

RE: P240932-01 Roof - HM Lot 160

Site Information:

Customer: Clayton Properties Project Name: P240932-01 Lot/Block: 160 Model: Address: 2743 SW 11th Terr City: Lee's Summit

Subdivision: Highland Meadows State: MO

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

No.

21

22

Seal#

167343678

167343679

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.6 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 22 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	167343658	B1	8/6/2024
2	167343659	B2	8/6/2024
3	167343660	B3	8/6/2024
4	167343661	D1	8/6/2024
5	167343662	D2	8/6/2024
6	167343663	D3	8/6/2024
7	167343664	E1	8/6/2024
8	167343665	E4	8/6/2024
9	167343666	E5	8/6/2024
10	167343667	E6	8/6/2024
11	167343668	E7	8/6/2024
12	167343669	G1	8/6/2024
13	167343670	G2	8/6/2024
14	167343671	R1	8/6/2024
15	167343672	V1	8/6/2024
16	167343673	V2	8/6/2024
17	167343674	V3	8/6/2024
18	167343675	V4	8/6/2024
19	167343676	V7	8/6/2024
20	167343677	V8	8/6/2024

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision based on the parameters provided by . Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2025. Missouri COA: 001193

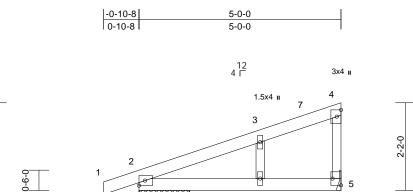
IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Truss Name

V9

V10

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200


Date

8/6/2024

8/6/2024

August 06, 2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 160	AS NOTED FOR PLAN REVIEW
P240932-01	B1	Monopitch Supported Gable		1		DEVELOPMENT SERVICES 167343658 LEE'S SUMMIT, MISSOURI
	hill, KS), Spring Hills, KS - 66083,	1 11	024 Print: 8	630 S Jul 12	Job Reference (optional 2024 MiTek Industries, Inc. Mo	
Treffiler Duliding Supply (Opfilig	grini, rto), opring rinis, rto - 00003,				70Ha3NSaPanL8w3ulTXbGKV	

1.5x4 🛚

6

6

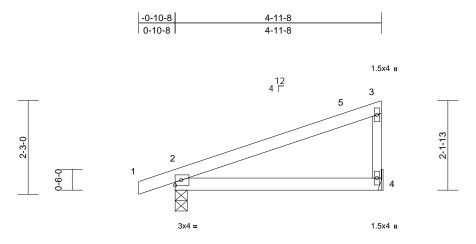
٢, 5

3x4 II

MiTek®

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

	5-0-0	
1:28.5		1
ffooto (X, X): [5:Edgo 0.2.9]		


-0-

3x4 =

2-3-3

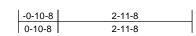
Scale = 1:28.5												
-	X, Y): [5:Edge,0-2-8]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI201	CSI TC BC WB 4 Matrix-S	0.25 0.28 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.05 -0.06 0.00	(loc) 2-6 2-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 19 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 5-0-0 oc purlins, ex Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 10-0-0 oc 5= Mechanical 8) 58), 5=-61 (LC 12) C 1), 5=215 (LC 1) pression/Maximum , 3-4=-59/16,	6) Refer t 7) Provide bearing 5 and 7 8) This tru Interna d or R802.1 LOAD CAS	o girder(s) for truss to e mechanical connect plate capable of with 77 lb uplift at joint 2. uss is designed in acc tional Residential Coo 0.2 and referenced st SE(S) Standard	ion (by oth istanding 6 ordance w de sections	ers) of truss 51 lb uplift at j ith the 2018 5 R502.11.1 a	joint					
 Wind: ASC Vasd=91m Ke=1.00; C exterior zor Interior (1) right expos members a Lumber DC Truss desi only. For s see Standa or consult c Gable stud This truss f chord live li 	E 7-16; Vult=115mph ph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ne and C-C Exterior(2 4-1-8 to 4-10-12 zone sed ; end vertical left e and forces & MWFRS DL=1.60 plate grip DC igned for wind loads ir studs exposed to wind ard Industry Gable En- qualified building desit ts spaced at 2-0-0 oc. has been designed foi load nonconcurrent wing re assumed to be: Joi 565 psi.	DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-10-8 to 4-1-8, e; cantilever left and exposed;C-C for for reactions shown; L=1.60 n the plane of the true (normal to the face) d Details as applicab gner as per ANSI/TP r a 10.0 psf bottom th any other live load	ss , le, l 1. ds.						ŝ	1.	SCOT SEV SEV PE-2001 FSSIONA	IER 018807

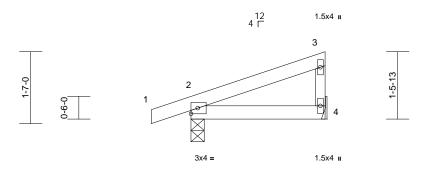
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 160	AS NOTED FOR PLAN REVIEW DEVEL OPMENT SERVICES
P240932-01	B2	Monopitch	3	1	Job Reference (optional	DEVELOPMENT SERVICES 167343659 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,				2024 MiTek Industries, Inc. Mo PsB70Hq3NSgPqnL8w3uITXb	

4-11-8

Scale = 1:27.7	

Scale = 1:27.7												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.49 0.27 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 n/a	(loc) 2-4 2-4	l/defl >999 >958 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 18 lb	GRIP 197/144 FT = 20%
BOT CHORD 2 WEBS 2 BRACING TOP CHORD 5 BOT CHORD 6 REACTIONS (s) M.	5-0-0 oc purlins, ex Rigid ceiling directly bracing. ize) 2=0-3-8, 4 ax Horiz 2=85 (LC ax Uplift 2=-83 (LC	v applied or 10-0-0 or 4= Mechanical 8) C 8), 4=-59 (LC 12)										
FORCES (T TOP CHORD 1	ax Grav 2=291 (L0 (lb) - Maximum Com Tension 1-2=0/6, 2-3=-100/4 2-4=0/0	npression/Maximum										
 Vasd=91mpl Ke=1.00; Cat exterior zone Interior (1) 4- exposed; en and forces & DOL=1.60 pl 2) This truss ha chord live loa 3) Bearings are capacity of 5 4) Refer to girde 5) Provide mecl bearing plate 4 and 83 lb u 6) This truss is a International 	e and C-C Exterior(2 -1-8 to 4-10-4 zone; d vertical left expos MWFRS for reactic ate grip DOL=1.60 is been designed fo ad nonconcurrent wi assumed to be: Joi 65 psi. er(s) for truss to trus hanical connection e capable of withstar uplift at joint 2. designed in accorda Residential Code s and referenced stand	EDL=6.0psf; h=35ft; ad; MWFRS (envelop E) -0-10-8 to 4-1-8, cantilever left and ri- ed;C-C for members ons shown; Lumber r a 10.0 psf bottom ith any other live loa int 2 SP No.2 crushi ss connections. (by others) of truss t nding 59 lb uplift at ju ance with the 2018 ections R502.11.1 a	ight s ds. ng o pint								STATE OF J SCOT SEV DE DO PE-2001	AND THE AND TH


314.434.1200 / MiTek-US.com


August 6,2024

the

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 160	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 167343660
P240932-01	B3	Monopitch	7	1	Job Reference (optional	
Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083				2024 MiTek Industries, Inc. Mo	

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Man Aug 05 6 6 19 10 ID:k?UxzaFoLR0qy8sWjXGlcLzwwoj-RfC?PsB70Hq3NSgPqnL8w3uITXbGK VrCDoi7J-2-0-1

2-11-8

Scale = 1:25.4							I					
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	0.00	2-4	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	-0.01	2-4	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	n/a	-	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 11 lb	FT = 20%

LUMBER

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x3 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	3-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.

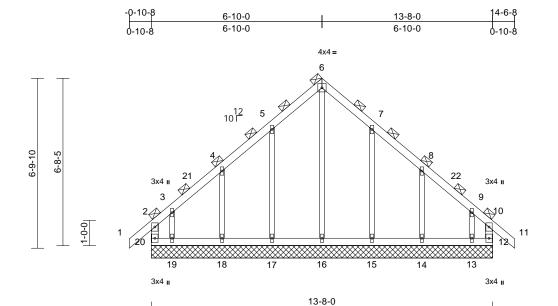
REACTIONS (size) 2=0-3-8, 4= Mechanical Max Horiz 2=56 (LC 8) Max Uplift 2=-72 (LC 8), 4=-32 (LC 12) Max Grav 2=207 (LC 1), 4=108 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/6, 2-3=-61/28, 3-4=-81/124 BOT CHORD 2-4=0/0

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- 3) Bearings are assumed to be: Joint 2 SP No.2 crushing capacity of 565 psi.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 4 and 72 lb uplift at joint 2.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



August 6,2024

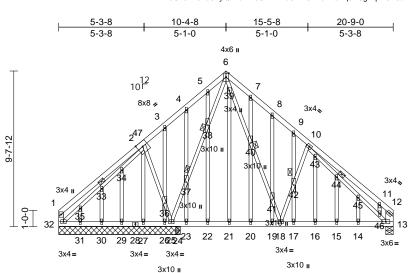
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - HM Lot 160	AS NOTED FOR PLAN REVIEW
500	11055	Truss Type	Qiy	гіу		DEVELOPMENT SERVICES 167343661
P240932-01	D1	Common Supported Gable	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Jul 12 20	024 Print: 8.6	530 S Jul 12	2024 MiTek Industries, Inc. Mo	

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MITek Industries, Inc. Mon Aug 05 64816 08/269*124 ID:wijvgVRNMEbdXh3iv6zXHnzww7s-RfC?PsB70Hq3NSgPqnL8w3uITXbGfWrCDoi7J4z5e?

Scale = 1:46.1

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	4-0-0 1.15 1.15 NO IRC20	18/TPI2014	CSI TC BC WB Matrix-R	0.20 0.17 0.40	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 71 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x3 SPF 2-0-0 oc verticals (Switcher Rigid ceil bracing. (size) Max Horiz Max Uplift	lo.2 lo.2 No.2 purlins (6-0 d from shee ling directly 12=13-8-0 15=13-8-0 18=13-8-0 20=-423 (14=-203 (14=-203 (19=-389 (14=396 [L 14=396 [L 16=423 (L	LC 9), 13=-364 (LC LC 13), 15=-196 (L LC 12), 18=-201 (L LC 12), 20=-330 (L LC 12), 20=-330 (L C 19), 13=388 (LC LC 20), 15=407 (LC LC 22), 17=410 (LC	nd -0). 50 3-8-0, 3-8-0, 3-8-0, 3-8-0 (13), 4 (C 13), 5 (C 12), (C 13), (C 12), (C 12)	 Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 11-10-0, Intelleft and right exposed; C-C reactions ship DOL=1.60 Truss desig only. For stuse standarding Gable requir Gable requir Gable studs This truss has 	7-16; Vult=11 n; TCDL=6.0p t. II; Exp C; Ei and C-C Extt 1-8 to 6-10-0, vrior (1) 11-10- exposed ; enc C for members pown; Lumber I ned for wind lo ulds exposed to d Industry Gat alified building a 1.5x4 MT20 es continuous	5mph (3-see 5f; BCDL=6.) rior(2E) -0 Exterior(2R 0 to 14-6-8 ; d vertical left and forces of OOL=1.60 pl bads in the p o wind (normal or designer a: unless other bottom choor from one fac ement (i.e. c -0 oc. led for a 10.1	cond gust) Opsf; h=35ft; (FRS (enveloc (FRS (enveloc (FRS (enveloc zone; cantilev and right & MWFRS fo ate grip lane of the tr al to the face ills as applica s per ANSI/T wise indicate d bearing. se or securely diagonal web 0 psf bottom	pe) /er r s), bble, Pl 1. d. /					
FORCES	(lb) - May	20=465 (L	₋C 19), 19=445 (LC ₋C 20) pression/Maximum		 All bearings capacity of 5 	65 psi.		0						
TOP CHORD	Tension 2-20=-34 3-4=-212 6-7=-276	9/228, 1-2= /205, 4-5=- /442, 7-8=-	=0/91, 2-3=-335/302 178/286, 5-6=-276/ 162/269, 8-9=-170/ 1=0/91, 10-12=-30	2, /454, /162,	joint 20, 247 201 lb uplift a uplift at joint	hanical conne capable of w lb uplift at joir at joint 18, 389 15, 203 lb upl	ithstanding 3 t 12, 198 lb) lb uplift at j	330 Îb uplift a uplift at joint oint 19, 196 I	t 17, b			ł	STATE OF I	
BOT CHORD	19-20=-1 17-18=-1 15-16=-1	98/239, 18- 98/239, 16- 98/239, 14-	-19=-198/239, -19=-198/239, -17=-198/239, -15=-198/239, -13=-198/239	1	R802.10.2 a	Residential C nd referenced	ode sections standard AN	s R502.11.1 a NSI/TPI 1.			_	B	SEVI	Ser
WEBS	6-16=-41 4-18=-31 7-15=-32	5/136, 5-17 6/290, 3-19 7/267, 8-14	/=-329/268,		I2) Graphical pu or the orienta bottom chore OAD CASE(S)	ation of the pu d.			SIZE			AN A	PE-2001	018807
NOTES	9-13=-26	4/270		-									SIONA	LEN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

August 6,2024

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 160	
P240932-01	D2	Roof Special Structural Gable	1	1	Job Reference (optional)	

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Man Aug 05 6 Bits 08/2 Bits 10:00n07T0ZcCLyQZnshImJUDzwwdO-RfC?PsB70Hq3NSgPqnL8w3uITXb6KWrCDoir J4zdc?i

Scale = 1:71.5			6-11-13 6-11-13		<u>13-9-3</u> 6-4-7		20-9- 6-11-1				
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.33 0.29 0.21	DEFL Vert(LL) Vert(CT) Horz(CT)	-0.02 1	(loc) l/def 5-16 >999 5-16 >999 13 n/a	240 180	PLATES MT20 Weight: 165 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x4 SP No.2 2x3 SPF No.2 *Exc 13-12:2x6 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Brace at Jt(s): 33, 37, 38, 40, 42, 44 (size) 13=0-5-8 26=7-6-8 30=7-6-8 Max Horiz 32=271 (Max Uplift 13=-91 (I 25=-83 (I 29=-8 (LC 32=-74 (I Max Grav 13=613 (25=252 (27=189 (I	eathing directly applied (ccpt end verticals. / applied or 10-0-0 oc , 24=0-3-8, 25=7-6-8, , 27=7-6-8, 29=7-6-8, , 31=7-6-8, 32=7-6-8 LC 9) .C 13), 24=-190 (LC 1 C 13), 24=-190 (LC 1 C 13), 27=-86 (LC 12 C 13), 21=-80 (LC 12), .C 13) LC 1), 24=490 (LC 19) LC 26), 26=74 (LC 3), LC 19), 29=56 (LC 11) C 3), 31=58 (LC 10),	d or WEBS (2), 2),),	$\begin{array}{c} 29\cdot30=-134/11\\ 26\cdot27=-134/11\\ 26\cdot27=-134/11\\ 22\cdot23=-31/211\\ 22\cdot23=-31/211\\ 20\cdot21=-31/211\\ 18\cdot19=-31/211\\ 16\cdot17=-21/400\\ 6\cdot39=-303/590\\ 40\cdot41=-255/41\\ 18\cdot42=-287/22\\ 25\cdot37=-432/0,\\ 2\cdot36=-174/190\\ 32\cdot35=-177/11\\ 33\cdot34=-178/11\\ 10\cdot43=-164/33\\ 44\cdot45=-169/11\\ 13\cdot46=-162/11\\ 31\cdot35=-2/2,\\ 22\cdot6-36=-68/66\\ 23\cdot37=-152/11\\ 21\cdot39=-40/11\\ \end{array}$	33, 27-29=-1 74, 25-26=-1 5, 23-24=-31 5, 23-24=-31 5, 19-20=-31 5, 17-18=-21 7, 15-16=-21 7, 13-14=-21 7, 13-14=-21 37-38=-419 0, 25-36=-23 51, 33-35=-1 52, 2-34=-20 4, 43-44=-18 3, 45-46=-17 2, 2-34=-20 4, 43-44=-18 3, 45-46=-17 2, 2-34=-20 4, 43-44=-18 3, 45-46=-17 19-41=-154 6-43=0/87, 1	34/183, 34/174, /215, /215, /215, /407, /407, 6/487, 76/513, 75/207, 10, 6-38=-433/0 0/252, 76/150, 6/175, 6/175, 6/12, 3/12, 1, 29-34=-39/32 1, 3-36=-1/17, 02, (24, 22-38=-24 36, 20-40=-37/5 5-44=-33/0,	6) 7) 8) 0, 9) 0, 9) 2, 10 2, 10 2, 10 2, 10 55,	only. For see Stand or consult All plates Truss to b braced ag Gable stuu This truss chord live All bearing capacity of Provide m bearing pl 25, 74 lb o uplift at joi 27 and 19 D) This truss Internation	studs e: ard Indi qualifie are 1.5x e fully s ainst lat ds spac has be load no is are a f 565 ps echanic ate cap piplift at j nt 29, 20 lb upli is desig- nal Resi and re	xposed to wind (n ustry Gable End E d building designe (4 MT20 unless of theathed from one teral movement (i. ed at 1-4-0 oc. en designed for a noconcurrent with - ssumed to be SP si. cal connection (by able of withstandii joint 32, 91 lb uplif 1 lb uplift at joint 24. gned in accordance dential Code sect ferenced standard undard	e. diagonal web). 10.0 psf bottom any other live loads. No.2 crushing others) of truss to ng 83 lb uplift at joint t at joint 13, 8 lb 81, 86 lb uplift at joint e with the 2018 ions R502.11.1 and t ANSI/TPI 1.
FORCES TOP CHORD	4-5=-174/219, 5-6=	172/172, 3-4=-113/18 160/248, 6-7=-455/33 459/227, 9-10=-517/2 -12=-491/77,	31, this designed 30, 2) Wind: AS 209, Vasd=91 Ke=1.00; exterior z Interior (1 15-6-2, Ir and right	eed roof live loads in. CE 7-16; Vult=11 mph; TCDL=6.0p Cat. II; Exp C; E one and C-C Ext I) 4-11-13 to 10-4 tterior (1) 15-6-2 exposed ; end ve C-C for members	15mph (3-sed sf; BCDL=6. nclosed; MW erior(2E) 0-1 I-8, Exterior(2 to 20-6-4 zor ertical left and	cond gust) Opsf; h=35ft; FRS (envelope -12 to 4-11-13, 2R) 10-4-8 to he; cantilever le d right				STATE OF M SCOTT SEVI NUMI PE-20010	er lante

reactions shown; Lumber DOL=1.60 plate grip

August 6,2024

SSIONAL E

RELEASE FOR CONSTRUCTION AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 167343662 LEE'S SUMMIT, MISSOURI

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

DOL=1.60

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - HM Lot 160	AS NOTED FOR PLAN REVIEW
000	11033		Giy	l''y		DEVELOPMENT SERVICES 167343663
P240932-01	D3	Common	7	1	Job Reference (optional	

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

9-7-12

20-9-0

6-11-13

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Man Aug 0516 1817 08/219:24 ID:pwt0j01hEphDIMFL4rqrrezwwfy-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKW CDoi7J4zJCH 08/219:24 5-3-8 10-4-8 15-5-8 20-9-0 5-3-8 5-1-0 5-1-0 5-3-8 4x6 **I** 3 12 10Γ 3x4 3x4、 2 4 3x4 II 3x4 5 ----10 6 Ø 9 8 7 4x4 =4x4 =3x4 =3x4= 3x4=

Scale =	1:63

TOP CHORD

BOT CHORD

WEBS

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.39	Vert(LL)	-0.05	6-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.43	Vert(CT)	-0.11	8-10	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.93	Horz(CT)	0.02	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 108 lb	FT = 20%

13-9-3

6-9-5

This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

6-11-13

6-11-13

Structural	wood sheathing directly applied or
5-6-4 oc p	ourlins, except end verticals.
Rigid ceili	ng directly applied or 10-0-0 oc
bracing.	
(size)	6=0-3-8, 10=0-5-8
Max Horiz	10=262 (LC 11)
Max Uplift	6=-113 (LC 13), 10=-113 (LC 12)
Max Grav	6=921 (LC 1), 10=921 (LC 1)
(lb) - Max	imum Compression/Maximum
Tension	
1-2=-351/	173, 2-3=-970/312, 3-4=-970/310,
4-5=-361/	166, 1-10=-328/165, 5-6=-334/161
8-10=-166	6/796, 7-8=-19/537, 6-7=-89/731
3-7=-210/	461, 4-7=-311/300, 3-8=-211/460,
	5-6-4 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=-351/ 4-5=-361/ 8-10=-166

2x3 SPF No.2 *Except* 10-1,6-5:2x4 SP No.2

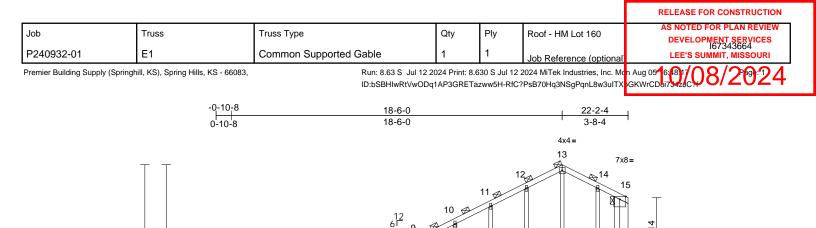
2x4 SP No.2

2x4 SP No.2

NOTES

1) Unbalanced roof live loads have been considered for this design.

2-8=-310/300, 2-10=-761/79, 4-6=-761/70


- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 5-2-14, Interior (1) 5-2-14 to 10-4-8, Exterior(2R) 10-4-8 to 15-6-2, Interior (1) 15-6-2 to 20-7-4 zone; cantilever left and right exposed ; end vertical right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing 4)

capacity of 565 psi. 5) Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 113 lb uplift at joint 10 and 113 lb uplift at joint 6.

9 A

 ∞

21

20

22

D

19

8

23

7

25 24

3x4 =

3x4 🚅

26

56

	21-8-12
	21-8-12
Scale = 1:64.5	
Plate Offsets (X, Y): [2:0-2-1,0-0-5], [5:0-1-12,0-1-8], [16:Edge,0-3-8]

27

3x4 -

3x4 II

10-0-3 9-11-0

0-8-0

						-								
Loading		(psf)	Spacing	4-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		тс	0.87	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.51	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0	Rep Stress Incr	NO		WB	0.40	Horz(CT)	0.01	16	n/a	n/a		
BCDL		10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 138 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER	2x3 SPF	lo.2 650F 1.5E	pt* 28-15:2x6 SPF N 1-6-7	0.2		1-2=0/11, 2-4=-990 6-7=-690/525, 7-8= 9-10=-397/410, 10- 11-12=-365/540, 12 13-14=-395/613, 14 15-16=-388/528	-578/48 11=-36 2-13=-3 4-15=-4	85, 8-9=-471/4 5/426, 96/635, 50/603,	48,	9) Pr be 16 up	pacity of ovide me aring pla , 36 lb up lift at joir	565 ps chanic te capa olift at j t 19, 13	al connection (by able of withstandi oint 2, 126 lb upli 26 lb uplift at joint	others) of truss to ng 91 lb uplift at joint ft at joint 18, 123 lb t 20, 122 lb uplift at
BRACING TOP CHORD BOT CHORD	verticals (Switcheo Rigid ceil	d from shee	-9 max.), except end eted: Spacing > 2-8-0 applied or 9-7-14 oc	l).		2-27=-305/391, 26- 24-26=-305/391, 23 22-23=-305/391, 2 20-21=-305/391, 1 18-19=-305/391, 1 16-17=-305/391	3-24=-3 1-22=-3 9-20=-3	05/391, 05/391, 05/391,		12 up 10) Th Int	9 lb uplif lift at joir is truss i ernation	t at join It 27 ar s desig al Resig	it 24, 91 lb uplift and 77 lb uplift at jo ned in accordance	bint 17. be with the 2018 dions R502.11.1 and
WEBS	bracing. 1 Row at		15-16, 13-18, 12-19, 14-17	W	EBS	13-18=-377/221, 12 11-20=-279/206, 10)-21=-2	80/193,		11) Gr or	aphical p the orier	ourlin re tation o		es not depict the size
REACTIONS	(size)	18=22-2-4 21=22-2-4	16=22-2-4, 17=22-2- 4, 19=22-2-4, 20=22- 4, 22=22-2-4, 23=22- 4, 26=22-2-4, 27=22-	2-4, 2-4,	-	9-22=-280/193, 8-2 7-24=-282/202, 6-2 4-27=-326/416, 14-	6=-270	/208,			ttom cho CASE(S		ndard	
		2=759 (LC 2=-36 (LC 17=-77 (L 19=-123 (21=-122 (23=-121 (1), 2) 1), 2) 12), 12), 12),	Unbalanced this design. Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Exterior(2N)	roof live loads have 7-16; Vult=115mp h; TCDL=6.0psf; B(t. II; Exp C; Enclos and C-C Corner(3 4-1-8 to 18-6-0, Co	h (3-seo CDL=6. ed; MW BE) -0-1 orner(3B	cond gust) Opsf; h=35ft; 'FRS (envelop 0-8 to 4-1-8, E) 18-6-0 to	oe)				ASSO OF M	
FORCES		2=475 (LC 17=310 (L 19=377 (L 21=360 (L 23=359 (L 26=341 (L	C 20), 16=144 (LC 20 C 26), 18=370 (LC 1 .C 25), 20=359 (LC 2 .C 1), 22=360 (LC 25 .C 1), 24=365 (LC 25 .C 1), 27=432 (LC 25 .pression/Maximum), 9), 5),), 3)	vertical left a forces & MW DOL=1.60 pl Truss desig only. For stu see Standard or consult qu All plates are Gable requir Gable studs This truss ha	e; cantilever left and ind right exposed;C (FRS for reactions late grip DOL=1.60 ned for wind loads uds exposed to wind d Industry Gable En ualified building des a 1.5x4 MT20 unles es continuous bott spaced at 2-0-0 oc us been designed fo ad nonconcurrent w	c-C for r shown; in the p d (norm nd Deta igner a so other com choir com choir com a 10.	nembers and Lumber lane of the tru al to the face) ils as applicat s per ANSI/TF wise indicated d bearing. D psf bottom	ss , ble, Pl 1. I.		-	(STATE OF T SCOT SEVI PE-2001 PE-2001	ER BER 018807

- able studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

August 6,2024

4-0-14

4-0-0

Ø

XX

18

₫₽.

×6=

16

XX

22-2-4

0-5-8

17 _{6x6 u}

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 160	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 167343665
P240932-01	E4	Roof Special	8	1	Job Reference (optional	
Premier Building Supply (Springhi	ill, KS), Spring Hills, KS - 66083,				2024 MiTek Industries, Inc. Mo 370Hq3NSgPqnL8w3uITXbGk	
	-0-10-8 	5-9-2 13-9-2 5-9-2 8-0-0		<u>18-6-0</u> 4-8-14		
					4x6 ॥ 7	
			1.5x 6 10 11 11 10 3x4= 5x6		4x8 8 4x8 9 4x4= 4x6= 3x4=	4-0-0 4-0-0 3-11-11 4-0-0
Scale = 1:68.5	⊢ 	5-9-2 13-9-2 5-9-2 8-0-0			21-8-12 22-2-4 7-11-10 0-5-8	

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.79 0.71 0.96	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.23 -0.03	(loc) 9-10 9-10 13	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 121 lb	GRIP 244/190 FT = 20%
	Left 2x4 SP No.2 3 Structural wood she 3-5-6 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt	ept* 13-8:2x6 SPF No 3-2-3 athing directly applied cept end verticals. applied or 8-4-8 oc 4-10, 7-9 13=0-3-2 C 12) C 12), 13=-235 (LC 1 LC 1), 13=972 (LC 1)	d or 6 7 L	 capacity of 5 of 425 psi. Bearing at jo using ANSI/I designer sho Provide mec bearing plate joint 2 and 2: This truss is International 	assumed to be: 65 psi, Joint 13 S int(s) 13 consider FPI 1 angle to gra- buld verify capacit hanical connectio capable of withs 35 lb uplift at joint designed in acco Residential Code nd referenced sta Standard	SPF No.2 rs parallel in formula y of bear on (by oth standing 1 t 13. rdance w e sections	crushing cap to grain valu a. Building ng surface. ers) of truss i 53 lb uplift a ith the 2018 5 R502.11.1 a	acity ie to t					
TOP CHORD	1-2=0/6, 2-4=-1623/2 6-7=-924/276, 7-8= 8-13=-124/66	208, 4-6=-943/120, 64/49, 9-13=-212/848	3,										
BOT CHORD	2-12=-483/1364, 10- 9-10=-82/264	-12=-483/1364,											
WEBS	6-10=-521/308, 7-10 4-10=-680/274, 7-9=)=-338/1066, 4-12=0/ =-822/263	277,										

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 18-6-0, Exterior(2E) 18-6-0 to 21-7-8 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

nd gust) sf; h=35ft; RS (envelope) 8 to 4-1-8, 8-6-0 to 21-7-8

August 6,2024

TCLL (root) 25.0 Piate Grip DOL 1.15 TC 0.02 Vert(LL) -0.10 16:18 >999 240 MT20 244/190 BCDL 0.00 Lumber DOL 1.15 BC 0.650 WB 0.73 Horz(CT) 0.02 16:18 >999 160 Weight: 134 lb FT = 20% LUMBER 10.0 Code IRC2018/TP2014 Matrix-S Weight: 134 lb FT = 20% LUMBER 10.0 Code IRC2018/TP2014 Matrix-S Weight: 134 lb FT = 20% LUMBER 244 SP No.2 Except' 15-7,13-11,10-9-23 SFF No.2 SFF No.2 Structural wood sheathing directly applied or 6-0-0 oc Structural wood sheathing directly applied or 3-10-14 dc purins, except end verticals, and gibt exposed i code vertical left exposed.2-C for members and forces & MWFRS for reactions shown: Lumber DOL =1.60 pits 12 SP No.2 crushing capacity of 565 pit. Dist is trus has been designed for a 10.0 pSf bottom chord live load nonconcurrent with hary other live loads. Bearing at pint(5) 19 considers parallel to grain value using ANS/TFP 1 + applied or 6-0-0 oc bracking. Bearing at pint(5) 19 considers parallel to grain value using at pint(5) 19 considers parallel to grain value using at pint(5) 19 considers parallel to grain value using ANS/TFP 1 + applied or 6-0-0 oc braching. Bearing at pint(5) 19 considers										RELEASE	FOR CONSTRUCTION	
P2403021 [2]	Job	Truss		Truss Type		Qty	Ply	Roof - HM Lot 160	,]
<page-header>Deter Build program (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2</page-header>	P240932-01	E5		Roof Special		2	1	Job Reference (or	tional			
Numeric Control Solution Control Contro Control Control <t< td=""><td>Premier Building ?</td><td>Supply (Springhill, KS), S</td><td>Spring Hills, KS - 66083,</td><td>I</td><td></td><td></td><td></td><td>2024 MiTek Industries,</td><td>Inc. Mc</td><td></td><td>78/2024</td><td>_</td></t<>	Premier Building ?	Supply (Springhill, KS), S	Spring Hills, KS - 66083,	I				2024 MiTek Industries,	Inc. Mc		78/2024	_
0-10-0 0-2 0-0 2-32 2-5-12 3-14 0-10 12 0-10-0 0-2 0-0 2-32 2-5-12 3-14 0-10 12 0-10-0 0-1					ID:X3j9csSdTd?hyQg	Jxh8rn6Ozwv	zW-RfC?PsB			WrCDoi7J4zJO?/		
Under the status <				552			16-0-4 18 2-3-2 2-3	<u>5-12</u> <u>3-1-8</u> <u>22</u> 5-12 <u>3-1-8</u> <u>0</u>	2-4			
Under BROIN TOP CHORD STORE 1987 No.2 STORE - 204 SP NO.2 STORE			0-10-0	3 00-			202 2		-12			
Lumber For CPURD BILLING DIC CHORD SUBJECT Spacing 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -		Т					1.5x4 ı		<i>,</i> 0			
State = 17.17 0-5-8 Loading (pst) Spacing 2-0 CSI DEf. in (loc) Vide L/d PLATES GRIP TCDL 10.0 Lumber DOL 1.15 BC 0.59 Vert(L) -0.10 16.18 >999 240 MT20 244/190 BCDL 10.0 Code IRC2018/TPI2014 WB Sold Nort(C) -0.22 16.18 >999 100 Weight: 134 lb FT = 20% LUMBER Code IRC2018/TPI2014 WB Matrix-S WB		10-0-3	0-0-E 	3x4 ≠ 20 3 3 x4 ∎ 5-9-2	3x8 = 5 3x4 = 4 18 1.5x4 II 13-9-2	6 17 16 3x4= 5x8	4 = 7 14 14 15 1.5x4 16-1-8 1	$\begin{array}{c} 4.4\\ 9.9\\ 9.7\\ 1.1\\ 1.5x4 \\ 1.5x4 \\ 1.5x4 \\ 1.5x4 \\ 2.21 \\ 3.2-4 \\ 2.28 \\ 2.24 \\ 2.28 \\ 2.24 \\ 2.28 $	12 10 66 = x4 = 4 -12	4++- 0-0 -0-0		
TCLL (root) 25.0 Piate Ginp DOL 1.15 TC 0.02 Vert(LL) -0.10 16-18 >999 240 BCLL 0.00 Lumber DOL 1.15 BC 0.60 WB 0.73 Vert(LL) -0.10 16-18 >999 240 WT20 244/190 BCDL 10.0 Code IRG2018/TP12014 WB 0.73 Wert(LL) -0.10 16-18 >999 240 Wert(L) -0.10	Scale = 1:71.7		1							1		_
TCDL 10.0 Rep Stress Incr 11.5 BC 0.63 Vert(CT) -0.22 16.18 >999 180 BCDL 10.0 Code IKC2018/TPI2014 Watrix-S Weight: 134 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 Except' 15-7,13-11,10-9:2X3 SPF No.2 Weight: 134 lb FT = 20% SDC CHORD 2x4 SP No.2 "Except' 15-7,13-11,10-9:2X3 SPF No.2 Wind: ASCE 7-16; Vult=115mp (1 Seexond guist) Vad=91mph; TCDL=6.0ps; tBCDL=6.0ps; tBC	Loading TCLL (roof)		1					()		1		
BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Weight: 134 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 Sxd SP No.2 </td <td>TCDL</td> <td>10.0</td> <td>Lumber DOL</td> <td></td> <td></td> <td>0.59 Vert(</td> <td>CT) -0.</td> <td>22 16-18 >999</td> <td></td> <td></td> <td></td> <td></td>	TCDL	10.0	Lumber DOL			0.59 Vert(CT) -0.	22 16-18 >999				
TOP CHORD 2x4 SP No.2 Vasd=91 m.ph; TCDL=6.0pst; B=35ft; BOT CHORD 2x4 SP No.2 Except' 15-7,13-11,10-9:2x3 SPF No.2 2x3 SPF No.2 Except' 19-9:2x6 SPF No.2 SUDER 2x3 SPF No.2 Except' 19-9:2x6 SPF No.2 SUDER CA: 10; Exc C; Enclosed; WWFRS (enclope) BRACING Structural wood sheathing directly applied or 6-00 oc bracing. STOP CHORD Ridi ceiling directly applied or 6-00 oc bracing. Max Horiz 2-384 (LC 12) Max Horiz 2-384 (LC 12) Max Grav 2-1396 (LC 1), 19-9:72 (LC 1) Max Grav 2-1396 (LC 1), 19-9:72 (LC 1) Max Grav 2-4306 (LC 1), 19-9:72 (LC 1) Max Grav 2-445 (LT 12) Max Grav 2-4306 (LC 1), 19-9:72 (LC 1) Max Grav 2-445 (LT 12) Max Grav 2-445 (LT 12) Max Grav 2-430 (LC 12), 4-6-940/125, 17.78-841/278, 8-9-63/49, 10-132 (LT 12) Max Horiz 2-486 (LT 12)	BCDL					./ 0 1.0.2.		04 10 1.0	Tir d	Weight: 134 lb	FT = 20%	
NOTES 457 SCOTT M. CAN	BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.2 *Excep SPF No.2 2x3 SPF No.2 *Exce Left 2x4 SP No.2 - 3 Structural wood shea 3-10-14 oc purlins, of Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-5-8, 1 Max Horiz 2=384 (LC Max Uplift 2=-153 (L Max Grav 2=1036 (L (Ib) - Maximum Com Tension 1-2=0/6, 2-4=-1624// 6-7=-943/261, 7-8=-4 10-12=0/47, 12-19=- 2-18=-480/1364, 16- 15-16=-13/1, 14-15= 13-14=-115/391, 12- 11-13=0/41, 10-11=0	ept* 19-9:2x6 SPF No. 3-2-3 sathing directly applied except end verticals. / applied or 6-0-0 oc 4-16, 8-12 19=0-3-2 C 12) _C 12), 19=-235 (LC 1 LC 1), 19=972 (LC 1) npression/Maximum /204, 4-6=-940/125, -841/278, 8-9=-69/49, -208/852, 9-19=-122/6 -18=-480/1364, =-43/0, 7-14=-20/62, -13=-116/391, -0/2	Vasd= K3 Ke=1.0 exterior 2 Interior 2 cone; 4 cone; 3 This tr chord 4) Bearin capaci of 425 5) Bearin using 4 design 6) Provid bearin joint 2 7) This tr Interna R802.1 LOAD CAS	=91mph; TCDL=6.0psf; BCDL .00; Cat. II; Exp C; Enclosed; or zone and C-C Exterior(2E) or (1) 4-1-8 to 18-6-0, Exterior cantilever left and right expos sed;C-C for members and ford ons shown; Lumber DOL=1.6 e1.60 russ has been designed for a live load nonconcurrent with hngs are assumed to be: Joint ity of 565 psi, Joint 19 SPF N 5 psi. ng at joint(s) 19 considers pair ANSI/TPI 1 angle to grain for ner should verify capacity of to de mechanical connection (by ng plate capable of withstandi 2 and 235 lb uplift at joint 19. russ is designed in accordamu- tational Residential Code sec .10.2 and referenced standar	L=6.0psf; h: ; MWFRS (e)) -0-10-8 to rr(2E) 18-6-(ssed ; end v rces & MWF 60 plate grip a 10.0 psf bu a any other I t 2 SP No.2 No.2 crushir urallel to gra rmula. Buil bearing sur y others) of ling 153 lb u cce with the ctions R502.	=35ft; envelope) 4-1-8, 0 to 21-7-8 vertical left FRS for p ottom live loads. crushing ng capacity in value lding face. truss to uplift at 2018 .11.1 and			5000 DE N		
4) Unkelensed weef live leade have been considered for	NOTES	4-16=-682/265, 8-12 14-16=-374/1218, 6-	2=-875/265, 5-14=-16/34						ł	S/ SCOTI	M. YOY	

1) anced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

August 6,2024

NUMBER

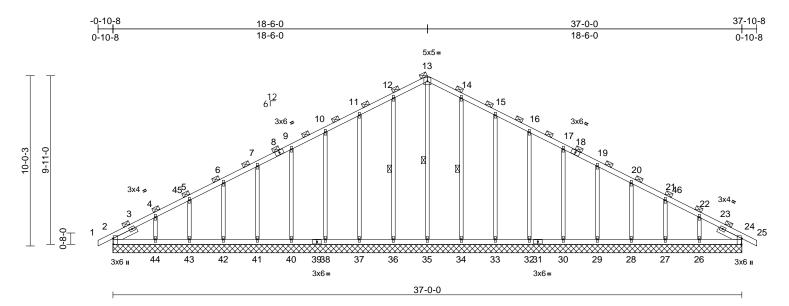
PE-2001018807

GI

PE-20 PE-20

								RELEA	SE FOR CON	STRUCTION
ob	Truss	Truss Type		Qty	Ply	Roof - HM	Lot 160		DTED FOR PL ELOPMENT S 16734	
240932-01	E6	Common		7	1	Job Refere	nce (optional)		167343 E's Summit, M	
emier Building Supply (Springhil	ll, KS), Spring Hills, KS - 66083,	•	Run: 8.63 S Jul 12 20			2024 MiTek Ind	dustries, Inc. Mo			2024
			ID:TnZ3x61kRmd3IVZ	aqXdQQ5zv	vvtc-RfC?Ps	B70Hq3NSgPo	qnL8w3ulTXbGl	WrCDoi7J4z3C		
-0-10-8	5-9-2	13-9-2	18-6-0	23-2	2-14		31-2-14	1	37-0-0	37-10-8
0-10-8	5-9-2	8-0-0	4-8-14	4-8	8-14		8-0-0	I	5-9-2	0-10-8
	3x4 = 3 20 8 = 18 4x6=	12	1.5x4 II 5 16 4x8=		1.	5x4 II 7 5 14 x8= 3x6=	3x8. 8	3x4 9 9 13 4x6=	21	10 11 7x8 II
L	5-9-2	13-9-2		2-14			31-2-14		37-0-0	
	5-9-2	8-0-0	9-5	5-12			8-0-0	I	5-9-2	I
cale = 1:67.8 ate Offsets (X, Y): [12:Edge	e,0-3-8], [13:0-2-8,0-2-0], [18	3:0-2-8,0-2-0], [19:0-3-8,0)-3-4]							
	(psf) Spacing	2-0-0	CSI	DEFL		in (loc)	l/defl L/d	PLATES	GRIP	
CLL (roof)	25.0 Plate Grip DOL	1.15	TC 0.	64 Vert(I	L) -0.	19 15-16	>999 240	MT20	244/190	
DL ·	10.0Lumber DOL0.0Rep Stress Incr	1.15 YES		90 Vert(92 Horz(,	44 15-16 10 12	>993 180 n/a n/a			
CDL ·	10.0 Code	IRC2018/TPI2014	Matrix-S					Weight: 176	lb FT = 20	%
12-10:2x4 SP RACING DP CHORD Structural wo 3-4-13 oc pur DT CHORD Rigid ceiling of bracing, Exc 8-5-5 oc brac EBS 1 Row at mid	2 *Except* 19-2:2x6 SPF No 0 1650F 1.5E od sheathing directly applied rlins, except end verticals. directly applied or 10-0-0 oc sept: sing: 16-18. pt 3-16, 9-15 =0-5-8, 19=0-5-8	Vasd=91mph; Ke=1.00; Cat. exterior zone Interior (1) 4-1 23-2-14, Inter or left and right e exposed;C-C reactions sho DOL=1.60 3) The Fabricatio 4) This truss has chord live load	7-16; Vult=115mph (3; ; TCDL=6.0p5; BCDL II; Exp C; Enclosed; I and C-C Exterior(2E) I-8 to 18-6-0, Exterior ior (1) 23-2-14 to 37-1 exposed; end vertical for members and forc wn; Lumber DOL=1.6 on Tolerance at joint 1 s been designed for a d nonconcurrent with a re assumed to be SP	=6.0psf; h: MWFRS (e -0-10-8 to (2R) 18-6-(0-8 zone; left and rig ess & MWF 0 plate grip 0 = 16% 10.0 psf bo any other li	=35ft; envelope) 4-1-8, D to cantilever ght RS for b ttom ive loads.					

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



August 6,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - HM Lot 160	AS NOTED FOR PLAN REVIEW
300	11035	Truss Type	Quy	i iy		DEVELOPMENT SERVICES 167343668
P240932-01	E7	Common Supported Gable	1	1	Job Reference (optional)	

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Man Aug 05 6 1817/08/219:24 ID:30TC0Xcr8WgF3uEpecUgNDzwyss-RfC?PsB70Hq3NSgPqnL8w3uITXbc WrCDoi7U42007108/219:24

Scale = 1:67.8

Plate Offsets (X, Y): [2:0-4-1,Edge], [18:0-0-0,0-0-0], [24:0-4-1,Edge]

·`					-									-
Loading		(psf)	Spacing	4-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.20	Vert(LL)	n/a	(.00)		999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.12		n/a	-		999		
BCLL		0.0	Rep Stress Incr	NO		WB	0.40	· · ·	0.02	24		n/a		
BCDL		10.0	Code		3/TPI2014	Matrix-S		- (-)					Weight: 195 lb	FT = 20%
													, v	
LUMBER				FO	ORCES	(lb) - Maximum C	ompressi	on/Maximum					; Vult=115mph (3	
TOP CHORD						Tension							DL=6.0psf; BCDL	
BOT CHORD				TO	OP CHORD	1-2=0/11, 2-4=-48								MWFRS (envelope)
OTHERS	2x3 SPF					5-6=-257/209, 6-7		,	317,				C-C Corner(3E)	,
SLIDER		SP No.2 '	1-6-7, Right 2x4 SP N	0.2		9-10=-146/373, 1							3 to 18-6-0, Corne	
	1-6-7					11-12=-222/588,							in) 23-6-0 to 37-1 osed ; end vertica	0-8 zone; cantilever
BRACING						13-14=-257/681, 15-16=-183/473,		,						ces & MWFRS for
TOP CHORD		purlins (6-0				17-19=-117/259,							Lumber DOL=1.6	
			eted: Spacing > 2-8-0)).		20-21=-147/62, 2		,			DL=1.60	iown,		o plate grip
BOT CHORD		ing directly	applied or 10-0-0 oc			22-24=-331/100,		,				ned f	or wind loads in t	he plane of the truss
	bracing.			BO	DT CHORD	2-44=-96/385, 43								normal to the face),
WEBS	1 Row at	•	13-35, 12-36, 14-34			42-43=-96/385.4								Details as applicable,
REACTIONS	(size)		24=37-0-0, 26=37-0-			40-41=-96/385, 3		,						er as per ANSI/TPI 1.
			0, 28=37-0-0, 29=37-0	/		37-38=-96/385, 3		,						therwise indicated.
			0, 32=37-0-0, 33=37-0	/		35-36=-96/385, 3							ontinuous bottom	
			0, 35=37-0-0, 36=37-0	,		33-34=-96/385, 3	2-33=-96	/385,		6) G	able studs	s spac	ed at 2-0-0 oc.	Ũ
			0, 38=37-0-0, 40=37-0	,		30-32=-96/385, 2	9-30=-96	/385,		7) Tł	is truss h	as be	en designed for a	10.0 psf bottom
		41=37-0-0	0, 42=37-0-0, 43=37-0 0	J-0,		28-29=-96/385, 2				ch	ord live lo	bad no	nconcurrent with	any other live loads.
	Max Horiz					26-27=-96/385, 2				8) Al	bearings	are a	ssumed to be SP	No.2 crushing
			C 13), 26=-211 (LC 13	, WE	EBS	13-35=-425/84, 1		,		ca	pacity of	565 ps	si.	
			LC 13), 28=-127 (LC			11-37=-279/208,								
		,	LC 13), 30=-123 (LC			9-40=-280/193, 7		,						
			LC 13), 33=-134 (LC			6-42=-282/197, 5		,					000	an
			LC 13), 36=-109 (LC			4-44=-321/414, 1							A OF I	MIG
			LC 12), 38=-121 (LC			15-33=-279/208,							BAR	JUSS W
		40=-123 (LC 12), 41=-121 (LC	12),		17-30=-280/193, 20-28=-282/197,						E	TATE OF I	N.S.
		42=-128 (LC 12), 43=-96 (LC 1	2),		22-26=-321/407	21-27=-2	71/203,				R	SCOT	TM. CY
		44=-238 (22-20=-321/407						4	/ SEV	IER \ V
	Max Grav	2=372 (L0	C 21), 24=368 (LC 1),		DTES							BOL		
			_C 26), 27=343 (LC 1), '		d roof live loads ha	ive been	considered to	r					·Anula
			_C 26), 29=359 (LC 1		this design	•								E ENER
			_C 26), 32=360 (LC 1									2	NUM	BER
			_C 26), 34=376 (LC 2									- XV '	ON PE-2001	018807
			_C 22), 36=376 (LC 2									OV .	1 and	IS A
			_C 25), 38=360 (LC 1										0.50	NO'A
			_C 25), 41=359 (LC 1 _C 25), 43=343 (LC 1										ONA	LEY
		42=364 (l 44=426 (l	<i>,,</i>),									NUM PE-2001	TITE
		44=420 (l	_0 _0)										Διιαι	st 6,2024
													Augu	101 0,2027

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - HM Lot 160	AS NOTED FOR PLAN REVIEW
005	11033		Quy	1 19		DEVELOPMENT SERVICES 167343668
P240932-01	E7	Common Supported Gable	1	1	Job Reference (optional	
Premier Building Supply (Spring	nill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Jul 12 20 ID:30TC0Xcr8WgF3u	024 Print: 8.6 EpecUgNDz	530 S Jul 12 2 wvss-RfC?Ps	2024 MiTek Industries, Inc. Mo sB70Hq3NSgPqnL8w3uITXbG	

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 2, 109 lb uplift at joint 36, 131 lb uplift at joint 37, 121 lb uplift at joint 38, 123 lb uplift at joint 40, 121 lb uplift at joint 41, 128 lb uplift at joint 42, 96 lb uplift at joint 43, 238 lb uplift at joint 44, 101 lb uplift at joint 34, 134 lb uplift at joint 33, 120 lb uplift at joint 32, 123 lb uplift at

uplift at joint 33, 120 lb uplift at joint 32, 123 lb uplift at joint 30, 121 lb uplift at joint 29, 127 lb uplift at joint 28, 102 lb uplift at joint 27 and 211 lb uplift at joint 26.
10) This truss is designed in accordance with the 2018
Intermediate II and the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) Graphical purlin representation does not depict the size

or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 160	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 167343669
P240932-01	G1	Common Supported Gable	1	1	Job Reference (optional)	LEE'S SUMMIT, MISSOURI
Premier Building Supply	(Springhill, KS), Spring Hills, I	KS - 66083, Run: 8.63 S J ID:OniToTBJc	lul 12 2024 Print: 8 u5e4i7ZBJU?9Sy	3.630 S Jul 12 pbwQ-RfC?Ps	2024 MiTek Industries, Inc. Mo B70Hq3NSgPqnL8w3uITXbGk	n Aug 05 6:1811 08/29:24 WrCDoi7J42097
	-0-10-8 0-10-8	<u>11-6-4</u> 11-6-4			22-0-8 10-6-4	22-11-0
			4x4 =			
			7			

6

A

21 20

3x4 =

XXXXX

19

22-0-8

8

18

9

17

26

10

16

11

15

12 ______13

 \otimes

3x8 II

0-10-1

12 4 Г

4

23

3

24

25

5

22

4-5-4 4-4-2

0-6-1

2

3x4 =

Scale = 1:45.8													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.14 0.09 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 88 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=22-0-8, 16=22-0-6 23=22-0-7 Max Horiz 2=75 (LC Max Uplift 2=-56 (LC 15=-66 (L 21=-52 (L 23=-37 (L Max Grav 2=204 (LC 15=200 (L 15=200 (L 15=200 (L 15=200 (L 15=210 (L 22=190 (L 22=190 (L 24=307 (L	applied or 10-0-0 oc ,14=22-0-8, 15=22-0 8, 17=22-0-8, 18=22-8 8, 21=22-0-8, 22=22-8 12) C 13), 16=-46 (LC 9) C 13), 18=-51 (LC 12) C 12), 22=-52 (LC 11) C 8), 24=-88 (LC 12) C 1), 14=183 (LC 12) C 1), 14=183 (LC 12) C 1), 18=190 (LC 22) C 1), 18=190 (LC 22) C 1), 23=131 (LC 22) C 1), 23=131 (LC 22) C 25)	N 1; d or 2; 8, -0-0, -0-8, -0-8, -0-1, -0-1, -0-8, -0-1,	OTES Unbalanced this design. Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Exterior(2N) 16-6-4, Exter left and right extposed;C-C reactions sho DOL=1.60 Truss design only. For stu- see Standard or consult qu All plates are Gable requiri Gable studs This truss ha chord live loc All bearings	7-19=-122/1, 6-21= 4-23=-107/71, 3-24 8-18=-150/134, 9-1 10-16=-137/87, 11: roof live loads hav 7-16; Vult=115mp n; TCDL=6.0psf; B t. II; Exp C; Enclos a and C-C Corner(4-1-8 to 11-6-4, C rior(2N) 16-6-4 to 2 exposed ; end ver C for members and own; Lumber DOL- ned for wind loads uds exposed to wind d Industry Gable E ialified building des 1.5x4 MT20 unles es continuous bott spaced at 2-0-0 oc is been designed f ad nonconcurrent V are assumed to be	4=-227/ 17=-139 -15=-15 e been th (3-sec CDL=6. sed; MW 38) -0-1 orner(3F 22-11-0 ritical left forces =1.60 pl in the p in the p in the p in (norm nd Deta signer a so other om choic c. or a 10. with any	145, 1/128, 2/106 considered for cond gust) 0psf; h=35ft; (FRS (envelop 0-8 to 4-1-8, R) 11-6-4 to zone; cantilev and right & MWFRS for ate grip lane of the tru is as applicat s per ANSI/TF wise indicated d bearing. 0 psf bottom other live load	r er ss l, ble, Pl 1. l.				STE OF J	MISSOL
TOP CHORD	 HORD 1-2=0/6, 2-3=-89/65, 3-4=-50/91, 4-5=-49/120, 5-6=-62/157, 6-7=-75/193, 7-8=-75/187, 8-9=-62/137, 9-10=-50/89, 10-11=-40/54, 11-12=-41/21, 12-13=0/23, 12-14=-161/98 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 63 lb uplift at joint 21, 52 lb uplift at joint 22, 37 lb uplift at joint 23, 88 lb uplift at joint 23, 88 lb uplift at joint 24, 51 lb uplift at joint 18, 50 lb uplift at joint 17, 46 lb 												
	CHORD 2-24=-9/57, 23-24=-9/57, 22-23=-9/57, 21-22=-9/57, 19-21=-9/57, 18-19=-9/57, 17-18=-9/57, 16-17=-9/57, 15-16=-9/57, 14-15=-9/57 VIDE CONTRIBUTION OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT. CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT. CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT. CONTRACT OF CONTRACT OF CONTRACT. CONTRACT OF CONTRACT. CONTR							L ENGL					

August 6,2024

6023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

									RELEA	SE FOR CONSTR	
Job	Truss	Truss	Туре		Qty	Ply	Roof - HM	Lot 160		TED FOR PLAN I	
P240932-01	G2	Com	mon		5	1	Job Refere	ence (optional)	DEVELOPMENT SERVIC 167343670 LEE'S SUMMIT, MISSOU		OURI
Premier Building Supply (Sp	oringhill, KS), Spring Hills,	, KS - 66083,			ul 12 2024 Print: 8 Q5m7TW0jeK7qm						924
	-0-10-8 0-10-8	5-11-10 5-11-10		<u>11-6-4</u> 5-6-10			-0-14 6-10		22-0-8 4-11-10	22-11-0	
4-5-4 4-4-2 0-6-1	1 2 4x4=	12	41 ² 1.5x4 3 13	11 10 3x4= 3			9 3x4=	4x4z 14 5 15		4x4 II 6 7 8 3x6 =	0-10-1

Scale = 1:45.8 Plate Offsets (X, Y): [6:0-2-0.0-1-12]

Loading	(ncf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	(psf) 25.0	Plate Grip DOL	1.15		TC	0.57	Vert(LL)	-0.13	(100) 2-11	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.76	Vert(CT)	-0.29	2-11	>900	180	11120	10//111
BCLL	0.0	Rep Stress Incr	YES		WB	0.44	Horz(CT)	0.06	8	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S	-	- (-)		-			Weight: 88 lb	FT = 20%
UMBER			4)	All bearings	are assumed to be	SP No.	2 crushing						
OP CHORD	2x4 SP No.2			capacity of 5									
OT CHORD	2x4 SP No.2		5)		hanical connectior								
VEBS	2x3 SPF No.2 *Exce	ept* 8-6:2x4 SP No.2			capable of withst		225 lb uplift at	t					
BRACING			0		15 lb uplift at joint								
OP CHORD		eathing directly applie	dor ⁶⁾		designed in accor Residential Code			and					
	3-4-11 oc purlins, e				nd referenced star			anu					
SOT CHORD	0 0 ,	applied or 8-2-11 oc		OAD CASE(S)			0/1111.						
/EBS	bracing.	5.0	L.	OAD CASE(S)	Stanuaru								
		5-8											
	(size) 2=0-5-8, 8 Max Horiz 2=75 (LC												
	Max Uplift 2=-225 (LC	,											
	Max Grav 2=1053 (I	,, , , ,											
ORCES	(lb) - Maximum Corr	,. , ,											
URCES	Tension	npression/maximum											
OP CHORD		/579, 3-4=-1814/486,											
		=-421/147, 6-7=0/23,											
	6-8=-357/228	, •, •,											
BOT CHORD	2-11=-500/1935, 9-1	11=-264/1312,											
	8-9=-426/1693												
NEBS	,	1=-92/566, 4-9=-61/4	01,										
	5-9=-270/198, 5-8=-	-1478/436											The second
IOTES												OFI	Might
) Unbalance this design	d roof live loads have	e been considered for									1	THE OF I	MISSO A
0	 E 7-16; Vult=115mph	n (3-second gust)									B	SCOT	V W
	ph; TCDL=6.0psf; BC										R	S SCOI	

Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 11-6-4, Exterior(2R) 11-6-4 to 16-6-4, Interior (1) 16-6-4 to 22-11-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

August 6,2024

Ġ

MIM

PE-2001018807

OFFESSIONAL ET

					RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty Ply	Roof - HM Lot 160	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 167343671
P240932-01	R1	Flat Girder	1 2	Job Reference (optional	
Premier Building Supply (Sp	oringhill, KS), Spring Hills, KS - 6608	3, Run: 8.63 ID:X3j9cs	S Jul 12 2024 Print: 8.630 S Jul 12 SdTd?hyQgxh8rn6OzwvzW-RfC?P	2 2024 MiTek Industries, Inc. Mo sB70Hq3NSgPqnL8w3uITXbGk	n Aug 05 16:0817 08/2924 WrCDoi7J42J9?/ 08/29924
	5-3-2		15-5-14	20-9-	
0.15			5-1-6	5-3-2	2
OTH WID ARE	PLEMENTARY BEARING PLATES IER MEANS TO ALLOW FOR THE IH (SUCH AS COLUMN CAPS, BI THE RESPONSIBILITY OF THE T THE BUILDING DESIGNER.	MINIMUM REQUIRED SUPPORT ARING BLOCKS, ETC.)			
	3x6 u	5x8 =	4x6 = 7x8 =	4x6 =	Зх6 и

BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.		and right exposed ;C-C fo MWFRS for reactions sho
WEBS	1 Row at midpt 5-7, 2-12		grip DOL=1.60
REACTIONS	(size) 7=0-5-8, 12=0-3-8, (reg. 0-4-8)	4)	Provide adequate drainag
	Max Uplift 7=-1154 (LC 8), 12=-1281 (LC 8)	5)	All plates are MT20 plates
	Max Grav 7=5155 (LC 1), 12=5719 (LC 1)	6)	This truss has been desig chord live load nonconcur
FORCES	(lb) - Maximum Compression/Maximum	7)	WARNING: Required bea
	Tension	,	than input bearing size.
TOP CHORD	1-12=-1320/361, 1-2=-76/18,	8)	All bearings are assumed
	2-3=-8293/2099, 3-5=-6403/1622,	- /	capacity of 425 psi.
	5-6=-72/17, 6-7=-768/252	9)	Provide mechanical conne
BOT CHORD	11-12=-1628/6426, 9-11=-1628/6426,	,	bearing plate capable of v
	8-9=-2099/8293, 7-8=-1622/6403		joint 12 and 1154 lb uplift

11

3x4 🛛

NOTES

WEBS

Scale = 1:46.6

Loading

TCDL

BCLL

BCDL

WEBS

OTHERS

BRACING

TOP CHORD

LUMBER

TOP CHORD

BOT CHORD

TCLL (roof)

2-ply truss to be connected together with 10d 1) (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x8 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc Web connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x3 -1 row at 0-9-0 oc.

5-7=-7649/1939. 2-11=0/188

5-8=-239/1336

2-12=-7674/1945, 2-9=-570/2256,

3-9=-1153/373, 3-8=-2284/577,

4-0

12

Plate Offsets (X, Y): [3:0-2-8,0-2-0], [5:0-2-8,0-2-0], [7:Edge,0-4-4]

(psf)

25.0

10.0

0.0

10.0

2x8 SPF No.2

2x6 SPF No.2

2x4 SP No.2

end verticals.

No 2

MT18HS 9x18 =

Spacing

Code

2x3 SPF No.2 *Except* 12-1,5-7,12-2:2x4 SP

2-0-0 oc purlins (5-10-6 max.): 1-6, except

Plate Grip DOL

Rep Stress Incr

Lumber DOL

5-3-2

5-3-2

2-0-0

1.15

1.15

NO

IRC2018/TPI2014

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Wind: ASCE 7-16; Vult=115mph (3-second gust)

10

10-4-8

5-1-6

CSI

TC

BC

WB

Matrix-S

4x6 =

9

4x4 =

0.42

0.85

0.62

15-5-14

5-1-6

DEFL

Vert(LL)

Vert(CT)

Horz(CT)

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left for members and forces & own; Lumber DOL=1.60 plate
- ge to prevent water ponding.
- s unless otherwise indicated. gned for a 10.0 psf bottom
- irrent with any other live loads. aring size at joint(s) 12 greater
- d to be SPF No.2 crushing
- nection (by others) of truss to withstanding 1281 lb uplift at ft at joint 7.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 916 Ib down and 206 lb up at 0-9-0, 902 lb down and 203 lb up at 2-9-0, 902 lb down and 203 lb up at 4-9-0, 902 lb down and 203 lb up at 6-9-0, 902 lb down and 203 lb up at 8-9-0, 902 lb down and 203 lb up at 10-9-0, 902 lb down and 203 lb up at 12-9-0, 902 lb down and 203 lb up at 14-9-0, and 902 lb down and 203 lb up at 16-9-0, and 902 lb down and 203 lb up at 18-9-0 on top chord. The design/selection of such connection device(s) is the responsibility of others.

Weight: 257 lb

PLATES

MT18HS

MT20

 \ge

7

7x8 =

GRIP

197/144

197/144

FT = 20%

LOAD CASE(S) Standard

8

in

-0.11

-0.20

0.07

3x4 =

(loc)

9

9 >999

7

- Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15
 - Uniform Loads (lb/ft)

 - Vert: 1-6=-70, 7-12=-20

20-9-0

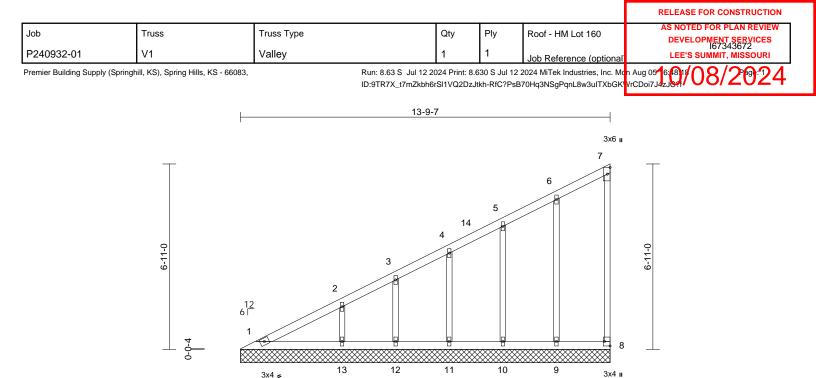
5-3-2

L/d

240

180

l/defl


>999

n/a n/a

- Concentrated Loads (lb) Vert: 13=-916, 14=-902, 15=-902, 16=-902, 17=-902,
- 18=-902, 19=-902, 20=-902, 21=-902, 22=-902

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

13-9-7

Plate Offsets (X, Y): [8:Edge,0-2-8]

┝

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.55	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.18	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.12	Horiz(TL)	0.00	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 61 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=13-9-7, 10=13-9- Max Horiz 1=292 (L0 Max Uplift 8=-38 (L0 10=-58 (L 12=-47 (L Max Grav 1=156 (L0 9=193 (L0 11=190 (I 13=294 (I (lb) - Maximum Con Tension 1-2=-441/258, 2-3=- 4-5=-254/175, 5-6=- 7-8=-54/50 1-13=-132/143, 12-' 11-12=-132/143, 8-9 6-9=-149/167, 5-10=	applied or 10-0-0 oc 8=13-9-7, 9=13-9-7, 7, 11=13-9-7, 12=13-97 C 9) 2 9), 9=-67 (LC 12), C 12), 13=-65 (LC 12), C 12), 13=-100 (LC 12), C 12), 13=-100 (LC 12), C 12), 13=-73 (LC 19), C 1), 10=176 (LC 1), LC 1), 12=138 (LC 1), LC 1), 12=138 (LC 1), LC 1), 12=138 (LC 1), 10, 10=176 (LC 1), 11, 10=176 (LC 1), 11, 10=176 (LC 1), 12, 10, 10=176 (LC 1), 13, 10=176 (LC 1), 14, 10=176 (LC 1), 14, 10=176 (LC 1), 15, 10=176 (LC 1),	 Vasd=91m; Ke=1.00; C exterior zorn Interior (1) 4 right expose for member Lumber DO 2) Truss desig only. For si see Standa or consult q 3) All plates ai 4) Gable requi 5) Gable studs 6) This truss h chord live lo 2) 7) All bearings capacity of 8) Provide me bearing plat 8, 67 lb upli at joint 11, 4 13. 9) This truss is Internationa R802.10.2 a LOAD CASE(S 	chanical connectior e capable of withsta ft at joint 9, 58 lb up 17 lb uplift at joint 12 designed in accorra l Residential Code and referenced stan	CDL=6. sed; MW (2E) 0-7 one; car and rigl FRS for OL=1.6 in the p nd (norm nd Deta signer a ss other oor a 10. with any \Rightarrow SP No and (by oth anding 3 olift at jo 2 and 10 dance w sections	Opsf; h=35ft; (FRS (envelop -9 to 5-9-15, titlever left anct t exposed;C-1 reactions sho D lane of the tru al to the face) ils as applicat s per ANSI/TP wise indicated d bearing. D psf bottom other live load 2 crushing ers) of truss to 88 lb uplift at jo int 10, 65 lb up D lb uplift at jo ith the 2018 s R502.11.1 ai	d C ss s ble, Pl 1. ds. ds. o bint blift blift		2		STATE OF I SEVI SEVI PE-2001	I M. ER BER 018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITEk-US.com

August 6,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 160	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 167343673
P240932-01	V2	Valley	1	1	Job Reference (optional	
Premier Building Supply (S	pringhill, KS), Spring Hills, KS - 66083,				2024 MiTek Industries, Inc. Mo B70Hq3NSgPqnL8w3uITXbGł	
			10-6-11			
					3x4 u	
			1.5x 3 9	4 11	4	
	5-3-10	1.5x4 u	9	-		5-3-10

8

2

7

1.5x4 u

1<u>2</u> 6 Г

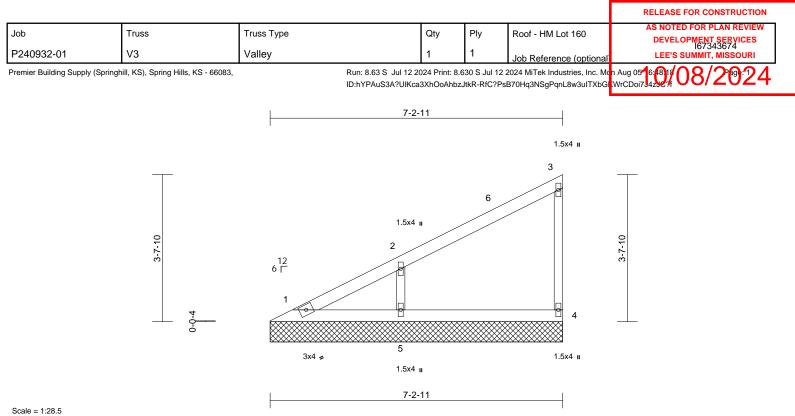
3x4 ≠

0-0-4

Plate Offsets	(X, Y): [5:Edge,0-2-8]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-S	0.32 0.13 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORE BOT CHORE WEBS OTHERS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=10-6-1' 7=10-6-1' Max Horiz 1=220 (LC Max Uplift 5=-37 (LC 7=-101 (L Max Grav 1=88 (LC 	cept end verticals. applied or 10-0-0 oc 1, 5=10-6-11, 6=10-6 1 2 9) 2 9), 6=-137 (LC 12), C 12)	6) 7) d or 8) : :-11, LO	chord live loa All bearings a capacity of 5 Provide mec bearing plate 5, 137 lb upli This truss is International	hanical connection capable of withst ft at joint 6 and 10 designed in accor Residential Code nd referenced star	with any e SP No. n (by oth tanding 3 01 lb uplit dance w sections	other live loa 2 crushing ers) of truss t 87 lb uplift at j ft at joint 7. ith the 2018 8 R502.11.1 a	o oint					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	11										
BOT CHORE WEBS	4-5=-108/124	9/110, 5-6=-99/110	11,										
NOTES 1) Wind: AS Vasd=91 Ke=1.00; exterior 2 Interior (' right exp for memb Lumber II 2) Truss de only. Foo see Stan or consul 3) Gable ree	SCE 7-16; Vult=115mph mph; TCDL=6.0psf; BC ; Cat. II; Exp C; Enclose cone and C-C Exterior(2 1) 5-7-9 to 10-5-15 zone osed ; end vertical left a bers and forces & MWFI DOL=1.60 plate grip DC ssigned for wind loads ir r studs exposed to wind dard Industry Gable En It qualified building desig quires continuous bottor uds spaced at 4-0-0 oc.	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-7-9 to 5-7-9, e; cantilever left and ind right exposed;C-1 RS for reactions sho JL=1.60 n the plane of the tru I (normal to the face) d Details as applicat gner as per ANSI/TP	C wn; ss ,							ļ		STATE OF J STATE OF J SEV SEV NUM PE-2001	ER BER 018807

Scale = 1:37.9

August 6,2024


5

3x4 II

6

10-6-11

1.5x4 🛚

BCDL 10.0 Code IRC2018/TPI2014 Matrix-P Weight: 25 lb FT = 20%	TCLL (roof) 2 TCDL 1 BCLL	5.0 Plate 0.0 Lum 0.0 Rep	cing e Grip DOL ber DOL Stress Incr	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	-	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a		PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
--	---------------------------------	---------------------------------	---	---	-----------------------------------	---	--	--------------------------	----------------------	-----------------------------	--	---------------------------------	------------------------------------

BOT CHORD	2x4 SP N	0.2
WEBS	2x3 SPF I	No.2
OTHERS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	6-0-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=7-2-11, 4=7-2-11, 5=7-2-11
	Max Horiz	1=146 (LC 9)
	Max Uplift	4=-31 (LC 12), 5=-128 (LC 12)
	Max Grav	1=85 (LC 20), 4=141 (LC 1), 5=378
		(LC 1)
FORCES	(lb) - Max	imum Compression/Maximum

Tension TOP CHORD 1-2=-280/164, 2-3=-126/93, 3-4=-111/141 1-5=-67/73, 4-5=-67/73 BOT CHORD 2-5=-294/316

WEBS NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-7-9 to 5-7-9,
- Interior (1) 5-7-9 to 7-1-15 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 4-0-0 oc. 4)
- 5)
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 6) All bearings are assumed to be SP No.2 crushing
- capacity of 565 psi.

4 and 128 lb uplift at joint 5.

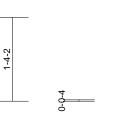
8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and

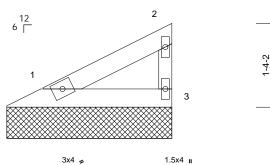
R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

									RELEASE	E FOR CONSTRUCTION	
Job	Truss		Truss Type		Qty	Ply	Roof - HN	/I Lot 160			٦
P240932-01	V4		Valley		1	1			1 5 5 10	OPMENT SERVICES 167343675 SUMMIT, MISSOURI	
		Spring Hills, KS - 66083,		Run: 8.63 S Jul 12 2	2024 Print: /	8.630 S Jul 12	2024 MiTek I	rence (optional ndustries, Inc. Mo	n Aug 05 6:4818		
				ID:9kzY5o4omouBEje	ejF6JPEpz	:JtkQ-RfC?PsE	370Hq3NSgPo	qnL8w3uITXbGK\	/rCDoi7J4zJC9f	00/2024	
			1	2	10.44		I				
			F		10-11						
							1.5x4 i				
							1.077	I			
							2				
						/		-			
			,	12 6							
		1-11-10	Ū	· I					-11-10		
									<u>+</u>		
			=	~ ~ ***********************************	*****	******	∐ 3 ⋙	-			
		<u> </u>	×								
				3x4 ≠			1.5x4				
				0A. 9							
			1	3-	10-11						
Scale = 1:20.9											
Loading	(psf)	Spacing	2-0-0	CSI	DE	EFL	in (loc)	l/defl L/d	PLATES	GRIP	_
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC 0	0.22 Ver	ert(LL)	n/a -	n/a 999		244/190	
TCDL BCLL	10.0 0.0	Lumber DOL Rep Stress Incr	1.15 YES			· · ·	n/a -).00 3	1.74 000			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P					Weight: 12 lb	FT = 20%	_
LUMBER TOP CHORD 2x4	SP No.2			is designed in accordane nal Residential Code sec							
BOT CHORD 2x4	SP No.2		R802.10.2	and referenced standar							
WEBS 2x3 BRACING	SPF No.2		LOAD CASE(S	5) Standard							
TOP CHORD Stru		eathing directly applied except end verticals.	t or								
BOT CHORD Rigi	id ceiling directly	applied or 10-0-0 oc									
REACTIONS (size)	cing.) 1=3-10-11	1, 3=3-10-11									
	Horiz 1=71 (LC Uplift 1=-22 (LC	9) C 12), 3=-40 (LC 12)									
Max	Grav 1=144 (LC	C 1), 3=144 (LC 1)									
Ten	nsion	npression/Maximum									
	=-101/68, 2-3=-1 =-33/36	12/145									
NOTES	10- \/ult.115mph	(2 cocord quot)									
	CDL=6.0psf; BC	DL=6.0psf; h=35ft;									
		ed; MWFRS (envelope 2E) zone; cantilever le									
and right expose	ed ; end vertical I										
reactions shown	n; Lumber DOL=1								ASSESS OF	ADDA	
DOL=1.60 2) Truss designed	for wind loads ir	n the plane of the trus	ŝS						ATEOFI	MISSO	
only. For studs	exposed to wind	d (normal to the face),	,					A	SCOT	N S	
or consult qualif	fied building desig	d Details as applicable gner as per ANSI/TPI						B	SEV		
 Gable requires (Gable studs space) 		m chord bearing.						81		8	
5) This truss has b	een designed for								atter	Server)
 All bearings are 			5.					N.	O PE-2001	018807	

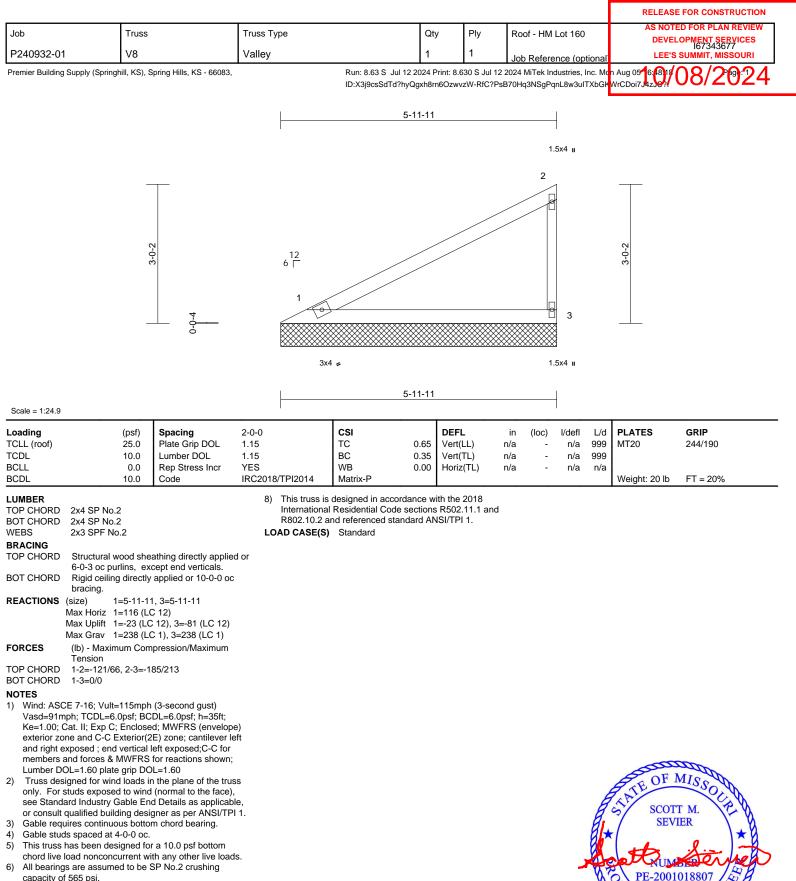
6) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 1 and 40 lb uplift at joint 3.





						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 160	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 167343676
P240932-01	V7	Valley	1	1	Job Reference (optional	
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,	2024 MiTek Industries, Inc. Mo B70Hq3NSgPqnL8w3uITXbGk	n Aug 05 6:1817 08/210:24			

2-7-11


Scale - 1.18.4

Scale = 1:18.4											
Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.07 0.04 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a n/a	(loc) - - -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x3 SPF No.2 BRACING TOP CHORD Structural wood sher 2-8-3 oc purlins, exc BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 1=2-7-11, Max Horiz 1=43 (LC Max Uplift 1=-8 (LC Max Grav 1=88 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 3=2-7-11 12) 12), 3=-30 (LC 12) 1), 3=88 (LC 1)	8) This truss is Internationa R802.10.2 a LOAD CASE(S) d or	designed in accord Residential Code nd referenced stan	sections	R502.11.1 ar	nd					
 FORCES (Ib) - Maximum Com Tension TOP CHORD 1-2=-46/25, 2-3=-68/ BOT CHORD 1-3=0/0 NOTES 1) Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BC Ke=1.00; Cat. II; Exp C; Enclose exterior zone and C-C Exterior(2 and right exposed; end vertical I members and forces & MWFRS Lumber DOL=1.60 plate grip DO 2) Truss designed for wind loads ir only. For studs exposed to wind see Standard Industry Gable Enc or consult qualified building desig 3) Gable requires continuous bottor 4) Gable studs spaced at 4-0-0 oc. 5) This truss has been designed to be S capacity of 565 psi. 7) Provide mechanical connection (bearing plate capable of withstar and 30 lb uplift at joint 3. 	/81 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le feft exposed;C-C for for reactions shown; L=1.60 In the plane of the true; (normal to the face) d Details as applicab gner as per ANSI/TP m chord bearing. r a 10.0 psf bottom th any other live load SP No.2 crushing (by others) of truss to	əft 35 1e, 1 1.							Es.	STATE OF J STATE OF J SCOT SEV OF PE-2001	1 M. IER 018807

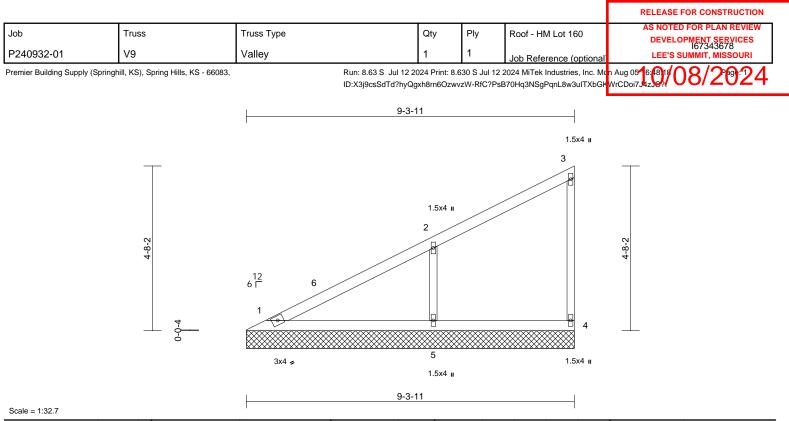
August 6,2024

Com

capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 23 lb uplift at joint 1 and 81 lb uplift at joint 3.

August 6,2024


E

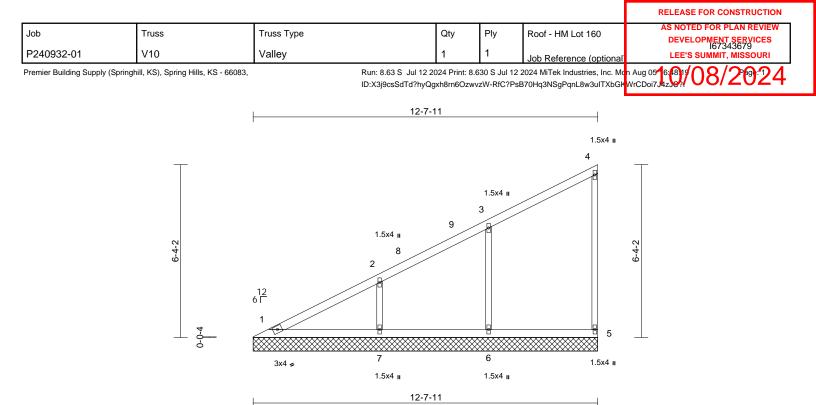
SSIONAL

0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

		· · · · · · · · · · · · · · · · · · ·				·						
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.34	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.18	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.08	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 33 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=9-3-11, Max Horiz 1=188 (LC Max Uplift 4=-42 (LC Max Grav 1=169 (LC (LC 1)	cept end verticals. applied or 10-0-0 or 4=9-3-11, 5=9-3-11 C 12) C 12), 5=-164 (LC 12	bearing p 4 and 16 8) This truss Internatio R802.10. ed or LOAD CASE	hechanical conne late capable of w l lb uplift at joint 5 is designed in a nal Residential C 2 and referenced (S) Standard	ithstanding 4 5. ccordance w ode sections	12 lb uplift at ith the 2018 s R502.11.1 a	joint					
FORCES	(lb) - Maximum Com	pression/Maximum										


Tension TOP CHORD 1-2=-241/113, 2-3=-84/29, 3-4=-97/97 1-5=-2/3, 4-5=-2/3 BOT CHORD

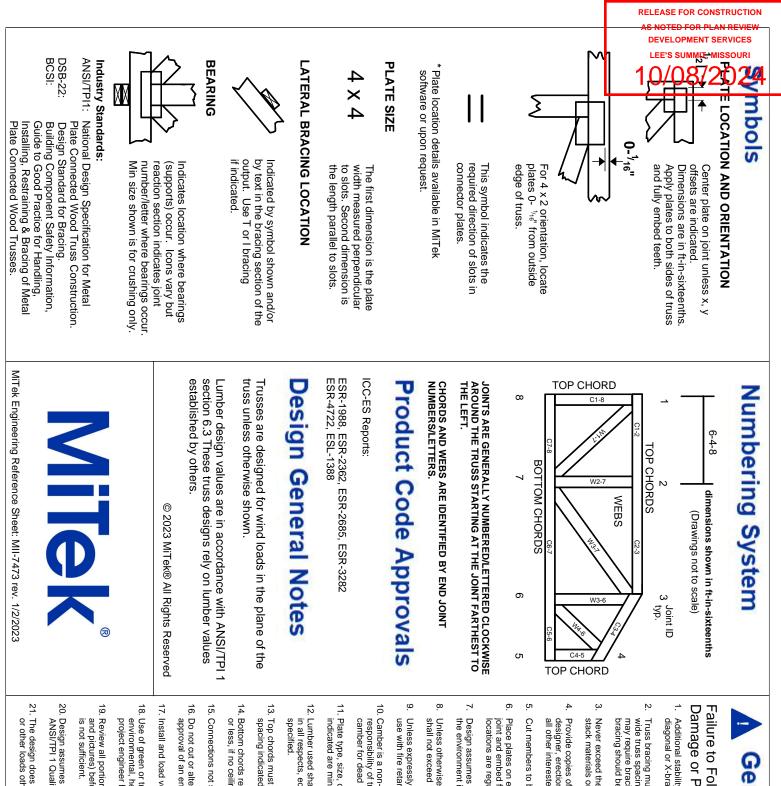
2-5=-366/342 WEBS NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-7-9 to 5-4-3, Interior (1) 5-4-3 to 9-2-15 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3) Gable studs spaced at 4-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5)
- chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing 6)
- capacity of 565 psi.

Scale = 1:42.3

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.24 0.13 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 48 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	athing directly applic cept end verticals. applied or 10-0-0 or 1, 5=12-7-11, 6=12-1 1 2 12) 5 12), 6=-129 (LC 12 C 12)	5) 6) 7) ed or 8) c 7-11, L(This truss ha chord live loa All bearings capacity of 5 Provide mec bearing plate 5, 129 lb upl This truss is International	s been designed ad nonconcurrent are assumed to b 65 psi. hanical connectio capable of withs ft at joint 6 and 13 designed in accoo Residential Code nd referenced sta	with any e SP No. on (by oth tanding 4 38 lb upli rdance w e sections	other live loa 2 crushing ers) of truss t 9 lb uplift at j ft at joint 7. ith the 2018 \$ R502.11.1 a	to joint					
FORCES		C 1), 7=403 (LC 1)											
TOP CHORD	Tension 1-2=-310/137, 2-3=- 4-5=-111/94	193/83, 3-4=-81/35,											
BOT CHORD WEBS	1-7=-2/3, 6-7=-2/3, 5 3-6=-299/245, 2-7=-												
Vasd=91n Ke=1.00; exterior zc Interior (1) right expo members Lumber D 2) Truss des	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 5-7-9 to 12-6-15 zone sed ; end vertical left e and forces & MWFRS OL=1.60 plate grip DC osigned for wind loads in studs exposed to wind	DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-7-9 to 5-7-9, e; cantilever left and xposed;C-C for for reactions shown L=1.60 h the plane of the tru	; iss									STATE OF J	MISSOLA T.M. HER Service

see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.3) Gable requires continuous bottom chord bearing.


4) Gable studs spaced at 4-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

PE-2001018

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor1 bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.