

RE: P240990

release for construction As noted for plan review development services lee's summit, missouri 10/14/2024

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Site Information:Customer: Clayton PropertiesProject Name: P240990Lot/Block: 162Model: TupeAddress: 1616 SW Buckthorn StreetSubdivision:City: Lee's SummitState: MO

ne: P240990 Model: Tupelo - Transitional 3Car Subdivision: Hawthorne Ridge State: MO

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 45.0 psf Design Program: MiTek 20/20 8.6 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 37 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	168441522	A01	9/26/2024	21	168441542	D02	9/26/2024
2	168441523	A02	9/26/2024	22	168441543	D03	9/26/2024
3	168441524	A03	9/26/2024	23	168441544	D04	9/26/2024
4	168441525	B01	9/26/2024	24	168441545	GR01	9/26/2024
5	168441526	B02	9/26/2024	25	168441546	J01	9/26/2024
6	168441527	B03	9/26/2024	26	168441547	J02	9/26/2024
7	168441528	B04	9/26/2024	27	168441548	J03	9/26/2024
8	168441529	B05	9/26/2024	28	168441549	LG01	9/26/2024
9	168441530	B06	9/26/2024	29	168441550	LG02	9/26/2024
10	168441531	B07	9/26/2024	30	168441551	LG03	9/26/2024
11	168441532	B08	9/26/2024	31	168441552	LG04	9/26/2024
12	168441533	B09	9/26/2024	32	168441553	V01	9/26/2024
13	168441534	B10	9/26/2024	33	168441554	V1	9/26/2024
14	168441535	B11	9/26/2024	34	168441555	V02	9/26/2024
15	168441536	B12	9/26/2024	35	168441556	V2	9/26/2024
16	168441537	B13	9/26/2024	36	168441557	V3	9/26/2024
17	168441538	C01	9/26/2024	37	168441558	V4	9/26/2024
18	168441539	C02	9/26/2024				
19	168441540	CJ01	9/26/2024				
20	168441541	D01	9/26/2024				

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision based on the parameters provided by . Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2025. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Sevier, Scott

									_ [RELEASE	FOR CONSTRUCTION	
Job	Tru	ISS	Truss Type		Qty	Ply				AS NOTE	ED FOR PLAN REVIEW	
P240990	AC	1	Hip Girder		1	1	Job Refer	ence (op	tional	LEE'S	I68441522 SUMMIT, MISSOURI	
Premier Building Su	upply (Springhill, K	S), Spring Hills, KS - 66083	,	Run: 8.63 S Jul 12 20 ID:Rx2ckCi9L9dXFB1	D24 Print: 8 feNPNc3z	.630 S Jul 1 X023-RfC?P	2 2024 MiTek I PsB70Hq3NSgP	ndustries, I qnL8w3ul	Inc. Tus TXbGK	e Sep 24 11: 9:06 WrCDoi7J4zJ9?1	14/2024	-J ,
		-0-10-8	5.0.0		0	C O			45	0.0	146.0.01	
		0-10-8	5-6-0		9- 4-	0-0 0-0			5-6	6-0	1-0-0	
				NAILED	NA	LED	NAILED					
			12 5 F	4x6 u			4x4 =					
3-0-5	2-9-2 2-10-12 2-9-2 0-1-10 0-7-4	1 5x		3 9 8 3x4 II			4 7 3x4 =	11			5 6 5x5 =	
				T U 14.00								
			5 4 40	THJA26	NA				45			
		-	<u>5-4-12</u> 5-4-12		<u>9-</u> 4-	7-4 2-8			<u>15</u> -2	- <u>0-0</u> 1-12		
Scale = 1:35.7 Plate Offsets (X	Y): [2:Edge 0-2	2-0] [5:Edge 0-2-0]										
Loading TCLL (roof) TCDL BCLL BCDL	(psi 25. 10. 0. 10.) Spacing) Plate Grip DOL Lumber DOL) Rep Stress Incr) Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC 0 BC 0 WB 0 Matrix-S	.67 Ver .50 Ver .17 Hor	=L t(LL) - t(CT) - z(CT)	in (loc) -0.06 7-8 -0.11 7-8 0.03 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 61 lb	GRIP 197/144 FT = 20%	_
LUMBER TOP CHORD 2 BOT CHORD 2 WEBS 2 BRACING TOP CHORD 3 BOT CHORD 4 REACTIONS (S M FORCES (TOP CHORD 2 BOT CHORD 2 BOT CHORD 2 BOT CHORD 2 SWEBS 3	2x4 SP No.2 2x6 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood 3-2-15 oc purlins 2-0-0 oc purlins Rigid ceiling dire bracing. ize) 2=0-5 ax Horiz 2=-51 ax Uplift 2=-33 ax Grav 2=124 (lb) - Maximum (1 1-2=0/10, 2-3=-2 4-5=-2304/767, 1 2-8=-613/2020, 1 5-7=-606/2016 3-8=-50/474, 3-7	sheathing directly applie s, except (3-4-13 max.): 3-4. ctly applied or 9-4-1 oc -8, 5=0-5-8 (LC 13) 9 (LC 12), 5=-343 (LC 1 3 (LC 1), 5=1254 (LC 1 Compression/Maximum 309/768, 3-4=-1996/74 5-6=0/14 7-8=-610/2000, =-105/97, 4-7=-55/495	 5) * This truss I on the bottor 3-06-00 tall I chord and at chord and at 6) All bearings capacity of 4 7) Provide mec bearing plate joint 2 and 3 8) This truss is International R802.10.2 a 3) 9) Graphical pu or the orient bottom chord 10) Use Simpso Right Hand I to connect tr 11) 12) Fill all nail ho 13) N/A 	has been designed for m chord in all areas wh by 2-00-00 wide will fit hy other members. are assumed to be SP (25 psi. hanical connection (by e capable of withstandi 43 lb uplift at joint 5. designed in accordance Residential Code sect nd referenced standarn rifin representation dor ation of the purlin along d. n Strong-Tie THJA26 (Hip) or equivalent at 5- uss(es) to back face o	a live loa eere a rec between F No.2 cr others) o ng 339 lb ce with th tions R50 d ANSI/TI ss not dep g the top o THJA26 o 6-6 from o hottom o	d of 20.0ps tangle the bottom ushing of truss to uplift at e 2018 2.11.1 and P1 1. oict the size and/or on 1 ply, the left end, hord.	sf n d d					_

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 5-6-0, Exterior(2E) 5-6-0 to 16-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

14) "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails per NDS guidelines. 15) In the LOAD CASE(S) section, loads applied to the face

of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-3=-70, 3-4=-70, 4-6=-70, 2-5=-20
 - Concentrated Loads (lb) Vert: 3=-104 (B), 4=-104 (B), 8=-340 (B), 7=-340 (B), 10=-104 (B), 12=-32 (B)

September 26,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

													_ [RELEASE	FOR CONSTRUCTION
Job		Truss		Truss Type)		Qty		Ply					AS NOTE DEVEL	ED FOR PLAN REVIEW
P240990		A02		Common			1		1	Job	Refere	nce (op	tional	LEE'S	I68441523 SUMMIT, MISSOURI
Premier Building	Supply (Springhi	II, KS), S	pring Hills, KS - 66083,			Run: 8.63 S Jul 12	2024 Pri	nt: 8.63	30 S Jul 12	2 2024	MiTek In	dustries,	Inc. Tu	e Sep 24 11:49:17	14/2024
						ID:GO2bEdCmVLJ	59GICUJ	кддьт	(U9A-RIC)	PSB70	ндзілъд	PqnL8w3		KWICD017J423C?f	
			-0-10-8		7-6-	0		1				15-0-0			16-0-0
			0-10-8		7-6-	0						7-6-0			1-0-0
								4x6 "							
								3							
					_12)									
					51			\mathbb{H}	\sim						
10	N				8							9			
-10-5	3-8-1		3x8	7	//									10	x8 u
e			2	.//											4
	4-	\top	1												5
_								Ŭ C							
			4x4 =					0						l	4x4 =
								1.5X4	"						
					7-6-	0		-				15-0-0			_
Scale = 1:35.7			·		7-0-	0						7-0-0			·
Plate Offsets (X, Y): [2:0-3-7	,Edge],	[4:0-3-7,Edge]												
Loading		(psf) 25.0	Spacing	2-0-0 1 15		CSI TC	0 99	DEFL		in 0.07	(loc)	l/defl ∖aaa	L/d 240	PLATES	GRIP 197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.66	Vert(C	CT) -	0.16	4-6	>999	180	11120	1377144
BCLL BCDL		0.0* 10.0	Rep Stress Incr Code	YES IRC2018/TI	PI2014	WB Matrix-S	0.11	Horz(0.02	4	n/a	n/a	Weight: 54 lb	FT = 20%
LUMBER TOP CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m Ke=1.00; (exterior zo Interior (1) Interior (1) right expos for membe Lumber DU 3) This truss chord live	2x4 SP 1650 No.2 2x4 SP No.2 2x3 SPF No.3 Left: 2x4 SP Right: 2x4 SP Structural wor Rigid ceiling bracing. (size) 2= Max Horiz 2= Max Uplift 2= Max Uplift 2= Max Grav 2= (lb) - Maximu Tension 1-2=0/4, 2-3= 4-5=0/8 2-6=-168/793 3-6=0/353 ed roof live load Cat. II; Exp C; E one and C-C Ex 4-1-8 to 7-6-0, 12-6-0 to 16-0 sed; end vertice stand forces & OL=1.60 plate (has been desig load nonconcu	F 1.5E * No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	Except* 3-5:2x4 SP athing directly applied applied or 10-0-0 oc =0-5-8 13) C 12), 4=-133 (LC 13 C 12), 4=-133 (LC 13 C 12), 4=-4133 (LC 13 C 13), 4=-4133 (LC 13) C 13), 4=-4133 (LC 13)	4) * or 3. 5) A (2 6) P br 1. 7) T Ir R LOAL))	This truss h n the botton -06-00 tall b hord and an all bearings a apacity of 50 rrovide meck earing plate earing plate thernational (802.10.2 ar D CASE(S)	as been designed fo n chord in all areas i y 2-00-00 wide will y other members. are assumed to be \$ 55 psi. nanical connection (capable of withstar 31 b uplift at joint 4. designed in accorda Residential Code se d referenced stand Standard	or a live where a fit betwee SP No.2 by othen ding 13 ance with actions F ard ANS	load c rectain crush rs) of t 0 lb up n the 2 R502.	of 20.0ps ngle e bottom ing truss to plift at 2018 11.1 and 1.	f				STATE OF STATE OF STATE OF SE SE SE SE SE SE SE STON Septembe	MISSOLA TT M. VIER 1018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

AG23 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITEK-US.com

										RELEAS	E FOR CONSTRUCTION
Job	Truss		Truss Type	C	ty	Ply				AS NOT	
P240990	A03		Common	3		1	lah Dafi		tional	LEE'S	I68441524 SUMMIT, MISSOURI
Premier Building	Supply (Springhill, KS), S	pring Hills, KS - 66083,		Run: 8.63 S Jul 12 2024 ID:8Al64?FGZapXet2zj9	Print: 8.63 pcqyzX096	0 S Jul 12 -RfC?PsE	2 2024 MiTek 370Hq3NSgP	rence (or Industries, qnL8w3uIT	nc. Tu XbGKV	Sep 24 11: 9: 7 rCDoi7J42JC	14/2024
		I	7-6-0		1			15-0-0			15-10-8
			7-6-0					7-6-0			0-10-8
					4x6 II						
					2						
	\top \top		1 <u>2</u> 5 Г	_ //							
								8			
	-11		6					\sim	9		
	3-6	3х8 ш							\geq	3x8	u
		1									3
	-2-0				8						
		\bigotimes			5					Ŕ	>
		4x4 =			1.5x4 ॥					42	<4 =
			7-6-0					15-0-0			4
Scale = 1:35.7		I	7-6-0		1			7-6-0			I
Plate Offsets (X, Y): [1:0-3-7,Edge],	[3:Edge,0-1-12], [3:0	-3-7,Edge]	1	1					1	
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC 1.00 BC 0.65	DEFL Vert(L Vert(C	L) -(:T) -(in (loc 0.07 3-{ 0.16 3-{	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 197/144
BCLL	0.0*	Rep Stress Incr	YES	WB 0.11	Horz(C	CT)	0.02	n/a	n/a		FT 000/
BCDL	10.0	Code	IRC2018/1PI2014	Matrix-S						Weight: 53 lb	F1 = 20%
LUMBER TOP CHORD	2x4 SP 1650F 1.5E	*Except* 2-4:2x4 SP	 All bearings a capacity of 50 	are assumed to be SP No 65 psi.	0.2 crushi	ing					
BOT CHORD	No.2 2x4 SP No.2	·	 Provide mech bearing plate 	hanical connection (by ot capable of withstanding	hers) of t 130 lb up	russ to blift at					
WEBS WEDGE	2x3 SPF No.2 Left: 2x4 SP No 2		joint 3 and 10 7) This truss is	01 lb uplift at joint 1. designed in accordance	with the 2	018					
BRACING	Right: 2x4 SP No.2		International R802.10.2 ar	Residential Code sectior nd referenced standard A	IS R502.1 NSI/TPI	1.1 and 1.					

LOAD CASE(S) Standard

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES

2)

3)

4)

TOP CHORD

BOT CHORD

this design.

REACTIONS (size)

bracing.

Tension

2-5=0/355

Structural wood sheathing directly applied.

Rigid ceiling directly applied or 10-0-0 oc

Max Uplift 1=-101 (LC 12), 3=-130 (LC 13) Max Grav 1=651 (LC 1), 3=735 (LC 1)

(lb) - Maximum Compression/Maximum

1-2=-988/322, 2-3=-991/315, 3-4=0/4

1-5=-176/803, 3-5=-176/803

1) Unbalanced roof live loads have been considered for

Wind: ASCE 7-16; Vult=115mph (3-second gust)

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-2-12 to 5-2-12,

Interior (1) 5-2-12 to 7-6-0, Exterior(2R) 7-6-0 to 12-6-0,

Interior (1) 12-6-0 to 15-10-8 zone; cartilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown;

This truss has been designed for a 10.0 psf bottom

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf

Lumber DOL=1.60 plate grip DOL=1.60

chord and any other members.

1=0-5-8, 3=0-5-8

Max Horiz 1=-67 (LC 13)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CO	NSTRUCTION
Job	Truss	Truss Type	(Qty Ply		AS NOTED FOR PI DEVELOPMENT	AN REVIEW
P240990	B01	Hip Girder		1 2	Job Reference (optional	16844 LEE'S SUMMIT,	1525 MISSOURI
Premier Building Supply (Springh	ill, KS), Spring Hills, KS - 66083,		Run: 8.63 S Jul 12 202 ID:rFEsSGaFr2?AllTZu	4 Print: 8.630 S Jul OlkGwzX?Wf-RfC?F	12 2024 MiTek Industries, Inc. Tu PsB70Hq3NSgPqnL8w3uITXbGK	Sep 24 11: (9:)8 1 4/	2024
-0-10-8	5.0.0		10.0.0				36-10-8
	<u>5-6-0</u> 5-6-0	<u> </u>	<u>18-0-0</u> 6-3-10	+ <u>24-3-1</u> 6-3-10	0 30-6-0 0 6-2-6	<u> </u>	
0-10-8	NAILED	NAILED NAILED NAILED	NAILED NAILED NA	NAILED ILED 3x6=			0-10-0
N	12 5x10=	3x4=	1.5	5x4 I	4x4=	5x10=	
	φ 3 19 	≥20 ≥21 ≥42223	⊠ ²⁴ ⊠ ²⁵ ⊠	5 6 26	²⁷ 7 _∞ ∞	8 28	
2-9-6 0- -2-9-6 0- -2-9-6 0-	6 10					20	9 10
4xi	8= 3x6 #	30 31 1632 4x8=	33 15 1 8x8= 4	14 13 34	12 4x8=	11 3x6 u	4x8=

Plate Offsets (X, Y): [3:0-5-0,0-1-11], [8:0-5-0,0-1-11], [12:0-2-8,0-2-0], [16:0-2-8,0-2-0]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.86	Vert(LL)	-0.51	12-14	>841	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.47	Vert(CT)	-0.91	12-14	>471	180	MT18HS	244/190
BCLL	0.0*	Rep Stress Incr	NO		WB	0.86	Horz(CT)	0.07	9	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 395 lb	FT = 20%
LUMBER			2)	All loads are	considered equal	ly applie	d to all plies,		13) Use	Simpso	on Stro	ng-Tie SUR26 (6	5-16d Girder, 6-10dx1
TOP CHORD	2x4 SP No.2 *Excep	t* 3-6:2x4 SP 2400F	: '	except if note	ed as front (F) or b	back (B)	ace in the LC	DAD	1/2	Truss) o	or equi	valent at 5-6-0 fro	om the left end to
	2.0E, 6-8:2x4 SP 16	50F 1.5E		CASE(S) see	ction. Ply to ply co	nnection	s have been		con	nect tru	ss(es)	to back face of b	ottom chord, skewed
BOT CHORD	2x8 SP 2400F 2.0E			provided to c	listribute only load	Is noted	as (F) or (B),		45.	0 deg.to	the rig	ht, sloping 0.0 d	eg. down.
WEBS	2x3 SPF No.2			unless other	wise indicated.				14) Use	e Simpso	on Stro	ng-Tie LUS26 (4	-10d Girder, 3-10d
BRACING			3)	Unbalanced	roof live loads hav	/e been o	considered for	r	Iru	ss, Sing	le Ply	Girder) or equiva	lent at 20-11-4 from
TOP CHORD	Structural wood shea	athing directly applie	ed or	this design.	7 16: \/ult_115mr	ah (2 aac	and quat)		the	left end	to con	nect truss(es) to	back face of bottom
	4-7-11 oc purlins, ex	cept	4)	Vacd_01mp	7-10, Vuit=115111		Doct: b-25ft:			nu. all nail h		boro bongor is ir	a contact with lumbar
	2-0-0 oc purlins (3-6	-5 max.): 3-8.			t II: Exp C: Epclos	sed MW	FRS (envelor		16) "NA		ndicate	Girder: 3-10d ((0 1/18" v 3") toe-nails
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	5	exterior zone	and C-C Exterior	(2F) -0-1	0-8 to 4-1-8	(0)	no) no-	NDS au	ideline		(0.140 × 3) toe-nails
DEADTIONO				Interior (1) 4-	-1-8 to 5-6-0, Exte	rior(2R)	5-6-0 to 12-6-	·14,	LOAD	CASE(S) Sta	ndard	
REACTIONS	(SIZE) 2=0-5-8, 9	J=0-5-8		Interior (1) 12	2-6-14 to 30-6-0, E	Exterior(2	2E) 30-6-0 to		1) De	ead + Ro	of Live	e (balanced): Lur	mber Increase=1.15.
	Max Honz 2=49 (LC			36-10-8 zone	e; cantilever left ar	nd right e	xposed ; end		P	ate Incre	ease=1	.15	,
	Max Opint $2=700$ (L)	C(0), 9 = -605 (LC(9))	`	vertical left a	nd right exposed;	C-C for n	nembers and		Ur	hiform Le	oads (l	b/ft)	
		C 1), 9=2371 (LC 1))	forces & MW	FRS for reactions	shown;	Lumber			Vert: 1-	3=-70,	3-8=-70, 8-10=-7	70, 2-9=-20
FORCES	(ID) - Maximum Com	pression/iviaximum	-	DOL=1.60 pl	ate grip DOL=1.60	0.			Co	oncentra	ted Lo	ads (lb)	
		1701 2 4- 10112/	5)	Provide adeo	quate drainage to	prevent v	water ponding	J.		Vert: 15	i=-32 (B), 17=-308 (B),	13=-32 (B), 14=-32
TOF CHORD	4-511622/3117 5-	.711622/3117	2000, 6)	All plates are	e IVI I 20 plates unie	ess other	wise indicated	α.		(B), 5=-	104 (B), 19=-104 (B), 2	.0=-104 (B), 21=-104
	7-8=-9689/2502.8-9	=-5640/1351.9-10=	0/15	chord live los	ad nonconcurrent	with any	other live load	de		(B), 22=	-104 (B), 24=-104 (B),	25=-104 (B), 26=-104
BOT CHORD	2-17=-1576/5933, 16	6-17=-1574/5907,	8)	* This truss h	as heen designed	t for a liv	e load of 20 0	us. Insf		(B), 29=	⊧-32 (B), 30=-32 (B), 31	=-32 (B), 32=-32 (B),
	14-16=-2732/10109,	12-14=-2424/9687,	0)	on the bottor	n chord in all area	s where	a rectangle	por		33=-32	(B), 34	l=-783 (B)	
	11-12=-1175/5056, 9	9-11=-1173/5066		3-06-00 tall b	ov 2-00-00 wide wi	ill fit betv	een the botto	om				~	~
WEBS	3-17=-53/606, 8-11=	0/296, 3-16=-1245/4	4567,	chord and ar	y other members.							A	June
	8-12=-1339/5027, 4-	16=-1494/615,	9)	All bearings	are assumed to be	e SP 240	0F 2.0E crusl	hing				B.F. OF	MISS
	4-14=-337/1658, 5-1	4=-712/405,		capacity of 8	05 psi.							Bar	N'SON
	7-14=-661/2113, 7-1	2=-1305/477	10) Two H2.5T S	Simpson Strong-Ti	e conneo	ctors				E	SCO SCO	MTT M XP.V
NOTES				recommende	ed to connect truss	s to bear	ng walls due	to			В	SF	VIER VY
1) 2-ply truss	s to be connected toget	ther with 10d		UPLIF I at jt(s) 2 and 9. This co	onnectio	n is for uplift o	only			R		
(0.131"x3"	") nails as follows:	0.1 1	0 11	And does no	t consider lateral f	orces.	ith the 2019				26		
i op chord	is connected as follows	5: 2x4 - 1 row at 0-9-	0 11	International	Residential Code	sections	R502 11 1 a	nd				all?	, XONNO 17
Bottom ch	ords connected as follo	ows: 2x8 - 2 rows		R802 10 2 a	nd referenced star	ndard AN	ISI/TPI 1	nu -			- W	JUN NUN	MBER
standered	at 0-9-0 oc	5W5. 2NO - 2 10W5	12) Graphical pu	rlin representation	does no	ot depict the s	ize			V V	O PE-200	1018807
Web conn	ected as follows: 2x3 -	1 row at 0-9-0 oc.	12	or the orienta	ation of the purlin a	along the	top and/or				1	150	18A
	Line as issues and how			bottom chord	J.	5						W Ser	- O'A

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

314.434.1200 / MiTek-US.com

						RELEASE FOR CONST	RUCTION
Job	Truss	Truss Type	Qty	Ply		AS NOTED FOR PLAN DEVELOPMENT SER	
P240990	B02	Hip	1	1 Job R	eference (optional)	LEE'S SUMMIT, MIS	SOURI
Premier Building Sup	ply (Springhill, KS), Spring Hills, KS - 66083	3, Run: ID:D8	8.63 S Jul 12 2024 Print: 8.0 pUVNFK04Gl5duw55o4hSz	630 S Jul 12 2024 Miī X07p-RfC?PsB70Hq3	Fek Industries, Inc. Tu≱ 3NSgPqnL8w3uITXbGK	Sep 2411: 9:08 14/2 WrCDoi7 J4250?f	924
	-0-10-8 3-9-4 7-6-0 	<u>12-7-11</u> 5-1-11	<u>18-0-0</u> 5-4-5	<u>23-4-5</u> 5-4-5	<u>28-6-0</u> 5-1-11	32-2-12 36-0-0 3-8-12 3-9-4	36-10-8 0-10-8
10 13	5 ¹² ♀	5x5= 3x4=	3x4= 3x6	i= 3x4=	5x:	5= 9	
-2 3-8 -1 -1 -1 -1 -1 -1 -1	1.5x4					1.5x4 = 2310 3x8 =	
3-9- 3-7- 3-7	1 2					11	12 13
⊥ -		19 18	7	1615	14	4	
	6X6 =	3x8= MT18HS	3x10 =	3x4 =	Зх	8=	4Xb =
		3	x4=	MT18HS 3x10 =			

Plate Offsets (X, Y): [12:0-1-2,0-1-12], [15:0-3-10,0-1-8], [18:0-3-10,0-1-8]													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.96	Vert(LL)	-0.38	16-17	>999	240	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.79	Vert(CT)	-0.71	16-17	>597	180	MT18HS	244/190	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.57	Horz(CT)	0.19	12	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 151 lb	FT = 20%	
LUMBER TOP CHORD	2x4 SP 1650F 1.5E	*Except* 4-7.7-9:2x	2) Wind: ASC 4 SP Vasd=91m	E 7-16; Vult=11; ph; TCDL=6.0ps	5mph (3-sec sf; BCDL=6.0	ond gust))psf; h=35ft;							

Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 7-6-0, Exterior(2R) 7-6-0 to 14-6-14, Interior (1) 14-6-14 to 28-6-0, Exterior(2R) 28-6-0 to

TOP CHORD	2x4 SP 1650F 1.5E *Except* 4-7,7-9:2x4 SP
BOT CHORD	2x4 SP 1650F 1.5E
WEBS	2x3 SPF No.2
WEDGE	Left: 2x4 SP No.2
SLIDER	Right 2x4 SP No.2 1-11-10
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 2-7-4 oc purlins, except
	2-0-0 oc putitins (2-5-7 max.): 4-9.
BUICHURD	bracing
WEBS	1 Row at midpt 5-19, 8-14
REACTIONS	(size) 2=0-5-8, 12=0-5-8
	Max Horiz 2=65 (LC 16)
	Max Uplift 2=-296 (LC 8), 12=-296 (LC 9)
	Max Grav 2=1677 (LC 1), 12=1677 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/4, 2-3=-3076/554, 3-4=-3049/559,
	4-5=-2762/533, 5-6=-4115/817,
	6-8=-4115/817, 8-9=-2763/533,
	9-10=-3021/556, 10-12=-2987/541,
	12-13=0/4
BOT CHORD	2-19=-456/2667, 17-19=-722/3936,
	16-17=-808/4315, 14-16=-716/3934,
	12-14=-431/2589
WEBS	4-19=-99/840, 9-14=-90/788, 3-19=0/307,
	10-14=-5/377, 5-17=-1/410, 5-19=-1458/346,
	6-17=-326/125, 6-16=-325/125, 8-16=-2/414,
	8-14=-1456/345

NOTES

1) Unbalanced roof live loads have been considered for this design.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

DOL=1.60

capacity of 565 psi.

bottom chord.

3)

4)

5)

6)

7)

8)

9)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

								RELEAS	E FOR CONS	TRUCTION
Job	Truss		Truss Type		Qty	Ply		AS NOT DEVE	ED FOR PLA	N REVIEW
P240990	B03		Hip		1	1 Job	Reference (optio	nalj LEE's	1684415 5 SUMMIT, MI	SSOURI
Premier Building Supply	y (Springhill, KS), Spring Hill	s, KS - 66083,		Run: 8.63 S ID:peE38b2	Jul 12 2024 Print: 8. 6i2SXPdMQOFTJqAz	630 S Jul 12 2024 N zX06o-RfC?PsB70H	/liTek Industries, Inc lq3NSgPqnL8w3ulT	. Tue Sep 24 11:49:08 XbGKWrCDoi7J4250?	14/2	024
	-0-10-8 <u>4-10-7</u> -10-8 <u>4-10-7</u>	9-6	6-0 7-9	15-1-9 5-7-9	<u>20-10-7</u> 5-8-13	<u> </u>	6-0 7-9	<u>31-1-9</u> 4-7-9	<u>36-0-0</u> 4-10-7	36-10-8
	0 10 0					3x4=				0 10 0
10		12	5x5= ♀ 4	3x4: 5	= 3x6 20 6)= 7	5x5=			
4-7-11 4-5-2 4-6-' 4-5-2 0-1-'	18	5 ^{1/2} 1.5x4 2 3					× ×	1.5x4 =	21 3x8≈ 10	~ 11
⊥ <u>7</u> 7 ⊥	1									
O	⊠ 6×6=		17 3x8=	16 4x6=	15 3x4 =	14 4x6=	13 3x8=			⊠ 4x6=
		9-4-12		<u>18-0-0</u> 8-7-4		<u>26-7-4</u> 8-7-4		<u>36-0-0</u> 9-4-12	1	
		=		- · ·						

Plate Offsets (X, Y): [11:0-1-2,0-1-12]

														_
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.90	Vert(LL)	-0.28	13-15	>999	240	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15		BC	0.96	Vert(CT)	-0.54	13-15	>785	180			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.49	Horz(CT)	0.17	11	n/a	n/a			
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 151 lb	FT = 20%	
LUMBER			2)	Wind: ASCE	7-16: Vult=115mpl	h (3-sec	ond aust)							
TOP CHORD	2x4 SP 1650F 1.5E	*Except* 4-6.6-8:2x4	SP ,	Vasd=91mph	n; TCDL=6.0psf; B0	CDL=6.0	0psf; h=35ft;							
	No.2			Ke=1.00; Ca	t. II; Exp C; Enclos	ed; MW	FRS (envelo	pe)						
BOT CHORD	2x4 SP 1650F 1.5E	*Except* 16-14:2x4 \$	SP	exterior zone	and C-C Exterior	2E) -0-1	0-8 to 4-1-8	,						
	No.2			Interior (1) 4-	1-8 to 9-6-0, Exter	ior(2R)	9-6-0 to 16-6	6-14,						
WEBS	2x3 SPF No.2			Interior (1) 16	6-6-14 to 26-6-0, E	xterior(2	2R) 26-6-0 to)						
WEDGE	Left: 2x4 SP No.2			33-6-14, Inte	rior (1) 33-6-14 to 3	36-10-8	zone; cantile	ever						
SLIDER	Right 2x4 SP No.2 -	2-6-12		left and right	exposed ; end vert	tical left	and right							
BRACING				exposed;C-C	for members and	torces &	MWFRS to	r						
TOP CHORD	Structural wood she	eathing directly applie	ed or	reactions sho	own; Lumber DOL=	=1.60 pi	ate grip							
	2-7-13 oc purlins, e	xcept	2)	DOL=1.00	wata drainaga ta n	rovert	votor pondio	~						
	2-0-0 oc purlins (2-9	9-6 max.): 4-8.	3)	This trues ha	s been designed for	1000010	nef bottom	y.						
BOT CHORD	Rigid ceiling directly	/ applied or 2-2-0 oc	4)	chord live los	ad nonconcurrent w	vith any	other live los	ade						
	bracing.		5)	* This truss h	as been designed	for a liv	e load of 20	nnsf						
WEBS	1 Row at midpt	5-17, 7-13	0)	on the botton	n chord in all areas	where	a rectangle	opo.						
REACTIONS	(size) 2=0-5-8,	11=0-5-8		3-06-00 tall b	y 2-00-00 wide wil	l fit betv	een the bott	om						
	Max Horiz 2=80 (LC	; 16)	,	chord and an	y other members.									
	Max Uplift 2=-270 (I	LC 8), 11=-270 (LC 9) 6)	All bearings a	are assumed to be	SP 165	0F 1.5E crus	shing						
	Max Grav 2=16/7 (LC 1), 11=1677 (LC	1)	capacity of 5	65 psi.									
FORCES	(lb) - Maximum Con	npression/Maximum	7)	Provide mecl	hanical connection	(by oth	ers) of truss	to						
				bearing plate	capable of withsta	anding 2	70 lb uplift a	t						
TOP CHORD	1-2=0/4, 2-3=-3125	/540, 3-4=-2935/500,	•	joint 2 and 27	70 lb uplift at joint 1	1.								
	4-3=-2043/482, 3-7	=-3424/042, _ 2008/408	8)	I his truss is	designed in accord	lance w	th the 2018					000	an	
	0-11-3078/533 11	=-2900/490, _12=0/4		International	Residential Code s		R502.11.1 a	and				A OF	MIG	
	2-17=-435/2749 15	-12-0/4 5-17=-558/3370	0)	Graphical pu	rlin representation	door n	donict the	cizo				BIE		
	13-15=-554/3367 1	1-13=-419/2683	3)	or the orients	ation of the nurlin a	long the	ton and/or	3126			2	925/	No/	
WEBS	4-17=-63/762, 8-13	=-56/716, 5-15=0/194	4,	bottom chord	l.	iong inc					6	SCO1	M. NENT.	
	5-17=-1001/256, 7-	15=0/198, 7-13=-996	, /255, L (DAD CASE(S)	Standard						R	SEV	TER \ Y	
	3-17=-113/212, 9-1	3=-44/213	_		etandara						0	★/	1 * 1	
NOTES											KA .	1 11	.0 \ \ 0	1
1) Unbalance	ed roof live loads have	e been considered for										the atter	BED Mark	
this desigr	٦.										-1	DE 200	1010007 191	5
											y	PE-200	101880/ 201	
												181	158	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
lob	Trues	Truss Type	Otv	Plv		AS NOTED FOR PLAN REVIEW
	11000		Guy	,		DEVELOPMENT SERVICES
P240990	B04	Нір	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
						10/11/0001

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tup Sep 241: 99.4 1 4/2 9:24 ID:8ynemjizBJb7nuVEHjPJ_KzX?VD-RfC?PsB70Hq3NSgPqnL8w3uITXbGK VrCDoi7JzJoff 1 4/2

Scale = 1:66

Plate Offsets	(X, Y):	[2:Edge,0-2-4],	[10:Edge,0-2-4]
---------------	---------	-----------------	-----------------

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.96	Vert(LL)	-0.24	1 5	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.83	Vert(CT)	-0.44	15-17	>970	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.34	Horz(CT)	0.15	10	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 160 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER	2x4 SP 1650F 1.5E No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 No 2 3-0-11	*Except* 5-7:2x4 SP 3-0-11, Right 2x4 SP	2)	Wind: ASCE Vasd=91mph Ke=1.00; Cat exterior zone Interior (1) 4- 18-6-14, Inte 24-6-0 to 31-	7-16; Vult=115mp n; TCDL=6.0psf; Bi t. II; Exp C; Enclos and C-C Exterior(1-8 to 11-6-0, Exter rior (1) 18-6-14 to 6-14, Interior (1) 3	h (3-sec CDL=6.0 ed; MW (2E) -0-1 erior(2R) 24-6-0, 1-6-14 t	cond gust) Dpsf; h=35ft; FRS (envelo 0-8 to 4-1-8,) 11-6-0 to Exterior(2R) o 36-10-8 zo	pe)					
BRACING TOP CHORD	Structural wood she 2-7-4 oc purlins, ex 2-0-0 oc purlins (2-: Rigid ceiling directly	eathing directly applied cept 2-0 max.): 5-7. / applied or 9-4-1 oc	d or 3)	cantilever left right exposed for reactions DOL=1.60 Provide adeo	t and right exposed d;C-C for members shown; Lumber D quate drainage to p	d ; end v s and for OL=1.60	vertical left ar rces & MWFF) plate grip water ponding	nd RS g.					
Ber energy	bracing.		4)	All plates are	3x4 MT20 unless	otherwi	se indicated.						
REACTIONS	(size) 2=0-5-8, Max Horiz 2=96 (LC Max Uplift 2=-244 (I Max Grav 2=1677 (10=0-5-8 : 12) _C 8), 10=-244 (LC 9) LC 1), 10=1677 (LC 1	5) 6))	This truss ha chord live loa * This truss h on the botton 3-06-00 tall b	s been designed for ad nonconcurrent v las been designed n chord in all areas av 2-00-00 wide wil	or a 10.0 vith any for a liv s where Il fit bety) psf bottom other live loa e load of 20.0 a rectangle veen the bott	ads. Opsf om					
FORCES	(lb) - Maximum Cor	npression/Maximum	_	chord and an	y other members.	0.000							
TOP CHORD	1-2=0/4, 2-4=-3150 5-6=-2921/544, 6-7 7-8=-2735/476, 8-1	/505, 4-5=-2735/476, =-2921/544, 0=-3150/505, 10-11=0	7) 8))/4	All bearings a capacity of 5 Provide mech bearing plate	are assumed to be 65 psi. hanical connection capable of withsta	: SP NO. I (by oth anding 2	∠ crusning ers) of truss t 244 lb uplift at	to t					
BOT CHORD	2-18=-396/2756, 17 15-17=-301/2480, 1 12-13=-392/2756, 1	7-18=-396/2756, 3-15=-287/2480, 0-12=-392/2756	9)	joint 2 and 24 This truss is International	14 lb uplift at joint designed in accord Residential Code	10. dance w sections	ith the 2018 R502.11.1 a	and				E OF	MISS
VVEDO	4-18=0/205, 4-17=- 5-15=-138/709, 6-1 7-15=-138/709, 7-1 8-13=-327/194, 8-1	3277193, 5-17=-12/33 5=-557/243, 3=-12/336, 2=0/205	ь, 1(R802.10.2 ar)) Graphical pu or the orienta bottom chord	nd referenced stan rlin representation ation of the purlin a I.	dard AN does no long the	ISI/TPI 1. ot depict the s e top and/or	size			Å	STATISCO:	TT M.
NOTES			L	DAD CASE(S)	Standard						Ba	★/	
1) Unbalance	ed roof live loads have	e been considered for									De la	att	ZOM

this design.

NUMBER

PE-2 PE-2 SJONAL EN

September 26,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

							RELEASE FOR	
Job	Truss	Truss Type		Qty	Ply		AS NOTED FO	
P240990	B05	Hin		1	1			S8441529
1210000	200	The			-	Job Reference (optional		
Premier Building Supply (Springh	ill, KS), Spring Hills, KS - 66083,		Run: 8.63 S Jul 12 20	24 Print: 8.	630 S Jul 12	2024 MiTek Industries, Inc. Tu	e Sep 24 11:49:08	1/2014
			ID:s8wrQy1vqc_IX130	QMuOea0z2	X?Uo-RfC?Ps	B70Hq3NSgPqnL8w3uITXbG	(WrCDoi7J4z3C?f	
-0-10-8 + 0-10-8	6-10-5 6-10-5	<u>13-6-0</u> 6-7-11	<u>18-0-0</u> 4-6-0	2	2-6-0 1-6-0	29-1-11 6-7-11	<u>36-0-0</u> 6-10-5	36-10-8
			5x5=	3x4=	5	x5=		

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.78	Vert(LL)	-0.38	13-16	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.80	Vert(CT)	-0.67	13-16	>639	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.70	Horz(CT)	0.15	10	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 161 lb	FT = 20%
LUMBER			2)	Wind: ASC	E 7-16: Vult=115r	mph (3-sec	cond aust)						
TOP CHORD	2x4 SP 1650F 1.5E No.2	*Except* 5-7:2x4 SF)	Vasd=91m Ke=1.00; C	oh; TCDL=6.0psf; at. II; Exp C; Encl	BCDL=6.	0psf; h=35ft; FRS (envelo	pe)					
BOT CHORD	2x4 SP 1650F 1.5E			exterior zor	ne and C-C Exteri	or(2E) -0-1	10-8 to 4-1-8,	. ,					
WEBS	2x3 SPF No.2			Interior (1)	4-1-8 to 13-6-0, E	xterior(2R) 13-6-0 to						
SLIDER	Left 2x4 SP No.2	3-7-14, Right 2x4 SF	0	20-6-14, In	terior (1) 20-6-14	to 22-6-0,	Exterior(2R)						
	No.2 3-7-14			22-6-0 to 2	9-6-14, Interior (1)) 29-6-14 t	o 36-10-8 zo	ne;					
BRACING				cantilever le	eft and right expos	sed ; end \	ertical left ar	nd					
TOP CHORD	Structural wood she	eathing directly applie	ed or	right expos	ed;C-C for memb	ers and for	rces & MWFF	RS					
	2-2-0 oc purlins, ex	cept		for reaction	s shown; Lumber	DOL=1.60) plate grip						
	2-0-0 oc purlins (3-	7-0 max.): 5-7.	0)	DOL=1.60									
BOT CHORD	Rigid ceiling directly	y applied or 10-0-0 o	c 3)	Provide ad	equate drainage to	o prevent	water ponding	g.					
	bracing.		4)	I his truss r	las been designed	d for a 10.0	J pst bottom	da					
REACTIONS	(size) 2=0-5-8,	10=0-5-8	E)	* This trues	baa honconcurrer	ad for a live	other live loa	lus. Onof					
	Max Horiz 2=-112 (LC 13)	5)	on the bott	mas been design	eu ior a liv	a rectande	opsi					
	Max Uplift 2=-237 (LC 12), 10=-237 (LC	13)	3-06-00 tal	by 2-00-00 wide	will fit hetv	veen the bott	om					
	Max Grav 2=1730 ((LC 2), 10=1730 (LC	2)	chord and a	any other member	rs with BC	DI = 10.00st	f					
FORCES	(lb) - Maximum Cor	mpression/Maximum	6)	All bearing	s are assumed to	be SP 165	60F 1.5E crus	shina					
	Tension		-,	capacity of	565 psi.								
TOP CHORD	1-2=0/4, 2-4=-3267	/515, 4-5=-2707/466	, 7)	Provide me	chanical connecti	ion (by oth	ers) of truss t	to					
	5-6=-2431/469, 6-7	=-2431/469,		bearing pla	te capable of with	standing 2	37 lb uplift at	t					
	7-8=-2707/466, 8-1	0=-3267/515, 10-11=	=0/4	joint 2 and	237 lb uplift at joir	nt 10.							
BOT CHORD	2-17=-398/2882, 16	5-17=-398/2882,	8)	This truss is	s designed in acc	ordance w	ith the 2018						
	13-16=-294/2544, 1	12-13=-394/2882,		Internationa	al Residential Coc	de sections	s R502.11.1 a	and					~
	10-12=-394/2882		0.5	R802.10.2	and referenced st	andard AN	ISI/TPI 1.					6000	man
WEBS	4-1/=0/238, 4-16=-	539/245, 5-16=-39/6	85, 9) 20	Graphical p	urlin representati	on does no	ot depict the s	size				A OF	MISC
	6-16-305/110 6 1	=-009/240, 0-12=0/2 3=-395/110	50,	or the orien	tation of the purli	n along the	e top and/or					BI	N.O.
NOTES	0-10=-390/110, 0-1	0000/110		DOTTOM Cho							E	S SCO	N W I
NULES	ad reaf live leads have	a haan aanaidan1 f-	L(JAD CASE(S) Standard						R		
i) Unbaianc	eu root live loads have	e been considered to	1								И	/ SEV	

Unbalanced roof live loads have been considered for this design.

UNBER PE-200101880'

C

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
lob	Truss		Otv	DIV		AS NOTED FOR PLAN REVIEW
300	Tuss	Truss Type	Quy	гіу		DEVELOPMENT SERVICES
P240990	B06	Нір	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
						- 40/44/0004

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tup Sep 241: 994 1 4/2 12 20

Scale = 1:66.3

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.90 0.91 0.70	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.23 -0.43 0.15	(loc) 14-16 14-16 12	l/defl >999 >990 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 161 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE SLIDER BRACING TOP CHORD	2x4 SP No.2 *Excep 1650F 1.5E 2x4 SP 1650F 1.5E * No.2 2x3 SPF No.2 Left: 2x4 SP No.2 Right 2x4 SP No.2 Structural wood she: 2-4-4 oc purlins, exc	t* 1-4,9-13:2x4 SP *Except* 18-15:2x4 S • 2-8-15 athing directly applied ept	2 SP d or	 Wind: ASCE Vasd=91mph Ke=1.00; Ca exterior zone Interior (1) 4- 20-6-0, Exter 27-6-14 to 36 exposed ; en members and Lumber DOL Provide adec This two he 	7-16; Vult=115m; ;; TCDL=6.0psf; E t. II; Exp C; Encloir and C-C Exterior 1-8 to 15-6-0, Ext ior(2R) 20-6-0 to 5-10-8 zone; canti d vertical left and d forces & MWFR =1.60 plate grip D uate drainage to been drainage to	ph (3-sec 3CDL=6. sed; MW r(2E) -0- terior(2E 27-6-14, lever left right exp 2S for rea 0OL=1.6 prevent	cond gust) Opsf; h=35ft; /FRS (envelop 10-8 to 4-1-8,) 15-6-0 to Interior (1) i and right oosed;C-C for actions shown 0 water ponding 0 perfections	; g.					
BOT CHORD WEBS REACTIONS	2-0-0 oc purlins (3-4 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-5-8, 1 Max Horiz 2=127 (LC Max Uplift 2=-256 (L Max Grav 2=1725 (L	-12 max.): 6-7. applied or 10-0-0 oc 6-16 (2=0-5-8 C 16) C 12), 12=-256 (LC 1 .C 2), 12=1722 (LC 2	4 5 (3) (3) (3) (3) (3) (4) (4) (5) (4) (5) (5) (4) (5) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	 This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an All bearings a capacity of 5 Provide med 	s been designed ad nonconcurrent las been designed in chord in all area by 2-00-00 wide w by other members are assumed to be 65 psi. hanical connection	for a 10. with any d for a liv is where ill fit betv , with BC e SP 165 n (by oth	0 psf bottom other live loa ve load of 20.0 a rectangle ween the botto CDL = 10.0psf 50F 1.5E crus	ds. Dpsf om hing					
FORCES	(lb) - Maximum Com Tension 1-2=0/4, 2-3=-3247/5 5-6=-2443/458, 6-7= 7-8=-2441/458, 8-10 10-12=-3186/502, 12	pression/Maximum 510, 3-5=-3102/485, 2194/453, =-3042/478, 2-13=0/4	8	 a) Frontie metal bearing plate joint 2 and 25 joint 2 and 25 loint 1 and 25 loint 2 and 25 loint 2	capable of withst 56 lb uplift at joint designed in accor Residential Code nd referenced star	tanding 2 12. dance w sections ndard Al	vith the 2018 s R502.11.1 a NSI/TPI 1.	ind				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
BOT CHORD	2-19=-474/2872, 17- 16-17=-205/2199, 14 12-14=-391/2798 6-17=-86/629, 6-16= 3-19=-178/179, 5-19 5-17=-595/234, 8-16 10-14=-127/170	-13=-074 19=-333/2627, 4-16=-330/2628, 212/214, 7-16=-42/6 I=-18/408, i=-602/236, 8-14=-9/3	L 522, 349,	 Graphical pu or the orienta bottom chord OAD CASE(S) 	inin representation ation of the purlin a l. Standard	along the	e top and/or	si∠e				SCOT	MISSOUR

NOTES

1) Unbalanced roof live loads have been considered for this design.

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
lob	Trues		Otv	DIV		AS NOTED FOR PLAN REVIEW
300	11035			i iy		DEVELOPMENT SERVICES
P240990	B07	Нір	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
		B		00001140		an at A A A A A

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Sep 2411: 999 1 4/269:24 ID:dyxlgVKaxl8I1tUEKeLV5lzX?UP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKW CDoi7J4zJCH

Scale = 1:66.5

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		ТС	0.88	Vert(LL)	-0.32	14-16	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.93	Vert(CT)	-0.55	14-16	>769	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.41	Horz(CT)	0.15	12	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 166 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No.2 *Excep 1650F 1.5E 2x4 SP 1650F 1.5E 2x3 SPF No.2 Left: 2x4 SP No.2 Right 2x4 SP No.2 - Structural wood she 2-4-4 oc purlins, exc 2-0-0 oc purlins (3-1 Rigid ceiling directly		2) ed or 3) oc 4)	Wind: ASCE Vasd=91mph Ke=1.00; Car exterior zone Interior (1) 4- 18-6-0, Exter 25-6-14 to 36 exposed ; en members an Lumber DOL Provide adec This truss ha	7-16; Vult=115mp 7; TCDL=6.0psf; Bi t. II; Exp C; Encloss and C-C Exterior(1-8 to 17-6-0, Exterior(2R) 18-6-0 to 2 5-10-8 zone; cantili d vertical left and d forces & MWFRS =1.60 plate grip D quate drainage to p s been designed fu	h (3-sec CDL=6. CDL=6. (2E) -0- erior(2E) 25-6-14, ever left right exp S for rea OL=1.60 or even to or a 10.	orond gust) Opsf; h=35ft; FRS (envelo 0-8 to 4-1-8, 17-6-0 to Interior (1) and right osed;C-C fo ctions showr water pondin 0 psf bottom	pe) r n; g.					
	bracing.		5)	* This truce h	ad nonconcurrent v	for a live	other live loa	ads. Opef					
WEBS REACTIONS	1 Row at midpt (size) 2=0-5-8, 7 Max Horiz 2=143 (LC Max Uplift 2=-274 (L Max Grav 2=1739 (L	5-17, 8-16 12=0-5-8 C 16) .C 12), 12=-274 (LC .C 2), 12=1739 (LC 2	13) 6) 2)	on the botton 3-06-00 tall b chord and an All bearings a capacity of 5	n chord in all areas by 2-00-00 wide wil by other members, are assumed to be	where if fit betw with BC SP 165	a rectangle veen the bott DL = 10.0ps 0F 1.5E crus	om f. shing					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	7)	Provide mecl	hanical connection	(by oth	ers) of truss	to t					
TOP CHORD	1-2=0/4, 2-3=-3285/ 5-6=-2261/409, 6-7= 7-8=-2266/409, 8-10 10-12=-3239/494, 12	498, 3-5=-3099/447, 2024/407,)=-3047/441, 2-13=0/4	8)	joint 2 and 27 This truss is International R802.10.2 ar	74 lb uplift at joint 7 designed in accord Residential Code	12. Jance w sections dard AN	ith the 2018 R502.11.1 a	and					
BOT CHORD	2-19=-520/2914, 17- 16-17=-135/2031, 14- 12-14=-367/2852	-19=-349/2543, 4-16=-277/2551,	9)	Graphical pu or the orienta bottom chord	rlin representation ation of the purlin a I.	does no	ot depict the set top and/or	size				STE OF	MISSO
WEBS	6-17=-117/723, 7-17 7-16=-116/630, 3-19 5-19=-32/540, 5-17= 8-16=-714/268, 8-14 10-14=-218/199	7=-297/203, 9=-262/207, =-715/269, 4=-22/489,	LC	DAD CASE(S)	Standard						T	SCOT	TT M. TER

NOTES

 Unbalanced roof live loads have been considered for this design. September 26,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
lob	Trues		Otv	Plv		AS NOTED FOR PLAN REVIEW
000	11033		QUY	1 19		DEVELOPMENT SERVICES
P240990	B08	Common	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tup Sep 241: 9991 4/29224 ID:VFJ?4WLDx8n_Zeb8Vc2ewYzX0FR-RfC?PsB70Hq3NSgPqnL8w3ulTXb6KWrCDoirJacd?f1

6-0-5 12-0-8 18-0-0 23-11-8 29-11-11 36-0-0 6-0-5 6-0-3 5-11-8 5-11-8 6-0-3 6-0-5 5x5= 7 3x6 👟 3x4 🚅 3x4 👟 3x6 12 5 18 19 6 8 5 9 8-2-3 8-1-4 1.5x4。 1.5x4 🍫 ¹⁰ 20 3x4 🚅 4 3x4 **≈** 3 11 3x4 👟 10 12 0-7-4 T × 17 21 2216 15 1423 24 13 4x8= 4x6= 3x4= 4x6 =5x8= 4x6= 3x4= 9-0-1 18-0-0 26-11-15 36-0-0 9-0-1 8-11-15 8-11-15 9-0-1

Scale = 1:64.4

L ٦ E

oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.83	Vert(LL)	-0.31	13-15	>999	240	MT20	244/190
CDL	10.0	Lumber DOL	1.15		BC	0.81	Vert(CT)	-0.54	13-15	>795	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.47	Horz(CT)	0.15	12	n/a	n/a		
BCDL	10.0	Code	IRC2018	/TPI2014	Matrix-S		- (-)					Weight: 160 lb	FT = 20%
UMBER			2)	Wind ASCE	7-16: Vult=115mp	h (3-sec	ond aust)						
OP CHORD	2x4 SP No 2 *Excep	t* 9-12 [.] 2x4 SP 1650	F -/	Vasd=91mpl	n: TCDL=6.0psf: B	CDL=6.0	Dpsf: h=35ft:						
0. 0.10112	1.5E		•	Ke=1.00; Ca	t. II; Exp C; Enclos	ed; MW	FRS (envelop	be)					
BOT CHORD	2x4 SP 1650F 1.5E			exterior zone	and C-C Exterior(2E) -0-1	0-8 to 4-1-8,						
VEBS	2x3 SPF No.2			Interior (1) 4-	-1-8 to 18-0-0, Exte	erior(2R	18-0-0 to						
SLIDER	Left 2x4 SP No.2 4	4-9-13, Right 2x4 SP	1	23-0-0, Interi	ior (1) 23-0-0 to 35	-9-4 zor	e; cantilever	left					
	No.2 3-2-6	, 0		and right exp	osed ; end vertical	left and	l right						
BRACING				exposed;C-C	for members and	forces a	& MWFRS for						
OP CHORD	Structural wood she	athing directly applie	ed or	reactions sho	own; Lumber DOL=	=1.60 pl	ate grip						
	2-2-0 oc purlins.	0 7 11		DOL=1.60									
BOT CHORD	Rigid ceiling directly	applied or 9-10-3 oc	; 3)	All plates are	3x4 MT20 unless	otherwi	se indicated.						
	bracing.		4)	This truss ha	is been designed fo	or a 10.0) psf bottom						
VEBS	1 Row at midpt	6-15, 8-15	5)	chord live loa	ad nonconcurrent v	vith any	other live loa	ds.					
REACTIONS	(size) 2=0-5-8, 1	12=0-5-8	5)	This truss r	ias been designed	IOF A IIV		psi					
	Max Horiz 2=149 (LC	C 12)		2 06 00 toll b	n chord in all areas	s where	a reclangle	~~~					
	Max Uplift 2=-278 (L	C 12), 12=-249 (LC	13)	chord and ar	by 2-00-00 wide will	with BC	DI – 10 Opsf						
	Max Grav 2=1744 (L	_C 2), 12=1679 (LC 2	2) 6)	All bearings :	are assumed to be	SP 165	0E 1 5E crus	hina					
ORCES	(lb) - Maximum Com	pression/Maximum	0)	capacity of 5	65 psi.	01 100		ining					
	Tension		7)	Provide mec	hanical connection	(bv oth	ers) of truss to	0					
OP CHORD	1-2=0/4, 2-4=-3257/	503, 4-6=-3071/460,	,	bearing plate	capable of withsta	anding 2	78 lb uplift at						
	6-7=-2211/427, 7-8=	-2212/431,		joint 2 and 24	49 lb uplift at joint 1	12.							
	8-10=-3049/474, 10-	-12=-3257/516	8)	This truss is	designed in accord	lance w	ith the 2018						
BOT CHORD	2-17=-522/2885, 15-	-17=-356/2530,		International	Residential Code	sections	R502.11.1 a	nd					
	13-15=-286/2534, 12	2-13=-391/2872		R802.10.2 a	nd referenced stan	dard AN	ISI/TPI 1.						
VEBS	7-15=-157/1345, 4-1	7=-254/205,	LO	AD CASE(S)	Standard							000	m
	6-17=-26/528, 6-15=	=-770/287,										Pr OF	MISO
	8-15=-774/288, 8-13	3=-28/517,										ASE	1,0°
	10-13=-250/210										4	7.51	New Y
JOTES											4	G/ SCO	

NOT

E

1) Unbalanced roof live loads have been considered for this design.

SEVIER

NUMBER PE-200101880'

September 26,2024

E

THE STONAL

C

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

WEBS

Plate Offsets (X, Y):	[8:0-5-14.0-2-0].	[19:0-2-8.0-1-8].	[21:0-4-4.0-5-4].	[23:Edge.0-2-8]. [24:0-2-8.0-2-01
1 1010 0 10010 (7.1, 1.7.	[0.0 0,0 = 0],	[[=	[0,0 _ 0]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.81	Vert(LL)	-0.45	16-18	>942	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.97	Vert(CT)	-0.79	16-18	>538	180	MT18HS	197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.96	Horz(CT)	0.35	14	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 181 lb	FT = 20%
LUMBER			NC	DTES									
TOP CHORD	2x4 SP No.2 *Except* 1650F 1.5E	1-7,11-15:2x4 SP	1)	Unbalanced this design.	roof live loads hav	e been	considered fo	or					
BOT CHORD	2x3 SPF No.2 *Except 22-21:2x6 SP 2400F 2 SP 1650F 1 5F	t* 2-23:2x4 SP No.2 2.0E, 20-17,17-14:2:	, 2) (4	Wind: ASCE Vasd=91mpl Ke=1.00: Ca	7-16; Vult=115mp n; TCDL=6.0psf; B t_II: Exp_C: Enclos	h (3-seo CDL=6.	cond gust) Opsf; h=35ft; FRS (envelo	ne)					
WEBS	2x3 SPF No.2 *Except SP No.2	t* 21-8,22-24,22-4:2	x4	exterior zone	and C-C Exterior(-1-8 to 18-0-0, Exte	(2E) -0- erior(2R	10-8 to 4-1-8, 18-0-0 to	pc)					
SLIDER	Left 2x4 SP No.2 1-0 3-2-6	6-0, Right 2x4 SP N	0.2	23-0-0, Interi and right exp	or (1) 23-0-0 to 36 bosed ; end vertica	-10-8 zo	one; cantileve d right	er left					
BRACING				exposed;C-C	for members and	forces	& MWFRS fo	r					
TOP CHORD	Structural wood sheat 1-11-12 oc purlins.	thing directly applied	or	reactions sho DOL=1.60	own; Lumber DOL	=1.60 pl	ate grip						
BOT CHORD	Rigid ceiling directly a bracing.	pplied or 2-2-0 oc	3) 4)	All plates are This truss ha	e MT20 plates unle is been designed f	ss othe or a 10.	wise indicate psf bottom	ed.					
WEBS	1 Row at midpt 8	-18, 10-18	-	chord live loa	ad nonconcurrent v	vith any	other live loa	ids.					
REACTIONS	(size) 2=0-5-8, 14 Max Horiz 2=148 (LC Max Uplift 2=-277 (LC Max Grav 2=1720 (LC	I=0-5-8 16) ○12), 14=-277 (LC 1 ℃2), 14=1731 (LC 2)	5) 3) 6)	on the bottor 3-06-00 tall t chord and ar Bearings are	nas been designed n chord in all areas by 2-00-00 wide wil ny other members, assumed to be: Jo	for a liv s where Il fit betv with BC pint 2 S	e load of 20.0 a rectangle veen the bott DL = 10.0ps No.2 crushi	upst om f.					
FORCES	(lb) - Maximum Comp Tension	ression/Maximum	-,	capacity of 5	65 psi, Joint 14 SF	9 1650F	1.5E crushin	g					
FOP CHORD	1-2=0/4, 2-4=-2927/42 5-6=-5765/923, 6-8=-5 8-9=-2170/427, 9-10= 10-12=-3016/456, 12- 14-15=0/4	29, 4-5=-6985/1141, 5744/989, -2171/428, 14=-3223/502,	7) 8)	Provide mec bearing plate joint 2 and 2 This truss is International	hanical connection capable of withsta 77 lb uplift at joint 4 designed in accord Residential Code	i (by oth anding 2 14. dance w sections	ers) of truss t ?77 lb uplift at ith the 2018 s R502.11.1 a	to t and			4	THE OF	MISSOL
3OT CHORD	2-24=-477/2505, 23-2- 5-22=-149/944, 21-22- 20-21=0/93, 6-21=-18 18-19=-346/2517, 16- 14-16=-372/2839	4=-33/201, 22-23=0 =-1104/6444, 9/119, 19-20=-24/1 18=-283/2500,	/92, 97, LC	R802.10.2 a AD CASE(S)	nd referenced stan Standard	idard Al	ISI/TPI 1.					S SCO SEV	VIER

5-21=-1259/258, 8-18=-794/269, 9-18=-151/1307, 10-18=-777/285, 10-16=-23/524, 12-16=-242/206, 8-19=-644/172, 19-21=-339/2441, 8-21=-661/3480, 4-24=-1278/297, 22-24=-506/2623, 4-22=-631/3928

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
lob	Truce	Trues Type	Otv	DIV		AS NOTED FOR PLAN REVIEW
366	11033	Thuss type	QLY	i iy		DEVELOPMENT SERVICES
P240990	B10	Common	3	1	Job Reference (optional)	LEE'S SUMMIT, MISSOURI
	•					10/1/0001

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tup Sep 241: 9991 4/29224 ID:VFJ?4WLDx8n_Zeb8Vc2ewYzX0FR-RfC?PsB70Hq3NSgPqnL8w3ulTXb6KWrCDoirJacd?f1

-0-10-8 0-10-8 36-10-8 6-0-5 12-0-8 18-0-0 23-11-8 29-11-11 36-0-0 6-0-5 6-0-3 5-11-8 5-11-8 6-0-3 6-0-5 0-10-8 5x5= 7 3x6 👟 3x4 🚅 3x4 👟 3x6 🚽 19 20 12 51 6 8 5 9 8-2-3 8-1-4 1.5x4 1.5x4 🍫 3x4 ≠ 10 4 3x4 👟 3 21 11 3x4 👟 n lei 12 0-7-4 13 TT Π 18 22 237 16 1524 25 14 4x8= 4x8= 3x4= 4x6= 5x8= 4x6= 3x4= 9-0-1 18-0-0 26-11-15 36-0-0 9-0-1 8-11-15 8-11-15 9-0-1

Scale = 1:65.9

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.78	Vert(LL)	-0.31	14-16	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.81	Vert(CT)	-0.54	14-16	>795	180		
BCLI	0.0*	Rep Stress Incr	YES		WB	0.46	Horz(CT)	0.15	12	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S		()					Weight: 161 lb	FT = 20%
			2)	Wind ASCE	7-16: \/ult=115mp	h (3-soc	ond quet)						
	2v4 SB No 2 *Excort	+* 1 5 0 12·2v1 CD	<u>~</u>)	Vasd-91mpt	1-10, Vuit=115inp		Inst h-35ft						
	1650F 1 5F	1 1-5,9-15.284 5F		Ke=1.00: Ca	t. II: Exp C: Enclos	ed: MW	FRS (envelo	oe)					
BOT CHORD	2x4 SP 1650F 1 5F			exterior zone	and C-C Exterior((2E) -0-1	0-8 to 4-1-8.	/					
WFBS	2x3 SPE No 2			Interior (1) 4-	1-8 to 18-0-0, Exte	erior(2R	18-0-0 to						
SLIDER	Left 2x4 SP No 2 4	L-9-13 Right 2x4 SP		23-0-0. Interi	or (1) 23-0-0 to 36	-10-8 zc	ne: cantileve	r left					
02.02.1	No.2 3-2-6			and right exp	osed; end vertical	l left and	l right						
				exposed;C-C	for members and	forces &	MWFRS for	r					
	Structural wood she	athing directly applie	d or	reactions sho	wn; Lumber DOL=	=1.60 pla	ate grip						
	2-4-13 oc purlins	annig anoony applie		DOL=1.60									
BOT CHORD	Rigid ceiling directly	applied or 9-10-6 oc	3)	All plates are	3x4 MT20 unless	otherwi	se indicated.						
	bracing.		4)	This truss ha	s been designed fo	or a 10.0) psf bottom						
WEBS	1 Row at midpt	6-16, 8-16		chord live loa	ad nonconcurrent w	vith any	other live loa	ds.					
REACTIONS	(size) 2=0-5-8.1	2=0-5-8	5)	* This truss h	as been designed	for a liv	e load of 20.0	Opsf					
	Max Horiz 2=148 (LC	2 12)		on the botton	n chord in all areas	s where	a rectangle						
	Max Uplift 2=-277 (LC	, C 12). 12=-277 (LC [,]	13)	3-06-00 tall b	y 2-00-00 wide wil	II fit betv	een the bott	om					
	Max Grav 2=1743 (L	C 2), 12=1743 (LC 2	2) ()	Chord and an	ly other members,			Inima					
FORCES	(lb) - Maximum Com	pression/Maximum	, 0)	All Dealings a	are assumed to be	SF 100	OF 1.5E Clus	ning					
ONOLO	Tension	pression/maximum	7)	Drovido mod	bonical connection	(by oth	ore) of truce t	~					
TOP CHORD	1-2=0/4 2-4=-3255/5	502 4-6=-3069/460	()	hearing plate	canable of withsta	anding 2	77 lb unlift at	.0					
	6-7=-2209/426. 7-8=	-2210/426.		ioint 2 and 27	77 lb unlift at joint 1	12							
	8-10=-3040/457, 10-	12=-3247/503,	8)	This truss is	designed in accord	dance w	th the 2018						
	12-13=0/4	,	0)	International	Residential Code	sections	R502 11 1 a	ind					
BOT CHORD	2-18=-521/2883, 16-	18=-354/2528,		R802.10.2 ar	nd referenced stan	dard AN	ISI/TPI 1.						
	14-16=-283/2529, 12	2-14=-373/2861	10	AD CASE(S)	Standard							000	TOP
WEBS	7-16=-154/1343, 4-1	8=-255/206,			etanda.u							8 OF	MIC
	6-18=-26/528, 6-16=	-769/287,										BIE	-0.0 M
	8-16=-771/287, 8-14	=-26/511,									4	1 N	N ST
	10-14=-243/206										B	SCOT	ГТ М. \ΥΥ Υλ
NOTES											. R	/ SEV	TER \ \

1) Unbalanced roof live loads have been considered for this design.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

NUMBE PE-200101880

September 26,2024

FRSSIONAL

C

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qtv	Plv		AS NOTED FOR PLAN REVIEW
000	11000		Guy	,		DEVELOPMENT SERVICES 168441535
P240990	B11	Common	3	1	Job Reference (optional)	LEE'S SUMMIT, MISSOURI
		•				

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tup Sep 241: 99/14/20:24

Scale = 1:64.7

Plate Offsets (X, Y): [2:0-3-8,Edge]

Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	7.TEI2014	CSI TC BC WB	0.72 0.74 0.92	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.48 0.02	(loc) 10-11 10-11 10	l/defl >999 >494 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Excep 1.5E 2x4 SP 1650F 1.5E No.2 2x3 SPF No.2 Left: 2x4 SP No.2 Right: 2x4 SP No.2 Structural wood she: 4-7-5 oc purlins. Rigid ceiling directly bracing, Except: 10-0-0 oc bracing: 1 1 Row at midpt (size) 2=0-5-8, 1 Max Horiz 2=149 (LC Max Uplift 2=-121 (L 13=-283 (Max Grav 2=578 (LC 13=2290)	Wind: ASCE Vasd=91mpt Ke=1.00; Cat exterior zone Interior (1) 4- 23-0-0, Interi- and right exp exposed;C-C reactions sho DOL=1.60 This truss ha chord live loa * This truss ha chord live loa * This truss ha on the botton 3-06-00 tall b chord and an Bearings are crushing cap capacity of 51 Refer to girde Provide mect	7-16; Vult=115m ; TCDL=6.0psf; [t. II; Exp C; Enclo and C-C Exterio 1-8 to 18-0-0, Ex or (1) 23-0-0 to 3 osed ; end vertic for members an own; Lumber DOI s been designed dd nonconcurrent has been designed n chord in all area y 2-00-00 wide w y 2-00-00 wide w y other members assumed to be: acity of 565 psi, of 5 psi.	ph (3-sec 3CDL=6.0 sed; MW r(2E)-0-1 terior(2R 5-11-4 zc al left and d forces & _=1.60 pl: for a 10.0 with any d for a liv as where vill fit betw s, with BC Joint 2 SF Joint 13 S russ conr n (by oth	ond gust) ond gust) Ipsf; h=35ft; FRS (envelc 0-8 to 4-1-8 18-0-0 to ne; cantilevo right & MWFRS for ate grip 0 psf bottom other live lose e load of 20 a rectangle veen the bot DL = 10.0ps 1650F 1.51 P No.2 crus vections. ers) of truss	ope) er left or ads. .0psf tom sf. E hing				weight. 133 h	11 = 2078			
F ORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/4, 2-3=-766/1: 5-6=-49/874, 6-7=0// 9-10=-995/257	pression/Maximum 34, 3-5=-160/339, 658, 7-9=-744/238,	8)	joint 2, 283 lb 10. This truss is a International	designed in acco Residential Code	and 153	th the 2018 R502.11.1	int and				STE OF	MISSO	
BOT CHORD	2-16=-204/625, 15-1 13-15=-339/225, 11- 10-11=-145/838 6-13=-935/162, 7-13 5-13=-786/291, 3-15	6=-204/625, -13=-49/335, 3=-946/277, 5=0/242, 9-11=-452/2	LC 252,	AD CASE(S)	Standard	ndard AN	ISI/TPL1.					SEV	T M. TER	*
NOTES I) Unbalance this design	ed roof live loads have n.	been considered for	200									PE-200 PE-200 PESSION	BER DI LA	

September 26,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
lob	Truss		Otv	Plv		AS NOTED FOR PLAN REVIEW
000	11055		QUY	i iy		DEVELOPMENT SERVICES
P240990	B12	Common	4	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
		•				

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tup Sep 241: 90/14/20:24 ID:jdjxm0OHM10rtlKseGNqrezX?QS-RfC?PsB70Hq3NSgPqnL8w3uITXbGK vrCDoi7J4zJ941

Scale = 1:64.7

Plate Offsets (X, Y): [2:0-3-8,Edge]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.70 0.75 0.75	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.48 0.02	(loc) 10-11 10-11 10	l/defl >999 >492 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 153 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Except 1.5E 2x4 SP 1650F 1.5E * No.2 2x3 SPF No.2 Left: 2x4 SP No.2 Right: 2x4 SP No.2 Structural wood shea 4-7-5 oc purlins. Rigid ceiling directly a bracing. 1 Row at midpt (1) (size) 2=0-5-8, 11 13=0-5-8, Max Horiz 2=149 (LC Max Uplift 2=-77 (LC 13=-278 (LC 13=1229 (LC)	* 8-10:2x4 SP 1650 Except* 14-12:2x4 S athing directly applie applied or 6-0-0 oc 6-13, 7-13 0= Mechanical, 15=0-5-8 : 12) 12), 10=-146 (LC 13 _C 13), 15=-204 (LC 25), 10=712 (LC 28 LC 2), 15=705 (LC 2	2) F SP d or 3) 4) 5) 3), 12) 3), 6) 5)	Wind: ASCE Vasd=91mpf Ke=1.00; Car exterior zone Interior (1) 4- 23-0-0, Interi and right exp exposed;C-C reactions sho DOL=1.60 This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and an Bearings are crushing cap crushing cap capacity of 5 Refer to girdd	7-16; Vult=115mp n; TCDL=6.0psf; Bit t. II; Exp C; Enclos e and C-C Exterior(-1-8 to 18-0-0, Exterior or (1) 23-0-0 to 35 losed; end vertical c for members and bwn; Lumber DOL= is been designed find anonconcurrent w has been designed in chord in all areas by 2-00-00 wide will yo other members, assumed to be: Ju acity of 565 psi, Jo acity of 565 psi, Jo 65 psi. er(s) for truss to tru-	h (3-sec CDL=6. CDL=6. (22) -0- erior(2R -11-4 zc l left and forces a =1.60 pl or a 10. vith any for a liv s where l fit betw with BC bint 2 SI bint 15 S bint 15 S short a S	cond gust) Dpsf; h=35ft; FRS (envelo 10-8 to 4-1-8) 18-0-0 to one; cantileved 1 right & MWFRS fo ate grip D psf bottom other live loz e load of 20. a rectangle veen the bott DL = 10.0ps D 1650F 1.5E IP 1650F 1.5E IP 1650F 3.5E IP 1650F 3.5E IP 1650F 3.5E	ppe) er left or ads. Opsf com .f. E E hing					
FORCES TOP CHORD	(lb) - Maximum Comp Tension 1-2=0/4, 2-3=-422/68	pression/Maximum 3, 3-5=-73/529,	-0, 7)	Provide mech bearing plate 2, 278 lb upli lb uplift at join	hanical connection capable of withsta ft at joint 13, 146 ll nt 15.	i (by oth anding 7 5 uplift a	ers) of truss 7 lb uplift at t joint 10 and	to joint d 204				Constant of F	den la
BOT CHORD	9-10=-1009/242 2-16=-115/317, 15-16 13-15=-406/205, 11-1	6=-115/317, 13=0/347,	8) LC	This truss is International R802.10.2 ar DAD CASE(S)	designed in accord Residential Code nd referenced stan Standard	dance w sections dard AN	ith the 2018 8 R502.11.1 a ISI/TPI 1.	and			A	STATE OF	TT M.
WEBS	6-13=-821/145, 3-16 5-15=-347/171, 5-13 7-13=-945/277, 7-11	=0/242, 3-15=-678/2 =-323/151, =-93/805, 9-11=-447	209, 7/253									* (the	Ler t
NOTES											W	NUN	IDEK / M

NOTES

 Unbalanced roof live loads have been considered for this design.

> 16023 Swingley Ridge Rd. Chesterfield, MC 63017 314.434.1200 / MITek-US.com

PE-200101880

E

SSIONAL

September 26,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
lob	Truce	Trues Type	Otv	DIV		AS NOTED FOR PLAN REVIEW
505	11033	Tuss Type		i iy		DEVELOPMENT SERVICES
P240990	B13	Common	1	1	Job Reference (optional)	LEE'S SUMMIT, MISSOURI

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tup Sep 241: 90/1 4/2022 Rice 24 Inc. Tup Sep 24 Inc. Tup Sep 24 Inc. Tup Sep 241: 90/1 4/2022 Rice 24 Inc. Tup Sep 24 Inc.

Scale = 1:64.7

Plate Offsets (X, Y): [2:0-3-8,Edge], [22:0-2-8,0-3-0]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.70	Vert(LL)	-0.23	18-19	>999	240	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.75	Vert(CT)	-0.49	18-19	>484	180		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.42	Horz(CT)	0.01	18	n/a	n/a		
BCDL		10.0	Code	IRC20)18/TPI2014	Matrix-S		. ,					Weight: 186 lb	FT = 20%
-													5	
LUMBER					TOP CHORD	1-2=0/4, 2-3=-126/1	76, 3-4	=-69/169,		3) Tr	uss desig	ned fo	r wind loads in the	e plane of the truss
TOP CHORD	2x4 SP N	o.2 *Excep	t* 16-18:2x4 SP 165	0F		4-5=-39/174, 5-6=-7	1/369,	6-7=-17/350,		or	ly. For st	uds ex	posed to wind (n	ormal to the face),
	1.5E					7-9=0/371, 9-10=-12	2/572, ⁻	10-11=0/594,		se	e Standa	rd Indu	istry Gable End D	Details as applicable,
BOT CHORD	2x4 SP 10	650F 1.5E '	*Except* 22-20:2x4 \$	SP		11-12=0/593, 12-13	=0/456	, 13-14=0/425	5,	or	consult q	ualified	d building designe	er as per ANSI/TPI 1.
	No.2					14-15=0/365, 15-17	=-822/2	224,		4) Al	plates ar	e 1.5x	4 MT20 unless of	herwise indicated.
WEBS	2x3 SPF	No.2				17-18=-1045/244				5) Ga	able studs	space	ed at 2-0-0 oc.	
OTHERS	2x3 SPF	No.2			BOT CHORD	2-29=-132/136, 28-2	29=-13	2/136,		6) Th	is truss h	as bee	en designed for a	10.0 psf bottom
WEDGE	Left: 2x4	SP No.2				27-28=-132/136, 26	-27=-13	32/136,		ch	ord live lo	ad no	nconcurrent with	any other live loads.
	Right: 2x4	4 SP No.2				25-26=-132/136, 24	-25=-13	32/136,		7) * 1	his truss	has be	en designed for	a live load of 20.0psf
BRACING						23-24=-350/228, 21	-23=-3	50/228,		or	the botto	m cho	rd in all areas wh	ere a rectangle
TOP CHORD	Structura	I wood shea	athing directly applie	d or		19-21=0/383, 18-19	=-133/8	397		3-	06-00 tall	by 2-0	0-00 wide will fit I	between the bottom
	4-5-15 oc	purlins.			WEBS	12-21=-693/118, 21	-30=-9	12/257,		ch	ord and a	ny oth	er members, with	BCDL = 10.0psf.
BOT CHORD	Rigid ceil	ing directly	applied or 6-0-0 oc			30-37=-942/279, 37	-38=-9	14/261,		8) Be	earings ar	e assu	med to be: Joint	29 SP 1650F 1.5E
	bracing,	Except:				15-38=-945/269, 9-3	33=-268	8/99,		cr	ushing ca	pacity	of 565 psi, Joint 2	21 SP No.2 crushing
	10-0-0 oc	bracing: 19	9-21,18-19.			32-33=-300/104, 31	-32=-2	79/96, /140		ca	pacity of	565 ps	1. 	
WEBS	1 Row at	midpt	12-21			21-31=-408/188, 5-2	27=-42	2/19,		9) Re	eter to gird	ier(s) i	or truss to truss o	connections.
JOINTS	1 Brace a	at Jt(s): 30,				17-19=-445/256, 15	-19=-9	o/800, /oz		10) Pr	ovide me	chanic	al connection (by	others) of truss to
	32, 35, 37	7, 38				9-24=-107/210, 5-30	D=-ZZI/	97, 2/04		DE	aring plat	e capa	able of withstandi	ng 20 ib uplift at joint
REACTIONS	(size)	2=11-0-0,	18= Mechanical,			33-30=-220/93, 34-3	20- 4	0/94, 1/65		2,	253 ID UP	Int at jo	DINT 21, 98 ID UPIN	t at joint 27, 147 lb
		21=0-5-8,	24=11-0-0, 25=11-0	-0,		11 21 - 190/112 10	22-7	+/00,		up 25	ant at join	18,94 lift of i	4 ID UPIIIT at JOINT 4	24, 73 ID UPIIIT ALJOINT
		26=11-0-0), 27=11-0-0, 28=11-	·0-0,		22-32-104/35 23-3	-325/5	5/24, 2 7-31-51/2	4	20	, 34 ib up	int at j		upint at joint 29.
		29=11-0-0)			6-35196/108 25-3	3520	02,7-0404/2 0/114	ч,					
	Max Horiz	2=149 (LC	C 12)			26-36=-16/9 4-28=-	.101/55	3-29=-163/1	02					
	Max Uplift	2=-20 (LC	13), 18=-147 (LC 13	3),		13-37=-58/35 14-38	3=-13/5	3	02,				000	ADDA
		21=-253 (LC 13), 24=-94 (LC 1	12),	NOTES								8 OF	MISC
		25=-73 (L	C 12), 27=-98 (LC 28	8),	NUIES	reaf live leads have		a a a a i d a u a d f a u					ASE	
		28=-34 (L	C 12), 29=-77 (LC 12	2)	 Unbalanced this design 	roor live loads have	been	considered for				4	151	N Sol
	Max Grav	2=135 (LC	C 25), 18=729 (LC 28	3),		7 16. Vult 115mph	(2 000	and quat)				B	SCO	M. YEY
		21=1834 ((LC 2), 24=271 (LC 2	25),	2) Wind, ASCE	b: TCDI _6 0pcf: BC	1 (3-Sec	Draft b-25ft				R	/ SEV	TER \ Y
		25=243 (L	.C 27), 26=73 (LC 2)	,		nt, TODL=0.0psi, BC		EPS (onvolor)	2			10	★/	1 * 8
		27=51 (LC	2 13), 28=143 (LC 27	(),	exterior zon	e and C-C Exterior	2E) -0-1	0-8 to 4-0-0	0)			No.		0
		29=217 (L	.0 2)		Interior (1) 2	L-0-0 to 18-0-0 Evter	rior(2R	18-0-0 to				X	al altra	Mar 7
FORCES	(lb) - Max	timum Com	pression/Maximum		23-0-0 Inte	rior (1) 23-0-0 to 35-	11-4 70	ne: cantilever	left			-	SAUCHUN	HDERO LE
	Tension				and right ex	posed : end vertical	left and	d right	.51			X)	ON PE-200	1018807
					exposed C-	C for members and f	orces &	& MWFRS for				Y	150	158
					reactions sh	own: Lumber DOL=	1.60 pla	ate grip					W Ser	NUB
					DOL=1.60	,	· · · · ·	51					NON!	ALEY

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not the building designer must verify the applicability of design parameters and properly incorporate this design into the overall besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

DOL=1.60

September 26,2024

						RELEASE FOR CONSTRUCTION
lob	Trucc		Otv	Dhy		AS NOTED FOR PLAN REVIEW
300	Tuss	Thuss Type	Quy	FIY		DEVELOPMENT SERVICES
P240990	B13	Common	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Jul 12 2	2024 Print: 8.	.630 S Jul 12	2024 MiTek Industries, Inc. Tu	Sep 241:0014/2024
		ID:YPFmRxi1wCdW	qMaczyJ9EC	2zX?Om-RfC?	PsB70Hq3NSgPqnL8w3ulTX?	GKWrCDoi73423C?f

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.51 0.72 0.28	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.45 0.04	(loc) 6-7 6-7 6	l/defl >999 >529 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 77 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP 1650F 1.5E 2x3 SPF No.2 Left: 2x4 SP No.2 Right: 2x4 SP No.2 Structural wood shea 3-9-14 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 6 Max Horiz 2=87 (LC Max Uplift 2=-166 (L Max Gray 2=966 (L	athing directly applied applied or 10-0-0 oc 5= Mechanical 16) C 12), 6=-138 (LC 13 C 12), 6=-138 (LC 13	4) 5) d or 7) 8) 3) LC	* This truss h on the botton 3-06-00 tall b chord and an Bearings are crushing cap Refer to girde Provide mech bearing plate joint 2 and 13 This truss is 6 International R802.10.2 ar	as been designed n chord in all area y 2-00-00 wide w y other members assumed to be: J acity of 565 psi. ar(s) for truss to tr nanical connection capable of withst 88 lb uplift at joint designed in accor Residential Code d referenced star Standard	d for a liv s where ill fit betw loint 2 SF uss conr h (by oth anding 1 6. dance w sections ndard AN	e load of 20.0 a rectangle veen the bott P 1650F 1.5E ections. ers) of truss t 66 lb uplift at k the 2018 R502.11.1 a ISI/TPI 1.	Dpsf om : to					
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORD	1-2=0/4, 2-3=-1544/4 4-5=-1194/311, 5-6=	422, 3-4=-1193/304, -1573/429											
BOT CHORD WEBS	2-6=-324/1375 3-7=-379/236, 4-7=-9	95/594, 5-7=-417/253	3										
NOTES													
 Unbalance this design Wind: ASC Vasd=91m Ke=1.00; C exterior zo Interior (1) 15-0-0, Intr and right e exposed; C reactions s DOL=1.60 	ed roof live loads have CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ne and C-C Exterior(2 4-1-8 to 10-0-0, Exter erior (1) 15-0-0 to 19-1 exposed; end vertical I -C for members and for shown; Lumber DOL=1	been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope E) -0-10-8 to 4-1-8, ior(2R) 10-0-0 to 1-4 zone; cantilever eft and right prces & MWFRS for 1.60 plate grip	∍) left									STATE OF SCOT SEV SEV NUM PE-200	MISSOUR TT M. VIER

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

E

ESSIONAL

September 26,2024

														RELEASE	FOR CONSTRUCTION
Job		Truss		Truss 7	Гуре		Qty	/	Ply					AS NOTE	D FOR PLAN REVIEW
P240990		C02		Comm	on Supported	d Gable	1		1	Job I	Reference	ce (opt	ional	LEE'S	SUMMIT, MISSOURI
Premier Building	Supply (Spring	nill, KS), S	pring Hills, KS - 66083,			Run: 8.63 S Jul 12	2024 P	Print: 8.6	30 S Jul 12	2024 M	liTek Indu	stries, I	nc. Tu	Sep 24 11:49:0	14/2024
						ID:ecAc55ksHZeRI	NDNEj	_heBzX	05v-RfC?Ps	sB70Hq	3NSgPqn	_8w3ul	TXbG	WrCDoi7J4z96?f	
		- <mark>0-10</mark>)-8		10-0-0			ı				20-0	0-0		20-10-8
		0-10	-8		10-0-0							10-0	0-0		0-10-8
								4x4 =							
								7							
\top \top	_				4.0	6				8					
					5			\square		1		-			
					23							9	24		
-9-4				4							P		\geq	10	
4 4			3x8 II 3	/	8									1	1 3x8 I
		2	1												12
	-7-4	1						₿_	9	<u> </u>	0			8	
			4x4 = 22	2	21 20) 19		18	17	1	16		1	15 14	4x4 =
								5x5 =							
							2	0-0-0							
Scale = 1:40.7 Plate Offsets (X, Y): [2:0-3-	7,Edge],	[12:0-3-7,Edge], [18	3:0-2-8,0-3	3-0]										
	,,,,	(nef)	Spacing	2-0-0		CSI		DEEL		in	(loc)	/defl	L/d		GPIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.06	Vert(L	_L)	n/a	-	n/a	999	MT20	197/144
BCLL		10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES		WB	0.03	Vert(C Horz(CT) 0	n/a).00	- 12	n/a n/a	999 n/a		
BCDL		10.0	Code	IRC201	8/TPI2014	Matrix-S								Weight: 84 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2	2		V	/EBS 7	7-18=-116/0, 6-19=- 1-21=-141/79, 3-22=	150/96 -138/9	i, 5-20= 4, 8-17	-138/93, ′=-150/96,	, 12 ,	2) This ti Intern	uss is ationa	desig Resid	ned in accordand dential Code sect	e with the 2018 ions R502.11.1 and
BOT CHORD	2x4 SP No.2	2		N	OTES	9-16=-138/93, 10-15	=-141/	79, 11-	14=-138/8	89	R802.	10.2 a	nd ref	erenced standar	d ANSI/TPI 1.
WEDGE	Left: 2x4 SP	No.2		1	Unbalanced	roof live loads have	been o	conside	red for			52(5)	Ola	luaru	
BRACING	Right: 2x4 S	P No.2		2	this design. Wind: ASCE	7-16; Vult=115mph	(3-sec	ond gu	st)						
TOP CHORD	Structural w 6-0-0 oc pur	ood shea rlins.	athing directly applie	ed or	Vasd=91mph Ke=1.00; Cat	n; TCDL=6.0psf; BC t. II; Exp C; Enclose	DL=6.(d; MW	0psf; h= FRS (e	=35ft; invelope)						
BOT CHORD	Rigid ceiling	directly	applied or 10-0-0 oc	;	exterior zone	and C-C Exterior(2	E) -0-1	0-8 to	4-0-0,) to						
REACTIONS	(size) 2	=20-0-0,	12=20-0-0, 14=20-0)-0,	15-0-0, Interi	or (1) 15-0-0 to 20-1	0-8 zc	ne; car	ntilever lef	ft					
	1	5=20-0-0 8=20-0-0), 16=20-0-0, 17=20-), 19=20-0-0, 20=20-	-0-0, -0-0,	exposed;C-C	for members and for	orces &	& MWF	RS for						
	2 Max Horiz 2	1=20-0-0 =85 (LC), 22=20-0-0 16)		DOL=1.60	own; Lumber DOL=1	.60 pia	ate grip	1						
	Max Uplift 2:	=-24 (LC 4=-65 (L)	8), 12=-27 (LC 9), C 13) 15=-53 (LC 1	3)	 Truss design only. For stu 	ed for wind loads in ds exposed to wind	the pla (norm	ane of t al to th	he truss e face),						
	1	6=-55 (L(C 13), 17=-56 (LC 1	3), 2)	see Standard or consult gu	Industry Gable End alified building desid	d Detai oner as	ils as a s per Al	pplicable, NSI/TPI 1.	_					
	2	9=-57 (L0 1=-54 (L0	C 12), 20=-55 (LC 1 C 12), 22=-70 (LC 1	2), 2) 4	All plates are	1.5x4 MT20 unless	other	wise ind	dicated.	-					
	Max Grav 2:	=157 (LC 4=181 (L	C 1), 12=157 (LC 1), .C 26), 15=180 (LC 2	26), 6	Gable studs	spaced at 2-0-0 oc.		u bean	ng.						
	1	6=179 (L 8=156 (L	.C 1), 17=190 (LC 2) .C 1), 19=190 (LC 2)	6), 7 5).	his truss ha chord live loa	s been designed for ad nonconcurrent wi	a 10.0 th any) pst bo other li	ve loads.					OF OF	MIG
	20	0=179 (L 2-181 (L	C 1), 21=180 (LC 2	5), 8	 * This truss h on the botton 	as been designed for n chord in all areas	or a liv where	e load a recta	of 20.0psf nale	f				TE	MISSON A
FORCES	(lb) - Maxim	um Com	pression/Maximum		3-06-00 tall b	y 2-00-00 wide will	fit betw	veen th	e bottom				B	S SCO	ТТ М. ТЕЛ
TOP CHORD	Tension 1-2=0/4, 2-3	8=-101/50	0, 3-4=-66/60,	9	All bearings a	are assumed to be S	SP No.	2 crush	ning				g.	SEV	
	4-5=-45/82, 7-8=-63/136	5-6=-47/ 6, 8-9=-47	/105, 6-7=-63/139, 7/99, 9-10=-42/61	1	Capacity of 5 () Provide mecl	bo psi. hanical connection (by oth	ers) of	truss to				1 K		
	10-11=-42/2	3, 11-12	=-72/24, 12-13=0/4	' A	bearing plate 2, 27 lb uplift	at joint 12, 57 lb up	iding 2 lift at id	4 lb up bint 19.	lift at joint 55 lb	t			×	PER NUN	BER MAREN
	19-20=-20/74	4, 17-19	=-20/74, 16-17=-20/	-, 74,	uplift at joint	20, 54 lb uplift at join ft at joint 17, 55 lb u	nt 21, 7 plift at	70 lb up ioint 16	olift at joint 6, 53 lb	t			y	PE-200	
	15-16=-20/7	4, 14-15	=-20/74, 12-14=-20/		uplift at joint	15 and 65 lb uplift a	t joint 1	,5,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,					SSION	AL ENG
				1	surface with	e or snim required to truss chord at joint(s	o provie s) 12.	ue full k	bearing					an	TTTTT

September 26,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
lah	Truco	Truco Tupo	011	DIV		AS NOTED FOR PLAN REVIEW
300	TTUSS	Truss Type	Quy	Fiy		DEVELOPMENT
P240990	CJ01	Diagonal Hip Girder	5	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tup Sep 241: 90/14/20:24 ID:IUaHFDwGIAXJ1hsFcMICILzX05g-RfC?PsB70Hq3NSgPqnL8w3uITXbGK/vrCDoi7Jz20?

Scale = 1:36.7

E L

Plate Offsets (X, Y): [2:0-3-2,0-4-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.70 0.88 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.41 0.00	(loc) 2-5 2-5 5	l/defl >441 >221 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 33 lb	GRIP 197/144 FT = 20%
UMBER TOP CHORD SOT CHORD VEBS SLIDER SRACING TOP CHORD SOT CHORD	2x4 SP 2400F 2.0E 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	3-10-10 athing directly applie cept end verticals. applied or 10-0-0 oc	6) 7) ed or 8) c 9)	Provide mecl bearing plate joint 5 and 11 This truss is International R802.10.2 ar "NAILED" ind per NDS guid In the LOAD of the truss a	hanical connection capable of withsta 39 lb uplift at joint 2 designed in accord Residential Code s nd referenced stand dicates Girder: 3-10 Jelines. CASE(S) section, I re noted as front (F	(by oth nding 1 ance w sections dard AN d (0.14 oads a 5) or ba	ers) of truss t 04 lb uplift at th the 2018 SR502.11.1 a SI/TPI 1. 8" x 3") toe-r pplied to the f ck (B).	to t and nails face					
CORCES	(size) 2=0-7-6, 5 Max Horiz 2=120 (LC Max Uplift 2=-139 (L Max Grav 2=435 (LC (lb) - Maximum Com Tension 1-2=0/4, 2-4=-161/90 2-5=-52/57	5= Mechanical C 9) C 8), 5=-104 (LC 12 C 1), 5=336 (LC 1) pression/Maximum 6, 4-5=-257/308	LC 1)	AD CASE(S) Dead + Roc Plate Increa Uniform Loa Vert: 1-4: Concentrate Vert: 10=	Standard of Live (balanced): ase=1.15 ads (lb/ft) =-70, 2-5=-20 ed Loads (lb) -6 (F=-3, B=-3)	Lumbei	Increase=1.	15,					
NOTES) Wind: ASG Vasd=91n Ke=1.00; exterior zc Exterior(2)	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner (3 R) 5-10-0 to 7-6-9 zone	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop) -1-2-14 to 5-10-0, e; cantilever left and	be)									Contraction of the second	and the second

- right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 2 SP No.2 crushing capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.

September 26,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
lob	Truce		Otv	DIV		AS NOTED FOR PLAN REVIEW
366	11033	Thuss type	Qly	I IY		DEVELOPMENT SERVICES
P240990	D01	Hip Girder	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tu Sep 241: 9/1 4/2924 ID:ddHEkG?pvW1GvoOVRDYrzEyqlOq-RfC?PsB70Hq3NSgPqnL8w3uITXbsKWrCDovJsze?f1

Scale = 1:44.7

Plate Offsets (X, Y): [2:Edge,0-2-3], [6:Edge,0-2-3]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	J/TPI2014	CSI TC BC WB Matrix-S	0.89 0.78 0.50	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.20 -0.36 0.08	(loc) 9 9 6	l/defl >999 >731 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 92 lb	GRIP 197/144 FT = 20%	
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE	 2x4 SP No.2 *Except 2.0E 2x6 SPF No.2 2x3 SPF No.2 Structural wood sheat except 2-0-0 oc purlins (3-2) 	t* 3-5:2x4 SP 2400F athing directly applied -6 max.): 3-5.	4) 5) d, 6) 7)	This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an All bearings a capacity of 4. Provide mect	s been designed f ad nonconcurrent v has been designed n chord in all areas yo 2-00-00 wide wi yo other members. are assumed to be 25 psi. hanical connection	or a 10.0 with any I for a liv s where Il fit betw s SPF No on (by oth) psf bottom other live loz e load of 20. a rectangle veen the bott b.2 crushing ers) of truss i	ads. Opsf om to		Vert: 3= 4=-104 15=-104 20=-32	-104 (F (F), 8= 4 (F), 1 (F), 21	F), 5=-104 (F), 11 -340 (F), 13=-10 6=-104 (F), 18=-; =-32 (F)	=-340 (F), 9=-32 (4 (F), 14=-104 (F), 32 (F), 19=-32 (F),	F),
BOT CHORE	 Rigid ceiling directly bracing. (size) 2=0-3-8, 6 Max Horiz 2=49 (LC Max Uplift 2=-507 (L' Max Grav 2=1846 (L 	applied or 7-5-15 oc =0-3-8 16) C 8), 6=-507 (LC 9) C 1), 6=1846 (LC 1)	8) 9)	joint 2 and 50 This truss is International R802.10.2 ar Graphical pu	7 Capable of Withst O7 Ib uplift at joint (designed in accord Residential Code nd referenced stan rlin representation	anding 5 6. dance w sections idard AN does no	ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the s	and						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	10)	bottom chord Use Simpsor	alion of the putility I. h Strong-Tie THJA	26 (THJ	A26 on 1 ply	, Left						
TOP CHORE	1-2=0/10, 2-3=-3822 4-5=-4649/1455, 5-6	/1136, 3-4=-4649/14 =-3822/1136, 6-7=0/	55, 10	Hand Hip) or connect truss	equivalent at 5-6- s(es) to front face	6 from the f	ne left end to n chord.							
BOT CHORE WEBS	2-11=-959/3404, 9-1 8-9=-956/3382, 6-8= 3-11=-36/541, 3-9=-4	1=-957/3382, -957/3404 448/1469, 4-9=-916/5	11) 506,	Use Simpsor Right Hand H to connect tru	h Strong-Tie THJA Hip) or equivalent a uss(es) to front fac	26 (THJ at 16-9-2 ce of bot	A26 on 1 ply from the left com chord.	, t end						
NOTES	5-9=-448/1469, 5-8=	-36/541	12) 13)	Fill all nail ho N/A	les where hanger	is in cor	tact with lum	ıber.				6000	1000	
 Unbaland this designation 	ced roof live loads have jn.	been considered for										TE OF	MISSO	
2) Wind: AS Vasd=91 Ke=1.00; exterior z Interior (23-2-0 zc	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BCI Cat. II; Exp C; Enclose cone and C-C Exterior(2 I) 4-1-8 to 5-6-0, Exterior I) 12-6-14 to 16-9-8, Ext ne; cantilever left and ri	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope E) -0-10-8 to 4-1-8, rr(2R) 5-6-0 to 12-6-1 terior(2E) 16-9-8 to ight exposed ; end	14) e) 15) 14, LO 1)	 "NAILED" inc per NDS guid In the LOAD of the truss a AD CASE(S) Dead + Roc Plate Increase 	dicates Girder: 3-1 delines. CASE(S) section, ire noted as front (Standard of Live (balanced): ase=1.15	0d (0.14 Ioads aj F) or ba Lumber	8" x 3") toe- oplied to the ck (B). Increase=1.	nails face 15,				SCO SEV	TT M. TER	

forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding.

vertical left and right exposed;C-C for members and

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Uniform Loads (lb/ft)

Concentrated Loads (lb)

Vert: 1-3=-70, 3-5=-70, 5-7=-70, 2-6=-20

Mitok

-20010188

E

IONAL

September 26,2024

						RELEASE FOR CONSTRUCTION
lob	Truce	Truss Type	Otv	DIV		AS NOTED FOR PLAN REVIEW
500	11035	Tuss Type	Giy	i iy		DEVELOPMENT SERVICES
P240990	D02	Нір	1	1	Job Reference (optional)	LEE'S SUMMIT, MISSOURI

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tup Sep 241: 91/1 4/20: 24 ID:5?GLF9OSh9kMw6auVje7yhyqIPc-RfC?PsB70Hq3NSgPqnL8w3uITXbGrWrCDoi7J4204

Scale = 1:44.8

Diata Offacta (V. V)	[2:Edgo 0 1 12] [2:0 2 7 Edgo] [5:Edgo 0 1 12] [5:0 2 7 Edgo]	
Figue Offsets (Λ, T) .	[2.Euge,0-1-12], [2.0-3-7,Euge], [5.Euge,0-1-12], [5.0-3-7,Euge]	

			•		• •								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		ТС	0.78	Vert(LL)	-0.10	2-9	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.75	Vert(CT)	-0.22	2-9	>999	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.12	Horz(CT)	0.05	5	n/a	n/a		
BCDL	10.0	Code	IRC20	8/TPI2014	Matrix-S							Weight: 85 lb	FT = 20%
LUMBER			4) This truss ha	is been designed	d for a 10.0) psf bottom						
TOP CHORD	2x4 SP 1650F 1.5E			chord live loa	ad nonconcurrent	t with any	other live loa	ads.					
BOT CHORD	2x4 SP No.2		5) * This truss h	nas been designe	ed for a liv	e load of 20.	0psf					
WEBS	2x3 SPF No.2			on the bottor	n chord in all are	as where	a rectangle						
WEDGE	Left: 2x4 SP No.2			3-06-00 tall b	y 2-00-00 wide v	will fit betw	een the bott	om					
	Right: 2x4 SP No.2			chord and ar	ny other members	s.							
BRACING			6) All bearings	are assumed to b	be SP No.	2 crushing						
TOP CHORD	Structural wood she	athing directly applie	d or	capacity of 5	65 psi.								
	2-2-0 oc purlins, exc	ept	7) Provide mec	hanical connection	on (by oth	ers) of truss	to					
	2-0-0 oc purlins (4-1	-1 max.): 3-4.		bearing plate	e capable of with	standing 1	58 lb uplift a	t					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc		joint 2 and 1	58 Ib uplift at join	it 5.	th the 2010						
	bracing.		8) This truss is	Designed in acco	broance w	DE02 11 1	and					
WEBS	1 Row at midpt	3-7		Peop 10.2 or	d referenced et	e sections		anu					
REACTIONS	(size) 2=0-3-8, 5	5=0-3-8	٥	Craphical pu	rlin representatio	anuaru An	t denict the	ozizo					
	Max Horiz 2=65 (LC	16)	3	or the orient:	ation of the nurlin	along the	top and/or	3126					
	Max Uplift 2=-158 (L	C 8), 5=-158 (LC 9)		bottom chore		raiong the							
	Max Grav 2=1061 (L	_C 1), 5=1061 (LC 1)		OAD CASE(S)	Standard								
FORCES	(lb) - Maximum Com	pression/Maximum	_		Otandard								
	Tension	050 0 4 4505/077											
TOP CHORD	1-2=0/4, 2-3=-1785/	350, 3-4=-1525/377,											
	4-5=-1785/350, 5-6=	=0/4											
BOICHORD	2-9=-238/1530, 7-9=	-241/1525,											
WEBS	3-9=0/320 3-7=-185	5/186 4-7=0/320										000	TOP
NOTES	0 0 0,020,01 100											OF	MISC
1) Unbalance	ad roof live loads have	been considered for										ASE	
this design		been considered for									4	151	New Mar
2) Wind AS	CE 7-16: Vult-115mph	(3-second quet)									b	SCO.	IT M. YONY
Vasd=91n	nph: TCDI =6 0 nsf: BC	DI = 6 Onsf: h = 35 ft									B.	SEV	VIER \ Y
Ke=1 00.	Cat II: Exp C: Enclose	d MWFRS (envelop	e)								0	★/	\★Ø
exterior zo	one and C-C Exterior(2	E) -0-10-8 to 4-1-8,	-)								1 Ac	0.	
Interior (1)) 4-1-8 to 7-6-0, Exterio	or(2E) 7-6-0 to 14-9-8	3.								N.	hottom	TOTO MAN
Exterior(2	R) 14-9-8 to 22-1-12, li	nterior (1) 22-1-12 to									- Ch	PE 200	1010007
23-2-0 zor	ne; cantilever left and r	ight exposed ; end									Ŋ	PE-200	101880/ 29
vertical lef	t and right exposed;C-	C for members and										1.80	1SH
forces & N	IWFRS for reactions sl	hown; Lumber										W SION	IL EN
DOL=1.60) plate grip DOL=1.60											ALON,	AL
(1) Description -													

- forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

September 26,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

												RELEASE	FOR CONSTR	RUCTION
Job		Truss	Tru	uss Type		Qty		Ply				AS NOTE	ED FOR PLAN	
P240990		D03	Hip	p		1		1	loh Refe	rence (or	tional	LEE'S	168441543 SUMMIT, MISS	
Premier Building	g Supply (Springhill	, KS), Spring Hills, KS	6 - 66083,		Run: 8.63 S Jul 12	2024 Prir	nt: 8.63	30 S Jul 12 2	2024 MiTek	Industries,	Inc. Tu	Sep 24 11:49:1	14/26	9:24
					ID:dMlpASn8vlugN	BbEx9ksr	neyqIP	5-RfC?PsB7	'0Hq3NSgP	qnL8w3ul1	TXbGK\	/rCDoi7J4zJ0?i	14/20	JZ 4
						4.0				-				
			6-4-5		3-1-11	3-	- <u>9-8</u> -3-8		3-1-11	3		22-3-8 6-4-5	j	
					454			4×4 -	_					
N	0			1.5x4	⁴ ×۲	o II		4x4 = 1	•					
<u>+</u>	=			10	÷ - - - - - - - - - - - - -	[\bowtie	- 		1.5	5x4 🍫			
4	0			5 Z		/			\sim		5			
				11						- A		12		
6-12 5-2	5-2		/				$\langle \rangle$							
4 4	4	3x8 II	10							/			13	3x8 II
		1						$\langle $						6
	-7-4								/					
	- 0	×			9	8		7						
		4x4 =			3x4:	-		3x8	=					4x4 =
						4x6-								
						470 -								
				9-4-12 9-4-12		<u>12-</u> 3·	<u>10-12</u> -6-0					<u>22-3-8</u> 9-4-12		
Scale = 1:42.3														
Plate Offsets ((X, Y): [1:0-3-3,	0-4-3], [6:0-3-3,0-4	-3]											
Loading	(psf) Spacing	2-0	-0	CSI		DEFL		in (loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof) TCDL	2	25.0 Plate Grip 0.0 Lumber D	DOL 1.1 OL 1.1	5 5	TC BC	0.82	Vert(L Vert(C	L) -0.: CT) -0.:	24 1-9 51 1-9	>999 >522	240 180	MT20	197/144	
BCLL		0.0* Rep Stres	s Incr YE	S	WB	0.15 I	Horz((CT) 0.	05 6	n/a	n/a		FT 00%	
BCDL	1	0.0 Code	IRC	2018/TPI2014	Matrix-S							Weight: 88 lb	FT = 20%	
LUMBER TOP CHORD	2x4 SP No.2			 Provide adeq This truss has 	uate drainage to pri s been designed for	event wa a 10.0 p	ater po psf bo	onding. ttom						
	2x4 SP No.2			chord live loa	d nonconcurrent wi	th any of or a live	ther liv	ve loads. of 20 Opsf						
WEDGE	Left: 2x4 SP No.2	lo.2		on the bottom	chord in all areas	where a	rectar	ngle						
BRACING	Right: 2x4 SP	No.2		chord and an	y other members.	nt detwe	en the	e bottom						
TOP CHORD	Structural woo	od sheathing direct	tly applied or	 All bearings a capacity of 56 	ire assumed to be \$ 35 psi.	SP No.2	crush	ing						
	2-2-0 oc purlir 2-0-0 oc purlir	ns, except ns (4-10-10 max.):	3-4.	 Provide mech boaring plate 	nanical connection (by other	s) of t	russ to						
BOT CHORD	Rigid ceiling c bracing.	lirectly applied or 2	2-2-0 oc	joint 1 and 14	0 lb uplift at joint 6.	iuliig 14		Jint at						
REACTIONS	(size) 1=0)-3-8, 6=0-3-8		 This truss is a International 	lesigned in accorda Residential Code se	nce with ections F	n the 2 R502.1	2018 11.1 and						
	Max Uplift 1=-	140 (LC 17) 140 (LC 12), 6=-14	40 (LC 13)	R802.10.2 ar	d referenced stand	ard ANS	SI/TPI	1. t the size						
FORCES	Max Grav 1=9	990 (LC 1), 6=990	(LC 1)	or the orienta	tion of the purlin alo	ong the t	op an	d/or						
FURGES	Tension	n compression/Ma		LOAD CASE(S)	Standard									
TOP CHORD	1-2=-1767/38 3-4=-1304/31	9, 2-3=-1477/325, 2, 4-5=-1478/325,		. ,										
	5-6=-1767/38	9 3 7- <u>9</u> =-147/1303												
	6-7=-285/154	3	50/050										ADD	
WEBS	3-9=-72/370,3 2-9=-332/218	3-7=-129/132, 4-7= 5-7=-331/219	=-56/353,									S. OF	MISC	N
NOTES	ed roof live lead	have been const	hered for									A.A.	300	Ø
this design		5 mave been consid									A	SCO' SE	TT M. VIER	58

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 5-1-12, Interior (1) 5-1-12 to 9-6-0, Exterior(2E) 9-6-0 to 12-9-8, Exterior(2R) 12-9-8 to 19-10-6, Interior (1) 19-10-6 to 22-1-12 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS//TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

NUMBER

PE-20010100

September 26,2024

Job Truss Type Qt Qt Ply Job Reference (optional Devices Test Source of the formation of t		Γ	I		1				RELEASE FOR C	
P240990D04Hip Girder12Job Reference (optionalIEES substratePremier Building Supply (Springhill, KS), Spring Hills, KS). Spring Hills, KS. 66083.Rur: 863 S. Jul 12 2024 Print: 8 630 S. Jul 12 2024 MTRk Industries, Inc. To: Spring 4.0 / 14/2024 0.6 ± 0.533 $9.8 \cdot 14$ $12 \cdot 6 \cdot 10$ $17 \cdot 0 \cdot 5$ $22 \cdot 3 \cdot 8$ 0.6 ± 0.533 $9.8 \cdot 14$ $2.9 \cdot 12$ $4 \cdot 5 \cdot 11$ $5 \cdot 3 \cdot 3$ $0.6 \pm 0.55 \pm 0.512$ 0.5 ± 0.512 0.5 ± 0.522 0.5 ± 0.522 $0.6 \pm 0.55 \pm 0.522$ 0.5 ± 0.522 0.5 ± 0.522 0.5 ± 0.522 0.6 ± 0.522 0.5 ± 0.5224 0.5 ± 0.5224 0.5 ± 0.5224 0.5 ± 0.5244 0.5 ± 0.5224 0.5 ± 0.5244 0.5 ± 0.5244 0.5244 0.5 ± 0.5244 0.5 ± 0.5244 0.5244 0.5244 0.5 ± 0.5244 0.5524 0.5254 0.526 0.526 0.5 ± 0.5244 0.5244 0.526 0.526 0.526 0.5 ± 0.5244 0.5244	Job	Truss	Truss Type		Qty	Ply			DEVELOPME	
Premier Building Supply (Springhill, KS). Spring Hills, KS - 66083. Run: 8.63 S. Jul 12 2024 Print: 8.630 S. Jul 12 2024 MTek Industries. Inc. Tul Sep 241.0/14/2024 ID:HT340_Yg4kqKsut_JuMenyq106.RtC/PsB70Hq3NSg9rqL8wdJTXbcBr/HcDor74z30/14/2024 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	P240990	D04	Hip Girder		1	2	Job Reference (op	tional	I68 LEE'S SUMM	441544 T, MISSOURI
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Premier Building Supply (Springh	ill, KS), Spring Hills, KS - 66083,		Run: 8.63 S Jul ID:HT3dO_Yg4fo	12 2024 Print: 8. qkRsvL7uMerwyc	630 S Jul 12 20 106-RfC?PsB7	024 MiTek Industries, I 70Hq3NSgPqnL8w3ul	Inc. Tue Se TXbGkWr(ep 241: (9:) / 14, CDoi7 J4z 9? / 14,	/2024
$6k^{6} = 55^{5}$ $6k^{6} = 55^{5}$ $6k^{6} = 55^{5}$ $6k^{6} = 55^{5}$ $4x^{4}x^{5}$ $4x^{5}$ $4x^$		5-3-3		9-8-14 4-5-11	12-6-10		17-0-5 4-5-11		<u>22-3-8</u> 5-3-3	
Scale = 1:43.9					6x6 =	5x5 =				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+-7-15 + 4-6-5 +-7-15 +-6-5 0-1-10	12 1 1 1 1 1 1 1 1 1 5	5 12 4x6 = 2 10 10 10 1117	0 		4		4x4 ≈	13 	6
LUS24 LUS26 LUS26 LUS24 Tx8 = LUS26 LUS26 LUS26 LUS26 LUS24 LUS24 LUS24 LUS24 LUS26 LUS26 LUS26 5-3-3 9-7-10 12-7-14 17-0-5 22-3-8 5-3-3 4-4-7 3-0-4 4-4-7 5-3-3		4x8 =	Зх10 н		5x5 =	8x8=		3x6 I		4x8 ≈
5-3-3 9-7-10 12-7-14 17-0-5 22-3-8 5-3-3 4-4-7 3-0-4 4-4-7 5-3-3 Scale = 1:43.9 Plate Offsets (X, Y): [8:0-4-0,0-5-12] 9-7-10 12-7-14 17-0-5 22-3-8		LUS24	6 LUS26 LUS24	LUS24 LUS24	7x8 = 4 LUS26	LUS26	LUS26	LUS26	LUS26	
Scale = 1:43.9 5-3-3 4-4-7 3-0-4 4-4-7 5-3-3 Plate Offsets (X, Y): [8:0-4-0,0-5-12]		5-3-3	i	9-7-10	12-7-14	4	17-0-5		22-3-8	
Plate Offsets (X, Y): [8:0-4-0,0-5-12]	Scale = 1:43.9	5-3-3		4-4-7	3-0-4		4-4-7		5-3-3	
	Plate Offsets (X, Y): [8:0-4-0	0,0-5-12]								

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.93	Vert(LL)	-0.16	10-11	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.95	Vert(CT)	-0.28	10-11	>940	180		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.46	Horz(CT)	0.06	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 233 lb	FT = 20%

LUMBER

TOP CHORD	2x4 SP No.2
BOT CHORD	2x8 SP 2400F 2.0E *Except* 9-6:2x8 SPF No.2
WEBS	2x3 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied, except
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS	(size) 1=0-3-8, 6=0-3-8
	Max Horiz 1=78 (LC 16)
	Max Uplift 1=-1117 (LC 12), 6=-903 (LC 13)
	Max Grav 1=5726 (LC 1), 6=4225 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=-10127/2156, 2-3=-7404/1675,
	3-4=-6641/1557, 4-5=-7287/1664,
	5-6=-8935/2014
BOT CHORD	1-11=-1910/9162, $10-11=-1910/9162$, 9.10=1402/6744, $7.9=1791/9062$
	67 = 1701/0003
WERC	2 10- 556/2654 2 9- 216/79
WLDO	4 9- 525/2449 2 10- 2605/504
	4-0=-353/2446, 2-10=-2093/394, 5-81570//59 2-11383/2363
	5-7=-263/1401
NOTES	
 1) 0 mlu 4muno 	to be connected to not her with 10d

- 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc
- Bottom chords connected as follows: 2x8 2 rows staggered at 0-5-0 oc.
- Web connected as follows: 2x3 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 5-3-3, Interior (1) 5-3-3 to 9-8-14, Exterior(2E) 9-8-14 to 12-6-10, Exterior(2R) 12-6-10 to 19-7-8, Interior (1) 19-7-8 to 22-1-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding. 5) This truss has been designed for a 10.0 psf bottom 6)
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 1 SP 2400F 2.0E 8) crushing capacity of 805 psi, Joint 6 SPF No.2 crushing capacity of 425 psi.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1117 lb uplift at ioint 1 and 903 lb uplift at joint 6.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

- 12) Use Simpson Strong-Tie LUS24 (4-SD9112 Girder, 2-SD9212 Truss, Single Ply Girder) or equivalent at 0-8-12 from the left end to connect truss(es) to back face of bottom chord.
- 13) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 2-8-12 from the left end to 4-8-12 to connect truss(es) to back face of bottom chord.
- 14) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 5-8-12 from the left end to 9-1-4 to connect truss(es) to back face of bottom chord.
- 15) Use Simpson Strong-Tie LUS26 (4-10d Girder, 4-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 11-1-4 from the left end to 19-1-4 to connect truss(es) to back face of bottom chord.
- 16) Fill all nail holes where hanger is in contact with lumber. LOAD CASE(S) Standard
- Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15
 - Uniform Loads (lb/ft)

Vert: 1-3=-70, 3-4=-70, 4-6=-70, 1-6=-20 Concentrated Loads (lb)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

							RELEASE FOR CONSTRUCTION
loh	Truce			Otv	Dhy		AS NOTED FOR PLAN REVIEW
JOD	TTUSS	Truss Type		Quy	Fiy		DEVELOPMENT SERVICES
P240990	D04	Hip Girder		1	2	lob Reference (entional	LEE'S SUMMIT, MISSOURI
		•			-	Job Reference (optional	
Premier Building Supply (Sp	Sep 2411:49:1/1 / Page 2						
			ID:HT3dO_Yg4fqkRs	vL7uMerwy	qIO6-RfC?Ps	sB70Hq3NSgPqnL8w3ulTXbGl	WrCDoi7J4z3e?

Vert: 7=-667 (B), 14=-869 (B), 15=-865 (B), 16=-865 (B), 17=-685 (B), 18=-672 (B), 19=-672 (B), 20=-672 (B), 21=-672 (B), 22=-667 (B), 23=-667 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
loh	Trues	Truss Type	Otv	DIV		AS NOTED FOR PLAN REVIEW
366	11035	Tuss Type	Guy	i iy		DEVELOPMENT SERVICES
P240990	GR01	Jack-Closed Girder	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
		1				

5-6-0

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

5-6-0

Scale = 1:30.1

Plate Offsets (X, Y): [3:Edge,0-2-8]

Loadi	ng	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	(roof)	25.0	Plate Grip DOL	1.15		TC	0.71	Vert(LL)	-0.07	1-3	>903	240	MT20	244/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.57	Vert(CT)	-0.13	1-3	>486	180			
BCLL		0.0*	Rep Stress Incr	NO		WB	0.00	Horz(CT)	0.00	3	n/a	n/a			
BCDL		10.0	Code	IRC2018	3/TPI2014	Matrix-P							Weight: 24 lb	FI = 20%	
	BER			7)	This truss is	designed in accord	lance w	ith the 2018	and						
		2X4 SP N0.2	-		R802 10 2 a	nd referenced stan	dard AN		anu						
		2x0 SF 2400F 2.0	E	8)	Use Simpson	n Strong-Tie LUS24	4 (4-100	lx1 1/2 Girde	ər.						
		273 011 10.2		-,	2-10d Truss,	Single Ply Girder)	or equi	alent space	d at						
		Structural wood sh	eathing directly appli	ed or	2-0-0 oc max	k. starting at 1-6-12	from th	e left end to							
5-6-0 oc purlins, except end verticals. 5-6-0 oc purlins, except end verticals. 5-6-12 to connect truss(es) to back face of bottom															
вот с	CHORD	Rigid ceiling direct	ly applied or 10-0-0 o	C .	chord.										
		bracing.		9)	Fill all nail ho	bles where hanger i	is in cor	itact with lun	nber.						
REAC	TIONS	(size) 1=0-5-8	, 3= Mechanical	10) In the LOAD	CASE(S) section,	loads a	oplied to the	face						
		Max Horiz 1=115 (LC 11)				-) 01 ba	ск (Б).							
		Max Uplift 1=-161	(LC 12), 3=-166 (LC 1	12) LC	Dood L Bo	Standard	Lumbor	Incrosso-1	15						
		Max Grav 1=925 (LC 1), 3=803 (LC 1)	1)	Plate Increa		Lumber	increase=1	.15,						
FORC	ES	(lb) - Maximum Co	mpression/Maximum		Uniform Lo	ads (lb/ft)									
		Tension			Vert: 1-2	=-70, 1-3=-20									
	CHORD	1-2=-152/103, 2-3	=-181/224		Concentrate	ed Loads (lb)									
301.0	HORD	1-3=-51/55			Vert: 4=-	631 (B), 5=-631 (B)								
NOTE	S														
1) VV	ind: ASC	2E 7-16; Vult=115mp	oh (3-second gust)												
V a	asu=91111 ==1 00. C	Cat. II: Exp.C: Enclos	sed: MW/FRS (envelo	ne)											
ex	terior zoi	ne and C-C Exterior	(2F) zone: cantilever	left											
ar	nd right e	xposed ; end vertica	l left and right											1112	
ex	cposed;C	-C for members and	forces & MWFRS fo	r									OF	MIG	
re	actions s	shown; Lumber DOL	=1.60 plate grip										ASEDT	MISS	0
D	OL=1.60												9 AN	10	N.
2) Th	nis truss l	has been designed	for a 10.0 psf bottom									A	SCO'	ГТ М. 🔪	N-
cr • * در	nord live l	load nonconcurrent	with any other live load of 20 i	Ids. Opef								A	SE	VIER \	N I
5) Or	the bott	om chord in all area	s where a rectangle	opsi								4	*	_	1 * 13
3-	06-00 tal	ll by 2-00-00 wide w	ill fit between the bott	om										. 8	1 4 7
ch	nord and	any other members.										de.	actor	-en	16M
4) Be	earings a	are assumed to be: J	oint 1 SP 2400F 2.0E									Th T	PE 200	1010007	AB
cr	ushing ca	apacity of 805 psi.										(Y	PE-200	101000/	88
5) R	efer to gii	rder(s) for truss to tr	uss connections.									1	NºCo-	GI	8
b) Pi	rovide me	echanical connection	h (by others) of truss	to									UNION.	AL EN	7
ad ioi	int 1 and	ate capable of Withst 166 lb unlift at joint	anung io ib uplitat s	L									an		
jU	nn i anu	Too in upint at joint	0.										Sentembo	r 26 2024	
													Septembe	20,2024	

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job Truce		Otv		DIV		AS NOTED FOR PLAN REVIEW
JOD TIUSS	Truss Type	QUY	ſ	гіу		DEVELOPMENT
P240990 J01	Jack-Open	10	1	1	Job Reference (optional)	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springhill KS) Spring Hills KS - 660/						

aing Supply (Springhill, KS), Spring Hills, KS - 66083

ID:2yScrsnE8PfFjmcpPO9JiRzX0Db-RfC?PsB70Hq3NSgPqnL8w3uITXbGK VrCDoi7J4zJSef

1-4-15

Scale = 1:26.3

Loading		(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	0.00	2	>999	240	MT20	197/144
TCDL		10.0	Lumber DOL	1.15	BC	0.01	Vert(CT)	0.00	2-4	>999	180		
BCLL		0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL		10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 6 lb	FT = 20%
LUMBER				7) This truss	is designed in acco	ordance w	ith the 2018						
TOP CHORD BOT CHORD	2x4 SP N 2x6 SPF	lo.2 No.2		Internation R802.10.2	al Residential Cod and referenced st	le sections andard AN	; R502.11.1 ; ISI/TPI 1.	and					
BRACING				LOAD CASE(S	 Standard 								
TOP CHORD	Structura	l wood she	athing directly applie	ed or	,								
BOT CHORD	Rigid ceil bracing.	ing directly	applied or 10-0-0 or	C									
REACTIONS	(size)	2=0-5-8, 3 Mechanic	3= Mechanical, 4= al										
	Max Horiz	2=40 (LC	12)										
	Max Uplift	2=-40 (LC	8), 3=-23 (LC 12)										
	Max Grav	2=147 (LC	C 1), 3=25 (LC 1), 4=	=27									
		(LC 3)											
FORCES	(lb) - Max	imum Com	pression/Maximum										
	1 2_0/10	2 2- 25/2	1										
	2 4-0/0	, 2-3=-30/2	1										
NOTES	2-4-0/0												
 Wind: ASC Vasd=91n Ke=1.00; (exterior zc and right e exposed;C reactions s DOL=1.60 This truss chord live * This truss on the bot 3-06-00 ta chord and Bearings a crushing c Refer to gi Provide m 	CE 7-16; VL nph; TCDL= Cat. II; Exp one and C-C exposed; e C-C for men shown; Lun) has been c load nonco is has been tom chord i il by 2-00-0 any other r are assume apacity of 2 irder(s) for iechanical c	It=115mph =6.0psf; BC C; Enclose C Exterior(2 nd vertical I nbers and fu- ber DOL= ² lesigned for n current wi designed for n all areas 0 wide will members. d to be: , Jo 125 psi. truss to tru: connection ((3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever I eft and right prces & MWFRS for 1.60 plate grip • a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto bint 2 SPF No.2 ss connections. by others) of truss to	oe) left ds.)psf om								STATE OF STATE OF SCO SE NUT PE-200	MISSOLP TT M. VIER
 crushing c 5) Refer to g 6) Provide m bearing pl 2 and 23 l 	capacity of 4 irder(s) for lechanical c ate capable b uplift at jo	125 psi. truss to tru connection (of withstar int 3.	ss connections. by others) of truss to nding 40 lb uplift at jo	o bint							Ŷ	OFFESSION	AL ENGILE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

September 26,2024

						RELEASE FOR CONSTRUCTION
leb	Trucc	Truce Type	Otv	DIV		AS NOTED FOR PLAN REVIEW
300	Tuss	Truss Type		FIY		DEVELOPMENT
P240990	J02	Jack-Open	10	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
	-					

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tup Sep 241: 91/1 4/29 24 ID:AxdC002PqkTASXGSCpAoGSzX?mr-RfC?PsB70Hq3NSgPqnL8w3uITXt GKWrCD07J4JC?f

3-4-15	

Scale = 1:27.4 Plate Offsets (X, Y): [2:0-2-0.0-0-14]

	7, 1). [2.0-2-0;0-0-14]	1												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-P	0.17 0.11 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 0.00	(loc) 2-5 2-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 1 Structural wood shea 3-4-15 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 4 Mechanic Max Horiz 2=76 (LC Max Uplift 2=-44 (LC Max Grav 2=231 (LC (LC 3)	I-10-2 athing directly applie applied or 10-0-0 oc l= Mechanical, 5= al 12) 12), 4=-64 (LC 12) C 1), 4=96 (LC 1), 5=	6) 7) ^{rd or} LC	Provide mec bearing plate 4 and 44 lb u This truss is International R802.10.2 ar DAD CASE(S)	hanical connection e capable of withst uplift at joint 2. designed in accor Residential Code nd referenced star Standard	n (by oth anding 6 dance w sections ndard AN	ers) of truss 4 lb uplift at ith the 2018 502.11.1 a ISI/TPI 1.	to joint and				g		
FORCES	(Ib) - Maximum Com Tension 1-2=0/4, 2-4=-72/34 2-5=0/0	pression/Maximum												
NOTES 1) Wind: ASC Vasd=91n Ke=1.00; (exterior zc and right é exposed;C reactions : DOL=1.60 2) This truss chord live 3) * This trus on the bot 3-06-00 ta chord and 4) Bearings a capacity o 5) Refer to g	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCI Cat. II; Exp C; Enclose- one and C-C Exterior(2 exposed ; end vertical I -C for members and for shown; Lumber DOL=1 - has been designed for load nonconcurrent wii s has been designed for tom chord in all areas v III by 2-00-00 wide will f any other members. are assumed to be: , Jo f 565 psi. irder(s) for truss to trus	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le eft and right orces & MWFRS for 1.60 plate grip a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto bint 2 SP No.2 crushi ss connections.	e) eft ds. psf m ing									STATE OF SCO SEV PE-200 PE-200	MISSOL TT M. TIER 1018807	

September 26,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

							RELEASE FOR CONSTRUCTION
lob		Truce		Otv	DIV		AS NOTED FOR PLAN REVIEW
300		Truss	Truss Type	Qly	гу		DEVELOPMENT
P24099	90	J03	Jack-Open	18	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Promior R	uilding Supply (Springt	Son 24 4: 00 2 4 4 1000 1					

ID:L1rqIRfzVKOgWEruqH_yIKzX0DI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJ9ff

5-6-0

Scale = 1:28.5			I	
Plate Offsets (X, Y):	[2:0-1-15,0-4-3]			

Flate Olisets (A, f). [2.0-1-15,0-4-3	9]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.57 0.34 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.09 0.00	(loc) 2-4 2-4 3	l/defl >999 >708 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Left: 2x4 SP No.2 Structural wood she 5-6-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, Mechanic Max Horiz 2=114 (L Max Uplift 2=-55 (LC Max Grav 2=320 (L	athing directly applie rapplied or 10-0-0 or 3= Mechanical, 4= cal C 12) C 12, 3=-107 (LC 12 C 1), 3=-107 (LC 12, C 1), 3=-107 (LC 12,	6) 7) ed or LC	Provide mecl bearing plate joint 3 and 55 This truss is International R802.10.2 ar	hanical connecti capable of with 5 lb uplift at joint designed in acco Residential Cod do referenced sta Standard	on (by oth standing 1 2. ordance wi le sections andard AN	ers) of truss t 07 lb uplift at ith the 2018 i R502.11.1 a ISI/TPI 1.	to t				weignt. 20 ib	FT = 20%
FORCES	(LC 3) (lb) - Maximum Con Tension 1-2=0/4, 2-3=-115/6	npression/Maximum											
 BOT CHORD NOTES 1) Wind: ASC Vasd=91m Ke=1.00; (exterior zo Interior (1) exposed; ; members a Lumber D0 2) This truss chord live 3) * This truss on the bott 3-06-00 ta chord and 4) Bearings a capacity of 5) Refer to gi 	2-4=0/0 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 4-1-8 to 5-5-4 zone; end vertical left and ri and forces & MWFRS OL=1.60 plate grip DC has been designed fo load nonconcurrent w s has been designed fo load nonconcurrent w s nas been designed fo load nonconcurrent w s has been designed fo load nonconcurrent w s fo fo plate grip DC has been designed fo load nonconcurrent w s has been designed fo load nonconcurr	n (3-second gust) :DL=6.0psf; h=35ft; :d; MWFRS (envelop 2E) -0-10-8 to 4-1-8, :antilever left and rig ght exposed;C-C for for reactions shown; DL=1.60 r a 10.0 psf bottom ith any other live load for a live load of 20.0 where a rectangle fit between the bottoc oint 2 SP No.2 crush ss connections.	ht ds. psf ing									STATE OF STATE OF SEV DE-200 PE-200 September	MISSOLUT TT M. TER 1018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
lob	Trues	Truss Type	Otv	DIV		AS NOTED FOR PLAN REVIEW
300	11035		Guy	i iy		DEVELOPMENT SERVICES
P240990	LG01	Lay-In Gable	1	1	Job Reference (optional)	LEE'S SUMMIT, MISSOURI
			-			

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tup Sep 241: 97/14/20:24 ID:9qaz9QiQ62RtX5liiB3RbgzX0F_-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zUCP/14/20:24

3-9-5

Scale = 1:26

Loading TCLL (roof)	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC	0.06	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190	
BCLL BCDL	10.0	Code	YES IRC2018	3/TPI2014	WB Matrix-P	0.03 0.01	Vert(TL) Horiz(TL)	n/a 0.00	- 3	n/a n/a	999 n/a	Weight: 14 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 3-9-13 oc purlins. Rigid ceiling directly bracing. (size) 1=3-9-5, 3 Max Horiz 1=-49 (LC Max Uplift 1=-26 (LC Max Grav 1=92 (LC (LC 1) (b) - Maximum Com	athing directly applie applied or 10-0-0 oc 3=3-9-5, 4=3-9-5 : 10) : 13), 3=-23 (LC 13) 1), 3=92 (LC 1), 4=9	7) 8) d or 9) 10 9 LC	* This truss h on the botton 3-06-00 tall b chord and an All bearings a capacity of 50 Provide mech bearing plate 1 and 23 lb u This truss is a International R802.10.2 ar AD CASE(S)	as been designin in chord in all are y 2-00-00 wide y other member are assumed to 65 psi. nanical connecti capable of with plift at joint 3. designed in accc Residential Cod nd referenced st Standard	ed for a liv sas where will fit betw 's. be SP No. on (by oth standing 2 ordance w le sections andard AN	e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t 6 lb uplift at j ith the 2018 R502.11.1 a ISI/TPI 1.	Dpsf om oint						

TOP CHORD

1-2=-73/37, 2-3=-67/31 BOT CHORD 1-4=-15/36, 3-4=-15/36 2-4=-60/17

WFBS

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)

5)

Gable studs spaced at 2-0-0 oc.

This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.

OF MISSO TE SCOTT M. SEVIER NUMBER OFFESSIONAL PE-2001018807 E

September 26,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply		AS NOTED FOR PLAN REVIEW
P240990	LG02	Lay-In Gable	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tup Sep 241: 92/14/29:24 ID:d08LNmj2tMZk9FtvFvag7tzX0Ez-RfC?PsB70Hq3NSgPqnL8w3uITXbGKVrCDoi7J42JO#/14/29:24

Scale = 1:64.1

Plate Offsets (X, Y): [5:0-1-7,Edge], [11:0-1-7,Edge], [15:Edge,0-1-8]

	()] [,		· · · · · · · · · · · · · · · · · · ·												
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190		
TCDL		10.0	Lumber DOL	1.15		BC	0.05	Vert(TL)	n/a	-	n/a	999				
BCLL		0.0*	Rep Stress Incr	YES		WB	0.17	Horiz(TL)	0.01	15	n/a	n/a				
BCDL		10.0	Code	IRC20)18/TPI2014	Matrix-S							Weight: 134 lb	FT = 20%		
LUMBER					TOP CHORD	1-2=-338/210, 2	2-3=-185/13	4, 3-4=-128/	93,	8) Thi	s truss h	nas bee	en designed for a	10.0 psf bottom		
TOP CHORD	2x4 SP N	lo.2				4-5=-137/123,	5-6=-114/11	0, 6-7=-114/	110,	cho	ord live lo	oad no	nconcurrent with	any other live loads.		
BOT CHORD	2x4 SP N	lo.2				7-8=-114/110, 8	8-9=-114/11	0, 9-10=-114	l/110,	9) * T	his truss	has be	een designed for	a live load of 20.0psf		
OTHERS	2x3 SPF	No.2				10-11=-114/11	0, 11-12=-12	25/103,		on	the botto	om cho	ord in all areas wh	ere a rectangle		
BRACING						12-13=-112/92	, 13-14=-133	3/84,		3-0	6-00 tall	by 2-0	00-00 wide will fit I	between the bottom		
TOP CHORD	Structura	l wood she	athing directly applie	ed or		14-15=-219/13	0			cho	ord and a	any oth	er members.			
	6-0-0 00	purlins, exc	cept	-	BOT CHORD	1-28=-96/168, 2	27-28=-97/1	68,		10) All	bearings	s are a	ssumed to be SP	No.2 crushing		
	2-0-0 oc	purlins (6-0)-0 max.): 5-11.			25-27=-97/168	, 24-25=-97/	168,		cap	oacity of	565 ps	si.			
BOT CHORD	Rigid ceil	lina directly	applied or 10-0-0 or	с		23-24=-97/168	, 22-23=-97/	168,		11) Prc	vide me	chanic	al connection (by	others) of truss to		
	bracina.			-		168,		bea	aring pla	te capa	able of withstandi	ng 85 lb uplift at joint				
WEBS	1 Row at	midpt	6-24, 7-23, 8-22, 9-3	21.		19-20=-97/168	, 18-19=-97/	168,		1, 1	152 lb up	olift at j	oint 15, 187 lb up	lift at joint 17, 165 lb		
			10-20	17-18=-97/168, 16-17=-149/263,							ift at join	t 28, 1	44 lb uplift at joint	27, 116 lb uplift at		
REACTIONS	(size)	1=22-9-9.	15=22-9-9, 16=22-9	9-9.	15-16=-156/256						it 25, 22	lb upli	ft at joint 24, 51 lb	uplift at joint 23, 40		
	()	17=22-9-9	9. 18=22-9-9. 19=22	-9-9.	WEBS	2-28=-208/183	, 3-27=-190/	170,		lb u	iplift at jo	oint 22	, 31 lb uplift at joir	nt 21, 18 lb uplift at		
		20=22-9-9	9, 21=22-9-9, 22=22	-9-9,		46, 7-23=-14	18/74,	joir	it 20, 12	Ib upli	It at joint 19, 169	ib uplift at joint 18				
		23=22-9-9	9, 24=22-9-9, 25=22	-9-9,	8-22=-143/65, 9-21=-101/48, 10-20=-90/35,							upiint a	t joint 16.	and date for the base of the second		
		27=22-9-9	9, 28=22-9-9			14-16=-163/143 (12) Beveled plate of snim require surface with truss chord at io								rovide full bearing		
	Max Horiz	1=229 (LC	C 9)			14-16=-163/143						n truss	chord at joint(s)	10, 10. No with the 2019		
	Max Uplift	1=-85 (LC	C 10), 15=-152 (LC 1	1),	NOTES					International Residential Code sections R502.11.1 and						
	-	16=-118 ((LC 13), 17=-187 (LC	C 13),	1) Unbalance	d roof live loads	have been o	considered fo	or	R802.10.2 and referenced standard ANSI/TPI 1.						
		18=-169 ((LC 13), 19=-12 (LC	8),	this design.		/a			110	02.10.2					
		20=-18 (L	C 9), 21=-31 (LC 8),	,) Wind: ASCE 7-16; Vult=115mph (3-second gust)											
		22=-40 (L	.C 9), 23=-51 (LC 8),	,	Vasd=91m	on; ICDL=6.0ps	f; BCDL=6.0	pst; h=35tt;	,							
		24=-22 (L	.C 9), 25=-116 (LC 1	2),	Ke=1.00; C	at. II; Exp C; En	closed; MW	FRS (envelo	pe)				200	JUD		
		27=-144 ((LC 12), 28=-165 (LC	C 12)	exterior zor	e and C-C Exte	rior(2E) 0-4	0 to 5-4-0,					8 OF	MISC		
	Max Grav	1=230 (LC	C 12), 15=336 (LC 1	3),		5-4-0 107-11-1,	Exterior(ZR)	10 Exterior					ASE	-0.0 M		
		16=173 (L	LC 20), 17=113 (LC	11),	14-11-14, 1	1101 (1) 14-11	-14 (0 16-10	-12, Exterior	(2E)			2	4.51	N SA		
		18=220 (L	_C 20), 19=162 (LC	26),	10-10-12 lC	22-7-0 ZUILE, Ca	and right over	and light	-			6	sco	IT M. YE Y		
		20=117 (L	LC 26), 21=129 (LC	25),	exposed, e		EPS for roa	oseu, C-C Iol				C R	/ SEV	/IER \ Y		
		22=185 (L	LC 25), 23=187 (LC	26),		101000000 and 101000000000000000000000000000000000	PRO 101 1ea		ι,			SD	* /			
		24=159 (L	LC 22), 25=204 (LC	19),	3) Trues dooid	ned for wind loc	de in the pl	ne of the tru) <mark>W</mark>	417	Charles and		
		27=201 (L	LC 19), 28=245 (LC	19)	only Fore	tuds exposed to	wind (norm	al to the face)			XXX	an	LIMUL		
FORCES	(lb) - Max	kimum Com	pression/Maximum		see Standa	rd Industry Gab	e End Detai	ls as applica	ble			M.	NUN	IDER E		
	Tension				or consult of	ualified building	designer as	per ANSI/TI	2.0, PI 1			V	ON PE-200	1018807		
					 Provide add 	equate drainage	to prevent v	vater pondin	a			N N	120	188		
				4	5) All plates a	re 1.5x4 MT20 u	nless other	vise indicate	d.				NºSer-	NO'B		
					6) Gable requ	ires continuous	bottom chor	d bearing					NON!	AL EV		

- Gable requires continuous bottom chord bearing.
- 6)
- 7) Gable studs spaced at 0-0-0 oc.

September 26,2024

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
lab	Truco	Truce Turce	0.54	DIV		AS NOTED FOR PLAN REVIEW
500	TTUSS	Truss Type	Qiy	Fiy		DEVELOPMENT SERVICES
P240990	LG02	Lav-In Gable	1	1	lah Deference (entional	LEE'S SUMMIT, MISSOURI
					Job Reference (optional	,
Premier Building Supply (Springl	nill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Jul 12 2	2024 Print: 8.6	630 S Jul 12	2024 MiTek Industries, Inc. Tu	Sep 241:0:2/1/20:2/

Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
lah	Truco	Truco Tupo	0.54	DM		AS NOTED FOR PLAN REVIEW
300	Thuss	Truss Type	Quy	Fly		DEVELOPMENT SERVICES
P240990	LG03	Lay-In Gable	1	1	Job Reference (optional)	LEE'S SUMMIT, MISSOURI
	-					

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tup Sep 241: 971 4/29:24 ID:d08LNmj2tMZk9FtvFvag7tzX0Ez-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J42JC#71 4/29:24

Scale = 1:36

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.04	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.05	Horiz(TL)	0.00	5	n/a	n/a		
BCDL		10.0	Code	IRC2)18/TPI2014	Matrix-P							Weight: 38 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N 2x3 SPF Structura 6-0-0 oc Rigid ceil bracing.	0.2 0.2 No.2 I wood she purlins. ing directly	athing directly applie applied or 10-0-0 or	ed or c	 Gable studs This truss h chord live lo 7) * This truss on the botto 3-06-00 tall chord and a 8) All bearings capacity of 9) Provide me 	s spaced at 0-0- as been designe ad nonconcurre has been desig m chord in all a by 2-00-00 wide ny other membe are assumed to 565 psi. chanical connec	0 oc. ed for a 10.0 ont with any ned for a liv reas where a will fit betw ers. b be SP No. tion (by oth) psf bottom other live loz e load of 20. a rectangle veen the bott 2 crushing ers) of truss	nds. Opsf om to					
NEXOTIONO	Max Horiz Max Uplift Max Grav	7=8-9-5, 8 1=-126 (L 1=-22 (LC (LC 13), 8 1=120 (LC 6=259 (LC 8=259 (LC	2=0 5 3, 0=0 5 3, 3=8-9-5 C 8) 5=-179 (LC 12) C 20), 5=-110 (LC 22 C 20), 7=115 (LC 22 C 19)	-179),),	bearing plat 1, 4 lb uplift uplift at join 10) This truss is Internationa R802.10.2 a LOAD CASE(S	e capable of wit at joint 5, 179 lk 6. designed in ac I Residential Co and referenced s Standard	hstanding 2 o uplift at joi cordance w de sections standard AN	2 lb uplift at j nt 8 and 179 th the 2018 R502.11.1 a ISI/TPI 1.	joint Ib and					
FORCES	(lb) - Max Tension	imum Com	pression/Maximum											
TOP CHORD	1-2=-136/ 4-5=-120/	′100, 2-3=- ′87	105/87, 3-4=-105/83	3,										
BOT CHORD	1-8=-80/1 5-6=-80/1	16, 7-8=-8 16	0/117, 6-7=-80/117,											

WEBS 2-8=-261/207, 3-7=-78/38, 4-6=-261/207 NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION				
lob	Truce	Truce Type	Otv	DIV		AS NOTED FOR PLAN REVIEW				
500	11055	Truss Type	Quy	FIY		DEVELOPMENT				
P240990	LG04	Lay-In Gable	1	1	Job Reference (optional)	LEE'S SUMMIT, MISSOURI				

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tup Sep 241: 924 14/20:24 ID:5?GLF9OSh9kMw6auVje7yhyqIPc-RfC?PsB70Hq3NSgPqnL8w3uITXbGrWrCDoi7J42047

Scale = 1:41.4

DOL=1.60

Loading	(psf)	Spacing	2-0-0		CSI	0.07	DEFL	in n/a	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (root)	25.0	Plate Grip DOL	1.15		BC	0.07	Vert(LL)	n/a n/a	-	n/a	999	MT20	244/190
BCLL	0.0*	Rep Stress Incr	YES		WB	0.03	Horiz(TL)	0.00	7	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S	0.07		0.00		1.70		Weight: 58 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2		3)	Truss design only. For stu see Standard	ed for wind loa Ids exposed to I Industry Gabl	ids in the pl wind (norm le End Deta	ane of the tru al to the face ils as applica	ss), ble,					
OTHERS	2x4 SPF No.3		4)	or consult qu	alified building	designer a	s per ANSI/11	PI1. d					
BRACING TOP CHORD	Structural wood she 6-0-0 oc purlins.	eathing directly applie	d or 5) 6)	Gable require Gable studs	es continuous l spaced at 0-0-	bottom chor 0 oc.	d bearing.	u.					
BOT CHORD	Rigid ceiling directly bracing.	y applied or 10-0-0 oc	; 7)	This truss ha	s been design ad nonconcurre	ed for a 10. ent with any	0 psf bottom other live loa	ids.					
FORCES TOP CHORD	(size) 1=11-0-1 9=11-0-1 11=11-0- Max Horiz 1=-162 (I Max Uplift 1=-55 (LI 8=-149 (I 11=-127 Max Grav 1=137 (L 8=216 (L 10=129 (12=215 (I (lb) - Maximum Cor Tension 1-2=-204/135, 2-3= 4-5=-124/114, 5-6=	3, 7=11-0-13, 8=11-0 3, 10=11-0-13, 13, 12=11-0-13 LC 8) C 10), 7=-30 (LC 11), LC 13), 9=-126 (LC 12), (LC 12), 12=-148 (LC C 12), 7=122 (LC 22) (LC 13), 11=196 (LC 20) (LC 19) npression/Maximum -123/83, 3-4=-124/11 -97/50, 6-7=-181/132	-13, 8) 9) (12) (12) (10) (10) (10) (10) (10) (10) (10) (10	 This truss F on the bottor 3-06-00 tall b chord and ar All bearings is capacity of 5 provide mec bearing plate 1, 30 lb uplift uplift at joint joint 8. This truss is International R802.10.2 ar DAD CASE(S) 	has been desig n chord in all a y 2-00-00 widd yy other membrare assumed to 65 psi. hanical connec capable of wit at joint 7, 148 11, 126 lb uplif designed in ac Residential Cond referenced s Standard	ned for a liv reas where a will fit betw ers. b be SP No. tion (by oth thstanding 5 lb uplift at ju t at joint 9 a cordance w ode sections standard AN	re load of 20.0 a rectangle veen the bottu 2 crushing ers) of truss t 55 lb uplift at j bint 12, 127 lt ind 149 lb upl ith the 2018 5 R502.11.1 a VSI/TPI 1.	Upst om oint o lift at					
BOT CHORD	1-12=-106/150, 11- 10-11=-106/150, 9- 8-9=-106/150, 7-8=	12=-106/150, 10=-106/150, -106/150										FTE OF	MISSO
WEB2	2-12=-200/107, 3-1 4-10=-114/79 5-9=	1=-102/151, -182/149 6-8=-206/1	68								F	7.51 000	TT M Co
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m Ke=1.00; (exterior zc and right e exposed;C reactions s DOL=1.60	ed roof live loads have DE 7-16; Vult=115mpl ph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(exposed ; end vertical 3-C for members and shown; Lumber DOL=	e been considered for h (3-second gust) CDL=6.0psf; h=35ft; ed; MWFRS (envelop 2E) zone; cantilever la left and right forces & MWFRS for e1.60 plate grip	e) eft									THO TE -200	VIER

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017

314.434.1200 / MiTek-US.com

September 26,2024

							RELEASE FOR CONSTRUCTION
leb	Truce	Truce Type		Otv	DIV		AS NOTED FOR PLAN REVIEW
300	11055	Thuss Type		Quy	FIY		DEVELOPMENT
P240990	V01	Valley		1	1	Job Reference (optional)	LEE'S SUMMIT, MISSOURI
Premier Building Supply	(Springhill, KS), Spring Hills, H	<s -="" 66083,<="" td=""><td>Run: 8.63 S Jul 12 2 ID:RvzB30a8T AIKY</td><td>024 Print: 8. Yn65t5BZz</td><td>630 S Jul 12</td><td>2024 MiTek Industries, Inc. Tu B70Ha3NSaPanL8w3uITXbGk</td><td>Sep 241: 9 2/14/29:24</td></s>	Run: 8.63 S Jul 12 2 ID:RvzB30a8T AIKY	024 Print: 8. Yn65t5BZz	630 S Jul 12	2024 MiTek Industries, Inc. Tu B70Ha3NSaPanL8w3uITXbGk	Sep 241: 9 2/14/29:24

3x4 🚅

4-2-10

1.5x4 🛚

Scale = 1:20.2

1-9-5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.25	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.14	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 13 lb	FT = 20%
BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: AS Vasd=91r Ke=1.00; exterior zr and right: ke=1.00; exterior zr and right: Composition of the second DOL=1.6(2) Truss dess only. For see Stand or consult 3) Gable requires (4) Gable stut 5) This truss chord live (6) * This truss 0-00 tr chord and	10.0 2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 4-3-3 oc purlins, ex Rigid ceiling directly bracing. (size) 1=4-2-10, Max Horiz 1=67 (LC Max Uplift 1=-27 (LC Max Uplift 1=-27 (LC Max Grav 1=153 (LC (lb) - Maximum Com Tension 1-2=-88/59, 2-3=-11 1-3=-29/32 CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I studs exposed to wind dard Industry Gable En t qualified building design uires continuous bottoo ds spaced at 4-0-0 oc. has been designed for load nonconcurrent wi ss has been designed for tom chord in all areas all by 2-00-00 wide will d any other members.	Code athing directly applie cept end verticals. applied or 10-0-0 oc 3=4-2-10 9) C 12), 3=-40 (LC 12) C 1), 3=153 (LC 1) pression/Maximum 9/141 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop IE) zone; cantilever le left and right orces & MWFRS for 1.60 plate grip the plane of the trus (normal to the face) d Details as applicab gner as per ANSI/TP m chord bearing. r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto	e) e) efft ss, peff m	Matrix-P are assumed to to 565 psi. chanical connection te capable of withs uplift at joint 3. so designed in acco al Residential Cod and referenced sta) Standard	pe SP No. on (by oth standing 2 ordance wi e sections andard AN	2 crushing ers) of truss t 7 lb uplift at j ith the 2018 R502.11.1 a ISI/TPI 1.	o oint ind				Weight: 13 lb	TT M. MISSOLUTI M. MER IBER 1018807
											Cantanha	- 00 0004

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017

314.434.1200 / MiTek-US.com

September 26,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPH Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

						RELEASE FOR CONSTRUCTION
lab	Truco	Truco Turo	011	DIV		AS NOTED FOR PLAN REVIEW
300	Truss	Truss Type	Quy	Fly		DEVELOPMENT
P240990	V02	Valley	1	1	Job Reference (optional)	LEE'S SUMMIT, MISSOURI
				•		

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tup Sep 241: 92/14/29:24 ID:RvzB30a8T_AIKYYn65t5BZzX0F8-RfC?PsB70Hq3NSgPqnL8w3uITXbGf WrCDoi7J4z09?

0-0-11-5

2-2-10

3x4 🛥

Scale = 1:16.9

Plate Offsets (X, Y): [2:Edge,0-2-0]

Loadin	g roof)		(psf)	Spacing	2-0-0		CSI	0.04	DEFL	in n/c	(loc)	l/defl	L/d	PLATES	GRIP	
TCDL (I	001)		25.0 10.0	Lumber DOL	1.15		BC	0.04	Vert(LL)	n/a n/a	-	n/a n/a	999 999	WI120	244/190	
BCLL			0.0*	Rep Stress Incr	YES		WB	0.02	Horiz(TL)	0.00	3	n/a	n/a			
BCDL			10.0	Code	IRC201	8/TPI2014	Matrix-P		()		-			Weight: 6 lb	FT = 20%	
	R				7) All bearings	are assumed to be	SP No.	2 crushing							
TOP CH	HORD	2x4 SP No	.2			capacity of 5	65 psi.		\							
	HORD	2x4 SP No	0.2 In 2		8	 Provide mec bearing plate 	nanical connection	(by oth Inding 1	1 lb unlift at	t0 ioint						
		2X3 SPF N	10.2			1 and 17 lb u	plift at joint 3.	inung i	r ib upint at	John						
	HORD	Structural	wood she	athing directly applie	dor 9) This truss is	designed in accord	lance w	ith the 2018							
	IOND	2-3-3 oc p	urlins, exe	cept end verticals.	u 01	International	Residential Code	sections	R502.11.1 a	and						
BOT CH	HORD	Rigid ceilir	ng directly	applied or 10-0-0 oc		R802.10.2 a	nd referenced stan	dard AN	ISI/TPI 1.							
REACT	IONS	bracing. (size)	1=2-2-10	3=2-2-10	-		Standard									
/		Max Horiz	1=28 (LC	9)												
		Max Uplift	1=-11 (LC	12), 3=-17 (LC 12)												
		Max Grav	1=63 (LC	1), 3=63 (LC 1)												
FORCE	S	(lb) - Maxii Tension	mum Com	pression/Maximum												
TOP CH	HORD	1-2=-37/25	5, 2-3=-49	/58												
BOT CH	HORD	1-3=-12/13	3													
NOTES	;															
1) Wir	nd: ASC	CE 7-16; Vult	t=115mph	(3-second gust)												
Vas Ko-	sd=91m	iph; TCDL=6	6.0psf; BC	DL=6.0psf; h=35ft; d: MW/ERS (opvolop)	0)											
exte	erior zo	ne and C-C	Fxterior(2	E) zone: cantilever le	e) eft											
and	I right e	xposed ; en	d vertical I	eft and right										~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and	
exp	osed;C	C for memb	pers and fo	prces & MWFRS for										OF	MIG	
rea	ctions s	shown; Lumb	per DOL=1	.60 plate grip										A.TE	miss w	N
2) Tru	L=1.60 ss desi	aned for win	d loads in	the plane of the trus	\$								F	15/ 000		S.
only	y. For s	studs expose	ed to wind	(normal to the face),									A	SCO SCO		Υλ
see	Standa	ard Industry	Gable End	d Details as applicab	le,								A.	L SEV		- Y
or c	consult	qualified bui	lding desig	gner as per ANSI/TP	11.								8	AL	· 2	A
3) Gai 1) Cal	ble requ	ures continu		n chord bearing.										dall_	Ser	Lean
5) This	s truss l	has been de	signed for	a 10.0 psf bottom									N	AL NUN	IBER /	59
cho	rd live I	load noncon	current wi	th any other live load	ls.								Ŋ	PE-200	1018807	A
6) * Th	nis truss	s has been o	lesigned f	or a live load of 20.0p	psf									Nº CO	101	9
on 1 3-0	ine bott 6-00 tal	iom chord in Il by 2-00-00	all areas	where a rectangle	m									NON.	ALENS	
cho	ord and	any other m	embers.											1000	mas	
		,												September	26,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

										RELEASE	FOR CONSTRUCTION	
Job	Truss		Truss Type		Qty	Ply				AS NOT	ED FOR PLAN REVIEW	
P240990	V2		Valley		1	1	Job Ref	erence (or	otional	LEE'S	I68441556 SUMMIT, MISSOURI	
Premier Building Supply (Spi	nghill, KS), S	Spring Hills, KS - 66083,		Run: 8.63 S Jul 12 ID:ftcMZ0TmsCkJC	2024 Prir 08_jO3Ch	nt: 8.630 S Jul EFyqILe-RfC?	12 2024 MiTek PsB70Hq3NSg	Industries, PqnL8w3ul	Inc. Tu TXbGK	e Sep 24 11: 9: 2 VrCDoi7J4zJ9?	14/2024	
		1	7.4	0				12 6 10	`		14-2-15	
			7-1-	-8				6-5-2)		0-8-6	
						4x4 -						
						3						
2-11-14	0-0-4-0-0	- ¹² -	1.5x4	10 "	1	7 1.5x4 II 4-2-15			1.5×4 4 6 1.5×4	4 II 12 (a) (b) (c) (c) (c) (c) (c) (c) (c) (c	5 4.2	
Scale = 1:32.3		1										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.20 0.12 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in (loc n/a n/a 0.00) l/defl - n/a - n/a 5 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 2x4 SP N BOT CHORD 2x4 SP N OTHERS 2x4 SPF BRACING 2x4 SPF TOP CHORD Structura 6-0-0 oc BOT CHORD BOT CHORD Rigid cei bracing. REACTIONS REACTIONS (size) Max Horiz Max Uplift Max Grav Tension FORCES (lb) - Ma TOP CHORD 1-2=-61/ BOT CHORD 1-8=-4/3 WEBS 3-7=-243	0.2 0.2 No.3 I wood shee burlins. ing directly 1=14-2-1: 7=14-2-1: 1=-51 (LC 6=-113 (L 8=-113 (L 1=73 (LC (LC 26), 5 25) imum Com 11, 2-3=-83 12, 7, 7-8=-4/3' (106, 2-8=-	eathing directly applied / applied or 10-0-0 oc 5, 5=14-2-15, 6=14-2- 5, 8=14-2-15 C 13) C 13), 5=-2 (LC 13), C 13), 7=-5 (LC 12), C 12) 1), 5=73 (LC 1), 6=38 7=327 (LC 1), 8=350 (hpression/Maximum 8/97, 3-4=-83/90, 9, 6-7=-4/39, 5-6=-4/3 -279/226, 4-6=-279/22	 3) Truss design only. For stu see Standard or consult qu 4) Gable require 5) Gable studs : 6) This truss ha chord live loa 7) * This truss h on the bottom 3-06-00 tall b chord and an 8) All bearings a capacity of 5 9) Provide med bearing plate 10) This truss is and 11 10) This truss is and 11 10) This truss is a linternational R802.10.2 ar 9 9 9 6 	ed for wind loads in ids exposed to wind d Industry Gable End alified building desig es continuous bottor spaced at 4-0-0 oc. is been designed for ad nonconcurrent with as been designed for n chord in all areas to yo 2-00-00 wide will fly yo ther members. are assumed to be S 65 psi. hanical connection (e capable of withstan at joint 5, 5 lb uplift at 13 lb uplift at joint 6. designed in accorda Residential Code se nd referenced standa Standard	the plan (normal d Details gner as p n chord a 10.0 p th any ot or a live where a fit betwe SP No.2 by other iding 10 t joint 7, ance with actions R ard ANS	e of the trus: to the face), as applicabl per ANSI/TPI bearing. osf bottom ther live load load of 20.0p rectangle en the bottor crushing s) of truss to lb uplift at joi 113 lb uplift at be 2018 {502.11.1 an I/TPI 1.	s e, 1. s. ssf n at					

NOTES

1) Unbalanced roof live loads have been considered for

this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; 2) Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-9-1 to 5-9-1, Interior (1) 5-9-1 to 7-2-1, Exterior(2R) 7-2-1 to 12-2-1, Interior (1) 12-2-1 to 13-7-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

4

 Interview
 Description
 <thDescription</th>
 <thDescription</th>
 <

3x4 🥃

Scale = 1:28.7

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.32	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.19	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.07	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S							Weight: 31 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=10-2-15 Max Horiz 1=-35 (LC Max Uplift 1=-43 (LC 4=-39 (LC Max Grav 1=181 (LC 4=442 (LC	athing directly applie applied or 10-0-0 oc 5, 3=10-2-15, 4=10-2 13) 12), 3=-49 (LC 13), 12) 25), 3=181 (LC 26) 21)	7 8 d or 9 :-15 1 -15 L	 * This truss h on the bottor 3-06-00 tall b chord and ar capacity of 5 Provide mec bearing plate 1, 49 lb uplift This truss is International R802.10.2 ar 	as been desig m chord in all a by 2-00-00 wide ny other membe are assumed to 65 psi. hanical connect e capable of wit t at joint 3 and 3 designed in ac Residential Co nd referenced s Standard	ned for a liv reas where will fit betw ers. b be SP No. tion (by oth hstanding 4 39 lb uplift a cordance w ide sections standard AN	e load of 20. a rectangle veen the bott 2 crushing ers) of truss : 3 lb uplift at j t joint 4. ith the 2018 ; R502.11.1 a ISI/TPI 1.	Opsf om to joint and					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-88/55, 2-3=-88/60												
BOT CHORD	1-4=-1/35, 3-4=-1/35	5											
WEBS	2-4=-308/223												
NOTES													
1) Unbalance	ed roof live loads have	been considered for											

- this design.
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3x4 -

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

						RELEASE FOR CONSTRUCTION			
Job	Truss	Truss Type	Qty	Ply		AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES			
P240990	V4	Valley	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI			
Premier Building Supply (Springh	ill, KS), Spring Hills, KS - 66083,	Run: 8.63 S ID:ftcMZ0Tms	ul 12 2024 Print: 8. CkJO8_jO3ChEFyc	630 S Jul 12 : ILe-RfC?PsB	2024 MiTek Industries, Inc. Tu 370Hq3NSgPqnL8w3uITXbGK	Sep 241:93/14/2924			
			3-1-8		5-6-10	6-2-15			
	0-0-4	5 ¹² 		3x4 2	= 	3 			

6-2-15

Scale = 1:21.5

P

Plate Offsets (X, Y): [2:0-2-0.Edge]

	X, 1): [2:0-2-0,Luge]													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.15	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.30	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.00	Horiz(TL)	0.00	3	n/a	n/a			
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-P							Weight: 17 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES 1) Unbalance	2x4 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=6-2-15, Max Horiz 1=-19 (LC Max Uplift 1=-34 (LC Max Grav 1=218 (LC (lb) - Maximum Com Tension 1-2=-244/215, 2-3=- 1-3=-165/201	athing directly applie applied or 10-0-0 oc 3=6-2-15 : 17) : 12), 3=-34 (LC 13) C 1), 3=218 (LC 1) pression/Maximum 244/224 been considered for	7) _{d or} 8) <u>9</u>) 10	* This truss I on the bottor 3-06-00 tall I chord and ar All bearings capacity of 5 Provide mec bearing plate 1 and 34 lb to 1 This truss is International R802.10.2 a DAD CASE(S)	has been desigr in chord in all ar by 2-00-00 wide hy other membe are assumed to i65 psi. thanical connect e capable of with uplift at joint 3. designed in acc Residential Co nd referenced s Standard	ned for a liv eas where will fit betw ers. be SP No. tion (by oth hstanding 3 cordance w de sections tandard AN	re load of 20. a rectangle veen the bott 2 crushing ers) of truss : 34 Ib uplift at j 34 Ib uplift at j 34 Ib uplift at j 35 STO2.11.1 a NSI/TPI 1.	Opsf om to joint and						

- this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)

Gable studs spaced at 4-0-0 oc. 5)

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. PE-2 PH-SSIONAL EN PE-2001018807 September 26,2024 16023 Swingley Ridge Rd. Chesterfield MO 63017

OF MISSOL

SCOTT M.

SEVIER

MUMBER

314.434.1200 / MiTek-US.com

TE

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- . Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- 3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.