	2) d. 3) 4) 5) 1) 6) 7)	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 3 25-0-0, Inter and right exp exposed;C-C reactions shi DOL=1.60 All plates are This truss ha chord live loa All bearings capacity of 5 Provide mec bearing plate joint 2 and 4 This truss is International	7-16; Vult=115m h; TCDL=6.0psf; I t. II; Exp C; Enclc and C-C Exterio -1-8 to 20-0-0, Ex ior (1) 25-0-0 to 4 bosed ; end vertic C for members an own; Lumber DOI a MT20 plates unl as been designed ad nonconcurrent are assumed to b i65 psi. hanical connectic e capable of withs 03 lb uplift at joint designed in acco Residential Code nd referenced sta	BCDL=6. ssed; MW r(2E) -1 terior(2R 1-10-8 zc al left and d forces a L=1.60 pl less othel for a 10. with any pe SP 165 on (by oth tanding 4 t 12. rdance we sections	Opsf; h=35ft; FRS (envelo 10-8 to 3-1-8,) 20-0-0 to one; cantileve d right & MWFRS fo ate grip wise indicate 0 psf bottom other live loa 60F 1.5E cruss to 103 lb uplift at ith the 2018 s R502.11.1 a	er left r ed. eds. hing to					
WEBS	14-16=-638/3350, 12 7-16=-231/1323, 4-1	8=-287/236,	2007									STATE OF M	AISS
	6-18=-9/509, 6-16=- 8-14=-9/507, 10-14=	,	337,								A	AN SCOT	Ray
NOTES											A	SEVI	
I) Unbalance	ed roof live loads have	been considered for									b .	A SEVI	

1) Unbalanced roof live loads have been considered for this design.

E

UMBE

PE-2001018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

							RELEASE FOR	CONSTRUCTION				
Job	Truss	Truss Type		Qty	Ply	Roof - MH Lot 201		R PLAN REVIEW				
P241241-01	A9	Common		1	1	Job Reference (optional	DEVELOPMENT SERVICE 170321886 LEE'S SUMMIT, MISSOUF					
Premier Building Su	apply (Springhill, KS), Spring Hills, KS - 6	6083,				i 2024 MiTek Industries, Inc. [∙] B70Hq3NSgPqnL8w3uITXbC		/2025				
	-1-10-8 <u>6-2-11</u> 1-10-8 6-2-11	<u>13-4-2</u> 7-1-7	<u>+ 20-0-0</u> 6-7-14	-1	<u>26-7-14</u> 6-7-14	33-9-6	40-0-0	<u>42-0-0</u> 				
	1-10-8 6-2-11	/-1-/	6-7-14	5x5=	0-7-14	7-1-7	6-2-11	2-0-0				
- -		3	3x4 =	7		3x6 ≈						
		3x6 -	20		21	3x4=						
		4 ¹² 5 6	, A			89						
7-7-11 7-4-0	3x6 = 1.5 3x6 = 4	5x4					1.5x4 <i>≽</i> 10 3x4 ≈					
Ň	3				Ĵ			3x4 =				
	2							12				
T ⊤ Å⊤	MT18HS 5x8 II	19	18	17	 16	15	\boxtimes	5x8=				
		3x4=	4x6=	4x8=	4x6=	3x4=		5x8=				
	<u>9-5-7</u> 9-5-7		<u>20-0-0</u> 10-6-9		<u> </u>		<u>40-0-0</u> 9-5-7					

	(on a sin a	0.0.0		001	-	DEEL		(1)	1/1-0	1.74		
Loading TCLL (roof)	(psf)	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.00	DEFL Vert(LL)	in 0.24	(loc) 15-17	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
()	25.0	1 1			BC	0.99	``'					-	
TCDL	10.0	Lumber DOL	1.15		WB	0.83	Vert(CT)			>642	180	MT18HS	244/190
BCLL	0.0	Rep Stress Incr	YES			0.62	Horz(CT)	0.22	12	n/a	n/a		FT 000/
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 173 lb	FI = 20%
LUMBER			2)		7-16; Vult=115n								
TOP CHORD	2x4 SP No.2 *Excep 2400F 2.0E	ot* 1-5,9-14:2x4 SP			h; TCDL=6.0psf; at. II; Exp C; Encl			ne)					
BOT CHORD					e and C-C Exterio								
WEBS	2x3 SPF No.2			Interior (1) 3	-1-8 to 20-0-0, E	xterior(2R) 20-0-0 to						
SLIDER	Left 2x4 SP No.2 3 No.2 3-2-13	3-4-14, Right 2x4 SP			ior (1) 25-0-0 to 4 bosed ; end vertic			left					
BRACING	110.2 3-2-13				C for members ar			r					
TOP CHORD	Structural wood abo	athing directly applied	4		own; Lumber DO								
BOT CHORD			J.	DOL=1.60	,		01						
BOT CHORD	bracing.	applied of 6-1-5 oc	3)	All plates are	e MT20 plates un	less othei	wise indicate	ed.					
WEBS	0	6-17, 8-17	4)	This truss ha	as been designed	d for a 10.	0 psf bottom						
REACTIONS		12=2-5-8, 13=0-1-9			ad nonconcurren								
	Max Horiz 2=-141 (L		5)		e assumed to be:								
	Max Uplift 2=-403 (L	-)	6		acity of 805 psi,								
	13=-1311	<i>,,</i>	,		pacity of 565 psi,	Joint 12 S	SP 1650F 1.5	E					
	Max Grav 2=1927 (L)		acity of 565 psi.								
	13=61 (LC), 6)		hanical connection	on (by oth	ers) of truss	to					
FORCES	(lb) - Maximum Com	,	7)		e at joint(s) 13. hanical connecti	on (by oth	ore) of truce	to					
	Tension	iprocolori, maximum	()		e capable of with								
TOP CHORD	1-2=0/18, 2-4=-4147	7/915, 4-6=-3854/831,			b uplift at joint 12								
	6-7=-2799/700, 7-8=	-2799/703,		13.	b upint ut joint 12		i ib upint ut je	20110					
	8-10=-3820/830, 10-	-12=-4093/921,	8)		e or shim require	ed to provi	de full bearin	a					-
	12-13=-1262/203, 13	3-14=0/41	-,		truss chord at joi			5				Con	alle
BOT CHORD			9)		designed in acco		ith the 2018					A OF M	AISSOL
	15-17=-635/3327, 12			Internationa	Residential Cod	e sections	s R502.11.1 a	and			1	750	N.O.
WEBS	7-17=-231/1316, 4-1	,		R802.10.2 a	nd referenced sta	andard AN	ISI/TPI 1.				R	SCOT	New York
		974/337, 8-17=-963/3	836, 10		as large uplift rea						A	~/	
	8-15=-7/479, 10-15=	=-258/234			per connection is						H	SEVI	
NOTES					ard movement at						160*	1 This	
	ed roof live loads have	been considered for		•	st provide for upl	lift reaction	ns indicated.				<u> </u>	non.	Landen
this desig	n.		LC	DAD CASE(S)	Standard					-		NUM	BER A
											17	PE-2001	
											N	PE-2001	SIGON SA
											Y	100	1 ANA
											3	STONIA	TENA
												A ANA	
												and and	

December 20,2024

MiTek[®] 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR C	ONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - MH Lot 201	AS NOTED FOR DEVELOPMEN 1703	
P241241-01	A10	Common Structural Gable	1	1	Job Reference (optional	LEE'S SUMMIT	321887 7, MISSOURI
Premier Building Supply	(Springhill, KS), Spring Hills, KS -				2024 MiTek Industries, Inc. 1 370Hq3NSgPqnL8w3uITXbG		/2025
	- <u>1-10-8 6-2-11</u> 1-10-8 6-2-11	<u> </u>		<u>26-7-14</u> 6-7-14	33-9-5	40-0 6-2-	
	1100 0211		5x5=	0711		52	
- -		3x4 =	7		3x6 <i>≈</i>		
		^{3x6} = 18			19 ^{3x4} ≈		
		4 ¹² 5 6			8 9		
7-3 7-4-0 7-0-8	3x4 =	1.5x4	M			1.5x4 💋	
7-7-3 7-4-(7-0-8	3x4 =	4	>			10 20 3	8x4≥
	3						1 _{3x4}
							12
⊥ °, + °, °, +		<u>17</u>	15	14	13	*****	
	3x8 II	3x4= 3x6=		3x6:		=	3х6 и
	9-5-8				0-6-9	40-0-0	
	9-5-8	10-6-9	ı.	1	0-6-9	9-5-7	I.

Scale =	1:73.6
---------	--------

Plate Offsets (X, Y): [2:0-4-5,Edge], [12:0-4-5,Edge]

TCLL (fool) 25.0 Plate Grip DOL 1.15 TC 0.84 Vert(L) -0.16 2.17 >999 240 MT20 2.2 BCL 0.0 Rep Stress Incr YES WB 0.88 Vert(L) -0.16 2.17 >999 240 MT20 2.4 BCL 0.0 Rep Stress Incr YES WB 0.88 Vert(L) -0.16 2.17 >790 90 M Weight: 170 b F LUMBER Code IRC2018/TPI2014 Watrix-S Watrix-S Watrix-S Weight: 170 b F UP HORD 2x4 SP No.2 -3-414, Right 2x4 SP No.2 - 3-2-13 F Nort 2-3-2-16 F Soft 2-0-0 F F F Soft 2-0-0 F F Soft 2-0-0 F F F F F	Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
BCLL 0.0 Rep Stress Incr YES WB 0.8 Horz(CT) 0.02 12 n/a Neight: 170 lb F BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Matrix-S Horz(CT) 0.02 12 n/a Neight: 170 lb F BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Matrix-S Horz(CT) 0.02 12 n/a Neight: 170 lb F TOP CHORD 2x4 SP No.2 Structural wood sheathing directly applied or 10:0-0:0c F F F Structural wood sheathing directly applied or 10:0-0:0c E Structural wood sheathing directly applied or 10:0-0:0c Structural wood sheathing directly applied or 10:0-0:0c This truss and forces & MWFRS for reactions shown; Lumber DOL=1.60 3 All plates are 344 TI20 unless otherwise indicated. 10:0	•						0.85			. ,				244/190
BCDL 10.0 Code IRC2018/TP12014 Matrix-S Weight: 170 lb F LUMBER TOP CHORD 2x4 SP No.2 2 Wind: ASCE 7-16; Vull=115mph (3-second gust) Vasced=Prop: Vasced=Prop: Vasced=Prop: Second gust) Vasced=Prop: Vasc	TCDL	10.0	Lumber DOL	1.15		BC	0.89	Vert(CT)	-0.33	2-17	>720	180		
 LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ks=1.002 L=6.0psf; CEDL=6.0psf; h=35ft; Ks=1.002 L=6.0psf; CEDL=6.0psf; h=35ft; Ks=1.002 L=6.0psf; CEDL=6.0psf; h=35ft; Ks=1.002 L=6.0psf; CEDL=6.0psf; Recubice) exterior zone and C-C Exterior(2R) 20-00 to lot 25-00.0, Exterior(2R) 20-00 to DL=1-60 No.2 - 3-2-13 BRACINOS BOT CHORD Structural wood shearthing directly applied or 5-3-15 oc purifins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing; Except: 6-0-0 oc bracing; 13-15. 6-0-0 oc bracing; 13-15. 71.5220-10-0 Max Horiz 2=142 (LC 12) Max Uplitit 2=-200 (LC 8); 12=-88 (LC 13), 13=-191 (LC 13), 15=-376 (LC 8), 13=-787 (LC 26), 15=-1933 (LC 1), 13=-787 (LC 26), 15=-1933 (LC 1), 13=-787 (LC 26), 15=-1933 (LC 1), 13=-787 (LC 28), 15=-1933 (LC 1), 13=-787 (LC 28), 15=-1933 (LC 1), 13=-787 (LC 28), 15=-1933 (LC 1), 13=-15820(117, 12-13=-114/332 WEBS 7.15=-3320(117, 12-13=-114/332 WEBS 7.15=-3320(137, 12-54/237, 13=15=-320(137, 12-54	BCLL	0.0	Rep Stress Incr	YES		WB	0.68	Horz(CT)	0.02	12	n/a	n/a		
TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 SUDER Left 2x4 SP No.2 BRACING Structural wood sheathing directly applied or 5-3-15 oc puritins. BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing: 13-15. GOT CHORD Rigid celling directly applied or 10-0-0 oc bracing: 13-15. BOT CHORD Size 2-0-10-0, 13=22-0-10-0, 13=20-10-0, 13=20-10-0, 13=20-10-0, 13=-290 (LC 12) MEBS 1Row at might 7-15, 8-15, 6-15 REACTIONS (size) 2=0-6-58, 12=-20 (LC 2) Max Horiz 2=142 (LC 12) Max Horiz 2=142 (LC 13), 15=-376 (LC 26), 12=-889 (LC 13), 13=-787 (LC 26), 15=-1993 (LC 10), 13=-787 (LC 26), 15=-1993 (LC 10), 13=-787 (LC 26), 15=-1993 (LC 10), 13=-749 (LC 10), 15=-749 (LC 10	BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 170 lb	FT = 20%
 REACTIONS (size) 2=0-5-8, 12=20-10-0, 13=20-10-0, 15=20-1	TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2	athing directly applie applied or 10-0-0 oc	, d or ; 3)	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 3 25-0-0, Inter and right exp exposed;C-C reactions shi DOL=1.60 All plates are This truss ha chord live loa	h; TCDL=6.0psf; t. II; Exp C; Encl e and C-C Exteri- -1-8 to 20-00, E ior (1) 25-0-0 to obsed; end verti- C for members an own; Lumber DC e 3x4 MT20 unle as been designed ad nonconcurren	BCDL=6. losed; MW or(2E) -1-1 xterior(2R 40-0-0 zor cal left and nd forces 8 DL=1.60 pl ss otherwi d for a 10. nt with any	Dpsf; h=35ft; FRS (envelo 0-8 to 3-1-8) 20-0-0 to e; cantilever I right & MWFRS fo ate grip se indicated.) psf bottom other live loa	r left or				<u>.</u>	
 15=20-10-0 Max Horiz 2=142 (LC 12) Max Uplit 2=-220 (LC 8), 12=-88 (LC 13), 13=-191 (LC 13), 15=-376 (LC 8) Max Grav 2=806 (LC 25), 12=369 (LC 26), 13=787 (LC 26), 13=787 (LC 26), 15=1993 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension COP CHORD 1-2=-0/18, 2-4=-1180/286, 4-6=-740/171, 6-7118/739, 7-8=-102/740, 8-10=-33/307, 10-12=-405/209 SOT CHORD 2-17=-299/1028, 15-17=-54/237, 13-15=-326/117, 12-13=-114/332 VEBS 7-15=-832/221, 8-15=-572/254, 8-13=-304/303, 10-13=-588/313, 6-17=-37/646, 4-17=-490/271, 6-15=-1056/353 IOTES) Unbalanced roof live loads have been considered for this design. 				o o 5)	All bearings	are assumed to	be SP No.	2 crushing						
TOP CHORD 1-2=0/18, 2-4=-1180/286, 4-6=-740/171, 6-7=-118/739, 7-8=-102/740, 8-10=-33/307, 10-12=-405/209 EUAD CASE(S) Standard BOT CHORD 2-17=-299/1028, 15-17=-54/237, 13-15=-326/117, 12-13=-114/332 SCOTT N WEBS 7-15=-832/221, 8-15=-572/254, 8-13=-304/303, 10-13=-588/313, 6-17=-37/646, 4-17=-490/271, 6-15=-1056/353 SCOTT N NOTES 1) Unbalanced roof live loads have been considered for this design. NUMBER		Max Horiz 2=142 (Ld Max Uplift 2=-220 (L 13=-191 (Max Grav 2=806 (Ld 13=787 (l (lb) - Maximum Com	C 12) .C 8), 12=-88 (LC 13) (LC 13), 15=-376 (LC C 25), 12=369 (LC 26 .C 26), 15=1993 (LC), : 8) 5), 7) 1)	Provide mec bearing plate joint 2, 376 ll 191 lb uplift This truss is International R802.10.2 a	hanical connecti e capable of with b uplift at joint 15 at joint 13. designed in acco Residential Coo nd referenced st	standing 2 5, 88 lb up ordance w le sections	20 lb uplift a ift at joint 12 ith the 2018 5 R502.11.1 a	t ∶and					
WEBS 7-15=-832/221, 8-15=-572/254, 8-13=-304/303, 10-13=-588/313, 6-17=-37/646, 4-17=-490/271, 6-15=-1056/353 SCOTT N NOTES 1) Unbalanced roof live loads have been considered for this design. PE-2001018	TOP CHORD	1-2=0/18, 2-4=-1180 6-7=-118/739, 7-8=-			DAD CASE(S)	Standard							OF M	a sub
WEBS 7-15=-82/2/21, 8-15=-5/2/254, 8-13=-304/303, 10-13=-588/313, 6-17=-37/646, 4-17=-490/271, 6-15=-1056/353 SEVIER NOTES 1) Unbalanced roof live loads have been considered for this design. PE-2001018	BOT CHORD	,	,									6	ATE	N 300
1) Unbalanced roof live loads have been considered for this design.	WEBS	8-13=-304/303, 10-1 6-17=-37/646, 4-17=	13=-588/313,									b	S/ SCUI	
December 20	1) Unbalance		been considered for								•		PE-2001	L ENGLIS

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

									RELEASE	FOR CONSTR	RUCTION
Job	Truss		Truss Type		Qty	Ply	Roof - MH Lo	ot 201		D FOR PLAN I DPMENT SER	
P241241-01	A11		Common	e (optional)	DEVELOPMENT SERVICES 170321888 LEE'S SUMMIT, MISSOURI						
Premier Building Supply	(Springhill, KS), Spring Hills	, KS - 66083,		Run: 8.63 S Sep 2 ID:7HXm1x6NcUYI)7/2(925
	-1-10-8 5-11-6		13-2-3	20-0-0		26-9-14		34-0-10		40-0-0	
	'1-10-8 ['] 5-11-6		7-2-12	6-9-14		6-9-14		7-2-12		5-11-6	
					5x5= 7						
тт				3x4 =			3x6	i=			
			3x6	10 /			19 ^{3x4} ≈				
			4 ¹² 5	6			8 9				
<u>7-7-3</u> 7-4-0 7-0-8		1.5x4 💊							1.5x4 🍫		
7-7-3 7-4-(7-0-8	3x4 -	• 4						$\langle \rangle =$	10 20	3x4≈	
	3x4 = 3	\checkmark		le la						11 _{3x}	4=
	2					//				THE THE	12
			17	16	8 8 15	14		13			
	3x6 II		17 3x4=	16 3x6=	15 4x12=	14 3x6	-	13 3x4=			3x6 II
		9-2-13		19-7-8	20-0-0		30-9-4		40-0		
	' 9	9-2-13	I	10-4-12	0-4-8		10-9-4	I	9-2-	-12	I

Scale = 1:73.6

Plate Offsets (X, Y): [2:0-3-5,0-2-13], [12:0-4-5, Edge]

	· ·	1			1								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.94	Vert(LL)	-0.17	15-17	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.85	Vert(CT)	-0.35	15-17	>680	180		
BCLL	0.0	Rep Stress Incr	YES		WB	0.69	Horz(CT)	0.02	12	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 177 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-16; Vult=115m	ph (3-se	cond gust)						
TOP CHORD	2x4 SP No.2		,	Vasd=91mp	h; TCDL=6.0psf; E	SCDL=6.	Opsf; h=35ft;						
BOT CHORD	2x4 SP No.2			Ke=1.00; Ca	t. II; Exp C; Enclo	sed; MW	FRS (envelo	pe)					
WEBS	2x3 SPF No.2 *Exce	ept* 15-7:2x6 SPF No	o.2	exterior zone	e and C-C Exterior	r(2E) -1-	0-8 to 3-1-8,						
SLIDER	Left 2x4 SP No.2 3	3-7-14, Right 2x4 SP		Interior (1) 3	-1-8 to 20-0-0, Ex	terior(2R) 20-0-0 to						
	No.2 3-1-1	, 0		25-0-0, Inter	ior (1) 25-0-0 to 4	0-0-0 zor	e; cantilever	left					
BRACING					oosed ; end vertica								
TOP CHORD	Structural wood she	athing directly applie	d or		C for members and			r					
	2-2-0 oc purlins.				own; Lumber DOL	.=1.60 pl	ate grip						
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc		DOL=1.60									
	bracing.		3)		e 3x4 MT20 unles								
WEBS	1 Row at midpt	6-15, 8-15	4)		as been designed								
REACTIONS	(size) 2=0-5-8,	12= Mechanical, 15=	0-5-8		ad nonconcurrent								
	Max Horiz 2=142 (L0		5)		assumed to be:								
	Max Uplift 2=-217 (L		3).		i65 psi, Joint 15 S	P No.2 C	rushing capa	city					
	15=-373			of 565 psi.			a otion o						
	Max Grav 2=775 (L0		6) 5), 7)		er(s) for truss to the								
	15=2525		5), 7)		hanical connectio								
FORCES	(lb) - Maximum Com	pression/Maximum			e capable of withs b uplift at joint 12								
	Tension	iprocolori, maximan		15.	b upint at joint 12	anu srs	ib upilit at joir	п					
TOP CHORD	1-2=0/18, 2-4=-112	1/273, 4-6=-678/136,	8)		designed in accor	dance w	ith the 2018						
	6-7=-123/1109, 7-8=	=-130/1109,	0)		Residential Code			ind					
	8-10=-694/204, 10-1	12=-1136/345			nd referenced sta			ina					
BOT CHORD	2-17=-321/977, 15-1	17=-355/217,	1.4	DAD CASE(S)		naara / ii						COURS	JOIN
	13-15=-346/177, 12	-13=-258/1012	L.		Glanuaru							FOF N	Also
WEBS	7-15=-1075/277, 4-1											STATE OF M	1,0°
	6-17=-28/659, 6-15=	,									A	NY accor	New Y
	8-15=-1081/362, 8-1	13=-58/665,									H	S/ SCOT	M. YAY
	10-13=-540/308										81	SEVI	ER \ X
NOTES											0		\ * 1
1) Unbalance	ed roof live loads have	been considered for									20		

this design.

6

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

								RELEASE FOR CONS	
Job	Truss	Truss Type		Qty	Ply F	Roof - MH Lot 20)1	AS NOTED FOR PLA DEVELOPMENT S 170321	
P241241-01	A12	Hip		1	1 J	ob Reference (d	optional	I70321 LEE'S SUMMIT, M	889 SSOURI
Premier Building Supply	r (Springhill, KS), Spring Hills,	KS - 66083,		o 26 2024 Print: 8.6 gLjB9FCHaGRnzV	•				025
	-1-10-8 <u>6-0-14</u> 1-10-8 <u>6-0-14</u>	<u>12-1-5</u> 6-0-7	<u>17-11-4</u> 5-9-15	<u>22-0-12</u> 4-1-8		0-11)-15	<u>33-11-2</u> 6-0-7	40-0-0 6-0-14	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 1 2 3x6 II	$4^{\frac{12}{521}} + \frac{3x6}{521} = 6$	(t) 19 1 3x6=	19-4-12, 22-2-C	8 16 15 3x6=	30-8-0	3x6z 2240 14	1.5x4 ¢ 11 23 12 40-0-0	13 3x6 II

Scale =	1:73.4
---------	--------

Plate Offsets (X, Y):	[2:0-3-5,0-3-5], [13:0-4-5,Edge]

·														
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.66	Vert(LL)		13-14	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.81	Vert(CT)	-0.36	13-14	>683	180	-		
BCLL	0.0	Rep Stress Incr	YES		WB	0.56	Horz(CT)	0.03	13	n/a	n/a			
BCDL	10.0	Code		8/TPI2014	Matrix-S	0.00	1.0.2(0.1)	0.00				Weight: 181 lb	FT = 20%	
BOBE	10.0	0000	1110201	0/11/12/011	Matrix 0							Wolgin. To The	11-20/0	
LUMBER			2)		7-16; Vult=115m									
TOP CHORD	2x4 SP No.2				h; TCDL=6.0psf; E									
BOT CHORD	2x4 SP No.2				it. II; Exp C; Enclo			ce)						
WEBS	2x3 SPF No.2				e and C-C Exterior									
SLIDER	Left 2x4 SP No.2 3	3-3-7, Right 2x4 SP	No.2		-1-8 to 17-11-4, E									
	3-1-13				erior(2R) 22-0-12									
BRACING					0-0-0 zone; cantile									
TOP CHORD	Structural wood she	athing directly applie	ed or		nd vertical left and d forces & MWFR									
	5-2-5 oc purlins, exc				_=1.60 plate grip [,						
	2-0-0 oc purlins (10-		2)		_= 1.60 plate grip L quate drainage to									
BOT CHORD	0 0 7	applied or 6-0-0 oc	3) 4)		e 3x4 MT20 unles			J.						
	bracing.		E)		as been designed									
WEBS	1 Row at midpt	6-18, 9-16, 7-17, 8-	.,		ad nonconcurrent			de						
REACTIONS		13= Mechanical, 17=	^{:0-5-8} 6)											
	Max Horiz 2=128 (LC		- /	 Bearings are assumed to be: Joint 2 SP No.2 crushing capacity of 565 psi, Joint 17 SP No.2 crushing capacity 										
	Max Uplift 2=-221 (L		3),	of 565 psi.			adming dapa	Sity						
	17=-383 (7)		er(s) for truss to ti	russ coni	nections.							
	Max Grav 2=776 (L0		6), 8)		hanical connectio			0						
	17=2428	. ,	- /		e capable of withs									
FORCES	(lb) - Maximum Corr	pression/Maximum		joint 2, 164 l	b uplift at joint 13	and 383	b uplift at joir	nt						
	Tension			17.										
TOP CHORD				This truss is	designed in accor	rdance w	ith the 2018							
	6-7=-69/802, 7-8=-7		,		Residential Code			nd					The	
	9-11=-874/242, 11-1				nd referenced sta							O OF M	ALC: NO	
BOT CHORD			10		Irlin representation			size				TATE OF I	NISS OF	
	17-18=-723/304, 16				ation of the purlin	along the	e top and/or				4		N.S.	
WEBS	14-16=-107/482, 13- 7-18=-79/667, 8-16=			bottom chore							H	SCOT	TM YPY	
WEDS	4-20=-463/240, 6-20		LO	DAD CASE(S)	Standard						R	SEVI		
	6-18=-951/321, 9-16	,									8.			
	9-14=-49/561, 11-14										83			
	7-17=-1243/286, 8-1										N 🖬	L HS	la una d	
NOTES											0	CON NOX		
	ed roof live loads have	hoon considered for									N7	PE-2001	018807	
this design											N	The second	12H	
uns design	1.										Y	1000	JO'B	
												SSIONA	LENA	
												Cas	-	
												-110		

December 20,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - MH Lot 201	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 170321890
P241241-01	A13	Нір	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply	(Springhill, KS), Spring Hills, KS - 6604				26 2024 MiTek Industries, Inc. PsB70Hq3NSgPqnL8w3uITXbG	
	-1-10-8 8-2-4 1-10-8 8-2-4			4-0-12 4-8-0	31-9-12	40-0-0
	021	5x5=	4x6=		6x6=	021
+ 6-2-15 	$3x4 =$ $3x4 =$ $20 3$ $1 \qquad 1$	4^{12} $3x_{6} = 6 22_{p}$ $3x_{4} = 5$ 4^{21}		23	8 9 9	3x4z 2410 25 11 3x4z 12
⊥ <u>°</u> +°°+	Зх6 II	19 18 17 1.5x4 II 3x6= 5x8=	16 19-7-8		15 14 3x4= 3x6=	13 3x6 ။ 1.5x4 ။
	8-2-4		19-7-8 4-12 -12 0-2-12	<u>24-2-0</u> 4-6-8	31-9-12 7-7-12	40-0-0 8-2-4

Scale = 1:73.3		
Plate Offsets (X, Y):	[2:0-3-9,0-2-9], [7:0-2-8,0-2-0], [12:0-4-5,Edge]	

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.88	Vert(LL)	-0.11	12-13	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.66	Vert(CT)	-0.24		>999	180		
BCLL	0.0	Rep Stress Incr	YES		WB	0.92	Horz(CT)	0.05	12	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S					-		Weight: 179 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 4 4-3-6	4-3-6, Right 2x4 SP 1	2) No.2	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 3 23-0-2, Inter	7-16; Vult=115mp h; TCDL=6.0psf; B t. II; Exp C; Enclose e and C-C Exterior -1-8 to 15-11-4, Ep ior (1) 23-0-2 to 24 1 4 40 Unterior (4)	CDL=6. sed; MW (2E) -1- xterior(2 4-0-12, E	Dpsf; h=35ft; FRS (envelo 0-8 to 3-1-8, R) 15-11-4 to xterior(2R)						
BRACING					1-1-10, Interior (1) t and right expose								
TOP CHORD	Structural wood she 2-2-0 oc purlins, exc 2-0-0 oc purlins (6-0	ept	d or	right expose for reactions	d;C-C for member shown; Lumber D	s and fo	ces & MWFF						
BOT CHORD	Rigid ceiling directly bracing.		3)		quate drainage to								
WEBS		4-17, 8-16, 10-15	4)		e 3x4 MT20 unless								
REACTIONS		12= Mechanical, 16=	0-5-8 5)		is been designed f								
	Max Horiz 2=116 (LC				ad nonconcurrent								
	Max Uplift 2=-261 (L 16=-332 (C 8), 12=-194 (LC 9)), 6)		assumed to be: J 65 psi, Joint 16 SI								
	Max Grav 2=841 (LC 16=2225		6), 7) 8)	Refer to gird	er(s) for truss to tr hanical connectior			to					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	0)	bearing plate	e capable of withst	anding 2	61 Ib uplift a	t					
TOP CHORD	1-2=0/18, 2-4=-1197 6-7=-10/232, 7-8=0/	, , ,	9)	12.	designed in accor								
BOT CHORD	10-12=-1360/387 2-19=-315/1028, 17- 16-17=-749/223, 15- 13-15=-279/1207, 12	-19=-315/1028, -16=-91/165,	0)	International R802.10.2 a)) Graphical pu	Residential Code nd referenced star Irlin representation ation of the purlin a	sections ndard AN n does no	R502.11.1 a ISI/TPI 1. ot depict the s				6	STATE OF M	MISSOU
WEBS	4-19=0/351, 4-17=-1 8-16=-1233/292, 8-1 10-15=-1127/337, 10 7-16=-1198/359, 7-1	5=-47/542, 0-13=0/350,	,	bottom chord DAD CASE(S)								S SCOTI SEVI	ER X
NOTES										_	Y.	colling	Server 7
1) Unbalance	ed roof live loads have	been considered for									VI T		

Unbalanced roof live loads have been considered for 1) this design.

PE-2001010

December 20,2024

All a contraction

							RELEASE FOR CON	ISTRUCTION
Job	Truss	Truss Type		Qty	Ply I	Roof - MH Lot 201	AS NOTED FOR PL DEVELOPMENT 17032	
P241241-01	A14	Hip		1	1	Job Reference (optional)	LEE'S SUMMIT, M	1891 MISSOURI
Premier Building Supply (S	pringhill, KS), Spring Hills, KS	- 66083,				2024 MiTek Industries, Inc. B70Hq3NSgPqnL8w3uITXb		2025
- I	1-10-8 7-1-8	13-11-	4 20-0-0		26-0-12	32-10-8	40-0-0	1
F 1	-10-8 7-1-8	6-9-12		- 1	6-0-12	6-9-12	7-1-7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3x4 = 3x4 = 193 2	$4^{12} 3x6 =$ 3x4 = 4^{5}		4x6= 0 7 2 0 7 2		5x5= 8	3x4z 9 22 3x4z 10	3x4≈ 11
+0 00 -	⊠ 3x6 ∎	18 1.5x4 ∎	214- 216-	⊠ 5 ĸ4=	14 3x6=	13 4x8=	12 1.5x4 u	3х6 и
	<u>− 7-1-8</u> 7-1-8	<u>13-10-</u> 6-8-8		-7-8	<u>26-2-0</u> 6-6-8	32-10-8	40-0-0	
	7-1-8	6-8-8	5-5-3 ₀ .	-4-5	0-0-0	0-8-8	(-1-/	

Plate Offsets (X, Y): [2:0-3-13,0-1-13], [11:0-4-5,Edge]

-		1											-
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.79	Vert(LL)	-0.07	11-12	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.52	Vert(CT)	-0.16	11-12	>999	180		
BCLL	0.0	Rep Stress Incr	YES		WB	0.78	Horz(CT)	0.04	11	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		- (-)					Weight: 174 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 3 No.2 3-8-10 Structural wood she	3-8-11, Right 2x4 SP athing directly applie		Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 3- 21-0-2, Interi 26-0-12 to 32 cantilever lef	7-16; Vult=115m n; TCDL=6.0psf; t. II; Exp C; Enclo e and C-C Exterio -1-8 to 13-11-4, E ior (1) 21-0-2 to 2 2-10-8, Interior (1 t and right expos	BCDL=6.0 osed; MW or(2E) -1-1 Exterior(2I 26-0-12, E) 32-10-8 ed; end v	Dpsf; h=35ft; FRS (envelo I0-8 to 3-1-8, R) 13-11-4 to xterior(2R) to 40-0-0 zo vertical left ar	ne; nd					
TOP CHORD	4-7-2 oc purlins, exc 2-0-0 oc purlins (6-0	cept		for reactions	d;C-C for membe shown; Lumber I			RS					
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc	3		quate drainage to			g.					
	1 Row at midpt	.C 8), 11=-183 (LC 9) (LC 8) C 25), 11=759 (LC 26), 6	 This truss ha chord live loa Bearings are capacity of 5 of 565 psi. Refer to girde 	3x4 MT20 unless is been designed ad nonconcurrent assumed to be: 65 psi, Joint 15 S er(s) for truss to t hanical connection	for a 10.0 with any Joint 2 SI SP No.2 c truss conr	D psf bottom other live loa P No.2 crushi rushing capa nections.	ing city					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	0	bearing plate	capable of withs b uplift at joint 2	standing 1	83 Ib uplift a	t					
TOP CHORD	1-2=0/18, 2-4=-1188 6-7=-58/904, 7-8=-4 9-11=-1419/373	, ,	1, 9	15.) This truss is	designed in acco Residential Code	rdance w	ith the 2018					Cant	all the
BOT CHORD	2-18=-280/1026, 17- 15-17=-110/169, 13- 12-13=-277/1266, 1	-15=-702/217,	1	R802.10.2 ar 0) Graphical pu	nd referenced sta Irlin representatio Action of the purlin	andard AN n does no	ISI/TPI 1. ot depict the s				6	TATE OF M	AISSOL
WEBS NOTES		932/291, 6-17=-41/46 5=-1272/418, 3=-308/142, 2=0/292	Ĺ	of the onenta bottom chorc OAD CASE(S)	ı.	along the	; iop and/01				B	scott sevi	

1) Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

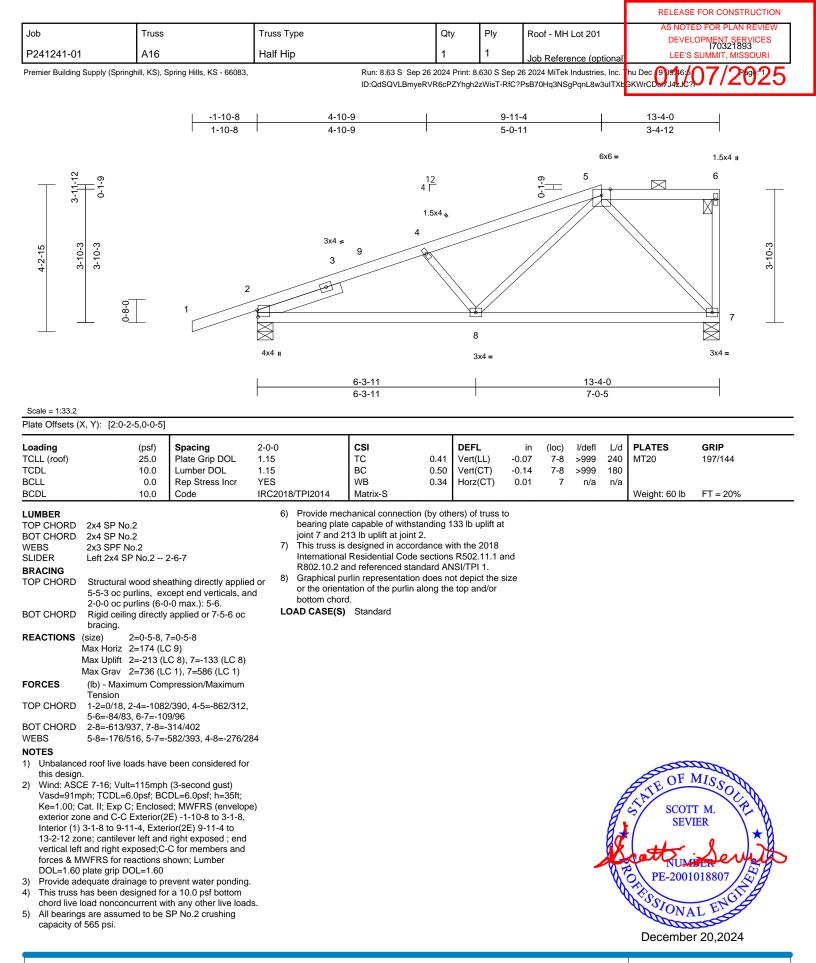
OFFSSIONAL EN

PE-2001018807

December 20,2024

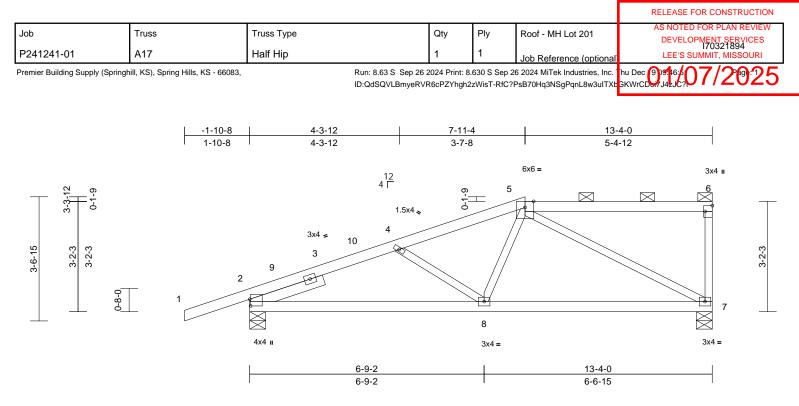
										Г	RELEASE F	FOR CONSTRU	CTION
Job	Tru	SS		Truss Type			Qty	Ply	Roof - MH Lot 20	01		POR PLAN RE PMENT SERVI 170321892	
P241241-01	A1:	5		Hip			1	1	Job Reference (optional		UMMIT, MISSO	
Premier Building Sup	oply (Springhill, KS	8), Spring Hills, KS -	66083,			•		•	6 2024 MiTek Industr B70Hq3NSgPqnL8w)7/20	25
	-1-10-8 1-10-8	<u>6-0-14</u> 6-0-14		<u>11-11-4</u> 5-10-6		20-0-0 8-0-12		<u>28-0-</u> 8-0-		<u>33-1</u> 5-10		40-0-0 6-0-13	
-9 -12			412 4	0	6x6= 5		3x6=		4x6= 5x5=				
			4 ⊏ 3x4 ≠	0-1-9			20 6 21				3x4 ≈	3x4,	
1		^{3x4} = 19	4								9 22		=
4-10-15 4-6-3 4-2-11		3x4 = 3										10	
4	2	B B										THE HE	11
9-3-8 3-8 3-8 0-3-1 0-8-0-1			18		17	16		14			12		<u> </u>
	3х6 ш		1.5x4 I		3x4=	3x6=	15 3x4=	3x6		-	1.5x4 I		3x6 II
	 	6-0-14	-+	11-10-0		19-7-8	19-8-6	28-2		33-1		40-0-0	
		6-0-14	•	5-9-2	•	7-9-8	0-0-14	8-5-1	0	5-9-	-2	6-0-14	

Scale = 1:73


Scale = 1:73													
Plate Offsets (X, Y): [2:0-3-13,0-1-1	3], [6:0-2-8,0-1-8], [7	':0-3-0,E	dge], [11:0-4-5,	Edge]								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	18/TPI2014	CSI TC BC WB	0.87 0.59 0.70	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 13-15 13-15 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC20	18/1912014	Matrix-S	-						Weight: 176 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER	2x4 SP No.2 *Excep 1.5E 2x4 SP No.2 2x3 SPF No.2 *Exce Left 2x4 SP No.2 - 3 - 3-2-0	ept* 15-5:2x4 SP No.	2	Vasd=91mp Ke=1.00; Ca exterior zon Interior (1) 3 19-0-2, Inter 28-0-12 to 3	E 7-16; Vult=11 h; TCDL=6.0ps at. II; Exp C; En e and C-C Exte 3-1-8 to 11-11-4 rior (1) 19-0-2 to 5-1-10, Interior	sf; BCDL=6.0 iclosed; MW erior(2E) -1-1 l, Exterior(2F o 28-0-12, E (1) 35-1-10	Dpsf; h=35ft; FRS (envelop 0-8 to 3-1-8, ₹) 11-11-4 to xterior(2R) to 40-0-0 zoi	ne;					
BRACING TOP CHORD	Structural wood she 4-10-12 oc purlins, e 2-0-0 oc purlins (5-1	except		right expose for reactions DOL=1.60	ft and right exp ed;C-C for mem s shown; Lumbe	bers and for er DOL=1.60	ces & MWFF) plate grip	RS					
BOT CHORD	Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 13	applied or 10-0-0 oc	2	 All plates ar This truss has 	quate drainage e 3x4 MT20 un as been design	less otherwi ed for a 10.0	se indicated.) psf bottom	-					
WEBS	1 Row at midpt	5-15			ad nonconcurre								
REACTIONS	Max Horiz 2=90 (LC Max Uplift 2=-245 (L 15=-410 (Max Grav 2=844 (LC 15=2214	C 8), 11=-172 (LC 9) LC 8) C 25), 11=746 (LC 26 (LC 1)), -5-8	 capacity of 8 of 565 psi. 7) Refer to gird 8) Provide med bearing plat 	e assumed to b 565 psi, Joint 1 der(s) for truss t chanical connec e capable of wit 5 lb uplift at joint	5 SP No.2 c to truss conr ction (by oth thstanding 1	rushing capa nections. ers) of truss t 72 lb uplift at						
FORCES	(lb) - Maximum Com	pression/Maximum		15.			o apint at joi						
TOP CHORD	Tension 1-2=0/18, 2-4=-1311 5-6=-88/863, 6-8=-6 9-11=-1436/379	1/338, 4-5=-608/190, 49/250, 8-9=-739/23	1,	Internationa R802.10.2 a	designed in ac Residential Co and referenced	ode sections standard AN	R502.11.1 a ISI/TPI 1.					TATE OF M	AISSO
BOT CHORD	2-18=-259/1143, 17- 15-17=-70/509, 13-1 12-13=-291/1283, 1	5=-759/255,		or the orient bottom chor				si∠e			A	S SCOTT	
WEBS	4-18=0/235, 4-17=-689/253, 5-17=-17/439, 5-15=-1459/347, 6-15=-1330/466, 6-13=-335/1466, 8-13=-262/151,												
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for									A.	PE-2001	ENGLE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

lek° 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com


December 20,2024

an

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbsccomponents.com)

Scale = 1:33.2

Plate Offsets ((X, Y): [2:0-2-5,0-0-5],	[6:Edge,0-2-8]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.50 0.48 0.66	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.10 0.02	(loc) 7-8 7-8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 58 lb	GRIP 197/144 FT = 20%
LUMBER FOP CHORD BOT CHORD WEBS SLIDER BRACING FOP CHORD	2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 2 Structural wood she 5-8-13 oc purlins, e	athing directly appli xcept end verticals,		bearing plate joint 7 and 2 This truss is International R802.10.2 a Graphical pu	hanical connect e capable of wit 16 lb uplift at jo designed in ac Residential Co nd referenced s Irlin represental ation of the purl d.	hstanding 1 int 2. cordance wi de sections standard AN tion does no	30 lb uplift a th the 2018 R502.11.1 a SI/TPI 1. t depict the	t and					
BOT CHORD	2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.		L	DAD CASE(S)									
REACTIONS	(size) 2=0-5-8, 7 Max Horiz 2=143 (LC Max Uplift 2=-216 (L Max Grav 2=736 (LC (lb) - Maximum Com	C 9) C 8), 7=-130 (LC 8) C 1), 7=586 (LC 1)											
TOP CHORD	Tension 1-2=0/18, 2-4=-1054 5-6=-79/81, 6-7=-18	1/472, 4-5=-819/344 1/156											
WEBS	5-8=-31/338, 5-7=-7		29										
this design Wind: AS(Vasd=91n Ke=1.00; exterior (1 13-2-12 z vertical lef forces & M	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 3-1-8 to 7-11-4, Exter one; cantilever left and ft and right exposed;C- WWFRS for reactions s	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelo; E) -1-10-8 to 3-1-8, ior(2E) 7-11-4 to right exposed ; end C for members and	pe)									STATE OF SCOT	Enter

3) Provide adequate drainage to prevent water ponding.4) This truss has been designed for a 10.0 psf bottom

- chord live load nonconcurrent with any other live loads.5) All bearings are assumed to be SP No.2 crushing
- capacity of 565 psi.

DOL=1.60 plate grip DOL=1.60

December 20,2024

SIONAL

PE-200101880

E

									RELEASE	FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Roof - MH	Lot 201		ED FOR PLAN REVIEW
P241241-01	A18		Half Hip Girder		1	2	Job Refere	ence (optiona	1.5510	OPMENT SERVICES 170321895 SUMMIT, MISSOURI
Premier Building Supply (Spi	inghill, KS), S	Spring Hills, KS - 66083,		Run: 8.63 S Sep 26 ID:N0ZAw0D0UFhDg		8.630 S Sep	26 2024 MiTek	Industries, Inc	. Thu Dec 909:16:6	07/2025
		-1-10-8		5-11-4			9-6-6		13-4-0	
		1-10-8	I	5-11-4	I	ŝ	3-7-2	I	3-9-10	I
					NAILE	D	NAILED	NAILED	NAILED	
				12 4 Г	4x4	-		3x4 =		1.5x4 ॥
-1-7			3>	4 ≈	4			5 12	¹³	
0 2-				3 10					U	
-10-15 2-6-5 2-6-5							//			2-6-5
Ň			2 6	Ŧ		//				5-6
	0 8 0	1 9					ПП	ΠΠ	 	7
	<u> </u>		\bigotimes		8		14	15	16	
			3x4 =		3x4	-				4x4 =
			4x4 =							
					THJA2	6	NAILED	NAILED	NAILED	
				5-10-0 5-10-0				13-4-0 7-6-0		
Scale = 1:33.2				3-10-0	,			7-0-0		
Plate Offsets (X, Y): [2:0	-3-9,0-2-0]	, [2:Edge,0-2-2]		1					1	
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC C	0.35 Ver		in (loc) 0.03 7-8	l/defl L/ >999 24		GRIP 197/144
TCDL	10.0	Lumber DOL	1.15	BC C	.28 Ver	t(CT) -(0.08 7-8	>999 18	0	137/144
BCLL BCDL	0.0 10.0	Rep Stress Incr Code	NO IRC2018/TPI2014	WB 0 Matrix-S	0.20 Hor	z(CT)	0.01 7	n/a n/	a Weight: 122 lb	FT = 20%
BRACING TOP CHORD Structura 6-0-0 oc 2-0-0 oc 2-0-0 oc Participation REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Mai Tension TOP CHORD 1-2=0/24 5-6=-65/ BOT CHORD 2-8=-695 WEBS 4-8=0/40 NOTES 1) 2-ply truss to be conn (0.131"x3") nails as f Top chords connecte oc, 2x3 - 1 row at 0-5 Bottom chords connecte oc, 2x3 - 1 row at 0-5 Bottom chords connected os caggered at 0-90 oo Web connected as fc 2) All loads are conside	No.2 No.2 SP No.2 : al wood she purlins, ex purlins (6-0 ling directly 2=0-5-8, - 2=110 (L0 2=-367 (L 2=1125 (I ximum Corr , 2-4=-2029 54, 6-7=-19 /1814, 7-8- 5, 5-8=-29/ hected toge ollows: d as follows: cated as foll c. line equally nt (F) or ba v to ply conni only loads cated.	eathing directly applied cept end verticals, an 0-0 max.): 4-6. r applied or 10-0-0 oc 7=0-5-8 C 32) C 8), 7=-325 (LC 8) LC 1), 7=1152 (LC 1) apression/Maximum 0/634, 4-5=-1804/642. 19/130 =-676/1439 '530, 5-7=-1614/738 ther with 10d s: 2x4 - 1 row at 0-9-0 lows: 2x6 - 2 rows - 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO/ nections have been noted as (F) or (B),	Ke=1.00; Ca exterior zom Interior (1) 3 13-2-12 zon vertical left a forces & MV DOL=1.60 p 5) Provide ade 6) This truss h chord live lo 7) All bearings capacity of 4 8) Provide med bearing plat joint 7 and 3 9) This truss is Internationa R802.10.2 a 10) Graphical pu or the orient bottom chor 11) Use Simpso Hand Hip) o connect trus 12) Fill all nail h 13) "NAILED" in (0.148"x3.2t LOAD CASE(5) 1) Dead + Ro VD Plate Incre Uniform LC Vert: 1-4	chanical connection (b) e capable of withstand 667 lb uplift at joint 2. designed in accordan I Residential Code sec and referenced standar urlin representation do ation of the purlin alon d. in Strong-Tie THJA26 ir equivalent at 5-11-10 (ss(es) to front face of b oles where hanger is in dicates 3-10d (0.148") 5") toe-nails per NDS (c)) Standard of Live (balanced): Lun ase=1.15	MWFRS -1-10-8 tr r(2E) 5-11 ght expose for memb wm, Lumb vent water 10.0 psf any other rent water 10.0 psf any other rent water 10.0 psf any other rent water 10.0 psf any other rent water others) of ing 325 lb ce with the tions R50 d ANSI/Ti- es not deg g the top - top and top and	(envelope) o 3-1-8, I-4 to ed ; end beers and ber ponding. bottom r live loads. ushing of truss to uplift at e 2018 2.11.1 and Pl 1. bict the size and/or bin 2 ply, Let left end to ord. with lumber 2d ease=1.15,), 12=-136	e ft		Schute OF J Schute OF J Scott Scott PE-2001	BER
									aller aller	r 20,2024
			THIS AND INCLUDED MITEI based only upon parameters						N/I	Tek

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

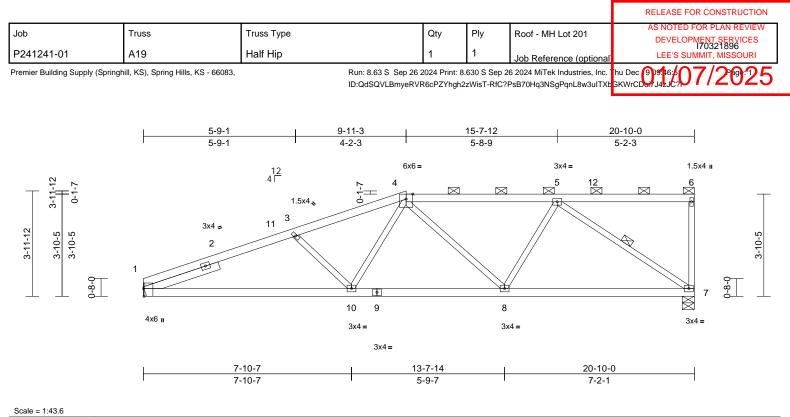


Plate Offsets (X, Y): [1:0-3-8.Edge]

Plate Offsets ((X, Y): [1:0-3-8,Edge]										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2	CSI TC BC WB 2014 Matrix-S	0.49 0.67 0.49	DEFL Vert(LL) Vert(CT) Horz(CT)	-0.11	1-10 >	999 24 999 18	/d PLATES 40 MT20 30 /a Weight: 88 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 2 Structural wood she 4-2-5 oc purlins, ex 2-0-0 oc purlins (4-9 Rigid ceiling directly bracing. 1 Row at midpt	2-11-15 athing directly applie cept end verticals, a -4 max.): 4-6. applied or 6-9-14 or 5-7 anical, 7=0-5-8 C 11) C 8), 7=-210 (LC 8) C 1), 7=933 (LC 1)	4) This cho 5) Bea cap 6) Ref 7) Pro bea nd join 8) This c R80 9) Gra or ti bott	a truss has been design d live load nonconcu rings are assumed to acity of 565 psi. er to girder(s) for truss- vide mechanical conn- ring plate capable of 1 a truss is designed in mational Residential 2.10.2 and reference phical purlin represen- te orientation of the p om chord. CASE(S) Standard	rrent with any be: , Joint 7 S s to truss conr ection (by oth withstanding 1 t joint 7. accordance w Code sections d standard AN ntation does no	other live load SP No.2 crushi ections. ers) of truss to 97 lb uplift at ith the 2018 s R502.11.1 ar ISI/TPI 1. ot depict the si	ing o nd			Weight. 60 ib	
TOP CHORD BOT CHORD WEBS	Tension 1-3=-1891/593, 3-4= 4-5=-1208/414, 5-6=	=-1653/520, =-87/79, 6-7=-142/98 0=-516/1354, 207/135, 5-8=-10/37								-555E	TUD
this design 2) Wind: ASC Vasd=91n Ke=1.00; (exterior zc Interior (1) Interior (1) Interior (1) right expo- for membe Lumber D	ed roof live loads have	been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-0-1 to 5-0-1, ior(2R) 9-11-4 to 17 he; cantilever left and ind right exposed;C- RS for reactions sho DL=1.60	be) -0-2, J C Wm;							PE-200	IT M. VIER 1018807

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

December 20,2024

							REL	EASE FOR CON	STRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - MH Lot 201		NOTED FOR PLA EVELOPMENT S 170321	
P241241-01	A20	Half Hip		1	1	Job Reference (opt		I70321 EE'S SUMMIT, M	897 ISSOURI
Premier Building Supply (Springhill, KS), Spring Hills, KS	5 - 66083,				p 26 2024 MiTek Industries ?PsB70Hq3NSgPqnL8w3ul			2025
		7-11-3		14-3-6			20-10-0		
	I	7-11-3	I	6-4-2		ļ	6-6-10		
		1 <u>2</u> 4 Г	6x6 =			3x4 =		3x4 I	
		- 0	3		Þ	4 12 13		5	
6 6 7		^{3x4} 11						F	
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3x4	= 2		\sim			A		ņ
3-3-12 3-2-3 3-2-3	1 10	ET.							3-2-3
0-								\searrow	
						_		6	°-⊥⊥
	4x6 u		98			7		3x4 =	
			1.5x4 u			3x4 =			
			3x4 =						
		7-9-15		14-3-6			20-10-0		
	I	7-9-15	I	6-5-6		I.	6-6-10	I	

Scale = 1:43.5

Plate Offsets (X, Y): [1:0-3-8,Edge], [5:Edge, 0-2-8]

	(⊼, 1). [1.0-5-0,⊑uge],	[J.Luye,0-2-0]										
Loading	(psf)	Spacing	2-0-0		SI	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		C 0.87	Vert(LL)	-0.11	1-9	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC 0.67	Vert(CT)	-0.24	1-9	>999	180		
BCLL	0.0	Rep Stress Incr	YES		VB 0.79	Horz(CT)	0.05	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TF	PI2014 N	/latrix-S						Weight: 86 lb	FT = 20%
	2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 4 Structural wood she except end verticals (3-11-15 max.): 3-5. Rigid ceiling directly bracing. 1 Row at midpt	athing directly applie , and 2-0-0 oc purlin applied or 7-9-2 oc 4-6 unical, 6=0-5-8 C 9)	ch 5) Be ca 6) Re 7) Pr be s joi s 8) Th Int Re 9) Gi or bc	nord live load r earings are as apacity of 565 efer to girder(s ovide mechar earing plate ca int 1 and 208 l nis truss is dee ternational Re 802.10.2 and l raphical purlin	s) for truss to truss conr nical connection (by oth apable of withstanding 1 b) uplift at joint 6. signed in accordance w asidential Code sections referenced standard AN or representation does no on of the purlin along the	other live loa P No.2 crus ections. ers) of truss 99 lb uplift a ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the	hing to t					
FORCES	Max Grav 1=933 (LC (lb) - Maximum Com	,, ()										
TOP CHORD	Tension 1-3=-1818/543, 3-4= 5-6=-191/133	-1553/526, 4-5=-82	/70,									
BOT CHORD		-558/1623,										
WEBS	4-6=-1660/497, 3-9= 4-7=0/295	-0/305, 3-7=-83/148	,								COLOR	and
NOTES											B. OF	MISSO
this design 2) Wind: ASC Vasd=91m Ke=1.00; (exterior zo Interior (1) Interior (1)	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 5-0-1 to 7-11-4, Exter) 15-0-2 to 20-8-12 zon	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-0-1 to 5-0-1, ior(2R) 7-11-4 to 15 he; cantilever left and	oe) -0-2, d							A A	SCOT SEV SEV NUM PE-2001	T M. HER BER

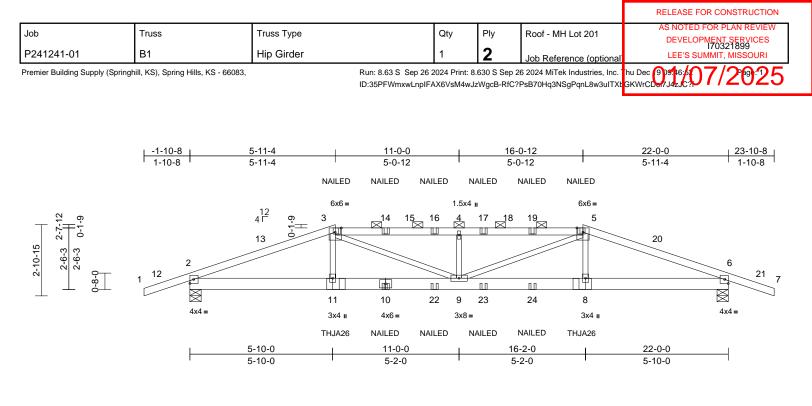
Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding.

right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown;

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						I	RELEASE FOR COM	ISTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - MH Lot 201		AS NOTED FOR PL DEVELOPMENT 17032	
P241241-01	A21	Half Hip Girder	1	2	Job Reference (optio	nali	LEE'S SUMMIT, I	
Premier Building Supply (Spring	ghill, KS), Spring Hills, KS - 66				6 2024 MiTek Industries, I PsB70Hq3NSgPqnL8w3ul			2025
	<u>5-1</u>		NAILI	<u>15-9-5</u> 4-11-15		20-10-0 5-0-11 NAILED	NAILED	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	4x4=	3x4 = 3 14 3 14 8 21		3x4= 16 4 22 7		3x6=	0-8-0 2-6-5
	3x4 =	3x4 = 4x6 = NAILEE	3x4 =	-D N/	4x6 =	NAILED	3x4 II NAILED	
		THJA26 NAILED					MAILED	
	<u>5-9</u> 5-9			<u>15-9-5</u> 4-11-1		<u>20-10-0</u> 5-0-11		
Scale = 1:43.4			+					

Plate Offsets (X, Y): [1:0-1-8,0-1-8], [6:Edge,0-2-8], [7:0-2-8,0-2-0]


Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.62	Vert(LL)	-0.11	8	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.64	Vert(CT)	-0.20	8-10	>999	180		
BCLL	0.0	Rep Stress Incr	NO		WB	0.59	Horz(CT)	0.03	6	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 174 lb	FT = 20%
LUMBER TOP CHORD			,	this design.	roof live loads h			or		12=-11	5 (B), 1	3=-115 (B), 14=-	7=-39 (B), 4=-115 (B 115 (B), 16=-115 (B)
BOT CHORD WEBS	2x6 SPF No.2 2x3 SPF No.2		4)	Vasd=91mp	7-16; Vult=115r n; TCDL=6.0psf;	BCDL=6.	Opsf; h=35ft;					2=-39 (B), 23=-39	39 (B), 20=-39 (B), (B), 24=-41 (B)
BRACING					t. II; Exp C; Encl and C-C Exteri								
TOP CHORD	5-7-10 oc purlins, e 2-0-0 oc purlins (5-8		and	Interior (1) 5 13-0-2, Inter	-0-13 to 5-11-4, ior (1) 13-0-2 to	Exterior(2) 20-8-12 zo	R) 5-11-4 to one; cantileve						
BOT CHORD	Rigid ceiling directly bracing.	/ applied or 10-0-0 o	С	exposed;C-0	osed ; end verti c for members a own; Lumber DC	nd forces	& MWFRS fo	r					
REACTIONS	()	anical, 6=0-5-8		DOL=1.60	Jwn, Lumber DC	L=1.60 pi	ate grip						
	Max Horiz 1=102 (L Max Uplift 1=-441 (L		5)	Provide ade	quate drainage te	o prevent	water ponding	g.					
	Max Grav 1=1615 (,, , , ,	n		is been designed								
FORCES	,	npression/Maximum			ad nonconcurrer			ads.					
FURGES	(ib) - Maximum Con Tension	inhiession/iviaximum	7)		assumed to be acity of 425 psi.	, Joint 6 S	PF N0.2						
TOP CHORD		3=-3595/1204.	8)		er(s) for truss to	truss con	ections						
	3-4=-4415/1402, 4-		9)		hanical connecti			to					
	5-6=-1705/588	- · · · ,	5)		capable of with								
BOT CHORD	1-10=-1179/3631, 8	-10=-1340/4415,			08 lb uplift at joir			-					
	7-8=-990/3251, 6-7		10		designed in acc		ith the 2018						
WEBS	2-10=-115/883, 5-7			International	Residential Coc	le sections	R502.11.1 a	and					
	3-8=-317/293, 3-10				nd referenced st								Th
	4-8=-436/1268, 4-7	=-1202/552	11		rlin representati			size				OFA	AISSO
NOTES					ation of the purlir	n along the	e top and/or					AFUT	NOSCILL
	s to be connected toge	ther with 10d	40	bottom chore			ADE on Dale				6		N. Y.
	") nails as follows:	a. 0.4 1 may at 0.0			n Strong-Tie TH. Hip) or equivaler						R	SCOTT	M. VEN
	Is connected as follow	s: 2x4 - 1 row at 0-9-	-0		ect truss(es) to b						4	/ SEVI	
	1 row at 0-9-0 oc. hords connected as fol	lows: 2x6 - 2 rows	19		bles where hang						1 ba		0
	at 0-9-0 oc.	10W3. 2X0 - 2 10WS			dicates 3-10d (0.						4X		A la
	nected as follows: 2x3	- 1 row at 0-9-0 oc	17		") toe-nails per N					4		can .	
	are considered equally		10	DAD CASE(S)	, ,	- 3-/4/				-	13		
	noted as front (F) or ba			• • • •	of Live (balanced	1). Lumber	Increase-1	15			N	PE-20010	018807
	section. Ply to ply con			Plate Increa			11010030-11	10,			Q	1 and	ISB
	to distribute only loads			Uniform Lo								138 M	NO'B
	nerwise indicated.				=-70, 2-5=-70, 1	-6=-20						SIONA	LEY
					ed Loads (lb)							CONA	DES

- s noted as (F) or (B), unless otherwise indicated.
- Uniform Loads (lb/ft) Vert: 1-2=-70, 2-5=-70, 1-6=-20 Concentrated Loads (lb)

MiTek[®] 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

December 20,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

ocale = 1.47.1													
Loading TCLL (roof) TCDL	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC BC	0.71	DEFL Vert(LL) Vert(CT)	in -0.13	(loc) 9 9	l/defl >999	L/d 240	PLATES MT20	GRIP 197/144
BCLL	10.0 0.0	Lumber DOL Rep Stress Incr	1.15 NO		WB	0.75 0.23	Horz(CT)	-0.23 0.04	9	>999 n/a	180 n/a		
BCDL	10.0	Code	IRC2018/TF	012014	Matrix-S	0.23		0.04	0	II/a	n/a	Weight: 185 lb	FT - 20%
BODL	10.0	Code	1602010/11	12014	Iviauix-S							Weight. 165 lb	FT = 20 %
(0.131"x3 Top chorc oc. Bottom ch staggered Web conr 2) All loads a except if r CASE(S) provided t unless oth	2x6 SPF No.2 2x3 SPF No.2 Structural wood she 5-10-8 oc purlins, (5-1 Rigid ceiling directly bracing. (size) 2=0-5-8, Max Horiz 2=48 (LC Max Uplift 2=-575 (I Max Grav 2=1881 ((Ib) - Maximum Cor Tension 1-2=0/24, 2-3=-415 4-5=-4911/1539, 5- 2-11=-1083/3804, 9 8-9=-1085/3780, 6- 3-11=-34/560, 3-9= 5-9=-396/1317, 5-8 s to be connected toge ") nails as follows: Is connected as follows: b connected as follows: are considered equally noted as front (F) or bas servise indicated. ed roof live loads have	D-8 max.): 3-5. y applied or 10-0-0 oc 6=0-5-8 16) C 8), 6=-575 (LC 9) LC 1), 6=1881 (LC 1) npression/Maximum 4/1262, 3-4=-4911/15 6=-4154/1262, 6-7=0 I-11=-1082/3780, 8=-1087/3804 -396/1317, 4-9=-830/ =-34/560 ether with 10d s: 2x4 - 1 row at 0-9- lows: 2x6 - 2 rows - 1 row at 0-9-0 oc. - applied to all plies, tok (B) face in the LO nections have been noted as (F) or (B),	V: K ev in d or S S S S S S S S S S S S S	asd=91mph =1.00; Cat terior zone terior (1) 3- terior (1) 13- terior (1) 13- 1-10, Inter trandright transcription sho DL=1.60 rovide adec actions sho DL=1.60 rovide adec is truss ha upacity of 42 rovide medi- aring plate aring plate aring plate aring plate aring truss is of ternational 802.10.2 ar raphical put the orienta botom chord se Simpsor ght Hand Hip) or annect truss se Simpsor ght Hand Fr Connect trus Se Simpsor CASE(S) Dead + Roc Plate Increat Jufform Loa Vert: 1-3=	hanical connectio capable of withs 75 lb uplift at joint designed in acco Residential Code nd referenced sta rlin representation ation of the purlin l. n Strong-Tie THJ/ equivalent at 5-1 (ses) to front face n Strong-Tie THJ/ dip) or equivalent sus(se) to front fa les where hange dicates 3-10d (0.1 ") toe-nails per N Standard of Live (balanced) ase=1.15	3CDL=6. Sect; MW r(2E) -1 terior(2R Exterior(2 2-3-10-8 ertical left d forces a =1.60 pl prevent ' for a 10. with any e SPF N- n (by oth tanding 5 rdance w s sections ndard AN n does nu along the A26 (THJ 1-10 fror of bottor A26 (THJ at 16-0-f cice of bott r is in cor 48"x3") (D S guidli): Lumber	opsf; h=35ft; FRS (envelo 10-8 to 3-1-8, 3 - 10-0-12 ti 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	3-0-2, o over r g. ads. to t size , Left to , t end ober.		8=-343	(F), 14		MISSOLUE T. M. HER 018807 L ENGLA

December 20,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE	FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - MH Lot 201		D FOR PLAN REVIEW DPMENT SERVICES 170321900
P241241-01	B2	Нір	1	1	Job Reference (optional	LEE'S S	I70321900 SUMMIT, MISSOURI
Premier Building Supply (\$	Springhill, KS), Spring Hills, KS - 6608		in: 8.63 S Sep 26 2024 Print: 8 35PFWmxwLnpIFAX6VsM4wJ)7/2025
	-1-10-8 1-10-8	7-11-4 7-11-4	14-0-12 6-1-8			2-0-0 -11-4	23-10-8
		12 4	6x6=		4x6 =		
0-1-9		4 00 00 00 00 00 00 00 00 00 00 00 00 00	4		5	3×4 ≈	
	Зх	4 = 334 = 0 13 3				^{3x4} ≈ 6 14 3×4≈	
<u>3-6-15</u> <u>3-2-3</u> <u>3-2-3</u>	12	13					15
	2 2		R			10	7
			11 10		9		
	4x6 u		1.5x4 u 3x4 =		3x4 =		4x6 II
	L	7-10-0	14-2-0			2-0-0	
		7-10-0	6-4-0		7	-10-0	I

Plate Offsets	(X, Y): [2:0-4-1,0-1-1],	[7:0-4-1,0-1-1]											
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.96 0.67 0.24	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.25 0.06	(loc) 2-11 2-11 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC201	B/TPI2014	Matrix-S		- (-)					Weight: 95 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER		4-1-2, Right 2x4 SP	5)	chord live loa All bearings capacity of 5 Provide med	s been designed and nonconcurrent are assumed to be 65 psi. hanical connection e of the formation of the for	with any e SP No. n (by oth	other live loa 2 crushing ers) of truss	to					
BRACING TOP CHORD	RACING joint 2 and 283 lb uplift at joint 7. OP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except 2-0-0 oc purlins (2-2-0 max.): 4-5. joint 2 and 283 lb uplift at joint 7. OT CHORD Rigid ceiling directly applied or 8-5-13 oc This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.												
BOT CHORD Rigid ceiling directly applied or 8-5-13 oc bracing for the orientation of the purlin along the top and/or													
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	5-7=-1956/617, 7-8=	=0/18 [°]	8,										
BOT CHORD	7-9=-470/1734												
WEBS	4-11=0/289, 4-9=-20	04/204, 5-9=0/289										an	alle
this desig 2) Wind: AS Vasd=91r Ke=1.00; exterior zo Interior (1 14-0-12, E	ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 3-1-8 to 7-11-4, Exter Exterior(2R) 14-0-12 to o 23-10-8 zone; cantile	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) -1-10-8 to 3-1-8, ior(2E) 7-11-4 to 21-1-10, Interior (1)	be)									STATE OF I SCOT SEVI	torner .

Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding.

exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; PE-2001018807

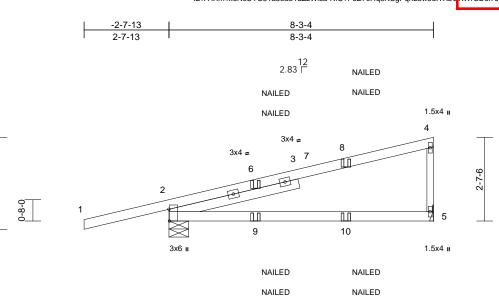
G

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

OFFESSIONAL EN December 20,2024

												RELEAS	E FOR CONSTR	RUCTION
Job		Truss		Truss Ty	rpe		Qty	Р	ly	Roof - MH L	.ot 201		ED FOR PLAN I	
P241241-0 ⁴	1	В3		Hip Giro	der		1	2	2	Job Referer	nce (optional)		LOPMENT SER I7032190 S SUMMIT, MISS	
Premier Building	g Supply (Spring	hill, KS),	Spring Hills, KS - 66083,			Run: 8.63 S Sep		rint: 8.630) S Sep 2	6 2024 MiTek li	ndustries, Inc.	'hu Dec 909:46:	67/26	a25
						ID:Tg4O8nzpeiC	t6eGhA_vn	YxzWgc8	-RfC?PsE	370Hq3NSgPqr	hL8w3ulTXbGF	WrCDoi794zJC?		520
			5-0-6		1	9-8-14	. 1	2-3-1	1	16-11	-10	1	22-0-0	I
		ŀ	5-0-6			4-8-8		2-6-3		4-8-			5-0-6	
							6x6 =		5x5 =					
15	o			4	1 <u>2</u>	o	4		5					
3-10-15	0-1-9				2.4	0-1-0		\boxtimes				4.0		
0					3x4 =	//			1			^{4x6} ≈		
-15	9		3x10 ≠	_	\$			$\langle \rangle$				0	3x10 ≈	
3-10-15 3-9-6	3-9-6		2	\bigcirc									7	
		1	- Fort					/						8
	0-8-0	Ē		ПП							ΠΠ			
	_ 0		X	14	13 12	15	1116		1710	18	19	9 20	21	\mathbb{X}
			4x8 =		3x6 II		4x6 =		7x8=			3x10 u	6x1	12=
			8x10 =	LUS24	8x8 =	LUS24	LUS24		JS24	LUS26	LUS26	HHUS26-2	NAILED	4x8 =
					LUS24		20021						10.1220	470 -
			5-0-6		LU324	9-7-10	. 1	215		16-11	10		22-0-0	
		ŀ	5-0-6			4-7-4		2-4-5 2-8-11		4-7-			5-0-6	
Scale = 1:41.5														
Plate Offsets ((X, Y): [1:0-0-	9,0-4-2]	, [8:0-0-7,0-3-11], [8:0	11-12,0-3	8-6], [10:0-4-0,	,0-4-8], [11:0-2-8,0)-2-0]					1		
Loading		(psf)	Spacing	2-0-0		CSI			0	in (loc)	l/defl L/d	PLATES	GRIP	
TCLL (roof) TCDL		25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC		Vert(LL) Vert(CT)	-0.) -0.		>999 240 >972 180	MT20	244/190	
BCLL BCDL		0.0 10.0	Rep Stress Incr Code	NO	/TPI2014	WB Matrix-S	0.41	Horz(CT) 0.	06 8	n/a n/a	Weight: 254 lb	FT = 20%	
Top chord oc. Bottom ch staggered	No.2 2x8 SP 2400 2x3 SPF No Left 2x4 SP 2-2-8 Structural w 3-7-9 oc pu 2-0-0 oc pu 2-0-0 oc pu Rigid ceiling bracing. (size) 1 Max Horiz 1 Max Uplift 1 Max Uplift 1 Max Uplift 1 Max Uplift 1 Max Grav 1 (lb) - Maxim Tension 1-3=-9715/2 4-5=-8432/2 6-8=-11405 1-13=-2381/1 4-11=-486/1 5-10=-593/2 3-13=-191/5 6-9=-453/20 s to be connect is connected a pords connected at 0-6-0 oc.	0F 2.0E No.2 No.2 Vood she rlins, ex. rlins (4-0 g directly =0-5-7, =64 (LC =-1361 =7171 (num Con 2610, 3- 2317, 5- 7/3035 /9005, 1 0/8109, 10585 1894, 4- 2367, 3- 996, 6-11 0/25 eted toge bws: as follow ed as fol	2-2-8, Right 2x4 SP N eathing directly applied cept)-12 max.): 4-5. / applied or 10-0-0 oc 8=0-5-7 : 16) (LC 8), 8=-1210 (LC 9 LC 1), 8=4959 (LC 1) npression/Maximum 4=-8593/2338, 6=-8942/2411, 1-13=-2381/9005, 9-10=-2781/10585, 10=-165/678, 11=-956/321, 0=-2299/667,	o.2 3) 4) or 5) 6) 7) 8) 9) 10) 11)	except if note CASE(S) see provided to <i>i</i> Unbalanced this design. Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5: 12-3-1, Extel 19-3-15 to 2: exposed; en members an Lumber DOL Provide aded This truss has chord live loa All bearings capacity of 8 Provide mec bearing plate joint 1 and 1: This truss is International R802.10.2 ai Graphical pu or the oriente bottom choroc Use Simpson Truss) or eq 4-0-0 from th	hanical connection capable of withst 210 lb uplift at join designed in accor Residential Code nd referenced star rlin representation ation of the purlin	vack (B) fa nnections Is noted as ve been cc bh (3-seco ScCL=6.0; sed; MWF (2E) 0-2-1 erior(2E) § 19-3-15, Ir were left an right expo S for react)OL=1.60 prevent wa for a 10.0 with any o a SP 2400 m (by other anding 13 t 8. dance with sections 1 adors not along the t 24 (4-10d 0 2-0-0 oc r 0 (2-0-0 oc r	ice in the have be s (F) or (onsidered and gust) best; h=35 RS (env; 2 to 5-0- 3-8-14 to htterior (1 di right sed;C-C tions sho ater pone ps botto ther live F 2.0E of rs) of tru: 61 lb up h the 20° R502.11. SI/TPI 1. depict th top and/c Girder, 2 max. sta ect truss	 LOAD en B), d for Sft; elope) -6, -6, -6, -7, -6, -6, -6, -7, -6, -7, -7, -1, -6, -1, -1,	4-10 conn 14) Fill a 15) "NAI (0.14 16) Hang provi lb do desig resp LOAD C 1) Dea Pla Uni \ Con Con (d Truss) or e ect truss(es) Il nail holes v LED" indicate 8"x3.25") too ger(s) or othe ded sufficien yn/selection c onsibility of o ASE(S) Sta ad + Roof Liv te Increase= form Loads ((fert: 1-4=-70, ncentrated LC /ert: 1=-3116 F), 16=-739 (F), 20=-1595	ndard e (balanced): Lu .15 b/ft) 4-5=-70, 5-8=-7 ads (lb) , 12=-682 (F), 1- F), 17=-726 (F), (F), 21=-150 (F) SCOT SEV PE-200 FC-200	1-3 from the lepottom chord. In contact with x3") or 3-12d guidlines. vice(s) shall be centrated load(on bottom chorn on device(s) is mber Increase 0, 1-8=-20 4=-616 (F), 15= 18=-913 (F), 1 MISSOUR T. M. TER DIS807	eft end to lumber. s) 3116 d. The the =1.15,
												Decembe	er 20,2024	
Design va a truss sy	alid for use only w ystem. Before use	ith MiTek@ , the build	eters and READ NOTES ON © connectors. This design is ing designer must verify the to prevent buckling of indivi	based only u applicability (pon parameters	shown, and is for an in ters and properly incor	dividual build porate this de	ing compo esign into t	nent, not he overall			Μ	iTe k	®

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI Quality Criteria, and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)


16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - MH Lot 201	AS NOTED FOR PLAN REVIEW
			,	,		DEVELOPMENT SERVICES 170321902
P241241-01	CG1	Diagonal Hip Girder	6	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

2-10-8

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu Dec 905466 ID:7HXm1x6NcUYU51a3ea31uZzWisa-RfC?PsB70Hq3NSgPqnL8w3uITXbC KWrCD0+94z307f

8-3-4

Scale = 1:36

Plate Offsets (X, Y): [2:0-4-6,Edge]

44
20%
CUR
N
N.S.
NAV.
1~ 12

- 2 chord live load nonconcurrent with any other live loads. 3) Bearings are assumed to be: Joint 2 SP 2400F 2.0E crushing capacity of 805 psi. Refer to girder(s) for truss to truss connections.
- 4)
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 105 lb uplift at joint 5 and 248 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - MH Lot 201	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 170321903
P241241-01	J1	Jack-Open	29	1	Job Reference (optional	170321903 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Spi	inghill, KS), Spring Hills, KS - 66083				o 26 2024 MiTek Industries, Inc. ?PsB70Hq3NSgPqnL8w3uITXbG	
		-1-10-8		11-4		
		1-10-8	5-	11-4		
				12 Г		
	_		4	Г	4	L
			3x4	=		
			^{3x4} = 3			
15						2-7-12
2-10-15		2	for	5		2-7
	0	6	to		r	
	0- 8- 0		0		/	
	_				5	
		3x6 II				
		0.0 1				
			5-	11-4		
Scale = 1:23.8 Plate Offsets (X, Y): [2:0						

						-							
Loading		(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15	TC	0.69	Vert(LL)	-0.07	2-5	>987	240	MT20	244/190
TCDL		10.0	Lumber DOL	1.15	BC	0.44	Vert(CT)	-0.14	2-5	>493	180		
BCLL		0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.02	4	n/a	n/a		
BCDL		10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 26 lb	FT = 20%
LUMBER				6) This truss is	s designed in acc	ordance w	ith the 2018						
TOP CHORD	2x4 SP No	0.2		Internationa	al Residential Cod	le sections	s R502.11.1 a	nd					
BOT CHORD	2x4 SP No	0.2		R802.10.2	and referenced st	andard AN	ISI/TPI 1.						
SLIDER	Left 2x4 S	P No.2 3	3-1-13	LOAD CASE(S) Standard								
BRACING													
TOP CHORD	Structural	wood she	athing directly applie	d or									
	5-11-4 oc	purlins.	• • • •										
BOT CHORD	Rigid ceili bracing.	ng directly	applied or 10-0-0 oc	:									
REACTIONS	(size)		4= Mechanical, 5=										
		Mechanic											
	Max Horiz	(,										
			C 8), 4=-105 (LC 12)										
	Max Grav	2=417 (LC (LC 3)	C 1), 4=185 (LC 1), 5	i=118									
FORCES	(lb) - Maxi Tension	. ,	pression/Maximum										
TOP CHORD	1-2=0/18.	2-4=-102/-	47										
BOT CHORD	2-5=0/0												
NOTES													
Vasd=91n Ke=1.00; exterior zo	nph; TCDL= Cat. II; Exp (one and C-C	6.0psf; BC C; Enclose Exterior(2	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) -1-10-8 to 3-1-8, cantilever left and rid	,								OF I	MISSO
			cantilever left and high									4 st	~0.4

- Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.3) Bearings are assumed to be: , Joint 2 SP No.2 crushing capacity of 565 psi.

exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown;

- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 105 lb uplift at joint 4 and 138 lb uplift at joint 2.

NUTVER PE-2001018807 December 20,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent college with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - MH Lot 201	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 170321904
P241241-01	J2	Jack-Open	11	1	Job Reference (optional)	
Premier Building Supply (Spri	inghill, KS), Spring Hills, KS - 66083,				26 2024 MiTek Industries, Inc. 370Hq3NSgPqnL8w3uITXbGK	
		-1-10-8 1-10-8		3-10-3 3-10-3		
				4 □ 12		
	\top			x4 = 3	6 4	
	2-2-9	2	Fo	H		1-11-6
		1			5	
		3x4 II				

	3-10-3	

Scale = 1:22.3 Plate Offsets (X, Y): [2:0-1-8,0-0-5]

	(, ;): [<u></u> =:e : e,e e e]										-	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	-0.01	2-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.17	Vert(CT)	-0.02	2-5	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 18 lb	FT = 20%
LUMBER			6) This truss is	s designed in acc	ordance w	ith the 2018						
TOP CHORD	2x4 SP No.2		Ínternationa	al Residential Coo	de sections	R502.11.1	and					
BOT CHORD	2x4 SP No.2		R802.10.2	and referenced st	andard AN	ISI/TPI 1.						
SLIDER	Left 2x4 SP No.2	2-0-10	LOAD CASE(S) Standard								
BRACING												
TOP CHORD	Structural wood she	athing directly appli	ed or									
	3-10-3 oc purlins.											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	C									
	bracing.	A Mashaular C										
REACTIONS	(SIZE) 2=0-5-8, Mechanic	4= Mechanical, 5=										
	Max Horiz 2=86 (LC											
	Max Uplift 2=-130 (L	,										
	Max Grav 2=334 (L	,, , , ,										
	(LC 3)	- ,, (,,										
FORCES	(lb) - Maximum Con	npression/Maximum										
	Tension											
TOP CHORD	1-2=0/18, 2-4=-77/3	2										
BOT CHORD	2-5=0/0											
NOTES												
	E 7-16; Vult=115mph											
	ph; TCDL=6.0psf; BC											
	Cat. II; Exp C; Enclose ne and C-C Exterior(2										South	all
	3-1-8 to 3-9-7 zone;										F OF I	MISCO
	end vertical left and ri									1	750	MISSOL
	and forces & MWFRS	o 1 <i>'</i>								R	AN CONT	New Y

- members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. Bearings are assumed to be: , Joint 2 SP No.2 crushing 3) capacity of 565 psi.

- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 63 lb uplift at joint 4 and 130 lb uplift at joint 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent college with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

OFFESSIONAL ET December 20,2024

PE-2001018807

SCOTT M.

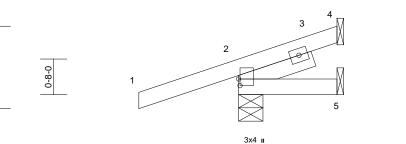
SEVIER

200

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	v	Ply	Roof - MH Lot 201	AS NOTED FOR PLAN REVIEW
505	11035	Truss Type	Guy	у	ту		DEVELOPMENT SERVICES 170321905
P241241-01	J3	Jack-Open	11		1	Job Reference (optional	
Premier Building Supply (Sp							

1-6-9

ID:nKjt_E2EnywC?Gi6s1TsBWzWisf-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKVrCDoi7



1-10-3

1-3-6

Scale = 1:21.6

Plate Offsets (X, Y): [2:0-1-8,0-0-5]

	(, .). [=											
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.28 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 2-5 2-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 11 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD SLIDER	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2	1-5-8	Ínternation	is designed in acc al Residential Coc and referenced st 5) Standard	de sections	R502.11.1 a	and					
BRACING TOP CHORD												
TOP CHORD	Structural wood she 1-10-3 oc purlins.	atning directly appli	ed or									
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	c									
	Mechanic Max Horiz 2=58 (LC Max Uplift 2=-138 (L Max Grav 2=281 (L (LC 3)	8) .C 8), 4=-16 (LC 12) C 1), 4=5 (LC 8), 5=	37									
FORCES	(lb) - Maximum Con Tension	npression/Maximum										
TOP CHORD BOT CHORD	1-2=0/18, 2-4=-69/1 2-5=0/0	7										
Vasd=91m Ke=1.00; (exterior zo and right e exposed;C	CE 7-16; Vult=115mpt nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical C-C for members and f shown; Lumber DOL=	CDL=6.0psf; h=35ft; ed; MWFRS (envelo 2E) zone; cantilever left and right forces & MWFRS for	left							A	STATE OF J	10.11

- DOL=1.60 2) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 3) Bearings are assumed to be: , Joint 2 SP No.2 crushing capacity of 565 psi.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 138 lb uplift at joint 2 and 16 lb uplift at joint 4.

December 20,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - MH Lot 201	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 170321906
P241241-01	J4	Jack-Open	4	1	Job Reference (optional	I70321906 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springl	nill, KS), Spring Hills, KS - 66083,				6 2024 MiTek Industries, Inc. B70Hq3NSgPqnL8w3uITXbGI	
		5-1	11-4			
		4	12 Г		3	
		3x4	=		5	
		^{3x4} = 2				
	2-7-12	Fol	T			2-7-12
	~	1	7			7
	0-8-0				M	
					N 4	
		3x4 u				
		5	11-4			
Scale = 1:22.9						
Plate Offsets (X, Y): [1:0-1-	8,0-5-5]					· · · · · · · · · · · · · · · · · · ·

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.85	Vert(LL)	-0.07	1-4	>987		MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.44	Vert(CT)	-0.14	1-4	>493	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.02	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 23 lb	FT = 20%
LUMBER			6) This truss	s designed in acco	ordance w	ith the 2018						
TOP CHORD	2x4 SP No.2			al Residential Cod			and					
BOT CHORD			R802.10.2	and referenced sta	andard AN	ISI/TPI 1.						
SLIDER	Left 2x4 SP No.2 3	3-1-13	LOAD CASE(S	S) Standard								
BRACING												
TOP CHORD	Structural wood she	athing directly appli	ed or									
	2-11-3 oc purlins.											
BOT CHORD	0 0 ,	applied or 10-0-0 o	с									
	bracing.											
REACTIONS	(,	3= Mechanical, 4=										
	Mechanic Max Horiz 1=101 (L0											
	Max Uplift 1=-38 (LC	,										
	Max Grav 1=264 (LC	,, , , ,	4_117									
	(LC 3)	5 T), 3=200 (LC T),	4=117									
FORCES	(lb) - Maximum Corr	pression/Maximum										
	Tension											
TOP CHORD	1-3=-107/52											
BOT CHORD	1-4=0/0											
NOTES												
1) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)										
Vasd=91r	mph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;										
	Cat. II; Exp C; Enclose		pe)									an
	one and C-C Exterior(2										OF	ALC AL
) 5-0-0 to 5-10-8 zone;										ALEUT	AN SCH
	; end vertical left and right									6	STATE OF J	N.SY
	and forces & MWFRS		ι;							A	SCOT	TM. VEN
	OL=1.60 plate grip DC									4	/ SEV	ER \'Y
2) This truss	has been designed fo	r a 10.0 psr bottom								-h+		

chord live load nonconcurrent with any other live loads. 3) Bearings are assumed to be: , Joint 1 SP No.2 crushing

capacity of 565 psi. 4) Refer to girder(s) for truss to truss connections.

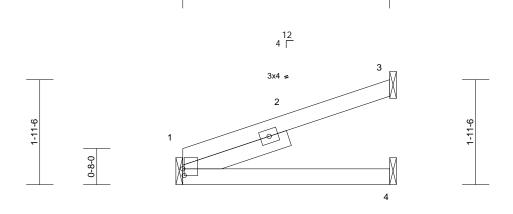
5) Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 38 lb uplift at joint 1 and 113 lb uplift at joint 3.

NUMBER PE-2-PE-2001018807

December 20,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - MH Lot 201	AS NOTED FOR PLAN REVIEW
P241241-01	J8	Jack-Open	1	1	Job Reference (optional)	DEVELOPMENT SERVICES 170321907 LEE'S SUMMIT, MISSOURI

3-10-3

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. thu Dec 9946507/2025 ID:nKjt_E2EnywC?Gi6s1TsBWzWisf-RfC?PsB70Hq3NSgPqnL8w3ulTXbGK rCDoi734207f

	3-10-3	
Scale = 1:21.4		
Plate Offsets (X, Y): [1:0-1-8,0-0-5]		

3x4 II

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.36	Vert(LL)	-0.01	1-4	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.17	Vert(CT)	-0.02	1-4	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 15 lb	FT = 20%

LU	M	в	EI	R	

LUNIBER							
TOP CHORD	2x4 SP N	0.2					
BOT CHORD	2x4 SP N	0.2					
SLIDER	Left 2x4 S	SP No.2 2-0-10					
BRACING							
TOP CHORD Structural wood sheathing directly applied or							
3-10-3 oc purlins.							
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc							
	bracing.						
REACTIONS	(size)	1= Mechanical, 3= Mechanical, 4=					
		Mechanical					
	Max Horiz	1=71 (LC 8)					
	Max Uplift	1=-22 (LC 8), 3=-75 (LC 8)					
	Max Grav	1=170 (LC 1), 3=132 (LC 1), 4=76					
		(LC 3)					
FORCES	(lb) - Max	imum Compression/Maximum					
	Tension	·					
TOP CHORD	1-3=-78/3	3					
BOT CHORD	1-4=0/0						
NOTEO							

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.

3) Refer to girder(s) for truss to truss connections.

- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 1 and 75 lb uplift at joint 3.
- This truss is designed in accordance with the 2018 5) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

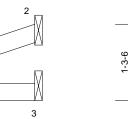
						RELEASE FOR CONSTRUCT
Job	Truss	Truss Type	Qty	Plv	Roof - MH Lot 201	AS NOTED FOR PLAN REVI
300	11055	Truss Type	Quy	гіу	ROOI - MIT LOI 201	DEVELOPMENT SERVICE 170321908
P241241-01	J9	Jack-Open	1	1	Job Reference (optional	

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

1-3-6

0-8-0

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc., Ihu Dec 99546, 07/26925 ID:nKjt_E2EnywC?Gi6s1TsBWzWisf-RfC?PsB70Hq3NSgPqnL8w3uITXbGK VrCDoi7542JC?f


1-10-3 12 4 ┌

1

3x6 II

1-10-3

4

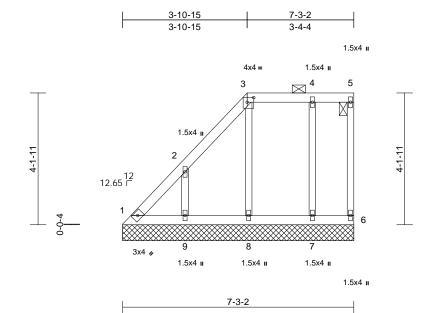
9	
1-3-6	

Scale = 1:19.3

Scale = 1:19.3													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.07 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 3-4 3-4 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 6 lb	GRIP 197/144 FT = 20%	_
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m Ke=1.00; C exterior zo and right e exposed; C reactions s DOL=1.60 2) This truss chord live 3) Bearings a capacity of 4) Refer to gi 5) Provide m bearing pla and 31 lb c	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 1-10-3 oc purlins, e Rigid ceiling directly bracing. (size) 2= Mecha 4=0-3-8 Max Horiz 4=26 (LC Max Grav 2=58 (LC (LC 1) (Ib) - Maximum Com Tension 1-4=-63/65, 1-2=-32 3-4=0/0 Cat. II; Exp C; Enclose ne and C-C Exterior(2 Cat. II; Exp C; Inclose ne and C-C Exterior(2 cat. II; Exp C; Inc	athing directly applie xcept end verticals. applied or 10-0-0 oc nical, 3= Mechanica 9) (212), 4=-8 (LC 8) 1), 3=34 (LC 3), 4=7 pression/Maximum /14 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever I left and right orces & MWFRS for 1.60 plate grip r a 10.0 psf bottom th any other live load bint 4 SP No.2 crush ss connections. (by others) of truss to rading 8 lb uplift at joi ance with the 2018 ections R502.11.1 at	LOAD CASE(S) ed or c ul, 78 re) eft ds. ing on t 4							K	STATE OF STATE OF SEV	MISSOUR T M. TER	
											Decembe	er 20,2024	

M liTo 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


						NELL
Job	Truss	Truss Type	Qty	Ply	Roof - MH Lot 201	AS N DE
P241241-01	LAY01	Lay-In Gable	1	1	Job Reference (optional	

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. hu Dec 99546,607/29925 ID:J79Vmu1c0eoLN67vIJydflzWisg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKW CDoi7J4z3C?

Г

Scale = 1:36.2

Plate Offsets (X, Y): [3:0-2-8,0-1-12]

	, T). [3.0-2-0,0-1-12	·]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.29 0.03 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins; ex 2-0-0 oc purlins: 3-5 Rigid ceiling directly bracing. (size) 1=7-3-2, 6 8=7-3-2, 6 Max Horiz 1=164 (LC Max Uplift 1=-41 (LC (LC 9), 8= 12) Max Grav 1=120 (LC	cept end verticals, and applied or 10-0-0 oc 6=7-3-2, 7=7-3-2, 9=7-3-2 C 9) C 10), 6=-7 (LC 8), 7= -70 (LC 9), 9=-155 (nd 6) ; 7) 8) =-45 9) (LC 9) =181 10	only. For stu see Standarr or consult qu Provide ade Gable requir Gable studs This truss ha chord live loa All bearings capacity of 5 Provide mec bearing plate 1, 7 lb uplift i at joint 8 and This truss is International R802.10.2 a	hanical connection e capable of withst at joint 6, 155 lb up d 45 lb uplift at join designed in accor Residential Code nd referenced stau urlin representation ation of the purlin	nd (norm nd Deta signer a prevent tom chor c. for a 10. with any e SP No n (by oth anding 4 plift at jo t 7. dance w sections ndard AB	al to the face ils as applical s per ANSI/TK water ponding d bearing. 0 psf bottom other live loa 2 crushing ers) of truss t 11 lb uplift at j int 9, 70 lb up ith the 2018 s R502.11.1 a SI/TP1 1. ot depict the s), ble, PI 1. J. ds. ds. oint lift nd					
FORCES	(lb) - Maximum Com Tension 1-2=-284/289, 2-3=-			DAD CASE(S)									
TOP CHORD	4-5=-79/86, 5-6=-22		,									000	alle
BOT CHORD	1-9=-78/86, 8-9=-79, 6-7=-79/86	/86, 7-8=-79/86,										TATE OF J	MISSO
Vasd=91n Ke=1.00; (exterior zc and right e exposed;C	2-9=-233/179, 3-8=- CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and f shown; Lumber DOL=	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop 2E) zone; cantilever l left and right orces & MWFRS for	oe) eft								R	SCOT SEV NUM PE-2001	T M. HER DIRROT DIRROT

December 20,2024

													RELEAS	E FOR CONSTRUCTION
Job		Truss		Truss Ty	/pe		Qty	Ply	/	Roof - MH	l Lot 201			ED FOR PLAN REVIEW LOPMENT SERVICES
P241241-0	1	LAY0	2	Lay-In (Gable		1	1		Job Refei	ence (or	otional	LEE'S	LOPMENT SERVICES 170321910 SUMMIT, MISSOURI
Premier Buildin	g Supply (Spri	nghill, KS), S	Spring Hills, KS - 66083,			Run: 8.63 S Sep 26 ID:J79Vmu1c0eoLN6			•	2024 MiTe	k Industrie	s, Inc.	hu Dec 909:46:5 rCDoi7J4zJC?	07/2025
		ŀ	<u>3-10-15</u> 3-10-15						1-9-2 -10-4					4
		,	5-10-13					10	-10-4					
					6x6 🍫	4	F		6		7		0 0	
	-				3		⊲				7]	\square		
4-1-11			2			8					Ľ			4-1-1
4-	4	12.65											6	
					_		<u> </u>							
		_	3x4 🧳 17		16	15	14		13	3	12		11	_
		1				14-9	-2							1
Scale = 1:32.1 Plate Offsets	(<u>V</u> , <u>V</u>), <u>10,0</u>													1
	(A, T). [3.0·	(psf)	Spacing	2-0-0		CSI		DEFL		in (loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC 0	.18	Vert(LL)	n	/a -	n/a	999	MT20	244/190
TCDL BCLL		10.0 0.0	Lumber DOL Rep Stress Incr	1.15 YES		WB 0		Vert(TL) Horiz(TL)		/a - 00 10	n/a n/a	999 n/a		
BCDL		10.0	Code		/TPI2014	Matrix-S			-				Weight: 67 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP N 2x3 SPF 2x3 SPF Structura 6-0-0 oc p	o.2 No.2 No.2 I wood she purlins, exe	athing directly applied	or	Vasd=91mph Ke=1.00; Cat exterior zone Exterior(2R) 14-8-2 zone; vertical left at forces & MW	7-16; Vult=115mph (3 ; TCDL=6.0ps; BCDI . II; Exp C; Enclosed; and C-C Exterior(2E) 3-11-2 to 11-0-0, Inter cantilever left and rigi nd right exposed;C-C FRS for reactions sho ate grip DOL=1.60	_=6.0p MWF 0-4-1 ior (1) nt exp for me	psf; h=35f RS (enve I to 3-11-2) 11-0-0 to osed ; en embers a	elope) 2, c d					
BOT CHORD			-0 max.): 3-9. applied or 10-0-0 oc	2)	Truss design	ed for wind loads in th ds exposed to wind (r								
REACTIONS	0	12=14-9-2	10=14-9-2, 11=14-9- 2, 13=14-9-2, 14=14-9 2, 16=14-9-2, 17=14-9	-2, 3)	see Standard or consult qu Provide aded	I Industry Gable End I alified building design uate drainage to prev	Detail: er as rent w	s as appli per ANSI, ater pond	cable, /TPI 1. ling.					
		1=164 (LC 1=-41 (LC 11=-37 (L 13=-40 (L 15=-45 (L 17=-148 (C 9) C 9), 10=-11 (LC 11), C 8), 12=-45 (LC 9), C 8), 14=-38 (LC 8), C 9), 16=-76 (LC 9), LC 12)	4) 5) 6)	Gable require Gable studs This truss ha chord live loa	1.5x4 MT20 unless of es continuous bottom spaced at 0-0-0 oc. s been designed for a d nonconcurrent with are assumed to be SF 35 psi.	chord 10.0 any c	bearing. psf bottor other live l	n oads.					
	Max Grav		C 20), 10=8 (LC 1), C 1) 12=189 (LC 1)	9)		nanical connection (by	othe	rs) of trus	s to					

- Provide mechanical connection (by others) of truss to 9) 11=137 (LC 1), 12=189 (LC 1), bearing plate capable of withstanding 41 lb uplift at joint 13=179 (LC 1), 14=178 (LC 1), 1, 11 lb uplift at joint 10, 148 lb uplift at joint 17, 76 lb 15=191 (LC 1), 16=164 (LC 1), uplift at joint 16, 45 lb uplift at joint 15, 38 lb uplift at joint 14, 40 lb uplift at joint 13, 45 lb uplift at joint 12 and 37 lb (lb) - Maximum Compression/Maximum uplift at joint 11.
 - 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 - 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

lek 16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

NOTES

WEBS

FORCES

TOP CHORD

BOT CHORD

17=219 (LC 19)

4-5=-79/86, 5-6=-79/86, 6-7=-79/86,

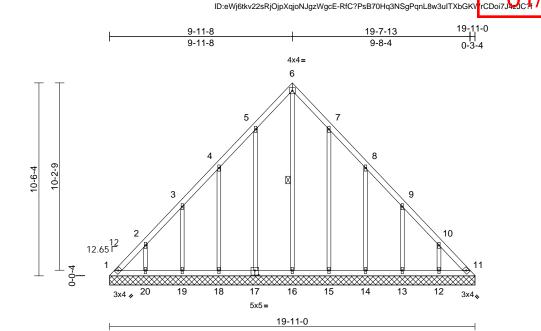
7-8=-79/86, 8-9=-79/86, 9-10=-48/49

11-12=-79/86, 10-11=-79/86

7-12=-148/68, 8-11=-114/68

2-17=-199/166, 3-16=-199/145,

1-2=-263/265, 2-3=-141/148, 3-4=-79/85,


1-17=-78/86, 16-17=-79/86, 15-16=-79/86,

14-15=-79/86, 13-14=-79/86, 12-13=-79/86,

4-15=-150/69, 5-14=-138/62, 6-13=-139/63,

Tension

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - MH Lot 201	AS NOTED FOR PLAN REVIEW
P241241-01	LAY03	Lay-In Gable	1	1	Job Reference (optional	DEVELOPMENT SERVICES 170321911 LEE'S SUMMIT, MISSOURI
Premier Building Supply ((Springhill, KS), Spring Hills, K	S - 66083,			6 2024 MiTek Industries, Inc. 0Ha3NSaPanL8w3uITXbGKV	

Scale = 1:62.8

Plate Offsets (X, Y): [17:0-2-8,0-3-0]

	-0]		-							-	
Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Spacing 2-0 Plate Grip DOL 1.1: Lumber DOL 1.1: Rep Stress Incr YEs Code IRC	5 5	CSI TC BC WB Matrix-S	0.08 0.06 0.28	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 110 lb	GRIP 244/190 FT = 20%
BOT CHORD 6-0-0 oc purlins. Rigid ceiling direct bracing. WEBS 1 Row at midpt REACTIONS (size) 1=19-1 12=19-1 14=19-1 18=19- 02=19-1 18=19- 18=19- 18=19- 18=19- 18=19- 18=19- 18=19- 18=19- 18=19- 18=19- 18=19- 18=19- 18=19- 18=19- 18=19- 18=19- 18=19- 18=205 20=209 Max Horiz 1=288 (Max Uplift 1=-131 12=-133 19=-133 Max Grav 1=284 (12=209 14=207 16=231 18=205 20=209 FORCES (lb) - Maximum Cor Tension 1-2=-409/251, 2-3 4-5=-149/134, 5-6		WEBS NOTES 1) Unbalancer this design. 2) Wind: ASC Vasd=91m Ke=1.00; C exterior zor Interior (1) 14-11-12, li left and right exposed; C reactions sill DOL=1.60 3) Truss desig only. For s see Standa or consult C 4) All plates a 5) Gable requ 6) Gable stud: 7) This truss h chord live k	E 7-16; Vult=115mpf ph; TCDL=6.0psf; BC iat. II; Exp C; Enclose he and C-C Exterior(5-4-1 to 9-11-12, Ext interior (1) 14-11-12 th the exposed ; end vert -C for members and hown; Lumber DOL= gned for wind loads in tuds exposed to wind rd Industry Gable Er jualified building des re 1.5x4 MT20 unles ires continuous botto s spaced at 2-0-0 oc has been designed for bad noncourrent w s are assumed to be	5-18=-1 1-15=-1 2-13=-1 7=-177, 9=-184, 5=-176, 3=-185, 2=-176, 3=-185, 2=-176, 3=-185, 2=-176, 3=-185, 2=-176, 3=-185, 2=-176, 3=-185, 2=-176, 3=-185, 2=-176, 3=-184, 5=-176, 3=-184, 5=-176, 3=-184, 5=-176, 3=-184, 5=-176, 3=-184, 5=-176, 3=-184, 5=-176, 3=-184, 5=-176, 3=-184, 5=-176, 3=-184, 5=-176, 3=-184, 5=-176, 3=-184, 5=-176, 3=-184, 5=-176, 3=-185, 4, 10, 10, 10, 10, 10, 10, 10, 10	38/282, 37/	e) ever ss , lle, I 1.	bea join lb u join 135 10) Thi Inte	aring pla at 1, 88 l uplift at ju t 20, 12 5 lb uplif s truss i ernationa 02.10.2	te capa b uplift bint 18,8 lb up s desig al Resi and ref c) Sta	able of withstandi at joint 11, 131 lk , 135 lb uplift at jo lift at joint 15, 143 it 13 and 138 lb u ned in accordand dential Code sect ferenced standard ndard	MISSOLUTION MISSOLUTIA MISS

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

December 20,2024

Job Truss Truss Type Qty Ply Roof - MH Lot 201 P241241-01 LAY04 Lay-In Gable 1 1 1 Job Reference (optional Development Sequences to the second seco								RELEASE FOR CONSTRUCTION
P241241-01 LAYO4 Lay-In Gable 1 1 Job Reference (optional LEES SUMMT, MISSOURI) Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083, Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083, DiBbMT2buWFB09H9limvDF2WgcG-RiC7PeB70Hq3NSgPqnLaw3uTXbiB WrCDarMa, Jet A 07/2025 4 - 11 - 8 - 9 - 7.12 - 9 - 11 - 0 - 3 - 4 3 + 4 - 11 - 8 - 4 - 8 - 0 - 3 - 4 3 + 4 - 1 - 8 - 4 - 8 - 0 - 3 - 4 3 + 4 - 1 - 8 - 4 - 4 - 0 - 3 - 4 3 + 4 - 1 - 5 - 1 - 5 - 4 - 1 - 5 - 1 - 0 - 3 - 4 3 + 4 - 1 - 5 - 1 - 5 - 1 - 0 - 3 - 4 3 + 4 - 1 - 5 - 1 - 5 - 1 - 0 - 3 - 4 3 + 4 - 1 - 5 - 1 - 5 - 1 - 0 - 3 - 4 3 + 4 - 1 - 5 - 1 - 0 - 3 - 4 - 1 - 5 - 0 - 3 - 4 3 + 4 - 1 - 5 - 1 - 5 - 1 - 0 - 3 - 4 - 1 - 0 - 3 - 4 - 1 - 5 - 0 - 3 - 4 - 1 - 5 - 0 - 3 - 4 - 1 - 5 - 0 - 3 - 4 - 1 - 5 - 0 - 3 - 4 - 1 - 5 - 0 - 3 - 4 - 1 - 5 - 0 - 3 - 4 - 1 - 5 - 0 - 3 - 4 - 1 - 5 - 0 - 3 - 4 - 1 - 5 - 0 - 3 - 4 - 1 - 5 - 0 - 3 - 4 - 1 - 5 - 0 - 3 - 4 - 1 - 5 - 0 - 3 - 4 - 1 - 5 - 0 - 3 - 4 - 1 - 5 - 0 - 3 - 4 - 1 - 5 - 0 - 3 - 4 - 0 - 3 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	Job	Truss	Truss Type	Qty	Ply	Roof - MH Lot	201	
DIBBMT2DWFB09PBIImvDF2WgoG-RIC?Psb70Hq3NSgPqnL8v3UTX5GWrCDoM4zJd7 OT ZOZO 4-11-8 $9-7-12$ $9-11-04-21-8$ $4-8-4$ $0-3-43x4 =41.5x4 =1.5x4 =$	P241241-01	LAY04	Lay-In Gable	1	1	Job Reference	e (optional)	170321912 LEE'S SUMMIT, MISSOURI
$\frac{4+11-8}{4+11-8} + \frac{9-7+12}{4+8-4} = 0-3-4$ 3x4 = 4 1.5x4 # 1.5x4 # 1.5x	Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,						
$\begin{array}{c} 4\\ 1.5x4 \\ 1.5x$								
$ \begin{array}{c} 1.5x4 \\ 1.5x4 $					-			
			1.5x4 # 2 12.65 12 1 3x4 * 11		5 9 1.5x4 µ	6	7 3x4	

Scale = 1:38.1 Plate Offsets (X, Y): [4:Edge.0-3-0]

Loading TCLL (roof) TCDL		(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.08 0.04	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCLL		0.0	Rep Stress Incr	YES		WB	0.05	Horiz(TL)	0.00	7	n/a	n/a		
BCDL		10.0	Code	IRC2	018/TPI2014	Matrix-S							Weight: 43 lb	FT = 20%
LUMBER FOP CHORD 30T CHORD DTHERS BRACING FOP CHORD 30T CHORD REACTIONS	2x4 SP Nc 2x3 SPF N Structural 6-0-0 oc p Rigid ceilit bracing. (size) Max Horiz Max Uplift Max Grav	.2 lo.2 wood she urlins. ng directly 1=9-11-0, 9=9-11-0, 1=-139 (L 1=-33 (LC 8=-152 (L 10=-80 (L 1=146 (LC	athing directly applie rapplied or 10-0-0 oc ,7=9-11-0, 8=9-11-0, 10=9-11-0, 11=9-11 C 8) C 10), 7=-26 (LC 11), C 13), 9=-74 (LC 13) C 12), 7=-141 (LC 13) C 12), 7=141 (LC 13) C 20), 9=170 (LC 20)	d or -0 , 12)	 see Standarr or consult qu All plates arc Gable requir Gable studs This truss ha chord live loz All bearings Provide mec bearing plate 1, 26 lb uplift at joint 10, 7 8. 	Ids exposed to w d Industry Gable ialified building d e 1.5x4 MT20 un es continuous bo spaced at 0-0-0 is been designed ad nonconcurren are assumed to 65 psi. hanical connecti e capable of with a t joint 7, 150 lb 4 lb uplift at joint designed in acco	vind (norm End Deta esigner a: less other vittom chor oc. I for a 10.1 t with any pe SP No. on (by oth standing 3 uplift at jr 9 and 152 ordance w	al to the face ils as applical s per ANSI/TF wise indicated d bearing. D psf bottom other live loa 2 crushing ers) of truss t i3 lb uplift at j pint 11, 80 lb 2 lb uplift at jo ith the 2018), ble, Pl 1. d. ds. o oint uplift int					
FORCES	(lb) - Maxi		LC 19), 11=215 (LC 1 pression/Maximum	,		Residential Cod nd referenced sta Standard			ina					
TOP CHORD		,	110/55, 3-4=-65/34, 4/44, 6-7=-211/169											
BOT CHORD	1-11=-132	/171, 10-1	1=-132/171, =-132/171, 7-8=-132/	171									- Canada	acon
WEBS	2-11=-213 6-8=-213/)=-138/105, 5-9=-132	2/99,								1	TATE OF I	MISSO
this design 2) Wind: ASC Vasd=91n Ke=1.00; exterior zc and right e exposed;0	n. CE 7-16; Vul nph; TCDL=6 Cat. II; Exp (one and C-C exposed ; en C-C for memi shown; Lumi	t=115mph 6.0psf; BC 5; Enclose Exterior(2 d vertical pers and f	been considered for (3-second gust) :DL=6.0psf; h=35ft; :d; MWFRS (envelop ?E) zone; cantilever le left and right orces & MWFRS for 1.60 plate grip	e)							Ç	E.	SEV.	I M. IER 018807 018807

December 20,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

													FOR CONSTRUCTION
Job	Truss		Truss Ty	/pe		Qty	/ Ply	Ro	oof - MH	Lot 201		AS NOTE DEVEL	D FOR PLAN REVIEW OPMENT SERVICES 170321913
P241241-01	LAYO	15	Lay-In (Gable		1	1	Jo	b Refere	ence (op	tional		I70321913 SUMMIT, MISSOURI
Premier Building Supp	oly (Springhill, KS), s	Spring Hills, KS - 66083,			Run: 8.63 S Sep ID:nKjt_E2Enyw			ep 26 20	24 MiTek	Industrie	s, Inc. ⁻	hu Dec 909:46:5 VrCDoi7342JC?f	07/2025
				7	-11-8			15-7-	13		15-11	-0	
					-11-8			7-8-			15-11 0-3-	4	
						4x4	=						
						5							
			2.65 ¹² 1 3x4 x	2 2 16	4 15 14	13 15-11	6 6 12 -0	B 11	7	8	s sx4	-	
Scale = 1:51.6										-			
.oading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.07	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
CDL	10.0	Lumber DOL	1.15		BC	0.05	Vert(TL)	n/a	-	n/a	999	101120	244/130
BCLL BCDL	0.0 10.0	Rep Stress Incr Code	YES IRC2018	3/TPI2014	WB Matrix-S	0.24	Horiz(TL)	0.01	9	n/a	n/a	Weight: 81 lb	FT = 20%
3OT CHORD 2x- DTHERS 2x: BRACING TOP CHORD Stu 6-0 3OT CHORD Rig	D-0 oc purlins. gid ceiling directly acing. e) 1=15-11-	eathing directly applied y applied or 10-0-0 oc 0, 9=15-11-0, 10=15-1 I-0, 12=15-11-0,	d or	Vasd=91mph Ke=1.00; Ca exterior zone Interior (1) 5- 12-11-12, Int left and right exposed;C-C reactions sho DOL=1.60 Truss design	7-16; Vult=115mm n; TCDL=6.0psf; E t. II; Exp C; Encloio e and C-C Exterior e4-1 to 7-11-12; E: erior (1) 12-11-12 exposed ; end ve c for members and own; Lumber DOL	CDL=6.(sed; MW (2E) 0-4 (terior(2F to 15-7- trical left forces 8 =1.60 pla in the pla	Dpsf; h=35ft; FRS (envelop 1 to 5-4-1, R) 7-11-12 to 7 zone; cantil- and right & MWFRS for ate grip	ever					

NOTES

FORCES

TOP CHORD

BOT CHORD

WEBS

1) Unbalanced roof live loads have been considered for

8-10=-185/154

7-8=-155/93, 8-9=-278/190

1-16=-146/219, 15-16=-146/219,

14-15=-147/219, 13-14=-147/219,

12-13=-147/219, 11-12=-147/219, 10-11=-146/219, 9-10=-146/219

5-13=-153/104, 4-14=-187/160,

3-15=-195/164, 2-16=-185/154, 6-12=-187/158, 7-11=-195/165,

Max Grav

Tension

15=-139 (LC 12), 16=-137 (LC 12) 1=211 (LC 12), 9=188 (LC 13),

10=209 (LC 20), 11=206 (LC 20),

12=214 (LC 20), 13=177 (LC 13), 14=216 (LC 19), 15=205 (LC 19),

16=209 (LC 19)

(Ib) - Maximum Compression/Maximum

1-2=-309/190, 2-3=-183/140, 3-4=-143/100,

4-5=-162/158, 5-6=-162/150, 6-7=-107/58,

this design.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 92 lb uplift at joint 1, 58 lb uplift at joint 9, 137 lb uplift at joint 14, 139 lb uplift at joint 15, 137 lb uplift at joint 16, 134 lb uplift at joint 12, 140 lb uplift at joint 11 and 137 lb uplift at joint 10.

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com) 16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

								RELEASE FOR CO	ONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - MH Lot 201		AS NOTED FOR F DEVELOPMEN 1703	
P241241-01	LAY06	Lay-In Gable		1	1	Job Reference (opti	onali	I703 LEE'S SUMMIT	
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,		Run: 8.63 S Sep 26 ID:J79Vmu1c0eoLN6	2024 Print: 8 7vlJydflzWis	3.630 S Sep 2 sg-RfC?PsB7	6 2024 MiTek Industries, 0Hq3NSgPqnL8w3ulTXb	Inc. Thu Dec GKWrCDoi7J		2025
	5-10-15			22-0-2				27-7-13	27-11-0
	5-10-15			16-1-3				5-7-11	0-3-4
		6x6 🅢			5x5=		6x6 💊		
		4 5		8	9 ⊠	10 11 🖂 🖂	12		
	/			8					

5-11-5 6-3-0

0-0-4

Scale = 1:50.9	
Plate Offsets (X, Y): [4:0-2-9,Edge], [9:0-2-8,0-3-0], [12:0-2-9,Edge], [23:0-2-8,0-3-0])]

3

27

26

25

24

23

5x5=

22

27-11-0

21

2

28

1<u>2</u> 12.65 Г

1

 \boxtimes

3x4 🥠

	(/(, 1): [1:0 2 0,Edg0]	, [0:0 = 0,0 0 0], [1=:0		[20:0 2 0,0	<u> </u>								
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.03	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.13	Horiz(TL)	0.01	15	n/a	n/a		
BCDL	10.0	Code	IRC2018/	FPI2014	Matrix-S							Weight: 140 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	2x4 SP No.2 2x3 SPF No.2		d or	CHORD	1-2=-204/160, 2-3= 4-5=-114/124, 5-6= 7-8=-115/124, 8-10 10-11=-114/124, 1 12-13=-135/126, 1 14-15=-158/96 1-28=-79/136, 27-2 26-27=-79/136, 25-	-114/12 115/1 1-12=-1 3-14=-8 8=-79/1	24, 6-7=-114/1 24, 14/124, 6/43, 36,	,	 8) Th chi 9) All caj 10) Probe 10, 2 	is truss h ord live lo bearings oacity of ovide me aring pla 22 lb upl	nas bee oad noi s are as 565 ps chanic te capa ift at joi	ssumed to be SP ii. al connection (by able of withstandii int 15, 137 lb uplit	any other live loads. No.2 crushing others) of truss to ng 72 lb uplift at joint it at joint 28, 144 lb
BOT CHORD		applied or 10-0-0 oc			24-25=-79/136, 22- 21-22=-78/136, 20-		,						26, 43 lb uplift at joint it at joint 23, 38 lb
REACTIONS	(size) 1=27-11- 16=27-11 18=27-11 20=27-11 22=27-11 24=27-11 26=27-11 28=27-11		WEE	38	19-20=-79/136, 18- 17-18=-79/136, 16- 15-16=-79/136 2-28=-174/155, 3-2 4-26=-122/53, 5-25 7-23=-141/64, 8-22 10-20=-141/65, 11- 12-18=-107/5, 13-1 14-16=-174/156	17=-79, 7=-184, =-151/6 =-137/6 19=-15	/136, /169, /7, 6-24=-138, /2, 9-21=-140, 1/69,	,	20 Ib 11) Th Int R8 12) Gr or	, 45 lb up uplift at jo is truss is ernationa 02.10.2 aphical p	olift at j oint 16 s desig al Resid and ref ourlin re ourlin re	oint 19, 143 lb up ned in accordanc dential Code sect erenced standard	ions R502.11.1 and J ANSI/TPI 1. s not depict the size
	19=-45 (L 21=-40 (L 23=-40 (L 25=-43 (L 27=-144 Max Grav 1=141 (L 16=208 (C 10), 15=-22 (LC 11) (LC 13), 17=-143 (LC LC 9), 20=-41 (LC 8), LC 9), 22=-38 (LC 8), LC 9), 24=-40 (LC 8), LC 8), 26=-30 (LC 9), (LC 12), 28=-137 (LC C 21), 15=116 (LC 22 LC 20), 17=214 (LC 2)	13), 1) 2) 12)), 0),	Unbalanced this design. Wind: ASCE Vasd=91mp Ke=1.00; Ca exterior zon Interior (1) 5 Interior (1) 1	I roof live loads have 5 7-16; Vult=115mp bh; TCDL=6.0psf; Bd at. II; Exp C; Enclos e and C-C Exterior(5-4-1 to 5-11-2, Exte 3-0-0 to 22-0-6, Ex	h (3-sec CDL=6.0 ed; MW 2E) 0-4 erior(2R terior(2I	cond gust) Dpsf; h=35ft; FRS (envelop -1 to 5-4-1,) 5-11-2 to 13 E) 22-0-6 to	e)	LOAD	CASE(S	l	ndard	MISSOUR
FORCES	20=181 (22=178 (24=178 (26=162 (28=207 (LC 26), 19=191 (LC 2 LC 1), 21=180 (LC 25 LC 26), 23=181 (LC 2 LC 2), 25=192 (LC 26 LC 22), 27=215 (LC 1 LC 19) npression/Maximum	(5), (6), (6), (7), (9), (7), (7), (7), (7), (7), (7), (7), (7	vertical left a forces & MV DOL=1.60 p Truss desig only. For st see Standar or consult q Provide ade All plates ar	c; cantilever left and and right exposed;C VFRS for reactions olate grip DDL=1.60 ned for wind loads i uds exposed to win rd Industry Gable Er ualified building des quate drainage to p e 1.5x4 MT20 unles res continuous botto	C-C for n shown; n the pla d (norm nd Deta igner as revent s other	nembers and Lumber ane of the trus al to the face) ils as applicat s per ANSI/TF water ponding wise indicated), ble, Pl 1. I.				SEVI PE-20010 PE-20010 SIONA	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

December 20,2024

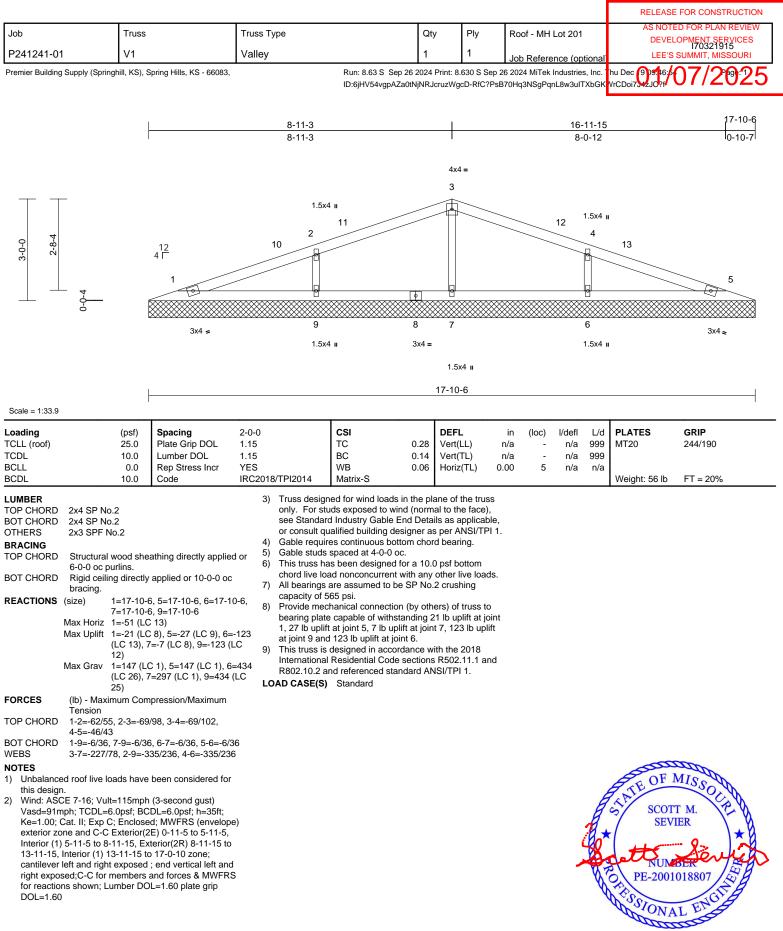
13

17

18

19

20


14

16

15

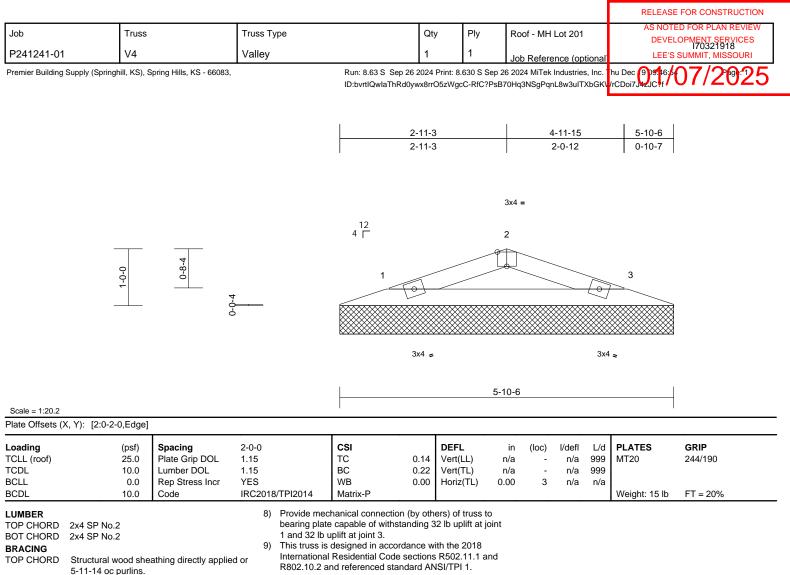
3x4、

-

December 20,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

										RELEASE FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Roof - MH	Roof - MH Lot 201		AS NOTED FOR PLAN REVIEW
P241241-01	V2		Valley		1	1	Job Reference (optional		tional	DEVELOPMENT SERVICES I70321916 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Sp	ringhill, KS), S	Spring Hills, KS - 66083,	-	Run: 8.63 S Sep 2	6 2024 Pri	int: 8.630 S Sep	26 2024 MiTek	Industries	s, Inc. ¹	
				ID:bvrtIQwIaThRd0	wx8rrO5z	zWgcC-RfC?Ps	B70Hq3NSgPqr	L8w3uIT	XbGK\	
			6-1						-11-15	13-10-6 0-10-7
		I	0-1	11-3 l 6-0-7			-0-12	10-10-7		
	4x6 ။ 2									
					6		7			
2-0-4		4		\bigcirc						
2 -4			5						<u> </u>	8
		1	\square							3
			-		*****		*******			
					*****	<u>**********</u> 4			<u> </u>	
		3:	x4 =							3×4 🕿
						1.5x4 u				
						13-10-6				
Scale = 1:27.7		, ,								· · · · · · · · · · · · · · · · · · ·
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in (loc)	l/defl	L/d	PLATES GRIP
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC		/ert(LL) /ert(TL)	n/a - n/a -	n/a n/a	999 999	MT20 244/190
BCLL BCDL	0.0 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-S	0.09 ⊦	loriz(TL)	0.00 3	n/a	n/a	Weight: 41 lb FT = 20%
LUMBER 2x4 SP N2 6) This truss has been designed for a 10.0 ps bottom chord live loads. SOT CHORD 2x4 SP N2 All bearings are assumed to be SP N.2.2 crushing capacity of 565 psi. BRACING Structural words sheathing directly applied or 6-0-0 oc partins. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 60 lb uplift at joint 1, 64 lb uplift at joint 2, 64 lb uplift at joint 2, 64 lb uplift at joint 3, and 72 lb uplift at joint 4. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 60 lb uplift at joint 4. REACTIONS Sizev 1=13-10-6, 3=13-10-6, 4=13-10-6 Max Horiz 1=38 (LC 16) Max Horiz 1=38 (LC 16) LC 8), 3=-64 (LC 13), 4=-72 (LC 8) Max Grav Standard Max Grav 1=244 (LC 25), 3=244 (LC 26), 4=617 (LC 1) All bearings are submed to be SP No.2 Content of the sections R500 (LT 1) and R802 (LT 1) and R802 (LT 1) FORCES (lb) - Max''''''''''''''''''''''''''''''''''''										
Tension TOP CHORD 1-2=-98/	70, 2-3=-98/	/71								
	8, 3-4=-2/38									
NOTES 2-4=-435	010									
 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-11-5 to 5-11-5, Interior (1) 5-11-5 to 6-11-15, Exterior(2R) 6-11-15 to 11-11-15, Interior (1) 11-11-15 to 13-0-10 zone; cantilever left and right exposed; end vertical left and right exposed; end vertical left and for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 										
 Truss designed for w only. For studs expo see Standard Industri 	esed to wind Ty Gable End uilding desig nuous bottor	l (normal to the face), d Details as applicable gner as per ANSI/TPI	9,						A SA	PE-2001018807 PE-2001018 PE-20010 PE-20000 PE-20010 PE-20010 PE-20010 PE-20010 PE


MiTek 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

									RELEASE FOR CONSTRUCTION		
Job	Tru	SS	Truss Type		Qty	Ply	Roof - MH	Lot 201	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 170321917		
P241241-01	V3		Valley		1	1	Job Refere	ence (optiona			
Premier Building Sup	oply (Springhill, KS	8), Spring Hills, KS - 66083,	Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu Dec 99546507/2925								
				4-11-3				8-11-15	9-10-6		
			4-11-3			4-0-12			0-10-7		
			4x4 =								
	4										
1-8-0	1-4-4										
x -		_							3		
	-	0 									
						4					
						3x4 ≈					
			1			9-10-6					
Scale = 1:23.4											
Loading TCLL (roof)	(psf) 25.0		2-0-0 1.15	CSI TC 0		E FL ert(LL)	in (loc) n/a -	l/defl L/c n/a 999			
TCDL BCLL	10.0	Lumber DOL	1.15 YES	BC 0).16 Ve	rt(TL)	n/a -	n/a 999			
BCDL	0.0 10.0		IRC2018/TPI2014	Matrix-S).07 Ho	oriz(TL) C	.00 3	n/a n/a	Weight: 28 lb FT = 20%		
LUMBER 2x4 SP No.2 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. BOT CHORD 2x4 SP No.2 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 1, 43 lb uplift at joint 3 and 48 lb uplift at joint 4. TOP CHORD Structural wood sheathing directly applied or 10-0-0 oc brains. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. BOT CHORD (size) 1=9-10-6, 3=9-10-6, 4=9-10-6 Max Horiz 1=-26 (LC 17) Max Uplift Max Grav 1=-26 (LC 25), 3=164 (LC 26), 4=4-413 (LC 1). Standard											
Ť	b) - Maximum C ension	compression/Maximum									
BOT CHORD 1-	-2=-66/54, 2-3= -4=-1/25, 3-4=-1										
NOTES	-4=-291/276										
 Notes 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; end vertical left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 4-0-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 									SCOTT M. SEVIER NUMBER PE-2001018807		
chord live load	d nonconcurren	t with any other live load	S.						December 20,2024		
									· · · · · · · · · · · · · · · · · · ·		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

LOAD CASE(S) Standard

BOT CHORD

REACTIONS

FORCES

NOTES

2)

3)

4)

5)

6)

7)

TOP CHORD

BOT CHORD

this design.

DOL=1.60

bracing.

Tension

Gable studs spaced at 4-0-0 oc.

capacity of 565 psi.

1-3=-238/211

(size)

Rigid ceiling directly applied or 10-0-0 oc

1=5-10-6, 3=5-10-6

(Ib) - Maximum Compression/Maximum

Max Uplift 1=-32 (LC 8), 3=-32 (LC 9) Max Grav 1=185 (LC 1), 3=185 (LC 1)

Max Horiz 1=-13 (LC 17)

1-2=-242/285, 2-3=-242/290

1) Unbalanced roof live loads have been considered for

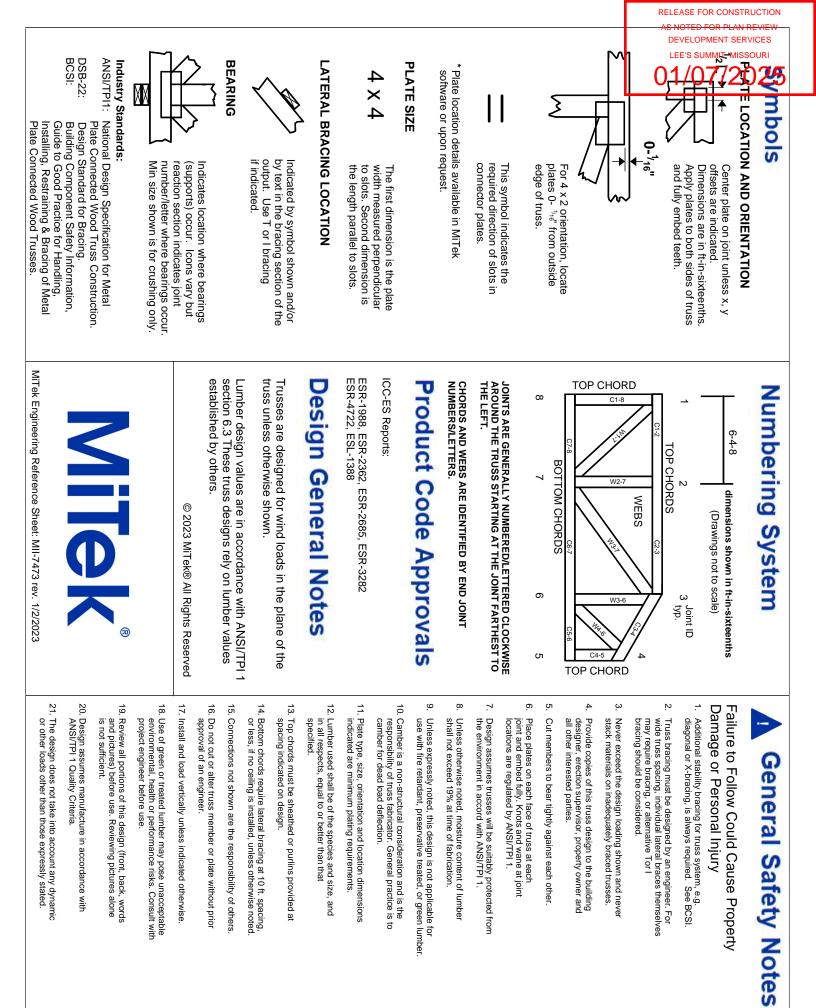
Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.

This truss has been designed for a 10.0 psf bottom


All bearings are assumed to be SP No.2 crushing

chord live load nonconcurrent with any other live loads.

December 20,2024

