

RE: P240762-04 - Roof - HM Lot 190

Site Information:

Project Customer: Clayton Properties Project Name: Sheffield - Modern Prairie Lot/Block: 190

Subdivision: Highland Meadows

Model:

Address: 1050 SW Fiord Dr

City: Lee's Summit State: MO

General Truss Engineering Criteria & Design Loads (Individual Truss Design

Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014

Wind Code: ASCE 7-16 Wind Speed: 115 mph Roof Load: 45.0 psf

Mean Roof Height (feet): 35

No. Seal# Truss Name Date I70066786 A10 12/10/24 MiTek, Inc.

16023 Swingley Ridge Rd. Chesterfield, MO 63017

314.434.1200

Design Program: MiTek 20/20 8.6

Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16

Floor Load: N/A psf

Exposure Category: C

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Premier Building Supply (Springhill, KS)20300 W 207th Street.

Truss Design Engineer's Name: Fox, Steve

My license renewal date for the state of Missouri is December 31, 2026.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

December 10,2024

Fox, Steve 1 of 1

Job Truss Truss Type Qtv Ply Roof - HM Lot 190 170066786 P240762-04 A10 Half Hip Job Reference (optional)

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Mon Dec 09 09:31:52 ID:8ybuWA25dtY9X?j2yPpbv2zZ?qN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-8-4

Page: 1

REPAIR: PLATES ARE DAMAGED AT JOINT(S) 10.

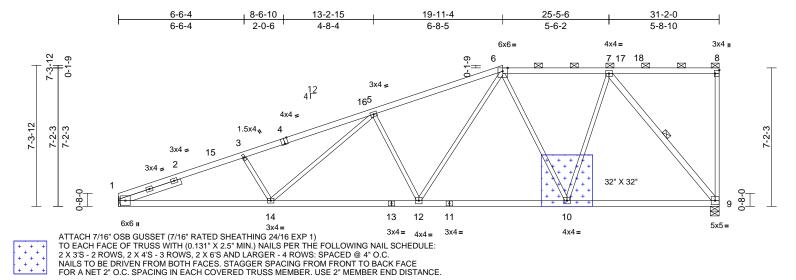


Plate Offsets (X, Y): [1:0-3-13,0-1-5], [4:0-2-0,Edge], [8:Edge,0-2-8]

7-10-12

7-10-12

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.78	Vert(LL)	-0.18	12-14	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.88	Vert(CT)	-0.36	12-14	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.87	Horz(CT)	0.10	9	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		l ' '					Weight: 148 lb	FT = 20%

15-7-0

7-8-4

LUMBER

Scale = 1:59.8

TOP CHORD 2x4 SP No.2 *Except* 1-4:2x4 SP 1650F

1.5E

BOT CHORD 2x4 SP No.2

2x3 SPF No.2 *Except* 9-7:2x4 SP No.2 WFBS SLIDER

Left 2x4 SP No.2 -- 3-4-14 **BRACING**

TOP CHORD

Structural wood sheathing directly applied or

2-2-0 oc purlins, except end verticals, and 2-0-0 oc purlins (4-10-10 max.): 6-8.

BOT CHORD Rigid ceiling directly applied or 5-11-2 oc

bracing

WEBS 1 Row at midpt 7-9

REACTIONS 1= Mechanical, 9=0-5-8 (size)

Max Horiz 1=327 (LC 9)

Max Uplift 1=-289 (LC 8), 9=-321 (LC 8) Max Grav 1=1398 (LC 1), 9=1398 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-3=-3143/755. 3-5=-2939/737.

5-6=-2140/600, 6-7=-1190/418,

7-8=-144/151, 8-9=-160/88 1-14=-974/2867, 12-14=-819/2283,

10-12=-550/1446, 9-10=-394/963

6-12=-241/963, 6-10=-598/268, 7-10=-132/744, 7-9=-1513/475,

3-14=-280/217, 5-14=-134/596,

5-12=-741/320

NOTES

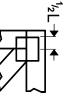
WEBS

BOT CHORD

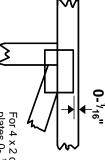
Unbalanced roof live loads have been considered for

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 5-0-0, Interior (1) 5-0-0 to 19-11-4, Exterior(2R) 19-11-4 to 27-0-2, Interior (1) 27-0-2 to 31-0-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Bearings are assumed to be: , Joint 9 SP No.2 crushing capacity of 565 psi.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 321 lb uplift at joint 9 and 289 lb uplift at joint 1.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard



31-2-0 7-10-12


December 10,2024

Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

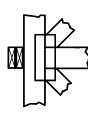
For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek software or upon request.

PLATE SIZE

4 × 4

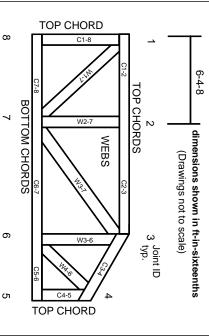

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.


Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction. Design Standard for Bracing.

Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-22:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.

Ņ

Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.

'n

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

9

- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- The design does not take into account any dynamic or other loads other than those expressly stated.