

RE: P240931-01 Roof - HT Lot 186

Site Information:

Customer: Clayton Properties Project Name: P240931-01 Lot/Block: 186 Model: Carbond Address: 3221 SW Arboridge Cir Subdivision: Ha City: Lee's Summit State: MO

ne: P240931-01 Model: Carbondale - Farmhouse 3Car Subdivision: Hawthorn Ridge State: MO

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 45.0 psf Design Program: MiTek 20/20 8.6 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 29 individual, dated Truss Design Drawings and 0 Additional Drawings.

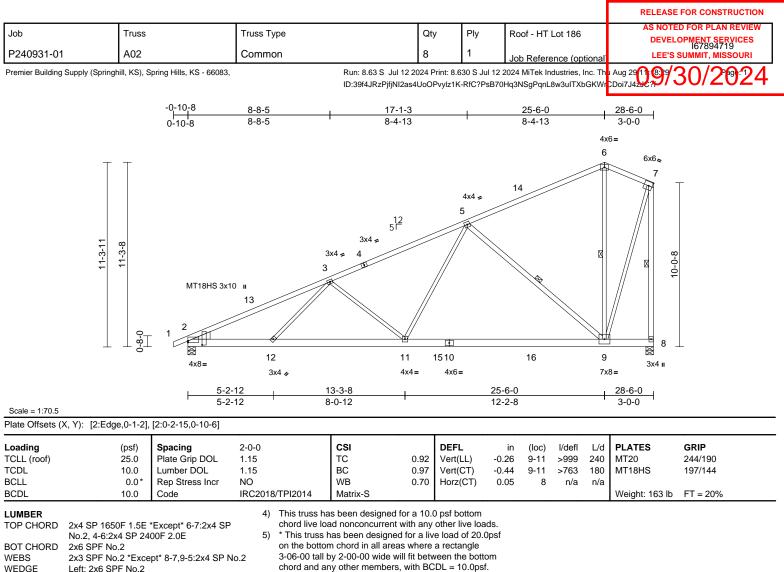
	0 1//	T N	D /		0 1//	T N	
No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	l67894718	A01	8/30/2024	21	167894738	VA5	8/30/2024
2	167894719	A02	8/30/2024	22	167894739	VA6	8/30/2024
3	167894720	A03	8/30/2024	23	167894740	VA7	8/30/2024
4	167894721	A04	8/30/2024	24	l67894741	VA8	8/30/2024
5	167894722	A05	8/30/2024	25	167894742	VA9	8/30/2024
6	167894723	A06	8/30/2024	26	167894743	VA10	8/30/2024
7	167894724	B01	8/30/2024	27	167894744	VA11	8/30/2024
8	167894725	B02	8/30/2024	28	167894745	VA12	8/30/2024
9	167894726	C01	8/30/2024	29	167894746	VA13	8/30/2024
10	167894727	C02	8/30/2024				
11	167894728	C03	8/30/2024				
12	167894729	D01	8/30/2024				
13	167894730	D02	8/30/2024				
14	167894731	D03	8/30/2024				
15	167894732	D04	8/30/2024				
16	167894733	E01	8/30/2024				
17	167894734	VA1	8/30/2024				
18	167894735	VA2	8/30/2024				
19	167894736	VA3	8/30/2024				
20	167894737	VA4	8/30/2024				

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision based on the parameters provided by . Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2025.

Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.


Sevier, Scott

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Loc True True True True True True True True True And the Draft Link Head Packet Rulking Serve (Hindak KC), Rengrish, KD, Re											RELEASE F		N		
Pathone <	Job	Truss		Truss Type		Qty	Ply	Roc	of - HT Lot 1	36			7		
Perter Badda gauge (groupe He KB, strange He KB, st	P240931-01	A01		Monopitch Support	ed Gable	1	1	Joh	Reference	optional					
Lines 19-70 4 (c) 5 19-70 4 (c) 5 19-70 4 (c) 5 10-70 5 (c) 7	Premier Building	Supply (Springhill, KS),	Spring Hills, KS - 66083,					ıl 12 2024 N	MiTek Industrie	es, Inc. Th		30/2024	4		
Under top 10 - 0 10 -			-0-10-8 0-10-8												
Holds C23 C22 C21 C20 19 18 1776 15 Solide = 153.5 Solide = 153.5 Ionaling (p) Solide = 153.5 Solide = 153.5 Solide = 153.5 Solide = 153.5 Solide = 150.5 Solide = 150.5 <td colspan<="" td=""><td></td><td></td><td>. 2</td><td>$4x4 = 4 \frac{24}{5} \frac{5}{6}$</td><td>5</td><td></td><td></td><td>10²⁵</td><td></td><td>12</td><td>9-15</td><td></td><td></td></td>	<td></td> <td></td> <td>. 2</td> <td>$4x4 = 4 \frac{24}{5} \frac{5}{6}$</td> <td>5</td> <td></td> <td></td> <td>10²⁵</td> <td></td> <td>12</td> <td>9-15</td> <td></td> <td></td>			. 2	$4x4 = 4 \frac{24}{5} \frac{5}{6}$	5			10 ²⁵		12	9-15			
19:7-0 Plate Offsets (X, Y): [2:0-2:3:0-0:5] CSI (rod) (rsf) Plate Grip DOL 1:15 DE (rsf) CSI DE (rsf) CSI DE (rsf) PLATES GRIP TOLI (rod) 10:00 Responses in r NO DE (rsf) CSI DE (rsf) DE (rsf) DE (rsf) PLATES GRIP UMMER Code Code (rsf) DE (rsf) DE (rsf) PLATES DE (rsf) PLATES <th <="" colspan="2" td=""><td></td><td>-8-0</td><td></td><td>23 22</td><td>21 20</td><td>) XXXXX X</td><td>19</td><td>18</td><td></td><td>15</td><td>14</td><td></td><td></td></th>	<td></td> <td>-8-0</td> <td></td> <td>23 22</td> <td>21 20</td> <td>) XXXXX X</td> <td>19</td> <td>18</td> <td></td> <td>15</td> <td>14</td> <td></td> <td></td>			-8-0		23 22	21 20) XXXXX X	19	18		15	14		
Scale = 1353 Plate Offsets (X, Y): [2:0-3:0-0:5] Loading (gr) Spacing 2:0-0 TCL. (oot) Plate Giftsets (X, Y): [2:0-2:3:0-0:5] Loading (gr) Spacing 2:0-0 TC 0.27 DEFL in (floc) Videl L/d PLATES GRIP DCL 0.0 Code RE2012112014 Matrix-S DEFL in (floc) Videl L/d PLATES GRIP LUMBER Code IRC20187TP12014 Matrix-S WEBS 12:15=-148/147, 11-17=-140/135, 12:0-18=-140/10, 9:19-0 0.00 14 n/a						_			3x4 =						
Loading TCLL (root) (root) 250 Spacing 250 22-00 CSI TC 0.0 DEFL TC in (loc) I/d left PLATES GRIP 24/190 BCLL 0.01 10.0 Plate Grip DOL 1.15 BC 0.09 Vert(T) n/a - n/a 999 MT20 24/190 BCLL 0.01 Rep Stress Indr NO WEB 0.02 WEBS 12.15=-14/8/147, 11-17=-14/0/135, 10-18=-14/0/10, 9-19=-14/0.96, 8-200-139/33, 72-1-14/4 NOTES 1 Wind: ASCE 7-16, Vulk=14 famph (3-second gus) Weelsh Load Keel OL 14, 12-0-0-00 WEBS 1 Wind: ASCE 7-16, Vulk=14 famph (3-second gus) Weelsh 1.15 or 12-00-02-160 NOTES 1 1	Scale = 1:53.5				19·	-7-0					—				
TCLL (root) 25.0 Pate Grip DOL 1.15 TC 0.27 WithLD n/a m/a m/a <thm a<="" th=""> <t< td=""><td>Plate Offsets ()</td><td>X, Y): [2:0-2-3,0-0-5]</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td>_</td></t<></thm>	Plate Offsets ()	X, Y): [2:0-2-3,0-0-5]									•		_		
TOP CHORD 2X4 SP No.2 10-18=-140/101, 9-19=-140/06, 324 SP No.2 10-18=-140/101, 9-19=-140/06, 320 SPF No.2 WEBS SLIDER 2x3 SPF No.2 82-08-13993, 7-21=-146/115, 6-22=-11247, 4-23=-28/280 SLIDER Left 2x6 SPF No.2 NOTES SLIDER Left 2x6 SPF No.2 10-18=-140/101, 9-19=-140/06, 3-00 cp urlins, except end verticals. BRACING Top CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. NOTES WEBS 1 Row at might 10-19-70, 18=19-70, 20=19-70, 21=19-70, 12=19-70, 20=19-70, 21=19-70, 22=19-70, 20=19-70, 21=19-70, 20=19-70, 21=19-70, 20=19-70, 21=19-70, 20=19-70, 21=19-70, 20=19-70, 21=19-70, 20=19-70, 21=19-70, 20=19-70, 21=19-70, 21=66 (LC 12), 22=-17 (LC 12), 30=60 (L1 1), 21=00 (LC 1), 20=178 (LC 11, 17-190 (LC 1), 20=178 (LC 11, 17-190 (LC 1), 20=178 (LC 11, 17-190 (LC 1), 20=178 (LC 11, 21=200, 22], 30=00 (L1 10) 20-00 wide will fit apoint 10, 20 40-00 c. 7 This truss has been designed for a live load of 20.0paf on the botom chord in all areas where a rectangle 20=00 (L1 10) 20-178 (L10 10, 21=-99520, 30=10=20400, 10-11=160, 15-71-80, 12,	TCLL (roof) TCDL BCLL	25.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 NO	TC 0 BC 0 WB 0	0.27 \ 0.09 \	/ert(LL) /ert(CT)	n/a n/a	- n/ - n/	a 999 a 999	MT20	244/190			
R802.10.2 and referenced standard ANSI/TPI 1.	TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Left 2x6 SPF No.2 Left 2x6 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 2=19-7-0 17=19-7- 20=19-7- 23=19-7- Max Horiz 2=370 (L Max Uplift 14=-22 (L 17=-55 (L 21=-66 (L 23=-152) Max Grav 2=207 (L 15=192 (L 20=178 (20) 22=137 (L) (b) - Maximum Cor Tension 1-2=0/0, 2-4=-480/4 6-7=-345/108, 7-8= 9-10=-204/60, 10-1 12-13=-33/16, 13-1 2-23=0/0, 22-23=0/	eathing directly applied (ccept end verticals. y applied or 10-0-0 oc 13-14 1,14=19-7-0, 15=19-7- 0, 18=19-7-0, 19=19-7- 0, 21=19-7-0, 22=19-7 0 C 12), 15=-56 (LC 12 LC 12), 15=-56 (LC 12 LC 12), 22=-17 (LC 12 LC 12), 22=-17 (LC 12 LC 12), 22=-17 (LC 12) (LC 12) C 21), 14=70 (LC 1), LC 1), 19=180 (LC 1), LC 1), 21=190 (LC 1), LC 1), 23=303 (LC 1) npression/Maximum 157, 4-6=-373/112, -295/89, 8-9=-250/75, 1=-156/45, 11-12=-95, 4=-54/54 0, 21-22=0/0, 20-21=0	NOTES 1) Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Exterior(ZN) right expose members an Lumber DOL 7-0, 2) Truss design only. For stu see Standar or consult qu 3) All plates are (), 3) All plates are (), 3) All plates are (), 6) This truss h chord live loa 7) * This truss h on the bottor 3-06-00 tall h chord and ar 8) All bearings capacity of 5 9) Provide mec bearing plate 14, 56 lb upl lb uplift at joint 20, 66 lb upl lb uplift at joint 20, 60, 10) This truss is International R802.10.2 a	10-18=-140/101, 9-19 3-20=-139/93, 7-21=- 4-23=-228/280 7-16; Vult=115mph (1; TCDL=6.0psf; BCD t. II; Exp C; Enclosed and C-C Corner(3E) 4-1-8 to 19-5-12 zone d; end vertical left ex d forces & MWFRS fc =1.60 plate grip DOL led for wind loads in t uds exposed to wind (1 Industry Gable End tailfied building design a 1.5x4 MT20 unless of es continuous bottom spaced at 2-0-0 oc. Is been designed for a ad nonconcurrent with has been designed for ad nonconcurr	9=-140/9 146/115 3-secor 9=-6.0p; ; MWFF 9-0-10-6 e; cantil- posed;Cor reacti =1.60 he plan- 'normal Details ner as p otherwise a chord k a 10.0 p h any other r a live l there a to the betwee P No.2 of by others ding 22 lift at joi t 19, 52 lift at joi nece with	be, 5, 6-22=-11 and gust) sf; h=35ft; RS (envelop 3 to 4-1-8, ever left an c-C f or ons shown e of the true to the face be indicated be indicated be an applicat a sa applicat be indicated be an applicat be of trues to the plote crushing s) of trues t ib uplift at j int 17, 54 lk lb uplift at j the 2018 502.11.1 a	oe) d ; ss s, ble, ol 1. d. ds. opsf om o ioint 5 joint 152			SCOTT SEVIE NUMB PE-20010	M. R ER 18807 EN	2		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria**, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITEk-US.com

- 6) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.
 - Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 221 lb uplift at joint 2 and 306 lb uplift at joint 8.
 - This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 30,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 25-6-0, Exterior(2E) 25-6-0 to 28-4-4 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Structural wood sheathing directly applied,

Rigid ceiling directly applied or 8-10-6 oc

2=0-5-8, 8=0-5-8

Max Uplift 2=-221 (LC 12), 8=-306 (LC 12) Max Grav 2=1397 (LC 2), 8=1354 (LC 2)

(lb) - Maximum Compression/Maximum

1-2=0/6, 2-3=-2612/327, 3-5=-1955/257, 5-6=-506/60, 6-7=-417/91, 7-8=-1448/273

3-12=0/292, 3-11=-621/322, 6-9=-132/152, 5-11=-75/954, 5-9=-1218/417, 7-9=-258/1306

2-12=-642/2285, 11-12=-666/2120, 9-11=-386/1283, 8-9=-1/2

Unbalanced roof live loads have been considered for

Wind: ASCE 7-16; Vult=115mph (3-second gust)

7-8, 6-9, 5-9

except end verticals

Max Horiz 2=450 (LC 12)

1 Row at midpt

bracing.

Tension

3) All plates are MT20 plates unless otherwise indicated.

BRACING

TOP CHORD

BOT CHORD

REACTIONS (size)

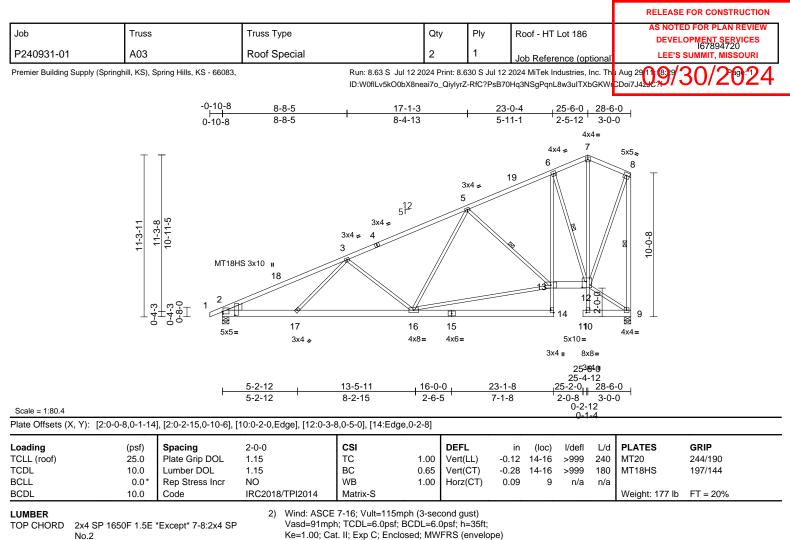
WEBS

FORCES

TOP CHORD

BOT CHORD

this design


WEBS

NOTES

1)

2)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 25-6-0, Exterior(2E) 25-6-0 to 28-4-4 zone; cantilever left and right exposed; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

All plates are MT20 plates unless otherwise indicated.

chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

This truss has been designed for a 10.0 psf bottom

All bearings are assumed to be SPF No.2 crushing

Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 220 lb uplift at

This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

chord and any other members.

joint 2 and 304 lb uplift at joint 9.

capacity of 425 psi.

LOAD CASE(S) Standard

	No.2
BOT CHORD	2x6 SPF No.2 *Except* 14-6:2x3 SPF No.2
WEBS	2x3 SPF No.2 *Except* 9-8:2x4 SP No.2
WEDGE	Left: 2x6 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied,
	except end verticals.
BOT CHORD	· ···g··········g·····················
	bracing, Except:
	8-10-10 oc bracing: 2-17
	8-10-3 oc bracing: 16-17.
WEBS	1 Row at midpt 8-9, 5-13, 6-12
REACTIONS	(size) 2=0-5-8, 9=0-5-8
	Max Horiz 2=450 (LC 12)
	Max Uplift 2=-220 (LC 12), 9=-304 (LC 12)
	Max Grav 2=1345 (LC 1), 9=1268 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/6, 2-3=-2498/328, 3-5=-1769/256,
	5-6=-840/162, 6-7=-457/133, 7-8=-447/129,
	8-9=-1235/320
BOT CHORD	13-14=0/152, 6-13=-204/854,
	12-13=-200/689, 2-17=-644/2166,
	16-17=-673/2025, 14-16=-5/81, 10-11=0/0,
	9-10=0/5
WEBS	3-17=0/310, 3-16=-659/339, 10-12=0/69,
	7-12=-53/214, 5-16=0/536, 8-12=-274/1051
	5-13=-856/293, 13-16=-416/1257,
	6-12=-1060/342, 9-12=-5/0

- NOTES
- 1) Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

DOL=1.60

3)

4)

5)

6)

7)

8)

SCOTT M. SEVIER NUMBER PE-2001018807 FISSIONAL ENGINE August 30,2024

										RELEA	SE FOR CONSTRUCTION	I
Job	Truss		Truss Typ	e		Qty	Ply	Roof - HT	Lot 186		TED FOR PLAN REVIEW	
P240931-01	A04		Commor	า		4	1	Job Refe	ence (optiona		ELOPMENT SERVICES 167894721 'S SUMMIT, MISSOURI	
Premier Building Supply (Spring	hill, KS), Sp	oring Hills, KS - 66083,			Run: 8.63 S Jul 12 2			2 2024 MiTek I	ndustries, Inc. T	hu Aug 29 <mark>11: 8</mark> :	/30/2024	1
					ID:7rf19?noAx1?DC	dYyL_t4qylz	0I-RfC?PsB7	'0Hq3NSgPqn	L8w3ulTXbGKV	VICDoi7J42JC?	00/202	
	10-8	8-8-5 8-8-5		<u>17-1-3</u> 8-4-13			-6-0 I-13		<u>33-10-1</u> 8-4-13	3	<u>38-0-0</u> 4-1-3	
0-1	0-8	0-0-0		0-4-10		0-4	-10	6x6=	0-4-13		4-1-0	
— —								6				
						10				_		
					4x6 ≠	16				17 4x4 _≈ 18		
				12 5	5					7	3x4 II	
က ထု				4x8 =							8	
11-5-13			4x4 =	4								
-			A	-			¢					
		15	// ``								6-1-0	
	2											
				¥							¥ 9 ⊥	
	4x6=	14 3x4 🌶		13 4x4=	1912 4x8=	20		1110 4x8=	21		22 4x12=	
								4x8=				
		-2-12	<u>13-3-8</u> 8-0-12			25-6-0 12-2-8				<u>38-0-0</u> 12-6-0	I	
Scale = 1:73.8		-2-12	0-0-12			12-2-0				12-0-0		
Plate Offsets (X, Y): [10:0-			-					-		1		
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	C T	SI C (0.59 Ver		in (loc)).38 9-11	l/defl L/e >999 240		GRIP 197/144	
TCDL BCLL		Lumber DOL Rep Stress Incr	1.15 NO	B			. ,).64 9-11).07 9	>709 180 n/a n/a			
BCDL		Code	IRC2018/		latrix-S		2(01)	5.07 5	1//4 1//6		b FT = 20%	
	- 0				6; Vult=115mph (CDL=6.0psf; BCD							
		ot* 12-2:2x6 SP 2400	F	Ke=1.00; Cat. II	; Exp C; Enclosed	; MWFRS	(envelope)					
2.0E WEBS 2x3 SPF No	o.2 *Excep	ot* 9-8:2x6 SPF No.2	,	Interior (1) 4-1-8	d C-C Exterior(2E to 25-6-0, Exterio	, or(2R) 25-0	6-0 to					
9-7,11-5:2x BRACING	4 SP No.2	2		and right expose	1) 30-6-0 to 37-9- ed ; end vertical le	ft and righ	t					
TOP CHORD Structural w		thing directly applied ept end verticals.	01		r members and for ; Lumber DOL=1.							
BOT CHORD Rigid ceilin		applied or 7-11-2 oc		DOL=1.60 This truss has b	een designed for a	a 10.0 psf	bottom					
bracing. WEBS 1 Row at m	-	7-9, 5-11	,	chord live load r	nonconcurrent with been designed for	n any othe	r live loads.					
REACTIONS (size) 2 Max Horiz 2	2=0-5-8, 9= 2=257 (LC			on the bottom c	hord in all areas w	here a rec	tangle					
		2 12), 9=-206 (LC 12) C 2), 9=1847 (LC 2)		chord and any c	-00-00 wide will fin ther members, with	th BCDL =	: 10.0psf.					
FORCES (Ib) - Maxin		pression/Maximum	,	crushing capaci	sumed to be: Join ty of 805 psi, Joint			I				
		580, 3-5=-3134/518,	6)		ical connection (b							
5-6=-1644/ 7-8=-181/1	46, 8-9=-1 ⁻	12/61			pable of withstand b uplift at joint 2.	ling 206 lb	o uplift at					
		4=-689/3190, 1=-272/849			igned in accordar sidential Code sec							
WEBS 3-14=0/236	6, 3-13=-61	1/322, 6-11=-82/731 77/781, 7-9=-1686/4	,	R802.10.2 and i	eferenced standa					OF.	MISCH	
5-11=-1237			, LOA	ND CASE(S) S	landard					TATE OF	MISSOL	
NOTES1) Unbalanced roof live lost	ads have b	been considered for							E.	sco sco	M. YEY	
this design.									ä	× SE	VIER	
									И	20		

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

							RELEAS	SE FOR CO	NSTRUCTION
Job	Truss	Truss Type	(Qty	Ply	Roof - HT Lot 186			
P240931-01	A05	Common	4	4	1	Job Reference (optional			
P240931-01 A05 Common 4 1 Job Reference (optional LEPS SUMMIT, MISSOU LEPS SUMMIT, MI			2024						
-0-10-	8 005	17.4.0	25.0.0					54.0.0	51-10-8
									51-10-8
	3 19 ***********************************	5 ¹² 5 4x6= 4 17 2316	24 15		•	7 4x6 1426 13	3 4x8= 9	⊠ ⊠ 12 4x6=	4x6=
F	<u>5-2-12</u> 13-3 5-2-12 8-0-		25-6-0 12-2-8		<u>37-8-8</u> 12-2-8		45-9-4 8-0-12	<u>50-7-</u> 4-10-	

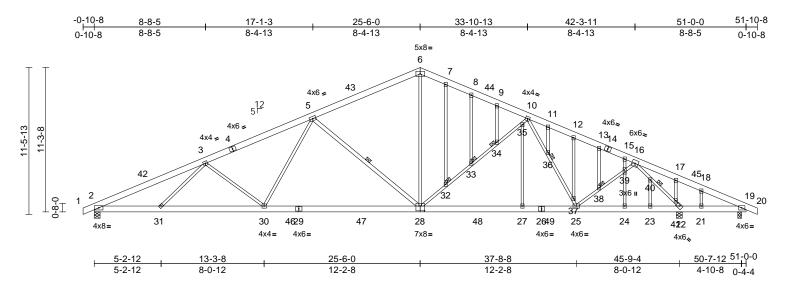
Scale = 1:90.1

Plate Offsets (X, Y): [10:Edge,0-2-0], [15:0-4-0,0-4-8]

	, .). [,				-							
Loading	(psf)	Spacing	2-0-0		CSI	0.00	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.69	Vert(LL)		15-17	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.58	Vert(CT)		15-17	>841	180		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.70	Horz(CT)	0.10	12	n/a	n/a		FT 000/
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S	-						Weight: 289 lb	FT = 20%
	2x6 SP 2400F 2.0E 2x3 SPF No.2 *Exce No.2 Structural wood shea 3-0-11 oc purlins. Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 10 1 Row at midpt	athing directly applie applied or 10-0-0 oc -12. 7-13, 7-15, 5-15, 9-1 10=0-3-8, 12=0-5-8 C 16) C 12), 10=-271 (LC 2 LC 13)	d or : 3) 12 4) 27), 5)	Vasd=91mp Ke=1.00; Ca exterior zone Interior (1) 4 30-7-2, Inter and right exp exposed; C- reactions sh DOL=1.60 This truss ha chord live lo * This truss lo on the bottoo 3-06-00 tall l chord and al	7-16; Vult=115m h; TCDL=6.0psf; I it. II; Exp C; Enclo a and C-C Exterio -2-10 to 25-6-0, ior (1) 30-7-2 to 5 boosed ; end vertic C for members an own; Lumber DOI as been designed ad nonconcurrent has been designed ad nonconcurrent has been designed oy 2-00-00 wide w ny other members are assumed to b	BCDL=6. Sed; MW r(2E) -0 Exterior(21 1-10-8 zc al left and d forces & L=1.60 pl for a 10.0 with any vd for a liv as where vill fit betw s, with BC	Dpsf; h=35ft; FRS (envelop (0-8 to 4-2-10 R) 25-6-0 to R) 25-6-0 to ne; cantileve d right & MWFRS for ate grip D psf bottom other live loa e load of 20.0 a rectangle veen the bottt DL = 10.0psf	, ´ r left ds.)psf om					
FORCES	12=2965 ((Ib) - Maximum Com Tension	· · ·	6)	Provide med bearing plate	chanical connections capable of withs buplift at joint 12	standing 2	71 lb uplift at						
TOP CHORD	1-2=0/12, 2-3=-4529 5-6=-2514/507, 6-7= 7-9=-2701/399, 9-10	-2513/505,	7)	2. This truss is	designed in acco Residential Code	rdance w	ith the 2018						
BOT CHORD	2-18=-705/4051, 17- 13-17=-468/3148, 12 10-12=-1096/213	18=-737/3961,			nd referenced sta							TATE OF M	AISSO
WEBS NOTES 1) Unbalance this design	6-15=-151/1406, 3-1 7-13=-371/191, 9-13 7-15=-527/286, 5-15 9-12=-3789/546 ed roof live loads have	=-7/1131, 5-17=-50/ =-1236/395,	996,									ST SCOT SEVI	

this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


August 30,2024

PE-200101000

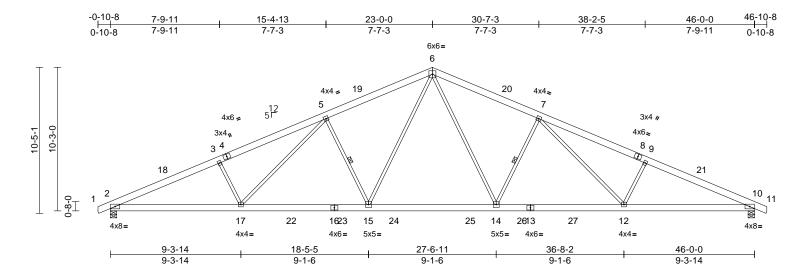
ALL DI CONTRACTOR

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - HT Lot 186	AS NOTED FOR PLAN REVIEW
						DEVELOPMENT SERVICES 167894723
P240931-01	A06	Common Structural Gable	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Jul 12 20	024 Print: 8.6	30 S Jul 12	2024 MiTek Industries, Inc. Th	

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. The Aug 29 11 8 9 30/29 24 ID:p3_YaIrRsmti0cOoak6Mb4yIz2o-RfC?PsB70Hq3NSgPqnL8w3uITXbGKW CDoi7J4zcC++

Scale = 1:90.1

Plate Offsets (X, Y): [28:0-4-0,0-4-8]


	-										
Loading (psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 25.0	Plate Grip DOL	1.15	тс	0.68	Vert(LL)	-0.37	28-30	>999	240	MT20	197/144
TCDL 10.0	Lumber DOL	1.15	BC	0.55	Vert(CT)	-0.65	28-30	>843	180		
BCLL 0.0*	Rep Stress Incr	NO	WB	0.91	Horz(CT)	0.09	22	n/a	n/a		
BCDL 10.0	Code	IRC2018/TPI201	4 Matrix-S							Weight: 320 lb	FT = 20%
LUMBER TOP CHORD 2x6 SPF No.2 BOT CHORD 2x6 SP 2400F 2.0E WEBS 2x3 SPF No.2 *Excep OTHERS 2x3 SPF No.2 BRACING TOP CHORD Structural wood shea 3-0-15 oc purlins. BOT CHORD Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 21- WEBS 1 Row at midpt JOINTS 1 Brace at Jt(s): 32, 33, 34, 36, 38 REACTIONS (size) 2=0-5-8, 1 Max Horiz 2=207 (LC Max Uplift 2=-359 (LC 22=-432 (I Max Grav 2=2188 (L 22=3092 (FORCES (lb) - Maximum Comp	pt* 28-5:2x4 SP No.2 athing directly applied applied or 10-0-0 oc -22,19-21. 16-22, 5-28 9=0-3-8, 22=0-5-8 (2) 19=-335 (LC 27 LC 13) (LC 2) 19=-335 (LC 27 LC 13) (LC 2), 19=66 (LC 12), (LC 2) pression/Maximum /655, 3-5=-3960/591, -2394/475, 11=-2404/436, 2-13=-2417/395, 5-16=-2422/343, 7-18=-130/1050, 3-20=0/12 31=-733/3928, 5-27=-189/2451, 24=-69/1193,	WEBS or 1) Unbala this des 7), 2) Wind: A Vasd=S Ke=1.0 exterior Interior 30-7-2, and rigi expose reactior DOL=1 3) Truss d only. F see Sta or cons 4) All plate 5) Gable s 6) This tru chord li 7) * This tru chord li 3)-6000	6-28=-141/1344, 1 3-31=0/214, 3-30= 16-40=-3243/402, 22-41=-3150/405, 28-32=-488/244, 3 33-34=-452/231, 3 10-35=-439/313, 1 36-37=-414/63, 25 5-28=-1227/392, 2 38-39=-129/1316, 7-32=-7/24, 8-33= 27-35=0/333, 11-3 13-38=-4/86, 15-3 23-40=-343/56, 17 nccd roof live loads hav sign. ASCE 7-16; Vult=115mp 11mph; TCDL=6.0psf; E 0; Cat. II; Exp C; Enclos c zone and C-C Exterior (1) 4-2-10 to 25-6-0, E: Interior (1) 30-7-2 to 57 ht exposed ; end vertica d;C-C for members and s shown; Lumber DOL	-593/32 40-41=- 5-30=-5 2-33=-4 4-35=-5 0-36=-4 -37=-64 5-38=-1 16-39=- -63/12, § 6=-16/4 9=-249/§ -41=-22 re been for a second cond (3-second) (2E) -0- cteror(21) -10-8 zcd 1 left and 1 forces a = 1.60 pl in the pl nd (norm in on the pl nd (norm in on the pl nd (norm is otherwit c.	1, 2992/363, 0/999, 83/238, 22/234, 53/70, 3/115, 29/1369, 142/1514, 1-34=-5/132, 7, 12-37=-27(12, 24-39=-8/ 7/69 considered fo considered fo	nr pe) pr er left r ss), ble, PI 1. ds. Opsf om	9) Pro bea join 2. 10) Thi Inte	bacity of byide me aring pla at 22, 33 s truss is ernationa	805 ps chanic te capa 5 lb upi s desig al Resis and ref) Sta	ssumed to be SP i. al connection (by able of withstandi lift at joint 19 and ned in accordance dential Code sect erenced standard ndard	2400F 2.0E crushing r others) of truss to ng 432 lb uplift at 359 lb uplift at joint the with the 2018 tions R502.11.1 and d ANSI/TPI 1. MISSOLUTION T M. ER 018807 L ENGLISH

August 30,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITEk-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 186	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 167894724
P240931-01	B01	Common	3	1	Job Reference (optional	
Premier Building Supply (Spring	nill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Jul 12 2 ID:0bp7KAhIL_5CnBI	024 Print: 8.6 RSfuXXq9ylz	30 S Jul 12 : DJ-RfC?PsB	2024 MiTek Industries, Inc. Th 70Hq3NSgPqnL8w3uITXbGK	Aug 2911 600/30/2024

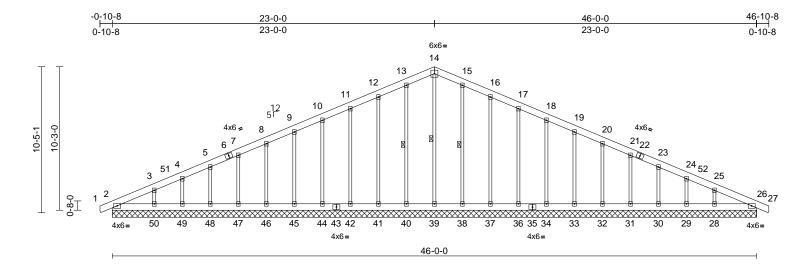
Scale = 1:82.3

		i			i								
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.77	DEFL Vert(LL)	in -0.29	(loc) 15-17	l/defl >999	L/d 240	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.42	Vert(CT)	-0.49	15-17	>999	180	-	
BCLL	0.0*	Rep Stress Incr	NO		WB	0.72	Horz(CT)	0.12	10	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 248 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	OP CHORD 2x6 SPF No.2 OT CHORD 2x6 SP 2400F 2.0E ZEBS 2x3 SPF No.2 RACING OP CHORD OP CHORD Structural wood sheathing directly applied or 2-10-4 oc purlins. OT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. ZEBS 1 Row at midpt 7-14, 5-15 EACTIONS (size) 2=0-5-8, 10=0-5-8 Max Horiz 2=187 (LC 12) Max Grav 2=2264 (LC 2), 10=-348 (LC 13) Max Grav 2=2264 (LC 2), 10=2264 (LC 2) ORCES (lb) - Maximum Compression/Maximum Tension				is been designed ad nonconcurrent nas been designe n chord in all are by 2-00-00 wide v ny other members are assumed to 05 psi. hanical connection capable of withs 48 lb uplift at join designed in acco Residential Codu nd referenced sta Standard	with any ed for a liv as where vill fit betv s, with BC be SP 240 on (by oth standing 3 t 10. wrdance w e sections	other live load e load of 20. a rectangle ween the bott DL = 10.0ps IOF 2.0E crus ers) of truss I48 lb uplift a ith the 2018 s R502.11.1 a	Opsf om f. shing to t					
FORCES		pression/Maximum											
TOP CHORD	5-6=-3502/600, 6-7= 7-9=-4399/656, 9-10	-3502/600,	,										
BOT CHORD	2-17=-659/4094, 15- 14-15=-202/2630, 12 10-12=-472/4094												
WEBS NOTES	6-14=-254/1244, 7-1 7-12=-139/791, 9-12 6-15=-254/1244, 5-1 5-17=-138/791, 3-17	2=-344/230, 15=-851/374, 7=-344/230										TE OF M	AISSO
 Unbalance this design 	ed roof live loads have n.	been considered for									8	S SCOT	1 CAN

- this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-3 to 4-1-13, Interior (1) 4-1-13 to 23-0-0, Exterior(2R) 23-0-0 to 28-0-0, Interior (1) 28-0-0 to 46-10-3 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

August 30,2024

SEVIER


MINDER

PE-2001018807

PE-PE-SSIONAL ET

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - HT Lot 186	AS NOTED FOR PLAN REVIEW
005	11033	indisa Type	Galy	1 19		DEVELOPMENT SERVICES 167894725
P240931-01	B02	Common Supported Gable	1	1	Job Reference (optional	
		•				

Scale = 1:82.3

Scale = 1:82.3												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.07 0.04 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 26	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 261 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SPF No.2 2x6 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood sf 6-0-0 cc purlins. Rigid ceiling direct bracing. 1 Row at midpt (size) 2=46-0- 29=46-0 32=46-0 39=46-0 42=46-0 42=46-0 49=46-0 40=40-0 40-0	neathing directly applie ly applied or 10-0-0 or 14-39, 13-40, 15-38 0, 26=46-0-0, 28=46-0 -0, 30=46-0-0, 31=46 -0, 33=46-0-0, 34=46 -0, 37=46-0-0, 38=46 -0, 40=46-0-0, 41=46 -0, 47=46-0-0, 45=46 -0, 47=46-0-0, 48=46 -0, 50=46-0-0	ad or -0-0, -0,	Max Grav 2=191 28=253 30=183 32=177 34=182 37=180 39=183 41=180 44=182 46=177 48=185	9 (LC 26) 5 (LC 1), 5 (LC 26) 5 (LC 1), 5 (LC 26) 9 (LC 22) 0 (LC 25) 2 (LC 1), 0 (LC 25) 5 (LC 25) 5 (LC 1), 9 (LC 25) 5 (LC 25) 5 (LC 25) 5 (LC 1), 9 (LC 25) 5 (LC 25)	, 29=152 (LC 31=187 (LC 2 , 33=178 (LC , 33=178 (LC , 40=183 (LC , 40=183 (LC , 42=182 (LC 45=178 (LC 2 45=178 (LC 2 45=178 (LC 2 49=152 (LC 2 49=15	26), 26), 26), 1), 1), 1), 21), 25), 25), 25), 44, 219, 99/45,	2) Wii 2) Wii Va Ke ext Ext 28- left exp rea	balanced s design. nd: ASC sd=91m =1.00; C erior zor terior(2N -0-0, Ext and righ posed;C-	12-41 10-44 7-47= 3-50= 16-37 18-34 20-32 23-30 25-28 d roof li E 7-16; ph; TCI at. II; E e and I) 4-1-1 reior(21 th texpo C for n hown; I	=-150/16, 13-40 =-143/100, 11-42 =-143/89, 9-45= -148/95, 5-48=-1 -191/193, 15-38 =-143/100, 17-36 =-140/89, 19-33 =-134/85, 21-31 =-134/85, 21-31 =-142/90, 24-29 =-191/192 ve loads have be : Vult=115mph (3 DL=6.0psf; BCDI :xp C; Enclosed; C-C Corner(3E) 3 to 23-0-0, Corr N) 28-0-0 to 46-1 sed ; end vertica	142/56, 2=-140/91, 140/89, 8-46=-134/85, 42/90, 4-49=-122/80, 142/51, 5=-140/91, 140/89, 148/95, 122/80, there considered for the considered for

OFFESSIONAL EN PE-2001018807 G August 30,2024

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 186	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 167894725
P240931-01	B02	Common Supported Gable	1	1	Job Reference (optional)	
Barris B. Hillson O. and A		B	140.0004 D		0004 MT-1 Isolandia Iso. Th	

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 3x4 MT20 unless otherwise indicated. 4)
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 2, 31 lb uplift at joint 40, 64 lb uplift at joint 41, 54 lb uplift at joint 42, 53 lb uplift at joint 44, 56 lb uplift at joint 45, 50 lb uplift at joint 46, 59 lb uplift at joint 47, 55 lb uplift at joint 48, 46 lb uplift at joint 49, 92 lb uplift at joint 50, 22 lb uplift at joint 38, 66 lb uplift at joint 37, 54 lb uplift at joint 36, 53 lb uplift at joint 34, 56 lb uplift at joint 33, 50 lb uplift at joint 32, 59 lb uplift at joint 31, 55 lb uplift at joint 30, 46 lb uplift at joint 29, 88 lb uplift at joint 28 and 4 lb uplift at joint 26.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. The Aug 29 30 30/2 24 ID:IgeKz5StzrUUIdcWCZ9mkyylzB1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKv rCDoi7Ju2Jon 30/2 24

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

									RELEA	SE FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Roof - HT L	ot 186		TED FOR PLAN REVIEW
P240931-01	C01		Roof Special Supp	oorted Gable	1	1	lob Referen	nce (optional)		ELOPMENT SERVICES 167894726 S SUMMIT, MISSOURI
Premier Building Supply (Springhill, KS), S	Spring Hills, KS - 66083,	· · · ·	Run: 8.63 S Jul 12			2024 MiTek Indu	ustries, Inc. Th		/30/2024
				ID:qSk_5v4wP0M ⁻	TNDrG3iZBA(Cylz8x-RfC?P	sB70Hq3NSgPqr	nL8w3ulTXbGl	WrCDoi794z9C?	50/2024
	-0-10-8		16-4-14			22-			30-5-0	31-3-8
	0-10-8		16-4-14		4.4		9-3		8-2-15	0-10-8
					4x4 11	=				
7-6-3 1-0-0 1-0-0 6-6-1	4 1 2 4x4 µ	39 38		10 9 10 10 10 10 10 10 10 10 10 10 10 10 10		12	27 28 29	x4 = 145	17 17 23	$ \begin{array}{c} 4x4z \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 4x4u \end{array} $
	⊢		2-0-0		20-6-2		21-4-8		30-5-0	
		1	2-0-0		8-6-2	1	0-10-6		9-0-8	
Scale = 1:59.3										
Plate Offsets (X, Y): [2	2:0-2-3,0-0-5]	[7:0-2-8,0-3-0], [20:0	-2-3,0-0-5]							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.08 Ver 0.07 Ver	rt(CT) 0	0.00 2-39	I/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 147 I	GRIP 197/144 b FT = 20%
OTHERS 2x3 SF	P No.2 *Excep PF No.2 6 SPF No.2	t* 28-26:2x3 SPF No · 1-6-7, Right 2x6 SPI	-	1-2=0/0, 2-4=-165/9 5-6=-85/126, 6-8=-6 9-10=-86/255, 10-1 ⁻¹ 11-12=-101/296, 12 13-15=-70/208, 15- ⁻ 16-17=-40/123, 17- ⁻ 20-21=0/0	6/168, 8-9= 1=-101/296, -13=-86/255 16=-56/166, 18=-35/70, 7	=-72/211, 5, , 18-20=-54/2	7) * This 7) * This on th 3-06- 2, chore 8) All be	d live load no s truss has be e bottom cho 00 tall by 2-0 d and any oth earings are as	nconcurrent wit een designed fo ord in all areas v 00-00 wide will f her members. ssumed to be S	a 10.0 psf bottom h any other live loads. or a live load of 20.0psf where a rectangle it between the bottom P No.2 crushing
TOP CHORD Struct 6-0-0	oc purlins.	athing directly applied applied or 10-0-0 oc	d or BOT CHORD	2-39=-10/49, 38-39= 36-37=-10/49, 35-36 32-33=-11/51, 31-32	6=-11/51, 33	3-35=-11/51	, 9) Provi		al connection (by others) of truss to ding 45 lb uplift at joint
bracin	g, Except:			29-30=-11/51, 28-29						ift at joint 32, 54 lb it 35, 38 lb uplift at joint
REACTIONS (size) Max Ho	23=8-11- 28=21-4- 31=21-4- 35=21-4- 38=21-4- 7iz 2=161 (LC 22=-61 (L 22=-61 (L 24=-58 (L	20=8-11-0, 22=8-11- 0, 24=8-11-0, 25=8-11 3, 29=21-4-8, 30=21-4 3, 32=21-4-8, 37=21-4 3, 39=21-4-8, 37=21-4 3, 39=21-4-8 2, 12) 2, 13), 20=-36 (LC 9), C, 13), 22=-54 (LC 13 C, 13), 25=-39 (LC 13)	1-0, WEBS 4-8, 4-8, 4-8, 1-0, NOTES), 1) Unbalancee	23-24=-12/52, 22-23 11-31=-157/13, 10-3 9-33=-134/90, 8-35- 6-37=-153/98, 5-38- 4-39=-156/177, 12-3 27-29=-138/109, 13 15-25=-133/84, 16-3 17-23=-141/114, 18 d roof live loads have	3=-12/52, 20 32=-150/83, =-163/103, 7 =-135/106, 30=-150/83, -27=-142/90 24=-145/92, -22=-136/14	0-22=-12/52 7-36=-110/7 6, 43	36, 6 uplift 0, joint : lb up 10) This Interr R802	3 lb uplift at j at joint 39, 4 29, 39 lb upli lift at joint 23 truss is designational Resi	oint 37, 46 lb up 7 lb uplift at joir ft at joint 25, 58 and 61 lb uplift gned in accorda dential Code se ferenced standa	blift at joint 38, 94 lb ht 30, 103 lb uplift at lb uplift at joint 24, 54
Max Gr.	32=-54 (L 35=-66 (L 39=-94 (L 39=-94 (L 22=172 (L 22=172 (L 24=186 (l 28=32 (L 30=191 (l 32=190 (l 35=203 (l	LC 13), 30=-47 (LC 1 C 12), 33=-54 (LC 12 C 12), 36=-38 (LC 12 C 12), 38=-46 (LC 12 C 12), 20=156 (LC 1), C 12), 20=156 (LC 1), C 26), 23=180 (LC 1 C 26), 25=167 (LC 1 C 22), 29=168 (LC 26 C 26), 31=196 (LC 2 C 25), 33=174 (LC 2 C 1), 36=150 (LC 25 C 26), 2472 (LC 12)), 2) Wind: ASC), Vasd=91m , Ke=1.00; C exterior zor Exterior(2N), 21-4-14, Ex), left and rigf), exposed;C- 2), reactions s 5), DOL=1.60), 3) Truss desig	E 7-16; Vult=115mph ph; TCDL=6.0psf; BC iat. II; Exp C; Enclose te and C-C Corner(3I) 0.4-4.14 to 16-4-14, (teterior(2N) 21-4-14 to the exposed; end verti C for members and f hown; Lumber DOL= gned for wind loads in tuds exposed to winc	CDL=6.0psf; ed; MWFRS E) -0-10-8 to Corner(3R) o 31-3-8 zon ical left and forces & MV 1.60 plate g o the plane of	h=35ft; (envelope) o 4-4-14, 16-4-14 to he; cantilevel right VFRS for grip of the truss	r		SCO SE	MISSOLA TT M. VIER MBER 1018807

35=203 (LC 1), 36=150 (LC 25), only. For studs exposed to wind (normal to the face), 37=194 (LC 25), 38=172 (LC 1), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. (lb) - Maximum Compression/Maximum 4) All plates are 1.5x4 MT20 unless otherwise indicated.

5) Gable studs spaced at 2-0-0 oc.

August 30,2024

OF TESSIONAL EN

ek 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

39=207 (LC 25)

Tension

FORCES

									RELE	ASE FOR CO	NSTRUCTION
Job	Ті	russ	Truss Type		Qty	Ply	Roof - HT I	Lot 186			
P240931-01	с	02	Roof Special		4	1	Job Refere	nce (optional		VELOPMENT 16789 E'S SUMMIT, 1	
Premier Building S	Supply (Springhill, I	KS), Spring Hills, KS - 66083,		Run: 8.63 S Jul 12 2	2024 Print: 8.	630 S Jul 12	2 2024 MiTek Ind	dustries, Inc. Th	I Aug 2911 8	%30/	2024
				ID:Lj7llxfzeGyRgqgY	'VrQ_Fqylz9l	J-RfC?PsB7	'0Hq3NSgPqnL8	8w3ulTXbGKWr	CDoi7J423C?		
	-0-10-8	8-4-3		16-4-14			-3-4	25-7-14		30-5-0	31-3-8
	0-10-8	8-4-3		8-0-11			10-6	4-4-10	·	4-9-2	0-10-8
					6x6 4	0=					
ΤT								4x6 ≈			
			12 5 F	17			4x4	4≈ 5			
			7x8 ≤					6	3x4 ≈		
			3						7 18		
7-8-6 7-6-1		16									
											8 9
	1 2						11		8		
	I 'F	/	8	(¢)			9	⊠ - 12 - ⊥	10		⊠ ⊃ 3x4=
	⊠ 3x4	4=	15	14	13		1.5	5x4 I	1.5x4 I		
			1.5x4 ။	3x4	= 4x8	8=		3x8=			
								9 1 2			
	H	<u>8-4-3</u> 8-4-3		<u>16-4-14</u> 8-0-11			<u>-4-8</u> 21- 1-10 0-	8-12 <u>25-7-</u> 4-4 3-11-		<u>30-5-0</u> 4-9-2	———————————————————————————————————————
Scale = 1:57.2 Plate Offsets (X,	Y)· [3·0-4-0.0-	.4-81									
		· ·	2.0.0	0.01			in (loc)	/dafi /d		GRIP	
Loading TCLL (roof)	(ps 25	.0 Plate Grip DOL	2-0-0 1.15		0.78 Vert	(LL) -(in (loc) 0.13 13-15	l/defl L/d >999 240	PLATES MT20	197/144	4
TCDL BCLL	10 0	.0 Lumber DOL .0* Rep Stress Incr	1.15 NO		0.81 Vert 0.62 Horz	. ,	0.27 13-15 0.02 8	>927 180 n/a n/a			
BCDL	10	.0 Code	IRC2018/TPI2014	Matrix-S					Weight: 138	lb FT = 20)%
LUMBER TOP CHORD	2x6 SPF No.2			E 7-16; Vult=115mph (ph; TCDL=6.0psf; BCD							
	2x4 SP No.2 *E 1.5E, 12-5:2x3	xcept* 14-12:2x4 SP 1650 SPF No.2		Cat. II; Exp C; Enclosed ne and C-C Exterior(2E							
	2x3 SPF No.2			4-1-8 to 16-4-14, Exter erior (1) 21-3-4 to 31-3-							
TOP CHORD		I sheathing directly applied	lor and right e	xposed ; end vertical le -C for members and for	ft and right						
BOT CHORD		ectly applied or 10-0-0 oc		hown; Lumber DOL=1.							
	bracing, Exception 6-0-0 oc bracing		This truss h	has been designed for a							
	1 Row at midpt size) 2=0-3	3-13 3-8, 8=0-5-8, 11=0-5-8	4) * This truss	oad nonconcurrent with has been designed for	r a live load	l of 20.0ps					
Ň	/lax Horiz 2=16		3-06-00 tal	om chord in all areas w I by 2-00-00 wide will fi							
	11=-	125 (LC 12)		any other members. s are assumed to be SI	P No.2 crus	shing					
	11=1	02 (LC 1), 8=442 (LC 26), 418 (LC 1)	capacity of 6) Provide me	565 psi. echanical connection (b	y others) of	f truss to					
	(lb) - Maximum Tension	Compression/Maximum	bearing pla	te capable of withstand 8 lb uplift at joint 8 and	ding 125 lb	uplift at					
		485/243, 4-5=-600/240, 8=-471/189, 8-9=0/6	This truss i	s designed in accordar al Residential Code sed	nce with the	2018					
		l, 13-15=-276/1265, l-12=0/37, 5-11=-1136/170	R802.10.2	and referenced standa					~~~~	m	
	10-11=-109/364	4, 8-10=-109/364 5-13=-90/829, 3-15=0/347,	LOAD CASE(C						FE OI	E MISS	J.
		7-11=-477/135, 7-10=0/19						E	1221	OTT M.	(Sel
	l roof live loads l	have been considered for						B.		EVIER	N. A
this design.								R	att	مک م	the
										MBER	12A
								N.	PE-20	01018807	NE A
									NOI883	IAL EN	S A
									Qu	AL	7

August 30,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

									RELEASE FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Roof - HT	Lot 186	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 167894728
P240931-01	C03		Common Girder		1	2	Job Refere	ence (optional	I67894728 LEE'S SUMMIT, MISSOURI
Premier Building Supply ((Springhill, KS), Spring F	Hills, KS - 66083,		Run: 8.63 S Jul 12 2 ID:xqeL4gW1g4HILB	024 Print: 8.6 31XMQZLby	630 S Jul 12 /lx6RfC?Ps	2024 MiTek In B70Hq3NSgPo	dustries, Inc. Thu qnL8w3uITXbGH	I Aug 29 1 6 9 30/2 9 24
		5-1-8	11-2-4	16-7-4	22-	-0-4	24-9-8	30-8-8	
		5-1-8	6-0-12	5-5-0	5-	5-0	2-9-4	5-11-0	l.
							5x5	=	
	т						16 17	44	
	89		89	5x5 ≠ 11 10	6x6 = 13	43 ¹⁴		\sim .	9 45 ₂₀
	11-3-8	4x8 ≠	4x4 = 7 6 45		35		3x1/2 II	42 3x8	B III 0 0 0

37

38 51 29 52

10x10=

1.5x4 🛚

36

53

16-7-4

5-5-0

11.5×4 m

2827

4x6=

6x12 🛚

1.5x4

Ш

54 55 56

22-0-4

5-5-0

3

Ш

1.5x4 u

[⊠]26²⁵

5x5=

24-9-8

2-9-4

24

5x8=

184

23

22

30-8-8

5-11-0

21 ×

3x10 u

40

1^{5x4} " 39

50

11-2-4

6-0-12

1.5x4 🛚

Шqि

4830 49

3x8 II

23

E T

Ш

4782

5-1-8

5-1-8

46

4x8=

0-11-9

Scale = 1:77

Plate Offsets (X, Y): [1:Edge,0-2-1], [9:0-1-12,0-1-12], [11:0-4-0,0-4-8], [12:0-2-4,0-2-4], [27:0-5-8, Edge]													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO	8/TPI2014	CSI TC BC WB Matrix-S	0.34 0.55 0.89	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 29-30 29-30 26	l/defl >999 >930 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 510 lb	GRIP 197/144 FT = 20%
	2x6 SPF No.2 2x6 SP 2400F 2.0E 2x3 SPF No.2 *Exce 2x3 SPF No.2 Left 2x4 SP No.2 2 Structural wood she 4-11-13 oc purlins, or Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 25 1 Brace at Jt(s): 33, 34, 35, 36, 37, 39, 41, 42 (size) 1=0-7-0, 2 Max Horiz 1=387 (LC Max Uplift 1=-960 (L 26=-1438 Max Grav 1=5506 (L	2-8-11 athing directly applie except end verticals. applied or 10-0-0 oc -26,24-25. 21=0-5-8, 26=0-5-8 C 32) C 12), 21=-1332 (LC (LC 12)	0.2 d or 25), N (DTES 2-ply truss t	17-24=-504/110 41-42=-1405/32 15-26=-1070/25 24-33=-224/145 5-40=-2731/607 38-39=-2709/60 9-29=-735/4316 36-37=-404/87 12-27=-872/517 34-35=-5155/10 16-33=-870/166 14-34=-226/46, 11-36=-164/41, 8-38=-275/81, 7 4-31=-89/339, 3 18-41=-154/70, 19-42=-75/160, o be connected nails as follows:	7, 20-42=- ⁷ 33, 15-33=- ² 34, 15-33=- ² 37, 39-40=-2¢ 7, 39-40=-2¢ 7, 39-38=- ² 30, 27-36=-4 6, 12-35=-5 10, 26-34= 13-35=-17/ 10-37=-37/ -39=-212/4 3-32=-133/9 23-41=-115 22-42=-74/ together with	1393/324, 110/1375, 13/1702, 35/586, 2784/630, 11/895, 1520/899, 5225/1024, -5337/1048, 56/180, 88, 156, 4, 6-40=-55/2; 81, 9/66, 165	51,	Vas Ke ext Inte 29- and exp rea DC 5) Tru onl see or (6) All 7) Ga 8) Thi cho 9) * T	sd=91mp =1.00; C erior zor erior (1) - 9-8, Inte d right ex- bosed;C- ctions sh DL=1.60 uss desig y. For si e Standa consult q plates a ble stude s truss h ord live k	bh; TCI at. II; E and 4-9-8 to rior (1) posed C for n hown; I ned fo tuds ex rd Indu ualifies s space as bee bad nor has be	; Vult=115mph (3 DL=6.0psf; BCDL Exp C; Enclosed; C-C Exterior(2E) 29-9-8 to 30-6-1 ; end vertical lef nembers and forr Lumber DOL=1.6 r wind loads in th coposed to wind (r istry Gable End I d building design MT20 unless oth ad at 2-0-0 oc. an designed for a nconcurrent with	i-second gust) =6.0psf; h=35ft; MWFRS (envelope) 0-0-0 to 4-9-8, (2R) 24-9-8 to 2 zone; cantilever left t and right zes & MWFRS for i0 plate grip e plane of the truss iormal to the face), Details as applicable, er as per ANSI/TPI 1. erwise indicated. 10.0 psf bottom any other live loads. a live load of 20.0psf
FORCES TOP CHORD BOT CHORD	26=7937 ((lb) - Maximum Com Tension 1-3=-8908/1521, 3-4 4-5=-8183/1448, 5-6 6-7=-5570/984, 7-8= 8-9=-5649/1039, 9-1 10-12=-2093/477, 12 13-14=-285/1337, 14 15-16=-177/1048, 16 19-20=-212/839, 20 1-32=-1589/7658, 3 30-31=-1589/7658, 3 27-29=-1088/5183, 2 25-26=-1177/424, 2 23-24=-162/178, 22- 21-22=-162/178	(LC 1) pression/Maximum =-8362/1474, =-5707/995, 5598/1010, 0=-2193/459, 2-13=-290/1250, 4-15=-260/1283, 6-17=-113/780, -19=-163/883, -21=-229/1373 1-32=-1589/7658, 29-30=-1589/7658, 29-30=-1589/7658, 29-27=-510/1938, 4-25=-1177/424,	2) 3)	staggered a Bottom cho staggered a Web conne Except men All loads are except if no CASE(S) se provided to unless othe	cted as follows: 2 nber 12-27 2x3 - e considered equ ted as front (F) c ection. Ply to ply distribute only lo rwise indicated. d roof live loads h	1 row at 0- s follows: 22 2x3 - 1 row 1 row at 0- ually applied or back (B) f connections bads noted a	9-0 oc. (6 - 2 rows at 0-4-0 oc, 9-0 oc. 1 to all plies, ace in the LO. s have been as (F) or (B),	AD			any oth		ER BER 018807

August 30,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent parameters and properly incorporate this design in the overall is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSVITPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

								RELEASE FOR CONSTRUCTION	
[Job	Truss	Truss Type		Qtv	Plv	Roof - HT Lot 186	AS NOTED FOR PLAN REVIEW	
	300	11055	Truss Type		Quy	гіу	KUUI - HT LUL 100	DEVELOPMENT SERVICES 167894728	
	P240931-01	C03	Common Girder		1	2	Job Reference (optional		
	Premier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083,		Run: 8.63 S Jul 12 20 ID:xqeL4gW1g4HILB	024 Print: 8.6 31XMQZLbyl	i30 S Jul 12 2 x6RfC?Psl	2024 MiTek Industries, Inc. Th B70Hq3NSgPqnL8w3uITXbGI		

- 10) All bearings are assumed to be SP 2400F 2.0E crushing capacity of 805 psi.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 960 lb uplift at joint 1, 1332 lb uplift at joint 21 and 1438 lb uplift at joint 26.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 14) Use Simpson Strong-Tie HUS26 (14-16d Girder, 4-16d Truss) or equivalent spaced at 2-0-0 oc max. starting at 0-4-4 from the left end to 20-4-4 to connect truss(es) to back face of bottom chord.
- 15) N/A

- LOAD CASE(S) Standard
- Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-17=-70, 17-20=-70, 1-21=-20
 - Concentrated Loads (lb)

 - Vert: 27=-855 (B), 46=-882 (B), 47=-876 (B), 48=-885 (B), 49=-885 (B), 50=-885 (B), 51=-885 (B), 52=-855 (B), 53=-855 (B), 54=-855 (B), 56=-855 (B)

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

										RELEASE	E FOR CONSTRUCTION	
Job	Truss		Truss Type		Qty	Ply	Roof	- HT Lot 186			ED FOR PLAN REVIEW OPMENT SERVICES 167894729	7
P240931-01	D01		Roof Special Stru	ctural Gable	1	1		eference (or	tional		SUMMIT, MISSOURI	
Premier Building Sup	oply (Springhill, KS), S	pring Hills, KS - 66083,	, ·	Run: 8.63 S Jul 12 ID:eDE83pI7?galC			2 2024 Mi	Fek Industries,	Inc. Th		30/2024	-
		-0-10-8	13-6-0	T	2	0-2-12	1 2	4-0-0	28-	6-0 29-4-8		
		0-10-8	13-6-0	l. I		6-8-12		3-9-4	4-6	6-0 0-10-8		
	-0-11-0 1-0-0	3x4 II	8 ¹² 5x5 * 37 6 5 5 33 33 32 31	9 7 7 8 7 8 7 8 7 8 7 8 8 7 8 8 7 8 8 7 8 8 8 7 8			12 13	45 3x4, 16	5	3x6 s 17 17 18 19	9-0- 	
				<u>19-10-4</u> 19-10-4		2		4-0-0 -10-8 ├	<u>28-2</u> 4-2-	<u>-12</u> 28-6-0		
Scale = 1:70.8	-			19-10-4			0-3-4 3	-10-0	4-2-	12 0-3-4		_
Plate Offsets (X, Y	(): [6:0-2-8,0-3-0]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.25 \ 0.33 \	DEFL /ert(LL) /ert(CT) łorz(CT)	0.01 20	loc) l/defl -21 >999 -20 >999 19 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 163 lb	GRIP 197/144 FT = 20%	
BOT CHORD 25 WEBS 25 OTHERS 25 BRACING 56 BOT CHORD 56 BOT CHORD 76 bu	x3 SPF No.2 *Exce o.2 x3 SPF No.2 tructural wood shea -0-0 oc purlins, exuigid ceiling directly racing. Row at midpt ze) 19=0-3-8, 25=20-0-0 29=20-0-0	t* 13-21:2x3 SPF No pt* 35-2,19-17:2x4 S athing directly applie cept end verticals. applied or 10-0-0 oc 9-27, 8-29, 10-26 23=0-3-8, 24=20-0-(0, 26=20-0-0, 27=20- 0, 30=20-0-0, 31=20- 0, 33=20-0-0, 34=20-	9 d or BOT CHORD 0, 0-0, 0-0, WEBS	1-2=0/40, 2-3=-292/ 4-5=-221/224, 5-7=- 8-9=-237/367, 9-10= 10-11=-204/294, 11 12-13=-140/183, 13 15-16=-113/126, 16 17-18=0/40, 2-35=- 32-33=-83/122, 33- 30-31=-83/123, 29- 27-29=-83/123, 24- 23-24=-83/123, 24- 23-24=-90/277, 13- 23-24=-90/270, 13- 23-24=-90/272, 13- 23-24=-90/272, 13- 23-24=-90/272, 13- 24- 24-24=-90/272, 13- 24-24=-90/272, 14-24=-90/272, 14-24=-90/272, 14-24=-90/272, 14-24=-90/272, 14-24=-	-200/293, =-238/35! -12=-168 3-15=-96/ 3-17=-376 248/181, 34=-83/12 32=-83/12 27=-83/12 22=-83/12 22=-185/ 0=-55/122 3-36=-334	7-8=-207/34 ; /225, 40, /111, 17-19=-405/1 /2, /2, /3, /3, /3, /3, /3, /3, /3, /3	6) 7) 38 9) 10	braced aga Gable stud This truss H * This truss on the botto 3-06-00 tall chord and a All bearing capacity of Provide me bearing pla joint 35, 10 Ib uplift at j joint 31, 89	inst late s space bad noi has be bom cho by 2-0 any oth s are as 565 ps chanic te capa 8 lb uplif bint 29, lb uplif	eral movement (i ed at 2-0-0 oc. an designed for a nconcurrent with een designed for ord in all areas wh 00-00 wide will fit er members. ssumed to be SP si. al connection (by able of withstandi lift at joint 19, 42 , 102 lb uplift at j ft at joint 32, 64 ll	any other live loads. a live load of 20.0psf here a rectangle between the bottom	

35=20-0-0 Max Horiz 35=312 (LC 11) Max Uplift 19=-108 (LC 13), 23=-577 (LC 13), 24=-422 (LC 20), 25=-87 (LC 13), 26=-58 (LC 13), 27=-42 (LC 11), 29=-61 (LC 12), 30=-102 (LC 12), 31=-55 (LC 12), 32=-89 (LC 12), 33=-64 (LC 12), 34=-171 (LC 9), 35=-230 (LC 8) Max Grav 19=446 (LC 1), 23=970 (LC 20), 24=347 (LC 13), 25=191 (LC 20), 26=191 (LC 20), 27=353 (LC 13), 29=197 (LC 19), 30=211 (LC 19), 31=157 (LC 19), 32=202 (LC 19), 33=188 (LC 1), 34=245 (LC 10), 35=311 (LC 20)

FORCES (lb) - Maximum Compression/Maximum Tension

21-36=-353/165, 16-36=-334/153, 16-20=0/172, 17-20=-5/129, 9-27=-330/155, 8-29=-156/86, 7-30=-171/126, 6-31=-118/80, 5-32=-160/110, 4-33=-146/97, 3-34=-165/138, 10-26=-154/84, 11-25=-138/103, 12-24=-86/64, 15-36=-27/17

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 13-6-0, Exterior(2R) 13-6-0 to 18-6-0, Interior (1) 18-6-0 to 29-4-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) All plates are 1.5x4 MT20 unless otherwise indicated.

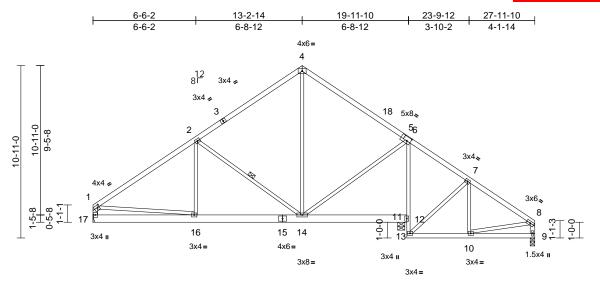
R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

23.

Ib uplift at joint 34, 58 lb uplift at joint 26, 87 lb uplift at

joint 25, 422 lb uplift at joint 24 and 577 lb uplift at joint

International Residential Code sections R502.11.1 and


11) This truss is designed in accordance with the 2018

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 186	AS NOTED FOR PLAN REVIEW
						DEVELOPMENT SERVICES 167894730
P240931-01	D02	Roof Special	2	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply ((Springhill KS) Spring Hills	KS - 66083	Rup: 8.63 S Jul 12 2024 Print: 8	630 S Jul 12	2024 MiTek Industries Inc. Th	

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. The Aug 29 11 81/30/26 20 124 ID:tp_7KuFwRFwb3AEL5sOYe4ylxXR-RfC?PsB70Hq3NSgPqnL8w3uITXbG WrCDoire42sc?f

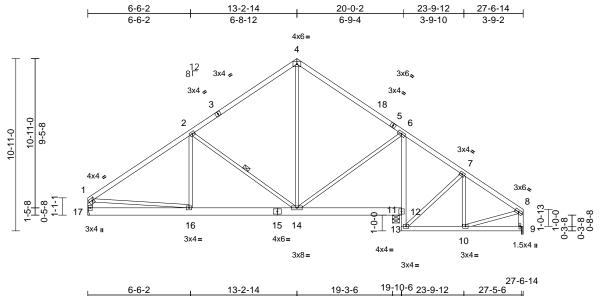
	6-6-2	13-2-14	19-3-6	19-10-6 23-9-12	27-11-10
Scale = 1:72.9	6-6-2	6-8-12	6-0-8	0-7-0 3-11-6	4-1-14

Plate Offsets (X, Y): [1:0-1-4,0-1-12], [5:0-2-12,0-3-0]

,], [5.0-2-12,0-3-0] I											
oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
FCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.89	Vert(LL)		14-16	>999	240	MT20	244/190
FCDL	10.0	Lumber DOL	1.15		BC	0.48	Vert(CT)	-0.07	14-16	>999	180		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.35	Horz(CT)	0.01	9	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 148 lb	FT = 20%
UMBER			2)	Wind: ASCE	7-16; Vult=115m	oh (3-seo	ond qust)						
OP CHORD	2x4 SP No.2 *Excep	t* 4-5:2x4 SP 1650F	, í	Vasd=91mpl	n; TCDL=6.0psf; E	BCDL=6.	Dpsf; h=35ft;						
	1.5E				t. II; Exp C; Enclos								
BOT CHORD	2x6 SPF No.2 *Exce				and C-C Exterior								
	11-9:2x4 SP No.2, 1				-4-14 to 13-6-0, E								
/EBS	2x3 SPF No.2 *Exce	pt* 17-1,9-8:2x4 SP	No.2		or (1) 18-6-0 to 28			left					
RACING					osed ; end vertica								
OP CHORD	Structural wood shea		d or		own; Lumber DOL								
	4-4-14 oc purlins, e			DOL=1.60	JWII, LUIIIDEI DOL	.= 1.60 pi	ate grip						
OT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	; 3)		a 3x4 MT20 unless	othonwi	so indicated						
	bracing.		3) 4)		s been designed								
EBS		2-14	- /		ad nonconcurrent			de					
	()	13=0-5-8, 17= Mecha	anical 5)		has been designed								
	Max Horiz 17=-302 (,	-,		n chord in all area			poi					
	Max Uplift 9=-129 (L		3),		y 2-00-00 wide w			m					
	17=-150 (v other members								
	Max Grav 9=437 (LC	<i>,,</i>	^{1),} 6)	Bearings are	assumed to be: ,	Joint 13	SP 2400F 2.0	ЭE					
	17=896 (L	,		crushing cap	acity of 805 psi, J	oint 9 SF	No.2 crushir	ıg					
ORCES	(lb) - Maximum Com	pression/Maximum		capacity of 5	65 psi.								
	Tension		7)	Refer to gird	er(s) for truss to tr	uss conr	ections.						
OP CHORD	1-2=-1125/223, 2-4=	,	, 01	Provide mec	hanical connection	n (by oth	ers) of truss to	С					
	6-7=-243/206, 7-8=-4	459/165, 1-17=-829/	181,		e capable of withst								
	8-9=-398/149	40 405/004			Ib uplift at joint 9 a			13.					Th
OT CHORD	16-17=-264/412, 14-	,	9)		designed in accor							O DE M	AL OF
	13-14=-2/106, 12-13 6-12=-818/105, 10-1				Residential Code			nd				STATE OF M	Nos Ser
/EBS	2-16=0/223, 2-14=-5	,	1		nd referenced star	ndard AN	ISI/TPI 1.				4		NSY
LDO	2-16=0/223, 2-14=-5 6-14=-36/480, 7-11=			DAD CASE(S)	Standard						H	SCOTT	N. Y.
	8-10=-49/251, 7-10=		004,								8	SEVI	FR VV
OTES	0 10+0/201, /-10=										8		

NOTES

1) Unbalanced roof live loads have been considered for this design.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - HT Lot 186	AS NOTED FOR PLAN REVIEW
300	11055	Truss Type	Quy	гіу	R001 - H1 L01 100	DEVELOPMENT SERVICES 167894731
P240931-01	D03	Roof Special	4	1	Job Reference (optional	

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. The Aug 29 30 81/30/29 24 ID:QW6k5EgxtVnsDJG10eWDQzylxVb-RfC?PsB70Hq3NSgPqnL8w3uITXbCKWrCDord 456071

0-0-2	13-2-14	19-3-0	10,10 0 23-9-12	27-5-0
6-6-2	6-8-12	6-0-8	0-7-0 3-11-6	3-7-10 0-1-8

Plate Offsets (X, Y): [1:0-1-4,0-1-12]

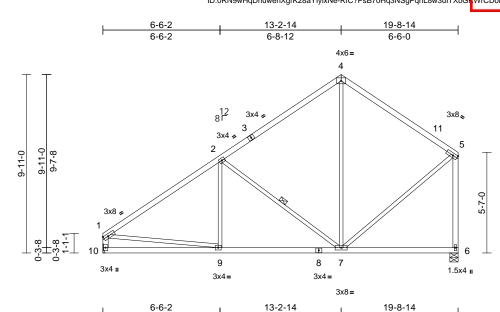
Scale = 1:73

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.99	Vert(LL)		14-16	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.40	Vert(CT)	-0.06	14-16	>999	180			
BCLL	0.0*	Rep Stress Incr	NO		WB	0.35	Horz(CT)	0.01	9	n/a	n/a			
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 151 lb	FT = 20%	
LUMBER			2)	Wind: ASCE	7-16; Vult=115mp	oh (3-seo	cond gust)							
TOP CHORD	2x4 SP No.2			Vasd=91mpl	h; TCDL=6.0psf; B	CDL=6.	0psf; h=35ft;							
BOT CHORD	2x4 SP No.2 *Excep	t* 15-12:2x6 SP 2400)F	Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope)										
	2.0E, 15-17:2x6 SPF	No.2		exterior zone and C-C Exterior(2E) 0-4-14 to 5-4-14,										
WEBS	2x3 SPF No.2 *Exce	pt* 17-1,8-9:2x4 SP I	No.2	Interior (1) 5-4-14 to 13-6-0, Exterior(2R) 13-6-0 to										
BRACING				18-6-0, Interior (1) 18-6-0 to 27-8-4 zone; cantilever left and right exposed ; end vertical left and right										
TOP CHORD		athing directly applied	d,		osed ; end vertica									
	except end verticals													
BOT CHORD		applied or 10-0-0 oc		reactions shown; Lumber DOL=1.60 plate grip DOL=1.60										
WEBS	bracing. 1 Row at midpt	0.44	3)											
		2-14	a)	4) This truss has been designed for a 10.0 psf bottom										
REACTIONS	()	13=0-5-8, 17= Mecha	nicai '	chord live load nonconcurrent with any other live loads.										
	Max Horiz 17=-302 (,	. 5)	5) * This truss has been designed for a live load of 20.0psf										
	Max Uplift 9=-115 (L 17=-149 (o),	on the bottom chord in all areas where a rectangle										
	Max Grav 9=438 (LC				oy 2-00-00 wide w		veen the botte	om						
	17=905 (L			chord and any other members.										
FORCES	(lb) - Maximum Com	,	6)		assumed to be: ,									
1011020	Tension			crushing capacity of 805 psi, Joint 9 SP No.2 crushing										
TOP CHORD	1-2=-1139/220, 2-4=	-698/263, 4-6=-682/2	239, 7)	capacity of 565 psi. 7) Refer to girder(s) for truss to truss connections.										
		435/152, 1-17=-838/1	· · · ·	 Bearing at joint(s) 9 considers parallel to grain value 										
	8-9=-404/132		0)		TPI 1 angle to grai			•						
BOT CHORD	16-17=-268/413, 14-	-16=-195/945,			ould verify capacity									
	13-14=-12/146, 12-1		9)		hanical connection			to				Con	all	
	11-12=-51/194, 6-12	,	,		e at joint(s) 9.		,					A OF I	MIS.C.	
	10-11=-70/308, 9-10		10	 9) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 9. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 149 lb uplift at 										
WEBS		234/106, 8-10=-44/27		bearing plate capable of withstanding 149 lb uplift at										
		88/262, 1-16=-52/646	,	joint 17, 87 lb uplift at joint 13 and 115 lb uplift at joint 9.										
	2-14=-558/269, 6-14	=-42/451	11		designed in accor						25	_/ SEVI		
NOTES					Residential Code			and			N.C			
	ed roof live loads have		R802.10.2 and referenced standard ANSI/TPI 1.											
this desigr	1.		LO	LOAD CASE(S) Standard										

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com) August 30,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

EZ


PE-2001018807

SIONAL

Or .

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 186	AS NOTED FOR PLAN REVIEW
P240931-01	D04	Common	5	1	Job Reference (optional	DEVELOPMENT SERVICES 167894732 LEE'S SUMMIT, MISSOURI
Premier Building Supply	(Springhill, KS), Spring Hills, KS	S - 66083,			2024 MiTek Industries, Inc. Th	

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. The Aug 29 11 8:22 ID:0RN9wHqDnuwenXgrK28aYIyIxNe-RfC?PsB70Hq3NSgPqnL8w3uITXbGI WrCDoi794z9

Scale = 1:64			6-6-2	I	6-8-12			6-6-0				
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.90	Vert(LL)	-0.05	6-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.50	Vert(CT)	-0.10	6-7	>999	180		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.36	Horz(CT)	0.01	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 103 lb	FT = 20%
		•	4) * This truss	has been de	signed for a liv	e load of 20.	.0psf					

LUMBER	2
--------	---

TOP CHORD	2x4 SP No.2
	2x4 SP No 2

BOT CHORD	2x4 SP N	0.2
WEBS	2x3 SPF I	No.2 *Except* 10-1,6-5:2x4 SP No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	4-5-11 oc	purlins, except end verticals.
BOT CHORD	Rigid ceili	ng directly applied or 9-8-14 oc
	bracing.	
WEBS	1 Row at	midpt 2-7
REACTIONS	(size)	6=0-5-8, 10= Mechanical
	Max Horiz	10=345 (LC 9)
	Max Uplift	6=-137 (LC 12), 10=-125 (LC 12)
	Max Grav	6=875 (LC 1), 10=875 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum

Tension TOP CHORD 1-2=-1082/191, 2-4=-644/233, 1-10=-815/158, 5-6=-817/203, 4-5=-615/213 9-10=-362/421, 7-9=-341/894, 6-7=-90/109 BOT CHORD WEBS 2-9=0/220, 4-7=-67/247, 1-9=-49/652, 2-7=-558/273. 5-7=-123/539

NOTES

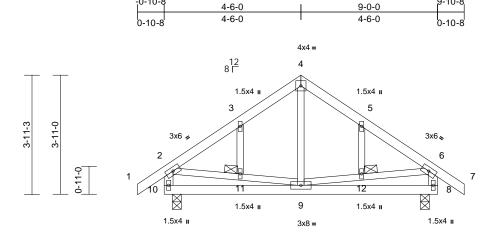
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-14 to 5-4-14, Interior (1) 5-4-14 to 13-6-0, Exterior(2R) 13-6-0 to 18-6-0, Interior (1) 18-6-0 to 19-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: , Joint 6 SP No.2 crushing 5) capacity of 565 psi.
- Refer to girder(s) for truss to truss connections. 6)
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 137 lb uplift at joint 6 and 125 lb uplift at joint 10.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

							RELEASE FOR CONSTRUCTION
1	Job	Truss	Truss Type	Qty	Plv	Roof - HT Lot 186	AS NOTED FOR PLAN REVIEW
	000	11033		Giy	l' 'y		DEVELOPMENT SERVICES 167894733
	P240931-01	E01	Common Structural Gable	1	1	Job Reference (optional	

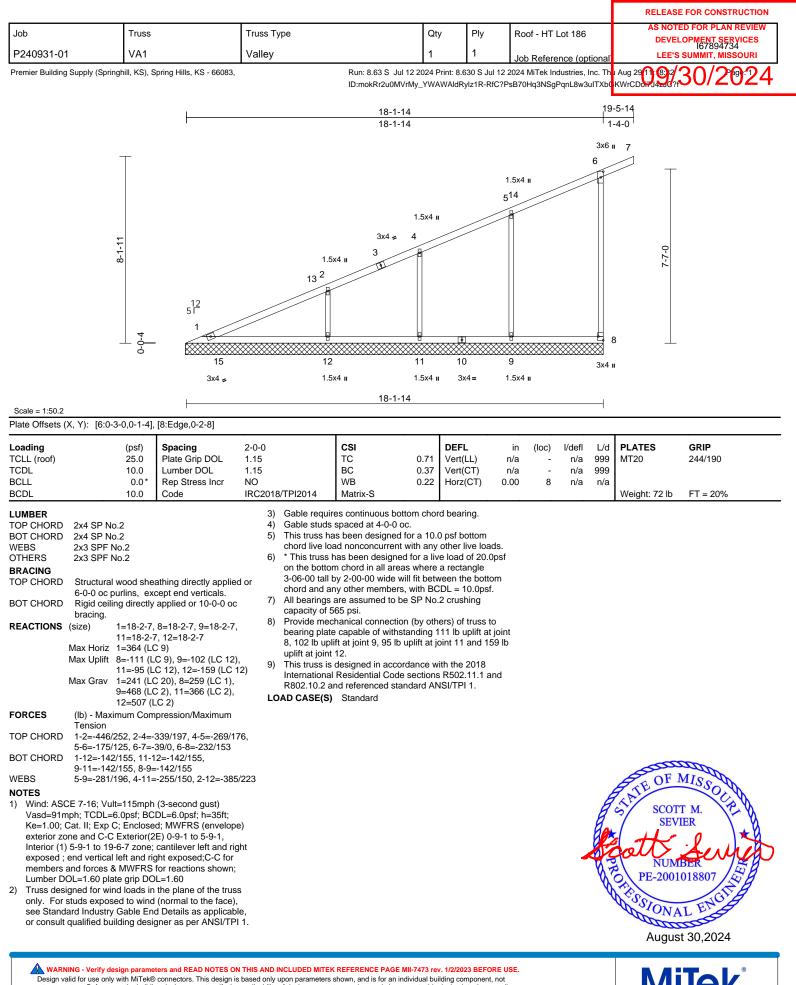

0-10-8

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. The Aug 29 10 8 / 30/2 9 24 ID:qXqM0fsJv9kuzTbgecUAxgylyHi-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKW CDoi7J 2007

9-10-8

Scale = 1:37.9

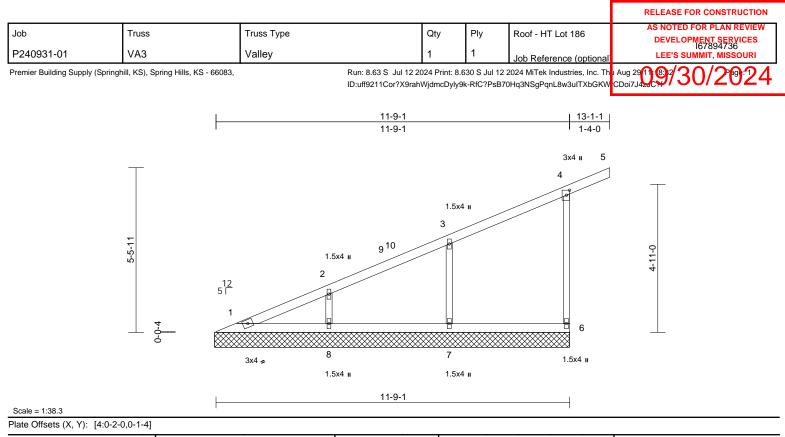

TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.28 Vert(LL) -0.01 8-9 >999 240 MT20 1 TCDL 10.0 Lumber DOL 1.15 BC 0.18 Vert(CT) -0.02 8-9 >999 180 BCLL 0.0* Rep Stress Incr NO WB 0.15 Horz(CT) 0.00 8 n/a n/a									
TCLL (roof)25.0Plate Grip DOL1.15TC0.28Vert(LL)-0.018-9>999240MT201TCDL10.0Lumber DOL1.15BC0.18Vert(CT)-0.028-9>999180BCLL0.0*Rep Stress IncrNOWB0.15Matrix-SHorz(CT)0.008n/an/aBCDL10.0CodeIRC2018/TPI2014Matrix-SMatrix-SWeight: 47 lbFLUMBERTOP CHORD2x4 SP No.2sapplicable, or consult qualified building designer as per ANSI/TPI 1.or consult qualified building designer as per ANSI/TPI 1.Vert(LL)-0.018-9>999240Weight: 47 lbRMatrix-SMatrix-SNo.2<	GRIP								
BCLL BCDL 0.0* 10.0 Rep Stress Incr Code NO Code WB IRC2018/TPI2014 WB Matrix-S Horz(CT) 0.00 8 n/a Weight: 47 lb F LUMBER TOP CHORD 2x4 SP No.2 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANS/ITPI 1.	197/144								
BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Weight: 47 lb F LUMBER TOP CHORD 2x4 SP No.2 SP No.2 Soft CHORD 2x4 SP No.2 Soft CHORD 2x4 SP No.2 Soft CHORD 2x4 SP No.2 Soft CHORD Soft CHORD 2x4 SP No.2 Soft CHORD Structural wood sheathing directly applied or CO CO co putlins, except end verticals. Soft CHORD Structural wood sheathing directly applied or CO CO co putlins, except end verticals. Soft CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. Soft CHORD Size) 8=0-3-8, 10=0-3-8, 10=0-3-8, 10=0-3-8, 10=0-3-8, Max Horiz Soft CHORD Size) 8=0-3-8, 10=0									
LUMBER 3) Truss designed for wind loads in the plane of the truss TOP CHORD 2x4 SP No.2 Solution BOT CHORD 2x4 SP No.2 Solution WEBS 2x3 SPF No.2 *Except* 10-2,8-6:2x4 SP No.2 Solution OTHERS 2x3 SPF No.2 Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). OP CHORD Structural wood sheathing directly applied or 10-0-0 co bracing. Truss to be fully sheathed for a 10.0 ps bottom chord live load nonconcurrent with any other live loads. SOT CHORD Rigid ceiling directly applied or 10-0-0 co bracing. This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. REACTIONS (size) 8=0-3-8, 10=0-3-8 Max Horiz 10=-128 (LC 10) Max Uplift 8=-79 (LC 13), 10=-79 (LC 12) Max Grav 8=463 (LC 1), 10=463 (LC 1) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 79 lb uplift at joint 10 and 79 lb uplift at joint 8. Provide mechanical conform cance with the 2018 International Residential Code sections R502.11.1 and									
TOP CHORD BOT CHORD2x4 SP No.2only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.WEBS OTHERS2x3 SPF No.2 *Except* 10-2,8-6:2x4 SP No.24)WEBS OTHERS2x3 SPF No.2 *Except* 10-2,8-6:2x4 SP No.24)BRACING BRACING	FT = 20%								
12 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. REACTIONS (size) 8=0-3-8, 10=0-3-8 Max Horiz 10=-128 (LC 10) Max Horiz 10=-128 (LC 10) 8=-79 (LC 13), 10=-79 (LC 12) Max Grav 8=463 (LC 1), 10=463 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension 9) Provide mechanical connection (by others) of truss to be aring plate capable of withstanding 79 lb uplift at joint 10 and 79 lb uplift at joint 8. TOP CHORD 1-2=0/40, 2-3=-393/119, 3-4=-307/149, 10									
REACTIONS (size) 8=0-3-8, 10=0-3-8 8=0-3-8, 10=0-3-8 8 Max Horiz 10=-128 (LC 10) 9 All bearings are assumed to be SP No.2 crushing capacity of 565 psi. Max Uplift 8=-79 (LC 13), 10=-79 (LC 12) 9 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 79 lb uplift at joint 10 and 79 lb uplift at joint 8. FORCES (lb) - Maximum Compression/Maximum Tension 10 and 79 lb uplift at joint 8. TOP CHORD 1-2=0/40, 2-3=-393/119, 3-4=-307/149, 10 min 2-3-30 (110, 3-4=-307/149, 10-3-30)									
FORCES (lb) - Maximum Compression/Maximum 10 and 79 lb uplift at joint 8. Tension 10) This truss is designed in accordance with the 2018 TOP CHORD 1-2=0/40, 2-3=-393/119, 3-4=-307/149, International Residential Code sections R502.11.1 and									
TOP CHORD 1-2=0/40, 2-3=-393/119, 3-4=-307/149, International Residential Code sections R502.11.1 and	10 and 79 lb uplift at joint 8.								
2-10=-421/219, 6-8=-421/219 LOAD CASE(S) Standard BOT CHORD 9-10=-121/235, 8-9=-69/157 LOAD CASE(S) Standard									
WEBS 4-9=0/160, 2-11=-35/155, 9-11=-37/156, 9-12=-43/161, 6-12=-41/161, 3-11=-22/29, 5-12=-23/29	- CDF								
NOTES OF MI	ISCO								
5-12=-23/29 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) SCOTT 1	M. TR								

2 Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 4-6-0, Exterior(2R) 4-6-0 to 9-6-0, Interior (1) 9-6-0 to 9-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Design valid for use only with MiTeK econectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

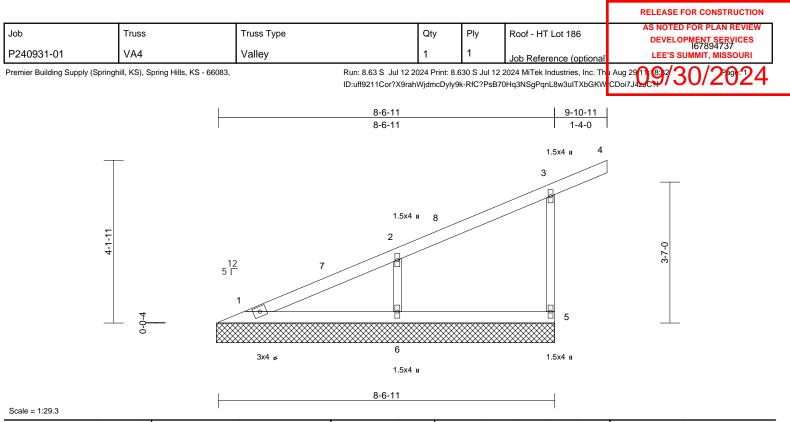

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

									RELEAS	E FOR CONSTRUCTION		
Job	Trus	s	Truss Type		Qty	Ply	Roof - HT	Lot 186	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 167894735		٦	
P240931-01	VA2	2	Valley		1	1	Job Refere	ence (optional		167894735 SUMMIT, MISSOURI		
Premier Building St	upply (Springhill, KS)	, Spring Hills, KS - 66083,		Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Thu Aug 2 ID:uff9211Cor?X9rahWjdmcDyly9k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKW CDoi7.							Ē.	
				ID:uff9211Cor?X9rah	WjdmcDyly	9k-RfC?PsB7	0Hq3NSgPqnL	.8w3ulTXbGKW	CDoi7J425C	00/202	1	
				14-11-7 14-11-7				16-3	- <u>7</u>			
					14-11-7							
	Т			6								
					P							
	~			4x6 ≠								
	6-9-11			34					6-3-0			
	-		1.5x4 u	13					Ó			
		1 <u>2</u> 5 [2									
		1										
								8				
		12		10		9		3x4 u				
		3x4	≠ 1.5x4 u	1.5x4 u		1.5x4 I						
Scale = 1:44.4				14-11-7								
Plate Offsets (X,	Y): [4:0-3-0,0-2-4	4], [6:0-2-0,0-1-4], [8:Ed	ge,0-2-8]								_	
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC 0.	.49 Vert		in (loc) n/a -	l/defl L/d n/a 999	PLATES MT20	GRIP 197/144		
TCDL	10.0	Lumber DOL	1.15	BC 0.	.19 Vert	(CT)	n/a -	n/a 999	INIT20	137/144		
BCLL BCDL	0.0* 10.0	* Rep Stress Incr Code	NO IRC2018/TPI2014	WB 0. Matrix-S	.14 Horz	z(CT) 0	.00 8	n/a n/a	Weight: 58 lb	FT = 20%	_	
BOT CHORD 2 WEBS 2 OTHERS 2 BRACING TOP CHORD 5 BOT CHORD 1 REACTIONS (s	6-0-0 oc purlins, e Rigid ceiling direct bracing. size) 1=15-0- 10=15-0 lax Horiz 1=302 (lax Uplift 8=-103	neathing directly applied except end verticals. tly applied or 10-0-0 oc .1, 8=15-0-1, 9=15-0-1,)-1, 11=15-0-1 LC 9) (LC 9), 9=-122 (LC 12), (LC 12), 11=-118 (LC 1	 4) Gable studs 5) This truss ha chord live loa 6) * This truss h on the botton 3-06-00 tall b chord and ar 7) All bearings a capacity of 5 8) Provide mech bearing plate joint 8, 122 lb 118 lb uplift a 2) 9) This truss is 	hanical connection (by capable of withstandi puplift at joint 9, 83 lb at joint 11. designed in accordance	10.0 psf b any other a live load between t b BCDL = No.2 crus r others) o ng 103 lb uplift at jo	pottom live loads. J of 20.0psf iangle the bottom 10.0psf. shing f truss to uplift at int 10 and 2 2018						
М	lax Grav 1=102 ((LC 2),	LC 9), 8=268 (LC 2), 9= 10=329 (LC 2), 11=357	-443 R802 10 2 ar	Residential Code sect ad referenced standard								
		ompression/Maximum										
TOP CHORD		=-421/221, 2-3=-344/18	3,									
BOT CHORD	1-11=-118/130, 10	,								an		
WEBS 5	9-10=-118/130, 8- 5-9=-309/223, 3-1	9=-118/130 0=-236/156, 2-11=-285/	201						FE OF	MISSO		
Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5 exposed ; en members an	h; TCDL=6.0psf; E tt. II; Exp C; Enclose and C-C Exterior -9-1 to 16-4-1 zon nd vertical left and	bh (3-second gust) 3CDL=6.0psf; h=35ft; sed; MWFRS (envelope (2E) 0-9-1 to 5-9-1, e; cantilever left and rig right exposed;C-C for S for reactions shown; DCI =1 60	,						STATE SEV SEV NUM PE-2001	T M. HER	7	
 Truss design only. For stu see Standard 	ned for wind loads uds exposed to wind Industry Gable E	in the plane of the truss nd (normal to the face), End Details as applicabl signer as per ANSI/TPI	e,					Ø	FESSIONA	IL ENGLASS		
										t 30.2024		

August 30,2024

MiTek[®] 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Plate Offsets	(X, Y): [4:0-2-0,0-1-4]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.30 0.14 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 44 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=11-9-1* 8=11-9-1* Max Horiz 1=240 (LC Max Uplift 6=-100 (L 8=-108 (L Max Grav 1=121 (LC 	cept end verticals. applied or 10-0-0 o 1, 6=11-9-11, 7=11- 1 C 9) C 9), 7=-107 (LC 12 C 12)	ed or 7 oc 8 9-11, g 2), L	 chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar All bearings capacity of 5 Provide mec bearing plate joint 6, 107 ll This truss is International 	hanical connect capable of with o uplift at joint 7 designed in acc Residential Coo nd referenced si	nt with any ned for a liv eas where will fit betw rs. be SP No. tion (by oth histanding 1 and 108 lb cordance w de sections	other live loa e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t 00 lb uplift at uplift at joint th the 2018 R502.11.1 a	Opsf om 8.					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
BOT CHORD WEBS	4-5=-39/0, 4-6=-231	/193 1/102, 6-7=-91/102	,										
NOTES 1) Wind: AS Vasd=91 Ke=1.00; exterior z Interior (1 exposed members Lumber D 2) Truss des only. For see Stand	ST-204/200, 2 de SCE 7-16; Vult=115mph mph; TCDL=6.0psf; BC ; cat. II; Exp C; Enclose cone and C-C Exterior(2 1) 5-9-1 to 13-1-11 zone ; end vertical left and rig s and forces & MWFRS DOL=1.60 plate grip DC signed for wind loads in r studs exposed to wind dard Industry Gable En It qualified building desi	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-9-1 to 5-9-1, g; cantilever left and ght exposed;C-C for for reactions shown DL=1.60 the plane of the tru (normal to the face d Details as applica	l right r n; iss e), ble,							•	B	STATE OF SCOT SEV PE-2001	Bernen


- or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- 4) Gable studs spaced at 4-0-0 oc.

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

JONAL

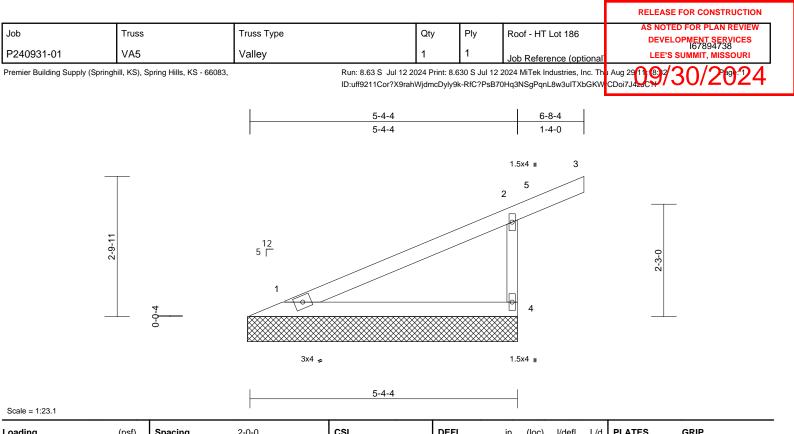
August 30,2024

Ocale = 1.23.3												
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		0.28 0.16	DEFL Vert(LL) Vert(CT)	in n/a n/a	(loc) -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCLL	0.0*	Rep Stress Incr	NO		0.07	Horz(CT)	0.00	5	n/a	n/a	1	
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P	0.07	1012(01)	0.00	Ŭ	n/a	n/a	Weight: 31 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 oc 5=8-7-4, 6=8-7-4 C 9) S 9), 6=-119 (LC 12)	ed or 8) Provide m bearing pl 5 30 This truss Internation R802.10.2 LOAD CASE(echanical connection (b ate capable of withstand lb uplift at joint 6. is designed in accordar al Residential Code sed and referenced standa	where a it betw P No.2 by othe ding 95 nce with ctions	a rectangle een the botto 2 crushing ers) of truss to 5 lb uplift at jo th the 2018 R502.11.1 ar	m D D					
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=-274/135, 2-3=- 3-5=-227/220	152/69, 3-4=-39/0,										
BOT CHORD WEBS	1-6=-67/72, 5-6=-67 2-6=-311/275	/72										
Vasd=91r Ke=1.00; exterior z Interior (1 exposed members Lumber D 2) Truss des only. For	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 0.5-9-1 to 9-11-4 zone; end vertical left and rig and forces & MWFRS JOL=1.60 plate grip DC signed for wind loads in studs exposed to wind dard Industry Gable En	DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-9-1 to 5-9-1, cantilever left and ri ght exposed;C-C for for reactions shown; IL=1.60 the plane of the trus (normal to the face)	ght ; ss								STATE OF J	MISSOLUTIAN

4) Gable studs spaced at 4-0-0 oc.
5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3)

or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com) 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITRek-US.com

August 30,2024

PE-200101880

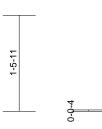
ESSIONAL EN

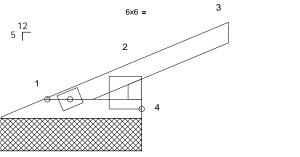
C

	bading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
	CLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.44	Vert(LL)	n/a	-	n/a	999	MT20	244/190
	CDL		10.0	Lumber DOL	1.15		BC	0.28	Vert(CT)	n/a	-	n/a	999		
	CLL CDL		0.0*	Rep Stress Incr Code	NO	8/TPI2014	WB Matrix D	0.00	Horz(CT)	0.00	4	n/a	n/a	Waight 10 lb	FT 200/
B	JDL		10.0	Code	IRC201	8/TPI2014	Matrix-P							Weight: 19 lb	FT = 20%
LL	JMBER				7	All bearings a	are assumed to be	e SP No.	2 crushing						
т	OP CHORD	2x4 SP No	o.2			capacity of 5									
B	OT CHORD	2x4 SP No	o.2		8)		nanical connection								
W	EBS	2x3 SPF N	lo.2				capable of withst	tanding 1	9 lb uplift at jo	pint					
В	RACING						uplift at joint 4.								
т	OP CHORD	Structural	wood shea	athing directly applie	dor ⁹)		designed in accor Residential Code			ام د					
				xcept end verticals.			nd referenced star			10					
B	OT CHORD		ng directly	applied or 10-0-0 oc				nuaru An	NGI/TELT.						
		bracing.			L	OAD CASE(S)	Standard								
R	EACTIONS	. ,	1=5-4-14,												
		Max Horiz	· ·	,											
				12), 4=-107 (LC 12)											
			•	C 1), 4=321 (LC 1)											
F	ORCES	· · /	imum Com	pression/Maximum											
т/	OP CHORD	Tension	<u></u>	0/0 0 4 070/000											
	OF CHORD	1-4=-39/4	,	9/0, 2-4=-276/300											
		1-4=-39/4	5												
	OTES	E 7 40: 1/	445	(0											
1)				(3-second gust)											
				DL=6.0psf; h=35ft; d; MWFRS (envelop	a)										
				E) 0-9-1 to 5-9-1,	-)										
			``	cantilever left and rid	nht										
				pht exposed;C-C for	,										
				for reactions shown;										and	TOP
	Lumber DC	DL=1.60 pla	te grip DO	L=1.60										A OF I	MISO
2)	Truss desig	gned for wir	nd loads in	the plane of the trus	s								1	STATE OF M	NO S
				(normal to the face),									R	AV SCOT	New Y
				d Details as applicab									A	S SCOL	I MI. YY
				gner as per ANSI/TP	1.								И.	/ r SEVI	
3)				n chord bearing.									y *	11	*
4)				100 11 11									0	SJ	
5)				a 10.0 psf bottom	c								N.C	Corres M	e Max
6)				th any other live load or a live load of 20.0									N7	PE-2001	018807
0)		inds been	uesigned li	ui a iive iuau ui 20.0	191								YY.	-2001	VIOU A

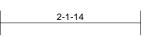
6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


August 30,2024


E

SIONAL


						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HT Lot 186	AS NOTED FOR PLAN REVIEW
D040004-04						DEVELOPMENT SERVICES 167894739
P240931-01	VA6	Valley	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Jul 12 2				

0-11-0

3x4 ≤

Scale = 1:17.7

Plate Offsets (X, Y): [2:Edge,0-1-13]

	() / [- 5-/-											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	n/a	- (100)	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	n/a	-	n/a	999		21.0.100
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014			()		-			Weight: 8 lb	FT = 20%
					-						9	
LUMBER				ings are assumed to	o be SP No.	2 crushing						
TOP CHORD	2x4 SP No.2			/ of 565 psi.								
BOT CHORD				mechanical connect								
WEBS	2x3 SPF No.2			plate capable of wi	thstanding 9	97 lb uplift at jo	oint					
BRACING			4.									
TOP CHORD	Structural wood she	eathing directly appli		ss is designed in ac								
	2-2-7 oc purlins, ex		D002 1	ional Residential Co 0.2 and referenced			na					
BOT CHORD	0 0 ,	/ applied or 10-0-0 o			Stanuaru Ar	NSI/TFTT.						
	bracing.		LUAD CAS	E(S) Standard								
REACTIONS	· · · ·											
	Max Horiz 1=54 (LC											
	Max Uplift 4=-97 (LC											
	Max Grav 1=47 (LC	,. ,										
FORCES	(lb) - Maximum Con	npression/Maximum										
	Tension	0/0 0 4 004/047										
TOP CHORD		39/0, 2-4=-201/247										
BOT CHORD	1-4=-12/13											
NOTES												
	CE 7-16; Vult=115mph											
	nph; TCDL=6.0psf; BC		n a)									
	Cat. II; Exp C; Enclose one and C-C Exterior(2											
	exposed ; end vertical		ien								~	~
	C-C for members and f		r								an	Jun
	shown; Lumber DOL=		•								B.F. OF	MISS
DOL=1.60		51								6	ATE OF	N'SON
2) Truss des	igned for wind loads ir	n the plane of the tru	ISS							B	SCOT	птм.
	studs exposed to wind									B	~/	TER V
	dard Industry Gable En									Ros		
	qualified building desi		PI 1.							ax.		
	uires continuous botto								2		sour.	Linex
	ds spaced at 4-0-0 oc.									22	NUN	IBER /S
	has been designed fo		, da							N'A	O PE-200	1018807
	load nonconcurrent w ss has been designed									V.	The second secon	12 A
	ttom chord in all areas		opai							X	0.50	NO'A
	all by 2-00-00 wide will		om								C'SSION	ALES
	any other members.										TOUT	DDDD
	,										A	+ 20 2024

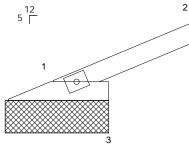
August 30,2024

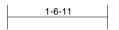
Active Field Workshow (%) 16023 Swingley Ridge Rd. ChesterField, MO 63017 314.434.1200 / MITek-US.com

A
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
lab	Truss	Truss Type	Qty	Plv	Roof - HT Lot 186	AS NOTED FOR PLAN REVIEW
300	11055	Truss Type	QLY	гіу	R001 - H1 L01 186	DEVELOPMENT SERVICES 167894740
P240931-01	VA7	Vallev	1	1		
					Job Reference (optional	
Premier Building Supply (Springh	ill, KS), Spring Hills, KS - 66083,				2024 MiTek Industries, Inc. Th	

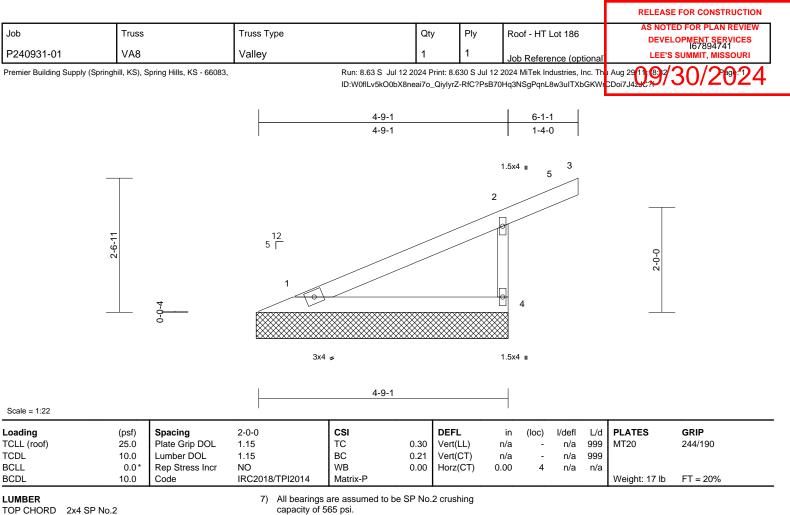

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. The Aug 29 1 8 2 ID:MrCXGN2rZ97On?9t4R8?9Qyly9j-RfC?PsB70Hq3NSgPqnL8w3uITXbGK VrCDoi7942Jeft




NOTION

3x4 🥃

Scale = 1:17.8


		i			· · · ·								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.44	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.40	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.00	Horz(CT)	n/a	-	n/a	n/a		
BCDL	10.0	Code	IRC2018/T	PI2014	Matrix-P							Weight: 6 lb	FT = 20%
I	2x4 SP No.2 2x4 SP No.2 Structural wood she 1-7-4 oc purlins. Rigid ceiling directly bracing. (size) 1=1-7-4, 3 Max Horiz 1=42 (LC Max Uplit 1=-35 (LC	applied or 10-0-0 or 3=1-7-4 8)	9) F 29) F 20 or 1 20 T 20 F	capacity of 5 Provide mec bearing plate 1 and 113 lb This truss is nternational	hanical connection capable of withsta uplift at joint 3. designed in accord Residential Code nd referenced stan	i (by oth anding 3 dance w sections	ers) of truss to 5 lb uplift at joi ith the 2018 5 R502.11.1 an	int					
FORCES	Max Grav 1=49 (LC (Ib) - Maximum Com Tension 1-2=-59/0 1-3=0/0	8), 3=205 (LC 1)											
Vasd=91m Ke=1.00; C exterior zor and right ex exposed;C- reactions sl DOL=1.60 2) Truss desig	E 7-16; Vult=115mph ph; TCDL=6.0psf; BC cat. II; Exp C; Enclose ne and C-C Exterior(2 xposed ; end vertical I -C for members and fe hown; Lumber DOL=' gned for wind loads in tuds exposed to wind	DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever l eft and right orces & MWFRS for I.60 plate grip the plane of the trus	eft									SATE OF	MISSOL

- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely
- 4) braced against lateral movement (i.e. diagonal web). Gable studs spaced at 4-0-0 oc. 5)
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

2x4 SP No.2 BOT CHORD 2x3 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 4-9-11 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 1=4-9-11, 4=4-9-11 Max Horiz 1=103 (LC 9)

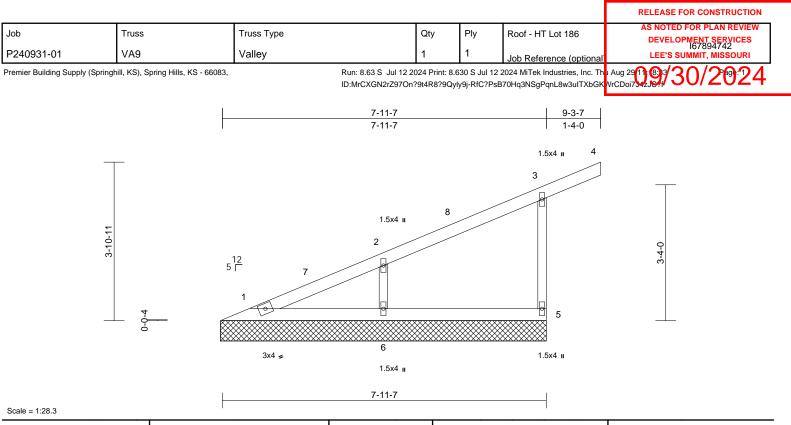
Max Uplift 1=-13 (LC 12), 4=-101 (LC 12) Max Grav 1=159 (LC 1), 4=297 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-154/60, 2-3=-39/0, 2-4=-257/282 BOT CHORD 1-4=-34/37

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-9-1 to 5-9-1, Interior (1) 5-9-1 to 6-1-11 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.
- 3) Gable studs spaced at 4-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 6)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

capacity of 565 psi.


- Provide mechanical connection (by others) of truss to 8)
- bearing plate capable of withstanding 13 lb uplift at joint 1 and 101 lb uplift at joint 4. This truss is designed in accordance with the 2018 9)
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.24	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.24	Vert(CT)	n/a		n/a	999 999	101120	244/190
BCLL	0.0*	Rep Stress Incr	NO		WB	0.07	Horz(CT)	0.00	5	n/a	n/a	1	
BCDL	10.0	Code		8/TPI2014	Matrix-P	0.01	11012(01)	0.00	Ŭ	11/4	n/a	Weight: 29 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 or 5=8-0-1, 6=8-0-1 C 9) S 9), 6=-109 (LC 12) C 20), 5=262 (LC 1),	C 9)	on the botton 3-06-00 tall I chord and an All bearings capacity of 5 Provide med bearing plate 5 and 109 lb This truss is International	hanical connection capable of with uplift at joint 6. designed in accor Residential Cod nd referenced sta	eas where will fit betw 's. be SP No. on (by oth standing 9 ordance w le sections	a rectangle veen the both 2 crushing ers) of truss t 5 lb uplift at j ith the 2018 R502.11.1 a	om to joint					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-268/127, 2-3=- 3-5=-231/228	152/66, 3-4=-39/0,											
BOT CHORD WEBS	1-6=-62/67, 5-6=-62 2-6=-285/266	/67											
NOTES													
1) Wind: ASI Vasd=91r Ke=1.00; exterior zc Interior (1 exposed ; members Lumber D	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 5-9-1 to 9-4-1 zone; c ; end vertical left and rig and forces & MWFRS JOL=1.60 plate grip DC	DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-9-1 to 5-9-1, antilever left and rig pht exposed;C-C for for reactions shown L=1.60	ht ;									STATE OF J	MISSOLATION

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 3)

Gable studs spaced at 4-0-0 oc. 4)

5)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

> 16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

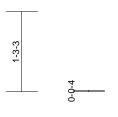
0

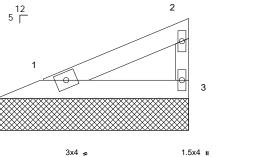
NUMBER

PE-2001018807

E

August 30,2024


SSIONAL


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

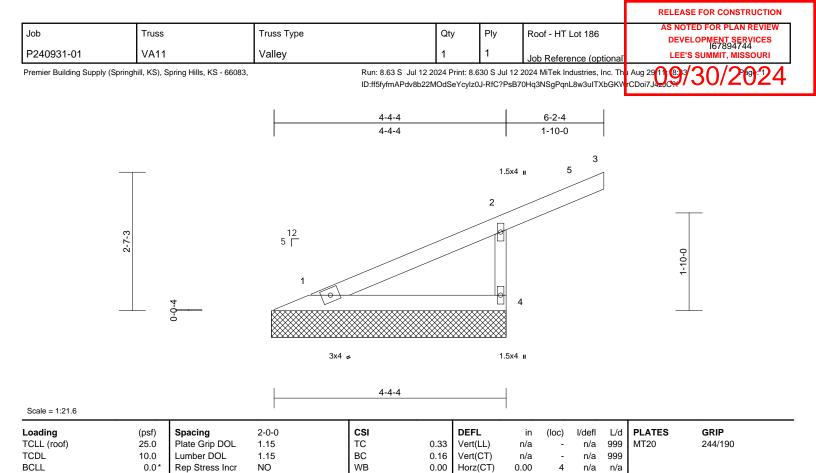
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - HT Lot 186	AS NOTED FOR PLAN REVIEW
005	11033		Giy	i iy		DEVELOPMENT SERVICES 167894743
P240931-01	VA10	Valley	1	1	Job Reference (optional	
Premier Building Supply (Springh	Aug 29063/30/2024					

2-11-14

1.5x4 u

Scale - 1.18.2

Scale = 1:18.2												
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.11	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	NO IRC2018/TPI2014	WB Matrix-P	0.00	Horiz(TL)	0.00	3	n/a	n/a	Weight: 9 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	· · ·	athing directly applie cept end verticals. applied or 10-0-0 oc 4, 3=2-11-14	 7) All bearing capacity o 8) Provide m bearing pl 1 and 26 l 9) This truss Internation 	echanical connecti ate capable of with o uplift at joint 3. is designed in acco al Residential Cod and referenced sta	on (by oth standing 1 ordance w le sections	ers) of truss t 7 lb uplift at j ith the 2018 s R502.11.1 a	oint					
	Max Horiz 1=43 (LC Max Uplift 1=-17 (LC Max Grav 1=98 (LC	2 12), 3=-26 (LC 12) 1), 3=98 (LC 1)										
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD BOT CHORD	1-2=-56/38, 2-3=-76 1-3=-19/21	/90										
NOTES	1-3=-19/21											
Vasd=91m Ke=1.00; C exterior zo and right e exposed;C reactions s DOL=1.60		DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever I left and right orces & MWFRS for 1.60 plate grip	eft								TATE OF	MISSO
only. For s see Standa or consult	gned for wind loads in studs exposed to wind ard Industry Gable En qualified building desig	l (normal to the face) d Details as applicat gner as per ANSI/TF	, ble,								sy scol	TT M. TIER
 Gable stud This truss 	uires continuous botton Is spaced at 4-0-0 oc. has been designed for load nonconcurrent wi	r a 10.0 psf bottom	ds						~	8	NUM	Servier.
 6) * This truss on the bott 	s has been designed f om chord in all areas Il by 2-00-00 wide will	or a live load of 20.0 where a rectangle	psf							AS.	PE-200	1018807


6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

August 30,2024

SIONAL EN

LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP N 2x4 SP N 2x3 SPF I	0.2
BRACING		
TOP CHORD		wood sheathing directly applied or purlins, except end verticals.
BOT CHORD		ng directly applied or 10-0-0 oc
REACTIONS	(size)	1=4-4-14, 4=4-4-14
	Max Horiz	1=105 (LC 9)
	Max Uplift	4=-120 (LC 12)
	Max Grav	1=123 (LC 1), 4=332 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum

10.0

Code

Tension

TOP CHORD 1-2=-167/62, 2-3=-52/0, 2-4=-297/329 BOT CHORD 1-4=-31/33

NOTES

BCDL

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-9-1 to 5-9-1, Interior (1) 5-9-1 to 6-2-14 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom

- chord live load nonconcurrent with any other live loads.
 6) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

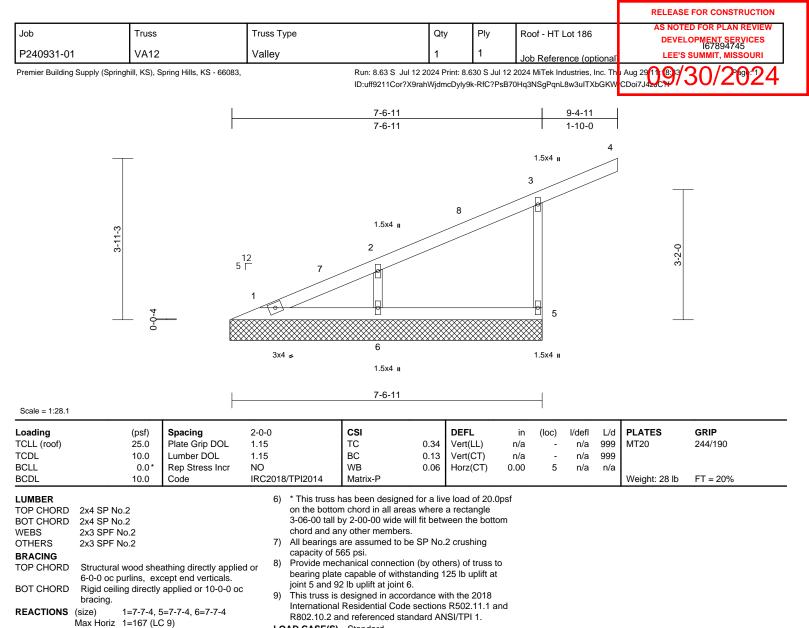
Matrix-P

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 120 lb uplift at joint 4.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

IRC2018/TPI2014



Weight: 16 lb

FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria, and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

LOAD CASE(S) Standard

Max Uplift 5=-125 (LC 9), 6=-92 (LC 12)

(lb) - Maximum Compression/Maximum

1-2=-274/118, 2-3=-172/59, 3-4=-52/0,

(LC 1)

1-6=-58/63, 5-6=-58/63

Wind: ASCE 7-16: Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope)

exterior zone and C-C Exterior(2E) 0-9-1 to 5-9-1, Interior (1) 5-9-1 to 9-5-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for

members and forces & MWFRS for reactions shown;

Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,

or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing.

This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

Max Grav

Tension

3-5=-288/281

2-6=-244/233

Lumber DOL=1.60 plate grip DOL=1.60

Gable studs spaced at 4-0-0 oc.

FORCES

TOP CHORD

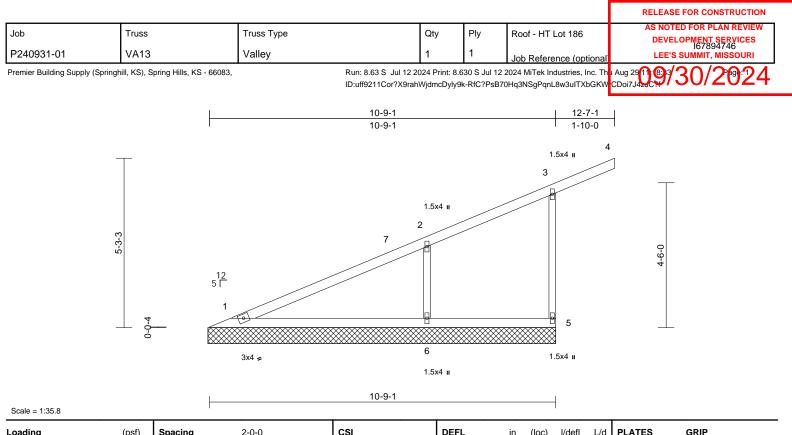
BOT CHORD

WEBS

2)

3) 4)

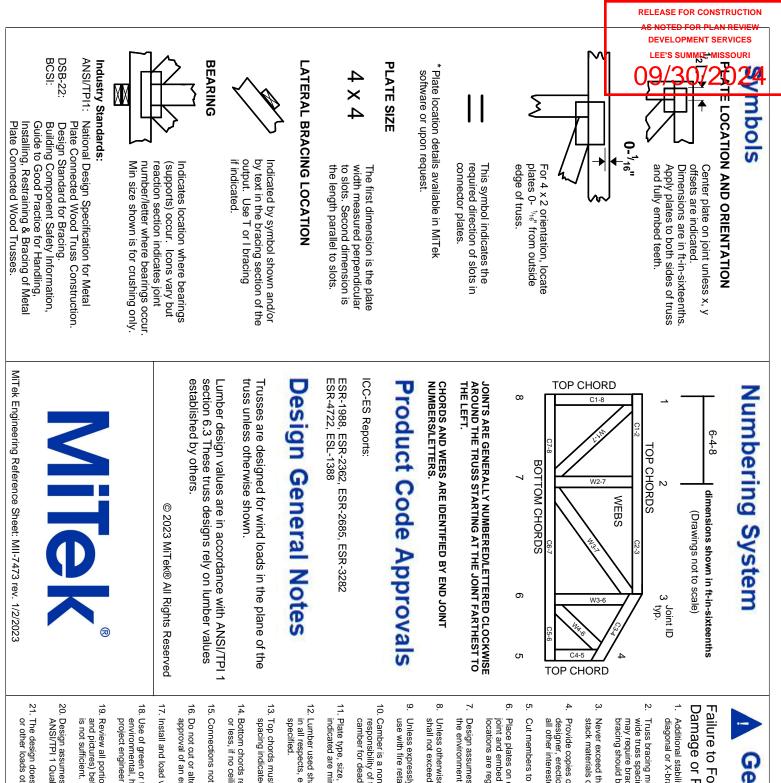
5)


NOTES 1)

1=97 (LC 20), 5=319 (LC 1), 6=330

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)



Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI20	4	CSI TC BC WB Matrix-S	0.63 0.33 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 40 lb	GRIP 244/190 FT = 20%
LUMBER * This truss has been designed for a live load of 20.0psf TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x3 SPF No.2 OTHERS 2x3 SPF No.2 BRACING 7) All bearings are assumed to be SP No.2 crushing BRACING 7) All bearings are assumed to be SP No.2 crushing BTO CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 1=10-9-11, 5=10-9-11, 6=10-9-11 Max Horiz 1=229 (LC 9) Max Uplift 5=-120 (LC 9), 6=-158 (LC 12) Max Grav 1=221 (LC 1), 5=265 (LC 1), 6=545 (LC 12) Max Grav 1=221 (LC 1), 5=265 (LC 1), 6=545													
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORD BOT CHORD	Tension 1-2=-308/161, 2-3=- 3-5=-250/224 1-6=-87/98, 5-6=-87/												
WEBS NOTES 1) Wind: AS(2-6=-399/282 CE 7-16: Vult=115mph	(3-second gust)											
 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-9-1 to 5-9-1, Interior (1) 5-9-1 to 12-7-11 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 4-0-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 											T M. ER 018807		

August 30,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor1 bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.