

RE:B240153 - Lot 9 CBMiTekSite Information:16023 SProject Customer:Subdivision:ChesterDot/Block:9Subdivision:Cobey CreekModel:Cherry Blossom - FarmhouseAddress:3445 SE Corbin Dr.City:Lee's SummitState:MOGeneral Truss Engineering Criteria & Design Loads (Individual Truss DesignDrawings Show Special Loading Conditions):Design Program:Design Code:IRC2018/TPI2014Design Program:MiTek 20/20 8.7Wind Code:ASCE 7-16Wind Speed:115 mph

Wind Code: ASCE 7-16 Roof Load: 40.0 psf

Mean Roof Height (feet): 20

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Design Program: MiTek 20/20 8.7 Design Method: Components/Cladding ASCE 7-16 Floor Load: N/A psf

Exposure Category: B

No.	Seal#	Truss Name	Date
1234567890112345678901123456789001222345678900122222222222222222222222222222222222	I67451622 I67451623 I67451625 I67451625 I67451626 I67451627 I67451629 I67451630 I67451630 I67451631 I67451633 I67451633 I67451634 I67451635 I67451638 I67451643 I67451643 I67451644 I67451644 I67451645 I67451650 I67451651	A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 C2 C3 D1 J1 J2 J3 J4 LAY2 LAY3 V1 V2 V3 V4 V5 V6 V7	8/12/24 8/12/24

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Sevier, Scott My license renewal date for the state of Missouri is December 31, 2025.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	A1	Half Hip Girder	1	1	Job Reference (optional)	167451622

Run: 8.73 E Apr 25 2024 Print: 8.730 E Apr 25 2024 MiTek Industries, Inc. Mon Aug 12 10:26:07 ID:KH2YD5xXkeH8NflZIE5QrVypcze-q3o0Gl51eJnSYktWzZuhLROzTUS26fMAxAdD4oyod1m

Page: 1

August 12,2024

DEVELORMENTSER LEE'S'SUMMIT'SMISSOURI 09/05/2024 2:14:30

ION

Scale = 1:55.5

Plate Offsets ([2:0- X, Y): [18:0	-8-0,0-0-2], 0-11-0,0-1-	[4:0-6-0,0-2-12], [5 1]	:0-2-8,0-1	-8], [7:0-5-4,0	-1-12], [11:Edge,0	-2-8], [12:0)-2-8,0-2-12]	, [14:0-2·	·8,0-3-0]	, [16:0-7	-0,0-4-	0], [17:0-4-0,0-2-	0],	
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL		25.0	Plate Grip DOL	1.15		тс	0.69	Vert(LL)	-0.65	16-17	>520	360	M18AHS	142/136	
(Roof Snow =	25.0)		Lumber DOL	1.15		BC	0.98	Vert(CT)	-0.96	16-17	>354	240	MT20	197/144	
TCDI		10.0	Rep Stress Incr	NO		WB	0.89	Horz(CT)	0.27	11	n/a	n/a	MT18HS	197/144	
BCU		0.0	Code	IRC20	18/TPI2014	Matrix-S	0.00	Wind(LL)	0.22	16-17	>999	240			
BCDI		10.0						· · · · · · · · · · · · · · · · · · ·	0.22		1000	2.0	Weight [,] 182 lb	FT = 10%	
5051													rroigini ioz io	1070	
LUMBER FOP CHORD BOT CHORD WEBS	2x8 SP 24 2400F 2.0 2x6 SP 24 No.2, 19-7 2400F 2.0 2x3 SPF I	400F 2.0E)E, 8-10:2x 400F 2.0E 18:2x3 SPF)E No.2 *Exce	*Except* 4-8:2x6 SF 6 SPF No.2 *Except* 2-19:2x6 S F No.2, 16-15:2x10 S ept*	E SPF SP	OT CHORD	2-19=-32/518, 1 3-18=-338/4170 32-33=-339/420 17-34=-339/420 35-36=-657/861 15-16=0/136, 15 37-38=-76/1324	8-19=-23/5 , 18-32=-3 7, 33-34=-3 7, 17-35=-(4, 16-36=-(5-37=-76/1 , 14-38=-7(52, 339/4207, 339/4207, 657/8614, 657/8614, 324, 6/1324,		9) Pro bea 11 10) Thi Inte R80 11) Gra	vide me aring plat and 216 s truss is ernationa 02.10.2 a uphical p	chanic e capa lb upli desig desig and ref and ref	al connection (by able of withstandi ft at joint 2. ned in accordanc dential Code sect erenced standard presentation doe	others) of trus ng 138 lb uplift e with the 201 ions R502.11. I ANSI/TPI 1. s not depict th	s to at joint 8 1 and e size
	14-16,12-	7,12-10,17	-4:2x4 SPF 2100F	1.8E,		14-39=-403/621	9, 13-39=-4 9 12-40=-4	403/6219, 403/6219		or t	he orient	tation o	of the purlin along	the top and/o	r
	10-7.274	011 10.2				12-41=0/63, 41-	42=0/63. 4	2-43=0/63.		500		u.			
	Structural		athing directly appli	od or		11-43=0/63	,	,							
	4-10-2 oc		acting unecity applic	and V	VEBS	5-17=-872/59, 5	-16=-31/11	07,							
	2-0-0 oc r	2-9	1-12 max)· 4-10	ana		14-16=-333/498	4, 7-16=-3	07/3646,							
BOT CHORD	Rigid ceili	ina directly	applied or 10-0-0 o	c		7-14=-864/149,	7-12=-216	3/173,							
	bracing.	ing anoonly		•		9-12=-763/143,	10-12=-294	4/4511,							
REACTIONS	(lb/size)	2=1692/0	-3-8 11=1530/			3-19=-664/42, 4	-17=-333/4	626, 6-16=-3	389/64						
	(,	Mechanic	al	N	IOTES										
	Max Horiz	2=-72 (LC	2 13)	1) Wind: ASC	E 7-16; Vult=115	mph (3-sec	ond gust)							
	Max Uplift	2=-216 (L	C 5), 11=-138 (LC 5	5)	Vasd=91m	ph; TCDL=6.0psf;	BCDL=6.0	0psf; h=20ft;	Cat.						
	Max Grav	2=2074 (L	_C 15), 11=2140 (LC	C 15)	II; Exp B; E	Enclosed; C-C Ext	erior(2E) -(0-10-8 to 2-1	-8,						
FORCES	(lb) - Max	imum Com	pression/Maximum		Exterior(2) 25-5-12, E	R) 2-1-8 to 7-5-14, xterior(2E) 25-5-1	Interior (1) 2 to 28-5-1) 7-5-14 to 2; cantilever	left					-	
		0 0 1001	1/400 0 00 4500/4	4.4	and right e	xposed ; end verti	cal left and	right expos	ed;				O TE	and the	
	1-2=0/40,	10/123 1-2	+/109, 3-20=-4329/4 218611/723	11,	Lumber DO	DL=1.60 plate grip	DOL=1.60)					A E OF I	IISS O	
	21_228	611/723 5.	-22861//723	2) TCLL: ASC	CE 7-16; Pf=25.0 p	osf (Lum D	OL=1.15 Pla	ite			4		- CA	Y
	5-23=-966	66/752 23-	-22=-0014/723, -24=-9666/752		DOL=1.15); Is=1.0; Rough C	at B; Parti	ally Exp.; Ce	=1.0;			H	SCOT	M YP	N.
	6-24=-966	66/752 6-2	21= 0000/102,		Cs=1.00; 0	Ct=1.10						B	SEVI	FR	ΥX .
	25-26=-97	743/765. 7-	-26=-9743/765.	3) Unbalance	d snow loads hav	e been cor	nsidered for t	his			h			• N
	7-8=-4220	0/309, 8-27	/=-4220/309,		design.							U ^		O	
	9-27=-422	20/309, 9-2	28=-4220/309,	4) I his truss	nas been designe	d for great	er of min roo	f live		_			XIM	M
	28-29=-42	220/309, 29	9-30=-4220/309,		ioau oi 20.	o per or 2.00 times	ith other liv	Jau 0i ∠5.0 p	51 011		Ø	W S	NUM	SER /	× B
	30-31=-42	220/309, 10	0-31=-4220/309,	5) Provide ad	non-concurrent w		ve iudus. Nator pondin	a			N	O PE-2001	018807	A
	10-11=-20	045/170		6		are MT20 plates un	o prevent v	wise indicate	y. ad			N	The second		A
				7) All bearing	s are assumed to	he SPF M	2 crushing	.			٩	1ºSer	GY	1
				1	capacity of	425 psi.		J.2 Grushing					ONA	LER	
				8) Refer to gi	rder(s) for truss to	truss conr	nections.					1000	500	

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	A1	Half Hip Girder	1	1	Job Reference (optional)	167451622

12) Hanger(s) or other connection device(s) shall be

provided sufficient to support concentrated load(s) 135 Ib down and 105 lb up at 3-2-0, 57 lb down and 42 lb up at 5-2-0, 54 lb down and 42 lb up at 7-2-0, 47 lb down and 42 lb up at 9-2-0, 47 lb down and 42 lb up at 11-2-0, 64 lb down and 64 lb up at 13-2-0, 64 lb down and 64 lb up at 15-2-0, 64 lb down and 64 lb up at 17-2-0, 64 lb down and 64 lb up at 19-2-0, 64 lb down and 64 lb up at 21-2-0, 64 lb down and 64 lb up at 23-2-0, and 66 lb down and 64 lb up at 25-2-0, and 70 Ib down and 64 lb up at 27-2-0 on top chord, and 125 lb down and 62 lb up at 3-2-0, 46 lb down and 29 lb up at 5-2-0, 46 lb down and 29 lb up at 7-2-0, 46 lb down and 29 lb up at 9-2-0, 46 lb down and 29 lb up at 11-2-0, 22 Ib down at 13-2-0, 22 Ib down at 15-2-0, 22 Ib down at 17-2-0, 22 lb down at 19-2-0, 22 lb down at 21-2-0, 22 Ib down at 23-2-0, and 22 Ib down at 25-2-0, and 22 Ib down at 27-2-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1)

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)

Vert: 1-4=-70, 4-10=-70, 2-19=-20, 16-18=-20, 11-15=-20

Concentrated Loads (lb)

Vert: 4=-43 (F), 8=-22 (F), 14=-12 (F), 7=-22 (F), 21=-7 (F), 22=-7 (F), 23=-7 (F), 24=-7 (F), 25=-22 (F), 26=-22 (F), 27=-22 (F), 28=-22 (F), 29=-22 (F), 31=-22 (F), 32=-114 (F), 33=-36 (F), 34=-36 (F), 35=-36 (F), 36=-36 (F), 37=-12 (F), 38=-12 (F), 39=-12 (F), 40=-12 (F), 41=-12 (F), 42=-12 (F), 43=-12 (F) Run: 8.73 E Apr 25 2024 Print: 8.730 E Apr 25 2024 MiTek Industries, Inc. Mon Aug 12 10:26:07 ID:KH2YD5xXkeH8NfIZIE5QrVypcze-q3o0Gl51eJnSYktWzZuhLROzTUS26fMAxAdD4oyod1m Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPH Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	A2	Half Hip	1	1	Job Reference (optional)	167451623

Run: 8.73 S Jul 24 2024 Print: 8.730 S Jul 24 2024 MiTek Industries, Inc. Fri Aug 09 10:27:31 ID:_KEfAOuPv6frGusbVgVF8Rypczj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:55.2

Plate Offsets	(X, Y): [3:0-5-10,Edge	e], [4:0-5-8,0-3-0], [9:E	Edge,0-2-8	3], [11:0-3-5,0-	2-4], [15:0-3-0,0-0	-8]								
Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0 25.0) 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.85 0.83 0.89	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.34 -0.49 0.23 0.04	(loc) 5 11-12 10 5	l/defl >999 >695 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18AHS Weight: 127 lb	GRIP 197/144 142/136 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASI Vasd=91T II; Exp B; Exterior(2 25-5-12, E and right i Lumber D	2x8 SP 2400F 2.0E 2100F 1.8E, 7-9:2x- 2x4 SPF No.2 *Exci No.2, 3-13:2x4 SPF 2x3 SPF No.2 *Exci No.2 Structural wood she 5-8-3 oc purlins, ep 2-0-0 oc purlins (2-f Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, Max Horiz 2=-121 (I Max Grav 2=1665 ((lb) - Maximum Con Tension 1-2=0/31, 2-3=-119) 4-5=-4729/0, 5-6=-4 8-9=-34/49, 9-10=-5 2-16=0/165, 15-16= 14-15=0/2803, 13-1 5-13=-732/42, 11-11: 4-13=0/2097, 4-14= 6-13=0/911, 6-11=- 8-10=-2928/0 CE 7-16; Vult=115mpf mph; TCDL=6.0psf; BC Enclosed; C-C Exteric R) 2-1-8 to 9-4-15, Int Exterior(2E) 25-5-12 to exposed ; end vertical IOL=1.60 plate grip DC	L *Except* 4-7:2x4 SPI 4 SPF No.2 ept* 16-15,5-12:2x3 S 2100F 1.8E ept* 11-13,10-8:2x4 S eathing directly applied coept end verticals, an 5-5 max.): 4-9. / applied or 10-0-0 oc 8-10 10= Mechanical LC 13) LC 15), 10=1993 (LC npression/Maximum 9/0, 3-4=-3226/0, 1682/0, 6-8=-3114/0, 307/23 60/82, 3-15=0/2637, 4=0/2812, 12-13=0/7. 2=0/266, 10-11=0/248 60/249, 11-13=0/3631 1315/0, 8-11=0/1038, n (3-second gust) CDL=6.0psf; h=20ft; Cr (r(2E) -0-10-8 to 2-1-8 erior (1) 9-4-15 to 28-5-12; cantilever le left and right exposed DL=1.60	2) F 3PF 3) 3PF 4) d or 5) nd 7) 8) 9) 10 15) LC 8, 31 , , s, at. 5, s, eft 1;	TCLL: ASCE DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 20.0 overhangs n Provide aded All plates are All bearings Refer to gird This truss is International R802.10.2 ar Of Graphical pu or the orienta bottom chore DAD CASE(S)	A 7-16; Pf=25.0 psi Is=1.0; Rough Cat Is=1.0; Rough Cat Is been designed f psf or 2.00 times f on-concurrent with quate drainage to p Im20 plates unle are assumed to be er(s) for truss to tr designed in accor Residential Code nd referenced star rlin representation ation of the purlin a I. Standard	f (Lum D B; Parti been cor for great lat roof la other lin prevent v ses other e SPF Ne uss conr dance w sections odard AN o does no along the	L OL=1.15 Pla ally Exp.; Ce er of min roo oad of 25.0 p ve loads. water pondin wise indicate o.2. nections. ith the 2018 s R502.11.1 a vs/I/TPI 1. ot depict the e top and/or	ate =1.0; this of live osf on ng. ed. and size				STATE OF M STATE OF M SCOTT SEVI NUME PE-20010	AISSOLUTION M. ER DISSOLUTION LENGTRO	e
												August	12,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	A3	Half Hip	1	1	Job Reference (optional)	167451624

Run: 8.73 S Jul 24 2024 Print: 8.730 S Jul 24 2024 MiTek Industries, Inc. Fri Aug 09 10:27:31 ID:_KEfAOuPv6frGusbVgVF8Rypczj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = '	1:55.3
-----------	--------

Plate Offsets (X, Y): [3:0-5-14,Edge]	, [4:0-4-12,0-3-0], [9	:Edge,0-2-	·8], [11:0-2-4,0	-1-8], [13:0-3-0,0	-3-0], [15	0-3-0,0-0-8]							
Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.82 0.89 0.89	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.22 -0.35 0.22 0.04	(loc) 5 11-12 10 14-15	l/defl >999 >985 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT18HS Weight: 135 lb	GRIP 197/144 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD	2x4 SPF No.2 *Exce 2.0E 2x4 SPF No.2 *Exce No.2 2x3 SPF No.2 *Exce Structural wood shea 6-0-0 oc purlins, exc 2-0-0 oc purlins, exc 2-0-0 oc purlins (2-8- Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=-164 (Lo Max Grav 2=1525 (L (lb) - Maximum Com Tension 1-2=0/31, 2-3=-1072 4-5=-3033/0, 5-6=-3(pt* 1-4:2x8 SP 2400 pt* 16-15,5-12:2x3 S pt* 10-8:2x4 SPF No athing directly applie pept end verticals, ar -5 max.): 4-9. applied or 10-0-0 oc 8-10 0= Mechanical C 13) C 15), 10=1956 (LC pression/Maximum /17, 3-4=-2659/0, 021/0, 6-8=-2245/0, 12/27	2) F 3PF 3) 0.2 4) d or 5) nd 5) (10 (10 (10) (10) (10) (10) (10) (10)	TCLL: ASCE DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 20.0 overhangs n Provide adec All plates are All bearings a Refer to gird This truss is International R802.10.2 ar) Graphical pu or the orient bottom chorc DAD CASE(S)	7-16; Pf=25.0 ps is=1.0; Rough Ca =1.10 snow loads have is been designed psf or 2.00 times on-concurrent wit quate drainage to an 200 plates unil are assumed to b er(s) for truss to t designed in acco Residential Code do referenced sta rlin representatio tion of the purlin i. Standard	of (Lum D at B; Partia been cor for greate flat roof lo h other lin prevent v less other russ conr rdance w e sPF No russ conr rdance w e sections indard AN n does no along the	OL=1.15 Plat ally Exp.; Ce- asidered for the er of min roof bad of 25.0 ps re loads. water ponding wise indicate b.2. nections. th the 2018 R502.11.1 and ISI/TPI 1. of depict the s top and/or	e =1.0; his live sf on g. d. nd size						
BOT CHORD WEBS	2-16=-9/130, 15-16= 14-15=0/2257, 13-14 5-13=-600/41, 11-12 4-13=0/1071, 4-14=0 6-13=0/419, 6-11=-1	0/70, 3-15=0/2127, I=0/2262, 12-13=0/7 =0/225, 10-11=0/18(0/206, 11-13=0/2520 024/14, 8-11=0/905,	7, 03 ,								ŧ	STATE OF M	AISSOLD M.	<i>b</i>
NOTES 1) Wind: ASC Vasd=91n II; Exp B; I Interior (1) Interior (1) 28-5-12; c left and rig DOL=1.60	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCI Enclosed; C-C Exterior) 2-1-8 to 2-11-1, Exteri) 11-5-4 to 25-5-12, Ext antilever left and right of the exposed; Lumber D	(3-second gust) DL=6.0psf; h=20ft; C (2E) -0-10-8 to 2-1-8 ior(2R) 2-11-1 to 11- terior(2E) 25-5-12 to exposed ; end vertic: OL=1.60 plate grip	Cat. 3, 5-4, al							-		SEVI PE-20010 PE-20010 August	ER 018807 L ENGL 12,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	A4	Half Hip	1	1	Job Reference (optional)	167451625

16-11-13

11-5-4

Wheeler Lumber, Waverly, KS - 66871,

9-2-0

Run: 8.73 S Jul 24 2024 Print: 8.730 S Jul 24 2024 MiTek Industries, Inc. Fri Aug 09 10:27:32 ID:SWo1Oku1gQniu1Ro3O1Uhfypczi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

22-7-11

Page: 1

28-7-0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	A5	Half Hip	1	1	Job Reference (optional)	167451626

Run: 8.73 S Jul 24 2024 Print: 8.730 S Jul 24 2024 MiTek Industries, Inc. Fri Aug 09 10:27:32 ID:SWo1Oku1gQniu1Ro3O1Uhfypczi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:55.7

Plate Offsets (X, Y): [4:0-4-0,0-1-9], [7:Edge,0-2-8], [12:0-2-11,0-4-0]

Loading TCLL (Roof Snow = TCDL BCLL BCDL	: 25.0)	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.97 0.80 0.84	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.17 -0.31 0.06 0.05	(loc) 9-11 11-12 8 8-9	l/defl >999 >999 n/a >999	L/d 360 180 n/a 240	PLATES MT20 MT18HS Weight: 124 lb	GRIP 197/144 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF 2 No.2 2x4 SPF N 2x3 SPF N No.2, 12-2 Structural except enu (3-3-7 ma:	100F 1.8E lo.2 lo.2 *Exce ::2x8 SP 2 wood she d verticals x.): 4-7.	*Except* 4-7:2x4 S pt* 11-5,8-6:2x4 SP 400F 2.0E athing directly applie, and 2-0-0 oc purlin	3) SPF 4) F 5) 6(, 7) s 8) 9)	Unbalanced design. This truss ha load of 20.0 overhangs n Provide adec All plates are All bearings Refer to gird This truss is	snow loads have is been designed psf or 2.00 times i on-concurrent witi quate drainage to MT20 plates unlu are assumed to be er(s) for truss to tr designed in accor	been cor for great flat roof le h other li prevent ess other e SPF Ne russ conr rdance w	nsidered for t er of min roo bad of 25.0 p ve loads. water pondin wise indicate 0.2. nections. ith the 2018	this of live osf on ng. ed.					
BOT CHORD WEBS REACTIONS	Rigid ceilir bracing. 1 Row at r (size) Max Horiz Max Gray	ng directly nidpt 8= Mecha 12=-243 (8=1836 (L	applied or 10-0-0 or 7-8, 5-11, 5-9, 6-8 nical, 12=0-3-8 LC 13) .C 15), 12=1700 (LC	2 10 2 16) LC	International R802.10.2 at Graphical pu or the orienta bottom chorc DAD CASE(S)	Residential Code nd referenced star rlin representation ation of the purlin J. Standard	e sections ndard AN n does no along the	R502.11.1 a ISI/TPI 1. ot depict the top and/or	and size					
FORCES	(lb) - Maxi	mum Com	pression/Maximum	, 10)										
TOP CHORD	Tension 1-2=0/81, 4-5=-1338 7-8=-315/3	2-3=-2007 /43, 5-6=- 37, 2-12=-	7/4, 3-4=-1613/16, 1356/37, 6-7=-11/10 1580/36	03,										
BOT CHORD WEBS	11-12=0/1 3-11=-458 5-9=-512/3	467, 9-11: /76, 4-11= 35, 6-9=0/	=0/1520, 8-9=0/1127 :0/400, 5-11=-305/24 711, 6-8=-1827/0	7 44,									GE OF M	AISS
NOTES 1) Wind: ASV Vasd=91r II; Exp B; Interior (1 15-4-15, I 25-5-12 tc end vertic plate grip 2) TCLL: AS	CE 7-16; Vul mph; TCDL=6 Enclosed; C-) 2-1-8 to 6-1 Interior (1) 15 o 28-5-12; ca cal left and fig DOL=1.60 CC 7-16: PF-	t=115mph 6.0psf; BC C Exterior 1-1, Exter i-4-15 to 2 ntilever let pht expose	(3-second gust) DL=6.0psf; h=20ft; (r(2E) -0-10-8 to 2-1- ior(2R) 6-11-1 to 5-5-12, Exterior(2E) t and right exposed d; Lumber DOL=1.6	Cat. 8, ; 0							~		SCOTT SEVI	T M. ER SER D18807

 TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

E

August 12,2024

SIONAL

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	A6	Нір	1	1	Job Reference (optional)	167451627

Scale = 1:65

Run: 8.73 S Jul 24 2024 Print: 8.730 S Jul 24 2024 MiTek Industries, Inc. Fri Aug 09 10:27:32 Page: 1 ID:wiMPb3vfRjvZWB0_d5YjDsypczh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 0-10-8 6-8-12 13-2-0 17-2-0 23-7-4 28-7-0 4-11-12 6-8-12 6-5-4 4-0-0 6-5-4 6x6= 4x8=

Plate Offsets (X, Y):	[5:0-3-5,Edge],	[6:0-4-0,0-1-9],	[8:0-2-8,Edge],	[9:0-3-8,Edge],	[10:0-2-8,0-1-8],	[15:0-2-11,0-4-0]

Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 25.0 25.0) 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	77PI2014	CSI TC BC WB Matrix-S	1.00 0.80 0.97	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.21 -0.33 0.05 0.04	(loc) 13-14 13-14 9 13-14	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT18HS Weight: 123 lb	GRIP 197/144 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 *Exc 1.8E, 1-4:2x4 SPF 2x4 SPF 2100F 1.8 No.2 2x3 SPF No.2 *Exc 2.0E Structural wood sh except end vertical	ept* 4-5:2x4 SPF 21(2400F 2.0E E *Except* 12-9:2x4 ept* 15-2:2x10 SP 24 eathing directly applie s, and 2-0-0 oc purlin	2) 00F 3) 400F 4) ed, 5) 15 6)	TCLL: ASCE DOL=1.15); 1 Cs=1.00; Ct= Unbalanced design. This truss ha load of 16.0 overhangs m Provide adec All plates are	7-16; Pf=25.0 ps s=1.0; Rough Cat 1.10 snow loads have been designed to be for 2.00 times f on-concurrent with quate drainage to MT20 plates unle	f (Lum D t B; Partia been cor for greate flat roof lo n other liv prevent v ess other	OL=1.15 Plat ally Exp.; Ce= usidered for the er of min roof bad of 25.0 ps re loads. vater ponding wise indicate	te =1.0; his live sf on g. d.						
BOT CHORD WEBS REACTIONS FORCES	(4-9-0 max.): 5-6. Rigid ceiling directl bracing. 1 Row at midpt (size) 9= Mech Max Horiz 15=-59 (Max Grav 9=1827 (lb) - Maximum Con Tension	y applied or 10-0-0 or 5-11 anical, 15=0-3-8 LC 6) LC 19), 15=1884 (LC npression/Maximum	7) c 8) 9) 10 <u>)</u> C 19) LO	All bearings a Refer to gird This truss is International R802.10.2 ar Graphical pu or the orienta bottom chorc AD CASE(S)	are assumed to be pr(s) for truss to tr designed in accor Residential Code that referenced star rlin representation tion of the purlin a l. Standard	e SPF No russ conr dance wi sections ndard AN n does no along the	0.2 . lections. th the 2018 R502.11.1 a ISI/TPI 1. of depict the s top and/or	ind size						
TOP CHORD	1-2=0/84, 2-3=-240 5-6=-1264/84, 6-7= 8-9=-1782/0, 2-15=	6/0, 3-5=-1806/60, -1762/62, 7-8=-1973 -1739/18	8/5,										-	
BOT CHORD WEBS	14-15=0/1791, 13- 10-11=0/1541, 9-10 3-14=0/100, 3-13=- 5-11=-267/127, 6-1 7-10419/54, 8-10	14=0/1791, 11-13=0/ ⁻)=0/56 604/26, 5-13=0/518, 1=0/414, 7-11=-346/- -0/1586	1311, 45,								A	TATE OF M	AISSOLUTE	
NOTES 1) Wind: ASC Vasd=91rr II; Exp B; I Interior (I) 21-4-15, Ir 25-5-12 to end vertica plate grip I	CE 7-16; Vult=115mp ph; TCDL=6.0psf; B Enclosed; C-C Exterii 2-1-8 to 8-11-1, Exter terior (1) 21-4-15 to 28-5-12; cantilever la al left and right expose DOL=1.60	h (3-second gust) DDL=6.0psf; h=20ft; (pr(2E) -0-10-8 to 2-1- prior(2R) 8-11-1 to 25-5-12, Exterior(2E) pft and right exposed ed; Lumber DOL=1.6	Cat. -8, ; ; 60									SEVI NUME PE-20010	ER 118807	7

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	A7	Common	4	1	Job Reference (optional)	167451628

Scale = 1:72.1

Run: 8.73 E Apr 25 2024 Print: 8.730 E Apr 25 2024 MiTek Industries, Inc. Mon Aug 12 10:28:13 ID:wiMPb3vfRjvZWB0_d5YjDsypczh-4hXP7WeJUevIvPg7TSBiXRho_4CY6fO0N5e_aNyod?m

Page: 1

Loading TCLL (Roof Snow = 2 TCDL BCLL BCDL	(psf) 25.0 25.0) 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2	CSI TC BC WB 2014 Matrix	0.89 0.75 0.42 S	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.14 -0.28 0.04 0.04	(loc) 12-13 12-13 9 12-13	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 116 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 *Exce 2100F 1.8E 2x4 SPF No.2 2x3 SPF No.2 *Exce 14-2:2x8 SP 2400F 2 Structural wood shea except end verticals. Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 9=1266/ M 14=1352/0 Max Horiz 14=60 (ll	pt* 4-1,6-8:2x4 SPF pt* 12-5:2x4 SPF Nc 2.0E athing directly applie applied or 10-0-0 oc 7-12, 3-12 /echanical, 3-3-8	2) TCL DO Cs= 3) This 2.2, load ove 4) All t cap 5) Ref 6) This Inte R80 LOAD (L: ASCE 7-16; F L=1.15); Is=1.0; I :1.00; Ct=1.10 s truss has been d of 16.0 psf or 2. rhangs non-conc bearings are assu acity of 425 psi. er to girder(s) for s truss is designe rnational Reside b2.10.2 and refer CASE(S) Stand	f=25.0 psf (Lum E kough Cat B; Part designed for great 20 times flat roof I urrent with other li med to be SPF N truss to truss con d in accordance w tital Code section- neced standard Al ard	IOL=1.15 Plai ally Exp.; Ce= er of min roof oad of 25.0 p ve loads. o.2 crushing nections. ith the 2018 s R502.11.1 a NSI/TPI 1.	te =1.0; f live sf on						
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORD	8-9=-1214/0, 1-2=0/7 3-4=-1189/44, 4-15= 5-15=-1043/88, 5-16 6-16=-1062/66, 6-7= 2-14=-1245/44	78, 2-3=-1697/11, 1060/68, =-1049/87, 1196/42, 7-8=-1423	8/22,										
BOT CHORD	13-14=0/1265, 12-13 10-11=0/1112, 9-10=	3=0/1265, 11-12=0/1 =0/59	112,								OFA	ALSO A	
WEBS	5-12=0/700, 7-12=-3 3-12=-538/67, 3-13=	40/71, 7-10=-185/69 0/132, 8-10=0/1114),							6	ATE	SSOC S	
NOTES 1) Wind: ASC Vasd=91m II; Exp B; E Interior (1) 18-2-0, Inte 25-5-12 to : end vertica plate grip D	E 7-16; Vult=115mph ph; TCDL=6.0psf; BC inclosed; C-C Exterior 2-1-8 to 12-2-0, Exter arior (1) 18-2-0 to 25-5 28-5-12; cantilever lef I left and right expose DOL=1.60	(3-second gust) DL=6.0psf; h=20ft; C (2E) -0-10-8 to 2-1-8 ior(2R) 12-2-0 to ior(2R) 12-2-0 to ior(2R) 12-2-0 to ior(2R) 12-0 to ior(2R) 1	at. 3, 0						-		S SCOTT SEVI NUMP PE-20010	M. ER DISRO7	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	A8	Roof Special	1	1	Job Reference (optional)	167451629

Run: 8.73 S Jul 24 2024 Print: 8.730 S Jul 24 2024 MiTek Industries. Inc. Fri Aug 09 10:27:32 ID:5Z?8L0qurt8PnGZqGrRJ_bypczn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

8-9=-1195/84, 9-10=-1427/22 2-19=-1267/29. 10-11=-1217/1 18-19=0/1179, 17-18=0/1607, 4-17=0/1286, 16-17=0/3458, 15-16=0/73, 5-16=-158/52,

14-15=0/47, 12-14=0/1115, 11-12=0/62 WEBS 4-16=-1313/0, 14-16=0/1340, 7-16=0/1934, 7-14=-924/42, 8-14=-6/796, 9-14=-344/73, 9-12=-185/66, 10-12=0/1113, 3-18=-1963/0, 3-17=0/3456

NOTES

Loading

TCLL

TCDL

BCLL

BCDL

LUMBER

WEBS

WEBS

FORCES

BOT CHORD

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	A9	Common	3	1	Job Reference (optional)	167451630

Loading

TCLL

TCDL

BCLL

BCDL

LUMBER

WEBS

WEBS

FORCES

WEBS

NOTES

1)

2)

BRACING

Run: 8.73 S Jul 24 2024 Print: 8.730 S Jul 24 2024 MiTek Industries. Inc. Fri Aug 09 10:27:32

Page: 1

DE

LEE'S'SUMMIT'SMISSOURI 09/05/2024 2:14:31

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	A10	Hip Girder	1	2	Job Reference (optional)	167451631

Scale = 1:70.8

Run: 8.73 S Jul 24 2024 Print: 8.730 S Jul 24 2024 MiTek Industries, Inc. Fri Aug 09 10:27:32 ID:OvwnpPwHC11Q7LbABp3ym4ypczg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL		25.0	Plate Grip DOL	1.15		TC	0.62	Vert(LL)	-0.14	9-11	>999	360	MT20	197/144
(Roof Snow =	25.0)		Lumber DOL	1.15		BC	0.41	Vert(CT)	-0.23	9-11	>999	240		
TCDL		10.0	Rep Stress Incr	NO		WB	0.87	Horz(CT)	0.06	8	n/a	n/a		
BCLL		0.0	Code	IRC20 ⁷	8/TPI2014	Matrix-S		Wind(LL)	0.04	9-11	>999	240		
BCDL		10.0											Weight: 446 lb	FT = 10%
LUMBER				3) Wind: ASCE	7-16; Vult=115	mph (3-sec	ond gust)			Vert: 13	=-630	(B), 8=-638 (B),	10=-630 (B), 23=-630
TOP CHORD	2x6 SPF	No.2 *Exc	ept* 4-5:2x4 SPF No	.2	Vasd=91mp	h; TCDL=6.0psf	; BCDL=6.0	0psf; h=20ft;	Cat.		(B), 24=	-630 (I	B), 25=-630 (B),	26=-630 (B), 27=-630
BOT CHORD	2x8 SP 2	400F 2.0E			II; Exp B; En	closed; C-C Ext	terior(2E) 0	-1-12 to 3-2-	2,		(B), 28=	-630 (l	B), 29=-630 (B),	30=-630 (B), 31=-630
WEBS	2x4 SPF	No.2			Interior (1) 3	-2-2 to 10-8-0, E	Exterior(2R)	10-8-0 to			(B), 32=	-630 (I	B), 33=-630 (B),	34=-630 (B)
BRACING					19-8-0, Inter	ior (1) 19-8-0 to	27-1-14, E	xterior(2E)						
TOP CHORD	Structura	l wood sh	eathing directly applie	ed or	27-1-14 to 3	0-2-4; cantilevei	r left and rig	pht exposed	; end					
	4-6-1 oc	purlins, ex	cept		vertical left a	ind right expose	d; Lumber	DOL=1.60 pl	late					
	2-0-0 oc	purlins (4-	10-14 max.): 4-5.		grip DOL=1.									
BOT CHORD	Rigid cei	ling directl	y applied or 10-0-0 o	c 4) TOLL: ASUE	: 7-10; PI=25.0	Dot B: Dorti	UL=1.15 Pla	10.					
	bracing.				DOL=1.15), Cs=1.00: Ct	15=1.0, Rough C _1 10	Jal D, Parli	ally Exp., Ce	=1.0,					
REACTIONS	(size)	1=0-3-8,	8=0-3-8	5	Unhalanced	snow loads hav	e heen cor	sidered for t	his					
	Max Grav	1=6408	(LC 18), 8=6994 (LC	18)	design	onow loado hav	0 00011 001							
FORCES	(lb) - Max	kimum Cor	mpression/Maximum	6) Provide ade	quate drainage	to prevent v	water pondin	q.					
	Tension			7	All bearings	are assumed to	be SP 240	0F 2.0E .	0					
TOP CHORD	1-2=-933	0/0, 2-4=-	6539/0, 4-5=-5173/0,	8) This truss is	designed in acc	cordance w	ith the 2018						
	5-7=-645	5/0, 7-8=-	9381/0		International	Residential Co	de sections	R502.11.1 a	and					
BOT CHORD	1-14=0/7	498, 12-14	4=0/7498, 11-12=0/5	107,	R802.10.2 a	nd referenced s	tandard AN	ISI/TPI 1.						
	9-11=0/7	543, 8-9=	U/7543	9) Graphical pu	Irlin representat	ion does no	ot depict the	size					
WEBS	2-14=0/2	603, 2-12= 516 5 11	-2833/0, 4-12=0/254	+2, /0	or the orient	ation of the purli	in along the	top and/or						
	7-9-0/27	35	=0/2070, 7-11=-2990	<i>i</i> 0,	bottom chore	d.	,							
NOTES	1 5=0/21	00		1	D) Hanger(s) OI	other connection	on device(s) shall be	220					
1) 2 plu truco	to be com	ootod tog	othor with 10d		provided sur				030				SIL	ann
(0.121"v2") noile on f	ected tog			at 6-0-12 6	20 lb down at 8	-0-12 630	h down at	OWIT				OF I	MISSIM
Top chord) Halls as it	d as follow	vs: 2x6 - 2 rows		10-0-12 630) lh down at 12-	.0.12,030	h down at				1	4 TE	-0.0.V
standered	at 0-9-0 or	2 2 x 4 - 1 r	ow at 0-9-0 oc		14-0-12 630) lb down at 16-	0-12,0001	b down at				A	NY and	New r
Bottom ch	ords conne	cted as fo	llows: 2x8 - 2 rows		18-0-12, 630) Ib down at 20-	-0-12, 630 I	b down at				H	SCOT	TM. YGY
staggered	at 0-9-0 oc				22-0-12, 630	b down at 24-	0-12, 630 I	b down at					SEV.	IER \ X
Web conn	ected as fo	llows: 2x4	- 1 row at 0-9-0 oc.		26-0-12, and	630 lb down at	28-0-12, a	and 638 lb do	own			Con*		
2) All loads a	ire conside	red equally	y applied to all plies,		at 30-2-4 or	bottom chord.	The design	n/selection of	f			WK .	15.	JOANA
except if n	oted as fro	nt (F) or ba	ack (B) face in the LC	DAD	such connec	tion device(s) is	s the respor	nsibility of oth	ners.		2	A		RER
CASE(S)	section. Ply	to ply cor	nections have been	L	OAD CASE(S)	Standard						47	DE 2001	010007 141
provided t	o distribute	only loads	s noted as (F) or (B),	1) Dead + Sno	ow (balanced): I	_umber Inc	rease=1.15,	Plate			N.	PE-2001	01000/SA
unless oth	erwise indi	cated.			Increase=1	.15						Y	1 Per	1 ANA
					Uniform Lo	ads (lb/ft)						6	STONIA	TENA
					Vert: 1-4	=-70, 4-5=-70, 5	5-8=-70, 1-8	3=-20					UNA	
					Concentrat	ed Loads (lb)							un	

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Concentrated Loads (lb)

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	B1	Common Structural Gable	1	1	Job Reference (optional)	167451632

Scale - 1:61.8

Run: 8.73 S Jul 24 2024 Print: 8.730 S Jul 24 2024 MiTek Industries, Inc. Fri Aug 09 10:27:33 ID:ZIZWYMrWcBGGPQ80qYyYWpypczm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

00010 = 1.01.0														
Plate Offsets ((X, Y): [9:0	-2-15,Edge	e], [13:0-3-8,Edge]											
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.45 0.30 0.41	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.03 -0.09 0.00 0.01	(loc) 15-17 14-15 14 15-17	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 129 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 DTHERS 2x3 SPF No.2 DTHERS 2x4 SPF No.2 BRACING TOP CHORD Structural wood sheathing directly applied of 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing, Except: 10-0-0 oc bracing: 14-15. WEBS 1 Row at midpt 9-19 JOINTS 1 Brace at Jt(s): 27, 28 REACTIONS (size) 14=0-3-8, 19=10-7-8, 20=10-7-8, 21=10-7-8, 23=10-7-8, 23=10-7-8,				v ied or N c 1	VEBS IOTES) Wind: ASCE Vasd=91mp II; Exp B; Er Interior (1) 2 Interior (1) 1	9-28=-17/582, 15 15-29=-377/102, 9-19=-656/0, 6-2 19-26=-115/36, 8 20-26=-159/41, 7 5-22=-46/1, 4-23 10-28=-88/20, 17 5-7-16; Vult=115n h; TCDL=6.0p8; C-C Exte -1-8 to 8-6-8, Ext 4-6-8 to 20-2-12,	5-28=-15/6 12-29=-3 7=-111/35 7-27=-95/2 =-161/42, 7-28=-120 mph (3-sec BCDL=6. erior(2E) -1 terior(2R) Exterior(2	111, 25/85, 5, 26-27=-112, 10, 8-26=-163, 9, 21-27=-93, 3-24=-139/32 (18, 11-29=-5) 2004 (18, 11-29=-5) 2005; h=201; (2) 0-10-8 to 2-1- 8-6-8 to 14-6- 2E) 20-2-12 tc	/36, /42, /28, 2, 8/18 Cat. 8, 8, 8,	LOAD	CASE(S)	Sta	ndard	
REACTIONS	28 (size) Max Horiz Max Uplift Max Grav	14=0-3-8 21=10-7- 24=10-7- 25=-19 (L 20=-38 (L 23=-16 (L 14=502 (L 20=79 (L1 22=83 (L1 22=83 (L1 22=83 (L1	, 19=10-7-8, 20=10- 8, 22=10-7-8, 23=10 8, 25=10-7-8 .C 4) .C 3), 21=-2 (LC 3), .C 3), 24=-16 (LC 3) .C 8) LC 7), 19=901 (LC 7 C 7), 21=144 (LC 7) C 1), 23=199 (LC 7) LC 7), 25=155 (LC 7)	-7-8, D-7-8, 2), 2 1), 3 1), 4 5)	23-2-12; car left and right DOL=1.60) Truss desig only. For st see Standar or consult qu) TCLL: ASCE DOL=1.15); Cs=1.00; Ct) This truss ha load of 16.0	tilever left and rig t exposed; Lumbe und for wind loac uds exposed to w d Industry Gable ualified building d \overline{z} 7-16; Pf=25.0 p Is=1.0; Rough Ca =1.10 as been designed psf or 2.00 times	ght exposi- er DOL=1. Is in the p vind (norm End Deta esigner a: sf (Lum D at B; Parti I for great flat roof le	ed ; end vertic 60 plate grip lane of the tru al to the face) ils as applicat s per ANSI/TF OL=1.15 Plat ally Exp.; Ce= er of min roof pad of 25.0 ps	al ss), ole, Pl 1. e -1.0; live sf on				STE OF I	MISSO
FORCES	24=192 (LC 7), 25=155 (LC 5) (lb) - Maximum Compression/Maximum Tension 1-2=0/65, 2-3=-18/93, 3-4=0/99, 4-5=-29/91, 5-6=-22/87, 6-7=-9/158, 7-8=-24/185, 8-9=-54/170, 9-10=-339/127, 10-11=-362/102, 11-12=-386/78, 12-13=-525/54, 2-25=-142/22, 13-14=-428/42			9/91, 8 128/42	 overhangs non-concurrent with other live loads. All plates are 2x4 MT20 unless otherwise indicated. Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). Gable studs spaced at 2-0-0 oc. All bearings are assumed to be SPF No.2. Provide mechanical connection (by others) of truss to 								I M. ER Service	
BOT CHORD	24-25=-4 21-22=-4 18-19=-4 14-15=0/	22, 34, 222 8/37, 23-24 8/37, 20-27 4/68, 17-18 /346	4=-48/37, 22-23=-48 1=-48/37, 19-20=-48 8=-44/68, 15-17=-44	3/37, 3/37, ^{4/68,} 1	bearing plate 25, 38 lb upl at joint 23 ar 0) This truss is Internationa R802.10.2 a	e capable of with lift at joint 20, 2 lb nd 16 lb uplift at jo designed in acco I Residential Cod and referenced sta	standing 1 o uplift at jo oint 24. ordance w e sections andard AN	6 lb uplift at jo pint 21, 16 lb u ith the 2018 \$ R502.11.1 a \$ NSI/TPI 1.	oint uplift nd			AS .	PE-2001	L ENGLES

August 12,2024

RELEASE FOR CONSTRUCTION AS NOTED ON FLANS REVIEW DEVELORMENT SERVICES LEE'S'SUMMIT'S MISSOURI 09/05/2024 2:14:31

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	B2	Common Girder	1	3	Job Reference (optional)	167451633

Scale = 1:57.3

unless otherwise indicated.

Plate Offsets (X, Y): [2:0-8-0,0-0-7], [6:0-8-0,0-0-7], [7:0-5-12,0-1-8], [9:0-6-0,0-6-4], [10:0-5-12,0-1-8]

L oading TCLL (Roof Snow = TCDL	(r 2 = 25.0) 1	psf) 25.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO		CSI TC BC WB	0.37 0.43 0.82	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.19 0.05	(loc) 9-10 9-10 6	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144
BCLL BCDL	1	0.0	Code	IRC2018	/TPI2014	Matrix-S		Wind(LL)	-0.02	9-10	>999	240	Weight: 472 lb	FT = 10%
LUMBER TOP CHORD 30T CHORD WEBS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD WEBS NOTES	 2x6 SPF No.2 2x8 SP 2400F 2x4 SPF No.2 Structural woo 6-0-0 oc purlir Rigid ceiling d bracing. (size) 2=0 Max Horiz 2=1 Max Grav 2=9 (lb) - Maximu Tension 1-2=0/37, 2-3= 4-5=-9590/0, 5 2-10=0/11696 6-7=0/10438 4-9=0/10084, 3-10=0/5639, 	2.0E 2.0E 3. 3. 3. 3. 3. 3. 3. 3. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	athing directly applied applied or 10-0-0 oc =0-3-8 10) C 1), 6=8902 (LC 1) oression/Maximum 6/0, 3-4=-9588/0, !989/0 0/11696, 7-9=0/1043 3798, 3-9=-4705/0, 136/0	3) l or 4) 5) 6) 7) 38, 8)	Wind: ASCE Vasd=91mph II; Exp B; En Interior (1) 2- Interior (1) 12 23-2-4; cantii and right exp DOL=1.60 TCLL: ASCE DOL=1.15); 11 Cs=1.00; Ct= This truss ha load of 16.0 overhangs nn All bearings a This truss is International R802.10.2 ar Hanger(s) or provided suff Ib down and 1936 Ib down	7-16; Vult=115mpl 7-16; Vult=115mpl 7, TCDL=6.0psf; BC closed; C-C Exteric 1-8 to 8-8-0, Exteri 4-8-0 to 20-2-4, Ext lever left and right vosed; Lumber DOL 7-16; Pf=25.0 psf is=1.0; Rough Cat I =1.10 is been designed for psf or 2.00 times fla on-concurrent with are assumed to be designed in accord Residential Code s and referenced stand other connection c isient to support co 85 lb up at 3-2-12, n at 7-2-12, 1885 ll 0.0000	h (3-sec CDL=6.1 or(2E) -(ior(2R) terior(2I exposed L=1.60 (Lum D B; Parti or greate at roof k other lin SP 240 dance w sections dard AN device(s oncentra , 1973 ll b down	cond gust) cond gust) pops; h=20ft;)-10-8 to 2-1 8-8-0 to 14-8 E) 20-2-4 to d; end vertic olate grip OL=1.15 Pla ally Exp.; Ce er of min rool bad of 25.0 p // re loads. IOF 2.0E . ith the 2018 ith	Cat. -8, -8-0, al left te =1.0; f live ssf on and 2120 -2-12, 816					
1) 3-ply trus (0.131"x3 Top chore staggered Bottom cl staggered	is to be connected ") nails as follows ds connected as f d at 0-9-0 oc. hords connected d at 0-5-0 oc.	d togeth s: follows: as follo	her with 10d : 2x6 - 2 rows ws: 2x8 - 3 rows		ID down at 1 down at 15-2 down at 19-2 bottom chord device(s) is t	1-2-12, 1807 lb dow 2-12, 1241 lb down 2-12, and 1250 lb c 1. The design/selec he responsibility of	wn at 17- down at ction of others.	3-2-12, 1241 2-12, and 12 21-2-12 on such connec	tib 141 lb tion				STATE OF M	AISSOUR M. ER
2) All loads except if CASE(S) provided	nected as follows are considered en noted as front (F) section. Ply to pl to distribute only	s: 2x4 - qually a) or bac ly conne loads n	T row at 0-9-0 oc. applied to all plies, k (B) face in the LOA ections have been noted as (F) or (B),	1)	AD CASE(S) Dead + Snc Increase=1. Uniform Loa Vert: 1-4:	Standard bw (balanced): Lum 15 ads (lb/ft) =-70, 4-6=-70, 2-6=	nber Inc =-20	rease=1.15,	Plate					Server

vert: 1-4=-

Concentrated Loads (lb) Vert: 7=-1241 (B), 13=-2120 (B), 14=-1973 (B), 15=-1936 (B), 16=-1885 (B), 17=-1816 (B), 18=-1807 (B), 19=-1241 (B), 20=-1241 (B), 21=-1250 (B)

> TION DEVELORMENT SERVICES

LEE'S'SUMMIT'SMISSOURI 09/05/2024 2:14:31

IEW

August 12,2024

E

ONAL

0

Page: 1

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	C1	Common Supported Gable	1	1	Job Reference (optional)	167451634

Scale = 1:40.4

Plate Offsets (X, Y): [10:0-5-10,0-1-8]

Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-R	0.11 0.02 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 64 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No 2x4 SPF No 2x3 SPF No 2x4 SPF No 2x4 SPF No Structural v 6-0-0 oc pu Rigid ceiling bracing. (size) 1 1 Max Horiz 1 Max Uplift 1 1 Max Grav 1 1 Max Grav 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.2 0.2 *Exce 0.2 *Exce 0.2 *Exce 0.2 vood shea rlins, exc g directly 1=14-11- 3=14-11- 5=14-11- 9=14-11- 9=-23 (Li 2=-80 (Li 4=-44 (Li 7=-49 (Li 9=43 (Li) 1=46 (LC 3=192 (Li 5=161 (L 7=194 (Li 9=176 (Li	pt* 10-11:2x4 SPF N athing directly applie- xept end verticals. applied or 6-0-0 oc 8, 12=14-11-8, 8, 14=14-11-8, 8, 16=14-11-8, 8, 18=14-11-8, 8, 18=14-11-8, 18, 18=14-11-8, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,	NC 1) lo.2 d or 2) 3) 4) 5) 6) 7) 7, 8) 9) 100	Vind: ASCE Vasd=91mph II; Exp B; Enc Exterior(2N) 10-5-12, Exter 11-9-12 to 14 end vertical li plate grip DC Truss design only. For stu see Standarc or consult qu TCLL: ASCE DOL=1.15); I Cs=1.00; Ct= This truss ha load of 16.0 p overhangs no All plates are Gable require Truss to be fi braced again Gable studs a All bearings a	7-16; Vult=115mpt; ; TCDL=6.0psf; BC closed; C-C Corner 2-1-8 to 4-5-12, Co prior(2N) 10-5-12 to -9-12; cantilever le eft and right expose L=1.60 ted for wind loads i ds exposed to wind l Industry Gable Er alified building desi 7-16; Pf=25.0 psf s=1.0; Rough Cat B 1.10 s been designed for sef or 2.00 times file on-concurrent with 2x4 MT20 unless of es continuous botto ully sheathed from st lateral movemer spaced at 2-0-0 oc. are assumed to be panical conpertion	n (3-sec (3E) -0 (3E) -0 rner(3F) 11-9-1 ft and i ded; Lun n n the p d (norm d Deta dgner a: (Lum D d (Lum D d) (Lum	ond gust) ips; h=20ft; -10-8 to 2-1) 4-5-12 to 2, Corner(3E ight exposed ber DOL=1.1 ane of the tr al to the face is as applicat s per ANSI/T OL=1.15 Pla ally Exp.; Ce er of min roo' ad of 25.0 p ve loads. se indicated. d bearing. e or securely, iagonal web; b.2.	Cat. 8, E) 1; 60 uss s), bble, PI 1. te =1.0; f live sf on /).				STE OF M	AIISSOL
FORCES	(lb) - Maxim Tension	num Com	pression/Maximum	10	bearing plate	capable of withsta	nding 4	3 lb uplift at	joint			R	ST SCOT	Г М.
TOP CHORD BOT CHORD	2-19=-161/ 3-4=-44/52, 6-7=-87/153 9-10=-24/3 18-19=-9/4 15-16=-9/4 12-13=-9/4	57, 1-2=0 , 4-5=-65/ 3, 7-8=-65 1, 10-11= 4, 17-18= 4, 14-15= 4, 11-12=	/65, 2-3=-39/24, 107, 5-6=-87/158, 5/107, 8-9=-45/51, -37/0 -9/44, 16-17=-9/44, -9/44, 13-14=-9/44, -9/44	11 LC	19, 44 ib upli uplift at joint 13 and 80 lb) This truss is o International R802.10.2 ar DAD CASE(S)	18, 44 lb uplift at jo uplift at joint 12. designed in accord Residential Code s of referenced stand Standard	aplin at int 14, s ance w sections dard AN	ith the 2018 18 R502.11.1 a ISI/TPI 1.	joint and		{		SEV SOTTO NUM PE-2001	ER DISSO7
WEBS	6-15=-126/2 3-18=-122/0 9-12=-137/8	22, 5-16= 66, 7-14= 89	-155/67, 4-17=-153/ -155/67, 8-13=-151/	75, 78,								Y	ESSIONA	L ENGL'S

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	C2	Scissor	15	1	Job Reference (optional)	167451635

Run: 8.73 S Jul 24 2024 Print: 8.730 S Jul 24 2024 MiTek Industries, Inc. Fri Aug 09 10:27:33

Wheeler Lumber, Waverly, KS - 66871,

Scale = 1:43 Plate Offsets (X, Y): [4:0-1-0,0-4-8], [7:0-1-0,0-4-8]

Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) I/defl L/d PLATES G TCLL 25.0 Plate Grip DOL 1.15 TC 0.94 Vert(LL) -0.20 6 >857 360 MT20 15	RIP
TCLL 25.0 Plate Grip DOL 1.15 TC 0.94 Vert(LL) -0.20 6 >857 360 MT20 15	
	07/144
(Roof Snow = 25.0) Lumber DOL 1.15 BC 0.70 Vert(CT) -0.38 6 >458 240 M18AHS 14	2/136
TCDL 10.0 Rep Stress Incr YES WB 0.30 Horz(CT) 0.35 5 n/a n/a	
BCI 0.0 Code IBC2018/TPI2014 Matrix-B Wind(11) -0.02 6-7 >999 240	
BCDL 10.0 Weight: 45 lb F	T = 10%
LUMBER 0) Refer to grider(s) for russ to russ	
TOF CHORD 2x4 SFT No.2 // Defaning a joint(s) / Colored spatial of to grant value	
DOTI CHORD 2X4 OFF NO.2 USE * Except* 6 2:22 OFF designer should verify capacity of hearing surface	
No 2	
BRACING bearing plate capable of withstanding 38 lb uplift at joint	
TOP CHORD Structural wood sheathing directly applied 7 and 8 lb uplift at joint 5.	
excent and verticals word strategy applied, 9) This truss is designed in accordance with the 2018	
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc International Residential Code sections R502.11.1 and	
bracing. R802.10.2 and referenced standard ANSI/TPI 1.	
REACTIONS (size) 5= Mechanical, 7=0-3-8 LOAD CASE(S) Standard	
Max Horiz 7=-22 (LC 4)	
Max Uplift 5=-8 (LC 3), 7=-38 (LC 3)	
Max Grav 5=650 (LC 1), 7=733 (LC 1)	
FORCES (Ib) - Maximum Compression/Maximum	
Tension	
TOP CHORD 1-2=0/73, 2-3=-1330/0, 3-4=-1320/0,	
2-7=-1033/50, 4-5=-937/20	
BOT CHORD 6-7=0/1053, 5-6=0/1048	
WEBS 3-6=0/877	
NOTES	
1) Wind: ASCE 7-16; Vult=115mph (3-second gust)	T
Vasa=91mph; TCDL=6.0pst; BCDL=6.0pst; h=20tt; Cat.	100
II; EXP B; Enfoldseq; C+C Exterior(2E) +0-10-6 (0.2-1-6, Interior (1) 21.48 to 4.5-12. Exterior(2E) 4.5-12 to	11.05
10-5-12 Interior (1) 10-5-12 to 11-8-12 Exterior(2E)	New 1
11-8-12 to 14-8-12: cantilever left and right exosed :	r /~ M
end vertical left and right exposed; Lumber DOL=1.60	1.1
plate grip DOL=1.60	
2) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate	- CARA A
DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0;	e year
CS=1.00; Ct=1.10	807 /27
(a) I his truss has been designed for greater of min foot live load of 16 0 psf cr 2 00 times flat yer/s load of 25 0 psf co.	18A
load of rot, pai of 2,00 times hat room load of 23.0 psi off	NO'A
All plates are MT20 plates unless otherwise indicated	Erg
5) All bearings are assumed to be SPF No.2.	
August 12	2,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	C3	Common Supported Gable	1	1	Job Reference (optional)	167451636

Run: 8.73 S Jul 24 2024 Print: 8.730 S Jul 24 2024 MiTek Industries, Inc. Fri Aug 09 10:27:33 ID:ZIZWYMrWcBGGPQ80qYyYWpypczm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 15-10-ρ 7-5-12 14-11-8 7-5-12 0-10-8 7-5-12 0-10-8 4x5 = 6 12 8 Г 5 7 4 8

14-11-8

Scale = 1:40.4

Plate Offsets (X, Y): [12:0-3-8,Edge]

5-11-1

Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁷	18/TPI2014	CSI TC BC WB Matrix-R	0.11 0.03 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 65 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF 2x4 SPF 2x3 SPF 2x4 SPF Structura 6-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav	No.2 No.2 No.2 No.2 I wood she purlins, ex ing directly 12=14-11 14=14-11 16=14-11 10=-14-11 20=-30 (L 12=-43 (L 17=-44 (L 19=-50 (L 12=161 (l 14=194 (l 16=171 (l 18=193 (l 20=161 (l)	athing directly applie cept end verticals. applied or 6-0-0 oc -8, 13=14-11-8, -8, 15=14-11-8, -8, 19=14-11-8, -8, 19=14-11-8, -8, 19=14-11-8, -8, 19=14-11-8, -8, 19=14-11-8, -8, 19=14-(LC 3), C 3), 15=-44 (LC 3), C 3), 15=-44 (LC 3), C 5), 13=157 (LC 7), -C 7), 15=195 (LC 7), -C 7), 19=164 (LC 7) C 5)	N 1 ed or 2 3 4 5 6 7 9, 7 9, 8 9	 Wind: ASCE Vasd=91mph II; Exp B; En Exterior(2N) 10-5-12, Extt 12-10-0 to 19 end vertical 1 plate grip DC Truss design only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15); I Cs=1.00; Ct= This truss ha load of 16.0 overhangs n All plates are Gable require Gable studs All bearings a 	7-16; Vult=115mp n; TCDL=6.0psf; E closed; C-C Corne 2-1-8 to 4-5-12, C arior(2N) 10-5-12 5-10-0; cantilever eft and right expose to wind loads dis exposed to win d Industry Gable E alified building de 7-16; Pf=25.0 ps is=1.0; Rough Cat 1.10 is been designed i pon-concurrent with e sx4 MT20 unless es continuous bot ully sheathed from ist lateral moveme spaced at 2-0-0 o are assumed to be	bh (3-see 3CDL=6. ar(3E) -0 corner(3F to 12-10 left and i sed; Lun s in the p nd (norm End Deta signer a: f (Lum D t B; Parti for great fat roof in o other in s otherwit tom chorn n one fac ent (i.e. c c. e SPF No	cond gust) Dpsf; h=20ft; -10-8 to 2-1- R) 4-5-12 to -0, Corner(31 right exposed right exposed ber DOL=1. lane of the tr al to the facc ils as applica s per ANSI/T OL=1.15 Pla ally Exp.; Ce er of min roo pad of 25.0 p ve loads. se indicated. d bearing. re or securely liagonal web p.2.	Cat. 8, 5) 1; 60 uss 2), bble, Pl 1. te =1.0; f live sf on				STE OF M	MISSO
FORCES TOP CHORD	(lb) - Max Tension 2-20=-15 3-4=-36/6 6-7=-79/1 9-10=-29, 19-20=-2	imum Com 0/64, 1-2=0 00, 4-5=-57 66, 7-8=-5 /31, 10-11=	pression/Maximum)/65, 2-3=-29/33, /115, 5-6=-79/166, 7/115, 8-9=-36/61, =0/65, 10-12=-150/60 21/67, 17-18=-21/	1)) (67	 bearing plate 20, 43 lb upli uplift at joint 15, 48 lb upli This truss is International 	nanical connection capable of withst ft at joint 12, 44 lb 18, 50 lb uplift at j ft at joint 14 and 5 designed in accor Residential Code	n (by oth tanding 5 o uplift at joint 19, 59 lb upli dance w sections	il b uplift at joint 17, 49 l 44 lb uplift at ft at joint 13. ith the 2018 R502.11.1 a	io joint b joint and			Le la	SCOT SEVI	I M. ER
WEBS	16-17=-2 13-14=-2 6-16=-13- 3-19=-12- 9-13=-12-	1/67, 15-16 1/67, 12-13 4/18, 5-17= 4/64, 7-15= 1/68	21/07, 14-15=-21/ 3=-21/07 155/67, 4-18=-153/ 155/67, 8-14=-153/	^{67,} L 75, 75,	R802.10.2 ar OAD CASE(S)	nd referenced star Standard	ndard AN	ISI/TPI 1.				AN IN	PE-2001	118807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	D1	Common Supported Gable	1	1	Job Reference (optional)	167451637

Scale = 1:37.7

Plate Offsets (X, Y): [10:0-3-8,Edge]

Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-R	0.11 0.03 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 53 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF 2x4 SPF 2x3 SPF 2x4 SPF 8 X4 SPF Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav	No.2 No.2 No.2 No.2 I wood she: purlins, exi ing directly 10=13-0-C 16=13-0-C 16=3-30 (L 10=-81 (L 12=-45 (L 10=185 (L 14=187 (L 16=185 (L	athing directly applie cept end verticals. applied or 6-0-0 oc), 11=13-0-0, 12=13), 14=13-0-0, 15=13) C 4) C 3), 11=-75 (LC 3), C 3), 11=-75 (LC 3), C 3), 14=-47 (LC 3), C 3), 14=-86 (LC 7), C 7), 13=157 (LC 3), C 7), 15=226 (LC 7), C 1)	1) ed or 2) -0-0, -0-0, 3) 4) (, 5), 6) 7)	Wind: ASCE Vasd=91mph II; Exp B; Enc Exterior(2N) Exterior(2N) 13-10-8; can left and right DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15); I Cs=1.00; Ct= This truss ha load of 16.0 g overhangs no All plates are Gable require Truss to be fn	7-16; Vult=115mp; ; TCDL=6.0psf; E closed; C-C Corm 2-1-8 to 3-6-0, Co 9-6-0 to 10-10-8, tilever left and rigg exposed; Lumber med for wind loads ds exposed to wind 1 Industry Gable E alified building de 7-16; Pf=25.0 ps s=1.0; Rough Cal =1.10 s been designed 1 posf or 2.00 times f on-concurrent with 2x4 MT20 unless as continuous bott ully sheathed from	b) (3-sec 3-CDL=6.1 ar(3E) -0 b) (3-c) -0 b) (3-c) -0 b) (3-c) -0 b) (3-c) -0 b) (1-c) -0 c) (3-c) -0	orond gust) Opsf; h=20ft; 10-8 to 2-1-{ 3-6-0 to 9-6- E) 10-10-8 tc ad; end vertii 60 plate grip ane of the tru alt o the face ils as applica s per ANSI/TI OL=1.15 Plat ally Exp.; Ces- er of min roof pad of 25.0 pr ve loads. se indicated. d bearing. e or securely	Cat. 3, -0, -0 cal Jss), ble, PI 1. te =1.0; 'live sf on					
FORCES TOP CHORD	(lb) - Max Tension 2-16=-16 3-4=-77/1 6-7=-77/1 8-10=-16	timum Com 3/101, 1-2= 16, 4-5=-9 16, 7-8=-6 3/99	pression/Maximum :0/65, 2-3=-62/50, 7/168, 5-6=-98/168, 2/49, 8-9=0/65,	8) 9) 10	Gable studs All bearings a Provide mecl bearing plate 16, 81 lb upli	spaced at 2-0-0 o are assumed to be hanical connection capable of withst ft at joint 10, 47 lb	c. e SPF No n (by oth tanding 8 o uplift at	0.2 . ers) of truss t 6 lb uplift at j joint 14, 69 ll	oint o			H.	STATE OF A	MISSOUR
BOT CHORD WEBS NOTES	15-16=-2 12-13=-2 5-13=-13 6-12=-15	4/54, 14-15 4/54, 11-12 3/24, 4-14= 2/70, 7-11=	i=-24/54, 13-14=-24/ :=-24/54, 10-11=-24/ :-151/70, 3-15=-175/ :-172/97	/54, /54 11 /94, LC	iplift at joint joint 11. This truss is International R802.10.2 ar	designed in accor Residential Code nd referenced star Standard	dance w sections ndard AN	ith the 2018 R502.11.1 a	i at				SEVI NUM PE-2001	ER Server 018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

E

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	J1	Diagonal Hip Girder	1	1	Job Reference (optional)	167451638

Run: 8.73 S Jul 24 2024 Print: 8.730 S Jul 24 2024 MiTek Industries, Inc. Fri Aug 09 10:27:33 ID:W8gGz2tn80X_fkHPyz_0cEypczk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

RELEA AS NO

DEVELOPMENT: SERVICES LEE'S'SUMMIT'SMISSOURI 09/05/2024 2:14:31

Scale = 1:31.8

Loading TCLL (Roof Snow = TCDL 3CLL 3CDL	25.0)	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC20	018/TPI2014	CSI TC BC WB Matrix-R	0.26 0.24 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.02 -0.02 0.01 0.01	(loc) 6 5 6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 14 lb	GRIP 197/144 FT = 10%	
LUMBER FOP CHORD 30T CHORD WEBS 3RACING FOP CHORD 30T CHORD REACTIONS	2x4 SPF f 2x4 SPF f 2x3 SPF f Structural 4-4-4 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	athing directly applie cept end verticals. applied or 10-0-0 or nical, 5= Mechanica C 5) C 5), 5=-33 (LC 5), 8: C 8), 5=106 (LC 8), 8	ed or c al, =-110 3=429	 Provide mec bearing plate 8, 47 lb uplift This truss is International R802.10.2 ai Hanger(s) or provided suff down and 31 up at 1-7-6 1-7-6, and 4 chord. The c (s) is the res In the LOAD of the truss a LOAD CASE(S) Dead + Sno 	hanical connect e capable of with a t joint 4 and 3 designed in acc Residential Con nd referenced s other connection icicient to suppor lb up at 1-7-6, on top chord, ar lb down and 10 design/selection ponsibility of oth CASE(S) section re noted as from Standard ow (balanced): I	tion (by oth hstanding 1 33 lb uplift a cordance wi de sections tandard AN on device(s rt concentra , and 87 lb o nd 4 lb down lb up at 1- n of such co ners. on, loads ap nt (F) or bac	ers) of truss 10 lb uplift a t joint 5. th the 2018 R502.11.1 : SI/TPI 1.) shall be ted load(s) i down and 31 n and 10 lb d '7-6 on botto nnection de oplied to the ck (B). rease=1.15,	to and 87 lb 1 lb up at om vice face Plate						_
TOP CHORD	Tension 2-8=-398/ 3-4=-26/5	127, 1-2=(2)/69, 2-3=-201/2,		Increase=1 Uniform Los Vert: 1-2	.15 ads (lb/ft) =-70, 2-4=-70, 7 ad Loads (lb)	7-8=-20, 5-6	6=-20							
BOT CHORD	7-8=-52/1	02, 6-7=-2	/39, 3-6=-59/46, 5-6	=0/0	Vert: 10=	6 (F=3, B=3)									
 NOTES Wind: ASC Vasd=91rr II; Exp B; I Exterior(2F exposed; DC=1.60) TCLL: ASC DOL=1.15 Cs=1.00; (3) Unbalance design. This truss load of 16. overhangs All bearing Refer to gi 	CE 7-16; Vui nph; TCDL= Enclosed; C R) 3-0-6 to 4 end vertical plate grip E CE 7-16; Pf- Ct=1.10 ed snow load has been dd. 0 psf or 2.0 s non-concu gs are assur irder(s) for t	t=115mph 6.0psf; BC -C Corner I-3-8; cant left and ri, JOL=1.60 -25.0 psf (ough Cat E ds have be esigned fo 0 times fla rrent with o ned to be s russ to tru	(3-second gust) DL=6.0psf; h=20ft; ((3) -1-2-14 to 3-0-6, ilever left and right ght exposed; Lumbe Lum DOL=1.15 Plat 3; Partially Exp.; Ce= even considered for th r greater of min roof t roof load of 25.0 ps ther live loads. SPF No.2 . ss connections.	Cat. e =1.0; his live sf on							_		STATE OF M SCOT SEVI DE-20010 PE-20010 PE-20010 August	AISSOLATION ER DI8807 L ENGLATION 12,2024	7

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	J2	Jack-Open	2	1	Job Reference (optional)	167451639

-0-10-81-0-150-10-81-0-15

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Jul 24 2024 Print: 8.730 S Jul 24 2024 MiTek Industries, Inc. Fri Aug 09 10:27:33 ID:2x6ulis8NVO71ajDOGTn30ypczI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26.8

Loading TCLL (Roof Snow = : TCDL BCLL BCDL	25.0)	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.08 0.02 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 0.00 0.00	(loc) 5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 180 n/a 240	PLATES MT20 Weight: 4 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF 2 2x4 SPF N 2x3 SPF N Structural 1-0-15 oc Rigid ceili bracing. (size)	2100F 1.8E No.2 No.2 wood shea purlins, ex ng directly 3= Mecha	athing directly appli ccept end verticals. applied or 10-0-0 or nical, 4= Mechanica	7) This truss is Internationa R802.10.2 a LOAD CASE(S) ad or c	designed in acco I Residential Coo and referenced si Standard	ordance wi de sections tandard AN	th the 2018 R502.11.1 a ISI/TPI 1.	Ind						
	Max Horiz Max Uplift Max Grav	5=0-3-8 5=60 (LC 3=-42 (LC (LC 3) 3=31 (LC (LC 5)	3) 5), 4=-9 (LC 3), 5= 4), 4=14 (LC 4), 5=	-48 197										
FORCES TOP CHORD BOT CHORD NOTES	(lb) - Maxi Tension 2-5=-178/ 4-5=0/0	mum Com 69, 1-2=0/6	pression/Maximum 65, 2-3=-36/16											
 Wind: ASC Vasd=91m II; Exp B; E right expos Lumber D0 TCLL: ASC DOL=1.15 Cs=1.00; C This truss load of 16. overhangs All bearing Refer tog Provide m bearing pla 5, 9 lb uplit 	CE 7-16; Vul hph; TCDL=I Enclosed; C OL=1.60 pla CE 7-16; Pf=); Is=1.0; Rc Ct=1.10 has been de 0 psf or 2.00 s non-concul s are assun irder(s) for t echanical cc ate capable ff at joint 4 a	t=115mph 6.0psf; BCi C Exterior rtical left a te grip DO =25.0 psf (I pugh Cat B asigned for D times flat rrent with o ned to be S russ to trus nonection (of withstar und 42 Ib u	(3-second gust) DL=6.0psf; h=20ft; ((2E); cantilever left nd right exposed; L=1.60 Lum DOL=1.15 Plat ; Partially Exp.; Ce= greater of min roof roof load of 25.0 ps ther live loads. SPF No.2 . ss connections. by others) of truss t ding 48 lb uplift at jp plift at joint 3.	Cat. and e =1.0; live sf on o								STATE OF I SCOT SEVI NUM PE-2001	MISSOLUE FM. ER BER 018807	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	J3	Jack-Open	5	1	Job Reference (optional)	167451640

Run: 8.73 S Jul 24 2024 Print: 8.730 S Jul 24 2024 MiTek Industries, Inc. Fri Aug 09 10:27:34 ID:OvwnpPwHC11Q7LbABp3ym4ypczg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:32.7

Loading		(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
ICLL (Dest Ones)	05.0	25.0	Plate Grip DOL	1.15		0.11	Vert(LL)	0.00	6	>999	360	MT20	197/144
(ROOT Show =	25.0)	10.0		1.15	BC	0.10		-0.01		>999	240		
DOLL		10.0	Rep Stress Incr			0.00		0.00	5	n/a	n/a		
BCLL		10.0	Code	IRC2018/1912014	watrix-R		wind(LL)	0.00	ю	>999	240	Weight: 11 lb	FT – 10%
		10.0										Weight. TT ib	11 = 1070
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF 2x4 SPF 2x3 SPF	No.2 No.2 *Exce No.2	pt* 7-3:2x3 SPF No.	7) This truss Internation .2 R802.10.2 LOAD CASE(s designed in acc al Residential Co and referenced s b) Standard	cordance w de sections standard AN	ith the 2018 R502.11.1 a ISI/TPI 1.	and					
BRACING	<u>.</u>												
TOP CHORD	3-2-0 oc p	i wood shea ourlins, exc	athing directly applie cept end verticals.	ed or									
BOT CHORD	Rigid ceil bracing.	ing directly	applied or 10-0-0 or	C									
REACTIONS	(size)	4= Mecha	nical, 5= Mechanica	al,									
	Max Horiz	8-106 (10	3)										
	Max Unlift	4=-31 (I C	3) 5=-31 (I C 3) 8:	=-28									
		(LC 3)	(10), 0= 01 (LO 0), 0-	- 20									
	Max Grav	4=74 (LC	7), 5=72 (LC 7), 8=2	215									
		(LC 1)											
FORCES	(lb) - Max	imum Com	pression/Maximum										
TOP CHORD	2-8=-193/	55 1-2=0/6	65 2-3=-97/0 3-4=-	23/38									
BOT CHORD	7-8=-30/4	7. 6-7=-2/2	28.3-6=-28/40.5-6=	0/0									
NOTES		.,											
1) Wind AS	CE 7-16 [.] Vu	lt=115mph	(3-second gust)										
Vasd=91r	mph; TCDL=	6.0psf; BC	DL=6.0psf; h=20ft; 0	Cat.									
II; Exp B;	Enclosed; C	-C Exterior	(2E); cantilever left	and								COL	m
right expo	sed; end ve	ertical left a	nd right exposed;									B F OF I	MISS
Lumber D	OL=1.60 pla	ate grip DO	L=1.60								4	2 Mil	N'SON
2) TOLL: AS	5): lc=1 0: P	=25.0 pst (l	Lum DOL=1.15 Plate	e -1 0:							H	SCOT	TM YEN
Cs=1.00	$C_{t=1} 10$	ough Cat B	, Fallially Exp., Ce=	=1.0,							Ø	SEV	
 This truss 	has been d	esianed for	r areater of min roof	live							8 -	1	
load of 16	6.0 psf or 2.0	0 times flat	roof load of 25.0 ps	sf on							807	1 +2	·Q. 134
overhang	s non-concu	rrent with o	other live loads.								Y.	No U/	at MINT
4) All bearing	gs are assur	med to be S	SPF No.2 .							-	XE	NUM	
5) Refer to g	irder(s) for	truss to trus	ss connections.	_							N.	PE-2001	018807
b) Provide m	o leoineanac	onnoction (DV OTDOTEL OF THEE TO	0							V 1		

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 8, 31 lb uplift at joint 4 and 31 lb uplift at joint 5.

> RELEASE OR STRUCTION AS NOTED ON PLANS REVIEW DEVERSION SERVICES LEE'S SUMMIT'S MISSOURI 09/05/2024 2:14:31

E

August 12,2024

SIONAL

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	J4	Jack-Open	8	1	Job Reference (optional)	167451641

3-0-9

Run: 8.73 S Jul 24 2024 Print: 8.730 S Jul 24 2024 MiTek Industries, Inc. Fri Aug 09 10:27:34 ID:2x6ulis8NVO71ajDOGTn30ypczI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-2-0

Scale = 1:25.8

Loading TCLL (Roof Snow = TCDL BCLL BCDI	25.0)	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.12 0.06 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 -0.01 0.01 0.00	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 180 n/a 240	PLATES MT20	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF 2 2x4 SPF N 2x3 SPF N Structural v 3-2-0 oc p	10.0 100F 1.8E 0.2 0.2 wood shea	athing directly applie	7) This truss is International R802.10.2 a LOAD CASE(S)	designed in acco Residential Code nd referenced sta Standard	rdance wi e sections Indard AN	ith the 2018 . R502.11.1 a ISI/TPI 1.	and				Weight: 10 lb	FT = 10%
BOT CHORD	Rigid ceilin	g directly	applied or 10-0-0 or	c									
REACTIONS	(size) Max Horiz Max Uplift Max Grav	3= Mecha 5=0-3-8 5=106 (LC 3=-67 (LC 3=110 (LC	nical, 4= Mechanica C 3) S 3), 5=-28 (LC 3) C 7), 4=37 (LC 7), 5:	al, =215									
FORCES	(lb) - Maxir	num Com	pression/Maximum										
TOP CHORD BOT CHORD	Tension 2-5=-187/5 4-5=0/0	9, 1-2=0/6	65, 2-3=-65/51										
NOTES 1) Wind: ASG Vasd=91n II; Exp B; right expo Lumber D 2) TCLL: AS DOL=1.15 Cs=1.00; 3) This truss load of 16 overhangs 4) All bearing 5) Refer to g 6) Provide m bearing pl 5 and 67 I	CE 7-16; Vult nph; TCDL=6 Enclosed; C- sed; end ver OL=1.60 plat CE 7-16; Pf= 5); Is=1.0; Ro 5); Is=1.0; Ro Ct=1.10 has been de .0 psf or 2.00 a non-concurn s are assum irder(s) for tr techanical co ate capable c b uplift at join	=115mph .0psf; BC C Exterior tical left a e grip DO 25.0 psf (I ugh Cat B signed for times flat ent with c ed to be \$ uss to tru: nnection (of withstar t 3.	(3-second gust) DL=6.0psf; h=20ff; ((2E); cantilever left nd right exposed; L=1.60 Lum DOL=1.15 Plat ; Partially Exp.; Ce= • greater of min roof t roof load of 25.0 ps ther live loads. SPF No.2. ss connections. by others) of truss t iding 28 lb uplift at ju	Cat. and =1.0; live sf on o								PE-2001	MISSOLIE T.M. IER 018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

August 12,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	LAY1	Lay-In Gable	1	1	Job Reference (optional)	167451642

Run: 8.73 S Jul 24 2024 Print: 8.730 S Jul 24 2024 MiTek Industries, Inc. Fri Aug 09 10:27:34 ID:krohwdVyUzKQeqD3WzNNmVypcv2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:63.4

Plate Offsets (X, Y): [6:0-1-5,Edge], [15:Edge,0-1-8], [16:Edge,0-1-8]

Loading(psf)SpacingTCLL25.0Plate Grip DOL(Roof Snow = 25.0)Lumber DOLTCDL10.0Rep Stress IncrBCLL0.0CodeBCDL10.0		2-0-0 1.15 1.15 YES IRC2018	CSI DEFL in (loc) l/defl L/d PLATES TC 0.39 Vert(LL) n/a - n/a 999 MT20 018/TPI2014 WB 0.14 Vert(TL) n/a - n/a 999 WT20 018/TPI2014 Matrix-S Weight: 0.00 16 n/a n/a Matrix-S								PLATES MT20 Weight: 185 lb	GRIP 197/144 FT = 10%			
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	2x4 SPF 1 2x4 SPF 1 2x4 SPF 1 2x4 SPF 1 Structural 6-0-0 oc p 2-0-0 oc p Rigid ceili bracing. 1 Row at	No.2 No.2 No.2 No.2 wood shea ourlins, exo ourlins (6-0 ng directly midpt	athing directly applie cept end verticals, ar -0 max.): 6-15. applied or 10-0-0 oc 15-16, 5-26, 7-25, 8 9-23, 10-21, 11-20, 12-19, 13-18. 14-17	BC d or nd : W -24,	DP CHORD 1 7 1 DT CHORD 1 2 2 2 1 1 5 5 5 5 5 1	-2=-128/438, 2-3=- -5=-55/218, 5-6=-5 -8=0/125, 8-9=0/12 0-11=0/125, 11-12: 3-14=0/125, 14-15: -29=0/126, 28-29=1 6-27=0/126, 25-26 3-24=0/126, 25-26 -23=-0/126, 18-19: 6-17=0/126 -29=-183/83, 3-28= -26=-243/0, 7-25=- -23=-147/19, 10-21 1-20=-146/21, 12-1	56/366 66/111, 25, 9-10 =0/125 =0/126, =0/126 =0/126 =0/126 =0/126 =-193/8 174/0, 1=-145/ 19=-144	; 3-4=-54/287 6-7=0/125, 0=0/125, , 12-13=0/125 , 15-16=-33/1 27-28=0/126, , 24-25=0/126 , 24-25=0/126 , 17-18=0/126 3, 4-27=-183/ 8-24=-140/33 21, 4/22,	, 10 , , , , 107,	 Pr be 1, at 27 Th In Ri 11) Gi or bc LOAD 	ovide me aring plat 63 lb upli joint 27, 9 lb uplift a its truss is cernationa 302.10.2 a raphical p the orien ttom choo CASE(S	chanic te capa ft at joi 9 Ib up at joint s desig 1 Resig and ref urlin re tation o rd.) Sta	al connection (b able of withstand int 29, 59 lb upli lift at joint 24, 4 17. ned in accordar dential Code sed erenced standa epresentation do of the purlin alor ndard	y others) of true ing 292 lb uplif t at joint 28, 83 b uplift at joint ce with the 201 :tions R502.11. rd ANSI/TPI 1. es not depict th ig the top and/o	ss to t at joint b uplift 19 and 18 1 and ne size or
$\begin{array}{c} \text{VEBS} & 1 \; \text{Row at midpt} & 15-16, 5-26, 7-25, 8-24, \\ & 9-23, 10-21, 11-20, \\ 12-19, 13-18, 14-17 \\ \text{SEACTIONS} \; (size) & 1=25-3-6, 16=25-3-6, 17=25-3-6, \\ & 1=25-3-6, 15=25-3-6, 20=25-3-6, \\ & 21=25-3-6, 23=25-3-6, 24=25-3-6, \\ & 25=25-3-6, 23=25-3-6, 24=25-3-6, \\ & 26=25-3-6, 29=25-3-6, 24=25-3-6, \\ & 26=25-3-6, 29=25-3-6, 24=25-3-6, \\ & 26=25-3-6, 29=25-3-6, 24=25-3-6, \\ & 26=25-3-6, 29=25-3-6, 24=25-3-6, \\ & 26=25-3-6, 29=25-3-6, 24=25-3-6, \\ & 26=25-3-6, 29=225-3-6, 24=25-3-6, \\ & 26=25-3-6, 29=225-3-6, 24=25-3-6, \\ & 26=25-3-6, 29=225-3-6, 24=25-3-6, \\ & 26=25-3-6, 29=225-3-6, 24=25-3-6, \\ & 26=25-3-6, 29=225-3-6, 24=25-3-6, \\ & 26=25-3-6, 29=225-3-6, 24=25-3-6, \\ & 26=25-3-6, 24=25-3-6, 24=25-3-6, \\ & 19=-4 \; (LC \; 3), 24=-9 \; (LC \; 3), 29=-63 \; (LC \; 3), \\ & 19=-4 \; (LC \; 3), 24=-9 \; (LC \; 3), 29=-63 \; (LC \; 3), \\ & 19=-4 \; (LC \; 3), 24=-9 \; (LC \; 3), 29=-63 \; (LC \; 3), \\ & 19=-4 \; (LC \; 3), 24=-9 \; (LC \; 3), 29=-63 \; (LC \; 3), \\ & 19=-4 \; (LC \; 3), 16=53 \; (LC \; 6), 17=155 \; (LC \; 1), 18=202 \; (LC \; 6), 19=181 \; (LC \; 6), 20=187 \; (LC \; 6), 24=180 \; (LC \; 1), \\ & 25=214 \; (LC \; 6), 24=180 \; (LC \; 1), \\ & 25=214 \; (LC \; 6), 24=231 \; (LC \; 6), 27=223 \; (LC \; 6), 27=223 \; (LC \; 6), 28=231 \; (LC \; 6), 29=229 \; (LC \; 6) \\ & 29=229 \; (LC \; 6) \end{aligned}$				6, N(3-6, 1) 3-6, 1) 3-6, (LC =155 2) 1 (LC 2 6), , 3, 3)	 13-18=-149/25, 14-17=-181/0 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp B; Enclosed; C-C Exterior(2E) 0-3-12 to 3-3-12, Interior (1) 3-3-12 to 3-10-13, Exterior(2R) 3-10-13 to 12-7-13, Interior (1) 12-7-13 to 21-10-13, Exterior(2E) 21-10-13 to 25-1-13; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Provide adequate drainage to prevent water ponding. 						SCOTT M. SEVIER				
FORCES	(lb) - Max Tension	imum Com	pression/Maximum	4) 5) 6) 7) 8)	All plates are Gable require Gable studs All bearings a	uate drainage to pr 2x4 MT20 unless c es continuous botto spaced at 0-0-0 oc. are assumed to be \$	event v otherwi m chor SPF No	water ponding se indicated. d bearing. 0.2 .				SA	PE-200	BER 018807	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE ICROMUTRUCTION AS NOTED ON LANS REVIEW DEVELORIMENT SERVICES LEE'S'SUMMIT'SMISSOURI 09/05/2024 2:14:32

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	LAY2	Lay-In Gable	1	1	Job Reference (optional)	167451643

Run: 8.73 S Jul 24 2024 Print: 8.730 S Jul 24 2024 MiTek Industries, Inc. Fri Aug 09 10:27:34 ID:2x6ulis8NVO71ajDOGTn30ypczI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:53.7

Plate Offsets (X, Y): [5:Edge,0-3-1]

							-								_
Loading TCLL (Roof Snow =) TCDL BCLL	25.0)	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.08 0.04 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144	_
BCDL		10.0											Weight: 75 lb	FT = 10%	_
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF f 2x4 SPF f 2x4 SPF f Structural 6-0-0 oc p Rigid ceili bracing. (size) Max Uplift Max Grav	No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	athing directly applied applied or 10-0-0 oc 1, 9=14-9-11, 10=14-9 1, 12=14-9-11, 11, 14=14-9-11, 14, 14=14-9-11, 15 2, 0, 9=-84 (LC 4), 10= =-82 (LC 3), 13=-15 (2 (LC 3), 15=-77 (LC 3), 2 3), 9=164 (LC 3), 15 (C 6), 11=237 (LC 6), 15=263 (LC 6)	1) I or 2) 9-11, 3) =-83 LC 4) 5) 6) 7) 8)	Wind: ASCE Vasd=91mph II; Exp B; End Interior (1) 3- 1nterior (1) 10 14-6-6; cantil and right exp DOL=1.60 Truss design only. For stu see Standarc or consult qu TCLL: ASCE DOL=1.15; I Cs=1.00; Ct= All plates are Gable require Gable studs a Provide mech	7-16; Vult=115m r; TCDL=6.0psf; E closed; C-C Exter 3-12 to 4-3-8, Ex 0-3-8 to 11-6-6, E ever left and righ osed; Lumber DC ned for wind load: ds exposed to wii l Industry Gable E alified building de 7-16; Pf=25.0 ps s=1.0; Rough Ca -1.10 2x4 MT20 unles es continuous bot spaced at 2-0-0 c are assumed to b nanical connectio capable of withs	ph (3-sec BCDL=6.0 rior(2E) 0- tterior(2E) Exterior(2E) Exterior(2E) texposec OL=1.60 p ind (normation texposec CL=1.60 p ind (normation texposec texpos	ond gust) Dpsf; h=20ft; i -3-12 to 3-3- 4-3-8 to 10- E) 11-6-6 to 1; end vertica Jolate grip ane of the tru al to the face Is as applica is per ANSI/TI OL=1.15 Plat ally Exp.; Ce- se indicated. d bearing.	Cat. 12, 3-8, al left Jss), ble, PI 1. te =1.0; to oint						
FORCES	(Ib) - Max	Imum Com	pression/Maximum		1, 84 lb uplift	at joint 9, 77 lb u	uplift at joir	nt 15, 82 lb u	plift						
TOP CHORD	1-2=-223/ 4-5=-77/3 7-8=-116/	202, 2-3=- 0, 5-6=-72 98, 8-9=-2	129/111, 3-4=-85/28, /27, 6-7=-85/23, 18/198	9)	at joint 14, 15 and 83 lb upl This truss is	5 lb uplift at joint 1 ift at joint 10. designed in accol	13, 82 lb u Irdance wi	uplift at joint 1	11				STE OF M	AISSO	
BOT CHORD	1-15=-141 13-14=-14 11-12=-14 9-10=-141	1/163, 14-1 41/163, 12- 41/163, 10- 1/163	5=-141/163, 13=-141/163, 11=-141/163,	LC	International R802.10.2 ar DAD CASE(S)	Residential Code nd referenced sta Standard	e sections andard AN	к502.11.1 а ISI/TPI 1.	ind			A.	SCOTT SEVI	F M. ER	
WEBS	2-15=-209 6-12=-119	9/98, 3-14= 9/21, 7-11=	206/107, 4-13=-137/ 203/106, 8-10=-226/	'39, '106							,	K	att	Server	
NOTES											-	87	PE-2001	018807	

August 12,2024 DEVELOPMENT SERVICES LEE'S' SUMMIT'S MISSOURI 09/05/2024 2:14:32

SSIONAL EN

CTION **IEW**

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	LAY3	Lay-In Gable	1	1	Job Reference (optional)	167451644

Run: 8.73 S Jul 24 2024 Print: 8.730 S Jul 24 2024 MiTek Industries, Inc. Fri Aug 09 10:27:34 ID:rL5bf3f6QzyaiqjZnC6QnEypcur-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 💊

6-9-3

Scale =	1:35.6
---------	--------

Loading TCLL (Roof Snow TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.05 0.02 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHOR BOT CHOR OTHERS BRACING TOP CHOR BOT CHOR	 D 2x4 SPF No.2 D 2x4 SPF No.2 2x4 SPF No.2 Structural wood s 6-0-0 oc purlins. D Rigid ceiling direction bracing. 	heathing directly applietty applied or 10-0-0 o	 7) Provide me bearing pla 1, 20 lb upl uplift at join 8) This truss is Internationa R802.10.2 c LOAD CASE(S 	chanical connecti te capable of with fif at joint 5, 89 lb t 6. s designed in accc al Residential Cod and referenced st) Standard	on (by oth standing 2 uplift at joi ordance w le sections andard AN	ers) of truss t 20 lb uplift at ju nt 8 and 89 lb ith the 2018 5 R502.11.1 a ISI/TPI 1.	o pint nd					
REACTION	S (size) 1=6-9- 8=6-9- Max Uplift 1=-20 (LC 3) Max Grav 1=51 ((LC 6)	3, 5=6-9-3, 6=6-9-3, 7= 3 LC 4), 5=-20 (LC 4), 6 8=-89 (LC 3) _C 3), 5=51 (LC 3), 6= 7=109 (LC 1), 8=245	=6-9-3, =-89 245 (LC 6)									
FORCES	(lb) - Maximum C Tension	ompression/Maximum										
TOP CHOR	D 1-2=-67/60, 2-3= 4-5=-67/60	107/43, 3-4=-107/43,										
BOT CHOR WEBS	D 1-8=-37/49, 7-8= 5-6=-37/49 3-7=-67/1, 2-8=-2	37/49, 6-7=-37/49, 11/109, 4-6=-211/109										
NOTES												
1) Wind: A Vasd=9 II; Exp I right ex Lumber	SCE 7-16; Vult=115m 11mph; TCDL=6.0psf; 3; Enclosed; C-C Exte posed ; end vertical le DOL=1.60 plate grip	ph (3-second gust) BCDL=6.0psf; h=20ft; f rior(2E); cantilever left ft and right exposed; DOL=1.60 s in the plane of the tri	Cat. and								STATE OF M	MISSOLA

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) All bearings are assumed to be SPF No.2 .

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

NUMBER PE-2001018807

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	V1	Valley	1	1	Job Reference (optional)	167451645

Run: 8.73 S Jul 24 2024 Print: 8.730 S Jul 24 2024 MiTek Industries, Inc. Fri Aug 09 10:27:34 ID:2x6ulis8NVO71ajDOGTn30ypczI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:37.7

Loading FCLL Roof Snow = 2 FCDL BCLL BCDL	(ps 25 25.0) 10 0 10	sf) Spacing .0 Plate Grip Lumber D .0 Rep Stres .0 Code .0	2-0-0 DOL 1.15 DL 1.15 s Incr YES IRC20	018/TPI2014	CSI TC BC WB Matrix-P	0.36 0.09 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD 30T CHORD WEBS DTHERS BRACING TOP CHORD 30T CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood 6-0-0 oc purlins Rigid ceiling dir bracing. (size) 1=8- Max Horiz 1=-14 Max Uplift 1=-11 Max Grav 1=13	I sheathing direct , except end ver ectly applied or 1 4-14, 4=8-4-14, 5 82 (LC 4) 4 (LC 7), 5=-109 4 (LC 1), 4=163	y applied or ticals. 0-0-0 oc =8-4-14 (LC 3) LC 6), 5=460	 7) Provide mec bearing plate 1 and 109 lb 8) This truss is International R802.10.2 ar LOAD CASE(S) 	hanical connection e capable of withsta uplift at joint 5. designed in accord. Residential Code s nd referenced stand Standard	(by oth nding 1 ance w ections dard AN	ers) of truss to 4 lb uplift at jo ith the 2018 R502.11.1 at ISI/TPI 1.	o bint nd						
ORCES OP CHORD OT CHORD VEBS IOTES) Wind: ASC Vasd=91m II; Exp B; E Interior (1) cantilever I right expos only. For s see Standa or consult of DOL=1.157 CS=1.00; C I) Gable requ	(LC & (lb) - Maximum Tension 1-2=-86/183, 2- 1-5=0/72, 4-5=(2-5=-362/168 EE 7-16; Vult=115 ph; TCDL=6.0psi Enclosed; C-C Ex 3-5-12 to 4-1-1, 1 eft and right expo- sed; Lumber DOL igned for wind loa studs exposed to ard Industry Gabl qualified building DE 7-16; Pf=25.0); Is=1.0; Rough (2t=1.10 ires continuous to	compression/Ma 3=-95/94, 3-4=-1)/72 imph (3-second g f; BCDL=6.0psf; 1 terior(2E) 0-5-12 Exterior(2R) 4-1- bsed; end vertica =1.60 plate grip I ads in the plane of wind (normal to t e End Details as designer as per psf (Lum DOL=1 Cat B; Partially E bottom chord bea	ximum 33/6 1=20ft; Cat. to 3-5-12, to 3-5-12, to 8-4-0; I left and DOL=1.60 f the truss ne face), applicable, ANSI/TPI 1. 15 Plate qp.; Ce=1.0; ring.							لد		STATE OF M STATE OF M SEVI SEVI PE-20010	AISSOLA MER ER D18807	
Gable studAll bearing	ls spaced at 4-0-0 s are assumed to) oc. be SPF No.2 .										SIONA	L ENG	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	V2	Valley	1	1	Job Reference (optional)	167451646

Run: 8.73 S Jul 24 2024 Print: 8.730 S Jul 24 2024 MiTek Industries, Inc. Fri Aug 09 10:27:34 ID:2x6ulis8NVO71ajDOGTn30ypczl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.1

Loading TCLL (Roof Snov TCDL BCLL BCDL	r = 25.0)	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.19 0.07 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHOF BOT CHOF WEBS OTHERS BRACING TOP CHOF BOT CHOF	2D 2x4 SPF N 2x4 SPF N 2x3 SPF N 2x3 SPF N 2x3 SPF N 2D Structural 6-0-0 oc p 2D Rigid ceilin bracing.	lo.2 lo.2 lo.2 lo.2 wood shea urlins, exo ng directly	athing directly applie ept end verticals. applied or 10-0-0 oc	7) 8) d or LC	Provide mecl bearing plate 1, 7 lb uplift a This truss is (International R802.10.2 ar PAD CASE(S)	nanical connection capable of withsta at joint 4 and 108 II designed in accord Residential Code nd referenced stan Standard	n (by oth anding 5 b uplift a dance wi sections adard AN	ers) of truss tr 3 lb uplift at jr t joint 5. th the 2018 R502.11.1 a ISI/TPI 1.	o bint nd					
REACTION	IS (size) Max Horiz Max Uplift Max Grav	1=6-4-14, 1=-143 (LC 1=-53 (LC (LC 3) 1=49 (LC (LC 6)	4=6-4-14, 5=6-4-14 C 4) 4), 4=-7 (LC 3), 5=- 3), 4=171 (LC 6), 5=	108 384										
FORCES	(lb) - Maxi	mum Com	pression/Maximum											
TOP CHOF BOT CHOF WEBS	Tension 2D 1-2=-94/14 2D 1-5=0/54, 2-5=-304/ ²	46, 2-3=-90 4-5=0/54 156	0/89, 3-4=-140/26											
NOTES														
 Wind: A Vasd=5 II; Exp right ex Lumbe Truss only. F see Sta or cons TCLL:- DOL=1 Cs=1.0 Gable 5 All bea 	SCE 7-16; Vul Pimph; TCDL=6 B; Enclosed; C- posed; end ve DOL=1.60 pla designed for win or studs expose indard Industry ult qualified bui ASCE 7-16; Pfe 1.5); Is=1.0; Rfc 0; Ct=1.10 equires continu- studs spaced at ings are assum	a=115mph 6.0psf; BCI C Exterior rtical left at te grip DO od loads in do dable Enc Iding desig 25.0 psf (I ugh Cat B ous bottor 4-0-0 oc. ned to be S	(3-second gust) DL=6.0psf; h=20ft; C (2E); cantilever left a nd right exposed; L=1.60 the plane of the true (normal to the face). Details as applicab gner as per ANSI/TP Lum DOL=1.15 Plate ; Partially Exp.; Ce= n chord bearing.	at. and ss le, l 1. 3 1.0;							-		STATE OF M SCOTT SEVI SEVI PE-20010 PE-20010	MISSOLA ER Semen D18807

August 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	V3	Valley	1	1	Job Reference (optional)	167451647

4-4-14

4-4-14

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Jul 24 2024 Print: 8.730 S Jul 24 2024 MiTek Industries, Inc. Fri Aug 09 10:27:34 ID:2x6ulis8NVO71ajDOGTn30ypczI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-11-8

3

Scale	=	1:24.7	
Scale	-	1.24.7	

Loading		(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL		25.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	n/a	-	n/a	999	MT20	197/144
(Roof Snow =	25.0)		Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL		0.0	Code	IRC2018/TPI2014	Matrix-P								
BCDL		10.0										Weight: 12 lb	FT = 10%
LUMBER				8) This truss is	designed in accor	rdance w	ith the 2018						
TOP CHORD	2x4 SPF N	lo.2		Internationa	I Residential Code	sections	s R502.11.1 a	ind					
BOT CHORD	2x4 SPF N	lo.2		R802.10.2 a	ind referenced sta	ndard AN	ISI/TPI 1.						
WEBS	2x3 SPF N	lo.2		LOAD CASE(S)	Standard								
BRACING													
TOP CHORD	Structural	wood she	athing directly applie	ed or									
	4-5-4 oc p	urlins, ex	cept end verticals.										
BOT CHORD	Rigid ceili	ng directly	applied or 10-0-0 of	C									
	bracing.												
REACTIONS	(size)	1=4-4-14,	3=4-4-14										
	Max Horiz	1=-98 (LC	: 4)										
	Max Uplift	1=-18 (LC	3), 3=-36 (LC 3)										
	Max Grav	1=173 (LC	C 1), 3=200 (LC 6)										
FORCES	(lb) - Maxi Tension	mum Com	pression/Maximum										
TOP CHORD	1-2=-60/93	3, 2-3=-16	2/60										
BOT CHORD	1-3=0/35												
NOTES													
1) Wind: AS	CE 7-16; Vul	t=115mph	(3-second gust)										
Vasd=91r	mph; TCDL=6	5.0psf; BC	DL=6.0psf; h=20ft; (Cat.									
II; Exp B;	Enclosed; C	-C Exterior	(2E); cantilever left	and									
right expo	sed; end ve	rtical left a	nd right exposed;										
Lumber D	OL=1.60 pla	te grip DO	L=1.60									000	TIC
2) Truss des	signed for wi	nd loads if	the plane of the tru	ISS								A OF I	MIG. D
only. For	Sidus expos	Cable En), alo								BAR	NOSCIE SCIE
or consult	and industry	Iding desig	ner as ner ANSI/TF	DI 1							6	AN IN	No/
3) TCLL · AS	CF 7-16' Pf=	25 0 psf (l um DOI =1 15 Plat	e.							B	SCOT	ГМ. \УУ
DOL=1.15	5): Is=1.0: Ro	ugh Cat B	: Partially Exp.: Ce=	=1.0:							R	/ SEVI	ER \ Y
Cs=1.00;	Ct=1.10	5	,, , , , ,	-,							60		
4) Gable req	uires continu	ious bottoi	m chord bearing.								W	リッチャー	
5) Gable stu	ds spaced at	4-0-0 oc.	_							-		Gove a	He yen
6) All bearing	gs are assum	ned to be S	SPF No.2 .								27	A NUM	ALL ALL
Provide m	nechanical co	nnection (by others) of truss t	0							N,	ON PE-2001	018807 / ASH

bearing plate capable of withstanding 18 lb uplift at joint 1 and 36 lb uplift at joint 3.

August 12,2024

SIONAL E

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	V4	Valley	1	1	Job Reference (optional)	167451648

2-4-14

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Jul 24 2024 Print: 8.730 S Jul 24 2024 MiTek Industries, Inc. Fri Aug 09 10:27:34 ID:2x6ulis8NVO71ajDOGTn30ypczI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 II

Page: 1

2-4-14

Scale = 1:19.5

Loading TCLL (Roof Snow = TCDL BCLL BCDL	= 25.0)	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.06 0.02 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 6 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SPF No 2x4 SPF No 2x3 SPF No Structural v 2-5-4 oc pu Rigid ceiling bracing. (size) 1 Max Horiz 1 Max Uplift 1 	 b.2 b.2 cood shear rlins, exago directly =2-4-14, =-50 (LC =-11 (LC 	athing directly applie cept end verticals. applied or 10-0-0 oc 3=2-4-14 : 4) : 3), 3=-23 (LC 3)	8) This truss is International R802.10.2 ar LOAD CASE(S) ed or	designed in accord Residential Code s nd referenced stand Standard	ance w ections dard AN	ith the 2018 : R502.11.1 a ISI/TPI 1.	Ind						_
FORCES TOP CHORE BOT CHORE NOTES 1) Wind: AS Vasd=91 II; Exp B; right expo	Max Grav 1 (lb) - Maxim Tension 0 1-2=-29/46, 0 1-3=0/17 GCE 7-16; Vult= mph; TCDL=6. : Enclosed; C-C osed ; end vert	=83 (LC aum Com 2-3=-80, =115mph 0psf; BC C Exterior ical left a	1), 3=98 (LC 6) pression/Maximum /34 (3-second gust) DL=6.0psf; h=20ft; C (2E); cantilever left a nd right exposed;	Cat. and										
Lumber I 2) Truss de only. Foi see Stan or consul 3) TCLL: AS DOL=1.1 Cs=1.00; 4) Gable rei 5) Gable sti 6) All bearir 7) Provide r bearing p 1 and 23	DOL=1.60 platt esigned for winir studs expose dard Industry (It qualified build SCE 7-16; Pf=2 5); Is=1.0; Rot Ct=1.10 quires continuc Jds spaced at 4 gs are assume nechanical cor plate capable o Ib uplift at joint	e grip DO d loads ir d to wind Sable Enn Sable Enn Sing desig 25.0 psf (l Iggh Cat B bus bottor 4-0-0 oc. ed to be S nection (f withstar 3.	L=1.60 the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TP _um DOL=1.15 Plate ; Partially Exp.; Ce= n chord bearing. SPF No.2 . by others) of truss to dding 11 lb uplift at jo	ss ole, ol 1. e f1.0; D						c		STE OF M SCOTT SEVI PE-20010 PE-20010	AISSOLA ER BER D18807	7

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

CTION **IEW** DEVELOPMENS SERVICES LEE'S' SUMMIT'S MISSOURI 09/05/2024 2:14:32

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	V5	Valley	1	1	Job Reference (optional)	167451649

6-11-11

Plate Offsets (X, Y): [4:0-2-0,Edge], [6:0-2-0,Edge]

															_
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.43 0.16 0.43	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 81 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF 2x4 SPF 2x3 SPF Structural 6-0-0 oc 2-0-0 oc Rigid ceil bracing.	No.2 No.2 No.2 I wood she ourlins, exc ourlins (6-0 ing directly	athing directly applie ept -0 max.): 4-6. applied or 10-0-0 oc	ed or) Wind: ASCE Vasd=91mpl II; Exp B; En Interior (1) 3 Interior (1) 1: 25-4-4; canti and right exp DOL=1.60 ?) Truss desig only. For stu	7-16; Vult=115r n; TCDL=6.0ps; closed; C-C Ext 5-12 to 6-2-9, E 9-7-7 to 22-4-4, lever left and rig posed; Lumber D ned for wind loar rids exposed to v	mph (3-sec ; BCDL=6.0 erior(2E) 0 :xterior(2R) Exterior(2E ht exposed DOL=1.60 p ds in the pl wind (norm	ond gust) opsf; h=20ft; -5-12 to 3-5 6-2-9 to 19 :) 22-4-4 to 1; end vertic: late grip ane of the true al to the face	Cat. 12, 7-7, al left uss						
REACTIONS	(size) Max Uplift Max Grav	1=25-9-4, 11=25-9-4 15=25-9-4 10=-22 (L 14=-15 (L 1=303 (LC 10=713 (L 13=489 (L 15=713 (L	9=25-9-4, 10=25-9-4, 13=25-9-4, 13=25-9-4, 14=25- C 5), 11=-15 (LC 5), C 5), 15=-22 (LC 5), C 18), 9=303 (LC 18), C 18), 11=446 (LC C 17), 14=446 (LC C 18), 12=446 (LC C 18), 12	4, -9-4, 3 , 18), <u>2</u> 18), 6	see Standard or consult qu) TCLL: ASCE DOL=1.15); Cs=1.00; Ct= Unbalanced design.) Provide adee) All plates are	d Industry Gable ialified building of 7-16; Pf=25.0 p Is=1.0; Rough C =1.10 snow loads have quate drainage to 2 2x4 MT20 unle	End Detai designer as osf (Lum D cat B; Partia e been con o prevent v ss otherwis	Is as applica per ANSI/TI DL=1.15 Plat ally Exp.; Cet sidered for the vater ponding se indicated.	ble, PI 1. te =1.0; his g.						
FORCES TOP CHORD	(lb) - Max Tension 1-2=-246/ 4-5=-156/	imum Com /83, 2-3=-2: /57_5-6=-1;	pression/Maximum 57/34, 3-4=-244/60, 56/57, 6-7=-244/60	8 9 1	 Gable requir Gable studs All bearings Provide mec 	es continuous be spaced at 4-0-0 are assumed to hanical connecti	ottom chor oc. be SPF No ion (by othe	bearing. 0.2 . ers) of truss t	to					an an	
BOT CHORD	7-8=-257/ 1-15=-37/ 13-14=-3 10-11=-3	/34, 8-9=-2 /152, 14-15 7/152, 11-1 7/152, 9-10	46/83 =-37/152, 3=-37/152, =-37/152	1	14, 22 lb upli uplift at joint 1) This truss is	e capable of with ift at joint 15, 15 10. designed in acco	Istanding 1 Ib uplift at ordance wi	th the 2018	ioint 22 lb			H.	STATE OF M	MISSOLA	
WEBS NOTES	5-13=-400 7-11=-37	6/25, 3-14= 7/61, 8-10=	-377/61, 2-15=-596/ -595/75	/75, 1 I	2) Graphical pu or the orienta bottom chore .OAD CASE(S)	nd referenced st rlin representati ation of the purlir J. Standard	tandard AN on does no n along the	SI/TPI 1. SI/TPI 1. t depict the stop and/or	size		-	B	SEVI	ER	>

PE-2001018800

ONAL

E

DEVELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI 09/05/2024 2:14:32

TION IEW

August 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	V6	Valley	1	1	Job Reference (optional)	167451650

Run: 8.73 S Jul 24 2024 Print: 8.730 S Jul 24 2024 MiTek Industries, Inc. Fri Aug 09 10:27:34 ID:W8gGz2tn8oX_fkHPyz_0cEypczk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

-9-

Scale = 1:41.7

Plate Offsets (X, Y): [3:0-2-0,Edge], [7:0-2-0,Edge]

	()) [, 01,													
Loading TCLL (Roof Snow = TCDL BCLL BCDL	25.0)	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.37 0.08 0.21	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 62 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	2x4 SPF 1 2x4 SPF 1 2x3 SPF 1 Structural 6-0-0 oc p 2-0-0 oc p	No.2 No.2 No.2 wood she purlins, exc purlins, (6-0	athing directly applie	2) 3) d or 4)	ned for wind load uds exposed to w d Industry Gable Jalified building d 5 7-16; Pf=25.0 p Is=1.0; Rough C =1.10 snow loads have	ds in the p vind (norm End Deta designer as osf (Lum D at B; Parti e been cor	lane of the tru al to the face ils as applical s per ANSI/TF OL=1.15 Plat ally Exp.; Ce= nsidered for th	uss), ble, PI 1. e =1.0; nis							
BOT CHORD	2 Rigid ceiling directly applied or 6-0-0 oc bracing. 5) Provide adequate drainage to prevent water ponding.														
REACTIONS	(size) Max Uplift Max Grav	1=21-9-4, 12=21-9-4 15=21-9-4 10=-31 (L 15=-31 (L 1=197 (L0 10=525 (L 13=623 (L 15=525 (L	9=21-9-4, 10=21-9- 4, 13=21-9-4, 14=21- 4 C 5), 13=-10 (LC 5), C 5) C 18), 9=197 (LC 18) C 18), 12=456 (LC - C 17), 14=456 (LC - C 18)	4, 7) -9-4, 8) 9) 10, 17), 11 17), 11	 6) All plates are 2x4 mill 20 difference indicated. 7) Gable requires continuous bottom chord bearing. 8) Gable studs spaced at 4-0-0 oc. 9) All bearings are assumed to be SPF No.2. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10 lb uplift at joint 13, 31 lb uplift at joint 15 and 31 lb uplift at joint 10. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and 										
FORCES	(lb) - Max Tension	imum Com	pression/Maximum	12	12) Graphical purlin representation does not depict the size										
TOP CHORD	1-2=-198/87, 2-3=-294/92, 3-4=-146/59, 4-5=-134/58, 5-6=-134/58, 6-7=-146/59, 7-8=-294/92, 8-9=-198/87				bottom chord. LOAD CASE(S) Standard								OF I	and a self	
BOT CHORD	1-15=-48/ 13-14=-48 10-12=-48	'134, 14-15 3/134, 12-1 3/134, 9-10	5=-48/134, 3=-48/134,)=-48/134									B	STATE SCOT	T M.	
WEBS	5-13=-544/57, 4-14=-374/33, 2-15=-450/73, 6-12=-374/33, 8-10=-450/73											SEVIER			
 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp B; Enclosed; C-C Exterior(2E) 0-5-12 to 3-5-12, Exterior(2R) 3-5-12 to 18-4-4, Exterior(2E) 18-4-4 to 21-4-4; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 													NUM PE-2001	018807 L ENGL t 12,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 9 CB	
B240153	V7	Valley	1	1	Job Reference (optional)	167451651

Run: 8.73 S Jul 24 2024 Print: 8.730 S Jul 24 2024 MiTek Industries, Inc. Fri Aug 09 10:27:35 ID:W8gGz2tn8oX_fkHPyz_0cEypczk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

DEVELORMENT: SERVICES LEE'S'SUMMIT'SMISSOURI 09/05/2024 2:14:32

Scale = 1:36.1

Plate Offsets (X, Y): [2:0-2-0,Edge], [6:0-2-0,Edge]

	(,, ,), [=:0	_ = = = = = = =] =],	[0:0 = 0;=0g0]											
Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL		25.0	Plate Grip DOL	1.15		тс	0.32	Vert(LL)	n/a	-	n/a	999	MT20	197/144
(Roof Snow =	25.0)		Lumber DOL	1.15		BC	0.13	Vert(TL)	n/a	-	n/a	999		
TCDL	,	10.0	Rep Stress Incr	YES		WB	0.09	Horiz(TL)	0.01	7	n/a	n/a		
BCLL		0.0	Code	IRC2018	3/TPI2014	Matrix-S		- ()						
BCDL		10.0	0000										Weight: 43 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF N 2x4 SPF N 2x3 SPF N Structural 6-0-0 oc p 2-0-0 oc p Rigid ceili bracing. (size) Max Uplift Max Grav	No.2 No.2 No.2 wood shea purlins, exc purlins (6-0 ng directly 1=17-9-4, 9=17-9-4, 1=-6 (LC 4 1=299 (LC 8=548 (LC	athing directly applied ept -0 max.): 2-6. applied or 10-0-0 oc 7=17-9-4, 8=17-9-4, 10=17-9-4 5), 7=-6 (LC 5) 2 18), 7=299 (LC 18), 2 17), 9=583 (LC 17), C 17)	3) 4) 6) 7) 9) 10) ,	 TCLL: ASCE 7-16; Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. Provide adequate drainage to prevent water ponding. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. All bearings are assumed to be SPF No.2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 6 lb uplift at joint 1 and 6 lb uplift at joint 7. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Graphical purlin representation does not depict the size 									
FORCES	(lb) - Maxi	imum Com	pression/Maximum		or the orienta bottom chord	ation of the purl I.	lin along the	e top and/or						
TOP CHORD	1-2=-318/ 4-5=-225/	37, 2-3=-2 37, 5-6=-2	26/38, 3-4=-225/37, 26/38, 6-7=-318/37	LO	AD CASE(S)	Standard	Standard							
BOT CHORD	1-10=-12/ 7-8=-12/2	225, 9-10= 25	-12/225, 8-9=-12/225	5,										
WEBS	4-9=-512/	34, 3-10=-4	451/46, 5-8=-451/46										200	TOP
NOTES													P OF I	MISCO
 Wind: ASK Vasd=91n II; Exp B; Exterior(2 17-4-4; ca and right e DOL=1.60 Truss dee only. For see Stand or consult 	CE 7-16; Vul mph; TCDL= Enclosed; C (R) 2-5-8 to 6 (R) 11-1-9 to 6 (R) 11-9 to 6 (R) 11-19 to 6 (R) 11	It=115mph 6.0psf; BC -C Exterior 5-8-7, Interi 15-4-8, Ex and right e mber DOL= ind loads ir ed to wind Gable End ilding desig	(3-second gust) DL=6.0psf; h=20ft; C (2E) 0-5-12 to 2-5-8, ior (1) 6-8-7 to 11-1-5 tterior(2E) 15-4-8 to xposed ; end vertical =1.60 plate grip n the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TPI	at.), left ss ⊨e, 1.							ļ		Strike Severation Severation NUM PE-2001 PE-2001 Augus	T M. ER DI8807 L FNOTS t 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

ASE FOR CONST **OTED ON PLANS** VELOPMENT SER LEE'S SUMMIT, MISSOURI

2:14:32

09/05/2024