

Address: 3211 SW Arboridge Cir City: Lee's Summit State: MO General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Code: IRC2018/TPI2014 Design Program: MiTek 20/20 8.6 Wind Code: ASCE 7-16 Wind Speed: 115 mph Design Method: MWFRS (Envelope)/C-C Roof Load: 45.0 psf Floor Load: N/A psf Mean Roof Height (feet): 35 Exposure Category: C No. Seal# Truss Name Date No. Seal# Truss Name Date 1 168187633 A2 9/13/24 35 168187666 V8 9/13/24 2 168187633 A2 9/13/24 38 168187667 V9 9/13/24 3 168187635 A4 9/13/24 38 168187668 V10 9/13/24 4 168187637 A6 9/13/24 38 168187669 V11 9/13/24 4 168187637 A6 9/13/24 38 168187669 V11 9/13/24 4 168187637 A6 9/13/24 38 168187669 V11 9/13/24 4 <th>2. ey Ridge Rd. MO 63017</th>	2. ey Ridge Rd. MO 63017
General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Wind Special Loading Conditions): Design Method: MWERS (Envelope)/C-C Roof Height (feet): 35 Exposure Category: C No. Seal# Truss Name Date 1 I68187633 A2 9/13/24 3 I68187637 A6 <td< td=""><td></td></td<>	
Drawings Show Special Loading Conditions):Design Code:IRC2018/TPI2014Design Program:MiTek 20/20 8.6Wind Code:ASCE 7-16Wind Speed:115 mphDesign Method:MWFRS (Envelope)/C-CRoof Load:45.0 psfFloor Load:N/A psfMean Roof Height (feet):35Exposure Category:CNo.Seal#Truss Name DateNo.Seal#Truss Name Date1168187632A19/13/2435168187667 V89/13/242168187634A39/13/2437168187667 V89/13/243168187636 A49/13/2438168187667 V99/13/244168187636 A59/13/2438168187669 V119/13/245168187636 A59/13/2438168187669 V119/13/246168187637 A69/13/2438168187669 V119/13/247168187639 B19/13/249/13/24168187647 D29/13/2410168187644 CG19/13/249/13/24168187645 D19/13/2411168187647 D59/13/249/13/24168187647 D59/13/2412168187647 D59/13/249/13/2418168187651 G19/13/2413168187645 G19/13/249/13/2418168187653 G39/13/2414168187654 G19/13/249/13/2418168187654 J19/13/2415168187654 G19/13/24168187653 G39/13/24168187654 G	
Design Program:Milek 20/20 8.8Wind Code:ASCE 7-16Wind Speed:115 mphRoof Load:45.0 psfDesign Method:MWFRS (Envelope)/C-CNo.Seal#Truss Name DateNo.Seal#1168187632A1 $9/13/24$ 35168187666V82168187633A2 $9/13/24$ 35168187666V8 $9/13/24$ 3168187633A2 $9/13/24$ 36168187667V9 $9/13/24$ 4168187635A4 $9/13/24$ 38168187668V10 $9/13/24$ 5168187637A6 $9/13/24$ 38168187669V11 $9/13/24$ 6168187637A6 $9/13/24$ 9/13/2410168187637879168187637A6 $9/13/24$ 9/13/2414168187640B2 $9/13/24$ 10168187641B3 $9/13/24$ 9/13/2414168187647D2 $9/13/24$ 11168187647D2 $9/13/24$ 14168187647D2 $9/13/24$ 12168187647D2 $9/13/24$ 14168187647D2 $9/13/24$ 13168187647D2 $9/13/24$ 14168187646D2 $9/13/24$ 14168187647D5 $9/13/24$ 14168187647D5 $9/13/24$ 151681876511 $9/13/24$ 1416818765411 $9/13/24$ 14168187654D1 $9/13/24$ 1416818765	
Roof Load: 45.0 psf Floor Load: N/A psfMean Roof Height (feet): 35 Exposure Category: CNo.Seal#Truss Name DateNo.Seal#Truss Name Date1 168187632 A1 $9/13/24$ 35 168187666 V8 $9/13/24$ 2 168187632 A1 $9/13/24$ 35 168187667 V9 $9/13/24$ 3 168187634 A3 $9/13/24$ 36 168187668 V10 $9/13/24$ 4 168187636 A5 $9/13/24$ 38 168187669 V11 $9/13/24$ 5 168187637 A6 $9/13/24$ 38 168187669 V11 $9/13/24$ 6 168187639 B1 $9/13/24$ 38 168187649 C2 $9/13/24$ 1 168187644 C21 $9/13/24$ $9/13/24$ $9/13/24$ 1 168187644 C21 $9/13/24$ 1 168187644 C31 $9/13/24$ 1 168187648 E1 $9/13/24$ 1 168187648 E1 $9/13/24$ 1 168187650 F1 $9/13/24$ 1 168187652 G2 $9/13/24$ 2 168187654 J1 $9/13/24$ 2 168187654 J1 $9/13/24$ 2 168187654 J1 $9/13/24$ 2 168187652 G2 $9/13/24$ 2 168187654 J1 $9/13/24$	hybrid Wind ASCE 7-16
Mean Roof Height (feet): 35 Exposure Category: CNo.Seal#Truss NameDateNo.Seal#Truss NameDate1168187632A1 $9/13/24$ 35 168187666V8 $9/13/24$ 2168187634A3 $9/13/24$ 36 168187668V10 $9/13/24$ 3168187635A4 $9/13/24$ 37 168187668V10 $9/13/24$ 4168187636A5 $9/13/24$ 38 168187669V11 $9/13/24$ 5168187639B1 $9/13/24$ 38 168187669V11 $9/13/24$ 6168187640B2 $9/13/24$ 168187664 C1 $9/13/24$ 9168187641B2 $9/13/24$ 168187642 C1 $9/13/24$ 10168187643C2 $9/13/24$ $13/24$ 168187645 D111168187645D1 $9/13/24$ $13/24$ 168187646 D212168187646D2 $9/13/24$ $13/24$ 168187646 D213168187646D2 $9/13/24$ $13/24$ 168187655 11 14168187646D2 $9/13/24$ $13/24$ 168187657 11 15168187650F1 $9/13/24$ $13/24$ $12/24$ $13/24$ 16168187651G1 $9/13/24$ $13/24$ $13/24$ 16168187652G2 $9/13/24$ $13/24$ $13/24$ 16168187652G2 $9/13/24$ $13/24$ <t< td=""><td></td></t<>	
No.Seal#Truss NameDateNo.Seal#Truss NameDate1168187632A1 $9/13/24$ 35168187666V8 $9/13/24$ 2168187633A2 $9/13/24$ 36168187667V9 $9/13/24$ 3168187634A3 $9/13/24$ 37168187668V10 $9/13/24$ 4168187636A4 $9/13/24$ 37168187668V10 $9/13/24$ 5168187636A5 $9/13/24$ 38168187669V11 $9/13/24$ 6168187638A7 $9/13/24$ 38168187669V11 $9/13/24$ 7168187640B2 $9/13/24$ 9168187641B3 $9/13/24$ 10168187641B3 $9/13/24$ 168187641 813 $9/13/24$ 11168187645D1 $9/13/24$ 14 88187645 D1 $9/13/24$ 12168187646D2 $9/13/24$ 14 88187646 D2 $9/13/24$ 13168187648E1 $9/13/24$ 14 88187657 $9/13/24$ 14168187645D1 $9/13/24$ $9/13/24$ 15168187648E1 $9/13/24$ 16168187651G1 $9/13/24$ 16168187651G1 $9/13/24$ 17168187651G1 $9/13/24$ 18168187651G1 $9/13/24$ 19168187651G1 $9/13/24$ 19168187652G2 $9/13/24$ <tr< td=""><td></td></tr<>	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
25 I6818/656 J3 9/13/24 26 I68187657 J4 9/13/24 27 I68187658 J5 9/13/24 28 I68187659 V1 9/13/24 29 I68187660 V2 9/13/24 30 I68187661 V3 9/13/24 31 I68187662 V4 9/13/24 32 I68187663 V5 9/13/24 33 I68187664 V6 9/13/24 34 I68187665 V7 9/13/24	

Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2025.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Sevier, Scott

September 13,2024

										_ [RELEASE	FOR CONSTRUCTION	4
Job		Truss		Truss Type		Qty	Ply	Roof - H	HT Lot 189		AS NOTE	D FOR PLAN REVIEW	٦
P240953-01	1	A1		Common Supporte	ed Gable	1	1	Job Ref	ference (op	tional	LEE'S	168187632 SUMMIT, MISSOURI	
Premier Building	I Supply (Sprir	nghill, KS), S	pring Hills, KS - 66083,		Run: 8.63 S Jul 12 ID:a28z?L6gE29gV	2024 Prin 2LEVbGk	it: 8.630 S Jul 12 ?yzbjFx-RfC?Ps	2024 MiTe B70Hq3NS	k Industries, I gPqnL8w3uIT	Inc. Thu TXbGK	ı Sep 12 14:73:15 VrCDoi7J4zJ6:ff	14/2024	1
	-9-	10-8		14-0-0	1				30-0-0			30-10-8	
	0	10-8		14-0-0	1				16-0-0			0-10-8	
Scale = 1:58.5 Plate Offsets (Loading TCLL (roof) TCDL BCLL	0 1 3 3 X, Y): [20:0	2 6 2-1,0-0-5] (psf) 25.0 10.0 0.0	3x4 - 6 5 3 3 3 3 3 5 3 4 3 5 3 4 3 5 3 4 3 5 3 4 3 5 3 4 3 5 3 4 3 5 3 4 3 5 3 4 3 5 3 4 3 5 3 4 3 5 3 4 3 5 3 5	6 ¹² 8 7 7 8 7 8 7 7 8 7 7 8 7 8 7 8 8 7 7 8 8 7 8 8 7 8 8 8 7 8	4x4= 10 9 30 30 29 5x5= 30 5x5= 30 5x5= 30	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 12 8 8 8 8 8 8 8 8 8 8 8 8 8	13 26 in (lo n/a n/a 2.01 2	3x4 14 15 25 c) I/defl - n/a - n/a 20 n/a	16 8 24	17 17 23 22 PLATES MT20	^{3x4} ⁸ 19 ²⁰ 21 ^{3x4} ¹⁰ ^{3x4} ¹⁰	
LUMBER TOP CHORD $2x4$ SP No.2 BOT CHORD $2x4$ SP No.2 WEBS $2x4$ SP No.2 OTHERS $2x3$ SPF No.2 SLIDER Right $2x4$ SP No.2 1-6-7 BRACING TOP CHORD TOP CHORD Structural wood sheathing directly applied or $6-0-0$ oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 10-29 REACTIONS (size) $20=30-0-0, 22=30-0-0, 23=30-0-0, 24=30-0-0, 24=30-0-0, 24=30-0-0, 33=30-0-0, 34=30-0-0, 33=30-0-0, 34=30-0-0, 33=30-0-0, 34=30-0-0, 33=30-0-0, 34=30-0-0, 35=30-0-0, 35=30-0-0, 35=30-0-0 Max Horiz 36=-157 (LC 10) Max Uplift 20=-59 (LC 13), 24=-62 (LC 13), 23=-55 (LC 13), 23=-59 (LC 13), 23=-59 (LC 12), 31=-67 (LC 12), 32=-59 (LC 12), 32=-51 (LC 12), 32=-180 (LC 1), 23=-181 (LC 26), 24=180 (LC 1), 25=-180 (LC 2), 22=-180 (LC 1), 25=-180 (LC 2), 32=-180 (LC 1), 32=-179 (LC 26), 32=-180 (LC 1), 32=-179 (LC 25), 32=-180 (LC 1), 33=-179 (LC 25), 32=-184 (LC 1), 35=-164 (LC 25), 33=-164 (LC 1), 35=-164 (LC 25), 34=-184 (LC 25), 35=-164 (LC 1), 35=-164 (LC 25), 34=-184$			Incode NOTES 0, NOTES 0, 1) Unbalanced 0, 1) Unbalanced 1, Vasd=91m Ke=1.00; C 2), Vasd=91m Ke=1.00; C 2), Exterior Zor Exterior Zor 2), Ieft and right Exterior Sor 3), Truss desig OL=1.60	Matrix-S 2-36=-147/112, 1-2= 3-4=-52/110, 4-6=-77 7-8=-108/270, 8-9=-1 10-11=-145/374, 11- 12-13=-108/270, 13- 14-16=-77/172, 16-1 17-18=-110/116, 18- 35-36=-80/168, 32-3 31-32=-80/168, 23-2 26-27=-80/168, 27-2 26-27=-80/168, 23-2 22-23=-80/168, 23-2 24-25=-80/168, 23-2 24-25=-80/168, 23-2 10-29=-243/46, 9-30 8-31=-139/164, 7-32 13-26=-140/95, 14-2 13-26=-140/95, 14-2 13-26=-140/95, 14-2 16-24=-140/96, 17-2 18-22=-136/163 d roof live loads have l E 7-16; Vult=115mph ch; TCDL=6.0psf; BCI at. II; Exp C; Enclosed the and C-C Corner(3E) 0 6-0 to 16-0-0, Cornerior(2N) 21-0-0 to 32 the exposed; end vertic C for members and for hown; Lumber DOL=1 uned for wind loads in tuds exposed to wind)/122, 2-3 /162, 6- 27/327, 12=-127, 14=-89/2 7=-91/14 20=-168, 5=-80/16 3=-80/16 3=-80/16 3=-80/16 4=-80/16 2=-80/16 2=-80/16 2=-80/16 2=-80/16 2=-80/16 2=-80/16 2=-140/9 3=-142/10 5=-140/9 3=-142/10 5=-140/9 3=-142/10 5=-140/9 3=-142/10 5=-140/9 3=-142/10 5=-140/9 3=-142/10 5=-140/9 3=-142/10 5=-140/9 3=-142/10 5=-140/9 3=-142/10 5=-140/9 3=-142/10 5=-140/9 5	B=-58/51, 7=-89/216, 9-10=-145/37 (327, 117, 15, 1107, 20-21=0, 88, 1107, 20-21=0, 88, 1107, 20-21=0, 88, 1107, 20-21=0, 1107, 20-21=0, 1007, 20-21, 20-21, 20-21, 20-21, 20-21, 20-21, 20-21, 20-21, 20-21, 20-21, 20-21, 20-21, 20-21	5) (6) (4, 7) - (8) / (6 9) (10) - (10) - (10) - (10) - (7, LOA	Gable requi Gable studs This truss h shord live lo All bearings capacity of 4 Dne H2.ST recommend JPLIFT at ji 25, 24, 23, a does not co This truss is nternationa R802.10.2 a D CASE(S)	res colors space as bee wad nori are as 565 ps Simps side to co ((s) 36, and 22 nsider a desig and ref) Star	Weight: 154 ID ntinuous bottom c ad at 2-0-0 oc. an designed for a nconcurrent with a ssumed to be SP i. on Strong-Tie cor connect truss to b 2,0, 30, 31, 32, 3 . This connection lateral forces. ned in accordance dential Code secti erenced standard ndard	r I = 20% hord bearing. 10.0 psf bottom any other live loads. No.2 crushing inectors earing walls due to 3, 34, 35, 28, 27, 26, is for uplift only and e with the 2018 ons R502.11.1 and ANSI/TPI 1.		
FORCES	33=179 (LC 25), 34=184 (LC 1), 35=164 (LC 25), 36=164 (LC 1), 36 (lb) - Maximum Compression/Maximum Tension			see Standa or consult o 4) All plates a	 only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. All plates are 1.5x4 MT20 unless otherwise indicated. 								

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

September 13,2024

													RELEASE	FOR CONSTRUCTION
Job		Truss		Truss Ty	/pe		Qty	, I	Ply	Roof - H	T Lot 189		AS NOTE	D FOR PLAN REVIEW
P240953-0 ²	1	A2		Commo	on		6		1		rence (or	tional	LEE'S S	I68187633
Premier Building	J Supply (Springh	nill, KS), Sp	oring Hills, KS - 66083,	Į		Run: 8.63 S Jul 1	12 2024 P	rint: 8.630	0 S Jul 12 :	2024 MiTek	Industries,	Inc. Th	u Sep 12 14:23:16	14/2024
						ID:EMtWWRGCP	PkgzxuGY	C7UYUU	zbjFI-RfC?	PsB70Hq31	ISgPqnL8v	/3ulTXt	GKWrCDdi7	
	-0-10	-8	6-1-4		14-0-0)		21-	10-12				30-0-0	30-10-8
	0-10	-8	6-1-4	I	7-10-12	2		7-	10-12		I		8-1-4	0-10-8
						4x6	6=							
тт				12		5								
				6										
				3x4 ≠	16				17	7	4x4	*		
			4x4							\sim	3x4 👟			
φ -0			3	4							6 7			
8-8			15	1							A AC	\sim	3x4 👟	
		4x6 💋											8	1
	-1^{2}								~				19	
	-8-0							/					19	9 10 9
$\perp \perp$	⁻⊥ 14	₽ ⊗		ац. 			ř –				8			
		3х4 п		13 4x6-		12 5x1	8-				11 15v4 u			4x6 II
				470 -			-				1.074 1			
			<u>6-1-4</u> 6-1-4		<u>14-0-0</u> 7-10-12	2		21- 7-	- <u>10-12</u> 10-12				<u>30-0-0</u> 8-1-4	
Scale = 1:58.5	V V). [2.0.2.	150201	[2:0.2.0 Edge] [7:0			5] [12:0 4 0 0 2 0	1 [12:0 !	20020	1					
	Λ, Τ). [2.0-2-	15,0-2-0],	, [3.0-2-0,Euge], [7.0	-2-0,Euge], [9.0-3-9,0-1-	5], [12.0-4-0,0-3-0	J, [13.0-	2-0,0-2-0	J					<u> </u>
Loading TCLL (roof)		(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		TC	0.61	DEFL Vert(LL	_) -0.	in (loc 11 9-1 ⁻) l/defl >999	L/d 240	MT20	GRIP 244/190
TCDL		10.0	Lumber DOL	1.15 VES		BC	0.74	Vert(C	́Т) -0.	.25 9-1	>999	180		
BCDL		10.0	Code	IRC2018	/TPI2014	Matrix-S	0.01		.1) 0.	.07 :	9 11/a	n/a	Weight: 139 lb	FT = 20%
LUMBER				2)	Wind: ASCE	7-16; Vult=115mp	h (3-sec	ond gus	t)					
TOP CHORD	2x4 SP 1650 No.2)F 1.5E *	Except* 1-3,7-10:2x	4 SP	Vasd=91mph Ke=1.00; Cat	n; TCDL=6.0psf; B t. II; Exp C; Enclos	CDL=6.0 sed; MW)psf; h=3 FRS (en	35ft; velope)					
BOT CHORD	2x4 SP No.2	2 *Eveer	** 14 2:2v4 SD No 1	,	exterior zone	and C-C Exterior	(2E) 1-1-	8 to 6-1	-8, to					
SLIDER	Right 2x4 SF	P No.2	4-5-15	-	21-0-0, Interio	or (1) 21-0-0 to 32	-10-8 zo	ne; cant	ilever left					
BRACING TOP CHORD	Structural w	ood shea	thing directly applie	dor	exposed;C-C	for members and	forces &	MWFR	S for					
	3-3-5 oc pur Rigid ceiling	lins, exc	ept end verticals.		reactions sho DOL=1.60	own; Lumber DOL	=1.60 pla	ate grip						
	bracing.			3)	This truss has	s been designed for	or a 10.0 vith anv) psf bot other liv	tom e loads					
REACTIONS	(size) 9=	upτ t =0-5-8, 14	o- i∠, 4-1∠ 4=0-5-8	4)	All bearings a	are assumed to be	SP No.	2 crushir	ng					
	Max Horiz 14 Max Uplift 9=	4=-157 (L =-233 (LC	.C 10) C 13), 14=-218 (LC ⁻	 4) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 5) One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to 										

- One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 14 and 9. This connection is for uplift only and does not consider lateral forces.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

NOTES

WEBS

FORCES

TOP CHORD

BOT CHORD

 Unbalanced roof live loads have been considered for this design.

Tension

2-14=-1360/304

9-11=-217/1894

2-13=-175/1479

Max Grav 9=1404 (LC 1), 14=1415 (LC 1)

1-2=0/32, 2-4=-1798/311, 4-5=-1504/342,

5-6=-1504/347, 6-9=-2249/364, 9-10=0/6,

5-12=-73/708, 6-12=-798/306, 6-11=0/335,

13-14=-125/193, 11-13=-267/1894,

4-12=-447/233, 4-13=-207/133,

(lb) - Maximum Compression/Maximum

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

													RELEASE	FOR CONSTRUC	TION
Job		Truss		Truss ⁻	Гуре		Qty	/	Ply	Roof - H	T Lot 189		AS NOTE	D FOR PLAN RE	VIEW ES
P240953-07	1	A3		Comn	non		6		1	Job Ref	erence (o	otional	LEE'S	168187634 Summit, Missol	JRI
Premier Building	Supply (Springh	nill, KS), S	pring Hills, KS - 66083	3		Run: 8.63 S Jul	12 2024 F	rint: 8.6	30 S Jul 12	2024 MiTek	Industries,	Inc. Th	Sep 12 14:13:16	4/20	24
						ID:EMtWWRGC	JkgzxuGY	C/UYU	UzbjFI-RfC	?PsB70Hq3I	NSgPqnL8	v3ul I Xt	GKWrCD0i7J#2JC?t		
	F		6-1-3	+	13-11-15			21-	10-11			2	9-11-15	30-10-7	
			6-1-3		7-10-12			7-1	0-12				8-1-4	0-10-8	
						4x6=	•								
ТТ	-					, A									
				12		\square	\searrow								
				6	14				15		4x4 ≈				
				3x4 =						3	≪4.≈				
ကု ဝု			2 13								4 5				
8-9 8-8					<								3x4		
	4	x6 =										\sim	6		
	1												3x4 =		
	8-1												- B	7 .	~
	12			ŧ,)° (
	1.5	5x4 n		11		10				1)			⊠ 4x6 ∎	
			-	4x6=		5x8=				1	5x4 I				
	F		6-1-3	+	13-11-15			21-	10-11		<u> </u>	2	9-11-15		
Scale = 1:58.5			6-1-3		7-10-12			7-1	0-12				8-1-4		
Plate Offsets (X, Y): [5:0-2-0	0,Edge],	[7:0-3-9,0-1-5], [10	:0-4-0,0-3-	0], [11:0-2-8,0-	2-0]					-				
Loading		(psf)	Spacing	2-0-0		CSI		DEFL		in (loc) l/defl	L/d	PLATES	GRIP	
TCLL (roof) TCDL		25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.61 0.74	Vert(L	L) -0 CT) -0).11 7-).25 7-) >999) >999	240 180	MT20	197/144	
BCLL		0.0	Rep Stress Incr	YES		WB	0.61	Horz(CT) 0	0.07	7 n/a	n/a			
BCDL		10.0	Code	IRC20	8/TPI2014	Matrix-S							Weight: 137 lb	FT = 20%	
LUMBER TOP CHORD	2x4 SP 1650)F 1.5E *	Except* 5-8:2x4 SI	2	 Wind: ASCE Vasd=91mpl 	7-16; Vult=115mp h; TCDL=6.0psf; B	oh (3-sec CDL=6.0	ond gu)psf; h=	st) =35ft;						
	No.2 2x4 SP No.2	,	·		Ke=1.00; Ca	t. II; Exp C; Enclos	sed; MW	FRS (e	nvelope) '-1-13						
WEBS	2x3 SPF No.	2 *Exce	pt* 12-1:2x4 SP No	.2	Interior (1) 7	-1-13 to 16-0-0, E	(terior(2)	R) 16-0	-0 to						
SLIDER BRACING	Right 2x4 SF	^o No.2	4-5-15		and right exp	osed ; end vertica	l left and	ne; car I right	illiever iei	it i					
TOP CHORD	Structural w	ood shea	athing directly appli	ed or	exposed;C-C reactions sho	C for members and own: Lumber DOL	l forces & =1.60 pla	& MWF ate arip	RS for						
BOT CHORD	Rigid ceiling	directly	applied or 10-0-0 o	c ,	DOL=1.60	, haan daaignad f) nof he	***						
WEBS	bracing. 1 Row at mi	dot	4-10. 2-10	3	chord live loa	ad nonconcurrent	with any	other li	ve loads.						
REACTIONS	(size) 7=	=0-5-8, 1	2= Mechanical	4	 Bearings are capacity of 5 	e assumed to be: , 65 psi.	Joint 7 S	SP No.2	2 crushing						
	Max Horiz 12 Max Uplift 7=	2=-166 (I =-233 (L(_C 17) C 13), 12=-192 (LC	12) 5	Refer to gird	er(s) for truss to tr	uss conr		S.						
	Max Grav 7	=1405 (L	C 1), 12=1342 (LC	1)	bearing plate	e capable of withst	anding 1	92 lb u	plift at						
FURCES	(ID) - Maxim Tension	um Com	pression/Maximum	7	joint 12.) One H2.5T \$	Simpson Strong-Ti	e connec	ctors							
TOP CHORD	1-2=-1802/3 3-4=-1506/3	11, 2-3= 46, 4-7=	-1507/345, -2251/364 7-8=0/6	_	recommende	ed to connect truss	to bear	ng wal	ls due to						
DOTOUCOS	1-12=-1288/	251		,	does not cor	sider lateral forces	5.		niny ariu						
BOT CHORD	RD 11-12=-101/192, 9-11=-266/1896, 7-9=-219/1896 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and									~~~~~	~				
WEBS	7-3=-19/1030 International Residential Code Sections R502.11.1 and International Residential Code Sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 2-10=-455/233.2-11=-213/142. IOAD CASE(S) Standard									OFA	ALSO D				
	1-11=-211/1	503	_ 10/ 11£,	L	UAD CASE(S)	Stanuard						4	TE	02000	
NOTES												A	S SCOTI	M.	2

Unbalanced roof live loads have been considered for 1) this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

SEVIER

NUMBER

PE-2001018807

September 13,2024

A Contraction

												RELEASE	FOR CONSTRUCTION
Job	Truss		Truss Ty	/pe		Qty	Ply	F	Roof - HT	Lot 189		AS NOTE DEVEL	D FOR PLAN REVIEW
P240953-01	A4		Commo	on		1	1	J	lob Refere	ence (op	tional	LEE'S	SUMMIT, MISSOURI
Premier Building Supply (Spring	nill, KS), S	Spring Hills, KS - 66083,			Run: 8.63 S Jul ID:Ak Gx7HSxM	12 2024 Prir whABPwKY	nt: 8.630 S 、 /W0avzbjFj-	Jul 12 202 RfC?PsB	24 MiTek In 70Hq3NSq	dustries, l PgnL8w3	Inc. Th uITXb(I Sep 12 14:13:17 KWrCDoi/J4z3C?f	14/2024
1.0	0												22.40.0
-1-0 1-0-	0	<u>8-1-4</u> 8-1-4		ł	16-0-0 7-10-12			<u>23-10-</u> 7-10-1	12 2			<u>32-0-0</u> 8-1-4	0-10-8
						4x6=							
тт			1	10		6							
			6	r <u>-</u>				_					
				^{3x4} 5					16		4x4.	•	
			4x4 ≉ 5							3x2	*≈ 7		
-9-15 8-8-0		3x4 🗸	4								8	3x4,	
α		3						~				9	•
		3x4 =			× () (B)	3x4 *
		SE .											10 11
	X			ष ।4		13				12			
	5x5 II		1	.5x4 II		5x8=				1.5	х4 п		5x5 II
	 	8-1-4			16-0-0			23-10-	12			32-0-0	
Scale = 1:60		8-1-4			7-10-12			7-10-1	2	·		8-1-4	
Plate Offsets (X, Y): [4:0-2-	0,Edge],	[8:0-2-0,Edge], [13:0	-4-0,0-3-0]						_		1	
Loading	(psf) 25.0	Spacing Plate Grip DOI	2-0-0 1 15		CSI TC	0.68	DEFL Vert(LL)	in -0 12	n (loc) 2-14	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL Rep Stress Incr	1.15 YES		BC WB	0.76	Vert(CT)	-0.26	5 10-12 10	>999 n/a	180 n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S	0.00	1012(01)				n/a	Weight: 145 lb	FT = 20%
LUMBER TOP CHORD 2x4 SP 165	0F 1 5F	*Except* 1-4 8-11:2x4	3) 1 SP	This truss ha chord live loa	s been designed f	or a 10.0 p with any ot	psf bottom ther live lo	ads.					
No.2 BOT CHORD 2x4 SP No.3	2		4)	All bearings a capacity of 5	are assumed to be 65 psi.	SP No.2	crushing						
WEBS 2x3 SPF No SLIDER Left 2x4 SP	.2 No.2 4	4-5-15. Right 2x4 SP	5)	One H2.5T S recommende	impson Strong-Tie d to connect truss	e connecto to bearing	ors g walls due	e to					
No.2 4-5- BRACING	15	, ,		UPLIFT at jt(only and doe	s) 2 and 10. This o s not consider late	connection eral forces.	n is for upli	ft					
TOP CHORD Structural w 3-0-9 oc pu	ood she	athing directly applied	lor 6)	This truss is International	designed in accore Residential Code	dance with sections F	n the 2018 R502.11.1	and					
BOT CHORD Rigid ceiling bracing.	directly	applied or 9-9-4 oc	LC	R802.10.2 ar AD CASE(S)	nd referenced star Standard	idard ANS	SI/TPI 1.						
WEBS 1 Row at m	dpt -0-5-8	7-13, 5-13 10–0-5-8											
Max Horiz 2 Max Liplift 2	=161 (L(=-244 (I	C 12) 10241 (LC 1	3)										
Max Opint 2 Max Grav 2	= 244 (E =1510 (L	_C 1), 10=1501 (LC 1))										
	5- 2447												
6-7=-1710/3	5=-2447 374, 7-10)=-2448/390, 10-11=0	/6										
10-12=-242	/2069 /2069	-14=-330/2009, 2- 702/205 7 12-0/2	77										ALC: NO
5-13=-790/3	804, 5-14	1=0/337	57,									TE OF M	AISSO
 1) Unbalanced roof live loa this design 	ds have	been considered for									A	SCOT	M. E
 Wind: ASCE 7-16; Vult= Viand: 01mph; TCDL 6 	115mph	(3-second gust)									B.	SEVI	ER
Ke=1.00; Cat. II; Exp C;	Enclose	d; MWFRS (envelope	e)									atts	Spalite
Interior (1) 4-0-0 to 16-0	-0, Exter	rior(2R) 16-0-0 to	oft							-	N.	PE-2001	018807
and right exposed; end	vertical l	left and right	on								V	THE	OTA
reactions shown; Lumbe	er DOL=	1.60 plate grip										NA	LER
202-1.00												September	13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

												RELEASE	FOR CONST	RUCTION
Job	Truss		Truss Ty	/pe		Qty	Ply		Roof - HT	_ot 189		AS NOTE	D FOR PLAN	I REVIEW RVICES
P240953-01	A5		Commo	on		8	1		Job Refere	nce (op	tional	LEE'S	16818763 SUMMIT, MIS	SOURI
Premier Building Supply (Spring	hill, KS), S	Spring Hills, KS - 66083,			Run: 8.63 S Jul 12 ID:pnBNuPDK6pI0	2 2024 Prii 04QXzX_v	nt: 8.630 S J wrtszbjFo-Rf	Jul 12 2 C?PsB7	024 MiTek In 70Hq3NSgPc	dustries, I nL8w3ul7	nc. Th FXbGK	ı Sep 12 14:13:17 WrCDoi7J4zJ9?1	14/2	024
		0.4.4						0 40 4	10			00.0.0		32-10-8
H		8-1-4		7	-10-12			7-10-1	2			<u>32-0-0</u> 8-1-4		0-10-8
						4x6=								
						5								
TT			1 <u>2</u> 61			\mathbf{A}								
			3x4	· =					10		4x4 👟			
			4x4 ≠	13						3x4				
ю 0			3 4							6	7			
8-9-		3x4 =	T								- Al-	3x4 👟		
		2			~~			~				8		
	3x4				A Contraction of the second se							<u>te</u>	3x4 ≥	
	<u> </u>												18	9 10
										8				
5x5	i u		13 1.5×4	4 u		12 5x8=				11 1.5×4	4 11		-	5x5 II
		0.4.4					0	0 40 4	10			00.0.0		
		8-1-4		7	-10-12		7	7-10-1	2			8-1-4		
Scale = 1:58.5 Plate Offsets (X, Y): [3:0-2-	0,Edge],	[7:0-2-0,Edge], [12:0	-4-0,0-3-0	1										
	(nef)	Spacing	2-0-0	-	CSI				in (loc)	l/defl	I /d		GRIP	
TCLL (roof)	(p3i) 25.0	Plate Grip DOL	1.15		TC	0.86	Vert(LL)	-0.1	12 1-13	>999	240	MT20	244/190	
BCLL	10.0 0.0	Rep Stress Incr	1.15 YES		WB	0.77	Vert(CT) Horz(CT)	-0.2 0.1	27 1-13 1 9	>999 n/a	180 n/a			
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 144 lb	FT = 20%	
LUMBER TOP CHORD 2x4 SP 165	0F 1 5F	*Except* 1-3 7-10:2x4	3) I SP	This truss ha	s been designed fo ad nonconcurrent w	r a 10.0 j ith any o	psf bottom ther live loa	ads.						
No.2 BOT CHORD 2x4 SP No.	2		4)	All bearings	are assumed to be 65 psi.	SP No.2	crushing							
WEBS 2x3 SPF No).2 No 2	1 5 15 Dight 2v4 SD	5)	One H2.5T S	Simpson Strong-Tie	connecto	ors a walls due	e to						
No.2 4-5-	15	4-5-15, Right 2x4 SP		UPLIFT at jt(s) 1 and 9. This cor	nection	is for uplift	only						
BRACING TOP CHORD Structural v	ood she	athing directly applied	6)	This truss is	designed in accord	ance with	h the 2018							
BOT CHORD Rigid ceiling bracing.	g directly	applied or 9-8-11 oc		R802.10.2 a	Residential Code s	ections F lard ANS	R502.11.1 : SI/TPI 1.	and						
WEBS 1 Row at m	idpt	6-12, 4-12	LO	AD CASE(S)	Standard									
Max Horiz 1	=-161 (L	C 13)												
Max Uplift 1 Max Grav 1	=-218 (L =1439 (L	LC 12), 9=-241 (LC 13) LC 1), 9=1502 (LC 1))											
FORCES (lb) - Maxim Tension	num Com	pression/Maximum												
TOP CHORD 1-4=-2454/- 5-6=-1712/2	401, 4-5= 374 6-9=	1712/379, 2450/390_9-10=0/6												
BOT CHORD 1-13=-361/2 9 11- 246/2	2075, 11-	-13=-361/2075,												
WEBS 5-12=-105/	391, 6-12	2=-792/305, 6-11=0/33	37,										and a	
4-12=-796/	306, 4-13	3=0/339										F. OF M	AISS	N
 Unbalanced roof live loa this design. 	ads have	been considered for									A	AN SCOT	00	Ro
2) Wind: ASCE 7-16; Vult= Vasd=91mph; TCDI =6	115mph	(3-second gust)									A	S SCOTT	ER	- Y)
Ke=1.00; Cat. II; Exp C	Enclose	d; MWFRS (envelope)							2	80	1.+5	Sind	
Interior (1) 5-0-0 to 16-0	-0, Exter	ior(2R) 16-0-0 to								ø		NUME	BER	ZA
21-0-0, Interior (1) 21-0 and right exposed ; end	vertical	iu-8 zone; cantilever l left and right	eft								Ø.	PE-20010	18807	E A
exposed;C-C for memb reactions shown; Lumb	ers and for er DOL=	orces & MWFRS for 1.60 plate grip									Y	2323	ENGI	A
DOL=1.60												WANA	L	
												September	13,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

										RELEASE		TION
Job	Truss		Truss Type		Qty	Ply	Roof -	HT Lot 189		AS NOTE DEVEL	D FOR PLAN RE	VIEW ES
P240953-01	A6		Common		1	1	Job Re	eference (op	tional	LEE'S	SUMMIT, MISSOL	JRI
Premier Building Supply (Sp	oringhill, KS), S	Spring Hills, KS - 66083,		Run: 8.63 S J ID:Ak_Gx7HS	ul 12 2024 Prii MwhABPwKY	int: 8.630 S Ju YW0avzbjFj-R	l 12 2024 MiT fC?PsB70Hq3	ek Industries, NSgPqnL8w3	Inc. Th uITXb(u Sep 12 14 :13:17 KWrCDoi7J4z50?f	14/20	24
	-1-6-0	8-1-4		16-0-0			23-10-12			32-0-0	32-	10-8
	1-6-0	8-1-4	Ι	7-10-12	I		7-10-12	I		8-1-4	0-1	0-8
					4x6 6	i=						
ТТ			12									
			6									
			3x4 🚅	16			17	7	4x4	*		
			4x4 =					3x	′4 ≈ 7			
<u>)-15</u> -8-0		3x4 ≠	4						8			
6		3x4 =								3x4.	*	
		15°					A			The second	3x4 🗙	
	2 /	100										0
								8				- 11
\perp c	5x5 II		14		13			12	2		⊠ 5x5	II
			1.5x4 I		5x8	3=		1.5	5x4 I			
		<u>8-1-4</u> 8-1-4		<u> </u>			23-10-12 7-10-12			32-0-0		
Scale = 1:60.8												
Plate Offsets (X, Y): [4:	0-2-0,Edge],	[8:0-2-0,Edge], [13:0	-4-0,0-3-0]									
Loading	(psf)	Spacing	2-0-0	CSI	0.70		in (l	oc) l/defl	L/d	PLATES	GRIP	
TCDL (root)	25.0 10.0	Lumber DOL	1.15	BC	0.70	Vert(LL) Vert(CT)	-0.12 10-	·12 >999 ·12 >999	240 180	MT20	244/190	
BCLL BCDL	0.0 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB 4 Matrix-S	0.60	Horz(CT)	0.11	10 n/a	n/a	Weight: 146 lb	FT = 20%	
			3) This tru	ss has been designed	d for a 10.0 i	psf bottom						
TOP CHORD 2x4 SP	1650F 1.5E	*Except* 1-4,8-11:2x4	4 SP chord li 4) All bear	ve load nonconcurrer	t with any of he SP No 2	ther live load	ds.					
BOT CHORD 2x4 SP	No.2		capacity	of 565 psi.	Tie connecto	ors						
SLIDER Left 2x4	SP No.2 4	4-5-15, Right 2x4 SP	recomm	nended to connect tru	ss to bearing	g walls due	to					
BRACING	4-5-15		only an	d does not consider la	ateral forces	in is for uplint						
TOP CHORD Structur 3-0-9 of	al wood she	athing directly applied	for 6) This tru Internat	ss is designed in acci ional Residential Coc	ordance with le sections F	h the 2018 R502.11.1 a	nd					
BOT CHORD Rigid ce	iling directly	applied or 9-9-11 oc	R802.1 LOAD CAS	0.2 and referenced st E(S) Standard	andard ANS	SI/TPI 1.						
WEBS 1 Row a	at midpt	7-13, 5-13										
REACTIONS (size) Max Hori	2=0-5-8, 1 z 2=171 (LC	10=0-5-8 C 12)										
Max Upli Max Grav	it 2=-257 (L / 2=1547 (L	C 12), 10=-240 (LC 1 _C 1), 10=1500 (LC 1	3))									
FORCES (lb) - Ma	aximum Com	pression/Maximum										
TOP CHORD 1-2=0/2	7, 2-5=-2439)/379, 5-6=-1706/369,										
BOT CHORD 2-14=-3	54/2058, 12-	-14=-354/2066,	/0									
WEBS 6-13=-9	238/2066 9/885, 7-13=	-792/305, 7-12=0/33	7,							COLOR N	don and	
NOTES	82/300, 5-14	=0/336							4	TEOT	115SOL	
 Unbalanced roof live this design. 	e loads have	been considered for							Ø	S SCOT	Г М.	8
2) Wind: ASCE 7-16; \	/ult=115mph	(3-second gust)							K -	SEV.	ER	Å
Ke=1.00; Cat. II; Ex	p C; Enclose	d; MWFRS (envelope	e)						W.	the.	1 and	×
Interior (1) 3-6-0 to	16-0-0, Exter	ior(2R) 16-0-0 to	-4					-	W.	PF-2001	D18807	B
and right exposed ;	end vertical l	left and right	eit						Ø	TRO		1
exposed;C-C for me reactions shown; Lu	mbers and for mber DOL=1	orces & MWFRS for 1.60 plate grip								SIONA	LEN	
DOL=1.60										September	13,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Plate Offsets (X, Y): [2:0-2-1.0-0-5], [22:0-2-1.0-0-5], [31:0-2-8.0-3-0]

	(, .). [=	1, [==:	,], [-		1										
Loading TCLL (roof) TCDL BCLL BCDL	(ps 25. 10. 0. 10.	f) Sp 0 Pla 0 Lu 0 Re 0 Cc	acing ate Grip DOL mber DOL ep Stress Incr ide	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.17 0.04 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 22	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 163 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 1-6-7 Structural wood 6-0-0 oc purlins. Rigid ceiling dire bracing. 1 Row at midpt (size) 2=32 25=32 28=32 28=32	2 1-6-7 sheathir ectly app 12-3 0-0, 22= 2-0-0, 26 2-0-0, 26	7, Right 2x4 SP ng directly applie lied or 10-0-0 or 31 32-0-0, 24=32-0 =32-0-0, 27=32 =32-0-0, 27=32	T No.2 d or E :	OP CHORD	1-2=0/27, 2-4=-21 5-6=-111/93, 6-8= 9-10=-71/185, 100 11-12=-109/290, 13-14=-91/241, 1- 15-16=-53/131, 11 19-20=-86/23, 20- 2-38=-44/177, 33 34-35=-44/177, 33 32-33=-44/177, 21 27-28=-44/177, 22 25-26=-44/177, 21 25-26=-44/177, 21 22-24=-44/177, 21 23-23-24=-44/177, 21 23-24=-44/177, 21 23-24=-44/177	16/71, 4-5 =-84/119, -11=-91/ 12-13=-11 4-15=-71, 6-18=-51, -22=-151, -38=-444, 3-34=-44, 0-32=-44, 8-29=-44, 6-27=-44,	=-148/79, =-148/79, 8-9=-68/147, 41, 09/290, 185, 77, 18-19=-62 47, 22-23=0/6 77, 177, 177, 177, 177, 177, 177, 177,	2/28,	 All (Gat Gat Gat Gat Cab Cab Cho All I cap Pro bea 2, 5 upli 28, upli 	blates ar ble requi- ble studs s truss h rd live lc bearings acity of s vide mea- ring plat 8 lb upli ft at joint 59 lb up ft at joint 61 lb up ft at joint	e 1.5x res con s space as bee bad nor are as 565 ps chanic ce capa ft at joi t 34, 6 lift at joi t 30, 66 lift at joi t 30, 66	4 MT20 unless o ntinuous bottom ad at 2-0-0 oc. in designed for a nconcurrent with ssumed to be SF i. al connection (by alconnection (by bible of withstand nt 32, 64 lb uplift 1 lb uplift at joint bint 37, 90 lb uplift at joint 5 lb uplift at joint bint 27, 62 lb uplif d 92 lb uplift at ju	therwise indicated. chord bearing. 10.0 psf bottom any other live load No.2 crushing vothers) of truss to ing 43 lb uplift at joint 35, 62 lb uplift at jo ft at joint 38, 54 lb 29, 60 lb uplift at jo ft at joint 26, 58 lb bint 24.	s. int bint
	444 Grav Grav 24113	2 - 0-0, 32 2-0-0, 32 2-0-0, 38 1 (LC 12) 4 (LC 8), 8 (LC 13 1 (LC 13 6 (LC 13 6 (LC 13 8 (LC 12 2 (LC 12 0 (LC 12 5 (LC 1), 6 (LC 1), 7 (LC 2)	=32-0-0, 33=32 =32-0-0, 33=32 =32-0-0) 24=-92 (LC 13), 3), 26=-62 (LC 1 3), 30=-54 (LC 1 2), 33=-64 (LC 1 2), 35=-61 (LC 1 2), 37=-59 (LC 1), 6), 25=181 (LC 1),	3), 3), 3), 3), 1), 1), 3), 1), 1), 3), 1), 3), 1), 1), 1), 1), 1), 1), 1), 1	VEBS IOTES) Unbalance this design): Wind: ASC Vasd=91m Ke=1.00; C exterior zoi	12-31=-172/28, 1 10-33=-139/102, 3 8-35=-140/97, 6-3 4-38=-106/149, 13 14-29=-139/102, 1 14-29=-139/102, 1 19-25=-142/121, 3 d roof live loads ha E 7-16; Vult=115m ph; TCDL=6.0ps; F at. II; Exp C; Enclo he and C-C Corner	1-32=-14 9-34=-14 36=-139/9 3-30=-14 15-28=-1 8-26=-13 20-24=-1: we been of ph (3-sec BCDL=6.0 bsed; MW (3E) -1-6	9/86, 6, 5-37=-147/ 9/86, 40/96, 3/97, 34/179 considered for cond gust) 0psf; h=35ft; FRS (envelop 0 to 3-6-0,	113, e)	10) This Inte R8(LOAD (s truss is rnationa)2.10.2 a CASE(S)	desig I Resid and ref Star	ed in accordance dential Code sec erenced standar ndard	ce with the 2018 tions R502.11.1 and d ANSI/TPI 1.	d
FORCES	24=1 26=18 30=18 32=18 34=18 36=11 38=14 (lb) - Maximum (Tension	 78 (LC 2) 30 (LC 2) 30 (LC 2) 39 (LC 2) 39 (LC 2) 30 (LC 1) 78 (LC 2) 43 (LC 2) Compres 	6), 29=181 (LC 6), 27=180 (LC 2), 6), 31=197 (LC 2) 6), 33=179 (LC 3), 33=179 (LC 1) 5), 33=179 (LC 1) 5), 37=187 (LC 3) 5) sion/Maximum	1), 26), 3), 22), 25), 1, 1), 3	Exterior(2N 21-0-0, Ext left and rigi exposed;C reactions s DOL=1.60 3) Truss desig only. For s see Standa or consult of	I) 3-6-0 to 16-0-0, C erior(2N) 21-0-0 to nt exposed; end ve- -C for members an hown; Lumber DOI gned for wind loads tuds exposed to wi ard Industry Gable I aualified building de	Corner(3F 32-10-8 ertical left d forces a L=1.60 pl: in the pla ind (norm End Deta esigner as	 16-0-0 to zone; cantilevent and right MWFRS for ane of the trus ant to the face) is as applicable a per ANSI/TP 	er s , le, I 1.		-		NUM PE-2001	ER 018807	

or consult qualified building designer as per ANSI/TPI 1.

September 13,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 189	
P240953-01	B1	Common Supported Gable	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springh	I Sep 1214:7337/14/2024					

6-9-0 13-6-0 6-9-0 6-9-0 4x4 = 5 19 4 ²⁰6 12 10 Г 6-7-8 3 7 2 8 1 9 1-0-0 Þ 10 18 17 16 15 14 13 12 11 13-6-0

Scale = 1:42.1

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.12	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.27	Horiz(TL)	0.00	10	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 66 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2		2) Wind: ASCE Vasd=91mp	7-16; Vult=115mph h; TCDL=6.0psf; BC	n (3-sec CDL=6.0	ond gust) Dpsf; h=35ft;						
BOT CHORD	2x4 SP No.2		Ke=1.00; Ca	t. II; Exp C; Enclose	ed; MW	FRS (envelop	e)					
WEBS	2x3 SPF No.2		exterior zone	e and C-C Corner(3	E) 0-1-4	4 to 5-1-4,						
OTHERS	2x3 SPF No.2		Exterior(2N)	5-1-4 to 6-9-0, Cor	ner(3R)	6-9-0 to 11-9	-0,					
BRACING			Exterior(2N)	11-9-0 to 13-4-12 z	zone; ca	intilever left a	nd					
TOP CHORD	Structural wood she 6-0-0 oc purlins, et	eathing directly applied xcept end verticals.	or right expose for members	and forces & MWF	and righ RS for	reactions sho	wn;					
BOT CHORD	Rigid ceiling directl bracing.	y applied or 10-0-0 oc	3) Truss design	ed for wind loads in uds exposed to wind	n the pla	, ane of the trus al to the face)	s					
REACTIONS	(size) 10=13-6 13=13-6 16=13-6 Max Horiz 18=185 Max Uplift 10=-157 12=-103 15=-98 (17=-188 Max Grav 10=183 12=197 14=199 16=196 18=212	-0, 11=13-6-0, 12=13-6 -0, 14=13-6-0, 15=13-6 -0, 17=13-6-0, 15=13-6 (LC 9) (LC 11), 11=-180 (LC 1 (LC 12), 13=-98 (LC 1 (LC 12), 18=-102 (LC 1 (LC 2), 18=-187 (LC (LC 2), 13=203 (LC 20) (LC 20), 13=203 (LC 20) (LC 20), 13=204 (LC 19) (LC 19), 17=243 (LC 19)	 i-0, see Standar i-0, or consult question i-0 i-0 i-1 i	d Industry Gable Er lalified building des a 1.5x4 MT20 unles es continuous bottc ully sheathed from sst lateral movemer spaced at 2-0-0 oc as been designed for ad nonconcurrent w are assumed to be 65 psi. hanical connection a capable of withsta	igner as s other om chor om chor one fac or a 10.0 vith any SP No.1 (by othe nding 1	Is as applicat sper ANSI/TP wise indicated d bearing. e or securely iagonal web). 0 psf bottom other live load 2 crushing ers) of truss to 87 lb uplift at	, le, l 1. ds.					
FORCES	(lb) - Maximum Cor Tension	mpression/Maximum	joint 18, 157	lb uplift at joint 10,	98 lb up	olift at joint 15	,					The second se
TOP CHORD	1-18=-140/120, 1-2 3-4=-96/187, 4-5=- 6-7=-95/189, 7-8=- 9-10=-120/100	e=-163/147, 2-3=-114/9 152/302, 5-6=-152/302 100/79, 8-9=-139/123,	7, uplift at joint , at joint 11. 11) This truss is	at joint 16, 188 lb up 13, 103 lb uplift at j designed in accord	plift at jo oint 12 ance wi	oint 17, 98 lb and 180 lb up ith the 2018	lift			B	TATE OF I	MISSOUR
BOT CHORD	17-18=-89/99, 16-1 14-15=-89/99, 13-1 11-12=-89/99, 10-1	7=-89/99, 15-16=-89/9 4=-89/99, 12-13=-89/9 1=-89/99	^{9,} R802.10.2 a ^{9,} LOAD CASE(S)	nd referenced stand Standard	dard AN	ISI/TPI 1.	iu			Ho.	SEVI	
WEBS	5-14=-286/85, 4-15 3-16=-158/213, 2-1 6-13=-163/175, 7-1 8-11=-156/199	i=-164/175, 7=-162/198, 2=-158/213,							•		NUM PE-2001	BER 018807
NOTES										Y	080	NO B
 Unbalance this design 	ed roof live loads have n.	e been considered for									NONA NA	LEN

this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

September 13,2024

						RELEASE FOR CONSTRUCT
lah	Truco	Truco Tupo	Othe	DIV		AS NOTED FOR PLAN REVIE
300	Tuss	Truss Type	QLy	FIY	K001 - H1 L01 109	DEVELOPMENT SERVICES
P240953-01	B2	Common	4	1	Ich Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Jul 12	2024 Print: 8.	630 S Jul 12	2024 MiTek Industries, Inc. Th	1 Sep 1214:23.7 1 4/202

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. The Sep 12 14:337 ID:I9J7J5FaeRY6JkhLePyJyHzbjFm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKVrCDoi7J#zJorf

6-9-0 13-6-0 6-9-0 6-9-0 4x6 = 2 12 10 Г 6-7-8 5x5 🖌 7 8 5x5 💊 3 --4 X 5 3x4 II 3х4 **п** 3x8=

6-9-0	6-9-0	
6-9-0	13-6-0	

'late Offsets (X, Y): [1:0-1-12,0-1-8], [3:0-1-12,0-1-8]												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.74	Vert(LL)	-0.04	5-6	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.39	Vert(CT)	-0.08	5-6	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.12	Horz(CT)	0.01	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 64 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2

Scale = 1:47.2

BOT CHORD	284 37 11	0.2
WEBS	2x3 SPF	No.2 *Except* 6-1,4-3:2x4 SP No.2
BRACING		
TOP CHORD	Structura	I wood sheathing directly applied or
	5-7-1 oc	purlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	4=0-5-8, 6=0-5-8

- Max Horiz 6=186 (LC 9) Max Uplift 4=-72 (LC 13), 6=-72 (LC 12) Max Grav 4=594 (LC 1), 6=594 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-606/170, 2-3=-606/170, 1-6=-536/173,
- 3-4=-536/173 BOT CHORD 5-6=-240/398, 4-5=-157/263

WFBS 2-5=0/275, 1-5=-106/234, 3-5=-112/236

- NOTES
- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 5-1-12, Interior (1) 5-1-12 to 6-9-0, Exterior(2R) 6-9-0 to 11-9-0, Interior (1) 11-9-0 to 13-4-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- All bearings are assumed to be SP No.2 crushing 4) capacity of 565 psi.

- 5) One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6 and 4. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

September 13,2024

						KELD
Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 189	AS N De
P240953-01	B3	Common Girder	1	2	Job Reference (optional	LE

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Thu Sep 1214:3 ID:2VEnnUKz_aQ7fpjiZNayklzbjFf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWr2Doi7J4zJC7

September 13,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

4/202

Scale = 1:49.9

Plate Offsets (X, Y): [1:Edge,0-3-0], [7:Edge,0-3-0], [8:0-7-0,0-1-8], [9:0-6-0,0-7-0], [10:0-7-0,0-1-8]

L oading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.94 0.44 0.75	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.08 0.02	(loc) 9-10 9-10 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 184 lb	GRIP 185/148 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0.131"x3") Top chords oc. Bottom chor staggered Web conne 2) All loads al except if no CASE(S) s provided to unless othe	2x4 SP No.2 2x10 HF No.2 2x3 SPF No.2 Left 2x4 SP No.2 2 2-6-1 Structural wood shea 3-0-7 oc purlins. Rigid ceiling directly bracing. (size) 1=0-5-8, 7 Max Horiz 1=169 (LC Max Uplift 1=-763 (L Max Grav 1=4855 (L (Ib) - Maximum Com Tension 1-3=-5093/897, 3-4= 4-5=-3757/746, 5-7= 1-10=-603/3567, 9-1 8-9=-553/3565, 7-8= 3-10=-257/1751, 3-9 4-9=-814/4354, 5-9= 5-8=-261/1748 to be connected toget onails as follows: connected as follows ords connected as follows ords connected as follows ords connected equally oted as front (F) or baa ection. Ply to ply comr ection. Ply to ply comr envise indicated.	2-6-0, Right 2x4 SP N athing directly applied applied or 10-0-0 oc 7=0-5-8 C 11) C 12), 7=-760 (LC 13 C 1), 7=4834 (LC 1) pression/Maximum -3757/746, -5091/896 0=-603/3567, -553/3565 =-1006/291, -1003/291, ther with 10d s: 2x4 - 1 row at 0-9-0 cows: 2x10 - 3 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO/ nections have been noted as (F) or (B),	3) 4) 40.2 d or 5) 6) 7) 8) 7) 8) 9) 9) 10 C 1) AD	Unbalanced I this design. Wind: ASCE Vasd=91mph Ke=1.00; Cat exterior zone Interior (1) 5- Interior (1) 11 exposed ; en members and Lumber DOL. This truss ha chord live loa All bearings a capacity of 44 Two H2.5T S recommende UPLIFT at jt(and does not This truss is of International R802.10.2 ar Use Simpson Truss) or equ 1-8-12 from t to back face e 0) Fill all nail ho DAD CASE(S) Dead + Roc Plate Increa Uniform Loa Vert: 1-4= Concentrate Vert: 10= 12=-1419	roof live loads have 7-16; Vult=115mph ; TCDL=6.0psf; BC . II; Exp C; Enclose and C-C Exterior(2 2-12 to 6-9-0, Exterior(2 2-12 to 6-9-0, Exterior(2 2-12 to 6-9-0, Exterior(2 2-12 to 6-9-0, Exterior -9-0 to 13-3-5 zond d vertical left and ri 4 forces & MWFRS =1.60 plate grip DC s been designed fo d nonconcurrent ware assumed to be 1 5 psi. impson Strong-Tie d to connect truss is s) 1 and 7. This cor consider lateral for designed in accorda Residential Code s and referenced stance of strong-Tie HUS26 ivalent spaced at 2 he left end to 11-8- of bottom chord. les where hanger is Standard f Live (balanced): L se=1.15 dds (lb)ft) 70, 4-7=-70, 1-7= dLoads (lb) -1419 (B), 8=-1419 (B),	been (d) (3-seec (DL=6.0) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	considered for ond gust) Dpsf; h=35ft; FRS (envelo 12 to 5-2-12) 6-9-0 to 11- lever left and ioosed;C-C fo ctions showr) psf bottom other live loa 2 crushing ctors ng walls due n is for uplift ith the 2018 R50/211.1 a ISI/TP1 1. 50d Girder, 4- ; max. startin ponnect truss(itact with lum Increase=1.	or pe) ,9-0, right r; uds. to only and 16d gat es) ber. 15,				STATE OF M STATE OF M SEVI SEVI PE-20010 PE-20010	AISSOLUT M. ER Security L ENGINE

						RELEASE FOR CONSTRUCTION
loh	Trues	Truss Type	Otv	Plv	Roof - HT Lot 189	AS NOTED FOR PLAN REVIEW
005	11035		QUY	i iy		DEVELOPMENT SERVICES
P240953-01	C1	Common Supported Gable	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Scale = 1:38.9

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-R	0.09 0.07 0.21	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 55 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood sh 6-0-0 oc purlins, e Rigid ceiling direct bracing. (size) 8=11-9- 11=11-5 14=165 Max Horiz 14=165 Max Uplift 8=-59 (I 10=-91 13=-144 Max Grav 8=128 (10=197 12=196 14=136	neathing directly applied except end verticals. ly applied or 10-0-0 oc 7, 9=11-9-7, 10=11-9-7 1-7, 12=11-9-7, 13=11- 9-7 (LC 11) .C 9), 9=-142 (LC 13), (LC 12), 12=-91 (LC 12), (LC 12), 14=-71 (LC 12), (LC 12), 14=-71 (LC 20), (LC 20), 11=186 (LC 2), (LC 20)	2) d or , 3) 9-7, (1), 6) (2), 7) (9), 8) (9), 9)	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Exterior(2N) 10-10-11, Ep cantilever lef right expose for reactions DOL=1.60 Truss desigr only. For st see Standard or consult qu All plates are Gable requir Truss to be f braced again Gable studs This truss ha chord live loa	7-16; Vult=115mp h; TCDL=6.0psf; B it. II; Exp C; Enclose e and C-C Corner(5-1-4 to 5-10-11, it derior(2N) 10-10-1 ft and right expose d;C-C for members shown; Lumber D hed for wind loads uds exposed to wind d Industry Gable E alified building de- e 1.5x4 MT20 unle res continuous bott fully sheathed from not lateral moveme spaced at 2-0-0 or as been designed f ad nonconcurrent	sh (3-see CDL=6. sed; MW 3E) 0-1- Corner(3 1 to 11- d; end v s and fo OL=1.60 in the pl nd (norm ind Deta signer a signer a signer a signer a so ther com choir o no fac ent (i.e. c c. ov it a nov s SP No	cond gust) Opsf; h=35ft; (FRS (envelop 4 to 5-1-4, 3R) 5-10-11 tc 8-3 zone; vertical left an rcces & MWFR 0 plate grip ane of the trus; all to the face; ills as applical s per ANSI/TF wise indicatec 'd bearing. e or securely tiagonal web). 0 psf bottom 0 ther live loa 2 crushing	be) d SS ss), ble, Pl 1. d. ds.					
FORCES	(lb) - Maximum Cc Tension 1-14=-103/59, 1-2 3-4=-154/305, 4-5 6-7=-109/88, 7-8=	mpression/Maximum =-118/101, 2-3=-96/185 =-154/306, 5-6=-94/186 -96/56	5, 5, 5,	capacity of 5) Provide mec bearing plate 14, 59 lb upl	665 psi. chanical connection e capable of withst ift at joint 8, 91 lb u 12, 01 lb uplift at i	n (by oth anding 7 uplift at je	ers) of truss to 71 lb uplift at jo oint 12, 144 lb	o oint o				Constanting of the second	all
BOT CHORD WEBS	13-14=-78/87, 12- 10-11=-78/87, 9-1 4-11=-280/86, 3-1 2-13=-174/238 5-	13=-78/87, 11-12=-78/8 D=-78/87, 8-9=-78/87 2=-161/201, 10=-161/201, 6-9=-172	37, 11 /239	int 9. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and SCOTT M.									T M.
NOTES	2-13=-174/238, 5-10=-161/201, 6-9=-172/235 OTES Unbalanced roof live loads have been considered for				R802.10.2 and referenced standard ANSI/TPI 1.								

e loads have been considere this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

E

NUMBER

PE-2001018807

September 13,2024

NOTESSIONAL

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 189	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
P240953-01	C2	Common Girder	1	2	Job Reference (optional	I68187643 LEE'S SUMMIT, MISSOURI

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. The Sep 12 14: 33 e ID:6760MpJjTzAPQVZJRyYUfKzbjFh-RfC?PsB70Hq3NSgPqnL8w3uITXbGH WrCDoi7.4z.0e?

2-11-13	5-10-11	8-9-10	11-9-7	
2-11-12	2-10-15	2-10-15	2-11-13	

Scale = 1:47.9

Plate Offsets (X, Y): [9:0-5-0,0-5-12]

Loa TCI TCI BCI BCI	iding _L (roof) DL _L DL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.67 0.45 0.66	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.07 0.02	(loc) 9-10 9-10 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 143 lb	GRIP 197/144 FT = 20%	
LUI TOP BO' SLII BR, TOP BO' RE/ FOI	ACTIONS ACTIONS ACTIONS ACTIONS ACTIONS	2x4 SP No.2 2x8 SPF No.2 2x3 SPF No.2 Left 2x4 SP No.2 1 No.2 1-10-10 Structural wood sheet 4-8-2 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-7, (Max Horiz 1=-151 (LI Max Grav 1=4573 (L (lb) - Maximum Com Tension 1-3=-4555/802, 3-4= 4-5=-3344/670, 5-7= 1-10=-525/3233, 7-8=	I-10-10, Right 2x4 SF athing directly applied applied or 10-0-0 oc req. 0-3-9), 7=0-3-8 C 31) C 12), 7=-666 (LC 13 .C 1), 7=-466 (LC 13 .C 1), 7=4424 (LC 1) pression/Maximum -3343/670, -4554/801 0=-525/3231, -495/3233	4) d or 5) 6) 1) 7) 8) 9)	Wind: ASCE Vasd=91mph Ke=1.00; Ca exterior zone Interior (1) 5- 10-10-11, Int left and right exposed;C-C reactions sho DOL=1.60 This truss ha chord live loa WARNING: F than input be All bearings a capacity of 4. Two H2.5T S recommende UPLIFT at jt(and does not International	7-16; Vult=115mph ;; TCDL=6.0psf; BC : II; Exp C; Enclose and C-C Exterior(; 0-0 to 5-10-11, Ext erior (1) 10-10-11 t exposed ; end vert for members and wm; Lumber DOL= s been designed for d nonconcurrent w Required bearing siz aring size. are assumed to be 25 psi. impson Strong-Tie d to connect truss s) 1 and 7. This con consider lateral for designed in accord Residential Code s	n (3-sec CDL=6.0 ed; MW 2E) 0-0 erior(2I o 11-9- ical left forces & 1.60 pl- or a 10.0 ith any ze at jo SPF No connect to bear nnectio rces. ance w sections	ond gust) opsf; h=35ft; FRS (envelo) o to 5-0-0, R) 5-10-11 to 7 zone; canti and right & MWFRS for ate grip D psf bottom other live load int(s) 1 great b.2 crushing ctors ng walls due h is for uplift th the 2018 R502.11.1 a	pe) lever r ds. er vto only and	SUPPLE OR OTH SUPPOT BLOCKS TRUSS	MENTAF IER MEA 3T WIDT 5, ETC.) / MANUFA	RY BEA NS TO H (SUC RE TH CTURE	RING PLATES, SP ALLOW FOR THE I H AS COLUMN CA IE RESPONSIBILIT SR OR THE BUILDI	ECIAL ANCHORAGE, /INIMUM REQUIRED PS, BEARING Y OF THE NG DESIGNER.	
8-9=-495/3233, 7-8=-495/3233 WEBS 3-10=-219/1587, 3-9=-962/283, 4-9=-719/3859, 5-9=-965/285, 5-8=-223/158: NOTES 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 3 rows staggered at 0-8-0 oc. Web connected as follows: 2x3 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design					R802.10.2 ar) Use Simpsor Truss) or equ 0-8-12 from t to back face) Fill all nail ho DAD CASE(S) Dead + Roo Plate Increa Uniform Loa Vert: 1-4: Concentrate Vert: 10= 14=-1322	nd referenced stand a Strong-Tie HUS20 ivialent spaced at 2 he left end to 10-8- of bottom chord. les where hanger i Standard of Live (balanced): I isse=1.15 ads (lb/ft) =-70, 4-7=-70, 1-7= id Loads (lb) -1322 (B), 8=-1322 (B), 15=-1322 (B)	dard AN 6 (14-10 2-0-0 oc 12 to c s in cor Lumber 20 2 (B), 13 , 16=-1	(SI/TPI 1. Sd Girder, 4 : max. startin ponnect truss(tact with lum Increase=1. 3=-1325 (B), 322 (B)	16d g at es) ber. 15,			A REAL	STATE OF M SEVI SEVI PE-20010 PE-20010	AISSOLA M. ER SER M. ER BA BA BA BA BA BA BA BA BA BA BA BA BA	5

September 13,2024

Antitek Bandward State Chesterfield, MO 63017 314.434.1200 / MITek-US.com

4/2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
leb	Truco		0.11			AS NOTED FOR PLAN REVIEW
JOD	TTUSS	Truss Type	QIY	Fiy	R001 - H1 L01 189	DEVELOPMENT SERVICES
P240953-01	CG1	Diagonal Hip Girder	1	1	Job Reference (optional	I68187644 LEE'S SUMMIT, MISSOURI

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. The Sep 12 12 3 a ID:ewYe9Tl5if2YoL_7tF1F67zbjFi-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWr2Doi7J4zJC?

14/2024

Scale =	1:43.7
---------	--------

Plate Offsets (X, Y): [2:Edge,0-3-11], [2:0-3-6,0-6-15]

Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO		CSI TC BC WB	0.74 0.68 0.91	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.05 0.01	(loc) 6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144	
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 49 lb	FT = 20%	
LUMBER TOP CHORD 30T CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP 1650F 1.5E 2x6 SPF No.2 2x3 SPF No.2 Left: 2x4 SP No.2 Structural wood shee 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 2=0-7-6, 5 Max Horiz 2=169 (LC Max Uplift 2=-229 (L Max Grav 2=698 (LC	athing directly applied cept end verticals. applied or 9-10-6 oc 5= Mechanical C 28) C 8), 5=-233 (LC 12) C 1), 5=702 (LC 1)	6) 7) 8) 9) LC 1)	One H2.5T S recommende UPLIFT at jt(does not con This truss is International R802.10.2 at "NAILED" ind (0.148"x3.25 In the LOAD of the truss a DAD CASE(S) Dead + Roo Plate Increa Uniform Loc	Simpson Strong-Tie do to connect truss to s) 2. This connection sider lateral forces. designed in accorda Residential Code s nd referenced stand dicates 3-10d (0.144 ") toe-nails per NDS CASE(S) section, la re noted as front (F Standard of Live (balanced): L ase=1.15 ads (lb/ft)	connecto bear on is for ance w sections dard AN 8"x3") of S guidli oads a c) or ba	ctors ing walls due uplift only a ith the 2018 R502.11.1 a ISI/TPI 1. or 2-12d nes. oplied to the ck (B).	e to nd and face .15,						
FORCES	(lb) - Maximum Com Tension	pression/Maximum		Vert: 1-4	=-70, 2-5=-20									
TOP CHORD	1-2=0/0, 2-3=-1163/4 4-5=-248/193	411, 3-4=-142/93,		Vert: 3=-	ed Loads (lb) 53 (F=-26, B=-26), (6=-19 (F=-10, B=-1	0),						
BOT CHORD WEBS	2-6=-546/1040, 5-6= 3-6=0/352, 3-5=-107	546/1040 /3/512		9=-198 (1	-=-99, В=-99), 11=-	-59 (F=	-30, B=-30)							
NOTES	2 2 0,002, 0 0- 101													
 Wind: AS Vasd=91i Ke=1.00; exterior z Exterior(2 right export for memb Lumber D This truss chord live Bearings capacity (CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner (3) 2R) 5-10-0 to 10-11-15 z sed ; end vertical left a ers and forces & MWFf DOL=1.60 plate grip DO b has been designed for load nonconcurrent wi are assumed to be: Joi of 425 psi. girder(s) for truss to trus	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope) - 1-2-14 to 5-10-0, zone; cantilever left a ind right exposed;C-C RS for reactions show L=1.60 r a 10.0 psf bottom th any other live load int 2 SPF No.2 crushi as connections.	e) ind ; vn; s. ng							1		STATE OF I SCOT SEVI	MISSOLIA FM. ER SER 018807	

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 233 lb uplift at joint 5.

September 13,2024

SIONAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

E

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qtv	Plv	Roof - HT Lot 189	AS NOTED FOR PLAN REVIEW
			<u> </u>	,		DEVELOPMENT SERVICES 168187645
P240953-01	D1	Monopitch Supported Gable	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. The Sep 12 4:73 B ID:ATTrNJ40x7n5eacfqTi1NKzbjG_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKV rCDoi7J42JC4

Scale = 1:33.6
Loading

BOT CHORD

WEBS

OTHERS

BRACING

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES

1)

2)

3)

4)

TOP CHORD

BOT CHORD

DOL=1.60

REACTIONS (size)

2x4 SP No.2

2x3 SPF No.2

2x3 SPF No.2

Max Horiz 7=152 (LC 9)

6-7=-65/86, 5-6=-65/86

Wind: ASCE 7-16; Vult=115mph (3-second gust)

Vasd=91mph: TCDL=6.0psf: BCDL=6.0psf: h=35ft:

Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) zone; cantilever left and right exposed ; end vertical left and right

exposed;C-C for members and forces & MWFRS for

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face),

Truss to be fully sheathed from one face or securely

braced against lateral movement (i.e. diagonal web).

Gable studs spaced at 2-0-0 oc.

see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

reactions shown; Lumber DOL=1.60 plate grip

bracing.

Max Uplift

Max Grav

Tension

3-6=-239/371

Structural wood sheathing directly applied or

5=3-5-8, 6=3-5-8, 7=3-5-8

5=-34 (LC 9), 6=-131 (LC 12),

5=88 (LC 19), 6=192 (LC 19),

3-5-9 oc purlins, except end verticals.

7=-46 (LC 8)

7=170 (LC 20)

(lb) - Maximum Compression/Maximum

2-7=-156/166, 1-2=0/44, 2-3=-388/246, 3-4=-141/115, 4-5=-104/147

Rigid ceiling directly applied or 10-0-0 oc

Scale = 1:33.6		_										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.30	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.14	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 18 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2		5) This truss h chord live lo	as been design ad nonconcurre	ed for a 10.0 ent with any) psf bottom other live loa	ıds.					

3-5-9

All bearings are assumed to be SP No.2 crushing 6)

capacity of 565 psi.

Provide mechanical connection (by others) of truss to 7) bearing plate capable of withstanding 46 lb uplift at joint 7, 34 lb uplift at joint 5 and 131 lb uplift at joint 6.

8) Non Standard bearing condition. Review required.

This truss is designed in accordance with the 2018 9) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

202

September 13,2024

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
lob	Truss		Otv	Plv	Roof - HT Lot 189	AS NOTED FOR PLAN REVIEW
300	11035	Truss Type	Giy	i iy		DEVELOPMENT
P240953-01	D2	Monopitch	10	1	lob Reference (optional	LEE'S SUMMIT, MISSOURI
		· ·			Job Reference (optional	
Premier Building Supply (Springh	iill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Jul 12 2	2024 Print: 8.6	630 S Jul 12	2024 MiTek Industries, Inc. Th	u Sep 1214:23:48
		ID:19J7J5FaeRY6Jkl	hLePyJyHzbjF	m-RfC?PsB	70Hq3NSqPqnL8w3ulTXbGK	/rCDoi7J4zJC?/

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. The Sep 12 14:33 B ID:19J7J5FaeRY6JkhLePyJyHzbjFm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKVrCDoi7J#zJorf

3-5-8

Scale = 1:33.3				1								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.39	Vert(LL)	-0.01	2-5	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.13	Vert(CT)	-0.02	2-5	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 20 lb	FT = 20%

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

LUMBER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x3 SPF No.2
SLIDER	Left 2x4 SP No.2 2-2-4
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 3-5-8 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS	(size) 2=0-3-8, 5= Mechanical
	Max Horiz 2=143 (LC 9)
	Max Uplift 2=-23 (LC 12), 5=-67 (LC 9)
	Max Grav 2=220 (LC 1), 5=173 (LC 19)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=0/19, 2-4=-222/168, 4-5=-208/254
BOT CHORD	2-5=-67/72
NOTES	
1) Wind: ASC Vasd=91n Ke=1.00; exterior zc and right e	CE 7-16; Vult=115mph (3-second gust) hph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) one and C-C Exterior(2E) zone; cantilever left exposed; end vertical left and right -C for members and forces & MWFRS for

- reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- 3) Bearings are assumed to be: Joint 2 SP No.2 crushing capacity of 565 psi.
- Refer to girder(s) for truss to truss connections. 4) Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 67 lb uplift at joint 5.
- 6) One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 189	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
P240953-01	D5	Monopitch Supported Gable	1	1	Job Reference (optional	I68187647 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Jul 12 20	024 Print: 8.6	30 S Jul 12	2024 MiTek Industries, Inc. Th	I Sep 1214:13:18/14/20:24

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. The Sep 12 1: 338 ID:ATTrNJ4ox7n5eacfqTi1NKzbjG_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKV rCDoi7J4JC-

Scale = 1:33.6

Loading FCLL (roof) FCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-R	0.31 0.15 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 197/144 FT = 20%
LUMBER FOP CHORD 30T CHORD WEBS DTHERS BRACING FOP CHORD 30T CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 3-5-8 oc purlins, ex Rigid ceiling directly bracing. (size) 5=3-5-8, 6 Max Horiz 7=152 (LC	eathing directly applie cept end verticals. v applied or 10-0-0 or 6=3-5-8, 7=3-5-8 C 9)	6) 7) 8) ed or 9) c LC	This truss ha chord live loa All bearings capacity of 5 Provide mec bearing plate 7, 34 lb uplif This truss is International R802.10.2 a DAD CASE(S)	as been designed f ad nonconcurrent v are assumed to be 65 psi. hanical connectior e capable of withst at joint 5 and 131 designed in accorr Residential Code nd referenced star Standard	for a 10. with any ≥ SP No. h (by oth anding 4 Ib uplift dance w sections indard AN	D psf bottom other live loa 2 crushing ers) of truss t 6 lb uplift at j at joint 6. ith the 2018 R502.11.1 a ISI/TPI 1.	ds. o oint nd					
	Max Uplift 5=-34 (LC 7=-46 (LC Max Grav 5=88 (LC 7=170 (LC	C 9), 6=-131 (LC 12), C 8) 19), 6=192 (LC 19), C 20)	,										
	(lb) - Maximum Com Tension	npression/Maximum											
BOT CHORD WEBS	2-7=-137/167, 1-2=0 3-4=-141/115, 4-5=- 6-7=-65/86, 5-6=-65, 3-6=-239/371	5/44, 2-3=-386/246, 104/147 5/86											
NOTES I) Wind: AS(Vasd=91n Ke=1.00;	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C ; Enclose	n (3-second gust) DL=6.0psf; h=35ft; ed; MWFRS (envelop	be)									E OF M	MISSO

- exterior zone and C-C Corner(3E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss
- 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- Truss to be fully sheathed from one face or securely 4)
- braced against lateral movement (i.e. diagonal web). 5) Gable studs spaced at 2-0-0 oc.

SCOTT M.

SEVIER

UMBER

PE-2001018807

September 13,2024

E

SSIONAL

												_ [RELEASE	FOR CONSTRU	CTION
Job		Truss		Truss Ty	/pe		Qty		Ply	Roof - HT	_ot 189		AS NOTE DEVEL	D FOR PLAN RE	VIEW CES
P240953-0	1	E1		Commo	on Supporte	d Gable	1		1	Job Refere	nce (op	tional	LEE'S	I68187648 SUMMIT, MISSO	JRI
Premier Building	g Supply (Sprir	nghill, KS), S	pring Hills, KS - 66083,			Run: 8.63 S Jul 12	2024 Pi 7u49l 9l	rint: 8.63 (mhzhiG	0 S Jul 12 2 1-RfC?PsB	2024 MiTek In 70Ha3NSaPa	dustries, I	Inc. Thu IXbGK	I Sep 12 14:73:18 MrCDoi7.147.1921	14/20	24
							10-0201	41112030	1101130	ronqonogi q			11020110420011		
	-1	0-10-8		10	-1-9		_				20-4-0				
	()-10-8		10	-1-5						10-2-7				
							4x4 =	I.							
—							8								
-0-0 -9-6	1 [2	3x4 = 3 4 3 24	5		7	19		9	10	25	11	12 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3хб и 13 14	0-6-0
						3x4 =									
		I				2	20-4-0							1	
Scale = 1:40.5	()()(). [0:0	4.5.0.0.41	[00:0 4 40 0 4 0]												
	(X, Y): [2:0-	4-5,0-0-1],	[20:0-1-12,0-1-8]						-						
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.06 0.04 0.06	DEFL Vert(LL Vert(C Horz(C	-) r T) r T) 0.4	in (loc) n/a - n/a - 00 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 86 lb	GRIP 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD	2x4 SP No 2x4 SP No 2x3 SPF N 2x3 SPF N Left 2x4 S Structural	0.2 0.2 No.2 No.2 P No.2 1 wood shea	I-6-4 athing directly applied	WE NC 1) d or 2)	TES Unbalanced this design. Wind: ASCE Vasd=91mpl	3-19=-114/0, 7-21=-1 5-23=-142/113, 4-24 9-18=-150/92, 10-17 11-16=-136/125, 12- roof live loads have 7-16; Vult=115mph or TCDI =6 0psf: BCI	150/92, =-140/ =-140/ 15=-15 been c (3-seco	, 6-22=- 159, 98, 68/167 onsider ond gus	138/94, ed for t)						
BOT CHORD	Max Horiz Max Uplift	2=20-4-0, 16=20-4-0 19=20-4-0 23=20-4-0 2=86 (LC 2=-35 (LC 16=-48 (L 18=-55 (L 22=-56 (L 22=-56 (L 22=-82 (L	applied or 10-0-0 oc 14=20-4-0, 15=20-4), 17=20-4-0, 18=20-), 21=20-4-0, 28=220-), 24=20-4-0 12) 13), 15=-78 (LC 13) C 13), 17=-57 (LC 13) C 13), 21=-57 (LC 12 C 12), 23=-51 (LC 12 C 12)	-0, 4-0, 4-0, 3), 3)	Ke=1.0) Ca exterior zone Exterior(2N) 15-2-7, Exte left and right exposed;C-C reactions she DOL=1.60 Truss desigr only. For stu see Standar or consult qu	1. II; Exp C; Enclosed and C-C Corner(3E 4-2-7 to 10-2-7, Corrior(2N) 15-2-7 to 20 exposed; end vertic c for members and fc pwn; Lumber DOL=1 ued for wind loads in ids exposed to wind d Industry Gable Enclatified building desig	d; MWF) -0-9- ner(3R -3-11 z cal left ; orces & .60 pla the pla (norma d Detail gner as	FRS (en 10 to 4-:) 10-2-7 cone; ca and righ MWFR te grip ane of th al to the ls as ap per AN	e truss face), plicable, SI/TPI 1.						
FORCES TOP CHORD BOT CHORD	(lb) - Maxi Tension 1-2=-8/0, 5-6=-53/1 8-9=-84/1 11-12=-50 2-24=-14/ 21-22=-14 17-18=-14 14-15=-14	2=168 (LC 15=204 (L 17=180 (L 19=154 (L 22=179 (L 22=179 (L 24=185 (L imum Com 2-4=-116/6 08, 6-7=-61 98, 9-10=-6 98, 9-10=-6 98, 9-10=-6 10/55, 12-13 46, 23-24= 1/46, 16-17 1/46	C 1), 14=90 (LC 1), C 26), 16=174 (LC 1 C 1), 18=190 (LC 26 C 22), 21=190 (LC 2 C 1), 23=180 (LC 1), C 25) pression/Maximum 60, 4-5=-68/79, 9/154, 7-8=-84/198, 60/154, 10-11=-53/11 =-58/15, 13-14=-72/3 -14/46, 22-23=-14/46 =-14/46, 18-19=-14/4 (=-14/46, 15-16=-14/4	4)), 5)), 6) 5), 7) 5), 7) 8) 9) 77, 33 3, 10] 16, 10] 16, LC	All plates are Gable requir Gable studs This truss ha chord live lox All bearings capacity of 5 Provide mec 2, 57 lb uplif uplift at joint 18, 57 lb uplif uplift at joint 1 This truss is International R802.10.2 a	■ 1.5x4 MT20 unless es continuous botton spaced at 2-0-0 oc. Is been designed for ad nonconcurrent wit are assumed to be S 65 psi. hanical connection (I e capable of withstan at joint 21, 56 lb upl 23, 82 lb uplift at join ft at joint 17, 48 lb up 15. designed in accorda Residential Code se nd referenced standa Standard	otherw n chord a 10.0 th any of P No.2 by othe dift at jo nt 24, 5 plift at j nce wire ections ard AN	vise indi d bearin psf bot other liv 2 crushil ers) of tr 5 lb upli int 22, 5 5 lb upli oint 16 th the 20 R502.1 SI/TPI 1	cated. g. tom e loads. ng uss to ft at joint 51 lb ift at joint 51 lb ift at joint and 78 lb 018 1.1 and		4	and the second se	STATE OF M SCOT SEVI DE SCOT SEVI DE SCOT	MISSOLUT ER DISSOLUT L ENCIDE	
													September	13,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

										RELEAS	E FOR CONSTRUCTION
Job	Т	russ		Truss Type		Qty	Ply	Roof - HT Lot 18	9	AS NOT DEVE	ED FOR PLAN REVIEW
P240953-01	1 E	2		Common		3	1	Job Reference (d	optional	LEE'S	SUMMIT, MISSOURI
Premier Building	g Supply (Springhill,	KS), Spring	Hills, KS - 66083,		Run: 8.63 S Jul	12 2024 Print: 3 695iR4P3zbiF	3.630 S Jul 12 2	2024 MiTek Industries	s, Inc. Th	u Sep 12 14:13:18	14/2024
								quitegi quizonouri		20110120011	
	-0-	10-8	5-1-9		10-1-9		15-1-9			20-4-0	—
	0-1	10-8	010		500		000			520	
						4x4 =					
-				1 <u>2</u>		5					
				1 5 1				4×4			
				4				6			
0-0			3x4 ≠	12				- AF			
ά			3								7x8 ≈
		2	For		\sim //						7
	9-6-0	F									8 6
	<u> </u>	X			11 10			9			
		3x6 II			3x4 = 3x4 =			3x4 =			
			<u>6-</u> 6-	9-9 9-9		13-5-9 6-8-0			20-4 6-10	-0)-8	—
Scale = $1:42.5$	(X X), [2:0.4 E 0	0 11 17:0	1 9 0 5 01								
	, T). [2.0-4-3,0	-0-1], [7.0-						· // \ ///	, .		
TCLL (roof)	(p) 25	5.0 Pla	te Grip DOL	2-0-0 1.15	TC	0.47 Ve	гс rt(LL) -0.	07 9-11 >999) 240	MT20	197/144
TCDL BCLL	10 0).0 Lun).0 Rep	nber DOL o Stress Incr	1.15 YES	BC WB	0.50 Ve 0.90 Ho	rt(CT) -0. rz(CT) 0.	14 9-11 >999 04 8 n/a) 180 i n/a		
BCDL	10	0.0 Coo	de	IRC2018/TPI2014	Matrix-S					Weight: 87 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2			 All bearing capacity 	igs are assumed to be of 565 psi.	SP No.2 cru	ishing				
BOT CHORD WEBS	2x4 SP No.2 2x3 SPF No.2 *	*Except* 8-	-7:2x4 SP No.2	5) One H2.8 recomme	T Simpson Strong-Tie ended to connect truss	e connectors to bearing v	alls due to				
SLIDER BRACING	Left 2x4 SP No	0.2 2-9-0		UPLIFT a and does	at jt(s) 2 and 8. This co a not consider lateral fo	onnection is f orces.	or uplift only				
TOP CHORD	Structural wood 4-2-0 oc purling	d sheathing s. except e	g directly applied and verticals.	f or 6) This trus Internatio	s is designed in accord anal Residential Code	dance with th sections R50	ie 2018)2.11.1 and				
BOT CHORD	Rigid ceiling dir bracing.	rectly appli	ed or 10-0-0 oc	R802.10. LOAD CASE	2 and referenced stan ((S) Standard	idard ANSI/T	PI 1.				
REACTIONS	(size) 2=0- Max Horiz 2=86	·3-8, 8=0-5	-8								
	Max Uplift 2=-1	63 (LC 12)), 8=-140 (LC 13)							
FORCES	(lb) - Maximum	Compress	sion/Maximum								
TOP CHORD	l ension 1-2=-8/0, 2-4=-	1576/396,	4-5=-1383/382,								
BOT CHORD	5-6=-1400/386 2-11=-329/134	, 6-7=-439/ 3, 9-11=-1	/123, 7-8=-310/1 77/984,	19							
WEBS	8-9=-318/1367 5-9=-94/452, 6	-9=-285/19	96, 5-11=-91/435	j,							
NOTES	4-11=-264/191	, 6-8=-114	9/286								-
 Unbalance this design 	ed roof live loads n.	have been	considered for							E OF	MISS
 Wind: ASC Vasd=91m 	CE 7-16; Vult=115 nph; TCDL=6.0ps	5mph (3-se sf; BCDL=6	econd gust) 6.0psf; h=35ft;						B	AN SCOT	Res MT
Ke=1.00; 0 exterior zo	Cat. II; Exp C; En one and C-C Exte	closed; MV rior(2E) -0	WFRS (envelope -9-10 to 4-2-6,	e)					B	SEV	TER Y
Interior (1) 15-3-8. Int) 4-2-6 to 10-2-7, terior (1) 15-3-8 to	Exterior(2)	R) 10-2-7 to	ft					87		
and right e	exposed ; end ver	rtical left an	nd right						8-	Scotter	amene g
reactions s	shown; Lumber D	OL=1.60 p	plate grip						Ø	PE-2001	1018807
3) This truss	has been design	ed for a 10	0.0 psf bottom							SSION	I ENGIL
		ant with all								April 1	40.0004
										Septembe	± 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

MiTek

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

										RELEASE	FOR CONSTRUCTION
Job	Tru	ss	Truss Type		Qt	y Ply	Ro	of - HT Lot	189	AS NOTE DEVEL	ED FOR PLAN REVIEW
P240953-01	F1		Roof Special Girder		1	2	Jot	b Reference	e (optional)	LEE'S	I68187650 SUMMIT, MISSOURI
Premier Building Sup	oply (Springhill, KS	S), Spring Hills, KS - 66083,		Run: 8.63 S Jul 1: ID:PT1gqCO6p63	2 2024 F PlabfLxA	Print: 8.630 S Jul A7RpzbjFa-RfC?	12 2024 PsB70Hq	MiTek Indust I3NSgPqnL8v	ries, Inc. Th v3uITXbGK	u Sep 12114:73:19 VrCDoi7J4zJO41	14/2024
	-0-10-8	5-6-12 10-1- 5-6-12 4-6-1	-9 <u>12-4-12 16-</u> 3 2-3-3 3-9 ^{5x5} =	2-6 <u>20-1-4</u> -10 3-10-14	Specia	25-9-10 5-8-6 Spe al Special	cial Sper 1.5x4	31-4-1 5-7-2 cial " Special	2 Special Special	<u>35-2-13</u> 3-10-1	39-4-0 40-2-8 4-1-3 0-10-8
F 5-0-0 F 4-0-11 5-0-0 -9-6 -11 0-11-5	3х4 1 2 В 4х6 и	$5^{\frac{1}{2}}$ $3x4 = 3x4 =$ $23^{\frac{244}{3}}$ $22^{\frac{1}{2}}$ 22 $3x4 =$	5 5x5= 6 p 21 4x8=	3x4= 3 7 50 3 7 50	4x6= 8 8 19 4x4=	25 9 30 18 3 4x8= NAILED NAIL	6= 0 1020 1 1732 5x8= ED NAIL	6 ≥ 27	5x5= 28 11 34 16 4x4 NAILED	3x4s 12 15 = 3x4 #	29 13 14 \$ \$ 5x8 II
	⊦ <u>₹</u>	5-6-12 10-1- 5-6-12 4-6-1	- <u>9 16-2-6</u> 3 6-0-13	<u>20-1-4</u> 3-10-14	NAILE	25-9-10 5-8-6		<u>31-6-(</u> 5-8-6	THJA26	35-2-13 3-8-13	<u>39-4-0</u> 4-1-3 ∣
Scale = 1:73.4 Plate Offsets (X, Y	<pre>'): [2:0-3-1,0-2</pre>	-7], [8:0-2-8,0-2-0], [13:E	dge,0-0-11], [20:0-4-0,0	-4-8]							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code 	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.65 0.55 0.60	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.06 -0.10 0.02	(loc) l/c 16-17 >9 16-17 >9 13	defl L/d 999 240 999 180 n/a n/a	PLATES MT20 Weight: 374 lb	GRIP 197/144 FT = 20%

LUMBER TOP CHORD 2x4 SP No.2 2x6 SPF No.2 BOT CHORD 2x3 SPF No.2 WEBS WEDGE Right: 2x4 SP No.2 SLIDER Left 2x4 SP No.2 -- 3-2-4 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 6-11. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 19-20,17-19. **REACTIONS** (size) 2=0-3-8, 13=0-5-8, 19=0-5-8 Max Horiz 2=-88 (LC 34) Max Uplift 2=-192 (LC 33), 13=-505 (LC 13), 19=-1021 (LC 13) Max Grav 2=692 (LC 1), 13=1657 (LC 26), 19=3836 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-2/0, 2-4=-998/319, 4-5=-504/279, 5-6=-463/298, 6-7=-269/505, 7-8=-278/1344, 8-10=-1688/642, 10-11=-1689/642, 11-12=-2895/968, 12-13=-2984/930, 13-14=0/0BOT CHORD 2-22=-280/821, 21-22=-280/821, 19-21=-505/392, 17-19=-1344/419, 16-17=-761/2607, 15-16=-765/2571, 13-15=-765/2571 WEBS 11-16=-124/931, 8-19=-2636/975, 7-19=-1255/202, 7-20=-84/643, 6-20=-921/230, 5-21=-111/245, 6-21=-91/424, 4-21=-509/191, 4-22=0/191, 12-16=-254/245, 12-15=0/81, 10-17=-1064/609, 8-17=-1066/3513,

11-17=-1141/352

 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0

oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Web connected as follows: 2x3 - 1 row at 0-9-0 oc.
All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

 Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-9-10 to 4-2-6, Interior (1) 4-2-6 to 10-2-7, Exterior(2E) 10-2-7 to 12-5-11, Interior (1) 12-5-11 to 31-5-10, Exterior(2R) 31-5-10 to 36-5-10, Interior (1) 36-5-10 to 40-3-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Provide adequate drainage to prevent water ponding.
 This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.7) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1021 lb uplift at joint 19.
- One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

- Two H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 13. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) Use Simpson Strong-Tie THJA26 (THJA26 on 2 ply, Right Hand Hip) or equivalent at 31-5-4 from the left end to connect truss(es) to front face of bottom chord.
- 14) Fill all nail holes where hanger is in contact with lumber.
- 15) "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails per NDS guidelines.

NOTES

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

							RELEASE FOR CONSTRUCTION
leb	Truce			011/	DIV	Boof UT Lat 190	AS NOTED FOR PLAN REVIEW
500	Truss	Thuss Type		Qly	гіу	KUUI - HI LUL 109	DEVELOPMENT
P240953-01	F1	Roof Special Girder		1	2	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springh	ill, KS), Spring Hills, KS - 66083,	F I	Run: 8.63 S Jul 12 20 ID:PT1gqCO6p63Plab)24 Print: 8.6 ofLxA7Rpzbji	330 S Jul 12 2 Fa-RfC?PsB	2024 MiTek Industries, Inc. Th 70Hq3NSgPqnL8w3uITXbGK	I Sep 121:319/14/2024

16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 256 lb down and 161 lb up at 20-5-11, 252 lb down and 160 Ib up at 22-5-11, 252 Ib down and 160 Ib up at 24-5-11, 252 lb down and 160 lb up at 26-5-11, 252 lb down and 160 lb up at 28-5-11, and 252 lb down and 160 lb up at 30-5-11, and 252 lb down and 160 lb up at 31-5-10 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-5=-70, 5-6=-70, 6-11=-70, 11-14=-70, 2-13=-20

Concentrated Loads (lb)

Vert: 9=-202 (F), 16=-732 (F), 8=-206 (F), 19=-59 (F), 11=-202 (F), 25=-202 (F), 26=-202 (F), 27=-202 (F), 28=-202 (F), 30=-59 (F), 31=-59 (F), 32=-59 (F), 33=-59 (F), 34=-59 (F)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 189	AS NOTED FOR PLAN REVIEW
P240953-01	G1	Monopitch Supported Gable	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springh	ill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Jul 12 2 ID:lunilH2weCPWn7u	024 Print: 8.6 149L9Kmhzbj	30 S Jul 12 3 G1-RfC?PsE	2024 MiTek Industries, Inc. Th 370Hq3NSgPqnL8w3uITXbGK	I Sep 1214:339/14/29:24

5-3-8

1.20	6		

Plate Offsets ((X, Y): [2:0-2-5,0-0-5]													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.22 0.08 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Left 2x4 SP No.2 1 Structural wood shea 5-3-8 oc purlins, exx Rigid ceiling directly bracing. (size) 2=5-3-8, 6 Max Horiz 2=98 (LC Max Uplift 2=-56 (LC (LC 12) Max Grav 2=194 (LC	I-8-7 athing directly applie cept end verticals. applied or 10-0-0 oc 5=5-3-8, 7=5-3-8 11) 8), 6=-9 (LC 9), 7=- C 1), 6=45 (LC 1), 7=	5) 6) 7) d or 8) ; 9) ; 288	This truss ha chord live loa All bearings : capacity of 5 Provide mec bearing plate 6, 56 lb uplift Beveled plate surface with This truss is International R802.10.2 ar	s been designed for denonconcurrent ware assumed to be 65 psi. hanical connection capable of withsta at joint 2 and 85 lk e or shim required truss chord at joint designed in accord Residential Code s and referenced stand Standard	or a 10.0 vith any SP No. (by oth anding 9 o uplift a to provi- (s) 2. ance w sections dard AN) psf bottom other live load 2 crushing ers) of truss to Ib upliff at joi to upliff at joi to upliff at joint 7. de full bearing ith the 2018 R502.11.1 at ISI/TPI 1.	ds. ont J						
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-5/0, 2-4=-196/1 5-6=-37/59 2-7=-43/58, 6-7=-43/ 4-7=-219/389	pression/Maximum 04, 4-5=-54/53, /58												
NOTES 1) Wind: AS(Vasd=91n Ke=1.00; exterior zz Exterior(2 exposed; members Lumber D 2) Truss des only. For see Stand or consult 3) Gable req 4) Gable stu	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCI Cat. II; Exp C; Enclose one and C-C Corner(3E N) 4-1-8 to 5-2-4 zone; end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO igned for wind loads in studs exposed to wind ard Industry Gable Enc qualified building desig uires continuous bottor ds spaced at 2-0-0 oc.	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop): -0-10-8 to 4-1-8, cantilever left and ri ht exposed;C-C for for reactions shown; L=1.60 the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP n chord bearing.	e) ight ; , le, 11.							-		ATE OF M SEVI SEVI PE-20010 FE-20010	L ENGL	

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 3) Gable requires continuous bottom chord bearing.
 4) Gable studs spaced at 2-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 189	
P240953-01	G2	Monopitch	6	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. The Sep 121: 391 4/2024 ID:Lad?h4DiLWAXSGynzHPcKezbjFp-RfC?PsB70Hq3NSgPqnL8w3ulTXbGWrCDoi714297

5-3-8

|--|

Plate Offsets (X, Y): [2:0-2-5,0-0-5]

S

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.67	Vert(LL)	-0.04	2-5	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.34	Vert(CT)	-0.09	2-5	>717	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 23 lb	FT = 20%
LUMBER			6) One H2.51	Simpson Strong-T	Fie conneo	ctors						
TOP CHORD	2x4 SP No.2		recommen	ded to connect trus	ss to bear	ng walls due	e to					
BOT CHORD	2x4 SP No.2		UPLIFT at	jt(s) 2. This connect	ction is for	uplift only a	nd					
WEBS	2x3 SPF No.2		does not c	onsider lateral force	es.							
SLIDER	Left 2x4 SP No.2 2	2-8-6	This truss	is designed in acco	ordance w	ith the 2018						
BRACING			Internation	al Residential Code	e sections	R502.11.1 a	and					
TOP CHORD	Structural wood she	athing directly applie	ed or R802.10.2	and referenced sta	andard AN	ISI/TPI 1.						
	5-3-8 oc purlins, ex	cept end verticals.	LOAD CASE(S	 Standard 								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	C									
	bracing.											
REACTIONS	(size) 2=0-3-8, 5	5= Mechanical										
	Max Horiz 2=98 (LC	9)										
	Max Uplift 2=-86 (LC	28), 5=-59 (LC 12)										
	Max Grav 2=300 (L0	C 1), 5=228 (LC 1)										
FORCES	(lb) - Maximum Com	pression/Maximum										
	1-25/0 2-4133/7	78 4-5176/267										
BOT CHORD	2-543/47	0, 4 0= 110/201										
NOTES	2 0= +0/+1											
NUIES	CE 7 16: \/ult_115mph	(2 accord quat)										
Vacd_01	mb: TCDI =6 Opef: BC	DI -6 Opef: b-35ft										
Ke=1 00.	Cat II: Exp C: Enclose	d MWFRS (envelor	ne)									
exterior z	one and C-C Exterior(2	PF) -0-10-8 to 4-1-8	,									The second se
Interior (1) 4-1-8 to 5-2-4 zone: c	antilever left and rid	ht								A TI	and the second
exposed :	end vertical left and rid	ght exposed;C-C for									F. OF I	VIISS W
members	and forces & MWFRS	for reactions shown	,							4	A	NS
Lumber D	OL=1.60 plate grip DO	L=1.60								H	SCOT	TM XPN
2) This truss	has been designed for	r a 10.0 psf bottom								B	SEV	FR YY
chord live	load nonconcurrent wi	th any other live loa	ds.							RI		
Bearings	are assumed to be: Joi	nt 2 SP No.2 crushi	ng							h		
capacity of	of 565 psi.									Х.	1 the	Xania
Refer to g	girder(s) for truss to trus	ss connections.									NUM	

- Refer to girder(s) for truss to truss connecti 4)
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 59 lb uplift at joint 5.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

September 13,2024

PE-2001018807

SIONAL

E

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 189	AS NOTED FOR PLAN REVIEW
P240953-01	G3	Monopitch	6	1	Job Reference (optional	I68187653 LEE'S SUMMIT, MISSOURI

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. The Sep 121: 3914 4/2024 ID:HzII5IEyt7QFia695iR4P3zbjFn-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCD0i7J4zJe?

3-3-8

Scale = 1:27 Plate Offsets (X, Y): [2:0-2-5.0-0-5]

(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15	CSI TC BC	0.23	DEFL	in	(loc)	l/defl	l /d		CPIP
25.0 10.0 0.0 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15	TC	0.23			· · ·		La	ILAILS	GINI
10.0 0.0 10.0	Lumber DOL Rep Stress Incr	1.15	BC .	0.20	Vert(LL)	-0.01	2-5	>999	240	MT20	197/144
0.0 10.0	Rep Stress Incr		DC	0.12	Vert(CT)	-0.01	2-5	>999	180		
10.0		YES	WB	0.00	Horz(CT)	0.00	5	n/a	n/a		
	Code	IRC2018/TPI2	2014 Matrix-P							Weight: 15 lb	FT = 20%
2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 1 Structural wood shee 3-3-8 oc purlins, exc Rigid ceiling directly	I-7-12 athing directly applie sept end verticals. applied or 10-0-0 or	6) One recc UPL doe 7) This Inte ed or R80 LOAD C	H2.5T Simpson Strong- immended to connect tru IFT at jt(s) 2. This conne s not consider lateral forc truss is designed in acc mational Residential Coc 2.10.2 and referenced st :ASE(S) Standard	Tie connect liss to bearing ection is for ces. ordance wind de sections candard AN	tors ng walls due uplift only ar th the 2018 R502.11.1 a SI/TPI 1.	to nd and					
bracing. (size) 2=0-3-8, 5	= Mechanical										
Max Horiz 2=66 (LC Max Uplift 2=-71 (LC Max Grav 2=213 (LC	9) 8), 5=-35 (LC 12) 1), 5=135 (LC 1)										
(lb) - Maximum Com Tension	pression/Maximum										
1-2=-5/0, 2-4=-85/52	2, 4-5=-103/166										
2-3=-29/32											
2E 7-16; Vult=115mph hph; TCDL=6.0psf; BCI Cat. II; Exp C; Enclosed one and C-C Exterior(2) exposed ; end vertical lo C-C for members and for shown; Lumber DOL=1 has been designed for load nonconcurrent with	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever I eft and right orces & MWFRS for 1.60 plate grip r a 10.0 psf bottom th any other live load	be) eft ds.								STE OF M	MISSOLAL I M. ER
	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 1 Structural wood shea 3-3-8 oc purlins, exx Rigid ceiling directly bracing. (size) 2=0-3-8, 5 Max Horiz 2=66 (LC Max Uplift 2=-71 (LC Max Grav 2=213 (LC (Ib) - Maximum Com Tension 1-2=-5/0, 2-4=-85/52 2-5=-29/32 CE 7-16; Vult=115mph ph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ine and C-C Exterior(2 exposed ; end vertical I Shown; Lumber DOL=1 has been designed for load nonconcurrent wi	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 1-7-12 Structural wood sheathing directly applied 3-3-8 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 or bracing. (size) 2=0-3-8, 5= Mechanical Max Horiz 2=66 (LC 9) Max Uplift 2=-71 (LC 8), 5=-35 (LC 12) Max Grav 2=213 (LC 1), 5=135 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-2=-5/0, 2-4=-85/52, 4-5=-103/166 2-5=-29/32 CE 7-16; Vult=115mph (3-second gust) nph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp C; Enclosed; MWFRS (envelop ne and C-C Exterior(2E) zone; cantilever I exposed ; end vertical left and right C-C for members and forces & MWFRS for shown; Lumber DOL=1.60 plate grip has been designed for a 10.0 psf bottom load nonconcurrent with any other live load re assumed to be: Joint 2 SP No 2 crushil	 6) One recc. 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 1-7-12 Structural wood sheathing directly applied or 3-3-8 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. (size) 2=0-3-8, 5= Mechanical Max Horiz 2=66 (LC 9) Max Uplift 2=-71 (LC 8), 5=-35 (LC 12) Max Grav 2=213 (LC 1), 5=135 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-2=-5/0, 2-4=-85/52, 4-5=-103/166 2-5=-29/32 CE 7-16; Vult=115mph (3-second gust) nph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) me and C-C Exterior(2E) zone; cantilever left exposed ; end vertical left and right C-C for members and forces & MWFRS for shown; Lumber DOL=1.60 plate grip has been designed for a 10.0 psf bottom load nonconcurrent with any other live loads. tre assumed to be: .loint 2 SP No 2 crusbing 	 2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 1-7-12 Structural wood sheathing directly applied or 3-3-8 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. (size) 2=0-3-8, 5= Mechanical Max Horiz 2=66 (LC 9) Max Uplift 2=-71 (LC 8), 5=-35 (LC 12) Max Grav 2=213 (LC 1), 5=135 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-2=-5/0, 2-4=-85/52, 4-5=-103/166 2-5=-29/32 CE 7-16; Vult=115mph (3-second gust) nph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) one and C-C Exterior(2E) zone; cantilever left exposed ; end vertical left and right C-C for members and forces & MWFRS for shown; Lumber DOL=1.60 plate grip has been designed for a 10.0 psf bottom load nonconcurrent with any other live loads. tre assumed to be: Joint 2 SP No.2 crusbing 	 2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 1-7-12 Structural wood sheathing directly applied or 3-3-8 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. (size) 2=0-3-8, 5= Mechanical Max Horiz 2=66 (LC 9) Max Horiz 2=66 (LC 9) Max Grav 2=213 (LC 1), 5=-35 (LC 12) Max Grav 2=213 (LC 1), 5=-35 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-2=-5/0, 2-4=-85/52, 4-5=-103/166 2-5=-29/32 CE 7-16; Vult=115mph (3-second gust) nph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) one and C-C Exterior(2E) zone; cantilever left exposed ; end vertical left and right C-C for members and forces & MWFRS for shown; Lumber DOL=1.60 plate grip has been designed for a 10.0 psf bottom load nonconcurrent with any other live loads. are assumed to be; Joint 2 SP No.2 crushing 	 6) One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due UPLIFT at jt(s) 2. This connection is for uplift only at does not consider lateral forces. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 a R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard (size) 2=0-3.8, 5= Mechanical Max Horiz 2=66 (LC 9) Max Uplift 2=-71 (LC 8), 5=-35 (LC 12) Max Grav 2=213 (LC 1), 5=135 (LC 1) (b) - Maximum Compression/Maximum Tension 1-2=-5/0, 2-4=-85/52, 4-5=-103/166 2-5=-29/32 2E 7-16; Vult=115mph (3-second gust) ph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp C; Enclosed; MWFRS for shown; Lumber DOL=1.60 plate grip has been designed for a 10.0 psf bottom load nonconcurrent with any other live loads. are assumed to be : Joint 2 SP No.2 crushing 	 6) One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard (size) 2=0-3-8, 5= Mechanical Max Horiz 2=66 (LC 9) Max Uplift 2=-71 (LC 8), 5=-35 (LC 12) Max Grav 2=213 (LC 1), 5=135 (LC 1) (b) - Maximum Compression/Maximum Tension 1-2=-5/0, 2-4=-85/52, 4-5=-103/166 2-5=-29/32 2E 7-16; Vult=115mph (3-second gust) ph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp C; Enclosed; MWFRS for shown; Lumber DOL=1.60 plate grip has been designed for a 10.0 psf bottom load nonconcurrent with any other live loads. are assumed to be: Joint 2 SP No.2 crushing 	 6) One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connectors is for uplift only and does not consider lateral forces. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. IADD CASE(S) Standard IAD	 2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 1-7-12 Structural wood sheathing directly applied or 3-3-8 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. (size) 2=0-3-8, 5= Mechanical Max Horiz 2=66 (LC 9) Max Grav 2=213 (LC 1), 5=-135 (LC 12) (lb) - Maximum Compression/Maximum Tension 1-2=-5/0, 2-4=-85/52, 4-5=-103/166 2-5=-29/32 2E 7-16; Vult=115mph (3-second gust) phy. TCDL=6.0psf; BCDL=6.0psf; h=35f; Cat. II; Exp C; Enclosed; MWFRS (envelope) ine and C-C Exterior(2E) zone; cantilever left two rest and forces & MWFRS for shown; Lumber DOL=1.60 plate grip has been designed for a 10.0 psf bottom load nonconcurrent with any other live loads. are assumed to be b. Joint 2 SP No.2 crushing 	 6) One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 6) One H2.5T Simpson Strong-Tie connectors for uplift only and does not consider lateral forces. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Comparison Strong-Tie connectors for uplift only and does not consider lateral forces. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Comparison Strong-Tie connectors for uplift on the providence of t	 2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 - 1.7-12 6) One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at [t](s) Z. This connection is for uplift only and does not consider lateral forces. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Kora Z=213 (LC 1), 5=135 (LC 1) (b) - Maximum Compression/Maximum Tension 1:2=-5/0, 2:4=-85/52, 4:5=-103/166 2:5=-29/32 25 7-16; Vult=115mph (3-second gust) ph; TCDL=6.0pst; BCDL=6.0pst; h=-35ft; cat. II; Exp. Cisnclosed; MWFRS for shown; Lumber DOL=1.60 plate grip has been designed for a 10.0 psf bottom load nonconcurrent with any other live loads.

- capacity of 565 psi. Refer to girder(s) for truss to truss connections. 4)
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 35 lb uplift at joint 5.

NUMBER

PE-2001018807

September 13,2024

E

SSIONAL

0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permenter is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qtv	Plv	Roof - HT Lot 189	AS NOTED FOR PLAN REVIEW
						DEVELOPMENT SERVICES 168187654
P240953-01	J1	Jack-Open	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

4-0-11

Scale = 1:29.6

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. The Sep 1214:339/1 4/269:24 ID:?uMXCAMDWChqu6t4godQpAzbjFd-RfC?PsB70Hq3NSgPqnL8w3uITXbsKWrCDorrJzz027f 7-11-4 3 12 5 Г 3x4 🚅 6 2 3x4 🚅 4-0-11 Ð Fet 5 1 0-6-0 4

7-11-4 Plate Offsets (X, Y): [1:0-2-8.0-0-4]

3x6 II

-late Olisets (A, T). [1.0-2-0,0-0-4]												
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.71 0.83 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.23 -0.46 0.04	(loc) 1-4 1-4 3	l/defl >410 >205	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
BCDI	10.0	Code	IRC2018/TPI2014	Matrix-P	0.00	11012(01)	0.04	0	n/a	n/a	Weight: 31 lb	FT = 20%	
LUMBER TOP CHORD SOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP 2400F 2.0E 2x4 SP No.2 Left 2x4 SP No.2 4 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=0-5-8, 3 Mechanic Max Horiz 1=163 (LC Max Uplift 1=-39 (LC Max Grav 1=354 (LC (LC 3)	4-4-4 athing directly applie applied or 9-2-10 oc 3= Mechanical, 4= al C 12) 12), 3=-163 (LC 12) C 1), 3=276 (LC 1), 4	<pre>6) One H2. recomm UPLIFT does not 7) This trus Internatii R802.10 LOAD CASE</pre>	5T Simpson Strong-T anded to connect trus at jt(s) 1. This connec consider lateral force s is designed in acco onal Residential Codu .2 and referenced sta (S) Standard	Fie connect ss to beari ction is for es. ordance wi e sections andard AN	tors ng walls due uplift only ar th the 2018 R502.11.1 a SI/TPI 1.	to nd				weight. 31 lb	FT = 20%	
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD BOT CHORD	1-3=-143/84 1-4=0/0												
VOTES Vasd=91m Ke=1.00; C exterior zo Interior (1) exposed; members; Lumber DC 2) This truss chord live 3) Bearings a capacity of Refer to gi 5) Provide m	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ne and C-C Exterior(2 5-0-0 to 7-10-8 zone; end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO has been designed for load nonconcurrent wi are assumed to be: , Jc f 565 psi. rder(s) for truss to trus echanical connection ((3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-0-0 to 5-0-0, cantilever left and rig pht exposed;C-C for for reactions shown; L=1.60 a 10.0 psf bottom th any other live load oint 1 SP No.2 crush as connections. by others) of truss to	e) ght ds. ing								STATE OF M SCOTT SEVI PE-20010	MISSOUR ER DISSOURCE ER	

5 bearing plate capable of withstanding 163 lb uplift at joint 3.

SSIONAL E

September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 189	AS NOTED FOR PLAN REVIEW
P240953-01	J2	Jack-Open	6	1	leh Deference (entional	I68187655
			-		Job Reference (optional	

Plate

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. The Sep 121: 339 1 4/20 24 ID:t03dTkC3aC2gr7NaPZuNnRzbjFq-RfC?PsB70Hq3NSgPqnL8w3ulTXbGr WrCDoi7J4209?

	L	7-11-	4		
Scale = 1:32.4				1	
Plate Offsets (X, Y): [2:0-2-8,0-0-4]					

														_
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	1.00 0.83 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.23 -0.46 0.06	(loc) 2-5 2-5 4	l/defl >410 >205 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 33 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP 1650F 1.5E 2x4 SP No.2 Left 2x4 SP No.2 4 Structural wood she Rigid ceiling directly bracing. (size) 2=0-5-8, 4 Mechanic Max Horiz 2=160 (LC Max Uplift 2=-62 (LC Max Grav 2=419 (LC	4-4-4 athing directly applie applied or 9-2-10 oc 4= Mechanical, 5= al 2 12) 2 12), 4=-162 (LC 12) 2 1), 4=-272 (LC 1), 5	6) 7) d. =158	One H2.5T S recommende UPLIFT at jt(does not con This truss is International R802.10.2 at DAD CASE(S)	impson Strong-Tie ed to connect truss s) 2. This connect s) 2. This connect sider lateral forces designed in accord Residential Code nd referenced stan Standard	e connec to beari ion is for s. dance wi sections idard AN	ctors ng walls due uplift only ar th the 2018 R502.11.1 a ISI/TPI 1.	to nd						
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASI Vasd=91T Ke=1.00; exterior zr Interior (1 exposed ; members Lumber D 2) This truss chord live 3) Bearings capacity C	(b) - Maximum Com Tension 1-2=-6/0, 2-4=-142/8 2-5=0/0 CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2)) 4-1-8 to 7-10-8 zone; end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO has been designed for load nonconcurrent wi are assumed to be: , Jo of 565 psi.	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-10-8 to 4-1-8, cantilever left and rig ht exposed; C-C for for reactions shown; L=1.60 th any other live loac pint 2 SP No.2 crushi es connections	e) ght Is. ing							6		STATE OF M STATE SCOT SEVI	MISSOLIP T.M. ER	>
5) Provide m	echanical connection (by others) of truss to)								VY 7	PE 2001	11007	

bearing plate capable of withstanding 162 lb uplift at joint 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

E

PSSIONAL

September 13,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Otv	Plv	Roof - HT Lot 189	AS NOTED FOR PLAN REVIEW
005	11033		Guy	1 19		DEVELOPMENT SERVICES
P240953-01	J3	Jack-Open	2	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Scale = 1:30.2

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. The Sep 121: 339/14/269:24 ID:tO3dTkC3aC2gr7NaPZuNnRzbjFq-RfC?PsB70Hq3NSgPqnL8w3ulTXbGr WrCDoi7J4209?

	5-10-3	
Y): [2:0-2-8,0-0-4]		

Plate Offsets ((X, Y): [2:0-2-8,0-0-4]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2	CSI TC BC WB 014 Matrix-P	0.76 0.43 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.13 0.02	(loc) 2-5 2-5 4	l/defl >999 >516 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 3 Structural wood she 5-10-3 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 4 Mechanic Max Horiz 2=122 (LC Max Uplift 2=-50 (LC Max Grav 2=326 (LC (LC 3) (lb) - Maximum Com	3-2-11 athing directly applie applied or 10-0-0 oc 4= Mechanical, 5= al C 12) C 12, 4=-121 (LC 12) C 1), 4=198 (LC 1), 5 upression/Maximum	6) One recc UPL doe 7) This Inte R80 LOAD C	H2.5T Simpson Strong- mmended to connect trus IFT at jt(s) 2. This connect s not consider lateral forci- truss is designed in acco national Residential Cod 2.10.2 and referenced sta ASE(S) Standard	Fie connect ss to beari ction is for es. ordance wi e sections andard AN	tors ing walls due uplift only a ith the 2018 R502.11.1 a ISI/TPI 1.	to nd and					
TOP CHORD BOT CHORD	Tension 1-2=-6/0, 2-4=-116/6 2-5=0/0	50										
NOTES 1) Wind: AS(Vasd=91n Ke=1.00; d exterior zc Interior (1) exposed; members Lumber Dr 2) This truss chord live 3) Bearingsa capacity o 4) Refer to g 5) Provide m bearing pla joint 4.	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 4-1-8 to 5-9-7 zone; c end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO load nonconcurrent wi are assumed to be: , Jc of 565 psi. irder(s) for truss to trus nechanical connection (late capable of withstar	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) -010-8 to 4-1-8, cantilever left and righ ght exposed;C-C for for reactions shown; u=1.60 th any other live load oint 2 SP No.2 crushi as connections. (by others) of truss to adding 121 lb uplift at	e) ht Is. ing								STATE OF I SCOT SEV	MISSOLUE T.M. HER 018807

September 13,2024

Mittek 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 189	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
P240953-01	J4	Jack-Open	2	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

2-4-4

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. The Sep 121: 391 4/2024 ID:Lad?h4DiLWAXSGynzHPcKezbjFp-RfC?PsB70Hq3NSgPqnL8w3ulTXbGWrCDoi7342927

3x6 II

3-10-3

Scale = 1:28.3

Plate Offsets (X, Y): [2:0-2-8,0-0-4]

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.29	Vert(LL)	-0.01	2-5	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.17	Vert(CT)	-0.02	2-5	>999	180			
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	4	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 17 lb	FT = 20%	
LUMBER	· · · ·		6) One H2.5T	Simpson Strong-Tie	conne	ctors							
TOP CHORD	2x4 SP No.2		recommend	ed to connect truss	to bear	ng walls due	to						
BOT CHORD	2x4 SP No.2		UPLIFT at ji	(s) 2. This connection	on is foi	uplift only a	nd						
SLIDER	Left 2x4 SP No.2	2-1-11	does not co	nsider lateral forces.									
BRACING	RACING 7) This truss is designed in accordance with the 2018												
TOP CHORD	OP CHORD Structural wood sheathing directly applied or International Residential Code sections R502.11.1 and Residential Code sections R502.11.1 and Residential Code sections R502.11.1 and Residential Residentia Residentia Residential Residential Residentia Residentia R												
3-10-3 oc purlins. R802.10.2 and referenced standard ANSI/TPI 1.													
BOT CHORD	DT CHORD Rigid ceiling directly applied or 10-0-0 oc LOAD CASE(S) Standard bracing. Standard Standard												
REACTIONS	(size) 2=0-5-8	4= Mechanical, 5=											
	Max Horiz 2=85 (I)	(12)											
	Max I Inlift 2=-38 (I	C(12) 4 = -81 (C(12))											
	Max Grav 2=239 (1	C(1) = 125 (C(1))	5=76										
	(LC 3)												
FORCES	(lb) - Maximum Co	mpression/Maximum											
	Tension												
TOP CHORD	1-2=-6/0, 2-4=-83/4	10											
BOT CHORD	2-5=0/0												
NOTES													
1) Wind: AS	CE 7-16; Vult=115mp	h (3-second gust)											
Vasd=91r	nph; TCDL=6.0psf; B	CDL=6.0psf; n=35ft;											
conterior 7	cal. II, EXP C, Enclos	2E) zono: contilovor l	off								2000	TOP	
and right	exposed : end vertica	Left and right	en								A OF I	MISCO	
exposed:(C-C for members and	forces & MWFRS for								1	750	-00, W	
reactions	shown; Lumber DOL:	=1.60 plate grip								R	ST SCOT	New Yar	
DOL=1.60)	1 01								R	S SCOL		
2) This truss	has been designed f	or a 10.0 psf bottom								4	SEVI		
chord live	load nonconcurrent v	vith any other live load	ds.							1		0	
3) Bearings	are assumed to be: ,	Joint 2 SP No.2 crush	ling								Catt	Servit	
(A) Refer to a	01 565 PSI.									25	NUM	BER AS	
5) Provide m	prochanical connection	(by others) of truce to	0							N	O PE-2001	018807	
bearing of	ate capable of withst	anding 81 lb uplift at in	pint							V	12	18A	
4.										1	0 Ser	NO'A	
											ONA	LEY	
											lass	DC .	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

314.434.1200 / MiTek-US.com

September 13,2024

					RELEASE FOR CONSTRUCTION
		Otv	DIV	Poof HT Lot 190	AS NOTED FOR PLAN REVIEW
11035	Thuss Type	Giy	i iy		DEVELOPMENT SERVICES
P240953-01 J5	Jack-Open	2	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Thu Sep 1214:330/14/269:24 ID:Lad?h4DiLWAXSGynzHPcKezbjFp-RfC?PsB70Hq3NSgPqnL8w3uITXbG WrCDoi7J4292?f

1-10-3

Scale	= 1	:27.7	

Plate Offsets (X, Y): [2:0-2-8,0-0-4]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.06	Vert(LL)	0.00	2-5	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.04	Vert(CT)	0.00	2-5	>999	180			
BCLL	0.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	4	n/a	n/a			
BCDL	10.0	Code	IRC2018/T	PI2014	Matrix-P		- (-)					Weight: 10 lb	FT = 20%	
		•	6) (One H2 5T S	impson Strong-Tie	connec	ctors							
	D 2x4 SP No 2		0, e	ecommende	d to connect truss	to bear	ing walls due	to						
	D 2x4 SP No 2		Ĺ	JPLIFT at it(s) 2. This connecti	on is for	uplift only an	nd						
	Loft 2v/ SP No 2	1-6-0	d	loes not con	sider lateral forces		apint only an							
	Len 244 OF 100.2	1-0-0	7) T	This truss is o	designed in accord	lance w	ith the 2018							
			ا بي	nternational	Residential Code	sections	R502.11.1 a	nd						
IOP CHUR	OP CHORD Structural wood sheathing directly applied or 1 400 as provides													
	1-10-3 oc purlins.													
	bracing.	y applied of 10-0-0 of	; 20/1	0/102(0)	olandara									
REACTION	S (size) 2=0-5-8,	4= Mechanical, 5=												
	Mechani	cal												
	Max Horiz 2=50 (LC	C 12)												
	Max Uplift 2=-31 (L	C 8), 4=-41 (LC 12)												
	Max Grav 2=158 (L	_C 1), 4=50 (LC 1), 5=	=37											
	(LC 3)													
FORCES	(lb) - Maximum Co Tension	mpression/Maximum												
	D 1-2=-6/0 2-4=-51/2	21												
BOT CHOR	D 2-5=0/0													
NOTES														
1) Wind A	SCE 7-16 [.] Vult=115mp	h (3-second aust)												
Vasd=9	1mph: TCDI =6 0psf: B	CDI = 6.0 psf h = 35 ft												
Ke=1.0): Cat II: Exp C: Enclos	ed: MWFRS (envelor	e)											
exterior	zone and C-C Exterior	2E) zone: cantilever l	eft									and	all	
and right	t exposed : end vertical	l left and right	0.11									A OF M	AISC	
expose	d:C-C for members and	forces & MWFRS for									1	750	-00 W	
reaction	s shown: Lumber DOL=	=1.60 plate grip									R	N/ scom	IN VOI	0
DOL=1	.60	1									4	s scor		N
2) This tru	ss has been designed f	or a 10.0 psf bottom									U,	/ SEVI	EK	. X
chord li	ve load nonconcurrent v	vith any other live load	ds.								W/C		0	C A
3) Bearing	s are assumed to be: , ,	Joint 2 SP No.2 crush	ing							_		catte	Jerl	1
(4) Refer	y ui ooo psi. h airder(s) for truss to tr	uss connections									5	NUM	BER /	58
5) Provide	mechanical connection	(by others) of truss to	C								N	OX PE-2001	018807	8
bearing	plate capable of withsta	anding 41 lb uplift at jo	pint								V	TA	ISE	1
4.											8	SID.	ENOR	
												WNA	L	

September 13,2024

A chesterfield, MO 63017 314.434.1200 / MITek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

											RELEASE	FOR CONSTRUCTION	1
Job	Truss		Truss Type		Qty	Ply	R	oof - HT I	Lot 189		AS NOTE	D FOR PLAN REVIEW	٦
P240953-01	V2		Valley		1	1		oh Refere	nce (on	tional	LEE'S	I68187660 SUMMIT, MISSOURI	
Premier Building Supp	ply (Springhill, KS), S	Spring Hills, KS - 66083,	ļ ·	Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Thu Sep 1214: 330/1 4/2024 ID:Ak_Gx7HSxMwhABPwKYW0avzbjFj.RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoirJ42027f									F
					3-9-6								
				I				I					
								1.5x4	II				
								2					
	_			12				_					
				5				-0					
	C 1 7	7-1-1		/							1-7-2		
				1									
	_							□ 3 ∞∞					
		0											
				3x4 =				1.5x4					
					3-9-6								
Scale = 1:19.5													
Loading	(psf)	Spacing	2-0-0	CSI	0.40	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCDL	25.0 10.0	Lumber DOL	1.15	BC	0.19	Vert(LL) Vert(TL)	n/a n/a	-	n/a n/a	999	WIT20	244/190	
BCLL BCDL	0.0 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-P	0.00	Horiz(TL)	0.00	3	n/a	n/a	Weight: 11 lb	FT = 20%	
			8) This trus	s is designed in accorda	nce wit	h the 2018			-				
BOT CHORD 2x4 WEBS 2x3	4 SP No.2 4 SP No.2 3 SPF No.2		R802.10 LOAD CASE	2.2 and referenced standa (S) Standard	ard ANS	SI/TPI 1.	and						
BRACING TOP CHORD Str	ructural wood she	athing directly applied	d or										
BOT CHORD Rig	gid ceiling directly acing.	applied or 10-0-0 oc											
REACTIONS (size	e) 1=3-9-6, 3 (Horiz 1=58 (LC	3=3-9-6 9)											
Max	(Uplift 1=-23) (LC)	C 12), 3=-35 (LC 12)											
FORCES (lb)) - Maximum Corr	pression/Maximum											
TOP CHORD 1-2	2=-76/52, 2-3=-10	4/123											
NOTES	3=-20/28												
 Wind: ASCE 7- Vasd=91mph; 	-16; Vult=115mph TCDL=6.0psf; BC	i (3-second gust) :DL=6.0psf; h=35ft;											
Ke=1.00; Cat. I exterior zone a	II; Exp C; Enclose and C-C Exterior(2	ed; MWFRS (envelope 2E) zone; cantilever le	e) ft										
and right exposed;C-C for	sed ; end vertical or members and f	left and right orces & MWFRS for										The	
reactions show DOL=1.60	n; Lumber DOL=	1.60 plate grip									OF I	MISS	
2) Truss designed	d for wind loads in s exposed to wind	the plane of the trus	6							6	ATE	1300	

- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 4)
- 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing 6)

capacity of 565 psi. 7)

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 23 lb uplift at joint 1 and 35 lb uplift at joint 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

							RELEASE FOR CONSTRUCTION
	Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 189	AS NOTED FOR PLAN REVIEW
		1/0					DEVELOPMENT SERVICES 168187661
	P240953-01	V3	Valley	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083, Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Th							Sep 1214:3:10 1 / / Pag: 1 /

ID:Ak_Gx7HSxMwhABPwKYW0avzbjFj-RfC?PsB70Hq3NSgPqnL8w3uITXbgKWrCDoirJ4zd?f

0-9-2

3

3x4 🚅

Scale = 1:21.7

Plate Offsets (X, Y): [2:Edge.0-1-15]

	,, i): [2::Edg0;0 i i0	1											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.02 0.01 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 5 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood shee 1-9-15 oc purlins, e: Rigid ceiling directly bracing. (size) 1=1-9-6, 3 Max Horiz 1=19 (LC Max Uplift 1=-8 (LC Max Grav 1=44 (LC (b) - Maximum Com	athing directly applie xcept end verticals. applied or 10-0-0 oc 3=1-9-6 9) 12), 3=-12 (LC 12) 1), 3=44 (LC 1) norression/Maximum	7) 8) d or LO	Provide mect bearing plate and 12 lb upl This truss is International R802.10.2 ar PAD CASE(S)	nanical connection capable of withs ift at joint 3. designed in acco Residential Cod- nd referenced sta Standard	on (by oth standing 8 ordance w e sections andard AN	ers) of truss t Ib uplift at joi ith the 2018 R502.11.1 a ISI/TPI 1.	o int 1 nd					
 TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91n Ke=1.00; (exterior zc and right e exposed;C reactions s DOL=1.60 2) Truss desi only. For i see Stand or consult 3) Gable requilibrication (4) Gable studies chord live 6) All bearing capacity or consult 	Tension 1-2=-25/17, 2-3=-34, 1-3=-9/9 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical 1 C-C for members and for shown; Lumber DOL=1 igned for wind loads in studs exposed to wind ard Industry Gable End qualified building desig uires continuous bottor ds spaced at 4-0-0 oc. has been designed for load nonconcurrent wi is are assumed to be S f 565 psi.	 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever left and right orces & MWFRS for 1.60 plate grip the plane of the trus (normal to the face) d Details as applicab gner as per ANSI/TP m chord bearing. r a 10.0 psf bottom th any other live load SP No.2 crushing 	e) eft s , le, l 1. is.							2		STATE OF M SCOT SEVI NUM PE-2001	MISSOLUE T.M. ER BER 018807

September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.28 0.12 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC2	018/TPI2014	Matrix-P							Weight: 27 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=7-7-8, 3 Max Horiz 1=-80 (LC Max Uplift 1=-44 (LC Max Grav 1=186 (LC (LC 1)	athing directly applie applied or 10-0-0 oc 3=7-7-8, 4=7-7-8 3 8) 5 (2), 3=-54 (LC 13) C 1), 3=186 (LC 1), 4	ed or ;; =246	 All bearings capacity of 8) Provide me bearing plat 1 and 54 billion 9) This truss is Internationa R802.10.2 distribution LOAD CASE(S) 	are assumed to 565 psi. chanical connec e capable of witi uplift at joint 3. designed in acr I Residential Co and referenced s) Standard	be SP No. tion (by oth hstanding 4 cordance w de sections tandard AN	2 crushing ers) of truss 4 lb uplift at ith the 2018 R502.11.1 a ISI/TPI 1.	to joint and					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-132/76, 2-3=-12	25/83											
BOT CHORD WEBS	1-4=-19/63, 3-4=-19/ 2-4=-160/87	/63											

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing. 4)

5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 189	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
P240953-01	V5	Valley	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springh	I Sep 1214:73:0/14/2024					

1-10-11

0-0-0

2-2-6

Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,

or consult qualified building designer as per ANSI/TPI 1.

and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for

reactions shown; Lumber DOL=1.60 plate grip

Gable requires continuous bottom chord bearing.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Gable studs spaced at 4-0-0 oc.

DOL=1.60

3)

4)

5) 6)

5-2-11

.

Scale = 1:25.6													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TF	PI2014	CSI TC BC WB Matrix-P	0.13 0.05 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 5-3-4 oc purlins. Rigid ceiling directly bracing.	athing directly applie applied or 10-0-0 oc	7) Al ca 8) Pr be 1 i d or 9) Tr Int ; Rt LOAD	l bearings a apacity of 5 ovide mecl earing plate and 35 lb u his truss is of ternational 802.10.2 ar o CASE(S)	are assumed to b 65 psi. hanical connectii capable of withs plift at joint 3. designed in acco Residential Cod nd referenced sta Standard	be SP No. on (by oth standing 2 ordance wi le sections andard AN	2 crushing ers) of truss t 9 lb uplift at j ith the 2018 i R502.11.1 a ISI/TPI 1.	o oint nd					
REACTIONS	(size) 1=5-2-11, Max Horiz 1=-52 (LC Max Uplift 1=-29 (LC Max Grav 1=121 (LC (LC 1)	3=5-2-11, 4=5-2-11 8) 12), 3=-35 (LC 13) 1), 3=121 (LC 1), 4	=160										
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	(Ib) - Maximum Com Tension 1-2=-86/57, 2-3=-81. 1-4=-12/41, 3-4=-12 2-4=-104/67 ed roof live loads have	pression/Maximum /62 /41 been considered for											
2) Wind: ASC Vasd=91m Ke=1.00; C exterior zo and right e	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ne and C-C Exterior(2 exposed ; end vertical C for members and f	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le left and right	e) eft								Å	ATE OF I	MISSOL

C

SCOTT M.

SEVIER

PE-2001018807

September 13,2024

NUM

HESSIONAL ET

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

								RELEASE FOR CONSTRUCTION
1	lob	Trucc			Otv	Dhy	Boof HT Lot 190	AS NOTED FOR PLAN REVIEW
	300	11055	Truss Type		Quy	гіу	K001 - H1 L01 109	DEVELOPMENT SERVICES
	P240953-01	V6	Valley		1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083, ID:Ak_Gx7HSxMwhABPwKYW0avzbjFj-RfC?PsB70Hq3NSgPqnL8w3ulTXbG								I Sep 1214:7330/14/200:24

2-9-14 1-4-15 2-5-12 1 1-4-15 1-0-13 0-4-2

Scale = 1:24.7

Plate Offsets (X, Y): [2:0-2-0,Edge]

Liading (esf) prise Grip D2.4-0. TCL (roof) 25.0 Parts Grip D2.4-0. TCL (roof) 25.0 Parts Grip D2. 11.5 C 0.08 PC (PURL) n/a - in a grip MT20 244/190 Weight 2 in a maximum for a ma														
TCLL (rodo) 250 TCD. 115 RCD. 100 RCD. 115 RCD. 100 RCD. 115 RCD. 100 RCD. 115 RCD. 100 RCD. 115 RCD. 100 RCD. 115 RCD. 100 RCD. 100	Loading	(psf	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	I/d	PLATES	GRIP	
TCDL 10.0 Lumber DOL 1.15 BC 0.00 Veright: na - na 999 BCDL 10.0 Code YES Weight: 8 Frage Stress Incr YES BCDL 10.0 Code YES Weight: 8 Frage Stress Incr Yes 0.00 3 Na na - na - na na - na	TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.03	Vert(LL)	n/a	(.00)	n/a	999	MT20	244/190	
BCLL 0.0 Rep Stress Incr YES WB 0.00 Horiz(TL) 0.00 3 r/a Neight: 8 ib FT = 20% BCDL UMBER Stress Incr YES Mark-P Mark-P 0.00 3 r/a r/a Neight: 8 ib FT = 20% C0P CHORD 2:45 PN to 2 Structural wood sheathing directly applied or 10:0-0:0 combrands 10:10 11 11 11 11 11 11 11 11 11 11 11 11 1	TCDL	10.0) Lumber DOL	1.15	BC	0.05	Vert(TL)	n/a	-	n/a	999			
BCDL 10.0 Code IRC2018/TPI2014 Matrix-P Weight: 8 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 Barning Place comparison (10 y others) of truss to bearing place complac	BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a			
 LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 2:10-8 oc purlins. REACTONS (size) 1:2-9-14, 3:2-9-14 Max Horiz 1:24 (LC 12), 3:2-9-14 Max Grav 1:=93 (LC 12, 3:2-9-14 Max Grav 1:=93 (LC 12, 3:2-9-14) Max Grav 1:=93 (LC 13, 3:2-94) Max Grav 1:=93 (LC 13,	BCDL	10.0) Code	IRC2018/TPI2014	Matrix-P							Weight: 8 lb	FT = 20%	
LUMBER DTO CHORD 2x4 SP No.2 BTO CHORD 2x4 SP No.2 BTO CHORD 2x4 SP No.2 BTO CHORD 5x4 SP No.2 BTO CHORD 5x1 Cutural wood sheathing directly applied or 2x1 60 co puring. BTO CHORD Rigid celling directly applied or 10-00 co bracing. REACTIONS (size) 1=2-0-14, 3=2-0-14 Max Uplift 1=-12 (LC 12), 3=-12 (LC 13) Max Grav 1=32 (LC 1), 3=-32 (LC 13) Max SP (LC 1), 3=-32 (LC 14) Max Uplift 1=-12 (LC 12), 3=-12 (LC 13) Max SP (LC 1), 3=-32 (LC 14) Max Uplift 1=-12 (LC 12), 3=-12 (LC 13) Max SP (LC 1), 3=-12 (LC 13) Max SP (LC 1), 3=-13 (LC 13) Max Uplift 1=-12 (LC 12), 3=-12 (LC 13) Max Uplift 1=-12 (LC 13), 4=12 (LC 13)			•	a) a ii										
 LOP CHORD 2:44 SP No.2 BRACING BRACING Structural wood sheathing directly applied or 10-0-0 chracing. REACTONS (iz) 1=2-9-14, 3=2-9-				8) Provide m	echanical connection	on (by othe	ers) of truss	to int						
 BACING 24 SP No.2 This trusts as been designed in carbon spectrum with any other live loads. Thus trusts as been designed of not 2.0 spin stall your spectrum with any other live loads. Thus trusts are spectrum with any other live loads. Thus trusts are spectrum with any other live loads. Thus trusts are spectrum with any other live loads. Thus trusts are spectrum with any other live loads. Thus trusts are spectrum with any other live loads. Thus trusts are spectrum with any other live loads. Thus trusts are spectrum with any other live loads. Thus trusts are spectrum with any other live loads. Thus trusts are assumed to be SP No.2 crushing capacity of S6 psi. 	TOP CHORD	2x4 SP No.2		bearing p	ate capable of with:	standing i	2 ib uplift at j	oint						
 Bracking Bracking Bracking Cherope Alog purifies. Beactions Resource and a setting directly applied or 10-00 combracing. Bracking. Bracking.	BOICHORD	2x4 SP N0.2		9) This truss	is designed in acco	ordance wi	ith the 2018							
 RB02-102 and referenced standard ANS/TP1 1. RB02-102 and referenced standard ANS/TP1 1. LOAD CASE(S) Standard REACTONS (size) 1=2-9-14, 3=2-9-14 Max Upilit 1=-12 (LC 12), 3=-12 (LC 13) Max Grav 1=93 (LC 1), 3=-93 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-3=-11/45 NOTES 10 Unbalanced roof live loads have been considered for this design. 10 Unbalanced roof live loads have been considered for this design. 10 Unbalanced roof live loads have been considered for this design. 10 Unbalanced roof live loads have been considered for this design. 10 Unbalanced roof live loads have been considered for this design. 10 Unbalanced roof live loads have been considered for this design. 10 Unbalanced roof live loads have been considered for this design. 10 Unbalanced roof live loads have been considered for this design. 10 Unbalanced roof live loads have been considered for this design. 10 Unbalanced roof live loads have been considered for this design. 11 Unbalanced for wind loads in the plane of the truss only. For stude seposed : end vertical left and right exposed: cnd vertical left and right exposed: cnd vertical left and right exposed at 40-00 cn. 10 Gable requires continuous botom chord bearing. 10 Gable studs spaced for 4 10.0 pt bottom chord live load onconcurrent with any other live loads. 11 Albearings are assumed to be SP No.2 crushing capacity of 565 psi. 			ah a athin a' dire ath (an ali	Internatio	nal Residential Code	e sections	R502.11.1 a	and						
BOT CHORD Rigid calling directly applied or 10-0-0 oc bracing. LOAD CASE(S) Standard REACTONS (size) 1-2-0-14, 3=2-0-14 Max Nary 1=24 (LC 11) Max toriz 1=24 (LC 11) Max Grav 1=93 (LC 1), 3=93 (LC 1) FORCES FORCES (10) - Maximum Compression/Maximum Tension TOP CHORD 1-3a-11/45 NOTES (10) - Maximum Compression/Maximum Tension TOP CHORD 1-3a-11/45 NOTES (10) - Maximum Compression/Maximum Tension Vixid xSCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0pst; BCDL=6.0pst; h=35t; Ke=1.00; CAI; IE xpc; Cincodes; MWFRS (onvelope) exterior zone and C-C E xterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; end vertical left and right exposed; end vertical left and right exposed; end vertical left and right exposed; end vertical left and right exposed; end vertical left and right exposed; end vertical left and right exposed; end vertical left and right exposed; end vertical left and right exposed; end vertical left and right exposed; end vertical left and right exposed; end vertical le	TOP CHORD	2 10 8 oc purling	sneathing directly appli	R802.10.2	and referenced sta	andard AN	ISI/TPI 1.							
 REACTIONS (size) 1=2-914, 3=2-914 Max Upilit 1=-12 (LC 12), 3=-12 (LC 13) Max Karkor 1=32 (LC), 3=-312 (LC 1) Max Grav 1=30 (LC), 3=-32 (LC) FORCES (b)- Maximum Compression/Maximum Tension TOP CHORD 1-2=-75/56, 2-3=-75/60 BOT CHORD 1-3=-11/45 MOTES 10 Unbalanced roof live loads have been considered for this design. 20 Wind: ASCE 7-16; Vull=115mph (3-second gust) Vasd=91mph; TCDL=6,0pis (EDL=8,0pis (t=-33ft; Ke=1.00; CL tr) (FMISS (envelope)) exterior zone and C-C Exterlor(ZE) zone; cantilever left and right exposed (red vertical left and right exposed) (red vertical left and right exposed). DOL=1.60 31 Truss designed for wind loads in the plane of the truss only. For stude sxposed to wind (normal to the face), see Standard Industry Gables application. Gable requires continuous bottom chord bearing. Gable studies spaced at 4-0-0 oc. Gable studies spaced at 4-0-0 oc. Gable studies spaced at 4-0-0 ps Po.2 crushing capacity of 565 psi. 		Rigid ceiling dire	ctly applied or 10-0-0 o	LOAD CASE	S) Standard									
REACTIONS (size) 1=2-9-14, 3=2-9-14 Max hoir 1=24 (LC 11) Max Grav 1=93 (LC 1), 3=93 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2-75/66, 2-3=-75/60 BOT CHORD 1-2-75/66, 2-3=-75/60 BOT CHORD 1-311/45 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0pst; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; calliever left and right exposed; cord wind (normal to the face); see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. 3) Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face); see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. 4) Gable requires continuous botom chord bearing. 5) Gable stude spaced at 4-0-0 c. 6) This truss has been designed for 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) All bears are assumed to be SP No.2 crushing capacity of 565 psi. 5) All bears are assumed to be SP No.2 crushing capacity of 565 psi.		bracing.												
Max Horiz 1=24 (LC 11) Max Uplift 1=-12 (LC 12), 3=-12 (LC 13) Max Grav 1=32 (LC 1), 3=-33 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1:2=-75/56, 2:3=-75/60 BOT CHORD 1:3=-11/45 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; BCDL=6.0	REACTIONS	(size) 1=2-9-	14. 3=2-9-14											
Max Upift 1-12 (LC 12), 3-12 (LC 13) Max Grav 1=93 (LC 1), 3-93 (LC 1) FORCES ID - Maximum Compression/Maximum Tension TOP CHORD 1-27556, 2-3-75:60 BOT CHORD 1-3=-11:45 NOTES 1) Unblanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vul=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; BCD		Max Horiz 1=24 (LC 11)											
Max Grav 1=93 (LC 1), 3=93 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1:2=-75/56, 2:3=-75/60 BOT CHORD 1:3=-11/45 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0pst; BCDL=6.0pst; h=35ft; Ke=1.0; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(ZE) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANS/TP1 1. 4) Gable stude spaced at 4-0-0 oc. 5) Gable stude spaced at 4-0-0 oc. 6) This tuss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. EVER EVE		Max Uplift 1=-12	(LC 12), 3=-12 (LC 13)											
FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1.22-75/56, 2.3-75/60 BOT CHORD 1.311/45 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; n=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS for reactions shown; Lumber DOL=1.60 palse grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For stude seposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. 4) Gable requires continuous bottom chord bearing. 5) Gable requires continuous bottom chord bearing. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.		Max Grav 1=93 (LC 1), 3=93 (LC 1)											
I 12-2-75/56, 2-375/60 BOT CHORD 1-311/45 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANS/TPT 1. 4) Gable requires continuous bottom chord bearing. 5) Gable studies spaced at 4-0-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 5	FORCES	(lb) - Maximum C	Compression/Maximum											
 Independence of the processing of the p		1 ension	75/60											
NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0pst; BCDL=6.0pst; h=35ft; Ke=1.00; C.A. II; Exp (:: Enclosed; MWFRS (or reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as asplicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced to 4-0-0 cc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. September 13,2024	BOT CHORD	1-2=-13/30, 2-3=	-13/00											
 Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed: MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 4-0-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord bearing. 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 	NOTES													
 1) Initialize the base of the bas	1) Unhalanc	ed roof live loads ha	ave been considered fo	nr										
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; canliever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Gable studes spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 	this desig	n.		//										
Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 4-0-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.	2) Wind: AS	CE 7-16; Vult=115n	nph (3-second gust)											
Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 4-0-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 7) September 13,2024	Vasd=91r	mph; TCDL=6.0psf;	BCDL=6.0psf; h=35ft;											
exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 4-0-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 5) September 13,2024	Ke=1.00;	Cat. II; Exp C; Encl	osed; MWFRS (envelo	pe)										
and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 4-0-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.	exterior z	one and C-C Exterio	or(2E) zone; cantilever	left								- mar	an	
 exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 4-0-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 	and right	exposed ; end vertic	cal left and right	_								OF J	MISCH	
 Beddin's shown, Lumber DOL=1.00 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 4-0-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 	exposed;	C-C for members an	10 TOPCES & IVIVVERS TO	r							1	4 TH	-0.0	2
 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 4-0-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live loads. 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 5) September 13,2024 	DOI = 1.60	n Shown, Lumber DC	L=1.00 plate grip								A	AV AGOT	- Vor	λ
 only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live loads. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. September 13,2024 	 Truss des 	signed for wind load	s in the plane of the tru	SS							a.	S/ SCOT	TM. YA	XV .
see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 4-0-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 7) September 13,2024	only. For	studs exposed to w	ind (normal to the face),							Ø .	SEV		. X
or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 4-0-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. September 13,2024	see Stand	dard Industry Gable	End Details as applica	ble,							10		0	
 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 4-0-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 7) September 13,2024 	or consult	t qualified building d	lesigner as per ANSI/TI	PI 1.							K.		Serl	1.07
 Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. September 13,2024 	 Gable rec 	uires continuous bo	ottom chord bearing.							-	A CO	NUM	BER /A	R
 a) This trass has been designed for a 10.0 psi bottom chord live load nonconcurrent with any other live loads. c) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. September 13,2024 	 Gable stu This true 	ids spaced at 4-0-0	0C.								N	ON PE-2001	018807	A
7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. September 13,2024	o) I NIS Truss	a nas been designed	a lor a 10.0 psr bottom	de							N	The		7
capacity of 565 psi.	7) All hearin	as are assumed to l	he SP No 2 crushing	105.							X	A Ser	NO'A	
September 13,2024	capacity of	of 565 psi.	co c. no.z ordoning									ONA	LEL	
September 13,2024		- 1 -										lac	THE	
												Septembe	r 13,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

							Г	RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - HT Lot	189	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
P240953-01	V7	Valley		1	1	Job Reference	e (optional)	LEE'S SUMMIT, MISSOURI
Premier Building Supply	(Springhill, KS), Spring Hills, KS - 6	66083,	Run: 8.63 S Jul ID:Ak_Gx7HSxM	12 2024 Print: 8 IwhABPwKYW0	.630 S Jul 1 avzbjFj-RfC	2 2024 MiTek Industr ?PsB70Hq3NSgPqnL	ries, Inc. Thu S _8w3uITXbGK\	ep 1214:330/14/2024
		<u> </u>	5-10-8			<u>11-4-14</u>	11-9-0	
			5-10-8	•		0-0-0	0-4-2	
				4x4 =				
				3				
	11-0		1.5x4 u			1.5x4 #	1	

0-0-4

1.5x4 **I**

11-9-0

2

8

1.5x4 🛚

12 10 Г

1

9

3x4 🥠

3x4 💊

10

5

4

6

1.5x4 🛚

Sca	le = '	1.41	3

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	3/TPI2014	CSI TC BC WB Matrix-S	0.21 0.12 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 44 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood shu 6-0-0 oc purlins. Rigid ceiling directly bracing.	eathing directly applie y applied or 10-0-0 oc	3) 4) 5) 6) 7)	Truss design only. For stu see Standar or consult qu Gable requin Gable studs This truss ha chord live loo All bearings capacity of 5	ned for wind loa uds exposed to d Industry Gab ualified building es continuous spaced at 4-0- as been design ad nonconcurra are assumed to 65 psi.	ads in the pl o wind (norm ble End Deta g designer as bottom chor -0 oc. led for a 10.0 ent with any o be SP No.	ane of the tru al to the face ils as applica s per ANSI/T d bearing. D psf bottom other live loa 2 crushing	uss e), ble, PI 1.					
REACTIONS	(size) 1=11-9-C 7=11-9-C Max Horiz 1=128 (L Max Uplift 1=-59 (L 6=-195 (L (LC 20), 19)	, 5=11-9-0, 6=11-9-0,), 8=11-9-0 C 9) C 10), 5=-37 (LC 11), LC 13), 8=-195 (LC 12, C 12), 5=80 (LC 13), 6 7=257 (LC 1), 8=359	8) 2) 9) =359 9) (LC	Provide mec bearing plate 1, 37 lb uplif uplift at joint This truss is International R802.10.2 a	hanical connect capable of wit at joint 5, 195 6. designed in ac Residential Cond referenced	ction (by oth ithstanding 5 i lb uplift at jo ccordance w ode sections standard AN	ers) of truss 59 lb uplift at 50 int 8 and 19 51 ith the 2018 51 R502.11.1 at 10 I/TPI 1.	to joint 5 Ib and					
FORCES	(lb) - Maximum Cor Tension	npression/Maximum	LC	OAD CASE(S)	Standard								
TOP CHORD	1-2=-143/109, 2-3= 4-5=-120/74	-172/125, 3-4=-167/1	18,										
BOT CHORD	1-8=-37/91, 7-8=-3 5-6=-37/91	7/91, 6-7=-37/91,											
WEBS	3-7=-171/17, 2-8=-2	299/292, 4-6=-299/292	2										
NOTES 1) Unbalanc this desig 2) Wind: AS	ed roof live loads have n. CE 7-16 [.] Vult=115mp	e been considered for									F	ATE OF	MISSOL

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-13 to 5-4-13, Interior (1) 5-4-13 to 5-10-13, Exterior(2R) 5-10-13 to 10-10-13, Interior (1) 10-10-13 to 11-4-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.30	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.19	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.07	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S							Weight: 33 lb	FT = 20
LUMBER			7) All bearings	are assumed to	be SP No.	2 crushina						
TOP CHORD	2x4 SP No.2			capacity of 5	65 psi.		5						
BOT CHORD	2x4 SP No.2		8) Provide med	hanical connect	tion (by oth	ers) of truss	to					
OTHERS	2x3 SPF No.2			bearing plate	e capable of with	nstanding 4	12 lb uplift at j	oint					
BRACING				1, 54 lb uplif	t at joint 3 and 1	6 lb uplift a	at joint 4.						
TOP CHORD	Structural wood shea	thing directly applie	ed or ^g) This truss is	designed in acc	cordance w	ith the 2018						
	6-0-0 oc purlins.	5		International	Residential Co	de sections	s R502.11.1 a	and					
BOT CHORD	Rigid ceiling directly a	applied or 10-0-0 or	0	R802.10.2 a	nd referenced s	tandard AN	NSI/TPI 1.						
	bracing.		L	OAD CASE(S)	Standard								
REACTIONS	(size) 1=9-4-3, 3	=9-4-3, 4=9-4-3											
	Max Horiz 1=-100 (LC	C 8)											
	Max Uplift 1=-42 (LC	12), 3=-54 (LC 13),											
	4=-16 (LC	12)											
	Max Grav 1=216 (LC	1), 3=216 (LC 1), 4	1=342										
	(LC 1)												
FORCES	(lb) - Maximum Comp	pression/Maximum											
	Tension												
TOP CHORD	1-2=-180/90, 2-3=-17	7/99											
BOT CHORD	1-4=-23/85, 3-4=-23/8	85											
WEBS	2-4=-210/104												
NOTES													
1) Unbalance	ed roof live loads have b	been considered for	r										
this design	n												

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.
- 4) 5)
- Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

OF MISSO P SCOTT M. SEVIER PE-2001018807 C THE SSIONAL E September 13,2024

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION			
Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 189				
P240953-01	V9	Valley	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI			
Premier Building Supply (Springh	emier Building Supply (Springhill, KS), Spring Hills, KS - 66083, ID:Ak_Gx7HSxMwhABPwKYW0avzbjFj-RfC?PsB70Hq3NSgPqnL8w3ulTXbG								
		3-5-11		1	6-11-6				
		3-5-11			3-1-9 0-4-2				

6-11-6

Scale = 1:28.5

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.23 0.10 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=6-11-6, Max Horiz 1=72 (LC Max Uplift 1=-40 (LC Max Grav 1=168 (LC (LC 1)	athing directly applie applied or 10-0-0 oc 3=6-11-6, 4=6-11-6 9) 2 12), 3=-48 (LC 13) C 1), 3=168 (LC 1), 4	7) 8) d or 9) LO	All bearings capacity of 5 Provide mec bearing plate 1 and 48 lb u This truss is International R802.10.2 an	are assumed to b 65 psi. hanical connectio e capable of withs uplift at joint 3. designed in acco Residential Code nd referenced sta Standard	e SP No. on (by oth standing 4 rdance w e sections undard AN	2 crushing ers) of truss t 0 lb uplift at j ith the 2018 i R502.11.1 a ISI/TPI 1.	o bint nd					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-119/72, 2-3=-1 1-4=-17/57, 3-4=-17/ 2-4=-144/83	npression/Maximum 12/78 /57											

NOTES

1) Unbalanced roof live loads have been considered for this design.

2-11-0

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing.

5)

Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Otv	Plv	Roof - HT Lot 189	AS NOTED FOR PLAN REVIEW
000	11000		Guy	,		DEVELOPMENT SERVICES 168187668
P240953-01	V10	Valley	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springh	hill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Jul 12 2	024 Print: 8.6	630 S Jul 12	2024 MiTek Industries, Inc. Th	
		ID:Ak_Gx7HSxMwhA	BPwKYW0a	vzbjFj-RfC?F	PsB70Hq3NSgPqnL8w3uITXb(
					4.0.40	

2-3-5 2-3-5 4-2-8

1-11-3

4-6-10

Scale	- 1	1.25 /
JUDIE	_	1.2.1.4

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.09 0.04 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 4-7-3 oc purlins. Rigid ceiling directly bracing. (size) 1=4-6-10, Max Horiz 1=-44 (LC Max Uplift 1=-24 (LC Max Grav 1=103 (LC (LC 1) (lb) - Maximum Com Tansion	athing directly applie applied or 10-0-0 or 3=4-6-10, 4=4-6-10 8) 2 12), 3=-30 (LC 13) C 1), 3=103 (LC 1), 4 apression/Maximum	7) 8) d or 9) 2 LC	All bearings capacity of 5 Provide med bearing plate 1 and 30 lb o This truss is International R802.10.2 a	are assumed to 65 psi. thanical conneci- e capable of with uplift at joint 3. designed in acc Residential Co nd referenced s Standard	be SP No. tion (by oth hstanding 2 cordance w de sections tandard AN	2 crushing ers) of truss t 24 lb uplift at j 24 lb uplift at j 25 R502.11.1 a 26 R502.11.1 a 26 R502.11.1 a	to joint and					
TOP CHORD	1-2=-73/49, 2-3=-69	/54											

BOT CHORD 1-4=-10/35, 3-4=-10/35 2-4=-88/59

WFBS

NOTES

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 189	
P240953-01	V11	Valley	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springh	ill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Jul 12 2 ID:Ak_Gx7HSxMwh/	024 Print: 8.6 BPwKYW0a	30 S Jul 12 : vzbjFj-RfC?P	2024 MiTek Industries, Inc. Th sB70Hq3NSgPqnL8w3uITXb(1 Sep 1214:13:1/14/29:24

3x4 =

3x4 💊

2-1-13

Scale = 1:22.7

Plate Offsets (X, Y): [2:0-2-0,Edge]

			-										
Load	dina	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLI	L (roof)	25.0	Plate Grip DOL	1.15	TC	0.02	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCD	L	10.0	Lumber DOL	1.15	BC	0.02	Vert(TL)	n/a	-	n/a	999	-	
BCL	L	0.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCD	L	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 6 lb	FT = 20%
												5	
LUM	BER			8) Provide	mechanical connectio	n (by oth	ers) of truss to						
TOP	CHORD	2x4 SP No.2		bearing	plate capable of withs	tanding 8	Ib uplift at join	t 1					
BOT	CHORD	2x4 SP No.2		and 8 lb	uplift at joint 3.								
BRA	CING			9) This true	is designed in accor	rdance w	th the 2018						
TOP	CHORD	Structural wood she	eathing directly applie	d or Internat	onal Residential Code	e sections	R502.11.1 and	d					
		2-2-7 oc purlins.		R802.10	.2 and referenced sta	ndard AN	ISI/TPI 1.						
BOT	CHORD	Rigid ceiling directly	/ applied or 10-0-0 oc	LOAD CAS	E(S) Standard								
		bracing.											
REA	CTIONS	(size) 1=2-1-13	, 3=2-1-13										
		Max Horiz 1=16 (LC	: 11)										
		Max Uplift 1=-8 (LC	12), 3=-8 (LC 13)										
		Max Grav 1=63 (LC	C 1), 3=63 (LC 1)										
FOR	CES	(lb) - Maximum Cor	npression/Maximum										
		Tension											
TOP	CHORD	1-2=-51/40, 2-3=-5	1/42										
BOI	CHORD	1-3=-7/30											
NOT	ES												
1) l	Jnbalance	ed roof live loads have	e been considered for										
t	his desigr	n.	(a										
2) \	Wind: ASC	CE 7-16; Vult=115mpl	n (3-second gust)										
		npn; ICDL=6.0pst; BC	DL=6.0pst; n=35π;	•)									
r	e=1.00; 0	Cal. II; EXP C; Enclose	2E) zono: contilovor l	e) off									
	and right e	exposed - end vertical	left and right	en								CON	ADD.
f	exposed (C-C for members and	forces & MWFRS for									A OF I	MIS.C.
r	eactions	shown: Lumber DOL=	1.60 plate grip								E	750	- SOLA
[DOL=1.60)									B	SCOT	M N
3) 1	Truss des	igned for wind loads in	n the plane of the trus	S							R		
Ċ	only. For	studs exposed to wind	d (normal to the face)	,							Gr.	SEV.	
5	see Stand	lard Industry Gable Er	nd Details as applicab	ole,							10		
C	or consult	qualified building des	igner as per ANSI/TP	11.							KXX .		··Xa
4) (Gable req	uires continuous botto	om chord bearing.							a de la dela dela dela dela dela dela de		CO NOM	
5) () Gable studs spaced at 4-0-0 oc.												
6)	I NIS truss	nas been designed fo	or a 10.0 pst bottom	1-							N	The second	12H
7)	Chord live	load nonconcurrent w	SP No 2 cruching	IS.							X	1050	G A
() F	All DearIng	JS ALE ASSUMED TO DE	or no.2 crushing									UN ONA	LEFA
, c	ωρασιτή Ο	1 000 pai.										Que	- CS

- chord live load nonconcurrent with any other live loads. 7)
- All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

September 13,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- . Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- 3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.