

RE: P240988-01 Roof - HT Lot 180

Site Information:

Customer: Clayton Properties Project Name: P240988-01 Lot/Block: 180 Model: Address: 1625 SW Arborway Terr City: Lee's Summit

Subdivision: Hawthorne Ridge State: MO

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.6 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 53 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	168602407	A01	10/2/2024	21	168602427	B12	10/2/2024
2	168602408	A02	10/2/2024	22	168602428	B13	10/2/2024
3	168602409	A03	10/2/2024	23	168602429	C01	10/2/2024
4	168602410	A04	10/2/2024	24	168602430	C02	10/2/2024
5	168602411	A05	10/2/2024	25	168602431	C03	10/2/2024
6	168602412	A06	10/2/2024	26	168602432	C04	10/2/2024
7	168602413	A07	10/2/2024	27	168602433	CJ1	10/2/2024
8	168602414	A08	10/2/2024	28	168602434	CJ02	10/2/2024
9	l68602415	A09	10/2/2024	29	168602435	CJ03	10/2/2024
10	168602416	B01	10/2/2024	30	168602436	CJ04	10/2/2024
11	168602417	B02	10/2/2024	31	168602437	HG1	10/2/2024
12	168602418	B03	10/2/2024	32	168602438	HG2	10/2/2024
13	168602419	B04	10/2/2024	33	168602439	HG3	10/2/2024
14	168602420	B05	10/2/2024	34	168602440	HG4	10/2/2024
15	168602421	B06	10/2/2024	35	168602441	HG5	10/2/2024
16	168602422	B07	10/2/2024	36	168602442	J01	10/2/2024
17	168602423	B08	10/2/2024	37	168602443	J02	10/2/2024
18	168602424	B09	10/2/2024	38	168602444	J03	10/2/2024
19	168602425	B10	10/2/2024	39	168602445	J04	10/2/2024
20	168602426	B11	10/2/2024	40	168602446	J05	10/2/2024

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision based on the parameters provided by . Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2025. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Sevier, Scott

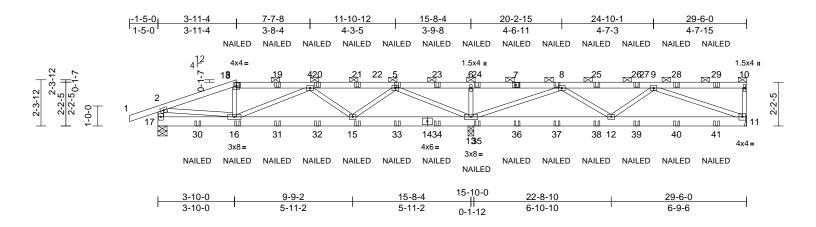
October 02, 2024
 RELEASE FOR CONSTRUCTION
AS NOTED ON PLANS REVIEW
DEVELOPMENT SERVICES
LEE'S SUMMIT, MISSOURI
10/28/2024 10:57:46

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

RE: P240988-01 - Roof - HT Lot 180

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Site Information:


Project Customer: Clayton Properties Project Name: P240988-01											
	lock: 180		Subdivision: Hawthorne Ride								
	ess: 1625 SW										
City, 0	County: Lee's S	Summit		State: MO							
	0.1#										
No.	Seal#	Truss Name	Date								

	No.	Seal#	I russ Name	Date
4	41	168602447	J06	10/2/2024
	42	168602448	J07	10/2/2024
4	43	168602449	J08	10/2/2024
	44	168602450	J10	10/2/2024
	45	168602451	J11	10/2/2024
4	46	168602452	J13	10/2/2024
4	47	168602453	J14	10/2/2024
4	48	168602454	J15	10/2/2024
4	49	168602455	J16	10/2/2024
ł	50	168602456	J18	10/2/2024
ł	51	168602457	J19	10/2/2024
ł	52	168602458	M01	10/2/2024
ł	53	168602459	M02	10/2/2024

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	A01	Half Hip Girder	1	2	Job Reference (optional)	168602407

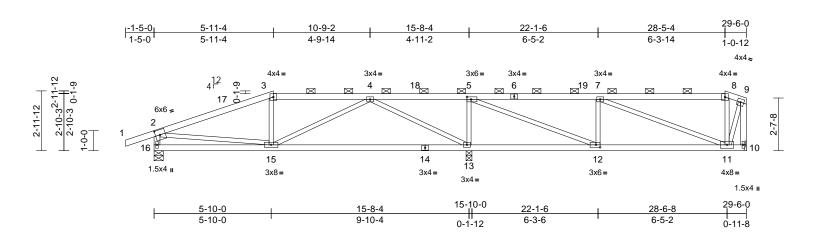
Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:26 ID:4_M9To87?QSqmdKZ76eMvozeBhO-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:57.7

Scale = 1:57.7													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.45 0.19 0.26	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.05 0.01	15-16	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 258 lb	GRIP 197/144 FT = 20%
	TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SPF No.2 WEBS 2x3 SPF No.2 *Except* 17-2:2x4 SP No.2 BRACING TOP CHORD Structural wood sheathing directly applied of 6-0-0 oc purlins, except end verticals, and 2-0-0 cc purlins, except end verticals, and 2				 All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope exterior 20ne and C-C Exterior(2E) -1-5-0 to 3-7-0, Interior (1) 3-7-0 to 3-11-4, Exterior(2R) 3-11-4 to 111-0-2, Interior (1) 11-0-2 to 29-4-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 ptrovide adequate to trainage to prevent water ponding. All loads are considered equalty applied to all plies, excepting to a strain to the LOAD (0.148"x3.25") toe-nails per NDS guidlines. LOAD CASE(S) Standard Dead + Roof Live (balanced): Lumber Incr Plate Increase=1.15 Uniform Loads (lb/t) Vert: 3=-38 (B), 7=-38 (B), 29=-38 (B), 20=-38 (B), 29=-38 (B), 29=-38 (B), 29=-38 (B), 30=-117 (B), 31 -218 (B), 33=-18 (B), 33=-18 (B), 33=-18 (B), 33=-18 (B), 34=-18 (B), 35=-38 (B), 41=-18 (B) 								uidlines. hber Increase=1.15, 10, 11-17=-20 18 (B), 15=-18 (B), 19, 20=-38 (B), 21=-38 (B), 26=-38 (B), 7 (B), 31=-18 (B), (B), 35=-18 (B),
FORCES TOP CHORD BOT CHORD	Tension 1-2=0/35, 2-3=-1234 4-5=-960/243, 5-6=- 6-8=-287/1072, 8-9= 10-11=-172/98, 2-17 16-17=-205/214, 15	· 4/324, 3-4=-1125/331 ·287/1072, =-871/160, 9-10=-56/5 7=-796/345 -16=-418/1330,	, 8)	 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3.06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 									
WEBS	13-15=-169/444, 12 11-12=-317/944 2-16=-215/930, 3-10 4-15=-485/259, 4-10 5-15=-79/678, 5-13 8-13=-1727/481, 9- 9-12=-101/185, 8-12	6=0/207, 6-13=-440/2 6=-272/124, =-1681/474, 11=-965/298,	11	crushing cap) Refer to gird) Provide mec bearing plate joint 11.	acity of 425 psi, Ju acity of 425 psi. er(s) for truss to tr hanical connection capable of withst	uss conr n (by oth anding 1	nections. ers) of truss to 148 lb uplift at					STATE OF I	
(0.131"x3" Top chords oc, 2x3 - 1 Bottom cho staggered				recommende UPLIFT at jt(only and doe) This truss is International R802.10.2 at) Graphical pu	One H2.5T Simpson Strong-Tie connectors ecommended to connect truss to bearing walls due to IPLIFT at jt(s) 17 and 13. This connection is for uplift nly and does not consider lateral forces. his truss is designed in accordance with the 2018 thermational Residential Code sections R502.11.1 and 2802.10.2 and referenced standard ANSI/TPI 1. Graphical purlin representation does not depict the size r the orientation of the purlin along the top and/or								ENGI

October 2,2024

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPTI Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

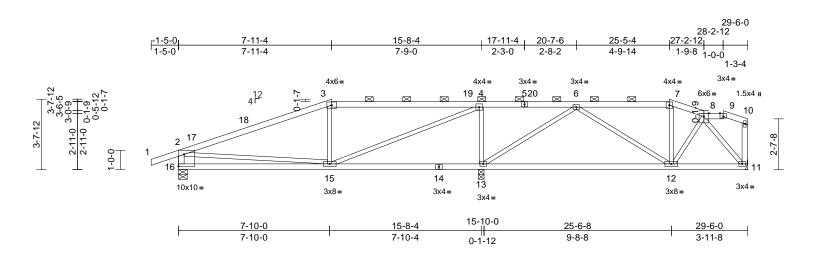
bottom chord.

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	A02	Нір	1	1	Job Reference (optional)	168602408

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:28 ID:53Ttk2zm_J0Bw4Xd6OsIg8zeBgK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:57.4

Plate Offsets (X, Y): [2:0-2-11,0-3-0], [5:0-2-8,0-1-8], [12:0-2-8,0-1-8]


Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.94 0.77 0.80	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.20 -0.39 0.01	(loc) 13-15 13-15 10	l/defl >954 >473 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 128 lb	GRIP 197/144 FT = 20%
	No.2 Structural wood she: 5-6-11 oc purlins, e: 2-0-0 oc purlins (5-1 Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 12	pt* 16-2,10-9:2x4 SP athing directly applied xcept end verticals, a 0-10 max.): 3-8. applied or 10-0-0 oc -13. anical, 13=0-3-8, .C 9) LC 9), 13=-326 (LC 8 LC 8) .C 26), 13=1534 (LC	l or nd 3) 4) 5)), 6) 1),	on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.									
FORCES		236, 3-4=-800/256, 622/192, 7-8=-219/92	8) 2, 9)	 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 113 lb uplift at joint 10. 							and the second		
BOT CHORD	8-9=-195/78, 2-16=- 15-16=-300/280, 13- 12-13=-434/163, 11- 10-11=-44/51			UPLIFT at jt(only and doe	ed to connect truss s) 16 and 13. This is not consider late designed in accord	connec ral force	tion is for upli es.				Å	STATE OF A	AISSOLD
WEBS NOTES 1) Unbalance this design	3-15=-80/125, 8-11= 9-11=-144/605, 5-13 4-15=-56/387, 4-13= 7-11=-437/152, 7-12 5-12=-334/1116 ed roof live loads have h.	69, 11	International R802.10.2 at Graphical put	Residential Code s and referenced stan rlin representation ation of the purlin a d.	sections dard AN does no	R502.11.1 a ISI/TPI 1. ot depict the s					SEVI NUMI PE-20010 SSIONA	JER DI8807	

- this design.
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

ΤΙΟΝ IEW DEVELOPMENT SERVICES LEE'S'SUMMIT'S MISSOURI 10/28/2024 10:57:47

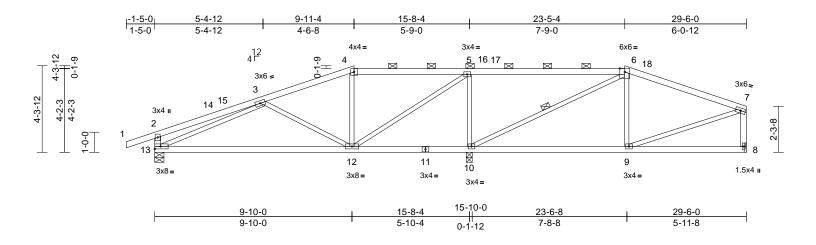
Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	A03	Roof Special	1	1	Job Reference (optional)	168602409

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:28 ID:Srs1UCfvoW4EehpOO9sRxxzeBfS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:59.7

ate Offsets ()	(, Y): [9:0-2-0,Edge],	[16:Edge,0-7-8]											
ading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.97	Vert(LL)		12-13	>868	240	MT20	197/144
DL	10.0	Lumber DOL	1.15		BC	0.80	Vert(CT)		12-13	>431	180		
CLL	0.0*	Rep Stress Incr	NO		WB	0.58	Horz(CT)	0.01	11	n/a	n/a		
CDL	10.0	Code	IRC201	B/TPI2014	Matrix-S					-		Weight: 129 lb	FT = 20%
JMBER			2)	Wind [.] ASCE	7-16; Vult=115m	nh (3-sec	ond aust)						
OP CHORD	2x4 SP No.2 *Excep	t* 3-5·2x4 SP 1650F	_,		; TCDL=6.0psf; I								
0.10112	1.5E				II; Exp C; Enclo			pe)					
T CHORD	2x4 SP No.2			exterior zone	and C-C Exterio	r(2E) -1-8	-0 to 3-7-0,	• •					
EBS		pt* 16-2,11-10:2x4 S	Р	Interior (1) 3-	7-0 to 7-11-4, Ex	terior(2R	7-11-4 to 15	5-0-2,					
	No.2	, ,		Interior (1) 1	5-0-2 to 25-5-4, E	xterior(21	E) 25-5-4 to						
RACING					rior (1) 27-2-12 to)					
P CHORD	Structural wood she	athing directly applied	d or		-4-4 zone; cantil								
	4-7-5 oc purlins, ex			d vertical left and									
	2-0-0 oc purlins (6-0				d forces & MWFF			ו;					
T CHORD	Rigid ceiling directly	applied or 6-0-0 oc		Lumber DOL=1.60 plate grip DOL=1.60									
	bracing.		3)	 Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom 									
ACTIONS	(size) 11= Mech	4)											
	16=0-5-8	C)	chord live load nonconcurrent with any other live loads.										
Max Horiz 16=107 (LC 9)				5) * This truss has been designed for a live load of 20.0psf									
I	Max Uplift 11=-122 (LC 9), 13=-292 (LC 8	5),	on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom									
	16=-217 (
I	Max Grav 11=545 (L		^{),} 6)	chord and any other members.Bearings are assumed to be: Joint 16 SP No.2 crushing									
	16=755 (L	.C 25)	0)		65 psi, Joint 13 S								
RCES	(lb) - Maximum Com	pression/Maximum		of 565 psi.		1 110.2 0	doning oupd	ony					
	Tension		7)										
P CHORD	1-2=0/35, 2-3=-888/2	253, 3-4=-767/283,	8)										
		99/175, 7-8=-531/163	3, -,	bearing plate capable of withstanding 122 lb uplift at									
		3/77, 2-16=-680/350,		joint 11.		5						and	m
	10-11=-81/59		9)	One H2.5T S	impson Strong-T	ie conne	ctors					TATE OF M	AIS C
DT CHORD	15-16=-416/484, 13-			recommende	d to connect trus	s to bear	ng walls due	e to			1	950	W.OS
EBS	12-13=-222/402, 11-		-0	UPLIFT at jt(s) 16 and 13. Thi	s connec	tion is for upl	ift			B	SCOT	N SA
185		=-94/90, 8-12=-29/25 =0/338, 4-13=-889/3	10		s not consider lat						R	~/	
		=-667/250, 6-12=0/2			designed in acco						4	SEV	
	4-15=-205/990, 0-13	=-007/230, 0-12=0/2	10		Residential Code			and			NA	· · ·	
DTES	d an of Barrier de P	have excludent 17		R802.10.2 and referenced standard ANSI/TPI 1.									
	d roof live loads have	been considered for	11	11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or									
this design.						aiong the	top and/or				117	PE-2001	
				bottom chord							N	ALTE-2001	STOOL SA
			LC	DAD CASE(S)	Standard						Y	100	NOT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



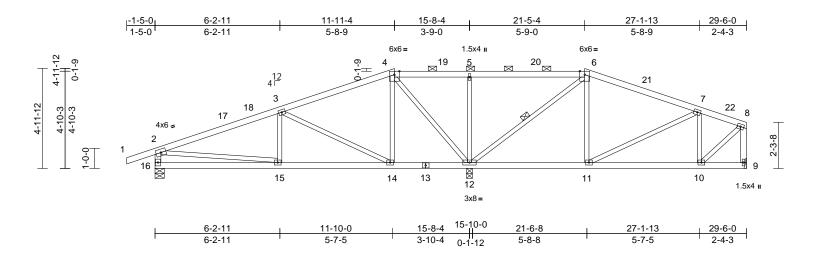
ONAL E

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	A04	Нір	1	1	Job Reference (optional)	168602410

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:28 ID:EkzC0?nEu5n2I_QGKB1ECZzeBe?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:57.4

oodio = norri													
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.69	Vert(LL)		12-13	>790	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.87	Vert(CT)	-0.48	12-13	>389	180		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.53	Horz(CT)	0.02	0	n/a	n/a		
BCDL	10.0	Code		18/TPI2014	Matrix-S	0.00	11012(01)	0.02	Ŭ	n/a	n/a	Weight: 130 lb	FT = 20%
	10.0	0000		10/11/2011	Matrix 0	-						Wolgin. 100 lb	11 - 2070
LUMBER			2) Wind: ASCE	7-16; Vult=115m	nph (3-seo	cond gust)						
TOP CHORD	2x4 SP No.2 *Excep	ot* 4-6:2x4 SP 1650F		Vasd=91mpl	h; TCDL=6.0psf;	BCDL=6.	0psf; h=35ft;						
	1.5E				t. II; Exp C; Enclo			ope)					
BOT CHORD	2x4 SP No.2				e and C-C Exterio								
WEBS	2x3 SPF No.2 *Exce	ept* 13-2:2x4 SP 2400)F	()	-7-0 to 9-11-4, Ex		,	7-0-2,					
	2.0E, 8-7:2x4 SP No	o.2			7-0-2 to 23-5-4, E								
BRACING					cantilever left ar								
TOP CHORD		athing directly applied			nd right exposed			1					
		cept end verticals, and	d		FRS for reaction		Lumber						
	2-0-0 oc purlins (6-0				late grip DOL=1.6 quate drainage to		water pendia	~					
BOT CHORD	0 0 ,	applied or 6-0-0 oc	3		as been designed								
	bracing.		4		ad nonconcurrent								
WEBS	1 Row at midpt	6-10	5 5		has been designe								
REACTIONS	()	anical, 10=0-3-8, 13=0	-5-8		n chord in all are			000					
	Max Horiz 13=78 (LO	,			by 2-00-00 wide v			tom					
		_C 9), 10=-325 (LC 8),			ny other members								
	13=-196 (6		assumed to be:		SP No.2 crus	hing					
		C 26), 10=1489 (LC 1)),		65 psi, Joint 10 S								
	13=731 (I	,		of 565 psi.									
FORCES	(lb) - Maximum Com	npression/Maximum	7		er(s) for truss to								
	Tension	00 0 4 550/400	8		hanical connection								
TOP CHORD					e capable of with	standing 1	09 lb uplift a	ıt					
	2-13=-372/236. 7-8=	47/227, 6-7=-578/165	·	joint 8.									
BOT CHORD	, -		9		Simpson Strong-1								~
BOT CHOILD	9-10=-125/493, 8-9=				ed to connect true							A	and
WEBS	,	=0/209, 3-13=-607/238	3		s) 13 and 10. Th			lift				B R OF M	AIS SAL
WEBC	7-9=-64/457, 3-12=-				es not consider la						4	ATE OF M	N'SON
	5-10=-1032/391, 5-1		1		designed in acco Residential Code			and			B	SCOTT	M XA
	6-10=-750/239				nd referenced sta			anu			R	SEVI	
NOTES			1		Irlin representation			size			8	_/ SEVI	
	ed roof live loads have	been considered for	'		ation of the purlin			5120			12		
this design				bottom chore								hatt 1	Kerner >
				OAD CASE(S)						-	R.	NUMI	BER A
			-		Standard						N	PE-20010	
											N	ALL LOON	128
											Y	1000	JON B
												C'SSIONA	LENA
												UNA	-


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	A05	Нір	1	1	Job Reference (optional)	168602411

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:28 ID:X90YIehHE7EPoVfgERtqINzeBcq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:57.5

Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.60	DEFL Vert(LL)	in -0.04	(loc) 15-16	l/defl >999	L/d 240	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.40	Vert(CT)	-0.08	15-16	>999	180		
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	NO	18/TPI2014	WB Matrix-S	0.70	Horz(CT)	0.01	9	n/a	n/a	Weight: 137 lb	FT = 20%
BCDL	10.0	Code	IKC20	10/11/2014	Matrix-3							weight. 137 lb	FT = 2076
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (10 Rigid ceiling directly	athing directly applie cept end verticals, ar 0-0 max.): 4-6.	d or nd	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 3 19-0-2, Inter to 28-6-2, Inter left and right exposed;C-C	7-16; Vult=115m h; TCDL=6.0psf; it. II; Exp C; Enclo a and C-C Exterio -7-0 to 11-11-4, E ior (1) 19-0-2 to 2 terior (1) 28-6-2 t exposed ; end vo C for members an	BCDL=6. posed; MW pr(2E) -1-5 Exterior(2I 21-5-4, Ex o 29-4-4 z ertical left nd forces a	Opsf; h=35ft; FRS (envelo 5-0 to 3-7-0, R) 11-11-4 to terior(2R) 21 zone; cantilev and right & MWFRS fo	-5-4 /er					
201 0110112	bracing, Except: 6-0-0 oc bracing: 9-			DOL=1.60	own; Lumber DO	•							
		.C 9), 12=-327 (LC 8) (LC 8) C 26), 12=1611 (LC 7), 6	 All plates are This truss has chord live load * This truss has truss has chord live load * This truss has the bottor on the bottor 3-06-00 tall has been been been been been been been bee	quate drainage to a 3x4 MT20 unles as been designed ad nonconcurrent has been designed m chord in all are by 2-00-00 wide v	ss otherwi I for a 10.4 t with any ed for a liv as where will fit betw	se indicated. D psf bottom other live loa e load of 20. a rectangle	ads. Opsf					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	7) Bearings are	ny other members assumed to be: 65 psi, Joint 12 \$	Joint 16 S							
TOP CHORD	1-2=0/35, 2-3=-828/ 4-5=-72/432, 5-6=-7 7-8=-424/158, 2-16=	2/432, 6-7=-392/140 =-622/297, 8-9=-506/		of 565 psi. Refer to gird	er(s) for truss to t	truss conr	nections.						
BOT CHORD	15-16=-186/266, 14 12-14=-21/110, 11-1 10-11=-138/404, 9-1	2=-49/308,	-	bearing plate joint 9.	e capable of withs	standing 1	05 lb uplift a					OF	
WEBS			84, 20,	recommende UPLIFT at jt(only and doe 1) This truss is International	ed to connect trus (s) 16 and 12. Th es not consider la designed in acco Residential Code	ss to bear is connec iteral force ordance w e sections	ing walls due tion is for upl es. ith the 2018 s R502.11.1 a	lift			Hox No.	STATE OF M	
	ed roof live loads have n.		 R802.10.2 and referenced standard ANSI/TPI 1. 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 										

DEVELOPMENT SERVICES LEE'S' SUMMIT'S MISSOURI 10/28/2024 10:57:47

ΤΙΟΝ **IEW**

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	A06	Hip Girder	1	2	Job Reference (optional)	168602412

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:28 ID:MsQg8KANpQHkbfiMarbCMpzeBcC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

16-0-12 8-2-15 13-11 |<u>-1-5-0</u> | 1-5-0 13-0-12 6-11-8 19-5-4 26-2-14 33-4-8 1-3-7 0-10-8 2-1-8 4-9-13 7-1-10 6-11-8 3-4-8 6-9-10 6x6= 1.5x4 🛚 1.5x4 🛚 6x6= °_{±5}6 4¹² 5-7-12 0-1-9 8 0-1-9 _7 ⊠____ 3x4 🚅 3x4 = 4x4 **≈** 4 3 9 5-7-12 3x4 **≈** 5-6-3 5-6-3 22 5 21 10 3x4**≈** ÈB (6 4x6 🚅 te 2 2-0-0 11 to -0-0-1 P 20 15 ł ΠΠ 18 Ø ₿ 19 14 13 12 23 24 3x4 II 1.5x4 **I** 3x6 II 5x8= 4x12= 5x10= 7x8= 3x6 II Special HUS26 5x8= 7x8= 6-11-8 13-2-0 15-11-8 19-6-8 23-4-8 26-2-14 33-4-8 6-11-8 6-2-8 2-9-8 3-7-0 3-10-0 2-10-6 7-1-10

Scale = 1:61.6

Plate Offsets (X, Y)	[11:Edge,0-3-5]	, [14:0-4-4,0-3-0],	, [16:0-3-4,Edge],	[17:0-2-4,0-3-0]
----------------------	-----------------	---------------------	--------------------	------------------

	X, 1): [11:Edge;0.0.0]; [1 1:0 1 1;0 0 0]; [1	10.0 0 4,2	ago], [11.0 2 1	,0 0 0]										
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO		CSI TC BC WB	0.78 0.70 0.67	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 16-17 16-17 11	l/defl >999 >957 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		- (-)					Weight: 363 lb	FT = 20%		
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 *Excep 1.5E 2x4 SP No.2 *Excep No.2, 15-13:2x8 SPF 2400F 2.0E 2x3 SPF No.2 *Exce 2.0E Right 2x4 SP 2400F Structural wood she 4-6-4 oc purlins, exx 2-0-0 oc purlins, fo-4 Rigid ceiling directly bracing. (size) 11=0-5-8, Max Horiz 20=-88 (L Max Uplift 11=-934 (Max Grav 11=3942 for (lb) - Maximum Com Tension	t* 8-11:2x4 SP 1650 t* 18-5,7-15:2x3 SP F No.2, 13-11:2x8 SP 2005 3-8-13 athing directly applie cept end verticals, al -7 max.): 6-8. applied or 10-0-0 or 20=0-5-8 C 17) LC 9), 20=-423 (LC (LC 1), 20=1878 (LC ppression/Maximum	1) F P DOF 2) 2d or nd c 3) c 3) c 4) 8) 2 1)	2-ply truss to (0.131"x3") r Top chords o oc. Bottom chorr 0-9-0 oc, 2x3 at 0-5-0 oc. Web connec All loads are except if not CASE(S) see provided to o unless other Unbalanced this design. Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 3 19-5-4, Exte 26-2-14 to 3	Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x3 - 1 row at 0-9-0 oc, 2x8 - 2 rows staggered at 0-5-0 oc. Web connected as follows: 2x3 - 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-5-0 to 3-7-0, Interior (1) 3-7-0 to 13-11-4, Exterior(2E) 13-11-4 to 19-5-4, Exterior(2R) 19-5-4 to 26-2-14, Interior (1) 26-2-14 to 33-4-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for						 10) One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 20. This connection is for uplift only and does not consider lateral forces. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 13) Use Simpson Strong-Tie HUS26 (14-16d Girder, 4-16d Truss) or equivalent at 31-4-8 from the left end to connect truss(es) to back face of bottom chord. 14) Fill all nail holes where hanger is in contact with lumber provided sufficient to support concentrated load(s) 203 Ib down and 492 Ib up at 29-7-9 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 				
TOP CHORD	1-2=0/35, 2-3=-3622 5-6=-5216/1469, 6-7 7-8=-5126/1410, 8-9 9-11=-5912/1534, 2- 19-20=-207/503, 18-	7=-5144/1413, 9=-3573/1012, -20=-1796/610	5)	members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding.					Uı	niform L	,	COLOR	MISSOL		
	5-17=-36/230, 16-17 15-16=-55/175, 7-16 14-15=-22/78, 12-14 11-12=-1354/5443	7=-1076/4783, 6=-343/152,	7)	chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle					STATE OF MISSOCIE						
WEBS NOTES	3-19=-1280/438, 17- 3-17=-371/1668, 6-1 6-16=-211/804, 14-1 8-16=-600/2449, 8-1 9-14=-2350/687, 9-1 2-19=-691/2874	7=-321/895, 6=-856/3726, 4=-979/287,	8) 9)	3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Bearings are assumed to be: Joint 20 SP No.2 crushing capacity of 565 psi, Joint 11 SP 2400F 2.0E crushing capacity of 805 psi. Two H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 11. This connection is for uplift only and does not consider lateral forces.						PE-2001	LENGT				

anno October 2,2024

Continued on page 2
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.t
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	A06	Hip Girder	1	2	Job Reference (optional)	168602412

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:28 ID:MsQg8KANpQHkbfiMarbCMpzeBcC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Vert: 1-2=-70, 2-6=-70, 6-8=-70, 8-11=-70, 18-20=-20, 16-17=-20, 11-15=-20 Concentrated Loads (lb) Vert: 23=-2038 (B), 24=-682 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Page: 2

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	A07	Нір	1	1	Job Reference (optional)	168602413

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:28 ID:BYroY?fSOjJ2Pom2wEJb_EzeBba-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

34-9-8

1-5-0

12

13

-1-5-0 17-5-4 10-8-8 15-11-4 27-11-2 5-5-6 22-8-0 33-4-8 1-5-0 5-5-6 5-3-1 5-2-12 1-6-0 5-2-12 5-3-1 5-5-6 6x6= 4x4= 6-3-12 0-1-9 ဂု 6 7 4¹² 89 45 22 23 TIFE 10 5x5≈ 5x5 ≠ 6-3-12 6-2-3 6-2-3 3 10 21 24 4x4 u 4x4 u 2 11 1-0-0 20 t) X 19 18 14 17 16 15 6x6= 6x6= 4x8= 17-6-8 8-0-14 15-10-0 25-3-10 33-4-8 7-9-2 8-0-14 8-0-14 7-9-2 1-8-8

Scale = 1:63.6

Plate Olisets ()	X, Y): [2:0-2-0,0-1-12], [11:0-2-0,0-1-12]			1							1	
Loading	(psf)		2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0		1.15		TC	0.74	Vert(LL)		17-19	>999	240	MT20	244/190
TCDL	10.0		1.15		BC	0.68	Vert(CT)		17-19	>944	180		
BCLL	0.0*		NO		WB	0.87	Horz(CT)	0.13	13	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 155 lb	FT = 20%
UMBER			2)		7-16; Vult=115n								
FOP CHORD	2x4 SP No.2 *Excep	ot* 1-4,9-12:2x4 SP			h; TCDL=6.0psf;								
	1650F 1.5E				t. II; Exp C; Encl			pe)					
BOT CHORD	2x4 SP 1650F 1.5E				and C-C Exterio								
VEBS		ept* 20-2,13-11:2x4 SP			-7-0 to 15-11-4, I rior(2R) 17-5-4 to								
	No.2				ne; cantilever left								
BRACING	Structural wood at a	othing directly opplied	or		nd right exposed								
	Structural wood she 2-11-2 oc purlins, e			/FRS for reaction									
	2-0-0 oc purlins (3-1	u	DOL=1.60 p	late grip DOL=1.	60								
BOT CHORD		applied or 9-1-14 oc	3)	Provide ade	quate drainage to	prevent v	vater ponding	g.					
	bracing.	4))										
NEBS	1 Row at midpt	3-20, 10-13	5)		as been designed								
REACTIONS	(size) 13=0-5-8,	20=0-5-8		 chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 									
	Max Horiz 20=81 (LC	C 12)	6)										
	Max Uplift 13=-339 (LC 9), 20=-339 (LC 8)			by 2-00-00 wide			om					
	Max Grav 13=1598	(LC 1), 20=1598 (LC 1))		ny other member		een me bou	UIII					
ORCES	(lb) - Maximum Com	pression/Maximum	7)	7) All bearings are assumed to be SP 1650F 1.5E crushing									
	Tension			capacity of 5									
FOP CHORD	1-2=0/35, 2-3=-436/		8)	8) One H2.5T Simpson Strong-Tie connectors									
	5-6=-2253/629, 6-7=				ed to connect tru								
	7-8=-2254/631, 8-10	-12=0/35, 2-20=-435/26	22		(s) 20 and 13. Th			ift					
	11-13=-435/261	-12=0/33, 2-20=-433/20	· · ·		es not consider la							000	TOP
BOT CHORD	19-20=-609/2617, 1	7-19=-539/2492	9)		designed in acco Residential Cod			and				SOFA	AIG D
	16-17=-375/2084, 14				nd referenced sta			anu			- 3	BIE	-0.0 M
	13-14=-577/2617	,	10					size			A	N/	Nest
NEBS	6-17=-81/462, 6-16=	-235/245, 7-16=-89/42	27,	 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or 									
	3-20=-2512/608, 10-			bottom chore							Br	SEVI	ER \
		-12/277, 5-17=-565/21		DAD CASE(S)	Standard						0		(** *
	8-16=-563/211, 8-14	l=-12/277, 10-14=-88/1	67 -								8 L		
NOTES											3-	hasta	La rea
) Unbalance	ed roof live loads have	been considered for									YL V		

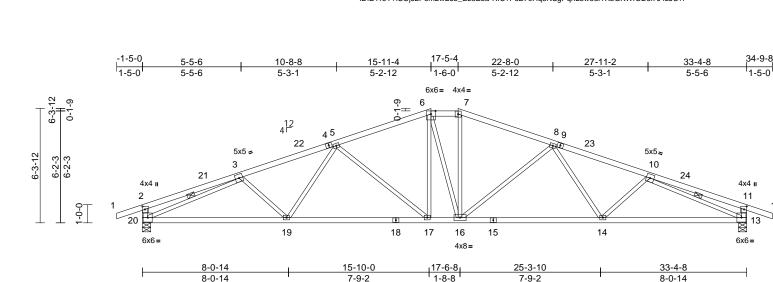
1) Unbalanced roof live loads have been considered for this design.

October 2,2024

PE-2001018

ONAL

E


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	A08	Нір	1	1	Job Reference (optional)	168602414

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:29 ID:BYroY?fSOjJ2Pom2wEJb_EzeBba-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

12

13

Scale = 1:63.6

Plate Offsets (X, Y): [2:0-2-0,0-1-12], [11:0-2-0,0-1-12]													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.74 0.68 0.87	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.20 -0.42 0.13	(loc) 17-19 17-19 13	l/defl >999 >945 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 155 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	LUMBER 2) W TOP CHORD 2x4 SP No.2 *Except* 1-4,9-12:2x4 SP Va 1650F 1.5E Ka BOT CHORD 2x4 SP 1650F 1.5E ex WEBS 2x3 SPF No.2 *Except* 20-2,13-11:2x4 SP In 1650F 1.5E 17 BRACING to				7-16; Vult=11 h; TCDL=6.0ps t. II; Exp C; Er e and C-C Exte -7-0 to 15-11-2 rior(2R) 17-5-2 ne; cantilever I ind right expos	sf; BCDL=6.0 nclosed; MW erior(2E) -1-5 4, Exterior(2E 4 to 24-6-2, li left and right	Dpsf; h=35ft; FRS (envelo 5-0 to 3-7-0, E) 15-11-4 to nterior (1) 24 exposed ; er	pe) -6-2 nd					
BOT CHORD WEBS REACTIONS	CHORD Structural wood sheathing directly applied or 2-11-2 oc purlins, except end verticals, and 2-0-0 oc purlins (3-10-4 max.): 6-7. vertic forces CHORD Rigid ceiling directly applied or 9-1-14 oc bracing. 3) Provi 3S 1 Row at midpt 3-20, 10-13 5) This t chord CTIONS (size) 13=0-5-8 20=0-5-8 chord				/FRS for reactilate grip DOL= quate drainage 3x4 MT20 un as been design ad nonconcurr pas been desid	ions shown; 1.60 to prevent v nless otherwi ned for a 10.0 ent with any	Lumber water pondin se indicated.) psf bottom other live loa	g. ads.					

* This truss has been designed for a live load of 20.0psf

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

7) All bearings are assumed to be SP 1650F 1.5E crushing

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) Graphical purlin representation does not depict the size

or the orientation of the purlin along the top and/or

One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 20 and 13. This connection is for uplift

only and does not consider lateral forces. This truss is designed in accordance with the 2018

chord and any other members.

capacity of 565 psi.

bottom chord. LOAD CASE(S) Standard

ILLACHONG	(3120)	13-0-3-0, 20-0-3-0
	Max Horiz	20=-81 (LC 17)
	Max Uplift	13=-339 (LC 9), 20=-339 (LC 8)
	Max Grav	13=1598 (LC 1), 20=1598 (LC 1)
FORCES	(lb) - Maxi	mum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/35,	2-3=-440/136, 3-5=-2802/693,
	5-6=-2253	8/629, 6-7=-2086/635,
	7-8=-2254	/631, 8-10=-2801/700,
	10-11=-44	0/136, 11-12=0/35, 2-20=-436/262,
	11-13=-43	6/262
BOT CHORD	19-20=-60	9/2617, 17-19=-539/2492,
	16-17=-37	/5/2084, 14-16=-508/2492,
	13-14=-57	6/2617
WEBS	6-17=-81/4	462, 6-16=-235/245, 7-16=-89/427,
	3-20=-250	8/607, 10-13=-2507/603,
	3-19=-88/	167, 5-19=-12/277, 5-17=-565/212,
	8-16=-563	/211, 8-14=-12/277, 10-14=-88/167

NOTES

1) Unbalanced roof live loads have been considered for this design.

OF MISS SCOTT M. SEVIER NUMBER PE-200101880 C SIONAL October 2,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

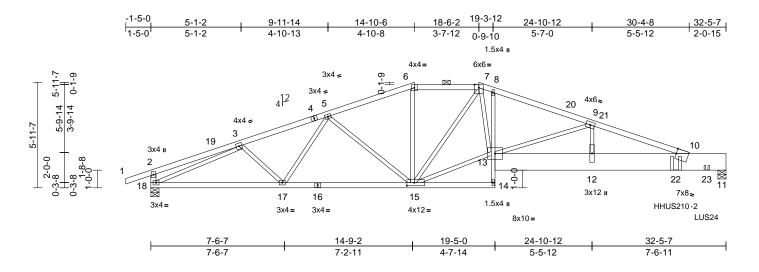
6)

8)

9)

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	A09	Roof Special Girder	1	2	Job Reference (optional)	168602415

Run: 8,63 S Jul 12 2024 Print: 8,630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:29 ID:82tMaDSkXvGZgcMDrwyXakyXpc4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

DEVELOPMENT SERVICES LEE'S'SUMMIT'S MISSOURI 10/28/2024 10:57:47

TION

IEW

October 2,2024

Scale = 1:65

Plate Offsets (X, Y): [10:0-0-2,Edge], [15:0-5-0,0-2-0]

	, , , , , [:e:e e 2,2age	j/E / j												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.81 0.81 0.67	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 12-13 12-13 11	l/defl >999 >915 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 370 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	13-11:1 1/2" x 11 1/2 2x3 SPF No.2 *Exce Structural wood she 3-4-7 oc purlins, exi 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 11=0-5-8, Max Horiz 18=114 (L Max Uplift 11=-1138	4" 2.0E Microllam® L pt* 18-2:2x4 SP No. athing directly applie cept end verticals, a i-0 max.): 6-7. applied or 10-0-0 or 18=0-5-8 _C 12) (LC 9), 18=-413 (LC	2, _VL 2 ed or nd 2) c 2 3)	(0.131"x3") n Top chords o oc. Bottom chor 0-9-0 oc, 2x: staggered at Web connec All loads are except if not CASE(S) se provided to o unless other	b be connected to hails as follows: connected as follows: ds connected as follows: 3 - 1 row at 0-9-0 t 0-2-0 oc. ted as follows: 2x considered equa ed as front (F) or ction. Ply to ply co distribute only loa- wise indicated. roof live loads ha	ows: 2x4 follows: 2 oc, 2x12 3 - 1 row Ily applie back (B) ponnection ds noted	1 row at 0-9 x4 - 1 row at - 2 rows at 0-9-0 oc. d to all plies, face in the LC s have been as (F) or (B),	DAD	rec UP doe 11) Thi: Inte R8(12) Gra or t bott 13) Use 10- to c 14) Use	ommend LIFT at j as not cc s truss is ernationa 02.10.2 aphical p he orien tom cho e Simps 16d Tru connect e Simps	ded to d it(s) 18 onsider s desig al Resid and ref ourlin re tation d rd. on Stro ss) or e truss(e on Stro	. This connection lateral forces. Ined in accordanc dential Code sect ferenced standard apresentation doe of the purlin along ong-Tie HHUS21C aquivalent at 29-7 s) to front face of	bearing walls due to is for uplift only and the with the 2018 ions R502.11.1 and d ANSI/TPI 1. es not depict the size g the top and/or 0-2 (30-16d Girder, '-9 from the left end bottom chord. -10d Girder, 2-10d	
FORCES TOP CHORD BOT CHORD	Itax Grav 11=5917 (LC 1), 18=1920 (LC 1) (lb) - Maximum Compression/Maximum Wind: ASCE 7-16; Vult=115mph (3-second gust) Yest Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Tension Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; 1-2=0/35, 2-3=-444/144, 3-5=-3603/860, Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; 5-6=-3242/849, 6-7=-3039/843, Interior (1) 3-7-0 to 14-10-6, Exterior(2E) 14-10-6 to 7-8=-4647/1210, 8-9=-4736/1162, Interior (1) 3-7-0 to 14-10-6, Exterior(2E) 14-10-6 to 910=-8100/1821, 2-18=-442/261 18-6-2, Exterior(2R) 18-6-2 to 23-6-2, Interior (1) 23-6-2 17-18=-761/3244, 15-17=-758/3347, vertical left and right exposed; c-C for members and 14-15=-42/199, 13-14=0/64, 8-13=-172/201, forces & MWFRS for reactions shown; Lumber 12-13=-1623/7478, 10-12=-1623/7478, DOL=1.60							-6-2 id	the truss. LOAD CASE(S) Standard					
WEBS	6-15=-89/631, 7-15= 13-15=-817/3874, 7- 9-13=-3296/744, 9-1 3-18=-3212/742, 3-1 5-15=-440/222	-13=-666/2748, 2=-364/2284,	5) 6) /183, 8) 9)	This truss ha chord live lo. * This truss I on the bottoo 3-06-00 tall I chord and al Bearings are capacity of 5 crushing cap LGT2 Simps connect trus	as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w ny other members assumed to be: 165 psi, Joint 11 T boacity of 750 psi. Son Strong-Tie cou s to bearing walls tion is for uplift on	for a 10.0 with any d for a liv as where vill fit betw s. Joint 18 s rus Joist nnectors due to U	D psf bottom other live loa e load of 20.0 a rectangle veen the botto SP No.2 crush B LVL 2.0 E recommende PLIFT at jt(s)	dds. Dpsf om hing d to 11.			A STATE	NUM PE-2001	T M. ER BER 018807	

connect truss to bearing walls due to UPLIFT at jt(s) 11. This connection is for uplift only and does not consider lateral forces.

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	A09	Roof Special Girder	1	2	Job Reference (optional)	168602415

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:29 ID:82tMaDSkXvGZgcMDrwyXakyXpc4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

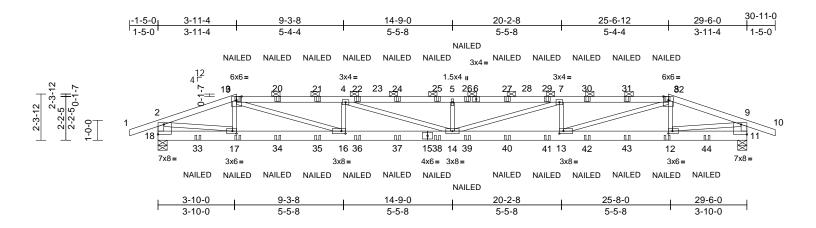
Uniform Loads (lb/ft)

Vert: 1-2=-70, 2-6=-70, 6-7=-70, 7-10=-70, 14-18=-20, 10-13=-20, 10-11=-90

Concentrated Loads (lb)

Vert: 22=-4354 (F), 23=-487 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

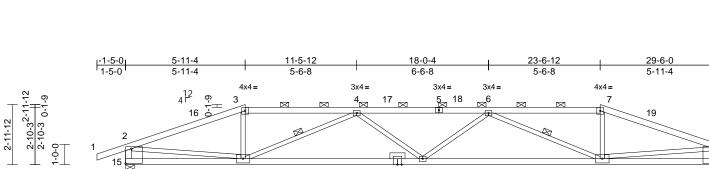

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	B01	Hip Girder	1	2	Job Reference (optional)	168602416

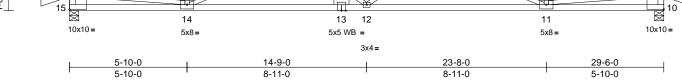
Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:29 ID:57e2QzG5EP7bJXy1aKBqV1zeC6L-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

TION

IEW

DEVELORMANDSERVICES LEESSUMMIT, MISSOURI 10/28/2024 10:57:47


Scale = 1:57.7


Plate Offsets (2	X, Y): [11:Edge,0-6-0]], [12:0-2-8,0-1-8], [1	3:0-2-8,0-	1-8], [16:0-2-8	,0-1-8], [17:0-2-8,0)-1-8], [1	8:Edge,0-6-0]						
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO		CSI TC BC WB	0.94 0.66 0.53	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 14-16 14-16 11	l/defl >996 >536 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144	
BCDL	10.0	Code		8/TPI2014	Matrix-S		- (-)					Weight: 265 lb	FT = 20%	
	2x4 SP No.2 2x6 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood she: 6-0-0 oc purlins, exi 2-0-0 oc purlins (3-1 Rigid ceiling directly bracing. (size) 11=0-5-8, Max Horiz 18=8 (LC Max Uplift 11=-502 (athing directly applie cept end verticals, ar 1-3 max.): 3-8. applied or 10-0-0 oc 18=0-5-8 16)	3) d or 4) d	this design. Vert: 3=-38 (F), 17=-18 (F), 12=-18 (F), 8=-38 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vert: 3=-38 (F), 17=-18 (F), 12=-18 (F), 8=-38 Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; 20=-38 (F), 21=-38 (F), 22=-38 (F), 24=-38 (F) Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) automatication of the second gust) exterior zone and C-C Exterior(2E) -1-5-0 to 3-7-0, automatication of the second gust) Interior (1) 3-7-0 to 3-11-4, Exterior(2E) 25-6-12 to 3018 (F), 36=-18 (F), 41=-18 (F), 42=-18 (F) 30-11-0 zone; cantilever left and right exposed ; end automatication of the second gust) 43=-18 (F), 44=-117 (F)										
	Max Grav 11=1874 (,,, ,, , , , , , , , , , , , , , , , ,	,		ind right exposed; /FRS for reactions									
FORCES	(lb) - Maximum Com	pression/Maximum		DOL=1.60 plate grip DOL=1.60										
TOP CHORD BOT CHORD		r=-7170/1771, 9=-3311/834, 9-10=0/ 1=-1744/575 -17=-712/3112, 13-14=-1431/5975,	 5) Provide adequate drainage to prevent water ponding. 4=-6021/1532, 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 834, 9-10=0/35, 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 2/3112, 3-06-00 tall by 2-00-00 wide will fit between the bottom 									T		
$\begin{array}{c} 14-16=-1411/6018, 13-14=-1431/5975,\\ 12-13=-736/3123, 11-12=-101/433\\ \mbox{WEBS} & 3-17=-659/2702, 9-12=-663/2717,\\ 3-16=-751/3103, 8-13=-736/3046,\\ 4-16=-940/366, 4-14=-299/1234,\\ 5-14=-511/253, 7-14=-308/1279,\\ 7-13=-967/372\\ \mbox{NOTES} \\ 1) $2-ply$ truss to be connected together with 10d $(0.131"x3")$ nails as follows: $2x4 - 1$ row at 0-9-0$ oc. $Pointer shared exercised on fully and $2-0$ proves $12-120, 1$				capacity of 4 Two H2.5T S recommende UPLIFT at jt only and doe)) This truss is International R802.10.2 a () Graphical pu or the orient: bottom chord	Simpson Strong-Tie ed to connect truss (s) 18 and 11. This as not consider late designed in accorr Residential Code nd referenced star urlin representation ation of the purlin a d.	e connec s to bear s connec eral force dance w sections ndard AN does no along the	ctors ing walls due tion is for upli ss. ith the 2018 is R502.11.1 at ISI/TPI 1. ot depict the s top and/or	ft nd				STATE OF M SCOT SEVI NUM PE-2001	ER SER 018807	
staggered	ords connected as follo at 0-9-0 oc. ected as follows: 2x3 -			12) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines. LOAD CASE(S) Standard October 2,2024										

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	B02	Нір	1	1	Job Reference (optional)	168602417

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:30 ID:sCAwEKnRLJPdM_A519xhCuzeC5h-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:57.2	
Plate Offsets (X, Y):	[10:Edge,0-8-12], [15:Edge,0-8-12]

Plate Offsets ()	X, Y): [10:Edge,0-8-1	2], [15:Edge,0-8-12]	-										
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO		CSI TC BC WB	0.92 0.83 0.69	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 12-14 11-12 10	l/defl >999 >617 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 125 lb	FT = 20%
	2x4 SP No.2 *Excep 2.0E 2x4 SP 1650F 1.5E 2x3 SPF No.2 *Exce No.2 2x4 SP No.2 Structural wood she 2-11-1 oc purlins, e 2-0-0 oc purlins (3-2 Rigid ceiling directly bracing. 1 Row at midpt (size) 10=0-5-8, Max Horiz 15=18 (LC Max Uplift 10=-351 (Max Grav 10=1424 + (lb) - Maximum Com Tension 1-2=0/35, 2-3=-2540	ept* 15-2,10-8:2x4 SF athing directly applie xcept end verticals, a -8 max.): 3-7. applied or 7-6-2 oc 4-14, 6-11 15=0-5-8 C 16) LC 9), 15=-351 (LC 8 (LC 1), 15=1424 (LC ppression/Maximum	d or and 3) 4) 5) 3) 6) 1) 7)	Vasd=91mp Ke=1.00; Ca exterior zonm Interior (1) 3 Interior (1) 1 30-11-0 zon vertical left a forces & MW DOL=1.60 p Provide ade This truss ha chord live lo * This truss ha chord live lo * This truss lo on the botto 3-06-00 tall I chord and al All bearings capacity of § One H2.5T § recommende	7-16; Vult=115m h; TCDL=6.0psf; t. II; Exp C; Enclc e and C-C Exteric -7-0 to 5-11-4, Es 3-0-2 to 23-6-12, e; cantilever left a ind right exposed /FRS for reaction late grip DOL=1.6 quate drainage to as been designed ad nonconcurrent has been designed ad nonconcurrent has been designed an chord in all are by 2-00-00 wide v hy other members are assumed to b 65 psi. Simpson Strong-T ed to connect trus (s) 15 and 10. Th	BCDL=6. based; MW or(2E) -1-5 kterior(2R Exterior(2R Exterior(2) and right e ;C-C for n s shown; 60 p prevent 0 I for a 10. t with any ed for a liv as where will fit betv s. be SP 165 Fie connection	Dpsf; h=35ft; FRS (envelop i-0 to 3-7-0,) 5-11-4 to 13 (E) 23-6-12 tr xposed ; end nembers and Lumber water ponding 0 psf bottom other live loa e load of 20.0, a rectangle ween the botto 0F 1.5E crus xtors ing walls due	3-0-2, o l g. dds. Opsf om whing to					
	4-6=-3746/930, 6-7= 7-8=-2538/614, 8-9= 8-10=-1370/486	=-2328/611, =0/35, 2-15=-1369/49		only and doe This truss is International	es not consider la designed in acco Residential Code	teral force ordance w e sections	es. ith the 2018 R502.11.1 a					OF M	
BOT CHORD WEBS	14-15=-163/352, 12- 11-12=-903/3652, 10 3-14=-29/510, 7-11= 2-14=-410/2012, 8-1 4-12=0/298, 4-14=-1 6-11=-1534/446	0-11=-141/358 37/534, 1=-399/2004,	9) 4, LC	Graphical pu		on does no	ot depict the s	size			Hox No.	STATE OF A	
NOTES											XV	att 2	Same A
 Unbalance this design 	ed roof live loads have	been considered for									R	NUM	BER A

this design.

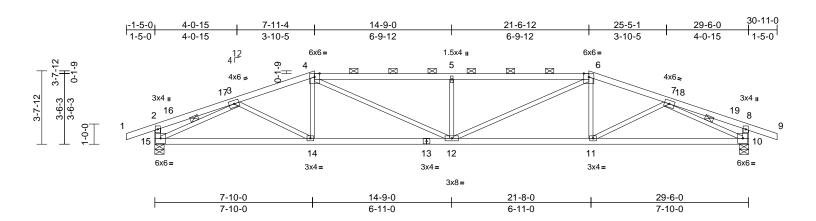
E

October 2,2024

PE-2001018

ONAL

Page: 1


30-11-0

1-5-0

8

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	B03	Нір	1	1	Job Reference (optional)	168602418

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:30 ID:OH8zbozTaEQMHSOAzWDRrGzeC5R-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

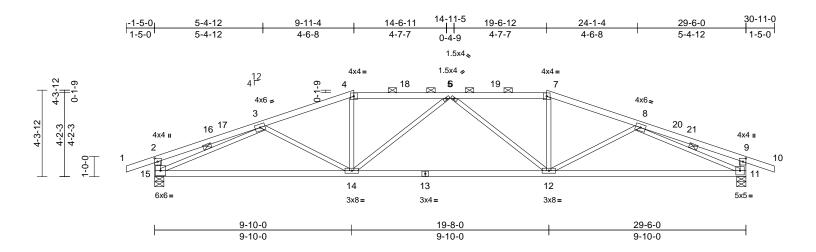
Scale = 1:57.2

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.76	Vert(LL)	-0.22	12-14	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.79	Vert(CT)	-0.40	12-14	>885	180		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.51	Horz(CT)	0.10	10	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 128 lb	FT = 20%
LUMBER			2	Wind: ASCE	7-16; Vult=115m	ph (3-sec	ond gust)						
TOP CHORD	2x4 SP No.2 *Excep 1.5E	t* 4-6:2x4 SP 1650F			h; TCDL=6.0psf; E t. II; Exp C; Enclo			pe)					
BOT CHORD	2x4 SP No.2				and C-C Exterio			- /					
WEBS		ept* 15-2,10-8:2x4 SP)	Interior (1) 3-7-0 to 7-11-4, Exterior(2R) 7-11-4 to 14-9-0,									
	No.2	,		Interior (1) 14-9-0 to 21-6-12, Exterior(2R) 21-6-12 to									
BRACING				28-7-10, Interior (1) 28-7-10 to 30-11-0 zone; cantilever									
TOP CHORD	Structural wood she	athing directly applied	dor		exposed ; end ve								
		cept end verticals, an			c for members and			r					
	2-0-0 oc purlins (3-4			reactions shown; Lumber DOL=1.60 plate grip									
BOT CHORD	Rigid ceiling directly	applied or 7-8-15 oc		DOL=1.60									
	bracing.		3		quate drainage to			g.					
WEBS	1 Row at midpt	3-15, 7-10	4)		s been designed								
REACTIONS	(size) 10=0-5-8,	15=0-5-8			ad nonconcurrent								
	Max Horiz 15=30 (LC	C 16)	5	5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle									
	Max Uplift 10=-344 (,	3)										
	Max Grav 10=1424			3-06-00 tall by 2-00-00 wide will fit between the bottom									
FORCES	(lb) - Maximum Com		.,	chord and any other members.All bearings are assumed to be SP No.2 crushing									
IONOLO	Tension	ipression/maximum	0	capacity of 5		e SP NO.	z crusning						
TOP CHORD	1-2=0/35, 2-3=-289/	92 3-4=-2469/647	7		Simpson Strong-T	io conno	tore						
	4-5=-3075/857, 5-6=		1,		ed to connect trus			to					
	6-7=-2468/646, 7-8=				(s) 15 and 10. Thi								
	2-15=-356/223, 8-10				s not consider lat								
BOT CHORD	14-15=-564/2082, 12		8		designed in acco								
	11-12=-498/2316, 10		0,		Residential Code			and					an
WEBS	4-14=-34/188, 4-12=	-248/953.			nd referenced sta							OF	ALC D
	5-12=-595/282, 6-12		9		Irlin representation			size				ACE	N SCIM
	6-11=-35/188, 3-15=	-2108/604,	0,		ation of the purlin			5.20			6		N.S.
		4=-11/412, 7-11=-11	/411	bottom chore		and and					A	STATE OF M	IM. VEN
NOTES	,	1.	OAD CASE(S)							H	SEV	ER YY	
	ed roof live loads have	been considered for	-		Glandard						8.		
.,											NA	at	· D

this design.

October 2,2024

E


NUMBER PE-2001018807

SIONAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	B04	Нір	1	1	Job Reference (optional)	168602419

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:30 ID:W2yJu2LHWSC6t3hxjpmT3azeC4z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:57.5

Plate Offsets (X, Y): [2:0-2-0,0-1-12], [9:0-2-0,0-1-12]													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES		
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.56	Vert(LL)	-0.36	12-14	>975	240	MT20		
TCDL	10.0	Lumber DOL	1.15	BC	0.97	Vert(CT)	-0.81	12-14	>432	180			
BCLL	0.0*	Rep Stress Incr	NO	WB	0.73	Horz(CT)	0.09	11	n/a	n/a			

BCDL	10.0	Code	IRC2018	8/TPI2014	Matrix-S		Weight: 129 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2		2)		7-16; Vult=115mph (3-sec a; TCDL=6.0psf; BCDL=6.0	5,		
BOT CHORD		*Except* 13-1	1:2x4 SP	Ke=1.00; Ca	t. II; Exp C; Enclosed; MW and C-C Exterior(2E) -1-5	FRS (envelope)		
WEBS	2x3 SPF No.2 *Exce 1650F 1.5E	ept* 15-2,11-9	:2x4 SP		7-0 to 9-11-4, Exterior(2R) 7-0-2 to 19-6-12, Exterior(2			
BRACING				,	rior (1) 26-7-10 to 30-11-0			
TOP CHORD	Structural wood she 3-3-7 oc purlins, ex 2-0-0 oc purlins (3-4	cept end verti	cals, and	exposed;C-C	exposed ; end vertical left for members and forces & own; Lumber DOL=1.60 pla	MWFRS for		

BOT CHORD	Rigid ceiling directly applied or 8-11-2 oc							
	bracing.							
WEBS	1 Row at midpt 3-15, 8-11							
REACTIONS	(size) 11=0-5-8, 15=0-5-8							
	Max Horiz 15=43 (LC 12)							
	Max Uplift 11=-334 (LC 9), 15=-334 (LC 8)							
	Max Grav 11=1424 (LC 1), 15=1424 (LC 1)							
FORCES	(lb) - Maximum Compression/Maximum							
	Tension							
TOP CHORD	1-2=0/35, 2-3=-391/124, 3-4=-2390/644,							
	4-5=-2218/639, 5-6=-2478/763,							
	6-7=-2208/641, 7-8=-2379/646,							
	8-9=-410/125, 9-10=0/35, 2-15=-418/256,							
	9-11=-422/256							
BOT CHORD	14-15=-622/2234, 12-14=-596/2478,							
	11-12=-587/2231							
WEBS	4-14=-50/428, 7-12=-51/426,							
	3-15=-2135/626, 8-11=-2111/628,							
	6-12=-479/191, 5-14=-466/194,							
	8-12=-54/216, 3-14=-46/222							
	0 12 0 12 10, 0 1 10/22E							

NOTES

1) Unbalanced roof live loads have been considered for this design.

reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding.

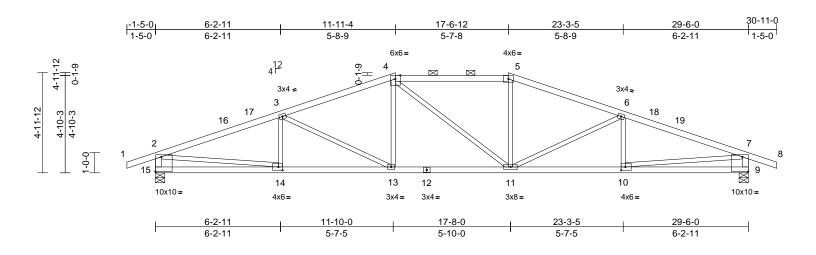
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 15 SP 1650F 1.5E 6) crushing capacity of 565 psi, Joint 11 SP 2400F 2.0E crushing capacity of 805 psi.
- 7) One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 15 and 11. This connection is for uplift only and does not consider lateral forces.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

OF MISS SCOTT M. SEVIER VI IMPRER PE-2001018807 0 SIONAL October 2,2024

GRIP

197/144

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	B05	Нір	1	1	Job Reference (optional)	168602420

Run: 8,63 S Jul 12 2024 Print: 8,630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:30 ID:tYp24OpIKR7a329RWVzc8pzeC4M-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:57.3

Plate Offsets (X, Y): [9:Edge,0-8-12], [10:0-2-8,0-2-0], [14:0-2-8,0-2-0], [15:Edge,0-8-12]												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.81	Vert(LL)	-0.15	13-14	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.74	Vert(CT)	-0.30	11-13	>999	180		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.68	Horz(CT)	0.07	9	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 132 lb	FT = 20%
JUMBER 2) Wind: ASCE 7-16; Vult=115mph (3-second gust)												

LUMBER		-2)	Wind: ASCE 7-16; Vult=1
TOP CHORD	2x4 SP No.2		Vasd=91mph; TCDL=6.0
BOT CHORD	2x4 SP No.2		Ke=1.00; Cat. II; Exp C; E
WEBS	2x3 SPF No.2 *Except* 15-2,9-7:2x4 SP No.2		exterior zone and C-C Ex
BRACING			Interior (1) 3-7-0 to 11-11
TOP CHORD	Structural wood sheathing directly applied or		17-6-12, Exterior(2R) 17-
	3-2-3 oc purlins, except end verticals, and		24-7-10 to 30-11-0 zone;
	2-0-0 oc purlins (3-0-14 max.): 4-5.		exposed ; end vertical left
BOT CHORD	Rigid ceiling directly applied or 7-7-14 oc		members and forces & M
	bracing.	2)	Lumber DOL=1.60 plate g Provide adequate drainad
REACTIONS	(size) 9=0-5-8, 15=0-5-8	3) 4)	This truss has been desid
	Max Horiz 15=56 (LC 16)	4)	chord live load nonconcu
	Max Uplift 9=-323 (LC 9), 15=-323 (LC 8)	5)	* This truss has been des
	Max Grav 9=1424 (LC 1), 15=1424 (LC 1)	5)	on the bottom chord in all
FORCES	(lb) - Maximum Compression/Maximum		3-06-00 tall by 2-00-00 wi
	Tension		chord and any other mem
TOP CHORD	1-2=0/35, 2-3=-2515/691, 3-4=-2196/649,	6)	All bearings are assumed
	4-5=-2019/677, 5-6=-2193/673,		capacity of 565 psi.
	6-7=-2516/712, 7-8=0/35, 2-15=-1351/503,	7)	One H2.5T Simpson Stro
	7-9=-1352/493		recommended to connect
BOT CHORD			UPLIFT at jt(s) 15 and 9.
	11-13=-451/2022, 10-11=-571/2319,		only and does not conside
	9-10=-75/354	8)	This truss is designed in a
WEBS	3-14=-148/137, 3-13=-372/181, 4-13=-9/335,		International Residential
	4-11=-203/194, 5-11=-3/326, 6-11=-377/177,		R802.10.2 and reference
	6-10=-144/142, 2-14=-487/1978, 7-10=-503/1980	9)	Graphical purlin represen
NOTES	1-10=-303/1900		or the orientation of the pro-

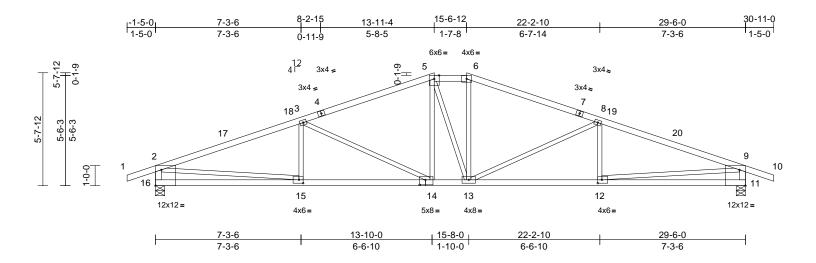
NOTES

Unbalanced roof live loads have been considered for 1) this design.

- Opsf; BCDL=6.0psf; h=35ft; Enclosed; MWFRS (envelope) xterior(2E) -1-5-0 to 3-7-0, 1-4, Exterior(2E) 11-11-4 to -6-12 to 24-7-10, Interior (1) cantilever left and right ft and right exposed;C-C for MWFRS for reactions shown; grip DOL=1.60 age to prevent water ponding.
- igned for a 10.0 psf bottom urrent with any other live loads. signed for a live load of 20.0psf
- Il areas where a rectangle vide will fit between the bottom mbers.
- d to be SP No.2 crushing
- ong-Tie connectors ct truss to bearing walls due to This connection is for uplift der lateral forces.
- accordance with the 2018 Code sections R502.11.1 and ed standard ANSI/TPI 1.
- ntation does not depict the size purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI 10/28/2024 10:57:47

ΤΙΟΝ


IEW

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	B06	Нір	1	1	Job Reference (optional)	168602421

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:30 ID:i3pSAVvquOafT2dwL75yK?zeC2x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

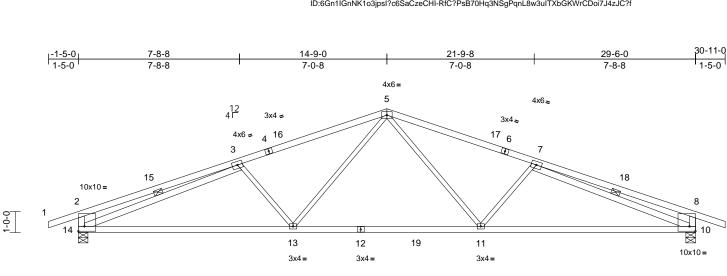
Scale = 1	1:57.6
-----------	--------

Plate Offsets (X, Y): [11:Edge,0-9-8], [12:0-2-8,0-2-0], [14	l:0-3-8,0-	3-0], [15:0-2-8,	,0-2-0], [16:Edge,	,0-9-8]							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.94 0.81 0.80	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.33 0.07	(loc) 14-15 14-15 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 136 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 *Excep 1.5E 2x4 SP No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 2-9-3 oc purlins, ex 2-0-0 oc purlins (4-0 Rigid ceiling directly bracing. (size) 11=0-5-8, Max Horiz 16=68 (LC Max Uplift 11=-309 (Max Grav 11=1424 (lb) - Maximum Com	t* 4-5,6-7:2x4 SP 165 pt* 16-2,11-9:2x4 SP athing directly applied cept end verticals, and -8 max.): 5-6. applied or 8-0-12 oc 16=0-5-8 C 12) LC 9), 16=-309 (LC 8 (LC 1), 16=1424 (LC -	2) 50F d 3) 4) 5)	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 3: 15-6-12, Extt 22-7-10 to 30 exposed ; er members an Lumber DOL Provide aded This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings	7-16; Vult=115m n; TCDL=6.0psf; I t. II; Exp C; Enclc e and C-C Exterio -7-0 to 13-11-4, E erior(2R) 15-612 o-11-0 zone; cant d vertical left and d forces & MWFF =1.60 plate grip I quate drainage to us been designed ad nonconcurrent has been designed has been designed ha	BCDL=6.0 ssed; MW fr(2E) -1-5 Exterior(2E) tidever left d right exp RS for rea DOL=1.60 prevent to for a 10.0 with any d for a liv as where vill fit betw s.	Dpsf; h=35ft; FRS (envelop i-0 to 3-7-0, E) 13-11-4 to 0, Interior (1) and right iosed;C-C for ctions shown 0) water ponding 0 psf bottom other live loa e load of 20.0 a rectangle veen the bottom) r g. ads. 0psf				Weight: 136 lb	FT = 20%
TOP CHORD BOT CHORD WEBS	5-6=-1828/580, 6-8= 8-9=-2528/640, 9-10 9-11=-1346/483 15-16=-207/483, 13 12-13=-493/2317, 1)=0/35, 2-16=-1349/48 -15=-522/2322, 1-12=-140/488 616/189, 5-14=-57/3 =-59/363, 2=-63/154,	35, 8)	recommende UPLIFT at jt(only and doe This truss is International R802.10.2 at Graphical pu or the orienta	Simpson Strong-T ad to connect trus (s) 16 and 11. Thi is not consider lat designed in acco Residential Code nd referenced sta arlin representatio ation of the purlin	ss to beari is connec teral force ordance w e sections andard AN on does no	ing walls due tion is for upli es. R502.11.1 a ISI/TPI 1. ot depict the s	ift and			ł	STATE OF M	AISSOUR
NOTES 1) Unbalance this design	ed roof live loads have		LC	bottom chord DAD CASE(S)							*	SEVI	

E

October 2,2024

PE-20010188


ONAL

S

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

-	Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
	P240988-01	B07	Common	1	1	Job Reference (optional)	168602422

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:30 ID:6Gn1IGnNK1o3jpsI?c6SaCzeCHI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-3-2 19-2-	4 29-6-0	1
10-3-2 8-11-		1

Scale = 1:55.1

5-11-0

Plate Offsets (X, Y): [2:Edge,0-2-12], [10:Edge,0-2-12]

and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for

reactions shown; Lumber DOL=1.60 plate grip

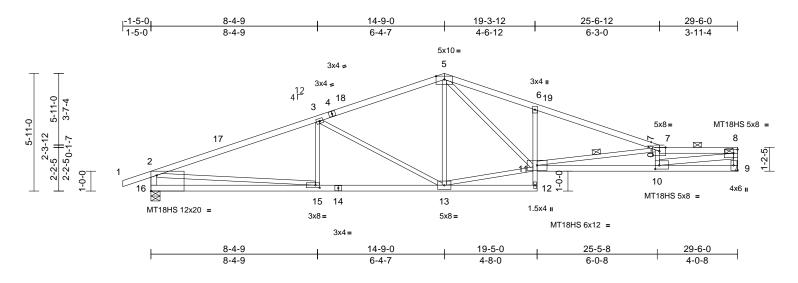
DOL=1.60

Fiate Offsets (A, 1). [2:Luge,0-2-12], [10:Luge,0-2-12]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.91 0.68 0.68		in -0.40 -0.60 0.07	(loc) 11-13 11-13 10	l/defl >876 >586 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 138 lb	GRIP 244/190 FT = 20%
	2x4 SP 1650F 1.5E 2x4 SP 2400F 2.0E 2x3 SPF No.2 *Exce 14-2,14-3,10-8,10-7: Structural wood shea except end verticals. Rigid ceiling directly bracing. 1 Row at midpt (size) 10=0-5-8, Max Horiz 14=74 (LC Max Uplift 10=-303 (I Max Grav 10=1461 ((Ib) - Maximum Com Tension 1-2=0/35, 2-3=-594/' 5-7=-2445/569, 7-8= 2-14=-532/321, 8-10 13-14=-504/2427, 11 10-11=-474/2411 5-13=-110/779, 3-13 3-14=-2102/457, 7-1	2x4 SP No.2 athing directly applie applied or 10-0-0 oc 3-14, 7-10 14=0-5-8 212) LC 9), 14=-303 (LC 8 (LC 2), 14=1460 (LC pression/Maximum 197, 3-5=-2464/568, -619/195, 8-9=0/35, =-535/320 I-13=-285/1808, =-410/269, =-408/270,	d, 5) All bear capacity d, 5) All bear capacity d, 5) All bear capacity d, 6) One H2 recomm UPLIFT only and 7) This trus Internati	is has been designed f e load nonconcurrent v uss has been designed ottom chord in all area: tall by 2-00-00 wide wi d any other members, ngs are assumed to be of 805 psi. 5T Simpson Strong-Tik ended to connect truss t jt(s) 14 and 10. This does not consider late is is designed in accord onal Residential Code .2 and referenced star E(S) Standard	with any for a live s where Il fit betw with BC SP 240 e connect connect eral force dance w sections	other live loads re load of 20.0p a rectangle veen the bottor CDL = 10.0psf. 00F 2.0E crushi ctors ing walls due to tion is for uplift es. ith the 2018 s R502.11.1 an	n ing o				THE OF M	MISS
this design 2) Wind: ASC Vasd=91m Ke=1.00; C exterior zo Interior (1)	d roof live loads have b. E 7-16; Vult=115mph ph; TCDL=6.0psf; BCi Cat. II; Exp C; Enclose ne and C-C Exterior(2 3-7-0 to 14-9-0, Exter erior (1) 19-9-0 to 30-1	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) -1-5-0 to 3-7-0, ior(2R) 14-9-0 to	e)						Ż	S.	SEVI	server

October 2,2024

E

SIONAL


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

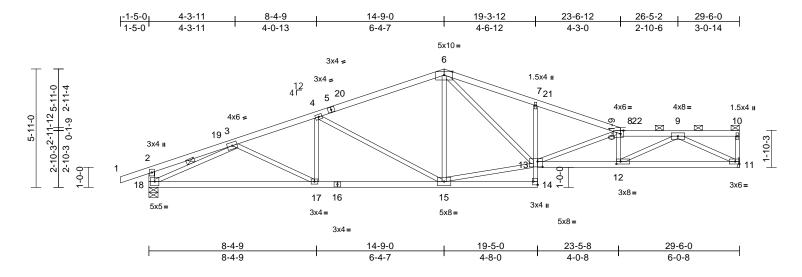
Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	B08	Roof Special	1	1	Job Reference (optional)	168602423

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:31 ID:0mMEUz1XEfAcWAfckRIX3PzeC1V-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:57.9

Plate Offsets (2	X, Y): [7:0-3-12,Edge], [8:Edge,0-2-4], [9:Edge	9,0-2-8	3], [10:0-2-8,0-	2-4], [15:0-2-8,0- ⁻	1-8], [16:E	dge,0-9-8]						
.oading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Plate Grip DOL1.Lumber DOL1.Rep Stress IncrNo	15 ጋ		CSI TC BC WB	0.88 0.73 0.87	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 10-11 10-11 9	l/defl >999 >583 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS	GRIP 244/190 197/144
BCDL	10.0	Code IR	C201	8/TPI2014	Matrix-S	-						Weight: 136 lb	FT = 20%
UMBER OP CHORD OT CHORD /EBS RACING OP CHORD OT CHORD	11-9:2x4 SP 2400F 2 2x3 SPF No.2 *Exce 1650F 1.5E Structural wood shea 3-0-3 oc purlins, exc 2-0-0 oc purlins (2-4 Rigid ceiling directly bracing.	t* 12-6:2x3 SPF No.2, 2.0E pt* 10-8,16-2:2x4 SP athing directly applied or sept end verticals, and -7 max.): 7-8. applied or 7-10-5 oc	2) 3) 4) 5)	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 3 19-9-0, Inter and right exp exposed;C-0 reactions sh DOL=1.60 Provide adee All plates are This truss ha	7-16; Vult=115m n; TCDL=6.0psf; I t. II; Exp C; Enclc and C-C Exterio -7-0 to 14-9-0, Ex- ior (1) 19-9-0 to 2 oosed; end vertic c for members an own; Lumber DO quate drainage to a MT20 plates uni as been designed ad nonconcurrent	BCDL=6. psed; MW pr(2E) -1-5 cterior(2R 29-4-12 zc al left and d forces 8 L=1.60 pl prevent less other for a 10.0	Dpsf; h=35ft; FRS (envelo i-0 to 3-7-0,) 14-9-0 to nne; cantileve I right & MWFRS fo ate grip water ponding wise indicate D psf bottom	er left r g. ed.					
	(size) 9= Mecha Max Horiz 16=109 (L Max Uplift 9=-232 (L Max Grav 9=1313 (L	C 9), 16=-301 (LC 8) .C 1), 16=1429 (LC 1)	6) 7)	* This truss I on the bottor 3-06-00 tall I chord and ar	nas been designe m chord in all area by 2-00-00 wide v ny other members e assumed to be:	ed for a liv as where vill fit betv s.	e load of 20.0 a rectangle veen the botte	0psf om					
DRCES	(lb) - Maximum Com Tension	pression/Maximum	•	capacity of 5				-					
OP CHORD			8) 9) 10	Provide mec bearing plate joint 9.	er(s) for truss to t hanical connection capable of withs Simpson Strong-T	on (by oth standing 2	ers) of truss t 32 lb uplift at					51100	aller
OT CHORD	15-16=-316/699, 13- 12-13=-27/67, 11-12 10-11=-1023/4399, 9	=0/76, 6-11=-419/234, -10=-73/205	10	recommende UPLIFT at jt	(s) 16. This connect areas (s) 16. This connections	ss to bear	ng walls due				Å	STATE OF M	MISSOLA
/EBS	5-11=-414/1586, 8-1 2-15=-240/1577, 5-1 11-13=-364/1706, 3- 3-15=-3/186, 7-10=-3	3=-44/181,	7	International R802.10.2 a	designed in acco Residential Code nd referenced sta Irlin representatio	e sections andard AN	R502.11.1 a ISI/TPI 1.				Ø	SEVI	I MI. YON
OTES Unbalance this design	ed roof live loads have n.	been considered for			ation of the purlin d.					-	A SA	PE-20010	018807 E 4



October 2,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	B09	Roof Special	1	1	Job Reference (optional)	168602424

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:31 ID:zEbiAutSIA?gvx?3q8?yu9zeC0P-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:57.5

1.5E

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.72	Vert(LL)	-0.24	12-13	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.91	Vert(CT)	-0.42	12-13	>829	180		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.86	Horz(CT)	0.12	11	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 135 lb	FT = 20%

BOT CHORD	
	13-11:2x4 SP 1650F 1.5E
WEBS	2x3 SPF No.2 *Except* 18-2:2x4 SP 2400F 2.0E
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	2-11-13 oc purlins, except end verticals, and
DOTOLODD	2-0-0 oc purlins (2-9-7 max.): 8-10.
BOT CHORD	Rigid ceiling directly applied or 7-2-2 oc
	bracing.
WEBS	1 Row at midpt 3-18
REACTIONS	(size) 11= Mechanical, 18=0-5-8
	Max Horiz 18=112 (LC 12)
	Max Uplift 11=-235 (LC 9), 18=-299 (LC 8)
	Max Grav 11=1313 (LC 1), 18=1429 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/35, 2-3=-343/68, 3-4=-2430/575,
	4-6=-1903/508, 6-7=-3006/803,
	7-8=-3025/742, 8-9=-3840/893, 9-10=-66/36,
	10-11=-105/57, 2-18=-382/221
BOT CHORD	
	14-15=-22/109, 13-14=0/77, 7-13=-314/186,
	12-13=-919/3789, 11-12=-628/2226
WEBS	6-13=-396/1521, 8-13=-1027/227,
WEBO	3-18=-2075/571, 6-15=-39/191,
	13-15=-415/1666. 8-12=-748/241.
	, ,
	9-12=-346/1819, 9-11=-2460/681,
	4-15=-663/207, 4-17=0/198, 3-17=0/208

NOTES

Unbalanced roof live loads have been considered for 1) this design.

Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-5-0 to 3-7-0, Interior (1) 3-7-0 to 14-9-0, Exterior(2R) 14-9-0 to 19-9-0, Interior (1) 19-9-0 to 29-4-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 6) Bearings are assumed to be: Joint 18 SP No.2 crushing capacity of 565 psi.
- Refer to girder(s) for truss to truss connections. 7)

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 235 lb uplift at joint 11.

- 9) One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 18. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI 10/28/2024 10:57:48

TION

Page: 1

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	B10	Roof Special	1	1	Job Reference (optional)	168602425

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:31

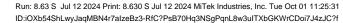
Page: 1 ID:OQRODo8J0QDn?4XEUhOZflzeC_m-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -1-5-0 1-5-0 4-3-11 8-4-9 14-9-0 19-3-12 21-6-12 25-5-2 29-6-0 4-3-11 4-0-13 6-4-7 4-6-12 2-3-0 3-10-6 4-0-14 5x10= 6 3x4 -1.5x4 **I** 5-11-0 3-7-12 3x4 -412 41 0-1-9 2-3-4 7₂₁ 20 6x6= 1.5x4 u 4x8= 5 4 8 10 ⊠ TE g 22 9 \boxtimes \bowtie 4x6 🚅 51 19 ³ 3-6-3 3-6-3 3x4 II 2 1-0-0 ł ę 12 8 18 14 3x4 **I** × 5x8= 17 16 15 1.5x4 🛚 5x5 = 3x4= 5x8=

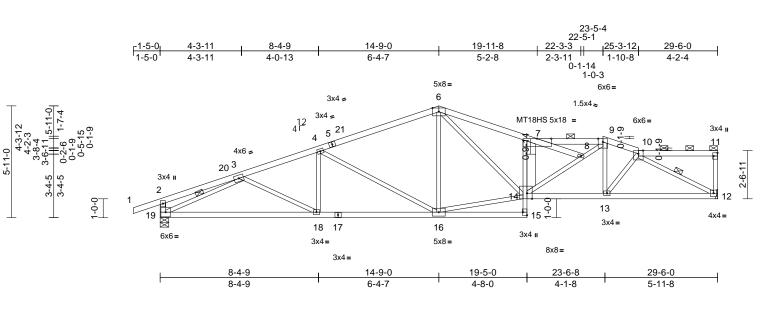
Scale = 1:58.7

5-11-0

Plate Offsets (X, Y): [11:Edge,0-2-8], [12:0-1-12,0-2-8], [13:0-3-0,0-3-4]

	X, Y): [11:Edge,0-2-8	j, [12.0-1-12,0-2-0], [13.0-3-0,0	J-J-4]									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.72 0.91 0.86	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.39 0.11	(loc) 7-13 17-18 11	l/defl >999 >896 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 137 lb	GRIP 244/190 FT = 20%
		t* 14-7:2x3 SPF No.: 5 1.5E spt* 18-2:2x4 SP No.: athing directly applie xcept end verticals, a -11 max.): 8-10. applied or 6-11-8 oc 3-18 anical, 18=0-5-8 .C 12) LC 9), 18=-296 (LC 8	2, 2 d or 3) 4) 5) 3)	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 3 19-9-0, Inter and right exp exposed;C-C reactions shh DOL=1.60 Provide ader This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar	7-16; Vult=115m h; TCDL=6.0psf; E ti. TI; Exp C; Enclo e and C-C Exterior -7-0 to 14-9-0, Ex ior (1) 19-9-0 to 2 boosed ; end vertica C for members and own; Lumber DOL quate drainage to as been designed ad nonconcurrent has been designed op 2-00-00 wide w hy other members e assumed to be: .	SCDL=6. sed; MW r(2E) -1-5 terior(2R 9-4-12 zc al left and d forces 4 =1.60 pl prevent v for a 10.0 with any d for a liv as where vill fit betv	Dipsf; h=35ft; FRS (envelop i-0 to 3-7-0, 14-9-0 to ne; cantileve I right & MWFRS for ate grip vater ponding 0 psf bottom other live loa e load of 20.0 a rectangle veen the bottom	er left r g. ds. opsf om					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	7)	capacity of 5									
TOP CHORD	1-2=0/35, 2-3=-331/4 4-6=-1903/509, 6-7= 7-8=-3005/728, 8-9= 9-10=-2084/492, 10- 2-18=-376/221	2994/794, 2087/494,	8) 9)	Provide mec bearing plate joint 11. One H2.5T \$	chanical connectio capable of withs Simpson Strong-T	n (by oth tanding 2 ie conne	ers) of truss t 40 lb uplift at ctors	t				A1111	aller
BOT CHORD	17-18=-663/2111, 15 14-15=-34/93, 13-14 12-13=-852/3260, 1	=0/77, 7-13=-211/14	,	UPLIFT at jt does not cor	(s) 18. This conne nsider lateral force designed in accor	ction is fo	or uplift only a				6	TATE OF M	AISSOL
WEBS NOTES 1) Unbalance this design	6-13=-384/1507, 8-1 8-12=-1366/347, 10- 3-18=-2088/572, 6-1 13-15=-439/1685, 4- 4-17=0/198, 3-17=0/ ed roof live loads have	3=-634/179, +12=-589/2360, 5=-43/184, +15=-663/207, /208, 9-12=-346/190	11	International R802.10.2 a) Graphical pu	Residential Code nd referenced sta Irlin representation ation of the purlin d.	e sections ndard AN n does no	R502.11.1 a SI/TPI 1. ot depict the s			~		SEVI	ER BER 018807


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



October 2,2024

2-6-3

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	B11	Roof Special	1	1	Job Reference (optional)	168602426

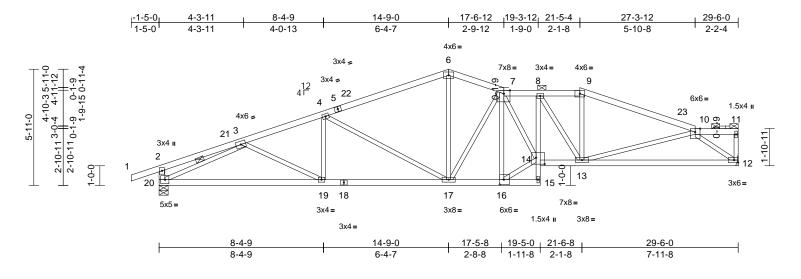
Scale = 1:61

Plate Offsets (X, Y): [11:Edge,0-2-8], [14:0-3-4,Edge], [15:Edge,0-2-8]

			-										
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.71	Vert(LL)	-0.19	14	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.91	Vert(CT)	-0.38	18-19	>914	180	MT18HS	197/144
BCLL	0.0*	Rep Stress Incr	NO		WB	0.86	Horz(CT)	0.11	12	n/a	n/a		
BCDL	10.0	Code		8/TPI2014	Matrix-S	0.00	11012(01)	0.11	12	n/a	n/a	Weight: 146 lb	FT – 20%
	10.0	oode	11(0201	0/11/12/014	Matrix O							Weight. 140 lb	11 = 2070
LUMBER			2) Wind: ASCE	7-16; Vult=115m	ph (3-seo	cond gust)						
TOP CHORD	2x4 SP No.2 *Excep	t* 5-6:2x4 SP 1650F		Vasd=91mp	h; TCDL=6.0psf; E	BCDL=6.	Opsf; h=35ft;						
	1.5E			Ke=1.00; Ca	t. II; Exp C; Enclo	sed; MW	FRS (envelo	pe)					
BOT CHORD	2x4 SP No.2 *Excep	t* 15-7:2x3 SPF No.2	2	exterior zone	and C-C Exterior	r(2E) -1-{	5-0 to 3-7-0,						
WEBS	2x3 SPF No.2 *Exce	pt* 19-2:2x4 SP No.2	<u>2,</u>		-7-0 to 14-9-0, Ex								
	7-14:2x6 SPF No.2				ior (1) 20-0-2 to 2			-5-4					
BRACING					nterior (1) 25-3-12								
TOP CHORD	Structural wood she	athing directly applie	d or		t and right expose								
	2-9-9 oc purlins, ex	cept end verticals, ar	d	0 1	d;C-C for member			RS					
	2-0-0 oc purlins (3-2	-11 max.): 7-8, 7-9,			shown; Lumber D	DOL=1.60) plate grip						
	10-11.		2	DOL=1.60	austa drainaga ta	nrovent	votor pondin	~					
BOT CHORD	0 0 ,	applied or 6-10-5 oc	3) 4)		quate drainage to MT20 plates unle								
	bracing.		5		e 3x4 MT20 unles								
WEBS		10-12, 3-19	6		s been designed								
		anical, 19=0-5-8	0,		ad nonconcurrent			ads.					
	Max Horiz 19=114 (L	,	. 7		has been designe								
	Max Uplift 12=-242 (s) '		n chord in all area								
	Max Grav 12=1310		1)	3-06-00 tall I	oy 2-00-00 wide w	rill fit betw	veen the bott	om					
FORCES	(lb) - Maximum Com	pression/Maximum		chord and a	y other members								
	Tension		8)		assumed to be:	Joint 19 S	SP No.2 crus	hing					
TOP CHORD	1-2=0/35, 2-3=-331/		100	capacity of 5									
	,	-2996/883, 7-8=-125	, ,		er(s) for truss to ti								
	7-9=-2904/800, 9-10)=-2259/602, ?=-148/85, 2-19=-376	/222		hanical connectio							000	The
BOT CHORD	18-19=-682/2108, 16		/222		e capable of withs	tanding 2	242 lb uplift a	t				OFM	ALC D
BOTCHORD	15-16=-43/215, 14-1			joint 12.								THE OF I	AISSO
	7-14=-1288/466, 13-		1		Simpson Strong-T ed to connect trus			to			6	174	N CAN
	12-13=-586/1974	11-001/2121,			(s) 19. This conne						R	SCOT	ГМ. \С. \
WEBS	6-14=-440/1463, 8-1	4=-318/1097.		,	sider lateral force		or upint only a	anu			8	SEVI	ER \Y
		8=-83/82, 10-13=-9/24	49, 1 [.]		designed in accor		ith the 2018				2 *		\★∅
	10-12=-2235/630, 3-	-19=-2085/605,			Residential Code			and			W		·(1.
	6-16=-12/220, 14-16				nd referenced sta			-			X.	No U/	COMMANT.
	4-16=-664/207, 4-18	8=0/200, 3-18=0/207	1;		Irlin representation			size		-	WE		TEN I
NOTES					ation of the purlin						N,	PE-2001	018807
1) Unbalance	ed roof live loads have	been considered for		bottom chore	j.	-					V		158
this design	۱.		L	OAD CASE(S)	Standard							SSIONA	FNUE

SIONAL October 2,2024

E


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	B12	Roof Special	1	1	Job Reference (optional)	168602427

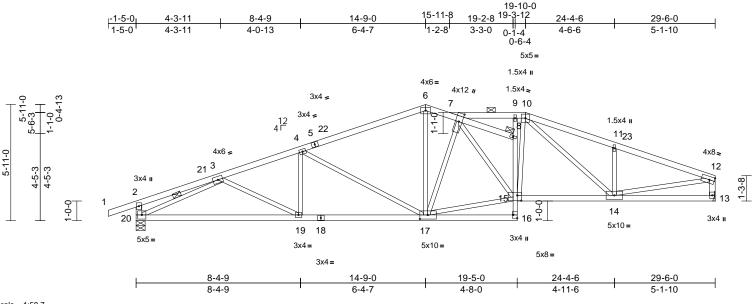
Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:31 ID:Ir3Y21BRh8abt_5TG9kvU7zeBID-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:58.7

Plate Offsets (X, Y): [7:0-3-12,0-2-0], [14:0-5-4,0-4-0], [16:0-2-8,0-3-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO	3/TPI2014	CSI TC BC WB Matrix-S	1.00 0.91 0.86	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.38 0.11	(loc) 19-20 19-20 12	l/defl >999 >929 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 142 lb	GRIP 244/190
BCDL	10.0	Code	IRC2010	0/TFI2014	Matrix-3		-		-			Weight. 142 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	1.5E 2x4 SP No.2 *Excep 2x3 SPF No.2 *Excep Structural wood shea except end verticals, (3-6-8 max.): 7-9, 10 Rigid ceiling directly	t* 15-8:2x3 SPF No.2 pt* 20-2:2x4 SP No.2 athing directly applied and 2-0-0 oc purlins)-11.	2 2 d,	Vasd=91mph Ke=1.00; Car exterior zone Interior (1) 3- 17-6-12, Inte 21-5-4 to 26- cantilever lef right exposed	7-16; Vult=115m n; TCDL=6.0psf; I t. II; Exp C; Enclo and C-C Exterio 7-0 to 14-9-0, Ex rior (1) 17-6-12 to 5-4, Interior (1) 2 t and right expose d;C-C for membe shown; Lumber [3CDL=6. sed; MW r(2E) -1-{ terior(2E) 21-5-4, 6-5-4 to 2 ed; end v rs and fo	Dpsf; h=35ft; FRS (envelop 5-0 to 3-7-0, 14-9-0 to Exterior(2R) 29-4-12 zone; rertical left an rces & MWFF	d					
WEBS REACTIONS		LC 9), 20=-295 (LC 8		Provide adec This truss ha chord live loa * This truss h on the bottom	uate drainage to s been designed ad nonconcurrent as been designe n chord in all area by 2-00-00 wide w	for a 10. with any d for a liv as where) psf bottom other live loa e load of 20.0 a rectangle	ds.)psf					
FORCES	(lb) - Maximum Com	pression/Maximum	0)	chord and an	y other members	i.							
TOP CHORD	Tension 1-2=0/35, 2-3=-330/6 4-6=-1900/529, 6-7= 7-8=-2550/714, 8-9= 9-10=-2350/582, 10- 11-12=-37/19, 2-20=	-1852/540, -2148/587, 11=-66/20,	6) 7) 8)	capacity of 5 Refer to girde Provide mec	assumed to be: 65 psi. er(s) for truss to t hanical connection capable of withs	russ conr n (by oth	ections. ers) of truss t	0					
BOT CHORD		7-19=-618/2270, 5-16=-17/102, 35/460,	9)	One H2.5T S recommende UPLIFT at jt(impson Strong-T d to connect trus s) 20. This conne sider lateral force	s to bear	ng walls due				B	181	AISSOL
WEBS NOTES 1) Unbalance this design	7-16=-1229/358, 14- 7-14=-305/1130, 8-1 9-13=-43/444, 10-13 10-12=-1983/591, 3- 6-17=-173/832, 7-17 4-17=-664/205, 4-19 ed roof live loads have	16=-622/2304, 3=-761/258, =-71/574, 20=-2089/587, =-566/185, =0/203, 3-19=0/210	11 LC) This truss is International R802.10.2 ar) Graphical pu	designed in acco Residential Code nd referenced sta rlin representatio ation of the purlin I.	rdance w sections ndard AN n does no	R502.11.1 a ISI/TPI 1. ot depict the s			L		SCOTT SEVI SEVI PE-20010 PE-20010	ER

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)


E

October 2,2024

ONAL

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	B13	Roof Special	1	1	Job Reference (optional)	168602428

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:32 ID:X0i77eWRoxR_4uVcjGjixKzeBjV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

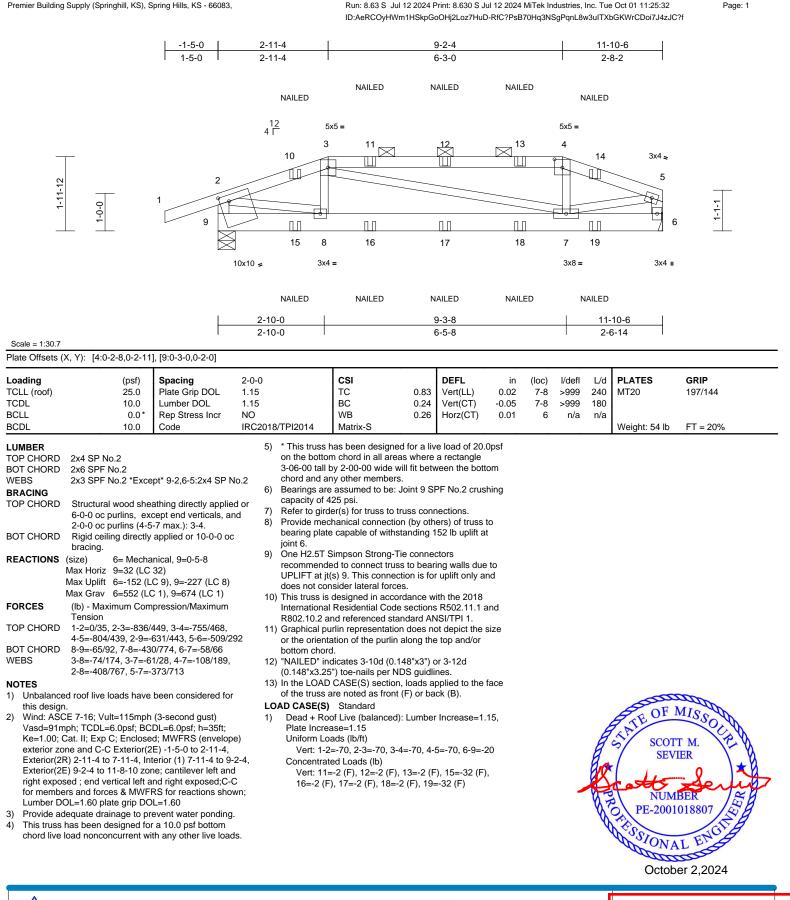
Scale = 1:58.7

Plate Offsets (X, Y): [7:0-5-4,0-2-0], [15:0-2-8,0-3-4], [16:Edge,0-2-8], [17:0-4-12,0-2-8]

	(, .). [1			1							1	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.70	Vert(LL)	-0.17	19-20	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.91	Vert(CT)	-0.37	19-20	>941	180		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.85	Horz(CT)	0.09	13	n/a	n/a		
BCDL	10.0	Code	IRC201	18/TPI2014	Matrix-S							Weight: 149 lb	FT = 20%
LUMBER			2) Wind: ASCE	7-16; Vult=115r	mph (3-sec	ond aust)						
TOP CHORD	2x4 SP No.2 *Excep 1.5E	ot* 5-6:2x4 SP 1650F		Vasd=91mp	h; TCDL=6.0psf; it. II; Exp C; Enc	; BCDL=6.0	Opsf; h=35ft;	pe)					
BOT CHORD	2x4 SP No.2 *Excep	ot* 16-9:2x3 SPF No.	2	exterior zone	e and C-C Exteri	ior(2E) -1-5	5-0 to 3-7-0,						
WEBS	2x3 SPF No.2 *Exce 2.0E, 13-12:2x4 SP		0F	()	-7-0 to 14-9-0, E ior (1) 16-4-3 to								
BRACING				19-10-0 to 2	4-10-0, Interior (1) 24-10-0	to 29-4-4 zo	ne;					
TOP CHORD	Structural wood she	athing directly applie	d or		ft and right expo								
		xcept end verticals,			d;C-C for memb			RS					
	2-0-0 oc purlins (3-1	0-15 max.): 7-8, 7-1	Э.		shown; Lumber	r DOL=1.60) plate grip						
BOT CHORD	Rigid ceiling directly	applied or 7-3-9 oc	2	DOL=1.60	quoto droinogo t	o provont v	votor popdio	~					
	bracing.		3		quate drainage t as been designe			y.					
WEBS	1 Row at midpt	3-20	4		ad nonconcurrer			de					
JOINTS	1 Brace at Jt(s): 8		5		has been design								
REACTIONS	()	nanical, 20=0-5-8	0		m chord in all are			0001					
	Max Horiz 20=110 (I				by 2-00-00 wide			om					
	Max Uplift 13=-233 (ny other member								
	Max Grav 13=1311	(LC 1), 20=1427 (LC	1) 6		assumed to be		SP No.2 crus	hing					
FORCES	(lb) - Maximum Corr	pression/Maximum		capacity of 5				U					
	Tension		7) Refer to gird	er(s) for truss to	truss conr	nections.						
TOP CHORD	1-2=0/35, 2-3=-342/	, ,	8) Provide med	hanical connect	ion (by oth	ers) of truss	to					
	,	-1803/560, 7-8=-2/1	5,	bearing plate	e capable of with	nstanding 2	33 lb uplift a	t					
	7-9=-2061/625, 9-10	,		joint 13.									11
	10-11=-2228/683, 1		9		Simpson Strong-							O DE M	ALL ALL
	2-20=-381/221, 12-1				ed to connect tru							RE OF I	AISSO
BOT CHORD					(s) 20. This conr		or uplift only	and			4	TATE OF A	NS
	16-17=-20/78, 15-16		450		sider lateral for						H	SCOTI	M YPN
	,	88/2000, 13-14=-71/	150 1		designed in acc						B	SEVI	
WEBS	4-19=0/199, 11-14=	,			Residential Coc			ind			8.		
	3-20=-2073/575, 12 6-17=-150/749, 4-17		000		nd referenced st						8 -	۲ ۱	1 ~ 2
	10-15=-89/386, 10-1		200, 1		Irlin representati			size			R	10	2 ~ 1
	7-17=-800/236, 7-15				ation of the purli	n along the	lop and/or				27	KCOMM	ener g
	15-17=-483/1942	-02/210,		bottom chore							NA	O PE-20010	18807
NOTES	10 17 = 400/1042		L	OAD CASE(S)	Standard						N	11-2001	128
NOTES	ed roof live loads have	haan appaidared for									Y	1000	NO B
,		Deen considered for										C'SSIONA	TENA
this desigr												CONA	-

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

TION IEW DEVELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI 10/28/2024 10:57:48


October 2,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	C01	Hip Girder	1	1	Job Reference (optional)	168602429

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:32

Page: 1

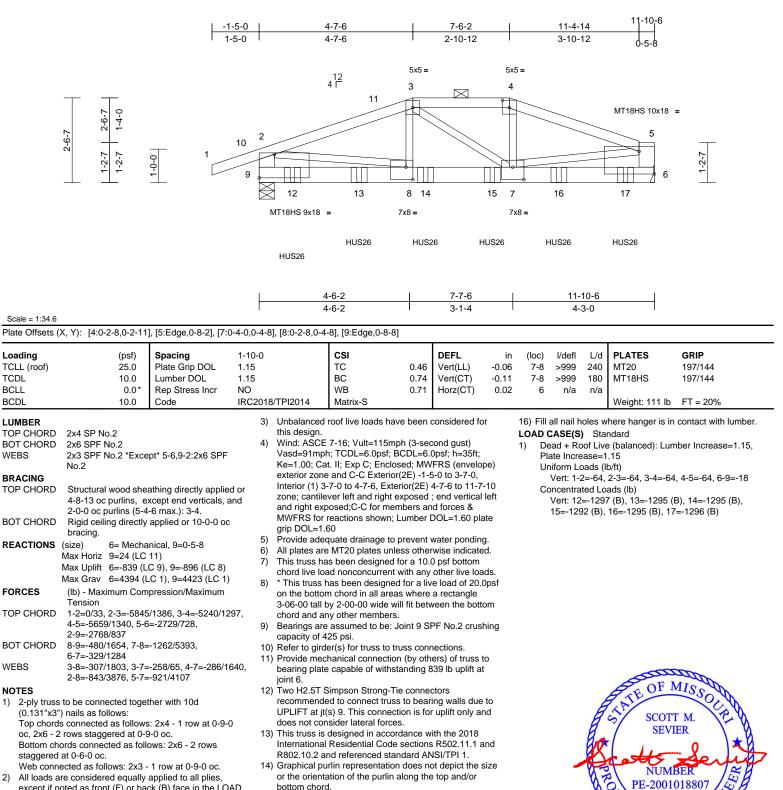
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

ſ	Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
	P240988-01	C02	Roof Special Girder	1	2	Job Reference (optional)	168602430

TCDL

BCLL

BCDL


WEBS

WEBS

NOTES

Run: 8.63 S. Jul 12 2024 Print: 8.630 S. Jul 12 2024 MiTek Industries. Inc. Tue Oct 01 11:25:32 ID:RoDROLE8cpiSAiewuld1vzz7Hrh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

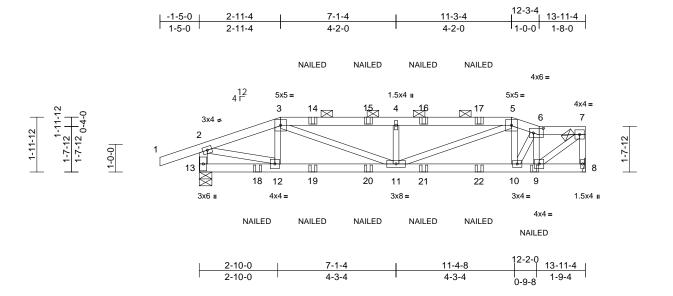
- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 15) Use Simpson Strong-Tie HUS26 (14-16d Girder, 4-16d Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-0-0 from the left end to 11-0-0 to connect truss(es) to back face of bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

CTION LEE'S'SUMMIT'SMISSOURI 10/28/2024 10:57:48

E


October 2,2024

SSIONAL

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	C03	Roof Special Girder	1	1	Job Reference (optional)	168602431

Run: 8,63 S Jul 12 2024 Print: 8,630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:32 ID:JltgWHgfhNn71UYudwH0V2z7HsQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

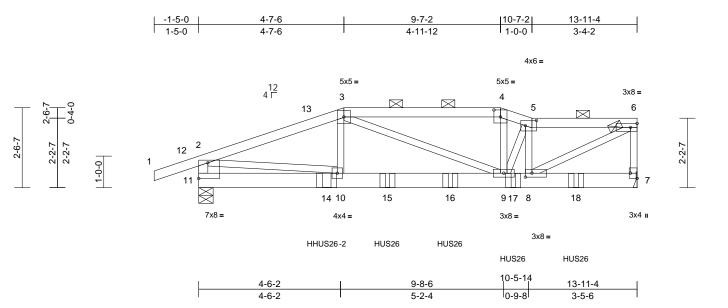
Scale = 1:41.6

Plate Offsets (X, Y): [6:0-4-4,0-2-0]

	(X, 1): [0:0 4 4,0 2 0]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.29 0.32 0.32	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.05 -0.08 0.01	(loc) 11 11-12 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 62 lb	GRIP 197/144 FT = 20%
this design 2) Wind: AS(Vasd=91n Ke=1.00; exterior zc Exterior(2 11-3-4, E) to 13-10-0 vertical lef forces & M	2x4 SP No.2 2x3 SPF No.2 *Exce Structural wood she 5-8-14 oc purlins, e 2-0-0 oc purlins (4-8 Rigid ceiling directly bracing. (size) 8= Mecha Max Horiz 13=67 (LC Max Uplift 8=-219 (L Max Grav 8=702 (LC (lb) - Maximum Com Tension 1-2=0/35, 2-3=-998/ 4-5=-1416/753, 5-6= 7-8=-662/363, 2-13= 12-13=-144/119, 11 10-11=-490/896, 9-1 3-12=-106/128, 5-10 6-10=-169/351, 6-9= 2-12=-452/904, 5-11 4-11=-321/249, 3-11	applied or 8-3-15 oc anical, 13=0-5-8 C 9) C 9), 13=-289 (LC 8) C 1), 13=820 (LC 1) ppression/Maximum 516, 3-4=-1416/753, -926/461, 6-7=-746/3 -774/507 -12=-503/918, 10=-387/701, 8-9=-31)=-161/141, -585/300, 7-9=-489/9 [=-275/566] been considered for a (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope 2E) -1-5-0 to 2-11-4, terior (1) 7-11-4 to 2-3-4, Interior (1) 12-31 and right exposed; en	3) 4) 2 5) d or ind 6) 7) 8) 9) 383, 10 3383, 11 332, 12 13 13 LC 1) e) -4	Provide ader This truss ha chord live loi * This truss I on the botton 3-06-00 tall I chord and an Bearings are capacity of 5 Refer to gird Provide mec bearing plate joint 8. One H2.5T 5 recommende UPLIFT at jt does not cor) This truss is International R802.10.2 a) Graphical pL or the orient bottom chorr) "NAILED" in (0.148"x3.25) In the LOAD of the truss a DAD CASE(S) Dead + Rop Plate Incre: Uniform Lo Vert: 1-2 8-13=-20 Concentrat Vert: 9=-	ler(s) for truss to tru- hanical connection e capable of withste Simpson Strong-Tile d to connect truss (s) 13. This connect hisider lateral forces designed in accorr Residential Code nd referenced star urlin representation ation of the purlin a d. dicates 3-10d (0.14 5") toe-nails per NE 0 CASE(S) section, are noted as front (Standard of Live (balanced): ase=1.15 ads (lb/tt) ==-70, 2-3=-70, 3-5	ior a 10. with any I for a livs s where II fit betv oint 13 s uss conne to bear to bear to bear to bear to bear to bear dance w sections adang the 48"x3") o DS guidli loads a (F) or ba Lumbel =-70, 5-	0 psf bottom other live loa ve load of 20.1 a rectangle veen the bott SP No.2 crusi hections. ers) of truss i 219 lb uplift at ctors ing walls due or uplift only at s R502.11.1 at sSI/TPI 1. ot depict the s e top and/or or 3-12d nes. pplied to the ck (B).	ads. Opsf om hing to t and size face 15, 70,		-	B	STATE OF J STATE OF J SCOT SEV DE 2001	
													0.0004

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

ΤΙΟΝ 'IEW DEVELOPMENT SERVICES


LEE'S'SUMMIT'S MISSOURI 10/28/2024 10:57:48

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	C04	Roof Special Girder	1	2	Job Reference (optional)	168602432

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:32 ID:hcNYYgARUTPXvY1juzV5XCz7HqU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-

Page: 1

Scale = 1:36.6

unless otherwise indicated.

Scale = 1.30.0													
Plate Offsets	(X, Y): [4:0-2-8,0-2-11], [5:0-4-4,0-2-0], [7:1	Edge,0-2-	8], [8:0-2-8,0-1	-8], [11:Edge,0-6-0	0]							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-10-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.32 0.56 0.59	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.12 0.01	(loc) 9-10 9-10 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 133 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x6 SPF No.2 2x3 SPF No.2 *Exce Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 7= Mecha	ept* 11-2:2x4 SP No.: athing directly applie cept end verticals, ar 0-0 max.): 3-4, 5-6. applied or 10-0-0 oc anical, 11=0-5-8	3) 4) 2 d or nd	Unbalanced this design. Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 3 Interior (1) 1 right exposes for members Lumber DOL Provide adee	roof live loads hav 7-16; Vult=115mp n; TCDL=6.0psf; E t. II; Exp C; Enclose and C-C Exterior -7-0 to 4-7-6, Exter 0-7-2 to 13-10-0 z d; end vertical left and forces & MW =1.60 plate grip D quate drainage to	oh (3-sed 3CDL=6. sed; MW (2E) -1-{ one; can t and righ /FRS for DOL=1.60 prevent	cond gust) Opsf; h=35ft; /FRS (envelop 5-0 to 3-7-0, 4-7-6 to 10-7- tilever left and nt exposed;C- reactions sho 0 water ponding	be) -2, d ⊷C own;	Tru: 6-0- fron 16) Fill LOAD (1) De Pla Ur	ss) or ec -0 from t all nail h CASE(S) ead + Ro ate Incre hiform Lo	uivale he left bottor oles w of Live ease=1 bads (II 2=-64, 8	ng-Tie HUS26 (ent spaced at 2-Ci end to 12-0-0 to m chord. /here hanger is i ndard e (balanced): Lu I.15 b/ft) 2-3=-64, 3-4=-6	14-16d Girder, 4-16d 0-0 oc max. starting at o connect truss(es) to n contact with lumber. mber Increase=1.15, 4, 4-5=-64, 5-6=-64,
FORCES	Max Horiz 11=83 (L0 Max Uplift 7=-481 (L Max Grav 7=2056 (I (lb) - Maximum Com	.C 9), 11=-470 (LC 8) LC 1), 11=1819 (LC 1	6)	This truss ha chord live loa * This truss h on the bottor	as been designed ad nonconcurrent nas been designed n chord in all area	for a 10. with any d for a liv is where	0 psf bottom other live load ve load of 20.0 a rectangle	ds.)psf			=-604	(F), 15=-483 (F)	i, 16=-526 (F), 17=-534
TOP CHORD	4-5=-3435/1039, 5-6 6-7=-1782/600, 2-1 10-11=-358/488, 9-1	l=-1738/687 l0=-1059/3106,	11, 8) 9)	chord and ar Bearings are crushing cap	by 2-00-00 wide w by other members assumed to be: J pacity of 425 psi. er(s) for truss to tr	Joint 11 §	SPF No.2	om					
WEBS	8-9=-946/2990, 7-8= 3-10=-145/750, 3-9= 5-9=-211/728, 5-8=- 6-8=-1059/3442, 2- ⁻	=-39/229, 4-9=-167/7 1693/568,	86,	bearing plate joint 7.	hanical connection e capable of withst Simpson Strong-Ti	tanding 4	181 Ib uplift at					THE REAL PROPERTY AND INCOMENT	and
 (0.131"x3' Top chord oc, 2x3 - Bottom ch staggered Web conn All loads a except if r CASE(S) provided t 	s to be connected toge ") nails as follows: Is connected as follows frow at 0-9-0 oc. hords connected as foll at 0-9-0 oc. hected as follows: 2x3 - are considered equally hoted as front (F) or ba section. Ply to ply com to distribute only loads	s: 2x4 - 1 row at 0-9-0 ows: 2x6 - 2 rows - 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO nections have been	1:	UPLIFT at jtt does not cor 2) This truss is International R802.10.2 a 3) Graphical pu or the orienta bottom chore 4) Use Simpson 4-10d Truss)	ed to connect trust (s) 11. This conne- usider lateral force designed in accor Residential Code nd referenced star rlin representation ation of the purlin d. n Strong-Tie HHU or equivalent at 4 s(es) to front face	ction is for s. dance w sections ndard AN n does no along the S26-2 (1 4-0-13 fro	or uplift only a rith the 2018 s R502.11.1 a VSI/TPI 1. ot depict the s e top and/or 4-10d Girder, om the left end	and nd size			*	SCOT SEV SEV PE-200	TER *

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) RELEASE FOR CONSTRUCTION

DEVELORMENTSSERVICES LEE'S'SUMMITSMISSOURI 10/28/2024 10:57:48

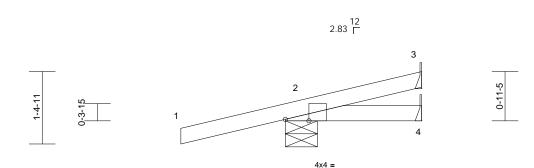
October 2,2024

ONALE

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	CJ1	Jack-Open	3	1	Job Reference (optional)	168602433

<u>-2-0-1</u> 2-0-1

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,


Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:32 ID:arBBSFclbmGJfU5Z_G5kznzeD92-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

2-7-6

2-7-6

2-7-6

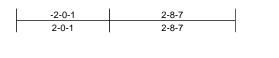
Page: 1

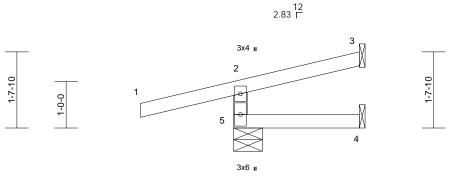
Scale = 1:22.1

Plate Offsets (X, Y): [2:0-5-7,Edge]

	A, f). [2.0-5-7,Euge]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI	2014 C: TC BC W		0.62 0.06 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 2-4 2-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she 2-7-6 oc purlins. Rigid ceiling directly bracing.	athing directly applie applied or 10-0-0 or 3= Mechanical, 4= al 8) C 8), 3=-8 (LC 13)	6) Pro bea 3. 7) On ed or rec doo c 8) Thi Inte R8 LOAD	vide mechan aring plate cap e H2.5T Simp ommended to LIFT at jt(s) 2 se not conside s truss is des ernational Res	ical connection (pable of withstar oson Strong-Tie o o connect truss to . This connection er lateral forces. igned in accorda sidential Code se eferenced stando	nding 8 connec o beari n is for ance wi ections	Ib uplift at joi ctors ng walls due uplift only an th the 2018 R502.11.1 au	nt to d					
Vasd=91m Ke=1.00; (exterior zo and right e exposed;C reactions s DOL=1.60 2) This truss chord live 3) * This truss on the bott 3-06-00 ta chord and 4) Bearings a capacity of	(lb) - Maximum Com Tension 1-2=0/30, 2-3=-44/1 2-4=0/0 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner (3 exposed ; end vertical I 2-C for members and for shown; Lumber DOL= has been designed for load nonconcurrent wi s has been designed for tom chord in all areas ill by 2-00-00 wide will any other members. are assumed to be: , Jo	7 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop)) zone; cantilever lef left and right orces & MWFRS for 1.60 plate grip r a 10.0 psf bottom th any other live loa or a live load of 20.0 where a rectangle fit between the botto pint 2 SP No.2 crush	ft ds. Jpsf om							2		STATE OF M SCATT SCOT SEVI NUM PE-2001	BER 018807

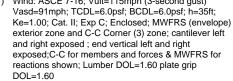
October 2,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)


Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	CJ02	Jack-Open	2	1	Job Reference (optional)	168602434

Run: 8,63 S Jul 12 2024 Print: 8,630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:33 ID:B20vsS3NPLsGVEHwG3RjVOzeDLN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



2-8-7

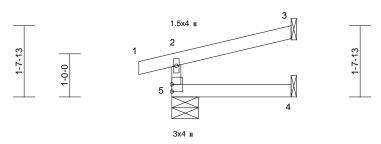
Scale = 1:24.8

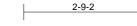
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-R	0.54 0.10 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 2-8-7 oc purlins, ex Rigid ceiling directly bracing. (size) 3= Mecha 5=0-7-6 Max Horiz 5=44 (LC Max Grav 3=40 (LC (LC 1)	cept end verticals. applied or 10-0-0 oc anical, 4= Mechanica 9) 2 12), 5=-152 (LC 8)	, 8) I, L(bearing plate 3. One H2.5T S recommende UPLIFT at jt(does not con This truss is International	hanical connecti a capable of with Simpson Strong- ed to connect tru (s) 5. This conne isider lateral force designed in acco Residential Cod nd referenced st Standard	standing 2 Tie connect ss to bearing totion is for the sections and ance with the sections	7 lb uplift at j ctors ng walls due uplift only ar th the 2018 R502.11.1 a	oint to nd					
	(lb) - Maximum Com Tension 2-5=-285/420, 1-2=0 4-5=0/0 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC)/35, 2-3=-31/14 (3-second gust)											

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: , Joint 5 SP No.2 crushing 4) capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)




Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	CJ03	Jack-Open	2	1	Job Reference (optional)	168602435

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:33 ID:CFLd4WwsxGnoTg8BEEJWeHzeDQj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-9-3 2-9-2 0-9-3 2-9-2

Scale = 1:26.7

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.17	Vert(LL)	0.00	4-5	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.09	Vert(CT)	0.00	4-5	>999	180		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.00	Horz(CT)	-0.01	3	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-R							Weight: 10 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x3 SPF No.2 Structural wood she 2-9-2 oc purlins, ex Rigid ceiling directly bracing.		c 8) al.	bearing plate 3. One H2.5T S recommende UPLIFT at jt does not cor This truss is International	hanical connect e capable of with Simpson Strong ed to connect tr (s) 5. This conn sider lateral for designed in acc Residential Co nd referenced s Standard	-Tie connectures to bearing 4 ection is for ces. cordance with de sections	2 lb uplift at ctors ng walls due uplift only a th the 2018 R502.11.1 a	joint e to nd					
	Max Horiz 5=38 (LC) Max Uplift 3=-42 (LC) Max Grav 3=79 (LC) (LC 1) (LC)	C 12), 5=-61 (LC 8)	188										
FORCES	(lb) - Maximum Con Tension	npression/Maximum											
TOP CHORD BOT CHORD	2-5=-163/216, 1-2=	0/14, 2-3=-32/15											
NOTES													
Vasd=91n Ke=1.00; (exterior zc and right e exposed;(reactions s DOL=1.60	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner (3 exposed ; end vertical C-C for members and t shown; Lumber DOL=) has been designed for	DL=6.0psf; h=35ft; ad; MWFRS (envelop) zone; cantilever le left and right 'orces & MWFRS for 1.60 plate grip	ft								A	STATE OF J	N S S

2 chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Bearings are assumed to be: , Joint 5 SP No.2 crushing 4) capacity of 565 psi.

5) Refer to girder(s) for truss to truss connections.

PE-2001018807 SIONAL E October 2,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

CTION **IEW** DEVELOPMENT SERVICES LEE'S'SUMMIT'S MISSOURI 10/28/2024 10:57:48

SEVIER

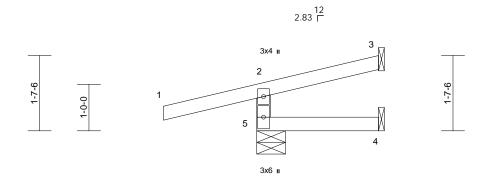
Page: 1

Job	Truss	Truss Type	Qty Ply		Roof - HT Lot 180		
P240988-01	CJ04	Jack-Open	3	1	Job Reference (optional)	168602436	

-2-0-1

2-0-1

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,


Run: 8,63 S Jul 12 2024 Print: 8,630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:33 ID:wvI4XGEnRkvU_zOfJK2?MkzeDAq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-7-6

2-7-6

2-7-6

Scale = 1:24.7

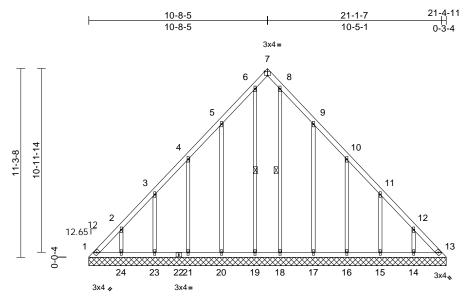
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-R	0.54 0.10 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 2-7-6 oc purlins, ex Rigid ceiling directly bracing. (size) 3= Mecha 5=0-7-6 Max Horiz 5=44 (LC Max Uplift 3=-25 (LC Max Grav 3=35 (LC (LC 1)	cept end verticals. applied or 10-0-0 or anical, 4= Mechanica 9) 2 12), 5=-153 (LC 8)	c 8) ^{al,} L(bearing plate 3. One H2.5T S recommende UPLIFT at jtt does not cor This truss is International	chanical connect e capable of wit Simpson Strong ed to connect tr (s) 5. This conn ssider lateral for designed in ac Residential Co nd referenced s Standard	thstanding 2 g-Tie connectruss to bear nection is for rces. cordance with ode sections	5 lb uplift at j ctors ng walls due uplift only ar th the 2018 R502.11.1 a	ioint to nd					
FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-5=-284/419, 1-2=0/35, 2-3=-31/14 BOT CHORD 4-5=0/0 NOTES 1) 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope)													

exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- Bearings are assumed to be: , Joint 5 SP No.2 crushing 4) capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty Ply		Roof - HT Lot 180	
P240988-01	HG1	Lay-In Gable	1	1	Job Reference (optional)	168602437

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:33 ID:4aaBILsmFzqQEJMVaBas7szeC6t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

+

21-4-11

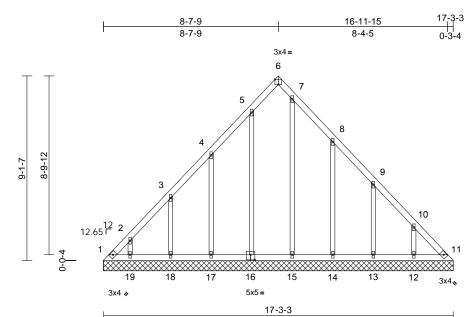
H

Scale = 1:68.9

Plate Offsets (X, Y): [7:Edge,0-3-0]

Plate Olisets ((A, T). [7.Euge,0-3-0]		-										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO IRC2018	5/TPI2014	CSI TC BC WB Matrix-S	0.14 0.07 0.32	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 13	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 123 lb	GRIP 244/190 FT = 20%
	2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 1=21-4-11 14=21-4-1 16=21-4-1 23=21-4-1 23=21-4-1 23=21-4-1 Max Horiz 1=310 (LC Max Uplift 1=-146 (L 14=-137 (l 24=-137 (L 24=-213 (L) (L) (L 24=-213 (L)	C 10), 13=-109 (LC 11) LC 13), 15=-137 (LC 1) LC 13), 17=-162 (LC 1) C 9), 20=-159 (LC 12), LC 12), 23=-137 (LC 1), LC 12), 13=319 (LC 13), LC 20), 15=207 (LC 20) C 20), 17=219 (LC 20) LC 21), 19=160 (LC 19) LC 19), 21=207 (LC 19) LC 19), 24=207 (LC 19)	or WE NO 1) 2)), 3), 3), (2), (2), (2), (3) (1), (1), (1), (1), (1), (1), (1), (1)	TES Unbalanced this design. Wind: ASCE Vasd=91mp Ke=1.00; Ca exterior zond Interior (1) 5 15-5-9, Inter and right exp exposed;C-(reactions sh DOL=1.60 Truss design only. For st see Standar or consult qu All plates and	1-24=-240/342, 23- 21-23=-240/342, 20 19-20=-240/342, 16 17-18=-240/342, 16 15-16=-240/342, 16 15-16=-240/342 2-24=-178/154, 3-2 4-21=-180/157, 5-2 6-19=-125/38, 8-18 10-16=-180/157, 11 12-14=-178/154 roof live loads have to five loads have	D-21=-2 3-19=-2 3-17=-2 1-15=-2 3=-185, 0=-207, =-103/(1-15=-1 a been of (3-sec CDL=6, ed; MW 2E) 0-4 rior(2R 1-1 zor) left and forces a 1.60 pl on the pl d (norm on the pl d (norm) on the pl d (40/342, 40/44, 40/4	87, eft ss , Je, 11.	beau joint 137 uplif joint and 11) This Inter	ring plat 1, 109 Ib uplift t at join 17, 134 137 Ib truss is rnationa 2.10.2 a	te capa lb uplif at join t 20, 1 ⁻ 4 lb upl uplift at s desig al Resid and ref) Sta	able of withstandii t at joint 13, 137 l t 23, 133 lb uplift t 23, 133 lb uplift T lb uplift at joint 1 fift at joint 16, 137 t joint 14. ned in accordanc dential Code sect erenced standard	b uplift at joint 24, at joint 21, 159 lb 9, 162 lb uplift at lb uplift at joint 15 e with the 2018 ons R502.11.1 and ANSI/TPI 1.
FORCES TOP CHORD	Tension 1-2=-491/328, 2-3=- 4-5=-144/115, 5-6=-	ompression/Maximum =-365/228, 3-4=-230/164, =-130/150, 6-7=-101/96, -130/118, 9-10=-106/64, 11-12=-332/228,		 Gable requires continuous bottom chord bearing. Gable studs spaced at 0-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 							and the second sec	PE-20010	LENGI

anno October 2,2024



Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	HG2	Lay-In Gable	1	1	Job Reference (optional)	168602438

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:33 ID:gPh1qn6EiV4GvAb_S_4fH9zeBhR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scolo	= 1:56.9	

Plate Offsets (X, Y): [6:Edge.0-3-0]. [16:0-2-8.0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.20	Horiz(TL)	0.01	11	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 90 lb	FT = 20%
LUMBER			NOTES									

LUMBER							
TOP CHORD	2x4 SP N	0.2					
BOT CHORD	2x4 SP N	0.2					
OTHERS	2x3 SPF No.2						
BRACING							
TOP CHORD	Structural 6-0-0 oc p	wood sheathing directly applied or					
BOT CHORD		ing directly applied or 10-0-0 oc					
REACTIONS	(size)	1=17-3-3, 11=17-3-3, 12=17-3-3, 13=17-3-3, 14=17-3-3, 15=17-3-3, 16=17-3-3, 17=17-3-3, 18=17-3-3, 19=17-3-3					
	Max Horiz	1=248 (LC 9)					
	Max Uplift	12=-138 (LC 13), 13=-132 (LC 13),					
		14=-164 (LC 13), 16=-74 (LC 12), 17=-150 (LC 12), 18=-137 (LC 12), 19=-117 (LC 12)					
	Max Grav						
FORCES		imum Compression/Maximum					
TOP CHORD	Tension	005 0 0 001/010 0 1 107/115					
TOP CHORD		/305, 2-3=-321/219, 3-4=-187/115, /67, 5-6=-89/75, 6-7=-70/54,					
		6, 8-9=-139/80, 9-10=-264/182,					
	10-11=-39						
BOT CHORD		3/296, 18-19=-213/296,					
201 0110112		13/296, 15-17=-213/296,					
	14-15=-21	12/296, 13-14=-212/296,					
		12/296, 11-12=-212/296					
WEBS		8/134, 3-18=-190/162,					
		7/177, 5-16=-149/93, 7-15=-101/6,					
	8-14=-213 10-12=-18	3/187, 9-13=-185/157, 34/155					

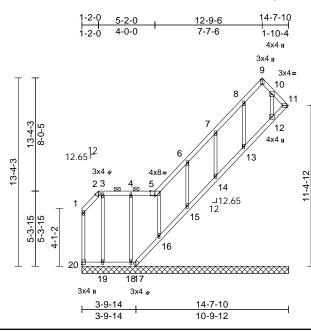
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-1 to 5-4-1, Interior (1) 5-4-1 to 8-7-13, Exterior(2R) 8-7-13 to 13-7-13, Interior (1) 13-7-13 to 16-11-9 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 1.5x4 MT20 unless otherwise indicated. 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 0-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 crushing 9) capacity of 565 psi.

10) N/A

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI 10/28/2024 10:57:48

CTION


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

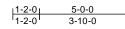
Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	HG3	Lay-In Gable	1	1	Job Reference (optional)	168602439

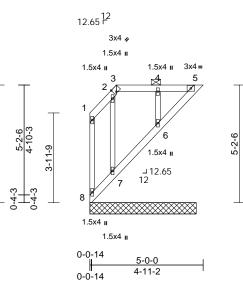
Run: 8.63 E Apr 26 2024 Print: 8.630 E Apr 26 2024 MiTek Industries, Inc. Wed Oct 02 08:55:47 ID:YZosHd0vTL2lu14QAkEIWBzeC1W-6K7?opN_7FVoQk547S3T_ddW01MEYnfOccAW_tyXVUR Page: 1

rion Iew

DEVELORMANTSERVICES LEESSONMITSMISSOURI 10/28/2024 10:57:48

Scale = 1:81.7


Plate Offsets (X, Y): [2:0-1-7,Edge], [5:0-4-0,Edge], [9:Edge,0-1-8], [11:Edge,0-1-8]


Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC20	8/TPI2014	CSI TC BC WB Matrix-S	0.50 0.14 0.16	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a -0.02	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 82 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	6-0-0 oc purlins, e 2-0-0 oc purlins (6-	y applied or 6-0-0 oc		Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5- zone; cantile and right exp MWFRS for grip DOL=1.1) Truss design only. For stu see Standard	ned for wind load ids exposed to wi d Industry Gable I	BCDL=6. psed; MW r(2E) 0-1 terior(2E exposed mbers ar Lumber I s in the p ind (norm End Deta	Dpsf; h=35ft; FRS (envelo -4 to 5-2-0,) 12-9-6 to 14 ; end vertical d forces & DOL=1.60 pla lane of the tru al to the face ils as applica	I-5-3 left ate uss :), ble,					
(lb) -	Max Horiz 20=321 Max Uplift All uplift 18, 19, 2 12=-348 15=-136 17=-223 Max Grav All reacti (s) 13, 1-	(LC 9) 100 (lb) or less at join 0 except 11=-848 (LC (LC 10), 14=-202 (LC (LC 12), 16=-143 (LC (LC 10) ons 250 (lb) or less at 4, 15, 16, 18, 19, 20 e (LC 10), 12=671 (LC	(12), 6 (12), 7 (12), 7 (12), 8 (12), 8 (12), 8 (12), 8 (12), 12), 12)	 Provide adec All plates are Gable requiri Truss to be f braced agair Gable studs This truss ha chord live loa * This truss f 	alified building de quate drainage to a 1.5x4 MT20 unle es continuous bo ully sheathed fror ist lateral movem spaced at 0-0-0 o is been designed ad nonconcurrent nas been designe	prevent vess other ttom choir m one face ent (i.e. coc. for a 10.1 with any d for a liv	water pondin wise indicate d bearing. e or securely iagonal web) 0 psf bottom other live loa e load of 20.	g. d.					
FORCES	(lb) or less except v			3-06-00 tall b	n chord in all area by 2-00-00 wide w by other members	vill fit betw		om				55555	ADDE
TOP CHORD	6-7=-312/338, 7-8= 10-11=-640/713	-469/513, 8-9=-389/4	17, 1	1) Provide mec	hanical connection connection connection contact the contact of with the contact of the contact	on (by oth						TATE OF I	MISSO
BOT CHORD	19-20=-367/336, 18 17-18=-367/336, 16 15-16=-510/467, 14 13-14=-509/465, 12 11-12=-486/436	6-17=-546/510, 1-15=-509/466,		joint(s) 20, 1 16=142, 15= 2) Beveled plat surface with	9, 18 except (jt=lt 135, 14=201, 12= e or shim require truss chord at joir	o) 11=848 =347. d to provi nt(s) 11, 1	8, 17=223, de full bearin 16, 15, 14, 13	g		1		ST SCOT SEV	
WEBS	5-16=-266/234, 7-1 10-12=-782/651	4=-257/224,	I	International	designed in acco Residential Code nd referenced sta	e sections	R502.11.1 a	and		-		NUM	BER
NOTES 1) Unbalance this design		e been considered for		4) Graphical pu	rlin representatio ation of the purlin 1.	n does n	ot depict the	size			Ø	NOM PE-2001	L ENGLES
												Octob	er 2,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

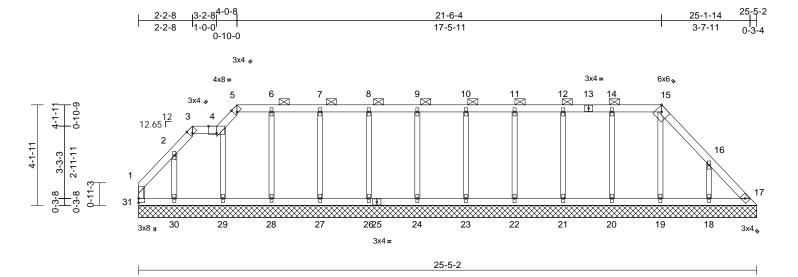
Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	HG4	Lay-In Gable	1	1	Job Reference (optional)	168602440

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:33 ID:Fy5SwVYCsViMzm?e3OgvtMyXqGZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-2-6

Scale = 1:50.9

	A, T). [3.0-1-7,Euge]				-								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.19 0.08 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 26 lb	GRIP 197/144 FT = 20%
	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 5-0-0 oc purlins; ax 2-0-0 oc purlins; 3-5 Rigid ceiling directly bracing. (size) 5=4-8-6, (Max Horiz 8=-129 (L Max Uplift 5=-89 (LC (LC 8) Max Grav 5=93 (LC (LC 1), 8= (lb) - Maximum Com Tension 1-8=-154/157, 1-2=-	cept end verticals, ar applied or 6-0-0 oc 6=4-8-6, 7=4-8-6, 8= C 10) C 9), 6=-50 (LC 8), 7= 19), 6=194 (LC 1), 7 -26 (LC 21) apression/Maximum 162/177, 2-3=-119/1	5) 6) 7) ad or 8) nd 9) 4-8-6 10] 27 r=137 11] 12] 13	Truss to be f braced again Gable studs This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar All bearings a capacity of 5) Bearing at jo value using A designer sho) Provide mec bearing plate 5, 50 lb uplith N/A	uate drainage to ully sheathed fror ist lateral movem spaced at 2-0-0 o s been designed n chord in all area by 2-00-00 wide v are assumed to b 65 psi. int(s) 8, 5, 6, 7 cc NNSI/TPI 1 angle uld verify capacit hanical connectio capable of withs at joint 6 and 27 designed in accoo Residential Code	m one factorial for a like of the second sec	e or securely liagonal web) 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto 2 crushing parallel to grai ormula. Build ing surface. ers) of truss t 9 lb uplift at ji at joint 7.	ds.)psf om ing o oint					
BOT CHORD WEBS NOTES	3-4=-122/133, 4-5=- 7-8=-223/215, 6-7=- 4-6=-150/72, 2-7=-1	197/191, 5-6=-200/1	83 14)	 R802.10.2 and referenced standard ANSI/TPI 1. 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 								and the second	
 this design Wind: ASC Vasd=91m Ke=1.00; (exterior zo and right e exposed; C reactions z DOL=1.60 Truss desi only. For s see Stand. 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I 2-C for members and fi shown; Lumber DOL=	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le left and right orces & MWFRS for 1.60 plate grip the plane of the trus (normal to the face) d Details as applicab	e) eft ss ,	OAD CASE(S)	Standard						* The	SCOT SEV SEV PE-2001	T.M. HER 018807 L.E.NGT


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	HG5	Lay-In Gable	1	1	Job Reference (optional)	168602441

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:34 ID:cCM_nrH3wHIFpx?tT_fVjZyXoyz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

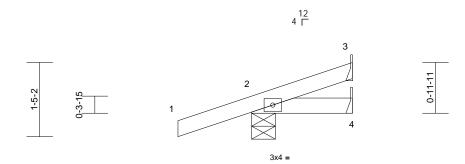
Scale = 1:47.4

Plate Offsets (X, Y):	: [3:0-1-7,Edge], [4:0-4-0,Edge], [5:0-1-7,Edge], [15:0-2-9,Edge]
-----------------------	---

	(A, T). [3.0-1-7,Euge]	J, [4.0-4-0,⊏uge], [5.0	- 1-7, Eugej,	15.0-2-9,20	lyej								-				
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/	TPI2014	CSI TC BC WB Matrix-S	0.10 0.04 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 17	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 112 lb	GRIP 244/190 FT = 20%				
BOT CHORD WEBS OTHERS BRACING TOP CHORD	TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x3 SPF No.2 OTHERS 2x3 SPF No.2 BRACING Emath data set of the				3-4=-66/58, 4-5=-98/82, 5-6=-87/87, 6-7=-87/87, 7-8=-87/87, 8-9=-87/87, 9-10=-87/87, 10-11=-87/87, 8-9=-87/87, 12-14=-87/87, 14-15=-87/87, 15-16=-97/90, 16-17=-101/94 BOT CHORD 30-31=-66/94, 29-30=-66/94, 28-29=-66/96, 27-28=-66/96, 26-27=-66/96, 24-26=-66/96, 23-24=-66/96, 19-20=-66/96, 21-22=-66/96, 20-21=-66/96, 19-20=-66/96, 18-19=-66/96, 17-18=-66/96						 9) * This truss has been designed for a live load of 20.0ps on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 11) N/A 						
REACTIONS	(size) 17=25-5- 20=25-5-	5-2, 5-2, 5-2, 5-2, 3), 1) 2)	WEBS 2-30=-115/113, 4-29=-131/54, 6-28=-152/57, 7-27=-138/66, 8-26=-141/63, 9-24=-140/63, 10-23=-142/64, 11-22=-133/60, 12-21=-143/65, 14-20=-159/72, 15-19=-106/50, 16-18=-186/166 NOTES 1) Unbalanced roof live loads have been considered for this design.					 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 									
FORCES	19=145 (21=183 (23=181 (26=179 (28=192 (30=160 ((LC 19), 18=219 (LC 2 (LC 26), 20=199 (LC 2 (LC 1), 22=173 (LC 2 (LC 1), 24=180 (LC 2 (LC 25), 27=179 (LC 2 (LC 25), 27=179 (LC 2 (LC 25), 29=172 (LC 2 (LC 19), 31=103 (LC 2 npression/Maximum	20), 25), 3), 26), 25), 3) 20) 4) 5) 6) 7) 8)	zone; cantil and right ex MWFRS foo grip DOL=1 Truss desig only. For s see Standa or consult o Provide ade All plates ad Gable requi Gable studt This truss h	9-0-8 to 21-6-4, Ex lever left and right kposed;C-C for me r reactions shown; l.60 nued for wind loads tuds exposed to wi rrd Industry Gable I qualified building de equate drainage to re 1.5x4 MT20 unli ires continuous bo s spaced at 0-0-0 c as been designed bad nonconcurrent	exposed mbers ar Lumber ind (norm End Deta esigner a prevent ess other ttom cho bc. for a 10.	; end vertical d forces & DOL=1.60 pla ane of the tru ial to the face ils as applical s per ANSI/TF water ponding wise indicated d bearing. 0 psf bottom	left ate ss), ble, ble, PI 1. g. d.			R	PE-2001					

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)


ΤΙΟΝ 'IEW DEVELOPMENT SERVICES LEE'S'SUMMIT'S MISSOURI 10/28/2024 10:57:48

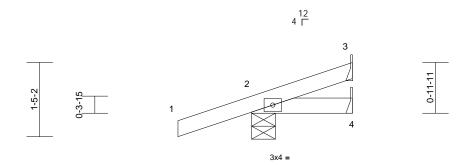
October 2,2024

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	J01	Jack-Open	1	1	Job Reference (optional)	168602442

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:34 ID:6mrTrCbDvjlil7jv04wNqEzeCPI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-11-	4

Spacing	2-0-0	001								
Plate Grip DOL Lumber DOL Rep Stress Incr Code	1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.20 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 2-4 2-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
applied or 10-0-0 oc 3= Mechanical, 4= al 8) C 8), 3=-19 (LC 12)	d or 8) This truss Internation R802.10.2	ided to connect trus jt(s) 2. This connect onsider lateral force is designed in acco al Residential Code and referenced sta	s to bear ction is fo es. rdance w e sections	ing walls due r uplift only ar vith the 2018 s R502.11.1 a	nd					
pression/Maximum 7										
E) zone; cantilever le eft and right prces & MWFRS for 1.60 plate grip r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the bottom	eft ds. psf m ing									ER ER 1018807
	Rep Stress Incr Code athing directly applied applied or 10-0-0 oc 3= Mechanical, 4= al 8) C 8), 3=-19 (LC 12) C 1), 3=26 (LC 1), 4= pression/Maximum 7 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever I eft and right prces & MWFRS for I.60 plate grip a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto bint 2 SP No.2 crush as connections.	Rep Stress Incr Code NO IRC2018/TPI2014 7) One H2.5T recommenuPLIFT at does not c athing directly applied or applied or 10-0-0 oc 8) 3= Mechanical, 4= al 8) (8) C 8), 3=-19 (LC 12) LOAD CASE(3) 21), 3=26 (LC 1), 4=38 pression/Maximum 7 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope) E) zone; cantilever left eft and right orces & MWFRS for 1.60 plate grip * a 10.0 psf bottom th any other live loads. or a live load of 20.0psf where a rectangle fit between the bottom bint 2 SP No.2 crushing es connections.	Rep Stress Incr Code NO IRC2018/TPI2014 WB Matrix-P 7) One H2.5T Simpson Strong-T recommended to connect trus UPLIFT at jt(s) 2. This connect does not consider lateral force athing directly applied or applied or 10-0-0 oc 7) This truss is designed in acco International Residential Code R802.10.2 and referenced sta LOAD CASE(S) 3= Mechanical, 4= al 8) C8), 3=-19 (LC 12) Standard 21), 3=26 (LC 1), 4=38 Pression/Maximum 7 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope) E) zone; cantilever left eft and right orces & MWFRS for 1.60 plate grip This true loads. or a live load of 20.0psf where a rectangle at 10.0 psf bottom th any other live loads. or a live load of 20.0psf where a rectangle This the ween the bottom bint 2 SP No.2 crushing es connections. Second context is a second context is	Rep Stress Incr Code NO IRC2018/TPI2014 WB Matrix-P 0.00 Matrix-P 7) One H2.5T Simpson Strong-Tie conne recommended to connect truss to bear UPLIFT at jt(s) 2. This connection is fo does not consider lateral forces. 8) athing directly applied or applied or 10-0-0 oc 8) This truss is designed in accordance w International Residential Code sections R802.10.2 and referenced standard At LOAD CASE(S) Standard 3= Mechanical, 4= al 8) 6 Standard Standard 3= Mechanical, 4= al 8) 7 Standard Standard 3= Mechanical, 4= al 8) 6 Standard Standard 3= Mechanical, 4= al 8) 6 Standard Standard 3= Mechanical, 4= al 8) 6 Standard Standard 4 7 Standard Standard 5 5 Standard Standard 6 8) Casecond gust) Standard 7 0.0 psf bottom Standard Standard 7 1.60 plate grip Standard Standard * a 10.0 psf bottom Standard Standard Standard * a 10.0 psf bottom Standard Standard Standard	Rep Stress Incr Code NO IRC2018/TPI2014 WB Matrix-P 0.00 Matrix-P Hor2(CT) 7) One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due UPLIFT at jt(s) 2. This connection is for uplift only an does not consider lateral forces. 8) athing directly applied or applied or 10-0-0 oc 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 a R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 8) C 8), 3=-19 (LC 12) C 1), 3=26 (LC 1), 4=38 pression/Maximum 7 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope) E) zone; cantilever left eft and right porces & MWFRS for I.60 plate grip ra 10.0 psf bottom th any other live loads. or a live load of 20.0psf where a rectangle fit between the bottom bint 2 SP No.2 crushing es connections.	Rep Stress Incr Code NO IRC2018/TPI2014 WB Matrix-P 0.00 Matrix-P Horz(CT) 0.00 athing directly applied or applied or 10-0-0 oc 7) One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 2. This connection is for uplift only and does not consider lateral forces. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 3= Mechanical, 4= al 8) American and the sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Y (3-second gust) DL=6.0pst; h=35ft; d; MWFRS (envelope) E) zone; cantilever left eff and right orces & MWFRS for 1.60 plate grip Ta 10.0 psf bottom th any other live loads. or a live load of 20.0psf where a rectangle fit between the bottom that 2 SP No.2 crushing as connections.	Rep Stress Incr NO WB 0.00 Hor2(CT) 0.00 3 Code IRC2018/TPI2014 Matrix-P Matrix-P 0.00 3 athing directly applied or applied or 10-0-0 oc 7) One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 8= Mechanical, 4= al 8) C (3), 3=-19 (LC 12) C1), 3=26 (LC 1), 4=38 Pression/Maximum 7 (3-second gust) DL=6.0psf; h=35ft; d; dWFRS for 1.60 plate grip a 1.00 psf bottom th any other live loads. or a live loads. or a live load of 20.0psf where a rectangle fit between the bottom any other live loads. or a live load of 20.0psf where a rectangle fit between the bottom bit 2 SP No.2 crushing as connections. sconnections. sconnections.	Rep Stress Incr NO WB 0.00 Horz(CT) 0.00 3 n/a Code IRC2018/TPI2014 Matrix-P Matrix-P Horz(CT) 0.00 3 n/a Matrix-P One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(5) 2. This connection is for uplit only and does not consider lateral forces. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard *80 CB), 3=-19 (LC 12) Standard >1), 3=26 (LC 1), 4=38 Standard pression/Maximum 7 Gasecond gust) DL=6.0psf; h=35ft; d; MWFRS for I.60 plate grip For a live load of 20.0psf where a rectangle it between the bottom that yother live loads. or a live load of 20.0psf where a rectangle it between the bottom so connections.	Rep Stress Incr NO WB 0.00 Horz(CT) 0.00 3 n/a n/a Code IRC2018/TPI2014 WB 0.00 Horz(CT) 0.00 3 n/a n/a Matrix-P International Residential Code sections recommended to connect truss to bearing walls due to UPLIFT at it(s) 2. This connection is for uplit only and does not consider lateral forces. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 26 8). 3=-19 (LC 12) Standard Standard International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 30 CB, 3=-19 (LC 12) Standard Standard International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 10L=6.0psf; h=35ft; d; MWFRS (envelope) Standard International Residential Code sections R502.11.1 and R	Rep Stress Incr NO WB 0.00 Horz(CT) 0.00 3 n/a Weight: 8 lb Code IRC2018/TPI2014 Matrix-P Matrix-P 0.00 3 n/a n/a Weight: 8 lb NO 0 Horz(CT) 0.00 3 n/a Weight: 8 lb athing directly applied or 7 One H2.5T Simpson Strong-Tic connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 2. This connection is for uplift only and does not consider lateral forces. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard al 8) C (C 1), 4=38 pression/Maximum 7 (3-second gust) DL=6.0pst; h=35ft; d: MWFRS (envelope) E) zone; cantilever left eff and right orces & MWFRS for I.60 plate grip For I.60 plate grip 1 a 10.0 psf bottom th any other live loads, or a live load of 20.0psf where a rectangle fit between the bottom Structure sconnections.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

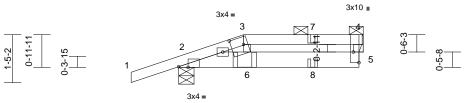
Job	Truss	Truss Type C		Ply	Roof - HT Lot 180	
P240988-01	J02	Jack-Open	1	1	Job Reference (optional)	168602443

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:34 ID:6mrTrCbDvjlil7jv04wNqEzeCPI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

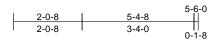
1-11-4	

Loading TCLL (roof) (psf) Spacing 2-0-0 CSI DEFL in (loc) //defi L// L/defi TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.20 Vert(LL) 0.00 2-4 >999 240 BCL 0.0* Rep Stress Incr NO BC 0.04 Vert(CT) 0.00 2-4 >999 180 BCL 0.0* Rep Stress Incr NO WB 0.00 Matrix-P Horz(CT) 0.00 3 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-P One PL5.5T Simpson Strong-Tie connectors For connectors For connectors For connectors For connectors For connectors to bearing walls due to UPLIFT at jt(5) 2. This connection is for uplift only and does not consider lateral forces. 8) This truss is designed in accordance with the 2018 For cons R502.11.1 and R802.10.2 and referenced standard ANSI/TP11. LOAD CASE(S) Standard BACTHONS (size) 2=0-5-8, 3= Mechanical, 4= Machanical Max Horiz 2=55 (LC 8) Max Grav	PLATES GRIP MT20 244/190
TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BACING recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces. BACING Structural wood sheathing directly applied or 1-11-4 oc purlins. BOT CHORD Reactions REACTIONS (size) 2=0-5-8, 3= Mechanical, 4= Mechanical Max Horiz 2=55 (LC 8) Max Uplift 2=-110 (LC 8), 3=-19 (LC 12) Max Grav 2=227 (LC 1), 3=26 (LC 1), 4=38 (LC 3) FORCES (lb) - Maximum Compression/Maximum Tension	Weight: 8 lb FT = 20%
FORCES (lb) - Maximum Compression/Maximum Tension	
 TOP CHORD 1-2=0/30, 2-3=-35/17 BOT CHORD 2-4=0/0 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 4) Bearings are assumed to be: , Joint 2 SP No.2 crushing capacity of 565 psi. 5) Refer to girder(s) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 3. 	STATE OF MISSOCIE SCOTT M. SEVIER NUMBER PE-2001018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	J03	Half Hip Girder	2	1	Job Reference (optional)	168602444

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:34 ID:6mrTrCbDvjlil7jv04wNqEzeCPI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



6x6 🛥

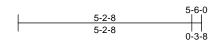
THJU26 NAILED

Scale = 1:34.3

Plate Offsets (X, Y): [2:0-3-6,Edge], [3:0-4-8,0-2-12], [4:Edge,0-2-0]

Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing2-0-Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIRC	5	CSI TC BC WB Matrix-S	0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 0.00	(loc) 6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 197/144 FT = 20%
BRACING OP CHORD Structural wood she 5-6-0 oc purlins, ex 2-0-0 oc purlins: 3-4 BOT CHORD Rigid ceiling directly bracing.	applied or 10-0-0 oc 5= Mechanical 8) C 8), 5=-35 (LC 9) C 1), 5=205 (LC 1) pression/Maximum 55, 3-4=-174/61, 8/173 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope) E) zone; cantilever left left and right orces & MWFRS for 1.60 plate grip event water ponding. r a 10.0 psf bottom th any other live loads. or a live load of 20.0psf where a rectangle fit between the bottom	 Provide mech bearing plate 5. One H2.5T S recommende UPLIFT at jt(does not con This truss is a International R802.10.2 ar Graphical pur or the orienta bottom chord Use Simpson RC 1-PLY) or connect truss Fill all nail ho "NAILED" inc (0.148"x3.25" Hanger(s) or provided suff lb down and design/select responsibility In the LOAD of the truss a LOAD CASE(S) Dead + Roc Plate Increa Uniform Loa Vert: 1-3 Concentrate 	Strong-Tie THJU2 equivalent at 1-11- (es) to back face of les where hanger is icates 3-10d (0.14& ') toe-nails per NDS other connection de icient to support cor 104 lb up at 1-11-4 ion of such connect of others. CASE(S) section, la re noted as front (F Standard f Live (balanced): L se=1.15	by othen ading 35 connect o bearin n is for ance wite ections and AN3 loes not ong the 6 (SGL -10 fron 5 bottom in cont s wice(s) ancentrat in cont dev bads ap) or bac .umber -20	rs) of truss i 5 lb uplift at j tors mg walls due uplift only ar h the 2018 R502.11.1 a SI/TPI 1. t depict the s top and/or & SGL SHC n the left end ac chord. act with lum - 3-12d es. shall be teed load(s) 1 chord. The ice(s) is the plied to the s k (B).	joint to nd and size DRT d to ber. 165				STATE OF I SCOT SEVI PE-2001	

besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	J04	Half Hip	1	1	Job Reference (optional)	168602445

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:34 ID:juQculcza1K?qo_?lfQY6SzeCMh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

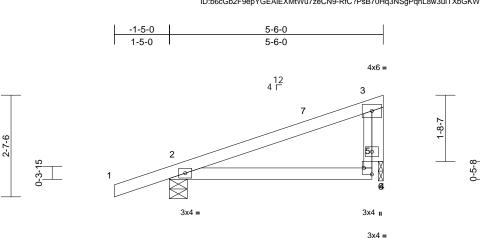
Page: 1

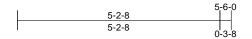
Scale = 1:34.5

Plate Offsets (X, Y): [4:0-2-0,0-1-0]

		-									-	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.26	Vert(LL)	-0.03	2-5	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.33	Vert(CT)	-0.07	2-5	>863	180		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.04	Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TP	I2014 Matr	ix-P						Weight: 22 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x3 SPF No.2 2x4 SP No.2 Structural wood she 5-6-0 oc purlins, ex 2-0-0 oc purlins: 3-4 Rigid ceiling directly bracing. 	cept end verticals, a , y applied or 10-0-0 o 6=0-1-8 9) .C 8), 6=-38 (LC 8)	ca 6) Be us de 7) Pr be nd 8) Or c c c an 9) Th l R 8 20 20 20 20 20 20 20 20 20 20 20 20 20	pacity of 565 psi aring at joint(s) (ing ANSI/TPI 1 a signer should ve ovide mechanica aring plate at join the H2.5T Simpsc commended to c ULFT at jt(s) 2 and d does not consi is truss is design ernational Residd 02.10.2 and refe aphical purlin rej	6 considers parallel angle to grain formu rify capacity of bea al connection (by otl	to grain value la. Building ing surface. ing surface tors ctors ring walls due n is for uplift yith the 2018 s R502.11.1 a NSI/TPI 1. ot depict the	to e to only and				. ~	
FORCES	(lb) - Maximum Com	npression/Maximum		ttom chord.								
TOP CHORD BOT CHORD WEBS	5-6=-96/148, 4-6=-5		LOAD	CASE(S) Star	ndard							
Vasd=91r Ke=1.00; exterior zz Interior (1 zone; can and right i MWFRS f grip DOL= 2) Provide a 3) This truss chord live 4) * This truss on the boi 3-06-00 ta	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 I) 3-7-0 to 3-11-4, Exter titlever left and right ex exposed;C-C for memb for reactions shown; Lu =1.60 tdequate drainage to pr s has been designed fo b load nonconcurrent w ss has been designed fo b load nonconcurrent w ss has been designed fo all by 2-00-00 wide will d any other members.	SDL=6.0psf; h=35ft; ad; MWFRS (envelop 2E) -1-5-0 to 3-7-0, rior(2E) 3-11-4 to 5- posed ; end vertical bers and forces & umber DOL=1.60 pla revent water ponding r a 10.0 psf bottom ith any other live loa for a live load of 20.0 where a rectangle	1-4 lleft te g. ds. ppsf						2	B	STATE OF SCOT SEV NUM PE-2001	T M. IER BER 018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)




October 2,2024

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	J05	Monopitch	4	1	Job Reference (optional)	168602446

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:34 ID:b6cGb2F9epYGEAiEXMtWu7zeCN9-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.6

Plate Offsets (X, Y): [4:Edge,0-2-8]

	(x, i): [1:Edge;e 2 e]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.33 0.20 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.03 0.00	(loc) 2-4 2-4 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 197/144 FT = 20%
BCDL LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS(Vasd=91r Ke=1.00; exterior zz Interior (1) exposed ; members Lumber D 2) This truss	10.0 2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 2x4 SP No.2 Structural wood she 5-6-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-5-8, I Max Horiz 2=94 (LC Max Uplift 2=-128 (L Max Grav 2=367 (L1 (Ib) - Maximum Corr Tension 1-2=0/30, 2-3=-204/ 3-5=-92/222	Code Code	IRC2018/TPI2014 5) Bearing at using ANS designer s 6) Provide m bearing pla 7) One H2.5T recommen UPLIFT at and does r 8) This truss Internation R802.10.2 LOAD CASE(S	Matrix-R joint(s) 6 consider J/TPI 1 angle to gr hould verify capac echanical connecti ate at joint(s) 6. Simpson Strong- ded to connect tru jt(s) 2 and 6. This hot consider lateral is designed in acco al Residential Cod and referenced st	rs parallel t rain formula ity of bear ion (by oth Tie connect uss to bear connectio al forces. ordance w de sections	o grain value a. Building ng surface. ers) of truss ctors ing walls due n is for uplift ith the 2018 ; R502.11.1 a	e to e to only				Weight: 22 lb	MISSOUR T M.
on the bot 3-06-00 ta chord and	is has been designed f tom chord in all areas all by 2-00-00 wide will any other members. gs are assumed to be of 565 psi.	where a rectangle fit between the botto							-	A Star	PE-2001	018807 E

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	J06	Half Hip	1	1	Job Reference (optional)	168602447

-1-5-0

1-5-0

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:34 ID:AGPiPC0cLf16q6AOM9Wp4vzeCNT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

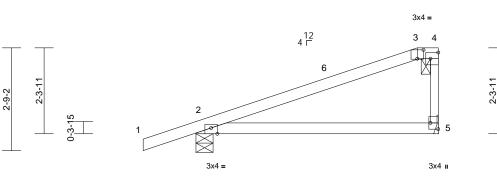
5-11-4

5-11-4

6-6-0

0-6-12

4x4 =


2 0-3-15 3x4 = 6-6-0

TCDL BCLL BCDL	BCLL 0.0* Rep Stress Incr		1.15 NO IRC2	018	/TPI2014	BC WB Matrix-R	0.41 0.00	Vert(CT) Horz(CT)	-0.12 0.00	2			
	LUMBER TOP CHORD 2x4 SP No.2 30T CHORD 2x4 SP No.2 WEBS 2x3 SPF No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins,					 Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 56 lb uplift at joint 5. One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. DAD CASE(S) Standard 							
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=0/30, 2-3=-156/4 4-5=-185/229	45, 3-4=-103/100,											
BOT CHORD													
NOTES 1) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)											
Vasd=91r Ke=1.00; exterior zo Interior (1 zone; can	nph; TCDL=6.0psf; BCJ Cat. II; Exp C; Enclosed one and C-C Exterior(2)) 3-7-0 to 5-11-4, Exter tilever left and right exp exposed;C-C for memb	DL=6.0psf; h=35ft; d; MWFRS (envelop E) -1-5-0 to 3-7-0, for(2E) 5-11-4 to 6-4 posed ; end vertical lo	-12										

- 2
- 3
- 4
- 5

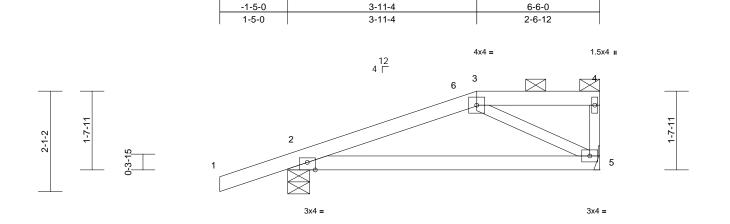
TRUCTION **IEW** DEVELOPMENT SERVICES LEE'S' SUMMIT'S MISSOURI 10/28/2024 10:57:49

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Scale = 1:30.9

Plate Offsets (X, Y): [2:0-2-0,Edge], [3:0-2-0,0-2-13], [4:Edge,0-2-0], [5:Edge,0-2-8]

	(;;;;): [<u>2:0</u> 2 0; <u>2</u> 2ge]; [0:0 = 0;0 = :0]; [:	12ago;o 2 o]; [o:2ag	,;o = o]								
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.64	Vert(LL)	-0.06	2-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.41	Vert(CT)	-0.12	2-5	>621	180		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014								Weight: 24 lb	FT = 20%
_							-					
LUMBER				girder(s) for truss to								
TOP CHORD				mechanical connec								
BOT CHORD	2x4 SP No.2		0	plate capable of wit	hstanding 5	56 lb uplift at	joint					
WEBS	2x3 SPF No.2		5.		 .							
BRACING			,	.5T Simpson Strong			. 4.0					
TOP CHORD		eathing directly appli		ended to connect tr at it(s) 2. This conn								
		xcept end verticals, a	300	t consider lateral for		upint only a	nu					
DOTOLODD	2-0-0 oc purlins (6-			ss is designed in ac		ith the 2018						
BOT CHORD	Bigid ceiling direct bracing.	y applied or 10-0-0 o		ional Residential Co			and					
DEACTIONS	0	5 Machanical		0.2 and referenced s								
REACTIONS	Max Horiz 2=106 (I	5= Mechanical	10) Graphic	al purlin representat	tion does n	ot depict the	size					
	Max Uplift 2=-141 (rientation of the purl	in along the	e top and/or						
	Max Grav 2=408 (I		bottom									
FORCES	(lb) - Maximum Co	mpression/Maximum	LOAD CAS	E(S) Standard								
	Tension											
TOP CHORD	1-2=0/30, 2-3=-156 4-5=-185/229	5/45, 3-4=-103/100,										
BOT CHORD	2-5=-97/103											
NOTES												
1) Wind: AS	CE 7-16; Vult=115mp	h (3-second gust)										
Vasd=91n	nph; TCDL=6.0psf; B	CDL=6.0psf; h=35ft;										
Ke=1.00;	Cat. II; Exp C; Enclos	ed; MWFRS (envelo	pe)									an
	one and C-C Exterior										OF	MISSO
) 3-7-0 to 5-11-4, Ext										TATE OF	J. OSCILL
	tilever left and right e exposed;C-C for men		leit							6	172	1 CAN
	or reactions shown; L		ato							B	S SCOI	
grip DOL=										B	SEV	IER \ Y
01	dequate drainage to p	prevent water ponding	a.							10 *		1 * 1
	has been designed f		5							8	9	
	load nonconcurrent v									0.2	COPUN	A Max
	s has been designed		0psf							142	PE-2001	018807 1890
	tom chord in all areas	0								N.		
	all by 2-00-00 wide wi I any other members.	ii iii between the bott	om							Y	1050	O'E
	are assumed to be: J	nint 2 SP No 2 crushi	ina								CSSIONA	LETA
capacity c											Car	TITE
capacity c												er 2,2024
											00100	01 2,2027


Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	J07	Half Hip	1	1	Job Reference (optional)	168602448

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:34 ID:T4HVkzhgiNdx5ycCH_XUUCzeCNu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-6-0

Page: 1

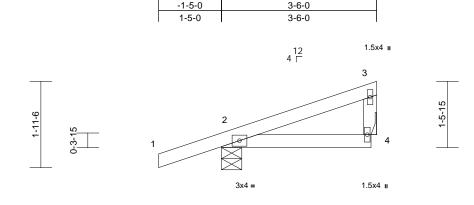
Plate Offsets (X, Y): [2:0-2-0,Edge]

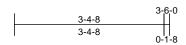
chord and any other members.

Fiale Oliseis ((A, T). [2.0-2-0,Euge]				_							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.27 0.55 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.17 0.00	(loc) 2-5 2-5 5	l/defl >853 >427 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 25 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins: 3-4 Rigid ceiling directly bracing.	cept end verticals, a applied or 10-0-0 or 5= Mechanical 9) C 8), 5=-53 (LC 8) C 1), 5=262 (LC 1) ppression/Maximum	capacity 6) Refer to 7) Provide bearing 5. 10 10 One H2 recomm 40 or 9) This true 10 Graphic or the o bottom	s are assumed to be: of 565 psi. girder(s) for truss to mechanical connecti plate capable of with .5T Simpson Strong- rended to connect tru at jt(s) 2. This conne t consider lateral forc sis is designed in accc ional Residential Cod .2 and referenced st al purlin representation rientation of the purlir chord. E(S) Standard	truss coni on (by oth standing § Tie conne ss to bear ction is fo ses. ordance w le sections andard AN on does no	nections. ers) of truss : 53 lb uplift at j ctors ing walls due r uplift only au ith the 2018 \$ R502.11.1 a VSI/TP1 1. ot depict the s	to ioint to nd					
BOT CHORD WEBS	2-5=-279/209 3-5=-238/296											
Vasd=91n Ke=1.00; exterior zc Interior (1) zone; can and right e MWFRS f grip DOL= 2) Provide ar 3) This truss chord live 4) * This truss on the bot 3-06-00 ta	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 3-7-0 to 3-11-4, Exter tilever left and right exp exposed;C-C for memb or reactions shown; Lu -1.60 dequate drainage to pr has been designed fo load nonconcurrent wi is has been designed f tom chord in all areas II by 2-00-00 wide will env other mombers	DL=6.0psf; h=35ft; d; MWFRS (envelop IE) -1-5-0 to 3-7-0, rior(2E) 3-11-4 to 6- posed ; end vertical pers and forces & imber DOL=1.60 pla event water ponding r a 10.0 psf bottom th any other live loa or a live load of 20.0 where a rectangle	4-12 left g. ds. opsf							*	STATE OF J SCOT SEV NUM PE-2001	018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

October 2,2024


ONAL E



Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	J08	Jack-Closed	4	1	Job Reference (optional)	168602449

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:34 ID:SN?E2rd1k8D2iqcWKHUdbMzeCQY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

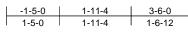
Scale = 1:26

Scale = 1:26												
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO	CSI TC BC WB	0.25 0.12 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 0.00	(loc) 2-4 2-4 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 14 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 Structural wood she 3-6-0 oc purlins, ex	cept end verticals.	ed or	.5T Simpson Strong- iended to connect tru at jt(s) 2. This conne t consider lateral for ss is designed in acc ional Residential Cor 0.2 and referenced s E(S) Standard	uss to bear ection is for ces. cordance w de sections	ing walls due uplift only a th the 2018 5 R502.11.1 a	nd					
REACTIONS	0	4= Mechanical										
	Max Horiz 2=65 (LC Max Uplift 2=-124 (L Max Grav 2=286 (LC	.C [´] 8), 4=-23 (LC 12)	1									
FORCES	(lb) - Maximum Com											
TOP CHORD BOT CHORD	Tension 1-2=0/30, 2-3=-70/4 2-4=-24/26	8, 3-4=-95/122										
NOTES												
Vasd=91m Ke=1.00; (exterior zo and right e exposed;C	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and f shown; Lumber DOL=	DL=6.0psf; h=35ft; ed; MWFRS (envelop E) zone; cantilever left and right orces & MWFRS for	left								ATE OF	MISS
	has been designed for load nonconcurrent wi		de							A	The	13000
 This trus on the bot 3-06-00 ta 	s has been designed f tom chord in all areas Il by 2-00-00 wide will any other members.	or a live load of 20.0 where a rectangle	0psf								S SCOT SEV	TM. YEY
	are assumed to be: Joi	int 2 SP No.2 crushi	ing						-		de T	Server
5) Refer to gi	irder(s) for truss to trus									N2	PE-2001	
	echanical connection (ate capable of withstar									Ý	Ser.	GIT

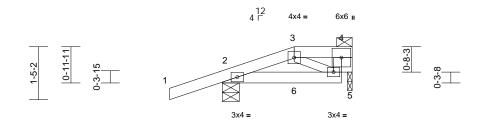
bearing plate capable of withstanding 23 lb uplift at joint 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

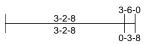
October 2,2024


10/28/2024 10:57:49

E


JONAL

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	J10	Half Hip Girder	1	1	Job Reference (optional)	168602450


Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:35 ID:2KNyZR?URf7fwbUUelYuLuzeCQ3-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Special

Scale = 1:31

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.25	Vert(LL)	-0.01	2-5	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.12	Vert(CT)	-0.01	2-5	>999	180		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.02	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2	2014	Matrix-P							Weight: 14 lb	FT = 20%
LUMBER			6) Bea	arina at ioi	nt(s) 5 considers	parallel t	o grain value						
TOP CHORD	2x4 SP No.2				PI 1 angle to grai								
BOT CHORD	2x4 SP No.2		des	igner shou	uld verify capacity	of beari	ng surface.						
WEBS	2x3 SPF No.2		7) Prov	vide mech	anical connection	n (by oth	ers) of truss t	0					
OTHERS	2x4 SP No.2		bea	ring plate	at joint(s) 5.								
BRACING					impson Strong-Ti								
TOP CHORD	Structural wood she	athing directly applied			d to connect trus								
		cept end verticals, an	d UPL		s) 5 and 2. This c		n is for uplift (only					
	2-0-0 oc purlins: 3-4		and		consider lateral f								
BOT CHORD	Rigid ceiling directly				lesigned in accor								
	bracing.				Residential Code			ind					
REACTIONS	(size) 2=0-5-8, 5	5=0-1-8			d referenced star								
	Max Horiz 2=43 (LC	9)			lin representation			size					
	Max Uplift 2=-112 (L	C 8), 5=-5 (LC 9)		om chord.	tion of the purlin	along the	top and/or						
	Max Grav 2=271 (LC	C 1), 5=93 (LC 21)			other connection	dovico(s) shall bo						
FORCES	(lb) - Maximum Com	pression/Maximum			cient to support of			60					
	Tension				99 lb up at 1-11-4								
TOP CHORD	1-2=0/30, 2-3=-119/	54, 3-4=-16/18,			-4 on bottom cho								
	4-5=-45/55				ection device(s) is								
BOT CHORD	2-5=-53/133		othe	ers.	()		,						
WEBS	3-5=-136/63		12) In th	ne LOAD (CASE(S) section	loads a	oplied to the f	face					
NOTES					re noted as front	(F) or ba	ck (B).						
	E 7-16; Vult=115mph			• • •	Standard								
	ph; TCDL=6.0psf; BC		,		f Live (balanced)	Lumber	Increase=1.	15,					
	Cat. II; Exp C; Enclose		-,	ate Increa								A	and the
	ne and C-C Exterior(2			niform Loa	· /							B.F. OF I	NISS W
	xposed ; end vertical I				-70, 3-4=-70, 2-5	=-20					6	TATE OF M	N.S.
exposed;C	exposed;C-C for members and forces & MWFRS for				d Loads (lb)						8	SCOT	TM XPN

- and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.
- 3) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Vert: 3=28 (F), 6=-2 (F)

E

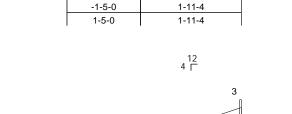
SCOTT M.

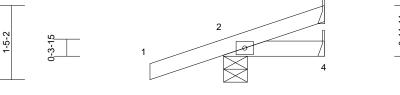
SEVIER

PE-2001018807

SIONAL

SE


October 2,2024


Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	J11	Jack-Open	1	1	Job Reference (optional)	168602451

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:35 ID:BOeiL02QvhNHe5qbL2AgSRzeCTt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

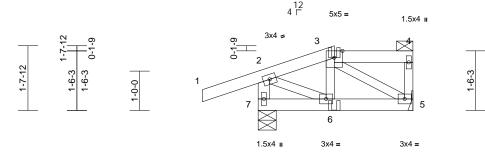
VIEW

3x4 =

0-11-11	
0	

1-11-4

Scale = 1	:22.2
-----------	-------


00010 - 1.22.2												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.20 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 2-4 2-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m Ke=1.00; C exterior zor and right e: exposed;C reactions s DOL=1.60 2) This truss f chord live I 3) * This truss on the bott 3-06-00 tall chord and 3 4) Bearings a capacity of 5) Refer to gir 6) Provide me	2x4 SP No.2 2x4 SP No.2 Structural wood she 1-11-4 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 3 Mechanic Max Horiz 2=55 (LC Max Uplift 2=-110 (L Max Grav 2=227 (LC (LC 3) (lb) - Maximum Com Tension 1-2=0/30, 2-3=-35/1 2-4=0/0 E 7-16; Vult=115mph ph; TCDL=6.0psf; BC 2at. II; Exp C; Enclose ne and C-C Exterior(2 2t. II; Exp C; Enclose ne and C-C Exterior(2 at. II; Exp C; Enclose ne at. II; Exp C; Enclose n	athing directly applie applied or 10-0-0 oc 3= Mechanical, 4= al 8) C 8), 3=-19 (LC 12) C 1), 3=26 (LC 1), 4= pression/Maximum 7 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop 2E) zone; cantilever li left and right orces & MWFRS for 1.60 plate grip r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto oint 2 SP No.2 crush ss connections. (by others) of truss to	7) One H2.5 recomme UPLIFT does not 8) This trust Internatic R802.10. LOAD CASE =38	Matrix-P T Simpson Strong-T nded to connect trus it it(s) 2. This connec consider lateral force is designed in acco nal Residential Code 2 and referenced sta (S) Standard	es to bear otion is for es. ordance w e sections	ing walls due r uplift only ar ith the 2018 s R502.11.1 a	nd				STATE OF STATE OF SCOT SEV PE-2001	MISSOLUTION T.M. IER 018807
											Octob	per 2,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) RELEASE AS NOTE STRUCTION DEVELORMEN SERVICES LEE'S' SUMMIT'S MISSOURI 10/28/2024 10:57:49

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	J13	Half Hip Girder	3	1	Job Reference (optional)	168602452

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:35 ID:PvRIR2sPBiS6DyMeMF_CTizeDA0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

NAILED

 1-10-0
 3-11-4

 1-10-0
 2-1-4

Scale = 1:29.3

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d		GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.24	Vert(LL)	0.00	6	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.05	Vert(CT)	0.00	5-6	>999	180		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.03	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC201	18/TPI2014	Matrix-P							Weight: 19 lb	FT = 20%
LUMBER			6) Bearings are	e assumed to be:	Joint 7 SF	PNo 2 crush	ina					
TOP CHORD	2x4 SP No.2		-	capacity of 5									
BOT CHORD			7		er(s) for truss to	truss conr	ections.						
WEBS	2x3 SPF No.2 *Exce	ent* 7-2·2x4 SP No 2		, 0	hanical connection			to					
BRACING	2/0 011 11012 2/00	pt : <u></u> x: 0: :101	-		e capable of with								
TOP CHORD	Structural wood she	othing directly appli	od or	5.		J							
TOP CHORD	3-11-4 oc purlins, e) One H2.5T \$	Simpson Strong-T	Tie conneo	ctors						
	2-0-0 oc purlins: 3-4		anu	recommende	ed to connect true	ss to bear	ng walls due	e to					
BOT CHORD				UPLIFT at jt	(s) 7. This conne	ction is for	uplift only a	nd					
BOT CHORD	bracing.	applied of 10-0-0 0	C	does not cor	sider lateral forc	es.							
REACTIONS		anical, 7=0-5-8	1	0) This truss is	designed in acco	ordance w	ith the 2018						
REACTIONS	(,		International Residential Code sections R502.11.1 and									
	Max Horiz 7=65 (LC	/		R802.10.2 and referenced standard ANSI/TPI 1.									
	Max Uplift 5=-37 (LC		1	11) Graphical purlin representation does not depict the size									
	Max Grav 5=137 (LC	,, , , ,		or the orient	ation of the purlin	n along the	top and/or						
FORCES	(lb) - Maximum Com	pression/Maximum		bottom chore	d.								
	Tension		1	2) "NAILED" in	dicates 3-10d (0.	148"x3") c	or 2-12d						
TOP CHORD	,	, ,		(0.148"x3.25	5") toe-nails per N	VDS guidli	nes.						
	4-5=-66/82, 2-7=-27		1	In the LOAD	CASE(S) section	n, loads a	oplied to the	face					
BOT CHORD	,			of the truss a	are noted as front	t (F) or ba	ck (B).						
WEBS	2-6=0/95, 3-6=-5/51	, 3-5=-108/110	L	OAD CASE(S)	Standard								
NOTES			1) Dead + Ro	of Live (balanced	d): Lumber	Increase=1.	15,					
1) Unbalance	ed roof live loads have	been considered fo	or	Plate Increa	ate Increase=1.15								
, this desigr				Uniform Lo	orm Loads (Ib/ft)								
2) Wind: AS	Wind: ASCE 7-16; Vult=115mph (3-second gust)			Vert: 1-2	=-70, 2-3=-70, 3-	-4=-70, 5-7	7=-20						
Vasd=91n	Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft;			Concentrat	ed Loads (lb)	,						COL	AD
Ke=1.00;	Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope)				12 (B)							F OF I	ALSO DIN
exterior zo	exterior zone and C-C Exterior(2E) zone; cantilever left				× /						1	TE OF I	~00 M

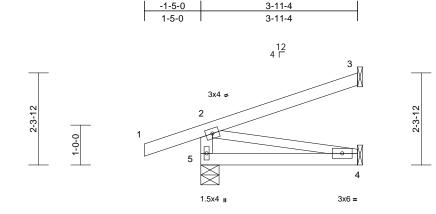
Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelop exterior zone and C-C Exterior(2E) zone; cantilever la and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Provide adequate drainage to prevent water ponding.
 This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

SCOTT M. SEVIER PE-2001018807

Page: 1

October 2,2024


RELEASE IOR ON TRUCTION AS NOTED ON PLANS REVIEW DEVELORMENT SERVICES LEE'S'SUMMIT'S MISSOURI 10/28/2024 10:57:49

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	J14	Jack-Open	25	1	Job Reference (optional)	168602453

Run: 8,63 S Jul 12 2024 Print: 8,630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:35 ID:o8UIE?szVW7IOM5uY1Wz8QzeDBI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:28.9

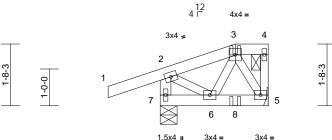
						-							
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d		GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.24	Vert(LL)	-0.01	4-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.19	Vert(CT)	-0.02	4-5	>999	180		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.04	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC202	8/TPI2014	Matrix-P		-					Weight: 18 lb	FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 *Except* 4-2:2x3 SPF No.2 BRACING Structural wood sheathing directly applied or 3-11-4 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 3= Mechanical, 4= Mechanical, 5=0-5-8 Max Horiz 5=71 (LC 8) Max Uplift 3=58 (LC 12), 5=-101 (LC 8) Max Grav 3=108 (LC 1), 4=76 (LC 3), 5=301 (LC 1) (LC 1)				 bearing plate 3. One H2.5T 3 recommend UPLIFT at jt does not cor This truss is International 	hanical connecti e capable of with Simpson Strong- ed to connect tru (s) 5. This conne sider lateral forc designed in acco Residential Cod nd referenced st Standard	Istanding 5 Tie connections to bearing to bearing to bearing to be bearing to be bearing to be to be bearing to be bearing to be the sections to be bearing to be the sections to be bearing to be bearing to be the sections to be bearing to be bearing to be bearing to be the sections to be bearing to be are bearing to bearing to be are bearing to be	8 lb uplift at ctors ing walls due uplift only a ith the 2018 R502.11.1 a	joint e to nd					
FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-5=-263/291, 1-2=0/35, 2-3=-59/30 BOT CHORD 4-5=-172/41 WEBS 2-4=-42/176													
NOTES	- · · · · · · ·												
1) Wind: ASG Vasd=91n Ke=1.00; exterior zc and right e exposed;0	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical C-C for members and f shown; Lumber DOL= 0	eft								la la	STATE OF J	1 CAN	

- DOL=1.60 2) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 4) Bearings are assumed to be: , Joint 5 SP No.2 crushing
- capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

CTION **IEW** DEVELOPMENT SERVICES LEE'S'SUMMIT'S MISSOURI 10/28/2024 10:57:49

SEVIER


NUMBER

PE-2001018807

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	J15	Half Hip Girder	2	1	Job Reference (optional)	168602454

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:35 ID:4I6ZUIA1?]QpVvEz8BR_izeDQO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

NAILED

NAILED

1-5-10 2-11-4 1-5-10 1-5-10

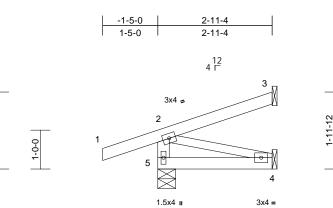
Scale = 1:31.3

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.24	Vert(LL)	0.00	6	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	0.00	5-6	>999	180		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.03	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-P							Weight: 16 lb	FT = 20%
UMBER				7) Provide med	hanical connec	tion (by oth	ere) of truce	to					
TOP CHORD	2x4 SP No.2				e capable of with								
BOT CHORD	2x4 SP No.2			5.		lotariarig	i io apint at	joint					
VEBS	2x3 SPF No.2 *Exce	ent* 7-2·2x4 SP No 2	2	3) One H2.5T	Simpson Strong	-Tie conne	ctors						
	2.00 0.1 11012 2.000	pt : 2.2.x. 0	-		ed to connect tr			e to					
FOP CHORD	Structural wood she	athing directly appli	od or	UPLIFT at jt	(s) 7. This conn	ection is for	uplift only a	nd					
	2-11-4 oc purlins, e			does not co	sider lateral for	ces.							
	2-0-0 oc purlins: 3-4		and g		designed in acc								
BOT CHORD	Rigid ceiling directly		ic.	International Residential Code sections R502.11.1 and									
	bracing.				nd referenced s								
REACTIONS	0	anical, 7=0-5-8			urlin representat			size					
	Max Horiz 7=73 (LC	,		or the orientation of the purlin along the top and/or									
	Max Uplift 5=-41 (LC	,		bottom chord. 11) "NAILED" indicates 3-10d (0.148"x3") or 2-12d									
	Max Grav 5=94 (LC												
ORCES	(lb) - Maximum Com				(0.148"x3.25") toe-nails per NDS guidlines. In the LOAD CASE(S) section, loads applied to the face								
ORCES	Tension	pression/waximum						face					
FOP CHORD	1-2=0/35, 2-3=-72/5	2 2 1- 20/21			are noted as fro	nt (F) or ba	ск (В).						
OF CHORD	4-5=-28/34, 2-7=-25	, ,		OAD CASE(S)									
BOT CHORD	6-7=-158/67, 5-6=-6				of Live (balance	ed): Lumber	Increase=1.	.15,					
WEBS	3-6=-29/44, 3-5=-60			Plate Incre									
NOTES	0 0 = 20/44, 0 0 = 00	/30, 2 0= //100		Uniform Lo	· · ·		7 00						
		(0			=-70, 2-3=-70,	3-4=-70, 5-	/=-20						
	Wind: ASCE 7-16; Vult=115mph (3-second gust) Concent Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Vert: :												
	Cat. II; Exp C; Enclose	vert: 3=	·2 (B), 8=-5 (B)										
										an	ADD		
	exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right											8. OF	ALC: NIC
	exposed;C-C for members and forces & MWFRS for											ATEOF	-so th
	shown: Lumber DOI -									6	AN IN	N.S.Y	

- reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Bearings are assumed to be: Joint 7 SP No.2 crushing capacity of 565 psi.
- 6) Refer to girder(s) for truss to truss connections.

SCOTT M. SEVIER NUMBER PE-2001018807

October 2,2024



RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEVELORMENT SERVICES LEE'S'SUMMIT'S MISSOURI 10/28/2024 10:57:49

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	J16	Jack-Open	4	1	Job Reference (optional)	168602455

1-11-12

Run: 8,63 S Jul 12 2024 Print: 8,630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:35 ID:GPHjoSJwP5pFJbaL6yt0x1zeDQD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

3x4 =

Scale = 1:29.6

		1				_							
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.24	Vert(LL)	0.00	4-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.10	Vert(CT)	-0.01	4-5	>999	180		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.04	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-P							Weight: 14 lb	FT = 20%
LUMBER			6) Provide mec	hanical connect	ion (by oth	ers) of truss	to					
TOP CHORD	2x4 SP No.2				capable of with								
BOT CHORD	2x4 SP No.2			3.		J							
WEBS	2x4 SP No.2 *Excep	t* 4-2:2x3 SPF No.2	2 7) One H2.5T S	Simpson Strong-	Tie connec	ctors						
BRACING	2/1 0/ 110/2 2/000		-	recommende	ed to connect tru	iss to beari	ng walls due	e to					
TOP CHORD	Structural wood she	athing directly applie	ad or	UPLIFT at jt(s) 5 and 4. This	connection	n is for uplift	only					
	2-11-4 oc purlins, e		50 01	and does no	t consider latera	l forces.							
BOT CHORD	Rigid ceiling directly		. 8		designed in acc								
Bor onore	bracing.		0		Residential Co			and					
REACTIONS	•	inical, 4= Mechanica	al	R802.10.2 a	nd referenced st	tandard AN	ISI/TPI 1.						
REAGNONG	(312C) 0= MCCINE 5=0-5-8		"', L	OAD CASE(S)	Standard								
	Max Horiz 5=57 (LC	8)											
	Max Uplift 3=-37 (LC	- /											
	Max Grav 3=64 (LC		264										
	(LC 1)	.), (20 0),											
FORCES	(lb) - Maximum Corr	pression/Maximum											
	Tension	•											
TOP CHORD	2-5=-236/264, 1-2=0)/35, 2-3=-40/23											
BOT CHORD	4-5=-142/31												
WEBS	2-4=-32/147												
NOTES													
1) Wind: ASC	CE 7-16; Vult=115mph	(3-second aust)											
Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft;													
	Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope)												
	one and C-C Exterior(2											COOL	Jan
	exposed ; end vertical											OF I	ALSO D
exposed;C	C-C for members and f	orces & MWFRS for								1	750	MISSO	

- reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 3)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Bearings are assumed to be: , Joint 5 SP No.2 crushing capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.

E

October 2,2024

SCOTT M.

SEVIER

MBER

PE-2001018807

SIONAL

Job	Truss	Truss Type Qt		Ply	Roof - HT Lot 180	
P240988-01	J18	Half Hip Girder	2	1	Job Reference (optional)	168602456

-1-5-0

1-5-0

1-8-0

2-0-0

2-0-0

12 4 Г

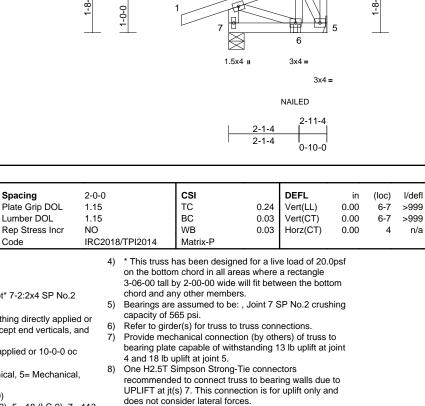
3x4 🚦 2

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S. Jul 12 2024 Print: 8.630 S. Jul 12 2024 MiTek Industries. Inc. Tue Oct 01 11:25:35 ID:B20vsS3NPLsGVEHwG3RjVOzeDLN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

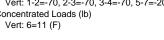
-8-0

2-11-4


0-11-4

3x6 II

NAILED


4x8 = 3

Page: 1

igned in accordance with the 2018 sidential Code sections R502.11.1 and eferenced standard ANSI/TPI 1.

- representation does not depict the size n of the purlin along the top and/or
- side of top chord bearing and first cal web shall not exceed 0.500in.
- tes 3-10d (0.148"x3") or 2-12d pe-nails per NDS guidlines.
- SE(S) section, loads applied to the face noted as front (F) or back (B).
- andard
- Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-2=-70, 2-3=-70, 3-4=-70, 5-7=-20 Concentrated Loads (lb)

DEVELORMENTOSERVICES LEE'S'SUMMIT'SMISSOURI 10/28/2024 10:57:49

TION

PLATES

Weight: 16 lb

MT20

240

180

n/a

GRIP

197/144

FT = 20%

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Scale = 1:34.5

Loading

TCDL

TCLL (roof)

Plate Offsets (X, Y):	[4:Edge,0-2-8]

(psf)

25.0

10.0

BCLL			0.0*	Rep Stress Incr	NO		WE
BCDL			10.0	Code	IRC20	18/TPI2014	Ма
LUMBE TOP CH BOT CH WEBS BRACII TOP CH	HORD HORD NG	Structural 2-11-4 oc	o.2 No.2 *Exce I wood shea	pt* 7-2:2x4 SP No.2 athing directly applie ccept end verticals, a	5 dor and 6	 * This truss h on the bottor 3-06-00 tall b chord and ar Bearings are capacity of 5 Refer to girde Provide mec 	m chơ by 2-0 ny oth e assi 65 p: er(s) hanic
BOT CH	HORD	Rigid ceil bracing.	ing directly	applied or 10-0-0 oc		bearing plate 4 and 18 lb u 3) One H2.5T S	Iplift
REACT	IONS	(size) Max Horiz Max Uplift Max Grav	7=0-5-8 7=73 (LC 4=-13 (LC (LC 8)	nical, 5= Mechanica 9) 9), 5=-18 (LC 9), 7= 1), 5=65 (LC 3), 7=2	ı, ⊧-113 g :59	 One H2.5T S recommende UPLIFT at jt(does not con This truss is International R802.10.2 at Graphical pu 	ed to (s) 7. Iside desig Resi nd re
FORCE	S	(lb) - Max Tension	imum Com	pression/Maximum	I	or the orienta bottom chorc	ation
TOP CH	HORD	1-2=0/35, 2-7=-241/		7, 3-4=-28/31, 4-5=0	/0, 1	 Gap between diagonal or v 	n insi
BOT CH WEBS NOTES			/66, 5-6=-6 '9, 2-6=-7/1	1/67 16, 3-6=-9/59		 2) "NAILED" ind (0.148"x3.25 3) In the LOAD 	dicate 5") toe
1) Win Vas	nd: AS d=91n	nph; TCDL=	6.0psf; BC	(3-second gust) DL=6.0psf; h=35ft; d: MWERS (opvolop	L	of the truss a	are no Sta

- Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding. 2)
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.

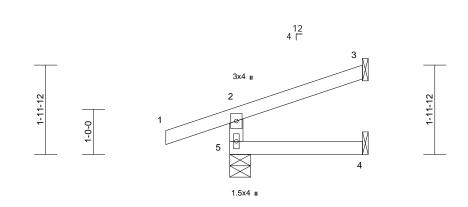
L/d

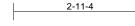
Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	J19	Jack-Open	3	1	Job Reference (optional)	168602457

-1-5-0

1-5-0

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,


Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:35 ID:_DaUtZtr1j3xIQx89YhGfEzeDOC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


2-11-4

2-11-4

. ...

Scale = 1:25.5

3cale = 1.23.3													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	8/TPI2014	CSI TC BC WB Matrix-R	0.24 0.10 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 Structural wood she 2-11-4 oc purlins, e Rigid ceiling directly bracing.	xcept end verticals. applied or 10-0-0 oc anical, 4= Mechanica 8) C 12), 5=-98 (LC 8)	c 8) ^{al,} LC	bearing plat 3. One H2.5T 3 recommend UPLIFT at jt does not con This truss is Internationa	chanical connectic e capable of withs Simpson Strong-T ed to connect trus (s) 5. This connect nsider lateral force designed in acco I Residential Code and referenced sta) Standard	standing 4 Fie connectss to beari ction is for es. ordance w e sections	3 lb uplift at ctors ng walls due uplift only a ith the 2018 R502.11.1 a	joint e to nd					
Vasd=91m Ke=1.00; C exterior zo and right e exposed;C	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I -C for members and f shown; Lumber DOL=))/35, 2-3=-44/22) (3-second gust) :DL=6.0psf; h=35ft; id; MWFRS (envelop :E) zone; cantilever I left and right orces & MWFRS for	eft									TATE OF	MISSOL

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

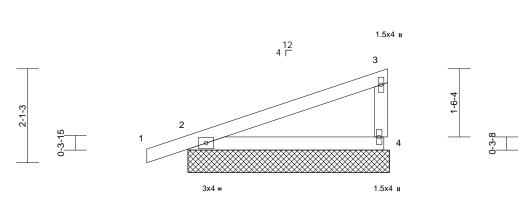
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: , Joint 5 SP No.2 crushing capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.

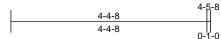
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	M01	Monopitch Supported Gable	2	1	Job Reference (optional)	168602458

4-5-8

4-5-8


-0-11-0


0-11-0

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:35 ID:cquXHAJnb2z8dlhvV3xNnzzeCKV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:25.7

chord and any other members.

				_								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.51	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.25	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 16 lb	FT = 20%
	Max Horiz 2=76 (LC	applied or 10-0-0 or 4=4-6-0 9)	capacity o 8) Provide m bearing pl 4 and 85 1 ed or 9) Beveled p surface wi c 10) This truss Internation	echanical connection ate capable of withs o uplift at joint 2. late or shim require th truss chord at joi is designed in accor- nal Residential Code and referenced sta	on (by oth standing 4 ed to provi int(s) 2. ordance w e sections	ers) of truss to 15 lb uplift at join de full bearing ith the 2018 5 R502.11.1 and						
	Max Uplift 2=-85 (LC											
FORCES	Max Grav 2=265 (Lo (lb) - Maximum Con											
FURGES	(ID) - Maximum Con Tension	ipression/iviaximum										
TOP CHORD	1-2=0/19, 2-3=-112/	68, 3-4=-144/238										
BOT CHORD	2-4=-30/40											
NOTES												
Vasd=91m Ke=1.00; C exterior zo and right e exposed;C	CE 7-16; Vult=115mph rph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ne and C-C Corner(3) exposed ; end vertical C-C for members and f hown; Lumber DOL=	CDL=6.0psf; h=35ft; ed; MWFRS (envelop E) zone; cantilever le left and right forces & MWFRS for	eft								55 OF	MIS
 Truss desi only. For s see Stand or consult Gable requ Gable stud This truss chord live * This truss 	gned for wind loads ir studs exposed to wind ard Industry Gable En qualified building desi uires continuous botto ds spaced at 2-0-0 oc. has been designed fo load nonconcurrent w s has been designed f	I (normal to the face d Details as applical gner as per ANSI/TF m chord bearing. r a 10.0 psf bottom ith any other live loa for a live load of 20.0), ble, PI 1. ds.						>	SPC.	SCOT SEV NUM PE-2001	I M. HER BER
on the bott 3-06-00 ta	tom chord in all areas Il by 2-00-00 wide will	where a rectangle								Ŷ		LENGI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

SSIONAL

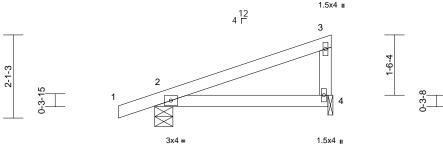
October 2,2024

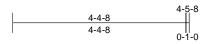
E

Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 180	
P240988-01	M02	Monopitch	7	1	Job Reference (optional)	168602459

4-5-8

4-5-8


-0-11-0


0-11-0

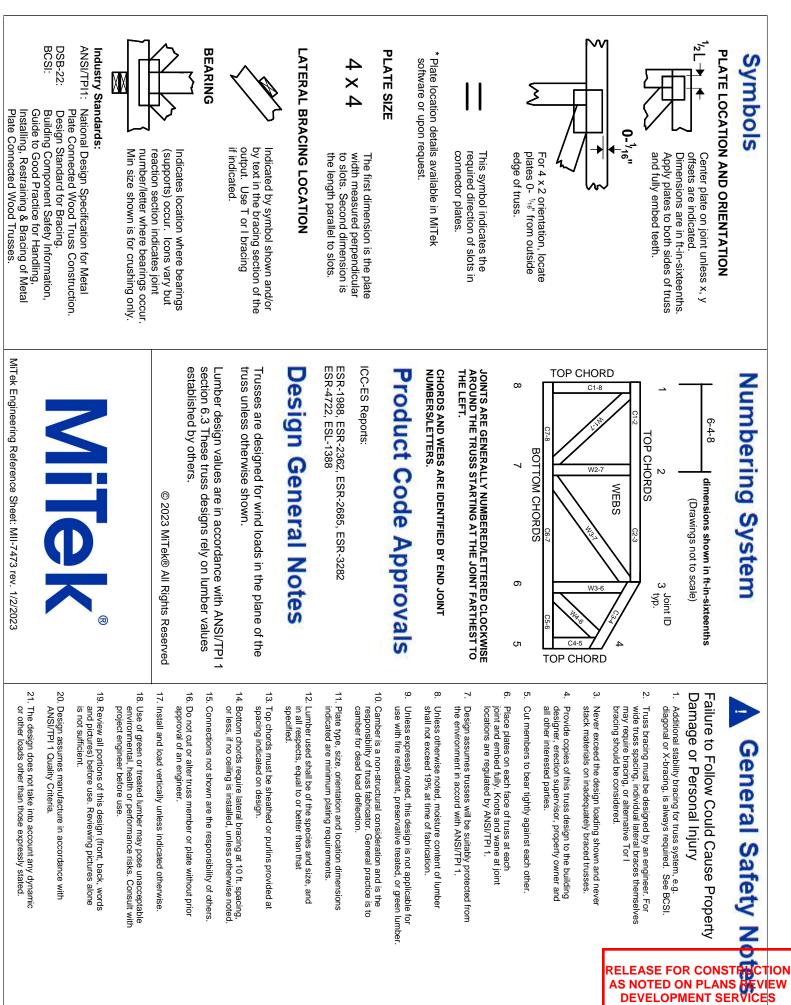
Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Oct 01 11:25:36 ID:KTzupnDOFu58HEfZb5Jk?VzeCKc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:29.1

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TF	T(B) W	С	0.37 0.22 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.03 0.00	(loc) 2-4 2-4 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 16 lb	GRIP 197/144 FT = 20%
	10.0	oude										Weight. To ib	11 - 2070
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SPF No.3 Structural wood she 4-6-0 oc purlins, ex	cept end verticals.	bi 7) O re U ed or ai ed or 8) Ti c In R	earing plate at the H2.5T Simp ecommended to PLIFT at jt(s) 2 and does not co his truss is des iternational Re 802.10.2 and r	oson Strong-Tie o connect truss to 2 and 4. This con nsider lateral for igned in accorda sidential Code se referenced stand	connec o bear inection ces. ance w ections	ctors ng walls due n is for uplift ith the 2018 R502.11.1 a	e to only					
REACTIONS	(size) 2=0-5-8, 4 Max Horiz 2=76 (LC Max Uplift 2=-95 (LC Max Grav 2=275 (LC	9) 2 8), 4=-42 (LC 12)	LOAD	D CASE(S) S	tandard								
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORD BOT CHORD		60, 3-4=-132/193											
NOTES													
Vasd=91n Ke=1.00; exterior zo and right e exposed;0	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and f shown; Lumber DOL='	DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever left and right orces & MWFRS for	left									TATE OF J	MIS
2) This truss	has been designed for										1	TE	NOSCHER STREEM
 This trus on the bot 3-06-00 ta chord and 	load nonconcurrent wi ss has been designed f ttom chord in all areas all by 2-00-00 wide will d any other members.	or a live load of 20.0 where a rectangle fit between the botto)psf om								A T	SCOT SEV	
	are assumed to be: Joi of 565 psi, Joint 4 SPF i.										R.	PE-2001	018807

 Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

E

October 2,2024

SIONAL

ASE FOR CONST **OTED ON PLANS** VELOPMENT SER LEE'S SUMMIT, MISSOURI

10:57:49

10/28/2024

. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.

15. Connections not shown are the responsibility of others

Do not cut or alter truss member or plate without prior approval of an engineer.

 Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with

19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone

20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.

21. The design does not take into account any dynamic or other loads other than those expressly stated.