

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Re: 240654 Lot 13 TCR

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Wheeler - Waverly.

Pages or sheets covered by this seal: I64953120 thru I64953236

My license renewal date for the state of Missouri is December 31, 2025.

Missouri COA: Engineering 001193

Johnson, Andrew

April 17,2024

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

,Engineer

									RELEASE FOR CONSTRUCTION
Job	Truss	3	Truss Type		(Qty Ply	Lot 13 TC	R	
240654	A1		Hip Girder			3 1	Joh Defer	anaa (antianal	DEVELOPMENT SERVICES 164953120 LEE'S SUMMIT, MISSOURI
Wheeler Lumber,	, Waverly, KS - 66871,		r - · ·	Run: 8.	73 S Apr 3 202	4 Print: 8.730 S A	or 3 2024 MiTek Ir	ence (optional ndustries, Inc. Tu	
				ID:TA7	RjnuxkpmLhoW5	vj8a92y6jcz-RfC?	PsB70Hq3NSgPqi	nL8w3ulTXbGKV	rcDoi7J42J09/JU/2024
		-0-10-8	0.5.0		750		44.5.0		15-8-8
		0-10-8	<u>3-5-0</u> 3-5-0		<u>7-5-0</u> 4-0-0		<u>11-5-0</u> 4-0-0		<u>14-10-0</u> 3-5-0 0-10-8
		0-10-0							0-10-0
				Special	NAILED	NAILED	NAILED	Special	
			12 6 Г	4x5 =		2.14		4x5 =	
	ο LΩ			3	12	3x4 =	13	5	
_	0-1-5		0-1-5						
œ	~ ~						\sim		
2-6-8	2-5-3	2							6
	0-10-0		\leq						7
	ö			10	14	15	16	 	
			x8 🎜	10 3x10 =	14	15	16	9 3x10 =	
			×0 \$	5×10=				3×10 =	0.02
				Special	NAILED	NAILED	NAILED	Special	
		1	3-3-12	1		11-6-4		I	14-7-8
			3-3-12	l		8-2-8			3-1-4 0-2-8
Scale = 1:36.1	X X): [9:0 2 12 0 2	4], [11:0-2-12,0-2-4]							
		1				1			
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	TC	0.3	2 Vert(LL)	in (loc) -0.14 9-10	l/defl L/d >999 360	PLATES GRIP MT20 197/144
Snow (Pf/Pg) TCDL	20.4/20.0 10.0	Lumber DOL Rep Stress Incr	1.15 NO	BC WB	0.9 0.3	· · ·	-0.29 9-10 0.02 8	>597 240 n/a n/a	
BCLL	10.0*	Code	IRC2018/TPI201			Wind(LL)	0.02 8	>999 240	
BCDL	10.0								Weight: 53 lb FT = 10%
LUMBER TOP CHORD	2x4 SPF No.2					ater of min roof f load of 15.4 p			F), 5=-119 (F), 10=-41 (F), 9=-41 (F), 46 (F), 13=-46 (F), 14=-17 (F),
BOT CHORD WEBS	2x4 SPF No.2		overha	ngs non-concur	rent with other			15=-17 (F), 16	S=-17 (F)
WEBS	No.2	cept* 11-2,8-6:2x4 SPF	7) This tru	ss has been de	signed for a 1	0.0 psf bottom			
BRACING TOP CHORD	Structural wood sh	eathing directly applied	lor 8) * This t	uss has been o	designed for a	iy other live loa			
	4-11-5 oc purlins, 2-0-0 oc purlins (5-	except end verticals, a 1-13 max.): 3-5.		oottom chord in tall by 2-00-00		e a rectangle tween the botto	om		
BOT CHORD	· · · ·	ly applied or 9-1-3 oc		nd any other m ings are assun	,	3CDL = 10.0psf No.2 .	•		
REACTIONS	•	, 11=0-3-8	10) Provide	mechanical co	nnection (by c	thers) of truss t 195 lb uplift at			
	Max Horiz 11=-50 (Max Uplift 8=-195 ((LC 10) (LC 13), 11=-195 (LC 1	2) 11 and	195 lb uplift at	joint 8.	, I	John		
		LC 47), 11=973 (LC 45 mpression/Maximum	Interna		al Code sectio	ns R502.11.1 a	nd		
FORCES	Tension		12) Graphic	0.2 and referer al purlin repres		ANSI/TPL1. not depict the s	size		
TOP CHORD		22/248, 3-4=-1239/237, 5=-1422/248, 6-7=0/40,		rientation of the chord.	e purlin along t	he top and/or			
BOT CHORD	2-11=-982/187, 6-8 10-11=-78/145, 9-1	3=-982/186 10=-403/1663, 8-9=-62		D" indicates 3- x3.25") toe-nail					
WEBS	3-10=0/341, 5-9=0	/340, 2-10=-174/1241, 10=-512/231, 4-9=-512	14) Hanger	(s) or other cor	nection device		84		Sumo
NOTES			lb dowr	and 134 lb up	at 3-5-0, and	184 lb down an	d	G.	THE OF MISSOL
this design		e been considered for	3-5-0, a	ind 61 lb down	at 11-4-4 on t	d 61 lb down at ottom chord. T		Ē	ANDREW
	E 7-16; Vult=115mp ph; TCDL=6.0psf; B	h (3-second gust) CDL=6.0psf; h=25ft; Ca	-	selection of suc sibility of others		device(s) is the		X.	THOMAS Y
II; Exp C; E	nclosed; MWFRS (e	envelope) exterior zone d ; end vertical left and	; 15) In the L	OAD CASE(S) uss are noted		applied to the f back (B).	ace		JOHNSON *
right expos	ed; Lumber DOL=1.	60 plate grip DOL=1.60	D LOAD CAS	E(S) Standar	d		Plata	Car	NUMBER
Plate DOL	=1.15); Pg=20.0 psf;		Íncrea	se=1.15	ea): Lumber li	ncrease=1.15, F	-iale	Ø,	OF PE-2017018993
	Plate DOL=1.15); Is (p.; Ce=1.0; Cs=1.00	=1.0; Rough Cat C;); Ct=1.10, Lu=50-0-0		m Loads (lb/ft) t: 1-2=-51, 2-3=	-51, 3-5=-61,	5-6=-51, 6-7=-5	51,	Y	ESSIONAL ENGLIS
 Unbalance design. 	d snow loads have b	been considered for this	8 8-1	1=-20 Intrated Loads					STONAL ENGE
			001100		× ''				April 17,2024
A									
Design va	lid for use only with MiTek	meters and READ NOTES ON (® connectors. This design is	based only upon paran	eters shown, and i	s for an individual	ouilding component	, not		
a truss sys	stem. Before use, the build	ding designer must verify the	applicability of design p	arameters and prop	perly incorporate the	is design into the o	verall		

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

									RELEAS	E FOR CONSTRUCTION	
Job	Truss		Truss Type		Qty	Ply	Lot 13 TCF	२		ED FOR PLAN REVIEW LOPMENT SERVICES 164953121	7
240654	A2		Hip		3	1	Job Refere	ence (optional		I64953121 SUMMIT, MISSOURI	
Wheeler Lumber, Waverly, K	S - 66871,			Run: 8.73 S Apr 32 ID:xMhpw7vZU7uCl	2024 Print: 8.	730 S Apr	3 2024 MiTek In	dustries, Inc. Tu	Apr 16 16000	30/2024	
					yon QipiGyoj	Cy-RIC (FSI	влопцанадеци	LowSullADGRV	ICD01/3423C++		
		-0-10-8	5-5-0		g	-5-0			14-10-0	15-8-8	
		l ₀₋₁₀₋₈ l	5-5-0	I	4	-0-0	ļ		5-5-0	0-10-8	
				6x6 =			4x5 =				
Ξ ∞			10				4				
0-1-11			1 <u>2</u> 6			\bowtie					
			11 /		\langle			\searrow	. 12		
<u>യ ന ന</u>											
3-6-8 3-4-13 3-4-13			4-9-0			\searrow			4-9-0	<u> </u>	
	o	2	2						φ	5	
	0-10-0	10	<u>о-</u>	•					0-5-		
	<u> </u>			9			8				
		6x8 и		2x4 II			3x4 =			6х8 и	
										14-10-0	
			<u>5-3-12</u> 5-3-12			-6-4 -2-8			<u>14-7-8</u> 5-1-4	0-2-8	
Scale = 1:33.3										0-2-0	_
Plate Offsets (X, Y): [7:E	dge,0-5-8]	1						_	1		_
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.62 Vert		in (loc) -0.07 8-9	l/defl L/d >999 360	PLATES MT20	GRIP 197/144	
Snow (Pf/Pg) 2	0.4/20.0	Lumber DOL	1.15	BC	0.44 Vert	(CT) -	-0.13 8-9	>999 240	11120	131/144	
TCDL BCLL	10.0 10.0*	Rep Stress Incr Code	YES IRC2018/TPI2014	WB (Matrix-S	0.06 Horz Wine	. ,	0.02 7 0.04 8-9	n/a n/a >999 240			
BCDL	10.0			I					Weight: 48 lb	FT = 10%	_
LUMBER TOP CHORD 2x4 SPF			load of 12.0	as been designed for going for going for 1.00 times flat	roof load of	15.4 psf					
BOT CHORD 2x4 SPF WEBS 2x3 SPF		ept* 10-2,7-5:2x6 SPF	6) Provide ade	non-concurrent with ot equate drainage to pre	vent water	ponding.					
No.2 BRACING			chord live lo	as been designed for a ad nonconcurrent with	n any other	live loads					
TOP CHORD Structura		eathing directly applied except end verticals, and	on the hette	has been designed for m chord in all areas w			sf				
2-0-0 oc	purlins (6-0)-0 max.): 3-4.	3-06-00 tall	by 2-00-00 wide will find any other members, with			1				
bracing.	0 ,		, .	are assumed to be SI chanical connection (b		f truss to					
	7=0-3-8, 10=64 (L0	C 11)		e capable of withstand o uplift at joint 7.	ling 89 lb u	plift at joir	nt				
		C 13), 10=-89 (LC 12) C 37), 10=752 (LC 37)	This truss is	designed in accordar Residential Code sed			1				
FORCES (Ib) - Max Tension	timum Corr	npression/Maximum	R802.10.2 a	and referenced standa urlin representation do	rd ANSI/TF	YI 1.					
	·	/71, 3-4=-695/104, /43, 2-10=-684/128,		tation of the purlin alor							
5-7=-685	/128	41/694, 7-8=-7/699	LOAD CASE(S								
WEBS 3-9=0/16		/97, 4-8=0/177							SIL	acon	
NOTES 1) Unbalanced roof live	loads have	been considered for							TATE OF	MISSO	
this design. 2) Wind: ASCE 7-16; Vu								A	AND	REW	
II; Exp C; Enclosed; I	/WFRS (er	DL=6.0psf; h=25ft; Ca nvelope) exterior zone						A.	THO	MAS Y	
right exposed; Lumbe	r DÓL=1.6	; end vertical left and 0 plate grip DOL=1.60						/ 🕅	mit	Imp	•
 TCLL: ASCE 7-16; P Plate DOL=1.15); Pg 		roof LL: Lum DOL=1. Pf=20.4 psf (Lum	15						NUM		
DOL=1.15 Plate DOL Partially Exp.; Ce=1.0	=1.15); ls=	1.0; Rough Cat C;						A.	O PE-2017	1010993 (10)	
		een considered for this	;					e e e e e e e e e e e e e e e e e e e	*SSIONA	I ENG	
									an	DEED	

April 17,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

											RELEASE	E FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	lv	Lot 13 T	CR	-		
240654	A3		Common		3	1				J		-OPMENT SERVICES 164953122 SUMMIT, MISSOURI
240054 Wheeler Lumber, Waverly,			Common	Run: 8.73 S Apr 3 2	_				erence (op Industries, l			
WIIECIGI Lumbol,	, NO - 000,			ID:ableAzDRhwr9aL	LpXBgeh	nQSy6jdq-f	RfC?PsF	370Hq3NSg	PqnL8w3ul	TXbGK	WrCDoi754z59/	30/2024
		0 40 0								-		
		-0-10-8	<u>7-5-0</u> 7-5-0					14-7-8 7-2-8			15-8-8	
		0-10-8	1-0-0					1-2-0			' I-1-0	
				42	×8 =							
				3	1							
\top			1 <u>2</u> 6 Г									
			ρı			\sim	< ,	~ 7 40				
					<u> </u>	\rightarrow	\prec	6-7-12			-	
4-6-8			9		1			\sim	10			
4			6-10-4		1			`	\sim	<	6x6 II	
		2	6-10-4		1				~ `	\sim	4	
	0-10-0			e					6-9-0		5	0-11-4
c	<u>-</u>		<u></u>									<u>6 </u>
		⊠ 6×8 ∎		7 2x							⊠ 3x4 =	
				44	2x4 u						0	
		0-2-8	7-5-0					14-7-8				
Scale = 1:37.9		0-2-8	7-2-8					7-2-8			I	
Scale = $1:37.9$ Plate Offsets (X, Y): [4	4:0-3-15,Edge	e]										
Loading	(psf)	Spacing	2-0-0	CSI	-	DEFL		in (loc)	c) l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.71	Vert(LL)	-0.0	.08 7-8	8 >999	360	MT20	197/144
Snow (Pf/Pg) TCDL	15.4/20.0 10.0	Lumber DOL Rep Stress Incr	1.15 YES			Vert(CT) Horz(CT)	,	0.16 7-8 0.01 6		240 n/a		
BCLL BCDL	10.0* 10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)		.03 7-8			Weight: 43 lb	FT = 10%
LUMBER		1		as been designed for a					<u> </u>		Weight is	
TOP CHORD 2x4 SF	PF No.2 PF No.2		chord live loa	bad nonconcurrent with has been designed for	th any ot	other live l	loads.					
WEBS 2x6 SF		ept* 7-3:2x3 SPF No.2	2 on the bottor	om chord in all areas w	where a	a rectangle	le					
BRACING TOP CHORD Structu	ural wood she	eathing directly applied	d or chord and ar	by 2-00-00 wide will fit	ith BCD	DL = 10.0p						
5-6-13	3 oc purlins, e	except end verticals. y applied or 10-0-0 oc	8) All bearings	are assumed to be SI chanical connection (b			ss to					
bracing	ıg.		bearing plate	te capable of withstand b uplift at joint 6.		,		t				
REACTIONS (size) Max Hot	6=0-3-8, a		10) This truss is	s designed in accordar								
Max Upl	olift 6=-108 (L	LC 13), 8=-104 (LC 12)		al Residential Code sec and referenced standa								
		₋ C 3), 8=718 (LC 3) mpression/Maximum	LOAD CASE(S)	/ Standard								
Tensio	on	8/109, 3-4=-774/112,										
4-5=0/-		7/157, 4-6=-660/158										
WEBS 3-7=0/2		8/003										
NOTES 1) Unbalanced roof liv	ve loads have	e been considered for										
this design.											2000	ADD
	DL=6.0psf; BC	CDL=6.0psf; h=25ft; Ca								g	A ROFA	MISSO
		envelope) exterior zone d ; end vertical left and								A	ANDR	No. V
	nber DOL=1.6	60 plate grip DOL=1.60	60							A	THOM	MAS Y
Plate DOL=1.15); F	Pg=20.0 psf; I	Pf=15.4 psf (Lum	15						/		JOHN	som *
DOL=1.15 Plate D0 Partially Exp.; Ce=		=1.0; Rough Cat C;); Ct=1.10							l l	M-	NUMI	RER
 Unbalanced snow l design. 			s							N.	PE-2017	
5) This truss has been										Q	The second	188
load of 12.0 psf or overhangs non-cor		at roof load of 15.4 psf other live loads.	on							- T	SSIONA	LEN
											and	il 17,2024
										_	• •	
			N THIS AND INCLUDED MITEK s based only upon parameters							I	N A;	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEX REFERENCE PAGE MIL-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

									RELEA	SE FOR CONSTRUCTION
Job	Truss		Truss Type	1	Qty	Ply	Lot 13 TCF	2		
240654	A4		Common		5	1	Lab Boforo	nce (optiona		ELOPMENT SERVICES 164953123 'S SUMMIT, MISSOURI
Wheeler Lumber, Wa	averly, KS - 66871,		L	Run: 8.73 S Apr 3 20	024 Print: 8	.730 S Apr 3	2024 MiTek Ind	dustries. Inc. Tu	ue Apr 16 60001	/20/2021
				ID:2ns0OJE3RDz0CV	/OjINAwzfyf	3jdp-RfC?PsE	370Hq3NSgPqr	nL8w3ulTXbGk	VrCDoi7342JS?f	50/2024
		-0-10-8	7-5-0		I		14-7-8		1	
		0-10-8	7-5-0		+		7-2-8			
					4v0 _					
					4x8 = 3					
	\top		10	<u>_</u> 1						
			1 <u>2</u> 6 [\square	\sim				
			/			\rightarrow	6-7-12			
	4-6-8		8	/				9		
	4							\searrow	4x10 u	
		2	6-10-4		-			-	4	
	0-10-0	1	-2-2					6-9-	0	0-11-4
	¦				6			-	5	ó
		6x8 II			о 2x4 ш					
		0.2-8								
		0-2-8	7-5-0 7-2-8		+		<u>14-7-8</u> 7-2-8			
Scale = 1:37.9		0-2-0								
Plate Offsets (X, Y	Y): [4:0-5-3,0-2-0]									
Loading	(psf)	Spacing Plate Grip DOI	2-0-0	CSI TC 0.	DEF		in (loc)	l/defl L/d		GRIP
TCLL (roof) Snow (Pf/Pg)	25.0 15.4/20.0	Plate Grip DOL Lumber DOL	1.15 1.15	BC 0.		(CT) -0	0.09 6-7 0.18 6-7	>999 360 >957 240		197/144
TCDL BCLL	10.0 10.0*	Rep Stress Incr Code	YES IRC2018/TPI2014	WB 0. Matrix-R		. ,).01 5).04 6-7	n/a n/a >999 240		
BCDL	10.0]						Weight: 42 lb	FT = 10%
LUMBER TOP CHORD 2x	x4 SPF No.2			s been designed for a ad nonconcurrent with						
BOT CHORD 2x	x4 SPF No.2	opt* 6 2·2v2 SPE No /	7) * This truss ha	as been designed for n chord in all areas wh	a live load	d of 20.0psf				
BRACING		ept* 6-3:2x3 SPF No.2	3-06-00 tall by	by 2-00-00 wide will fit by other members, with	between t	the bottom				
5-	-0-8 oc purlins, exe		8) All bearings a	are assumed to be SP	PF No.2 .	-				
	tigid ceiling directly racing.	y applied or 10-0-0 oc	bearing plate	hanical connection (by capable of withstandi			nt			
REACTIONS (siz	•			designed in accordance						
Max	ax Uplift 5=-77 (LC	C 13), 7=-104 (LC 12)		Residential Code sect and referenced standard						
		.C 3), 7=721 (LC 3) npression/Maximum	LOAD CASE(S)	Standard						
	ension -2=0/35, 2-3=-775/ [,]	/109, 3-4=-769/110,								
	-7=-646/156, 4-5=- -7=-29/600, 5-6=-2									
WEBS 3- NOTES	-6=0/288									
1) Unbalanced ro	oof live loads have	e been considered for								
	7-16; Vult=115mph								OF	MISSO
		CDL=6.0psf; h=25ft; Ca nvelope) exterior zone							ATE OF	W Solose
		i; end vertical left and 60 plate grip DOL=1.60						A	× /	DREW P
3) TCLL: ASCE 7		(roof LL: Lum DOL=1.						A.		
DOL=1.15 Pla	ate DOL=1.15); Is= ; Ce=1.0; Cs=1.00;	=1.0; Rough Cat C;							pul	Lettings
4) Unbalanced si		een considered for this	3					- W		MBER 2018993
		or greater of min roof li						Y	A TA	1 AB
	sf or 1.00 times flat n-concurrent with c	at roof load of 15.4 psf other live loads.	on						SSION	AL EN
									Ac	oril 17,2024
									- 'P	···· · · · · · · · · · · · · · · · · ·
			N THIS AND INCLUDED MITEK I s based only upon parameters sh						N A	iTek °
a truss system	 n. Before use, the buildir 	ing designer must verify the	applicability of design parameter idual truss web and/or chord me	ers and properly incorporate	e this design	into the overal	11			

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle

3-06-00 tall by 2-00-00 wide will fit between the bottom

chord and any other members, with BCDL = 10.0psf. WEBS 2x6 SPF No.2 *Except* 5-2:2x3 SPF No.2 All bearings are assumed to be SPF No.2 . 7) BRACING Provide mechanical connection (by others) of truss to 8) TOP CHORD Structural wood sheathing directly applied or bearing plate capable of withstanding 76 lb uplift at joint 5-0-13 oc purlins, except end verticals. 6 and 76 lb uplift at joint 4. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc This truss is designed in accordance with the 2018 9) bracing. International Residential Code sections R502.11.1 and **REACTIONS** (size) 4=0-3-8, 6=0-3-8 R802.10.2 and referenced standard ANSI/TPI 1. Max Horiz 6=-73 (LC 8) LOAD CASE(S) Standard Max Uplift 4=-76 (LC 13), 6=-76 (LC 12) Max Grav 4=646 (LC 3), 6=646 (LC 3) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-745/107, 2-3=-745/107, 1-6=-540/123, 3-4=-540/123 BOT CHORD 5-6=-26/579, 4-5=-26/579 WEBS 2-5=0/271 NOTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed : end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6)

LUMBER

1)

2)

3)

4)

5)

TOP CHORD

BOT CHORD

2x4 SPF No 2

2x4 SPF No.2

April 17,2024

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

April 17,2024

EL

HESSIONAL

ontinued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
300	11055	Truss Type	Qiy	FIY	LOUISTCR	DEVELOPMENT SERVICES 164953125
240654	B1	Roof Special Girder	1	2	Job Reference (optional	
Wheeler Lumber, Waverly, K	S - 66871,	Run: 8.73 E J ID:183. bGailk	an 4 2024 Print: 8	.730 E Jan 4 4-iXraaaHeN	1 2024 MiTek Industries, Inc. W IR4R6S_6I56NLH7USpIddkdrqg	d Apr 17 181/30/2024

- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 15) Use Simpson Strong-Tie LTHJA26 (LTHJA26 on 2 ply, Left Hand Hip) or equivalent at 4-9-14 from the left end to connect truss(es) to front face of bottom chord.
- 16) Fill all nail holes where hanger is in contact with lumber.
- 17) "NAILED" indicates 3-10d (0.148"x3") or 3-12d
- (0.148"x3.25") toe-nails per NDS guidlines.

LOAD CASE(S) Standard

- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-4=-51, 4-5=-61, 5-7=-51, 7-11=-61, 2-20=-20, 3-18=-20, 12-17=-20
 - Concentrated Loads (lb)
 - Vert: 19=-492 (F), 15=-33 (F), 8=-43 (F), 23=-44 (F), Vert: 19=-492 (r), 15=-33 (r), 0=-43 (r), 23=-44 (r), 24=-43 (F), 25=-43 (F), 26=-43 (F), 27=-43 (F), 28=-43 (F), 29=-43 (F), 30=-43 (F), 31=-43 (F), 32=-162 (F), 33=-153 (F), 34=-183 (F), 35=-209 (F), 36=-33 (F), 37=-33 (F), 38=-33 (F), 39=-33 (F), 40=-33 (F), 41=-33 (F), 42=-33 (F), 43=-33 (F),

 - 44=-33 (F)

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

										RELEASE	FOR CONSTRUCTION	N
Job	Tru	ISS	Truss Type		Qty	Ply	Lot '	13 TCR			D FOR PLAN REVIEW	٦
240654	B2	2	Roof Special		1	1	Job	Reference (o	ptional		OPMENT SERVICES 164953126 SUMMIT, MISSOURI	
Wheeler Lumber	r, Waverly, KS - 6687	1,		Run: 8.73 S Apr 3 20	24 Print: 8	8.730 S Apr	3 2024 N	ITek Industries,	Inc. Tu	Apr 16 16002	30/2024	1
		1-11-11		ID:PYFB8TwCFR03w	6gU18A2	Ely6jcx-RfC	J?PsB70H	q3NSgPqnL8w3	BullxbC	KWrCDor J4250?f		-
		-10-8 6-9-8 10-8 4-9-13	9-9-8	<u> </u>			<u>5-7-0</u> 3-0-0			<u>33-8-0</u> 8-1-0	—	
		1-11-11			8x12=			2x4 II			6x6=	
-	0-2-2			~~ <u>~</u> 20				21 7 ⊠ ⊠				
		_	6x6= 8x8= 19									
8-4-14	0-1-11					/	Þ				7-11-6	
ά												
	4-1-	2 3					Ň	\mathbb{N}				
			17 1 615		1		[]				9	
-	± 0 '	[∞] 18 4x8= 7x12=	^{2x4}		12 4x8=		22 11 3x6			23	⊠ 4x5=	
		2x4 II	2x4 II 2x4 II		470=		5.4	0.05				
			6x12=									
		2-4-0	9- 3% 64။ 9-7-0									
		1-11-11 6-10-1		17-8-4		23-0-0		25-7-0		33-8-0		
		1-11-11 4-6-1 0-4-5	2 2-1-4 0-1-4 0-5-12	8-0-0		5-3-12	2	2-7-0		8-1-0		
Scale = 1:71 Plate Offsets (2	X, Y): [3:0-4-5,0-3	3-8], [4:0-4-10,Edge], [6:0	0-1-4	2-0], [12:0-2-8,0-2-0], [15:0-4-0	.0-3-4]						—
Loading	(psf		2-0-0	CSI	DE		in	(loc) l/defl	L/d	PLATES	GRIP	—
TCLL (roof)	25.0	D Plate Grip DOL	1.15	TC 0.	71 Ve	rt(LL)	-0.42 1	12-13 >943	360	MT20	197/144	
Snow (Pf/Pg) TCDL	20.4/20.0 10.0		1.15 YES			rt(CT) rz(CT)	-0.68 1 0.29	12-13 >589 9 n/a				
BCLL BCDL	10.0 10.0		IRC2018/TPI2014	Matrix-S	Wir	nd(LL)	0.21	15 >999	240	Weight: 181 lb	FT = 10%	
LUMBER		·	1) Unbalanced	roof live loads have be	en consi	idered for				rrolgini for is		—
TOP CHORD		.0E *Except* 4-5:2x4 SPI P 2400F 2.0E, 6-8:2x4 SP	this design.	7-16; Vult=115mph (3								
BOT CHORD	2100F 1.8E		Vasd=91mph	n; TCDL=6.0psf; BCDL closed; MWFRS (enve	=6.0psf;	h=25ft; C						
	No.2	1.8E *Except* 2-18:2x4 \$	cantilever lef	t and right exposed ; e d; Lumber DOL=1.60 p	nd vertic	al left and	Ĺ					
WEBS	2x3 SPF No.2 *E 8-9,18-3,6-10,8-1	10,6-15:2x4 SPF No.2	TCLL: ASCE	7-16; Pr=25.0 psf (roc	of LL: Lui	m DOL=1.						
BRACING TOP CHORD	Structural wood	sheathing directly applie	d or DOL=1.15 P	.15); Pg=20.0 psf; Pf= ate DOL=1.15); Is=1.0	; Rough	Cat C;						
		except end verticals, ar (2-5-2 max.): 4-5, 6-8.		.; Ce=1.0; Cs=1.00; Ct snow loads have been			s					
BOT CHORD		ctly applied or 10-0-0 oc	design. 5) This truss ha	s been designed for gi	eater of	min roof li	ive					
W/EPS	6-0-0 oc bracing	: 2-18.	load of 12.0	osf or 1.00 times flat ro	of load of	of 15.4 psf						
WEBS REACTIONS		8-9, 5-13, 6-10, 7-10 -8, 9=0-3-8	Provide adec	uate drainage to preve s been designed for a	ent wate	r ponding.						
	Max Horiz 2=320 Max Uplift 2=-21) (LC 9) 1 (LC 12), 9=-243 (LC 9)	chord live loa	ad nonconcurrent with a las been designed for a	any othe	er live load						
	Max Grav 2=191	7 (LC 3), 9=1940 (LC 47 Compression/Maximum) on the bottor	n chord in all areas wh	ere a rec	ctangle .						
	Tension	·	chord and ar	y 2-00-00 wide will fit I y other members, with	BCDL =		п				m	
TOP CHORD	4-5=-4464/483, 5		10) Provide mec	are assumed to be SPI hanical connection (by	others)					E OF I	MISSOLA EW	
	6-7=-1574/197, 7 8-9=-1726/276			capable of withstandi uplift at joint 2.	ng 243 lt	o uplift at j	oint		B	STATE OF ANDE	FW	
BOT CHORD		7, 15-16=-445/3627,	International	designed in accordance Residential Code sect			ıd		A	THON	IAS Y	
	13-14=0/0, 12-13 9-10=-106/80	3=0/139, 10-12=-292/208	9, R802.10.2 a	nd referenced standard rlin representation doe	I ANSI/T	PI 1.				TO AN	SON *	
WEBS	3-18=0/81, 14-16	6=-300/0, 4-17=0/199, 6-12=-21/371, 13-15=0/5	or the orienta	ation of the purlin along				(A.	NUM	BER A	-
	5-15=-2442/445,	6-10=-791/136,	b3, bottom chorc LOAD CASE(S)						N.	PE-2017		
	8-10=-272/2151, 6-15=-525/3280,	, 7-10=-807/273, , 12-15=-301/1962							Y	Jess-	ENGI	
NOTES										SIONA	LEXE	
											17,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

										RELEASI	E FOR CONSTRUCTION	N .
Job	Truss		Truss Type		Qty	Ply	L	ot 13 TCR			ED FOR PLAN REVIEW OPMENT SERVICES 164953127	٦
240654	B3		Roof Special		1	1	J	ob Referenc	e (optional		I64953127 SUMMIT, MISSOURI	
Wheeler Lumber,	Waverly, KS - 66871,			Run: 8.73 S Apr 3 ID:LxMyZ9xSn2Gn	2024 Pri	nt: 8.730 S A	pr 3 202	4 MiTek Indus	ries, Inc. Tu	Apr 16 16002	30/2024	1
		1-11-11		ID:LXMyZ9XSh2Gh	9Qqt82C	VUJUY6JCV-RT	C?PSB/U	Hq3NSgPqnL	3W3UI I XDGr	WrCDol/94258.4		<u> </u>
			- <u>9-8</u> 11-9-8 9-13 3-0-0	<u>16-10-0</u> 5-0-8		<u>21-7-0</u> 4-9-0		<u>27-7-0</u> 6-0-0		<u>33-8-0</u> 6-1-0		
	~	1-11-11					5x12=		2x4 I		6x6=	
	0-2-2				5x12 ≠	0-2-2 H	7 1		822 ×	23	9 # T	
					2 6		\square	\ \				
	<u>9-11-6</u> 4-8-10			20	T							
			8×8= ₩ 4	6x6=		\ \					(0)	
	0-1-11 0-1-11	12 6						×	⊠		□ -11-6	
		27 /										
	5-1-1	26 ³						```	\parallel			
		2/ 2				```	\mathbb{N}			/		
			1 <mark>8</mark>	15	14	24	13	12	<u>11</u>	25	10 ⊥	
		4x8= 7x12=	2x4 u	8x8=	4x8=		6x6=	3x6=	6x8=		3x6=	
		2x4 I	2x4 II 2x4 II	2x4 II								
		2-4-0 1-11-11	2x4	1-8-4 16-10-0		21-8-4	. 2	25-0-0 2	7-7-0	33-8-0		
0)-1-4 5-1-12	1	4-10-4		3-3-12 2	-7-0	6-1-0		
Scale = 1:73.2 Plate Offsets ()	<, Y): [3:0-4-5,0-3-8],		Edge,0-1-8], [13:0-2-8,0-		0], [17:0	-2-12,0-4-0)]					—
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc) l/	defl L/d	PLATES	GRIP	_
TCLL (roof) Snow (Pf/Pg)	25.0 20.4/20.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC	0.68	Vert(LL) Vert(CT)	-0.40 -0.63	3-18 >	999 360 538 240	MT20	197/144	
TCDL	10.0	Rep Stress Incr	YES	WB	0.91	Horz(CT)	0.33	10	n/a n/a			
BCLL BCDL	10.0* 10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.21	17 >	999 240	Weight: 199 lb	FT = 10%	
LUMBER				oof live loads have	been co	nsidered fo	or					
TOP CHORD	2x4 SPF No.2 *Exce 4-1:2x8 SP 2400F 2.	ept* 5-7:2x6 SPF No.2, .0E	Wind: ASCE	7-16; Vult=115mph								
BOT CHORD	2x4 SPF No.2 *Exce 1.8E	ept* 3-17:2x4 SPF 210		; TCDL=6.0psf; BC losed; MWFRS (er								
WEBS	2x3 SPF No.2 *Exce 1.8E, 19-3,11-7,11-9	ept* 9-10:2x4 SPF 210 9:2x4 SPF No.2	0F cantilever left right exposed	and right exposed ; Lumber DOL=1.6	; end ve 0 plate g	rtical left an rip DOL=1	nd .60					
BRACING TOP CHORD		athing directly applied	3) TCLL: ASCE	7-16; Pr=25.0 psf (15); Pg=20.0 psf; F	roof LL:	Lum DOL=						
TOP CHORD		xcept end verticals, an	d DOL=1.15 Pla	ate DOL=1.15); ls= Ce=1.0; Cs=1.00;	1.0; Rou	gh Cat C;	0					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc		now loads have be								
	bracing, Except: 6-0-0 oc bracing: 2-1		5) This truss has	s been designed for sf or 1.00 times flat								
WEBS		9-10, 5-15, 6-13, 7-11 8-11	overhangs no	n-concurrent with c	other live	loads.						
	(size) 2=0-3-8, 1 Max Horiz 2=403 (LC		 This truss has 	uate drainage to pro- been designed for	a 10.0 j	osf bottom	•					
	Max Uplift 2=-231 (L	.C 12), 10=-228 (LC 9) .C 48), 10=1908 (LC 3	8) * This truss h	d nonconcurrent wi as been designed f	or a live	load of 20.						
FORCES	(lb) - Maximum Com	,, (3-06-00 tall by	chord in all areas 2-00-00 wide will	fit betwe	en the bott						
TOP CHORD	Tension 4-5=-3691/467, 5-6=		All bearings a	y other members, w re assumed to be \$			if.			Contra la	1000	
	9-10=-1748/244, 1-2	999/182, 8-9=-998/18 2=0/8, 2-3=-1285/51,		anical connection (capable of withstar						TATEOF	MISSOL	
BOT CHORD	3-4=-3615/412 2-19=-40/0, 3-18=-4	62/3296,	10 and 231 lb	uplift at joint 2. lesigned in accorda	-	-	-		đ	S ANDI	REW	
	17-18=-458/3306, 15 13-14=-272/2179, 11	5-16=0/6, 14-15=-1/80 1-13=-238/1519,	, International I	Residential Code se d referenced stand	ections F	R502.11.1 a	and		A.			
WEBS	10-11=-136/103 3-19=0/81, 16-18=0/		12) Graphical pur	lin representation d	loes not	depict the	size		(KA	hing	Lung	~
	5-17=-1946/339, 6-1 6-13=-1294/281, 7-1	7=-407/2512,	bottom chord		יוש נווש נ	ορ απα/θι			W.	NUM PE-2017		
	7-11=-1034/166, 8-1		LOAD CASE(S)	Standard					V	The second	158	
	9-11=-219/1884, 4-1 6-14=-200/113, 14-1		σ,							S'SIONA	L EN	
NOTES										un	il 17,2024	
										, ipr		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.75 0.56 0.82	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	0.06	(loc) 9-10 11-13 9 11-13	l/defl >999 >931 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 179 lb	GRIP 197/144 FT = 10%
	2400F 2.0E 2x3 SPF No.2 *Exce 10-5,10-6,10-7,9-7:2 SPF 2100F 1.8E, 15 Structural wood she 2-11-4 oc purlins, e 2-0-0 oc purlins (3-8	2x4 SPF No.2, 9-8:2x4 5-1:2x6 SPF No.2 eathing directly applied except end verticals, a 3-2 max.): 3-4, 6-7. applied or 10-0-0 oc 4-11, 5-10, 6-10, 7-1 8-9 7-9 15=0-3-8 LC 9) .C 12), 15=-221 (LC 1	SPF 4 3) d or nd 4) 5) 6) 0, 7) 2) 8)	Vasd=91mph II; Exp C; En cantilever lef right exposed TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Partially Exp. Unbalanced design. Provide adec this truss ha on the bottom 3-06-00 tall b chord and an All bearings a Provide mecl	7-16; Vult=115mp ; TCDL=6.0psf; B closed; MWFRS (c and right exposed ; Lumber DOL=1. 7-16; Pr=25.0 psf; ate DOL=1.15); Is ; Ce=1.0; Cs=1.00 snow loads have b uate drainage to p s been designed f d nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wi y other members, are assumed to be nanical connection	CDL=6.6 enveloped d; end v 60 plate (roof LL Pf=20.4 =1.0; Rc 0; Ct=1.1 peen cor or a 10.0 with any for a liv s where II fit betw with BC SPF NG (by oth	Dopsf; $h=25ft$; a) exterior zo: vertical left ar grip DOL=1. :: Lum DOL= h psf (Lum by f (Lum by f (Lum char ponding D psf bottom other live load e load of 20.0 a rectangle veen the botti DL = 10.0psi b.2. ers) of truss f	ne; nd 60 1.15 0 his g. ds. 0psf om f.					
FORCES	(lb) - Maximum Com Tension 1-2=-3070/365, 2-3=	npression/Maximum		15 and 198 ll) This truss is	capable of withsta o uplift at joint 9. designed in accord Residential Code	dance w	ith the 2018						an a
	3-4=-2395/355, 4-5= 5-6=-1269/236, 6-7=	=-2281/314,		R802.10.2 ar) Graphical pu	residential Code ad referenced stan rlin representation tion of the purlin a	dard AN does no	ISI/TPI 1. ot depict the s				Å	STATE OF M	MISSOLAN
BOT CHORD	14-15=-426/525, 13- 11-13=-376/2601, 1 9-10=-138/366		LC	bottom chord DAD CASE(S)		5	-				8.	THON	TAS Y
WEBS	2-14=-161/90, 2-13= 4-11=-967/226, 5-11 5-10=-1507/329, 6-1 7-10=-233/1610, 7-9 1-14=-218/2241, 4-1	10=-61/259, 9=-1667/265,	940,							Ĺ	A Start	NUMI PE-2017	018993
NOTES 1) Unbalance this design	d roof live loads have										Ŷ	SSIONA	ENGI

NOTES

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

April 17,2024

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.69	Vert(LL)		10-11	>915	360	MT20	197/144
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.60	Vert(CT)	-0.50	10-11	>583	240		
TCDL	10.0	Rep Stress Incr	YES		WB	0.88	Horz(CT)	0.03	7	n/a	n/a		
BCLL	10.0*	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.05	10-11	>999	240		
BCDL	10.0											Weight: 114 lb	FT = 10%
LUMBER			3)	TCLL: ASCE	E 7-16; Pr=25.0 p	sf (roof Ll	.: Lum DOL=	1.15					
TOP CHORD	2x4 SPF No.2		,	Plate DOL=	1.15); Pg=20.0 ps	sf;	l psf (Lum						
BOT CHORD	2x4 SPF 2100F 1.8E	E *Except* 9-7:2x4 \$	SPF	DOL=1.15 F	late DOL=1.15);	Is=1.0; Ro	ough Cat C;						
	No.2			Partially Exp	.; Ce=1.0; Cs=1.0	00; Ct=1.	10, Lu=50-0-0)					
WEBS	2x3 SPF No.2 *Exce	pt* 7-6,12-1:2x4 SF	PF 4)	Unbalanced	snow loads have	e been cor	nsidered for th	nis					
	No.2	-		design.									
BRACING			5)		quate drainage to			j .					
TOP CHORD	Structural wood she	athing directly appli	ed or 6)		as been designed								
	3-9-1 oc purlins, ex	cept end verticals, a			ad nonconcurren								
2-0-0 oc purlins, (5-4-1 max.): 2-3. BOT CHOPD Rigid caling directly applied or 10.0-0 oc on the bottom chord in all areas where a rectangle													
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	C										
	bracing, Except:				by 2-00-00 wide v								
	6-0-0 oc bracing: 11		8)		ny other members are assumed to b			•					
WEBS	1 Row at midpt	6-7, 4-8	o) 9)		chanical connection			~					
REACTIONS	(size) 7=0-3-8, 1		9)		e capable of with								
	Max Horiz 12=342 (I				b uplift at joint 7.			John					
	Max Uplift 7=-160 (L				designed in acco		ith the 2018						
	Max Grav 7=1370 (I	_C 3), 12=1355 (LC	46)		Residential Cod			nd					
FORCES	(lb) - Maximum Corr	pression/Maximum			nd referenced sta								
	Tension		11		Irlin representatio			size					
TOP CHORD	1-2=-1335/135, 2-3=	-1139/150,			ation of the purlin								
	3-4=-1492/190, 4-5=		8/197,	bottom chor		0							The
	6-7=-1225/197, 1-12	2=-1360/153	L	bottom chord. LOAD CASE(S) Standard 0, ANDREW							and		
BOT CHORD	11-12=-333/144, 10	-11=-297/1667,	_	Control of MISe							NISS W		
	8-10=-142/1264, 7-8										4	9 22	N.OS
WEBS 2-11=0/418, 6-8=-101/976, 1-11=-88/1320,											B	AND	EW X
	5-8=-61/378, 4-8=-1		9,								R	>/ ANDE	The Image of the second
	3-10=-510/184, 3-11	=-843/160									4	THOM	
NOTES										(JOHN	
1) Unbalance	ed roof live loads have	been considered fo	or								NA A	hand	Emp
this desigr										L	1 W - 2	NUM	BER A
2) Mind ACC	CE 7 16: \/ult 115mph	(2 accord quat)									VI M	1.011	In In

Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

April 17,2024

E

PE-20170189

SIONAL

Plate Offsets (X, Y): [1:Edge,0-2-4], [2:0-4-0,0-1-15], [10:0-2-8,0-1-8]

	,,,,,,,, [::=========;,,	[=:0 : 0,0 : :0], [::		0]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.62 0.77 0.83	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.28 0.03	(loc) 10-11 10-11 7 10-11	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 117 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 3-11-8 oc purlins, e 2-0-0 oc purlins (5-1	athing directly applie xcept end verticals,	4) ed or 5) and 6)	Plate DOL= DOL=1.15 F Partially Exp Unbalanced design. Provide ade This truss ha chord live lo	E 7-16; Pr=25.0 ps 1.15); Pg=20.0 ps Plate DOL=1.15); I b.; Ce=1.0; Cs=1.0 snow loads have quate drainage to as been designed ad nonconcurrent	f; Pf=20.4 s=1.0; Rc 00; Ct=1.7 been cor prevent v for a 10.0 with any	4 psf (Lum bugh Cat C; 10, Lu=50-0-0 nsidered for th water ponding 0 psf bottom other live loa) nis g. ds.					
	Rigid ceiling directly bracing. 1 Row at midpt (size) 7=0-3-8, 7 Max Horiz 12=342 (I Max Uplift 7=-160 (L Max Grav 7=1370 (I	6-7, 4-8 2=0-5-8 .C 9) C 12), 12=-159 (LC	8) 12)	on the botto 3-06-00 tall chord and a All bearings Provide med bearing plate	has been designe m chord in all area by 2-00-00 wide w ny other members are assumed to b chanical connectio e capable of withs lb uplift at joint 7.	as where vill fit betv s, with BC e SPF No on (by oth	a rectangle veen the botto DL = 10.0psf p.2. ers) of truss t	om					
FORCES	(lb) - Maximum Com Tension 1-2=-1485/176, 2-3= 3-4=-1403/202, 4-5= 6-7=-1231/196, 1-12	1246/202, 744/171, 5-6=-696,		10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.									
BOT CHORD WEBS	11-12=-328/179, 10- 8-10=-142/1222, 7-8 2-11=0/395, 3-11=-5 1-11=-84/1258, 5-8= 4-10=-25/730, 3-10=	=-105/81 23/64, 6-8=-101/98 50/349, 4-8=-1036	3,										
this desigr 2) Wind: ASC Vasd=91m	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed: MWEPS (or	(3-second gust) DL=6.0psf; h=25ft; (Cat.							-	D	ANDR THOM JOHN NUMI	2 Munt

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

April 17,2024

EL

PE-2017018

SSIONAL

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Plv	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
305	11035	пизэ туре		Quy	l' iy	LUCISTOR	DEVELOPMENT SERVICES I64953131
240654	C3	Roof Special		1	1	Job Reference (optional	LEFTE CUMMIT MICCOUDI
Wheeler Lumber, Waverly, KS - 6	66871,		Run: 8.73 S Apr 3 20) 24 Print: 8.7	730 S Apr 3	2024 MiTek Industries, Inc. Tu	

ID:ivArcs?bcav4GBiqx6oh0xy6jcq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWr2Doi7J42970750724

Scale = 1:66.3

Plate Offsets (X, Y): [1:Edge,0-2-4], [2:0-3-0,0-2-4], [10:0-2-8,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.55 0.74 0.81	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.16 -0.26 0.03 0.04	(loc) 10-11 10-11 7 10-11	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 116 lb	GRIP 197/144 FT = 10%
	No.2 Structural wood shea 4-1-4 oc purlins, exi 2-0-0 oc purlins (5-2 Rigid ceiling directly bracing. 1 Row at midpt (size) 7=0-3-8, 1 Max Horiz 12=342 (L Max Uplift 7=-157 (L Max Grav 7=1359 (L (lb) - Maximum Com Tension 1-2=-1418/171, 2-3= 3-4=-1373/199, 4-5= 6-7=-1221/193, 1-12 11-12=-324/169, 10- 8-10=-143/1205, 7-8 2-11=0/388, 3-11=-5	applied or 10-0-0 oc 6-7, 4-8 12= Mechanical C 9) C 12), 12=-157 (LC 12 C 3), 12=1355 (LC 46 pression/Maximum 1198/193, 738/170, 5-6=-691/19 2=-1247/180 -11=-233/1466, 3=-105/81 31/70, 6-8=-99/973, 49/344, 4-8=-1014/24	(1 6) (1 7) (2) (2) (3) (1 0) (1 0) (Plate DOL=1 DOL=1.15 P Partially Exp Unbalanced design. Provide aded This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar All bearings Refer to gird) Provide mec bearing plate 12 and 157 I) This truss is International R802.10.2 a) Graphical pu		Pf=20.4 =1.0; Re =1.0; Re o; Ct=1. or event or a 10. vith any for a liv s where I fit betw with BC SPF Ne uss conn (by oth anding 1 dance w sections dard AN does no	t psf (Lum bugh Cat C; 10, Lu=50-0-(1) have a second second second bught of the second second second second bught of the second second second second bught of the second second second second second bught of the second s	0 his g. ads. Opsf om f. to t joint				STATE OF M	AISSOU
NOTES	ad roof live loads have										A	S ANDR	

Unbalanced roof live loads have been considered for 1) this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

E

April 17,2024

JOHNSC

NUMBER

PE-2017018993

ROTESSIONAL

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
300	11035	Truss Type	Quy	i iy	LUCISTON	DEVELOPMENT SERVICES 164953132
240654	C4	Common	3	1	Job Reference (optional	
Wheeler Lumber, Waverly, KS	66871,	Run: 8.73 S Apr 3 2	024 Print: 8.	730 S Apr 3	2024 MiTek Industries, Inc. Tu	

Scale = 1:66.3

Plate Offsets	(X,	Y):	[11:0-2-8,0-1-8]
---------------	-----	-----	------------------

Loading (pst) Spacing 2-0-0 CSI DEFL in (toc) (doc) (1			-								
Show (Pt/Pg) 15.4/20.0 Lumber DOL 1.15 BC 0.87 Vert(CT) -0.34 10.11 >>683 240 BCLL 10.0 Code IRC2018/TPI2014 Matrix-S Wein(CT) 0.04 7 n/a	(psf) Sr	Loading	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TOL 10.0 Rep Stress Incr YES WB 0.80 Hor2(CT) 0.04 7 n/a n/a BCLL 10.0* Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.06 10-11 >999 240 LUMBER TOP CHORD 2x4 SPF No.2 Except* 7-6,12-1:2x4 SPF No.2 4) Unbalanced snow loads have been considered for this design. Top CHORD Structural wood sheathing directly applied or 10-0 or bracing. 5) This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-0-60 out liby 2-00-0 wide will fit between the bottom chord and any other remembers, whit BCDL = 10.0psf. 1) 1) This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-0-60 out liby 2-00-00 wide will fit between the bottom chord and any other remembers, whit BCDL = 10.0psf. 1)<	25.0 Pla	TCLL (roof)	Plate Grip DOL	1.15		TC	0.66	Vert(LL)	-0.20	10-11	>999	360	MT20	197/144
BCLL 10.0 ⁺ Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.06 10-11 >999 240 LUMBER TOP CHORD 2x4 SPF No.2 Wight: 110 lb FT = 10%. BOT CHORD 2x4 SPF No.2 * Scept * 7-6,12-1:2x4 SPF % </td <td>5.4/20.0 Lu</td> <td>Snow (Pf/Pg)</td> <td>Lumber DOL</td> <td>1.15</td> <td></td> <td>BC</td> <td>0.87</td> <td>Vert(CT)</td> <td>-0.34</td> <td>10-11</td> <td>>863</td> <td>240</td> <td></td> <td></td>	5.4/20.0 Lu	Snow (Pf/Pg)	Lumber DOL	1.15		BC	0.87	Vert(CT)	-0.34	10-11	>863	240		
BCDL 10.0 Weight: 110 lb FT = 10%. LUMBER TOP CHORD 2x4 SPF No.2 40.0 Unbalanced snow loads have been considered for this design. 60.0 BOT CHORD 2x4 SPF No.2 Except 7-6,12-1:2x4 SPF No.2 60.0 10.0 psf bottom chord live load nonconcurrent with any other live loads. 60.0 7.0 BRACING TOP CHORD Structural wood sheathing directly applied or 10-0-00 bracing. 7.0 0.0 10.0 psf bottom chord in all areas where a rectangle 3-7.11 to putlins, except end verticals. 60.1 7.0 0.0 10.0 psf bottom chord well fit between the bottom chord and any other members, with BCDL = 10.0psf. 7.0 10.0 psf bottom chord and any other members, with BCDL = 10.0psf. 7.0 10.0 psf bottom chord and any other members, with BCDL = 10.0psf. 7.0 10.0 psf bottom chord and any other members, with BCDL = 10.0psf. 7.0 10.0 psf bottom chord and any other members, with BCDL = 10.0psf. 7.0 10.0 psf bottom chord and any other members, with BCDL = 10.0psf. 7.0 10.0 psf bottom chord and any other members, with BCDL = 10.0psf. 10.0 psf bottom chord and any other members, with BCDL = 10.0psf. 10.0 psf bottom chord and any other members, with BCDL = 10.0psf. 10.0 psf bottom chord and any other members, with BCDL = 10.0psf. 10.0 psf bottom chord and any other members, with BCDL = 10.0psf. 10.0 psf bottom chord ang psf bottom chord and any other members, with BCDL = 10.0psf. <td>10.0 Re</td> <td>TCDL</td> <td>Rep Stress Incr</td> <td>YES</td> <td></td> <td>WB</td> <td>0.80</td> <td>Horz(CT)</td> <td>0.04</td> <td>7</td> <td>n/a</td> <td>n/a</td> <td></td> <td></td>	10.0 Re	TCDL	Rep Stress Incr	YES		WB	0.80	Horz(CT)	0.04	7	n/a	n/a		
BCDL 10.0 Weight: 110 lb FT = 10%. LUMBER TOP CHORD 2x4 SPF No.2 40.0 Unbalanced snow loads have been considered for this design. 60.0 BOT CHORD 2x4 SPF No.2 Except 7-6,12-1:2x4 SPF No.2 60.0 10.0 psf bottom chord live load nonconcurrent with any other live loads. 60.0 7.0 BRACING TOP CHORD Structural wood sheathing directly applied or 10-0-00 bracing. 7.0 0.0 10.0 psf bottom chord in all areas where a rectangle 3-7.11 to putlins, except end verticals. 60.1 7.0 0.0 10.0 psf bottom chord well fit between the bottom chord and any other members, with BCDL = 10.0psf. 7.0 10.0 psf bottom chord and any other members, with BCDL = 10.0psf. 7.0 10.0 psf bottom chord and any other members, with BCDL = 10.0psf. 7.0 10.0 psf bottom chord and any other members, with BCDL = 10.0psf. 7.0 10.0 psf bottom chord and any other members, with BCDL = 10.0psf. 7.0 10.0 psf bottom chord and any other members, with BCDL = 10.0psf. 7.0 10.0 psf bottom chord and any other members, with BCDL = 10.0psf. 10.0 psf bottom chord and any other members, with BCDL = 10.0psf. 10.0 psf bottom chord and any other members, with BCDL = 10.0psf. 10.0 psf bottom chord and any other members, with BCDL = 10.0psf. 10.0 psf bottom chord and any other members, with BCDL = 10.0psf. 10.0 psf bottom chord ang psf bottom chord and any other members, with BCDL = 10.0psf. <td>10.0* Co</td> <td>BCLL</td> <td>Code</td> <td>IRC20</td> <td>18/TPI2014</td> <td>Matrix-S</td> <td></td> <td>Wind(LL)</td> <td>0.06</td> <td>10-11</td> <td>>999</td> <td>240</td> <td></td> <td></td>	10.0* Co	BCLL	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	0.06	10-11	>999	240		
 TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 "Except" 7-6,12-1:2x4 SPF No.2 BRACING BRACING BRACING Structural wood sheathing directly applied or 3-7-11 oc purlins, except end verticals. BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 6-7, 4-8, 2-10 REACTIONS (size) 7-0-3-8, 12-8 Mechanical Max Horiz 12=347 (LC 9) Max Upitit 72=-347 (LC 9) Max Grav 7=1359 (LC 3), 12=1316 (LC 3) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 11-12=-213/240, 24=-1415/198, 4-5=-723/178, 5-6=-669/198, 6-7=-1219/198, 1-112=-1215/171 BOT CHORD 11-12=-326/256, 10-11=-338/1796, 8-10=-160/57 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) vasaes (a condition of the loads more discond and supplement of this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) vasaes (a condition of the loads more discond for this design. 3) Unbalanced roof live loads have been considered for this design. 3) Unbalanced roof live loads have been considered for this design. 3) Unbalanced roof live loads have been considered for this design. 3) Wind: ASCE 7-16; Vult=115mph (3-second gust) vasaes (a condition of the loads have been considered for this design. 3) Wind: ASCE 7-16; Vult=115mph (3-second gust) vasaes (a condition of the loads have been considered for this design. 3) Wind: ASCE 7-16; Vult=115mph (3-second gust) vasaes (a condition of the loads have been considered for this design. 3) Wind: ASCE 7-16; Vult=115mph (3-second gust) vasaes (a condition of the loads have been considered for this design. 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) vasaes (a condition of the loads have been considered for this design. 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) vasaes (a condition o												-	Weight: 110 lb	FT = 10%
 Structural wood sheathing directly applied or 3-7-11 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 6-7, 4-8, 2-10 ReacTIONS (size) 7=0-3-8, 12= Mechanical Max Horiz 12=347 (LC 9) Max Uplift 7=-162 (LC 12), 12=-152 (LC 12) Max Grav 7=1359 (LC 3), 12=-1316 (LC 3) FORCES (b) - Maximum Compression/Maximum Tension 0 TOP CHORD 11-22=-2013/240, 2-4=-1415/198, 4-5=-723/178, 5-6=-689/198, 6-7=-1219/198, 1-11=-147/1597, 5-8=-66/329, 4-10=0/657 NOTES Notres 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; h=25ft; Cat. 	No.2	TOP CHORD 2 BOT CHORD 2 WEBS 2	• эpt* 7-6,12-1:2x4 SP∣	5 F	design.) This truss ha chord live loa) * This truss h	as been designed f ad nonconcurrent has been designed	for a 10.0 with any d for a liv	0 psf bottom other live loa re load of 20.0	ds.				-	
 Ber of our of the bracing. WEBS 1 Row at midpt 6-7, 4-8, 2-10 REACTIONS (size) 7 =0-3-8, 12= Mechanical Max Horiz 12=347 (LC 9) Max Uplift 7=-162 (LC 12), 12=-152 (LC 12) Max Grav 7=1359 (LC 3), 12=-1316 (LC 3) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-2013/240, 2-4=-1415/198, 4-5=-723/178, 5-6=-689/198, 6-7=-1219/198, 112=-1215/171 BOT CHORD 11-12=-328/256, 10-11=-338/1796, 8-10=-150/1212, 7-8=-105/81 WEBS 6-8=-102/981, 1-11=-147/1597, 5-8=-66/329, 4-10=0/657 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; BcDL=6.0p		TOP CHORD			3-06-00 tall t chord and ar	by 2-00-00 wide w	ill fit betv , with BC	veen the botto DL = 10.0psf						
 WEBS 1 Row at midpt 6-7, 4-8, 2-10 REACTIONS (size) 7-0-3-8, 12= Mechanical Max Horiz 12=347 (LC 9) Max Upitit 72-162 (LC 12), 12152 (LC 12) Max Grav 7=1359 (LC 3), 12=1316 (LC 3) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHOR D 1-2=-2013/240, 2-4=-1415/198, 4-5=-723/178, 5-6=-689/198, 6-7=-1219/198, 1-12=-1215/171 BOT CHOR D 1-1-2=-326/256, 10-11=-38/1796, 8-10=-150/1212, 7-8=-105/81 WEBS 6-8=-102/981, 1-11=-147/1597, 5-8=-66/329, 4-8=-993/265, 2-11=-54/255, 2-10=-631/205, 4-10=-0/657 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 152 lb upilit at joint 12 and 162 lb upilit at joint 7. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1. LOAD CASE(S) Standard 		BOT CHORD		,										
 REACTIONS (size) 7=0-3-8, 12= Mechanical Max Horiz 12=347 (LC 9) Max Uplift 7=-162 (LC 12), 12=-152 (LC 12) Max Grav 7=1359 (LC 3), 12=1316 (LC 3) FORCES (lb) - Maximum Tension TOP CHORD 1-2=-2013/240, 2-4=-1415/198, 4-5=-723/178, 5-6=-689/198, 6-7=-1219/198, 1-12=-1215/171 BOT CHORD 11-12=-326/256, 10-11=-338/1796, 8-10=-150/1212, 7-8=-105/81 WEBS 6-8=-102/981, 1-11=-147/1597, 5-8=-66/329, 4-8=-993/265, 2-11=-54/255, 2-10=-631/205, 4-10=0/657 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 	midpt 6-7,		6-7, 4-8, 2-10	g										
FORCES (lb) - Maximum Compression/Maximum Tension LOAD CASE(S) Standard TOP CHORD 1-2=-2013/240, 2-4=-1415/198, 4-5=-723/178, 5-6=-689/198, 6-7=-1219/198, 1-12=-1215/171 LOAD CASE(S) Standard BOT CHORD 11-12=-326/256, 10-11=-338/1796, 8-10=-150/1212, 7-8=-105/81 Image: Compression of the standard Image: Compression of the standard WEBS 6-8=-102/981, 1-11=-147/1597, 5-8=-66/329, 4-8=-993/265, 2-11=-54/255, 2-10=-631/205, 4-10=0/657 Image: Compression of the standard Image: Compression of the standard NOTES 1) Unbalanced roof live loads have been considered for this design. Image: Compression of the standard Image: Compression of the standard 2) Wint: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. Image: Compression of the standard Image: Compression of the standard	12=347 (LC 9 7=-162 (LC 12	M	LC 9) _C 12), 12=-152 (LC 1	12)	12 and 162 I 0) This truss is International	b uplift at joint 7. designed in accor Residential Code	dance w sections	ith the 2018 R502.11.1 a						
TOP CHORD 1-2=-2013/240, 2-4=-1415/198, 4-5=-723/178, 5-6=-689/198, 6-7=-1219/198, 1-12=-1215/171 BOT CHORD 11-12=-326/256, 10-11=-338/1796, 8-10=-150/1212, 7-8=-105/81 WEBS 6-8=-102/981, 1-11=-147/1597, 5-8=-66/329, 4-8=-993/265, 2-11=-54/255, 2-10=-631/205, 4-10=0/657 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. John Son	imum Compres	,	pression/Maximum	L										
8-10=-150/1212, 7-8=-105/81 WEBS 6-8=-102/981, 1-11=-147/1597, 5-8=-66/329, 4-8=-993/265, 2-11=-54/255, 2-10=-631/205, 4-10=0/657 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.	/178, 5-6=-689/	TOP CHORD	,	/198,										
WEBS 6-8=-102/981, 1-11=-147/1597, 5-8=-66/329, 4-8=-993/265, 2-11=-54/255, 2-10=-631/205, 4-10=0/657 OF MISSO NOTES In Unbalanced roof live loads have been considered for this design. ANDREW THOMAS 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. JOHNSON														
 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 	/981, 1-11=-147 /265, 2-11=-54/	WEBS 6	-147/1597, 5-8=-66/									E	TE OF M	AISSO
 Unbalanced roof live loads have been considered for this design. Winici ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 		NOTES										B	ANDE	EW X
this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.	oads have bee	1) Unbalanced	been considered for	r								R	~/	
II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10	It=115mph (3-s 6.0psf; BCDL= IWFRS (envelo the exposed ; end r DOL=1.60 pla =25.0 psf (roof =20.0 psf; Pf=1	 this design. Wind: ASCE Vasd=91mpl II; Exp C; En cantilever lef right exposed TCLL: ASCE Plate DOL=1 	n (3-second gust) DL=6.0psf; h=25ft; C nvelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 (roof LL: Lum DOL=1 Pf=15.4 psf (Lum	Cat. ne; d 60							l	* A MAR	JOHN NUM PE-2017	SOLUTION BER 018993

April 17,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

									RELEASE	FOR CONSTRUCTION
Job	Trus	SS	Truss Type		Qty	Ply	Lot 13 TCF	2	AS NOTE	D FOR PLAN REVIEW
240654	C5		Common		2	1	Job Refere	nce (optional		OPMENT SERVICES 164953133 SUMMIT, MISSOURI
Wheeler Lumber	, Waverly, KS - 66871	5		Run: 8.73 S Apr 3 ID:A5jDpC0DNu1wi	2024 Print: 8.7	730 S Apr 3	2024 MiTek Ind	dustries, Inc. Tu	Apr 16 160 3	30/2024
					LHUVPJWZ990		влопцзімоўнч	IILOWSUI I ADGR	WICD01/3423011	
	5-2-9 5-2-9	13-2		19-1-0 5-10-7	24-11-7 5-10-7		<u>31-3</u> - 6-3-1		<u>38-5-0</u> 7-1-12	39-3-8 0-10-8
				6x6=						0 10 0
-11-8 -11-8 -7-7	6x6 = 1 3x4 =	6 3x4 = 2 20 4x8=	3x6 = 22 3x6 = 22 3 12 19 3x4 =	5 5 18 17 3x6= 3x10=	16 3x6	3x4 23 6 15 = 4x6	3x6≈	6x6. 8 14	2	9 10 0-11 8x8=
								4x5 8 31-3-		
	5-2-9 5-2-9	13-2		19-1-0 5-10-7	<u>24-11-7</u> 5-10-7		<u>31-1-</u> 6-2-′	0		———————————————————————————————————————
Scale = 1:68.4 Plate Offsets ()	X, Y): [11:Edge,0-	5-13], [15:0-2-8,0-2-0], [20:0-2-8,0-2-0]							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr * Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	BC	0.69 Vert(0.97 Vert(0.93 Horz Winc	LL) -0 CT) -0 (CT) 0	in (loc) .25 19-20 .40 19-20 .05 13 .08 19-20	l/defl L/d >999 360 >927 240 n/a n/a >999 240	PLATES MT20 Weight: 158 lb	GRIP 197/144 FT = 10%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) 2x4 SPF N	No.2 Structural wood s 2-10-4 oc purlins, Rigid ceiling direc bracing. 1 Row at midpt (size) 13=(0- 0-4-2), Max Horiz 21=-16 Max Uplift 13=-22 Max Grav 13=263 (lb) - Maximum C Tension 1-2=-2516/307, 2 4-5=-1103/189, 8 1-21=-1502/209, 20-21=-166/307, 17-19=-186/307, 17-19=-186/307, 13-15=-629/186, 1-20=-202/2022, 5-17=-130/810, 8 4-15=-717/118, 8 Io.2 bearing block 1	11 (LC 13), 21=-190 (LC 31 (LC 3), 21=-1606 (LC compression/Maximum -4=-1999/275, -6=-1308/275, -9=-138/798, 9-10=0/32 9-11=-28/184 19-20=-366/2261, 15-17=-14/939, 11-13=-131/335 9-13=-968/318, -13=-2172/346, -20=-103/204, -19=0/635, 6-17=-41/33	Vasd=91m II; Exp C; E right expos 4) TCLL: ASC Plate DOL= DOL=1.15 Partially Ex 5) Unbalance design. 6) This truss P load of 12.(overhangs 7) This truss P chord live I 3) 8) * This truss on the botto 3-06-00 tall chord and a 9) All bearings 12) This truss 10) Refer to gir 11) Provide me bearing pla 21 and 291 12) This truss 5, 10) Refer to gir 11) Provide me bearing pla 21 and 291 12) This truss 7, 10; Refer to gir 11) Provide me bearing pla 21 and 291 12) This truss 13) Refer to gir 14) Provide me bearing pla 21 and 291 12) This truss 13) Refer to gir 14) Provide me bearing pla 21 and 291 12) This truss 12) This truss 13) Refer to gir 14) Provide me bearing pla 21 and 291 14) This truss 15) This truss 16) Refer to gir 17) Provide me bearing pla 21 and 291 12) This truss 12) This truss 13) Refer to gir 14) Provide me bearing pla 21 and 291 15) This truss 10) Refer to gir 10) Refer to gir 11) Provide me bearing pla 21 and 291 12) This truss 10) Refer to gir 11) Provide me bearing pla 21 and 291 12) This truss 13) Refer to gir 14) Provide me bearing pla 21 and 291 15) This truss 16) This truss 17) This truss 18) Refer to gir 19) Refer to gir 10) Refer to gir 10) Refer to gir 10) Refer to gir 11) Provide me bearing pla	E 7-16; Vult=115mph ph; TCDL=6.0psf; BCI inclosed; MWFRS (en eft and right exposed ; ed; Lumber DOL=1.60; E 7-16; Pr=25.0 psf (r =1.15); Pg=20.0 psf; P Plate DOL=1.15); Is=1 (p;, Ce=1.0; Cs=1.00; I d snow loads have been has been designed for 0 psf or 1.00 times flat non-concurrent with o has been designed for oad nonconcurrent with a has been designed for oad nonconcurrent with any other members, w s are assumed to be S der(s) for truss to trust chanical connection (I te capable of withstan Ib uplift at joint 13. s designed in accorda al Residential Code se and referenced standa (c) Standard	DL=6.0psf; h velope) exte end vertical o plate grip E oof LL: Lum f=15.4 psf (L .0; Rough C Ct=110 en considere greater of m roof load of ther live load where a rectu it between th th BCDL = PF No.2. s connection by others) of ding 190 lb u nce with the ctions R502	=25ft; Cat. rior zone; I left and DOL=1.60 DOL=1.15 Jum cat C; ed for this hin roof live 15.4 psf or ds. ottom live loads. of 20.0psf angle he bottom 10.0psf. is. truss to uplift at join 2018 .11.1 and	ı	a final second	THOM JOHNS	IAS SON +
o.c. 8 Tota No.2.	l fasteners. Bearing d roof live loads ha	g is assumed to be SPF						Ø	FRSSIONA	L ENGLAS

April 17,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 17,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

								RELEASE FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Lot 13 TCR	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 164953135
240654	C7		Roof Special		2	1	Job Reference (optional	
Wheeler Lumber, Waverly	y, KS - 66871,			Run: 8.73 S A ID:70vqNWSo	.pr 3 2024 Print: 8. uyZqCt1xcNyN0ly6	730 S Apr 3	2024 MiTek Industries, Inc. Tu 70Hq3NSgPqnL8w3uITXbGK	Apr 16 0084/30/2024
		2-9-8 2-9-8		13-5-8 7-8-0		<u>19-4-0</u> 5-10-8		———————————————————————————————————————
							4x5= 5	
	0-6-0 10-6-0 6-9-4	6 ¹²		5x12 =	3x6 = 14 13		5	6x6≈ 16 6

Scale =	1:66.3
---------	--------

oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.94	Vert(LL)		10-11	>999	360	MT20	197/144
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.82	Vert(CT)	-0.28	10-11	>999	240		
CDL	10.0	Rep Stress Incr	YES		WB	0.88	Horz(CT)	0.04	7	n/a	n/a	-	
CLL	10.0*	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	0.06	10-11	>999	240		
SCDL	10.0											Weight: 114 lb	FT = 10%
JMBER			4) Unbalanced	snow loads have	been cor	nsidered for t	his					
OP CHORD	2x4 SPF No.2			design.									
DT CHORD	2x4 SPF No.2		ţ		quate drainage to	prevent	water pondin	a.					
EBS	2x3 SPF No.2 *Exce	ont* 7-6:2x4 SPF No	2 (s been designed			5					
RACING	EXO OF T TROLE EXOC	pt / 0.2x1 01 / 110			ad nonconcurrent			ads.					
OP CHORD	Structural wood she	othing directly onnlig	- -		has been designe								
JF CHURD	except end verticals				n chord in all area			•					
	(3-11-12 max.): 2-3.		15		y 2-00-00 wide w			om					
OT CHORD	Rigid ceiling directly		•		y other members								
	bracing.		ل ا	B) All bearings	are assumed to b	e SPF N	o.2 .						
EBS	0	6-7, 4-8, 3-10	9) Provide med	hanical connectio	n (by oth	ers) of truss	to					
				bearing plate	e capable of withs	tanding 1	60 lb uplift a	t joint					
ACTIONS	· · · · ·				uplift at joint 12.								
	Max Horiz 12=342 (L	,		0) This truss is	designed in accor	rdance w	ith the 2018						
	Max Uplift 7=-160 (L	<i>,,</i>	,	International	Residential Code	sections	s R502.11.1 a	and					
	Max Grav 7=1372 (L		46)	R802.10.2 a	nd referenced sta	ndard AN	ISI/TPI 1.						
DRCES	(lb) - Maximum Com	pression/Maximum		1) Graphical pu	rlin representation	n does no	ot depict the	size					
	Tension			or the orient	ation of the purlin	along the	e top and/or						
OP CHORD	1-2=-108/46, 2-3=-1			bottom chore	ł.								
	4-5=-738/177, 5-6=-	697/197, 6-7=-1233/	/196,	OAD CASE(S)	Standard								
	1-12=-137/43			.,									
OT CHORD	11-12=-262/951, 10-	,											
	8-10=-149/1259, 7-8												The
EBS	2-11=-120/1417, 3-1		9/985,									O OF M	and the second
	2-12=-1430/180, 5-8	,										B.F. OF I	11SS D
	4-8=-1093/265, 4-10)=0/671, 3-10=-699/	160								4	STATE OF M	N
DTES											B	ANDR	FW YP.V
Unbalance	ed roof live loads have	been considered for	r								R	THOM	
this desigr	۱.										A .		
Wind ASC	CE 7-16: Vult=115mph	(3-second quet)								/	12 📩	JOAN	

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 2) Vasaes (mpr), TCDL=6.09st; BCDL=6.09st; n=25t; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15; Ds=1.0; Ds=1.0;
- 3) DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent college with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Plate Offsets (X, Y): [1:Edge,0-2-11], [3:0-3-6,Edge], [10:0-2-8,0-1-8]

	7, 1). [1.Eugo,0 2 11], [0.0 0 0,Euge], [1	0.0 2 0,0	0]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.57 0.92 0.86	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.43 0.04	(loc) 10-11 10-11 7 10-11	l/defl >999 >676 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 115 lb	GRIP 197/144 FT = 10%
	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce Structural wood she 4-3-10 oc purlins, e 2-0-0 oc purlins, (5-2 Rigid ceiling directly bracing. 1 Row at midpt (size) 7=0-3-8, ' Max Horiz 12=342 (I Max Uplift 7=-160 (L Max Grav 7=1372 (I (Ib) - Maximum Com Tension	athing directly applie xcept end verticals, 13 max.): 2-3. applied or 2-2-0 oc 6-7, 4-8 12=0-5-8 .C 9) C 12), 12=-159 (LC .C 3), 12=1368 (LC	ed or 7 and 8 9 12) ¹ 46)	 design. Provide adee This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate 12 and 160 l This truss is International R802.10.2 a Graphical put 	snow loads have quate drainage to as been designed ad nonconcurren nas been designed n chord in all are by 2-00-00 wide v ny other member are assumed to 1 hanical connectii e capable of with b uplift at joint 7. designed in acco Residential Cod nd referenced st urlin representation	o prevent t d for a 10.0 t with any ed for a live as where will fit betw be SPF No on (by oth standing 1 ordance w e sections andard AN on does no	water pondin O psf bottom other live load e load of 20. a rectangle ween the bott CDL = 10.0ps o.2. ers) of truss 59 lb uplift a ith the 2018 is R502.11.1 a SI/TPI 1. bt depict the	g. ads. Opsf aom af. t joint					
TOP CHORD BOT CHORD WEBS	1-2=-1440/161, 2-3= 3-4=-1463/197, 4-5= 6-7=-1230/197, 1-12 11-12=-328/146, 10- 8-10=-141/1250, 7-8 2-11=0/412, 6-8=-10 5-8=-55/357, 4-8=-1 3-10=-499/170, 3-11	748/173, 5-6=-696 2=-1305/170 -11=-271/1610, 3=-104/81)2/987, 1-11=-97/13 071/246, 4-10=-7/72	16,	bottom chore OAD CASE(S)	d.							TATE OF M	AISSOL
 this design Wind: ASC Vasd=91m II; Exp C; E cantilever I right exposision TCLL: ASC Plate DOL DOL=1.15 	ed roof live loads have	been considered fo (3-second gust) DL=6.0psf; h=25ft; (velope) exterior zor ; end vertical left an 0 plate grip DOL=1. roof LL: Lum DOL=' 2f=20.4 psf (Lum 1.0; Rough Cat C;	Cat. ne; d 60 1.15							Ĺ	k	NUM PE-2017	AS OR OR OR OR OR OR OR OR OR OR

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 17,2024

6-9-9

5-10-7

5-4-0

Scale = 1:66.3 Plate Offsets (X, Y): [1:Edge,0-1-12], [2:0-4-0,0-1-15], [10:0-2-8,0-1-8]

6-5-0

			-										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	B/TPI2014	CSI TC BC WB Matrix-S	0.82 0.67 0.79	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.18 0.03 0.04	7	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 117 lb	GRIP 197/144 FT = 10%
TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce No.2	ept* 7-6,12-1:2x4 SPI	= 4)	Plate DOL=1 DOL=1.15 P Partially Exp Unbalanced	I.15); Pg=20.0 pst late DOL=1.15); Is .; Ce=1.0; Cs=1.0 snow loads have	f; Pf=20.4 s=1.0; Ro 00; Ct=1.1	l psf (Lum ough Cat C; I0, Lu=50-0-0	0					
BRACING TOP CHORD	Structural wood she 2-2-0 oc purlins, ex 2-0-0 oc purlins (5-0	cept end verticals, ar -8 max.): 2-3.	nd 6) 7)	This truss ha chord live loa	quate drainage to as been designed ad nonconcurrent nas been designer	for a 10. with any) psf bottom other live loa	ads.					
		4-8, 6-7 12= Mechanical _C 9) C 12), 12=-157 (LC	8) 12) 10	on the botton 3-06-00 tall I chord and an All bearings Refer to gird Provide med	The second secon	as where vill fit betw , with BC e SPF No russ conr n (by oth	a rectangle veen the bott DL = 10.0psi o.2. nections. ers) of truss t	tom if.					
FORCES	(lb) - Maximum Com Tension 1-2=-1457/178, 2-3= 3-4=-1346/204, 4-5= 6-7=-1223/193, 1-12	=-1213/210, =-735/169, 5-6=-692/	195,	12 and 157 I) This truss is International R802.10.2 a	b uplift at joint 7. designed in account Residential Code nd referenced sta	rdance w sections ndard AN	ith the 2018 R502.11.1 a	and					
BOT CHORD WEBS	6-7=-1223/193, 1-12 11-12=-326/202, 10 8-10=-143/1184, 7-6 2-11=0/356, 3-11=-4 5-8=-46/339, 6-8=-9 3-10=-446/138, 4-10	-11=-211/1409, 3=-105/81 114/28, 4-8=-989/241 9/974, 1-11=-73/119	^{I,} LC					SIZE			H	STATE OF M	AISSOUR EW
1) Unbalance	ed roof live loads have	been considered for									1.	THOM	LAS VY

Unbalanced roof live loads have been considered for 1) this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

E

April 17,2024

IOH

OF THE STONAL

NUMBER

PE-2017018993

8-7-5

5-10-7

5-4-0

00010 = 110010	
Plate Offsets (X, Y):	[10:0-2-8,0-1-8]

Scale - 1.66.3

	-	1				-							-	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.57	Vert(LL)	-0.25	10-11	>999	360	MT20	197/144	
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.88	Vert(CT)	-0.40	10-11	>726	240			
TCDL	10.0	Rep Stress Incr	YES		WB	0.84	Horz(CT)	0.03	7	n/a	n/a			
BCLL	10.0*	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.04	10-11	>999	240			
BCDL	10.0											Weight: 115 lb	FT = 10%	
LUMBER			3)		7-16; Pr=25.0 ps	sf (roof I I	· Lum DOI =	1 15						
TOP CHORD	2x4 SPF No.2		0)		.15); Pg=20.0 ps									
BOT CHORD	2x4 SPF No.2				late DOL=1.15); I									
WEBS	2x3 SPF No.2 *Exce	pt* 7-6.12-1:2x4 SP	Έ	Partially Exp	.; Ce=1.0; Cs=1.0	00; Ct=1.1	10, Lu=50-0-0)						
	No.2	, .	4)	Unbalanced	snow loads have	been cor	nsidered for th	his						
BRACING				design.										
TOP CHORD	Structural wood she	athing directly applie	ed or 5)		quate drainage to			g.						
	4-4-14 oc purlins, e				is been designed									
	2-0-0 oc purlins (5-4	-13 max.): 2-3.		chord live load nonconcurrent with any other live loads.										
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	c 7)	 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 										
	bracing.				n chord in all area by 2-00-00 wide w			~ m						
WEBS	1 Row at midpt	6-7, 4-8			by 2-00-00 wide w									
REACTIONS		12= Mechanical	8)		are assumed to b									
	Max Horiz 12=342 (L	_C 11)			er(s) for truss to t									
	Max Uplift 7=-157 (L		12) 10		hanical connectio			n						
	Max Grav 7=1359 (L	_C 3), 12=1350 (LC -	46)		capable of withs									
FORCES	(lb) - Maximum Com	pression/Maximum			b uplift at joint 7.			,						
	Tension		11		designed in acco	rdance w	ith the 2018							
TOP CHORD	1-2=-1357/154, 2-3=	-1159/171,			Residential Code			and						
	3-4=-1430/193, 4-5=	=-742/171, 5-6=-689/	/196,	R802.10.2 a	nd referenced sta	Indard AN	ISI/TPI 1.							
	6-7=-1217/194, 1-12	2=-1290/168	12	2) Graphical pu	rlin representatio	n does no	ot depict the	size						
BOT CHORD	11-12=-327/149, 10-	,		or the orienta	ation of the purlin	along the	top and/or						m	
	8-10=-143/1229, 7-8		_	bottom chore	ł.							OF N	ALL ALL	
WEBS	2-11=0/405, 6-8=-99	,	· L\	DAD CASE(S)	Standard							TATE OF M	NoS'L	
	5-8=-53/351, 4-8=-1		32,								A		N.S.	
	3-10=-433/158, 3-11	1=-679/113									H	ANDR	EW YR	
NOTES											H	THOM		

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

4-7-4

ANDREW THOMAS JOHNSON NUMBER PE-2017018993 STONAL ENGL April 17,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Q	y Ply	Lot 13 TCR	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
240654	D1	Piggyback Base	2	1	Job Reference (optional	DEVELOPMENT SERVICES 164953139 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Wave	ly, KS - 66871,		Run: 8.73 S Apr 3 2024 ID:WFyq9TSMCIESMGm	Print: 8.730 S Apr Bo9U8iSy6jdX-RfC	3 2024 MiTek Industries, Inc. Tu ?PsB70Hq3NSgPqnL8w3uITXb	a Apr 16 @085/30/2024 skwrcDurf J& 2730/2024
	-0-10-8 6-3-15 	<u>12-4-6</u> 6-0-7 3x4 ≠		23-5-0 5-1-0 4x5= 7 7	6-11-8 1-	9
+ 10-0-0 -3-8 10-0-0 -3-8 9-8-8 0-10-0 -10-0		3x6 = 6^{12} 4 5 6^{12} 4 5 18 25 3x6 =	26 17 16 4x8= 5x12=	11 2x4 II	မှ 3x6 ။	6x6 II 10 21 3x6 = 11 27 ÷ 28 8x8 = 7x12 =
	<u>9-3-4</u> 9-3-4	18-5 9-2-		23-6-4 5-1-0	6x12= <u>30-5-12</u> 6-11-8	<u> </u>
Scale = 1:72.4						
Plate Offsets (X, Y):	[2:Edge,0-3-8], [6:0-4-4,0-2-8], [9:0-4-0,0-2-8], [11:Edge,0-3-8	3], [13:Edge,0-2-8]			1
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) Spacing 25.0 Plate Grip D 20.4/20.0 Lumber DOI 10.0 Rep Stress 10.0* Code 10.0 Kep Stress	OL 1.15 - 1.15 ncr YES	CSI TC 0.71 BC 0.83 WB 0.77 Matrix-S	Vert(CT) Horz(CT)	in (loc) l/defi L/d 0.39 16-18 >999 360 0.58 16-18 >770 240 0.16 21 n/a n/a 0.07 16-18 >999 240	PLATES GRIP MT20 197/144 Weight: 182 lb FT = 10%
BOT CHORD 2x4 3 SPF WEBS 2x3 3 00THERS 2x4 3 BRACING TOP CHORD Struc 2-9-2 2-0-0 BOT CHORD Rigio brac 6-0-0 1 Row at midpt 7-14 WEBS 1 Ro REACTIONS (size) Max H Max U Max C FORCES (lb) - Tens TOP CHORD 1-2= 5-6= 8-9= 10-2 BOT CHORD 18-1 15-1 13-1	SPF No.2 stural wood sheathing directly 3 oc purlins, except end vertic 0 oc purlins (3-6-12 max.): 6-9 4 ceiling directly applied or 10 ng, Except: 0 oc bracing: 15-16. w at midpt 6-16, 7-12, 9- 5-16 19=0-3-8, 21=0-3-2 loriz 19=218 (LC 9) lplift 19=-22 (LC 12) irav 19=2112 (LC 3), 21=20 Maximum Compression/Max	Arright Stress of the provide adequ 27 (LC 3) 27 (LC 4) 27 (LC 4) 28 (LC 4) 29 (LC 4) 20 (LC	16=-23/542, 14-16=-40/ 14=-65/549, 12-14=-76/ 12=-621/35, 9-12=-49/1 11=-1977/44, 3-19=-25 18=-187/134, 5-18=0/66 -21=-2083/0 pof live loads have been 7-16; Vult=115mph (3-se TCDL=6.0psf; BCDL=6 losed; MWFRS (envelop used; end vertical left an 1:60 plate grip DOL=1.6 7-16; Pr=25.0 psf (roof L 15); Pg=20.0 psf; Pf=20. te DOL=1.15); Is=1.0; R Ce=1.0; Cs=1.00; Ct=1. now loads have been cc been designed for great of or 1.00 times flat roof n-concurrent with other I uate drainage to prevent been designed for a li d-nonconcurrent with other I us been designed for a li d-nonconcurrent with any is been designed for a li d-nord in all areas where v 2-00-00 wide will fit bet v other members, with B equired bearing size at j ring size. re assumed to be SPF N tt(s) 21 considers paralle Pl 1 angle to grain formu Id verify capacity of bea	2233, 227, 227, 18/0, 2, 5-16=-887/13 considered for cond gust) 0psf; h=25ft; Ca e); cantilever lef d right exposed; 0 L: Lum DOL=1.1 4 psf (Lum ough Cat C; 10, Lu=50-0-0 nsidered for this ter of min roof liv oad of 15.4 psf ve loads. water ponding. 0 psf bottom o ther live loads ve load of 20.0psf a rectangle ween the bottom CDL = 10.0psf. Dint(s) 21 greate 0.2. 4 to grain value la. Building	bearing plate cap 19. 13) This truss is desi International Res R802.10.2 and re 14) Graphical purlin r or the orientation bottom chord. LOAD CASE(S) Sta t. t.	cal connection (by others) of truss to able of withstanding 22 lb uplift at joint gned in accordance with the 2018 idential Code sections R502.11.1 and ferenced standard ANSI/TPI 1. epresentation does not depict the size of the purlin along the top and/or andard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) April 17,2024

												RELEASE	FOR CONS	TRUCTION
Job	Truss		Truss Ty	pe		Qty	P	ly	Lot 13 TC	R			D FOR PLAN OPMENT SE 1649531	
240654	D2		Piggyba	ack Base		2	1		Job Refere	ence (op	tional		1649531 SUMMIT, MIS	
Wheeler Lumber, V	Waverly, KS - 66871,								24 MiTek In	dustries,	Inc. Tu	Apr 16 16005	30/2	<u>924</u>
					ID:dy36VbxO3	V_VVxwN1p	obmcGy6m	we-RfC?P	sB70Hq3NS	gPqnL8w	3ul I XI	GKWrCDor73-2JC?	b 07 L	<u> </u>
	1-7-13 -0-10-8	740	44 E E	12-5-4	10.4.0	22	5.0		20.4.0		22.4	0 07 0 0		
	0-10-8	7-4-0 5-8-3	<u>11-5-5</u> 4-1-5	0-11-15	18-4-0 5-10-12		<u>5-0</u> 1-0	1	<u>30-4-8</u> 6-11-8		<u> 32-4-</u> 1-11-			
	1-7-13					5x8=		4x5=	o -7			6x6=		
ΤT				214		7 11.		8 26 ⊠ ⊠	27		9 ⊠	10		
				2x4 ⊪ 4x8 ≈		\mathbb{T}					,		6x6 II	
			12	~ /										т
		475	6 ¹² 24	3			\ .		\ ₹		$\parallel /\!\!/$		23 21-4-0	⊥ _
10-1-6 10-0-0 9-8-2		4x5 - 25 4			// D	3		9					23	99
		25								Ŵ	Щ		3x6=	6-0-0
			R	//	/					13	28	29	12	000
	2 3						15				<u>14</u>	29 1	8x8=	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
-10-0 -14 -10-0		20		18				-0 9 16 تــــــــــــــــــــــــــــــــــــ		3	3x6 II			<u> </u>
6 6 ⁰	⊠ 21 8x8=	2x4 I	8	3x12=		17	2	2x4 I			7)	(12=		
	¹ 2×48 ₀			3x6 II	5	5x12=		6x12	-					
	1-7-13	7-4-0 5-0-0	<u>12-4-0</u> 5-0-0)	<u>18-5-4</u> 6-1-4		<u>-6-4</u> 1-0	-	<u>30-5-12</u> 6-11-8		+	<u>37-4-8</u> 6-10-12	37-8-0	
	1-7-13 0-8-3	5-0-0	5-0-0		0-1-4	5-	1-0		0-11-0			0-10-12	0-3-8	
Scale = $1:73.3$, Y): [5:0-4-0,Edge], [7	0 4 9 0 1 121 100	4002	9] [12·Edgo () 2 9] [14·Edgo (1 2 91 [24	Edgo 0 2	41						
				oj, [12.Euge,0		-2-0], [21		-				[
Loading TCLL (roof)	u ,	Spacing Plate Grip DOL	2-0-0 1.15		TC	0.99	DEFL Vert(LL)	ا 0.3-	n (loc) 3 14-15	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144	
Snow (Pf/Pg) TCDL			1.15 YES		BC WB	0.83 0.76	Vert(CT) Horz(CT		3 14-15 1 23	>852 n/a	240 n/a			
BCLL	10.0*			/TPI2014	Matrix-S	0.70	Wind(LL			>999	240			
BCDL	10.0											Weight: 239 lb	FT = 10%	
LUMBER TOP CHORD	2x4 SPF No.2 *Except	* 1-5 [.] 2x6 SP 2400F	WE		3-21=0/151, 4-19 17-19=-64/1859,		,					23 considers para angle to grain for		
	2.0E			-	7-17=-621/102, 1 7-15=-61/574, 13	5-17=-44/	2072,		des	signer sh	ould v	erify capacity of b al connection (by	earing surfa	ace.
	2x3 SPF No.2 *Except 3-19:2x4 SPF 2100F 1	.8E,	<u>z</u> ,	;	8-13=-607/35, 10)-13=-48/1	614,		bea			able of withstandi		
	18-16,15-14,13-12:2x4 2x3 SPF No.2 *Except		2, NO	TES	10-12=-1961/43,	4-20=0/38	37, 11-23=	=-2070/0	2. 14) Thi	s truss is	s desig	ned in accordanc	e with the 2	018
	19-7,12-10:2x4 SPF No 2100F 1.8E			Attached 14-	-0-0 scab 1 to 5, ow(s) of 10d (0.1							dential Code sect erenced standard		
OTHERS	2x4 SPF No.2			o.c.except : :	starting at 0-2-14	,			15) Gra	aphical p	urlin re	presentation doe	s not depict	the size
	1-5 SP 2400F 2.0E on Left: 2x4 SPF No.2	ie side	2)	()	o.c. for 3-5-2. roof live loads ha	ave been o	onsidered	d for		tom cho		of the purlin along	rine top and	u/01
BRACING	O(in a directly and in d	2)	this design.	7-16; Vult=115n				LOAD	CASE(S) Sta	ndard		
	Structural wood sheath except end verticals, a		3)	Vasd=91mpl	h; TCDL=6.0psf;	BCDL=6.0)psf; h=25	ift; Cat.						
	(3-7-2 max.): 7-10. Rigid ceiling directly ap	oplied or 10-0-0 oc			closed; MWFRS									
	bracing, Except:		4)		=1.60 plate grip 7-16; Pr=25.0 p			1 -1 15						
1 Row at midpt	6-0-0 oc bracing: 2-21, 8-15	.10-17.	4)	Plate DOL=1	I.15); Pg=20.0 ps	sf; Pf=20.4	psf (Lum							
		19, 7-17, 8-13, 10-1	2		late DOL=1.15); .; Ce=1.0; Cs=1.		•							
•	size) 2=0-3-8, 23= Nax Horiz 2=211 (LC 9		5)	Unbalanced	snow loads have							STAT	TOD	
	Max Uplift 2=-12 (LC 1) Max Grav 2=2115 (LC		6)	design. This truss ha	as been designed	d for greate	er of min r	oof live			G	FE OF M	AISS	d h
	(lb) - Maximum Compr				psf or 1.00 times on-concurrent wi			4 psf on			A	STATE OF M	EW	Na
	Tension 1-2=0/6, 2-3=-1297/0, 3		7)	Provide adeo	quate drainage to	prevent v	vater pone				A	ANDR THOM		1× 18
	4-6=-3376/66 6-7=-33		8)	This truss ha	as been designed	t for a 10.0) psf botto	m			M +			1+12

This truss has been designed for a 10.0 psf bottom 8) 4-6=-3376/66, 6-7=-3335/158, 7-8=-2197/60, chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 8-9=-1788/44, 9-10=-1792/42, 10-11=-289/55, 12-22=0/1786, 11-22=0/1786 9)

BOT CHORD

2-21=-99/0, 3-20=-166/3967,

19-20=-166/3966, 18-19=0/159,

15-16=0/113, 8-15=-303/289, 14-15=0/44,

13-14=0/208, 9-13=-487/98, 12-13=-41/1350

- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6-19=-443/131, 17-18=0/141, 16-17=-38/13, 10) WARNING: Required bearing size at joint(s) 23 greater
 - than input bearing size.
 - 11) All bearings are assumed to be SPF No.2 .

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

April 17,2024

OHNSON

NUMBER

PE-2017018993

									RELEASE FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Lot 13 TCR		AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
240654	D3		Piggyback Base		6	1	Job Reference	(optional)	DEVELOPMENT SERVICES 164953141 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Wav	verly, KS - 66871,			Run: 8.73 S Apr 3 2 ID:P0BL?rVtG_kuru3	024 Print: 8.7	30 S Apr 3 2	2024 MiTek Industri	es, Inc. Tu	Apr 16 0085/30/2024
				ID:POBL?rvtG_kuru3	y1?24SIY6J01	-RIC (PSB/U	Hq3NSgPqnL8W3U	IIXDGKW	
	-0-10-8 	7-4-0 7-4-0	<u>11-5-5</u> 12-5-4 4-1-5 0-11-15	18-4-0 5-10-12 5x8=	23-4-8 5-0-8	2x4 II	<u>30-7-8</u> 7-3-0	32-4 1-8- 4x5=	8 5-4-0 6x6=
10-1-6 0-3-14 10-0-0 1 0-3-14 9-8-2 0-10-0	[∞] 22 4x8 ≠ 12x12= 2-4-		18 8x12= 3x6 II	7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	23.6.4	2x4 II	2= 7x	9 9 13 3x6 II 2=	10 6x6 = 11 74 3x6 = 0 12 8x8 = 37-8-0
Scale = 1:73.3 Plate Offsets (X, Y)	<u>2-2-4</u> 2-2-4 0-1-1 : [2:0-1-0,0-2-0],		<u>12-4-0</u> 5-0-0 -8,0-1-12], [10:0-3-8,0-	<u>18-5-4</u> 6-1-4 -2-4], [14:0-8-0,0-3-8], [<u>23-6-4</u> 5-1-0 [22:0-7-7,0-	-2-6]	<u>30-5-12</u> 6-11-8		37-4-8 H 6-10-12 0-3-8
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	BC 0	0.99 Vert(0.92 Vert(0.89 Horz) Wind	LL) -0. CT) -0. (CT) 0.	61 14-15 >73	99 360 31 240 /a n/a	PLATES GRIP MT20 197/144 Weight: 260 lb FT = 10%
BOT CHORD 2.0 BOT CHORD 2.4 2.0 SPI WEBS 223 22- 12- OTHERS 224 LBR SCAB 1-5 BRACING TOP CHORD Str exc (3- BOT CHORD RIG BOT CHORD RIG BOT CHORD RIG BOT CHORD 8-1 WEBS 2 R REACTIONS (Size Max Max FORCES (Ib) Ter TOP CHORD 1-2 4-6 8-9 10-	E 4 SPF No.2 *Exce E, 3-19:2x4 SPF : 7 No.2 3 SPF No.2 *Exce 21,19-7,15-9,12- 11:2x4 SPF 2100 4 SPF No.2 5 SP 2400F 2.0E uctural wood sheat cept end verticals, 2-5 max.): 7-10. idid ceiling directly acting, Except: -0 oc bracing: 14 15, 9-14 Row at nidpt Rows at 1/3 pts 2) 2=0-3-8, 2 Horiz 2=248 (LC Grav 2=2095 (L) - Maximum Com sion 2=0/11, 2-3=-1339	10:2x4 SPF No.2, F 1.8E one side athing directly applied , and 2-0-0 oc purlins applied or 10-0-0 oc -17 -15. 4-19, 7-17 10-12 24=0-3-2 2 9) -12) .C 3), 24=2021 (LC 3) pression/Maximum //0, 3-4=-4373/52, 3349/155, 7-8=-2221/ -1436/32,	F WEBS NOTES 1) Attached 14 2.0E with 2 o.c.except : row(s) at 3" 2) Unbalanced this design. 3) Wind: ASCE Vasd=91mp II; Exp C; Er and right ex Lumber DOL Plate DOL= DOL=1.15 F Partially Exy 5) Unbalanced design. 61, 6) This truss hi load of 12.0 overhangs r 7) Provide ade 8) This truss hi	2-22=0/0, 3-21=-161/3 19-20=-161/3983, 18- 6-19=-444/135, 17-18- 15-16=0/116, 8-15=-55 14-15=-83/1456, 13-14 9-14=-1167/136, 12-13 21-22=-23/335, 4-19=- 17-19=-96/1864, 7-19= 7-17=-620/116, 15-17= 7-17=-620/116, 15-17= 7-17=-620/116, 15-17= 7-17=-45/601, 9-15=-4 12-14=-70/1068, 10-14 10-12=-2163/66, 4-20= -0-0 scab 1 to 5, front 1 row(s) of 10d (0.131*x3 starting at 0-3-0 from 6 o.c. for 3-5-9. roof live loads have be 57-16; Vult=115mph (3 h; TCDL=6.0psf; BCDI nclosed; MWFRS (enve posed; end vertical lef L=1.60 plate grip DOL= 57-16; Pr=25.0 psf (ro 1.15); Pg=20.0 psf; Pf= Plate DOL=1.15); Is=1.0; C snow loads have beer as been designed for g psf or 1.00 times flat ri oun-concurrent with oth quate drainage to prev as been designed for a ad nonconcurrent with	19=0/161, =0/161, =0/149, 16- 91/113, 4=0/195, 3=-2/39 -1252/96, =-144/1754 =-76/2076, 44/1794, 4=-65/1814 =0/434, 11- face(s) 2x6 3") nails spa end at joint een consider 3-second gu L=6.0psf; h elope); can t and right e =1.60 of LL: Lum =20.4 psf (L 0; Rough C t=1.10, Lu= n considere greater of m conf load off her live load of ner live load of the space of the space of the space present water p 10.0 psf b	17=-39/32, , , , , , , , , , , , , ,	 on the b 3-06-00 chord ar 10) WARNIN than inpi 11) All beari 12) Bearing using AN designer 13) Provide bearing 2. 14) This trust Internati R802.10 15) Graphica or the or bottom c LOAD CASE 	bottom cho tall by 2-(d any oth JG: Requ JG: Requ JS: JFIPI 1 should v mechanic Jaio Jaio JG: Requ JG: Requ JG	ssumed to be SPF No.2 . 24 considers parallel to grain value angle to grain formula. Building erify capacity of bearing surface. al connection (by others) of truss to able of withstanding 24 lb uplift at joint gned in accordance with the 2018 dential Code sections R502.11.1 and ferenced standard ANSI/TPI 1. epresentation does not depict the size of the purlin along the top and/or

April 17,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

									RELEASE FOR CONSTRUCTION
Job	Tru	SS	Truss Type		Qty	Ply	Lot 13 TCR		AS NOTED FOR PLAN REVIEW
240654	D4		Piggyback Base		2	1	Job Deference	(ontional'	DEVELOPMENT SERVICES 164953142 LEE'S SUMMIT, MISSOURI
Wheeler Lumber	, Waverly, KS - 66871	,	007	Run: 8.73 S Apr 3	2024 Print: 8	.730 S Apr 3	Job Reference 2024 MiTek Industri	es, Inc. Tu	
				ID:pbtTdsYIZv6TiLo	Xj76nUxy6jd	Q-RfC?PsB70)Hq3NSgPqnL8w3u	ITXbGKWi	
	-0-10-8 6-3	2.0 17	2.0	18 4 0	22 4 9		20.7.9	32-4	4-0 27.8.0
	0-10-8 6-3		-3-8 -0-8	18-4-0 6-0-8	<u>23-4-8</u> 5-0-8		<u>30-7-8</u> 7-3-0	1-8	51 0 0
				6x6=		2x4 II		4x8=	6×6=
Т				6		7 23	24 ¤ ¤ ¤	8	9
			3x4 ≠				/	\square	6х6 ш
			3x6 =		\backslash				
		6	12 4 °						
10-0-0		4x8 =		X		⊠		⊠ //	
9		322							3x6= 0 0
					//	\parallel			
	10x12=				_				
0-10-0	1						27		
⊥ <u>5</u> ⊤	¥9 ¥		18 25	26 17 16		15 ∽⊥ 2x4 ∎	-	12 🕮	11 [←] 8x8=
			3x4=	4x8= 5x12=		2x4 II 6x1	2= 7x	12=	020=
	L	9-3-4	18-5-	4	23-6-4		30-5-12		37-4-8 37-8-0
	I	9-3-4	9-2-0) I	5-1-0	I	6-11-8	I	6-10-12 0-3-8
Scale = 1:69.8	X V): [2:Edge 0-3	-8], [6:0-4-4,0-2-8], [9:0-	3-8 0-2-4] [13:0-8-0 0-	3-81					
				1					
Loading TCLL (roof)	(psf) 25.0		2-0-0 1.15	CSI TC	0.86 Ver		in (loc) l/de .40 16-18 >99		PLATES GRIP MT20 197/144
Snow (Pf/Pg) TCDL	20.4/20.0 10.0		1.15 YES			. ,	.59 16-18 >75 .27 21 n	56 240 /a n/a	
BCLL	10.0)* Code	IRC2018/TPI2014	Matrix-S		. ,	.08 7-14 >99		
BCDL	10.0)							Weight: 201 lb FT = 10%
LUMBER TOP CHORD	2x4 SPF No.2		 Unbalance this design 	d roof live loads have b	been consid	dered for	LOAD CASE	E (S) Sta	Indard
BOT CHORD	2x4 SPF No.2 *E 2100F 1.8E	xcept* 19-17,17-15:2x4		E 7-16; Vult=115mph (ph; TCDL=6.0psf; BCD					
WEBS	2x3 SPF No.2 *E	xcept* 14-8,11-9,19-3:2	4 II; Exp C; E	inclosed; MWFRS (env posed ; end vertical le	/elope); ca	ntilever left			
	19-2:2x6 SPF No	:2x4 SPF 2100F 1.8E,).2	Lumber DC	L=1.60 plate grip DOL	.=1.60				
OTHERS BRACING	2x4 SPF No.2		Plate DOL	E 7-16; Pr=25.0 psf (r =1.15); Pg=20.0 psf; Pt	=20.4 psf ((Lum			
TOP CHORD		sheathing directly applied except end verticals, an	Dortiolly Ex	Plate DOL=1.15);					
	2-0-0 oc purlins ((3-2-0 max.): 6-9.	4) Unbalance design.	d snow loads have bee	en consider	ed for this			
BOT CHORD	bracing. Except:	ctly applied or 2-2-0 oc	5) This truss h	has been designed for					
1 Row at midpt WEBS	t 7-14, 8-13 1 Row at midpt	5-16, 6-16, 3-19	overhangs) psf or 1.00 times flat non-concurrent with ot	her live loa	ids.	1		
WEBS	2 Rows at 1/3 pts	s 9-11	7) This truss h	equate drainage to pre has been designed for					
	(size) 19=0-3 Max Horiz 19=25	3-8, 21=0-3-2, (req. 0-3-3 5 (LC 9)	5) chord live l	bad nonconcurrent with has been designed fo	h any other	live loads.			
	Max Uplift 19=-24 Max Grav 19=21	4 (LC 12) 21 (LC 3), 21=2035 (LC	on the bott	om chord in all areas w	/here a rec	tangle			
FORCES	(lb) - Maximum C	Compression/Maximum	chord and	by 2-00-00 wide will fi any other members, wi	th BCDL =	10.0psf.			ADDREED
TOP CHORD	Tension 1-2=0/35, 2-3=-8	46/87, 3-5=-3210/50,		: Required bearing size bearing size.	e at joint(s)	21 greater			STATE OF MISSOL
	5-6=-2346/62, 6-	7=-2248/64, 7-8=-2261/6 10=-200/88, 11-20=-9/18	64, 10) All bearing	s are assumed to be S joint(s) 21 considers pa		ain value		E	A LA COLLA
	10-20=-9/1882, 2	2-19=-599/91	using ANS	/TPI 1 angle to grain for	ormula. Bu	ilding		R	ANDREW THOMAS
BOT CHORD	15-16=-69/22, 14	l, 16-18=-121/2545, l-15=0/75, 7-14=-593/11		nould verify capacity of chanical connection (b				Nº *	
	13-14=-84/1468, 8-13=-1181/137,			te capable of withstand					proceents.
WEBS	3-18=-182/133, 5	5-18=0/651, 5-16=-893/1	32, 13) This truss i	s designed in accordar				N.	NUMBER PE-2017018993
	6-16=-25/519, 14 6-14=-48/570, 8-	14=-46/1215,	R802.10.2	al Residential Code se and referenced standa	rd ANSI/TI	기 1.		Ø	NA ISA
	11-13=-71/1076, 9-11=-2181/67, 3	9-13=-67/1830, 3-19=-2552/0, 10-21=-20		ourlin representation do tation of the purlin alor				6	SIONAL ENGLA
NOTES			bottom cho						Acces.
									April 17,2024

April 17,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

(www.tpinst.org) (www.tpinst.org) (www.tpinst.org) (www.tpinst.org) (www.tpinst.org) (worker) (www.tpinst.org) (www.tpinst

Continued on page 2

WARNING² - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION	
Job	Truss	Truss Type	Qty	Plv	Lot 13 TCR	AS NOTED FOR PLAN REVIEW	
005	11400		QUY	,		DEVELOPMENT SERVICES 164953143	
240654	D5	Piggyback Base Supported Gable	2	1	Job Reference (optional		
Wheeler Lumber, Waverly, KS - 6	66871,	Run: 8.73 S Apr 3 20)24 Print: 8.7	'30 S Apr 3 2	2024 MiTek Industries, Inc. Tu		

4) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0

Unbalanced snow loads have been considered for this design.

- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 9) Gable studs spaced at 2-0-0 oc.
 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SPF No.2.
 Bearing at joint(s) 46 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building
- designer should verify capacity of bearing surface.
 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 57 lb uplift at joint 44, 270 lb uplift at joint 24, 222 lb uplift at joint 43, 34 lb uplift at joint 42, 59 lb uplift at joint 41, 53 lb uplift at joint 40, 54 lb uplift at joint 39, 54 lb uplift at joint 38, 53 lb uplift at joint 37, 62 lb uplift at joint 36, 22 lb uplift at joint 35, 39 lb uplift at joint 34, 43 lb uplift at joint 32, 34 lb uplift at joint 31, 34 lb uplift at joint 30, 34 lb uplift at joint 29, 41 lb uplift at joint 28, 35 lb uplift at joint 27, 31 lb uplift at joint 26, 54 lb uplift at joint 25 and 250 lb uplift at joint 46.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tur Apr 16 (6) 836/30/2^e 69 24 ID:HnRrrCYNKDEKKVNjGqd008y6jdP-RfC?PsB70Hq3NSgPqnL8w3uITXbG KWrCDorv42824

Ite (www.tpinst.org) Jte (www.tpinst.org) Jte (www.tpinst.org)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
505	11035	Truss Type	Guy	l' 'y	LOUISTON	DEVELOPMENT SERVICES 164953144
240654	E1	Piggyback Base Supported Gable	2	1	Job Reference (optional	
Wheeler Lumber, Wave	erly, KS - 66871,	Run: 8.73 S Apr 3 ID:bgPLSD25gpPV	2024 Print: 8 ko0bAytdBn	3.730 S Apr 3 /6jcm-RfC?Psl	2024 MiTek Industries, Inc. Tu B70Hq3NSgPqnL8w3uITXbGK	

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 13) All bearings are assumed to be SPF No.2.
 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 37, 23 lb uplift at joint 20, 226 lb uplift at joint 36, 32 lb uplift at joint 36, 60 lb uplift at joint 34, 53 lb uplift at joint 33, 54 lb uplift at joint 32, 54 lb uplift at joint 31, 53 lb uplift at joint 30, 61 lb uplift at joint 29, 38 lb uplift at joint 27, 59 lb uplift at joint 26, 42 lb uplift at joint 25, 35 lb uplift at joint 24, 39 lb uplift at joint 23, 47 lb uplift at joint 22 and 52 lb uplift at joint 21.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

												RELEAS		N
Job	Truss		Truss Ty	/pe		Qty	,	Ply	Lot 13 TC	R		AS NOT DEVE	ED FOR PLAN REVIEW	/
240654	E2		Piggyba	ack Base Gii	rder	2		1	Job Refer	ence (opt	ional		164953145 S SUMMIT, MISSOURI	
Wheeler Lumbe	r, Waverly, KS - 66871,				Run: 8.73 S Apr 3 ID:t0K?wd8U0zHW	2024 P 4t2x4w	rint: 8.73 VHzGy6j	0 S Apr 32 cf-RfC?PsE	2024 MiTek Ir	dustries, li	nc. Tue	Apr 16 16006 VrCDoi754z3071	30/2024	4
	-0-10	1-9-8 -8 4-9-8	8-10-2		4-10-2		1-4-0		27-			33-8-0		
	0-10-	8 3-0-0 1-9-8	4-0-10	I	6-0-0	6	6-5-14	1	6-1	-8	0.4	6-2-8		
10-0-0		6^{12} Special M18AH $4x8=$ 3 4 $4x8=$ 3 4 $4x8=$ $4x8=$ 4 $5x12=$ Special	IS 6x14 =	3x6 = 11 5 15 4x5=	4x5 =	2	213 4x8=	6x 7 12 6x		23	2x4 820 820 11 6x8	24	6x6=	
		1-8-4 4-8-4	8-10-2	1	4-10-2		21-5-4			5-8		33-8-0		
Scale = 1:69.9		1-8-4 3-0-0	4-1-14	•	6-0-0		6-7-2	,	6-0)-4		6-2-8		
Plate Offsets ((X, Y): [3:0-4-0,0-1-15	5], [7:0-4-4,0-2-8], [10	:Edge,0-1-	8], [12:0-2-8,0	-3-0], [18:Edge,0-5-	13]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.71 0.97 0.90	DEFL Vert(LI Vert(C Horz(C Wind(L	T) -0. CT) 0.	in (loc) 30 15-16 47 14-15 12 10 16 15-16	l/defl >999 >851 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18AHS Weight: 176 lb	GRIP 197/144 142/136 FT = 10%	
TOP CHORD BOT CHORD WEBS BOT CHORD WEBS REACTIONS FORCES TOP CHORD	2x4 SPF 2100F 1.8 SPF No.2 2x3 SPF No.2 *Exci 1.8E, 12-6,11-7,11- Structural wood she 3-4-7 oc purlins, ex 2-0-0 oc purlins (3-4 Rigid ceiling directly bracing. 1 Row at midpt (size) 10=0-3-8 Max Horiz 18=413 (Max Uplift 10=-233 Max Grav 10=1901 (lb) - Maximum Com Tension 1-2=0/40, 2-3=-237	(LC 9), 18=-237 (LC (LC 3), 18=1911 (LC npression/Maximum 7/274, 3-4=-2075/257	00F 2) d or 3) 1, 5) 6) 12) 7) 48) 8)	II; Exp C; En cantilever lef right exposed TCLL: ASCE Plate DOL=1 DOL=1.15 P Partially Exp Unbalanced design. This truss ha load of 12.0 µ overhangs nu Provide adec All plates are This truss ha chord live loa * This truss to 3-06-00 tall b chord and ar	n; TCDL=6.0psf; BC closed; MWFRS (er t and right exposed d; Lumber DOL=1.6(7-16; Pr=25.0 psf (.15); Pg=20.0 psf; F late DOL=1.15); Is= .; Ce=1.0; Cs=1.00; snow loads have be s been designed for on-concurrent with c quate drainage to pre- tem designed for a nonconcurrent with as been designed for a nonconcurrent with as been designed for a no chord in all areas y 2-00-00 wide will by other members, w	velope ; end v 0 plate roof LL Pf=20.4 1.0; Rc Ct=1.1 en con greate roof lc ther live event v s other th any or a live where fit betw <i>i</i> th BC) exteric ertical la grip DC : Lum D psf (Lu ugh Ca 0, Lu=5 sidered er of mir bad of 19 re loads vater po wise ind) psf bot other liv e load o a rectan cen the DL = 10	or zone; eft and DL=1.60 VOL=1.15 m t C; 0-0-0 for this n roof live 5.4 psf on nding. licated. tom e loads. f 20.0psf gle bottom	LOAD 1) D In U	CASE(S) ead + Sn crease=1 niform Lo	Star ow (ba 1.15 bads (ll 2=-51, 20 ted Loa	alanced): Lumbe o/ft) 2-3=-51, 3-4=-6	or back (B). er Increase=1.15, Plate	e
BOT CHORD WEBS	$\begin{array}{l} 4-5=-4150/450, 5-6\\ 6-7=-1798/252, 7-8\\ 8-9=-1004/181, 9-11\\ 2-18=-1894/244\\ 17-18=-385/209, 16\\ 15-16=-752/5428, 1\\ 12-14=-297/2504, 1\\ 10-11=-137/103\\ 3-17=-94/873, 4-15\\ 5-15=-24/886, 5-14\\ 6-14=-40/1017, 6-11\\ 7-12=-131/1359, 7\\ 8-11=-611/217, 9-1\\ 2-17=-234/2144, 4-4\\ 4-16=-42/105\\ \end{array}$	=-1005/181, D=-1736/252, -17=-748/5431, 4-15=-506/3684, 1-12=-246/1535, =-1877/258, =-1352/244, 2=-1446/302, 11=-1066/167, 1=-226/1873,	11) 12)	 Provide mec bearing plate 10 and 237 II This truss is International R802.10.2 ar Graphical pu or the orienta bottom chorc Hanger(s) or provided suff Ib down and 8 I 	other connection de ricient to support cor 69 lb up at 1-9-8 or b up at 1-9-8 on bo tion of such connect	by othe ading 2 ance wi ections ard AN loes no ong the evice(s acentra top ch ttom ch	ers) of tr 33 lb up th the 2 R502.1 SI/TPI 1 t depict top and) shall b ted load nord, an nord. Th	lift at join 018 1.1 and I. the size d/or e d(s) 121 d 11 lb ne	t	l		AND THO JOH NUK PE-201'	IBER 7018993	و

April 17,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

									RELEASE	FOR CONSTRUCTION
Job	Tru	SS	Truss Type		Qty	Ply	Lot 13 TCR			D FOR PLAN REVIEW
240654	E3		Piggyback Base		2	1	Job Refere	nce (optional	LEE'S	OPMENT SERVICES 164953146 SUMMIT, MISSOURI
Wheeler Lumber,	Waverly, KS - 66871	9	4	Run: 8.73 S Apr 3	2024 Print: 8	.730 S Apr 3	2024 MiTek Inc	lustries, Inc. Tu	Apr 16 16006	30/2024
		2-1-11		ID:qPSIKI9IYaYEJB	CKCLXI2hy6	ijcd-RfC?PsB	70Hq3NSgPqnL	.8w3ulTXbGKV	rCDoi7J4zJC?	50/2024
	-0-10	- ⁸ 3-9-8 6-9		14-5-9 5-3-13	21-4-0)	27-		33-8-0	
	0-10	-8 1-7-13 3-0 2-1-11	-0 2-4-4	5-3-13	6-10-7		6-1 4x8=		6-2-8 «4 ။	6x6=
						8			2324	10
T -	Τ									
				7x12 ≠						
Ģ	4			72					/	
10-0-0	7-3-4		2x4 I	21						
<u>10-3-6</u>			M18AHS 5x14 🚅		\backslash			♥ ⊠		□ 10-0-0
		61 ¹² 6x8=	6							-
	0-1-11		5		X	\sim				
`.	1 N	3 0								
2-7			18 1				<u> </u>		6/	
	- <u> </u>	20 4x8 = 10x12 ≠	^{2x4} 16	15	25		14	13 12	2 26	∰ 11 ⊥ 3x6=
		² 3 ⁴ 10-12 ^{8x8=}	10x12=	6x6=		6	6x6=	3x6= 63	<8=	0.0 -
		2-4-0 2.1.11	2x4 II	14 5 0	21 5	4	25.0.0	07 E 9	22.9.0	
		2-1-11 3-0)-0 2-1-4	14-5-9 5-5-9	<u>21-5-4</u> 6-11-1		25-0-0	27-5-8	<u>33-8-0</u> 6-2-8	———————————————————————————————————————
Scale = 1:67.9 Plate Offsets (X	, Y): [3:0-6-0,0-6	0-2-5 <u>1-6-12</u> -8], [5:0-7-12,0-2-0], [8:0)-4-8,0-1-12], [11:Edge,	0-1-8], [14:0-2-8,0-3-0)], [15:0-2-8	3,0-3-0], [17	(:0-5-8,0-5-0],	[19:0-2-8,0-4	-4]	
			-							GRIP
Loading TCLL (roof)	(psf) 25.0	Plate Grip DOL	2-0-0 1.15			t(LL) -0	in (loc)).44 17	l/defl L/d >906 360	PLATES MT20	197/144
Snow (Pf/Pg) TCDL	20.4/20.0 10.0		1.15 YES			()).69 15-16).29 11	>576 240 n/a n/a	M18AHS	142/136
BCLL	10.0	* Code	IRC2018/TPI2014	Matrix-S		. ,).25 17	>999 240		FT 400/
BCDL	10.0		WEDO	2 20 0/01 40 47 0/	105 0 47	100/105	12) Cree		Weight: 190 lb	FT = 10%
		xcept* 1-4:2x8 SP 2400	WEBS F	3-20=0/81, 16-17=0/1 4-19=-89/1369, 5-19=	=-2196/196	i, [′]	or th	e orientation	of the purlin along	es not depict the size g the top and/or
	2.0E, 5-8:2x4 SP 2x4 SPF No.2 *E	F 2100F 1.8E xcept* 3-17:2x6 SP 240	0F	5-17=-2561/370, 15-1 7-17=-530/3217, 7-15				om chord. ASE(S) Sta	Indard	
	2.0E 2x3 SPE No 2 *E	xcept* 10-11:2x4 SPF 2	100F	7-14=-1436/303, 8-14 8-12=-1058/169, 9-12						
	1.8E, 20-3,6-16,1	7-7,14-7,12-8,12-10:2x4	4	10-12=-224/1871, 5-7	18=-386/97	,				
	SPF No.2		NOTES 1) Wind: ASCE	E 7-16; Vult=115mph	(3-second g	gust)				
BRACING TOP CHORD	Structural wood s	heathing directly applie		oh; TCDL=6.0psf; BCE nclosed; MWFRS (env						
	2-10-14 oc purlin	s, except end verticals, 2-2-0 max.): 4-5, 8-10.	and cantilever le	eft and right exposed ; ed; Lumber DOL=1.60						
BOT CHORD	Rigid ceiling dire	ctly applied or 10-0-0 oc	2) TCLL: ASC	E 7-16; Pr=25.0 psf (r	oof LL: Lun	n DOL=1.15	5			
	bracing, Except 6-0-0 oc bracing:	2-20	DOL=1.15 F	1.15); Pg=20.0 psf; Pf Plate DOL=1.15); Is=1	.0; Rough	Cat C;				
WEBS	2-2-0 oc bracing: 1 Row at midpt	14-15. 10-11, 7-14, 8-12, 9		p.; Ce=1.0; Cs=1.00; (I snow loads have bee	,					
REACTIONS (size) 2=0-3- Max Horiz 2=406	8, 11=0-3-8 (I C 9)	design. 4) This truss h	as been designed for	greater of I	min roof live	9			
Ν	Max Uplift 2=-230	(LC 12), 11=-232 (LC 9	9) load of 12.0	psf or 1.00 times flat non-concurrent with of	roof load o	f 15.4 psf o				
		4 (LC 48), 11=1900 (LC ompression/Maximum	5) Provide ade	equate drainage to pre	vent water	ponding.			Sam	ADD
	Tension	58/59, 3-4=-5303/717,	This truss h	e MT20 plates unless as been designed for	a 10.0 psf	bottom		G	TATE OF I	MISSOLA EW
	4-5=-5189/737, 5	-6=-5608/694,		ad nonconcurrent with has been designed for				E	ANDE	EW K
	6-7=-5469/770, 7 8-9=-1003/181, 9	-10=-1003/181,		om chord in all areas w by 2-00-00 wide will fi				H.	THON	AAS Y
BOT CHORD	10-11=-1734/250 2-20=-40/0, 3-19:		chord and a	iny other members, with are assumed to be S	ith BCDL =			82	JOHN	
	18-19=-1023/716 15-16=-30/236, 1	8, 17-18=-1015/7137, 4-15=-303/2519,	10) Provide me	chanical connection (b	by others) o		- 4	R.	NUM	
	12-14=-243/1529		11 and 230	e capable of withstan Ib uplift at joint 2.	-		nı	8	PE-2017	018993
				designed in accorda				, in the second s		ENGL
				and referenced standa					S'SIONA	L
									Apri	l 17,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

									RELEASE FOR CONSTRUCTION	
Job	Truss		Truss Type		Qty	Ply	Lot 13 TCR		AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 164953147	ĺ
240654	E4		Piggyback Base		2	1	Job Reference (op	tional	I64953147 LEE'S SUMMIT, MISSOURI	
Wheeler Lumber	, Waverly, KS - 66871,			Run: 8.73 S Apr 3 2	024 Print: 8.	730 S Apr 3	2024 MiTek Industries, B70Hq3NSgPqnL8w3ul	Inc. Tue	Apr 16 6087/30/2024	•
		-1-11		ID:ID07 YEANJUG4XLr	iwmzz_buy	ojcc-RIC (PS	Brondsinggedurgensin	I XDGN		
	-0-10-8 	<u>5-9-8</u> 3-7-13		4-5-9 5-8-1	<u>21-4-0</u> 6-10-7		<u>27-5-8</u> 6-1-8		<u>33-8-0</u> 6-2-8	
		-1-11				6	5x8=	2x4		
т	т					7		82		
10-3-6 3-8-12	7-0-0-0 7-0-0 1-1-0 1-1-0 1 2 2 2 2 2 2 2 2 2 2 2 2 2		6x8= 6x8 = 5 18 6x6= 15 2x4 II 2x4 II	2x4 II 6 1 1 1 1 1 4 8x8= 2x4 II			13 10= 3x6=	11 6xt	3x6=	
Scale = 1:67.9 Plate Offsets (2	- <u>1-11 5-10-12</u> -1-11 3-6-12 0-2-5		14-4-5 14-5-9 5-2-9 0-1-4 1-8]. [13:0-2-8.0-1-8].	21-5-4 6-11-11 [16:0-3-0.0		3-6-12 2-	-5-8 5-8	33-8-0 6-2-8	_
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0 2x4 SPF No.2 *Exce	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014 NOTES	CSI TC 0 BC 0	0.66 Verti 0.70 Verti 0.99 Horz Wind	L (LL) -0 (CT) -0 (CT) 0 d(LL) 0	in (loc) l/defl 1.36 14-15 >999 1.56 14-15 >721 1.26 10 n/a 1.18 14-15 >999	L/d 360 240 n/a 240	PLATES GRIP MT20 197/144 Weight: 202 lb FT = 10%	-
BOT CHORD	2.0E, 5-7:2x4 SPF 2 2x4 SPF No.2 *Exce 2.0E 2x3 SPF No.2 *Exce	100F 1.8E .pt* 3-16:2x6 SP 2400	DF II; Exp C; Er cantilever le	h; TCDL=6.0psf; BCDI nclosed; MWFRS (enve ft and right exposed ; e d; Lumber DOL=1.60	L=6.0psf; h elope) exte end vertica	n=25ft; Cat. erior zone; I left and				
BRACING	1.8E, 19-3,17-15,11- No.2	7,11-9,16-7:2x4 SPF	2) TCLL: ASCH Plate DOL= DOL=1.15 F	E 7-16; Pr=25.0 psf (ro 1.15); Pg=20.0 psf; Pf= Plate DOL=1.15); Is=1.0	of LL: Lum =20.4 psf (I 0; Rough C	DOL=1.15 Lum Cat C;	5			
TOP CHORD	Structural wood shea 3-4-2 oc purlins, exc 2-0-0 oc purlins (2-7 Rigid ceiling directly bracing, Except:	cept end verticals, an -13 max.): 4-5, 7-9.	d 3) Unbalanced design. 4) This truss ha	 c.; Ce=1.0; Cs=1.00; C snow loads have beer as been designed for g psf or 1.00 times flat m 	n considere preater of n	ed for this nin roof live				
WEBS	6-0-0 oc bracing: 2-1	19. 9-10, 5-16, 7-13, 7-1	overhangs r 1, 5) Provide ade	on-concurrent with oth quate drainage to prev	ner live load vent water	ds. ponding.				
REACTIONS		8-11 0=0-3-8 C 11) C 12), 10=-231 (LC 9	6) This truss has chord live lo 7) * This truss on the botto 3-06-00 tall	as been designed for a ad nonconcurrent with has been designed for m chord in all areas wi by 2-00-00 wide will fit	any other a live load here a rect between t	live loads. I of 20.0psf angle he bottom				
FORCES	(lb) - Maximum Com	<i>,,</i>	8) All bearings	ny other members, with are assumed to be SP	PF No.2 .				Marco	
TOP CHORD	Tension 1-2=0/8, 2-3=-1285/9 4-5=-4209/531, 5-6= 6-7=-3564/579, 7-8= 9 0 1009/481 0 10	-3511/408, -1008/181,	bearing plat 10 and 228 10) This truss is	chanical connection (by e capable of withstand lb uplift at joint 2. designed in accordance	ing 231 lb	uplift at joir 2018	nt	H.	STE OF MISSOL	
BOT CHORD	8-9=-1008/181, 9-10 2-19=-40/0, 3-18=-5: 17-18=-743/5200, 16 14-15=0/0, 13-14=0/ 10-11=-137/103	96/4144, 6-17=-743/5200,	R802.10.2 a 11) Graphical po or the orient	I Residential Code sec nd referenced standar urlin representation do ation of the purlin alon	d ANSI/TP es not depi	I 1. ict the size	(t	THOMAS JOHNON	
WEBS	3-19=0/81, 15-17=0/ 5-18=-1267/185, 5-1 14-16=0/415, 6-16=- 13-16=-251/1495, 7- 7-11=-1064/170, 8-1 9-11=-223/1881, 7-1	6=-2280/407, 627/287, 13=-45/264, 1=-620/217,	bottom chor LOAD CASE(S)					Pixed	NUMBER PE-2017018993 STONAL ENGL April 17,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Antitek State Stat

										RELEASE	FOR CONSTRUCTION
Job	Tru	ISS	Truss Type		Qty	Ply	Lot 13	TCR			ED FOR PLAN REVIEW
240654	E5		Piggyback Base		2	1		ference (op	tional	LEE'S	OPMENT SERVICES 164953148 SUMMIT, MISSOURI
Wheeler Lumber,	Waverly, KS - 66871	Ι,		Run: 8.73 S Apr 3	3 2024 Pri	nt: 8.730 S Apr	3 2024 MiTe	k Industries,	Inc. Tu	Apr 16 160 27	30/2024
		1-11-11		ID:E_7uzKBdrVwo	BewvtT48	SgJy6jca-RfC?P	sB70Hq3NSg	PqnL8w3ulT	XbGK	VrCDoi7J4zJ67i	00/2024
	-0-1	0-8 7-9-8		16-5-10		21-4-0	+	27-5-8		33-8-0	
	0-10	0-8 5-9-1 1-11-11	³ 1-3-12 ¹⁻⁸⁻⁴	5-8-2		4-10-6	4x8=	6-1-8	2x4	6-2-8	6x6=
							8			324 ⊠⊠⊠⊳	10
10-3-6 4-8-12	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 ¹² 3 0 0 0	2x4 II 8x8= 5 6 5 5 6 5 5 6 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8= 21	4x5 = 7 7	88					
\perp	T ÉT [18 ₁₆		<u></u> 1525	26	<u>14</u>	13	12	27	====∰ 11 ⊥
		4x8= 7x12=	3x6 II 7x12=		6x12=		6x6=	3x6=	6x8		3x6=
		^{2x4} u 2-4-0	4x8 u								
		1-11-11 7-10-		16-5-10		21-5-4		27-5-8		33-8-0	
Scale = 1:68.7		1-11-11 5-6-1 0-4-5		7-5-10		4-11-10		6-0-4		6-2-8	
Plate Offsets (X	(, Y): [3:0-4-5,0-3	8-8], [4:0-4-10,Edge], [6:0	-4-0,0-2-3], [8:0-4-8,0-1	-12], [11:Edge,0-1-8	6], [14:0-: I	2-8,0-3-0], [15	5:0-2-11,0-2	-0]			
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0 10.0	 Plate Grip DOL Lumber DOL Rep Stress Incr Code 	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.66 0.90 0.91	. ,		6 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 190 lb	GRIP 197/144 FT = 10%
LUMBER				3-19=0/81, 4-18=0/5			LOA	D CASE(S) Sta	ndard	
TOP CHORD	2x4 SPF No.2 *E 2.0E	xcept* 1-4:2x8 SP 2400		15-17=-508/3299, 6- 6-15=-1816/360, 7-1	5=-72/1	032,					
BOT CHORD	2x4 SPF No.2 *E 1.8E, 5-16:2x3 S	xcept* 3-17:2x4 SPF 210 PF No.2		7-14=-1269/276, 8-1 8-12=-1015/167, 9-1							
WEBS		xcept* 10-11:2x4 SPF 2 ,12-8,12-10:2x4 SPF No		10-12=-223/1877							
BRACING TOP CHORD BOT CHORD	Structural wood s 3-0-1 oc purlins, 2-0-0 oc purlins (sheathing directly applied except end verticals, an (2-7-5 max.): 4-6, 8-10. ctly applied or 10-0-0 oc	1) Wind: ASCE Vasd=91mp d or II; Exp C; Er d cantilever le right expose 2) TCLL: ASCE	7-16; Vult=115mph h; TCDL=6.0psf; BC nclosed; MWFRS (er ff and right exposed ed; Lumber DOL=1.6 7-16; Pr=25.0 psf (1.15); Pa=20.0 psf; F	DL=6.0p velope) ; end ve 0 plate g roof LL:	osf; h=25ft; Ca exterior zone rtical left and grip DOL=1.60 Lum DOL=1.	;)				
WEBS	6-0-0 oc bracing: 1 Row at midpt		DOL=1.15 F 12, Partially Exp	Plate DOL=1.15); Is= b.; Ce=1.0; Cs=1.00; I snow loads have be	1.0; Rou Ct=1.10	igh Cat C;), Lu=50-0-0	;				
1	Max Horiz 2=406 Max Uplift 2=-228	-8, 11=0-3-8	design. 4) This truss ha load of 12.0	as been designed for psf or 1.00 times fla non-concurrent with o	r greater t roof loa	of min roof liv ad of 15.4 psf	/e				
FORCES	(lb) - Maximum C	Compression/Maximum	5) Provide ade	quate drainage to pr as been designed for							m
TOP CHORD		68/52, 3-4=-3758/442,	chord live lo	ad nonconcurrent wi has been designed f	ith any o	ther live loads				E OF I	MISSOL
BOT CHORD	4-5=-3589/477, 5 6-7=-2568/311, 7 8-9=-1005/181, 9 10-11=-1737/248 2-19=-40/0, 3-18 17-18=-500/3469 5-17=-47/243, 15 14-15=-277/2183 11-12=-137/103	7-8=-1756/266, 9-10=-1005/181, 3 =-503/3455, 9, 16-17=0/198,	on the botto 3-06-00 tall chord and a 8) All bearings 9) Provide mec bearing plat 11 and 228 10) This truss is Internationa R802.10.2 a 11) Graphical pu	m chord in all areas by 2-00-00 wide will ny other members, v are assumed to be s chanical connection n e capable of withstar lb uplift at joint 2. designed in accorda I Residential Code s und referenced stand urlin representation o ration of the purlin alo	where a fit betwee vith BCD SPF No. (by other nding 23 ance with ections F lard ANS does not	rectangle een the botton DL = 10.0psf. 2. rs) of truss to 1 lb uplift at jo h the 2018 R502.11.1 and SI/TPI 1. depict the siz	n bint	l	* June	ANDE THOM JOHN NOM PE-2017	AEW AAS SON BER 018993
										Apri	l 17,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

(www.tpinst.org) (www.t

											Γ	RELEA	SE FOR CC	NSTRUCTION	
Job	Truss		Truss Typ	e		Qty	Ply	Lo	ot 13 TCF	R				LAN REVIEW	٦
240654	E6		Piggybad	ck Base		2	1		h Refere	nce (optio	naľ			SERVICES 53149 , MISSOURI	
Wheeler Lumber,	Waverly, KS - 66871,				Run: 8.73 S Ap	r 3 2024 Prir	nt: 8.730 S A	pr 3 2024	4 MiTek Ind	dustries, Inc	. Tue A	Apr 16 160007	/30/	2024	
					ID:iAhGAgCFcp	2fooV5RAbh	CXy6jcZ-Rf0	C?PsB70F	lq3NSgPq	nL8w3ulTX	bGKW	rCDoi754z30?	00/		
	-0-10-8 -10-8	5-5-9 5-5-9	9-9-8 4-3-15	12-9-8		21-4-0)			27-5-8 6-1-8			3-8-0 -2-8		
	0-10-8		1010	000		000		6x6		010		2x4 II	20	6x6=	
								6				72122		8 ⊠	
10-0-0 5-7-1 5-8-12 10-0-0 5-7-1 0-1-11 4-3-4	P 1 ²	6 ¹² 3x4 18 ³ 17		6x6=	5x12= 19 5		20			×	E			10-0-0	
						[\searrow				₩/		9 ⊥	
	8x12=	15		14	13 23		12	11		24		10 25		⊠ 3x4=	
		4x8= 5-5-9	9-8-4	4x8=	2x4 II	: 21-5-4	5x8 WB =	6x6		27-5-8		6x8=	3-8-0		
Scale = 1:63.9		5-5-9	4-2-11	3-0-0		8-9-0		1		6-0-4			-2-8		
	(, Y): [6:0-4-4,0-2-8],	, [9:Edge,0-1-8], [11:0	-2-8,0-3-0],	[15:0-2-8,0-2-0	0], [16:Edge,0-6	6-13]									—
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/T	-	CSI TC BC WB Matrix-S	0.78 0.64 0.81	DEFL /ert(LL) /ert(CT) Horz(CT) Wind(LL)	-0.51 0.07	(loc) 11-13 11-13 9 11-13	>999 3 >784 2 n/a	360 240 n/a 240	PLATES MT20 Weight: 175 I	GRIP 197/14 b FT = 1		
BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS (FORCES TOP CHORD	2x4 SPF 2100F 1.8f 2x3 SPF No.2 Exce 1.8E, 10-6,10-8,5-11 SPF No.2 2x3 SPF No.2 Structural wood she 2-11-9 oc purlins, e 2-0-0 oc purlins, (3-7 Rigid ceiling directly bracing. 1 Row at midpt 'size) 9=0-3-8, ' Max Horiz 16=413 (I Max Uplift 9=-231 (L Max Grav 9=1892 (I (lb) - Maximum Com Tension 1-2=0/43, 2-3=-292(4-5=-2342/342, 5-6= 6-7=-996/181, 7-8= 2-16=-1798/264 15-16=-405/590, 14 13-14=-344/2796, 1 10-11=-242/1538, 9 3-14=-306/109, 4-14	apt* 8-9:2x4 SPF 2100 1:2x4 SPF No.2, 16-2 athing directly applied xcept end verticals, a -13 max.): 4-5, 6-8. applied or 10-0-0 oc 8-9, 6-10, 7-10, 5-11 16=0-3-8 _C 9) .C 9), 16=-237 (LC 12 _C 3), 16=1942 (LC 4 pression/Maximum 0/340, 3-4=-2680/353 =-1821/227, 994/181, 8-9=-1722/2 -15=-414/2526, 1-13=-346/2788, -10=-138/104 4=-86/1001, =0/495, 6-11=-68/122 0=-606/213, 15=-136/2024,	2 OF 2) 2x6 2) 1 1 1 1 2x6 2) - - - - - - - - - - - - -	Vasd=91mph; II; Exp C; Enck cantilever left right exposed; TCLL: ASCE 7 Plate DOL=1.1 DOL=1.15 Plate DOL=1.15 Plate DOL=1.15 Plate Unbalanced sn design. This truss has load of 12.0 ps overhangs non Provide adequa This truss has chord live load * This truss has on the bottom of 3-06-00 tall by chord and any All bearings ard provide mecha bearing plate c 9 and 237 lb up This truss is de International R R802.10.2 and Graphical purlii	esigned in accor esidential Code referenced sta n representation on of the purlin	3CDL=6.0p (envelope) ed; end velope) ed; end velope) ed; for of LL: f; Pf=20.4 p s=1.0; Rou 00; Ct=1.10 been consi for greater flat roof loa for greater flat roof loa for a live as where a vill fit betwe s, with BCD e SPF No.2 s, with BCD e SPF No.2 n (by other tanding 23 rdance with a sections F ndard ANS n does not	sf; $h=25$ ft; exterior zo tical left ar rip DOL=1 um DOL= sf (Lum gh Cat C; , Lu=50-0-1 dered for t of min rooi d of 15.4 p loads. ter pondin sf bottom her live loz load of 20. rectangle en the bott L = 10.0ps 2. s) of truss l bb uplift a the 2018 t502.11.1 a /TPI 1.	ne; nd .60 1.15 D his f live sf on g. ads. 0psf om f. to t joint and		Q	- PRO		MISS DREW MAS NBOR BER 7018993	nt.	
NOTES											Ø	EESSION	/	ST A	

April 17,2024

Max Horiz 12=-103 (LC 8) Max Uplift 7=-211 (LC 7), 12=-211 (LC 6) Max Grav 7=1127 (LC 3), 12=1127 (LC 3) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-12=-1036/239, 1-2=-1998/379, 2-3=-1998/379, 3-5=-1998/379, 5-6=-1998/379, 6-7=-1036/239 BOT CHORD 11-12=-84/90. 9-11=-525/2623. 8-9=-525/2623, 7-8=-33/54 WEBS 6-8=-401/2129, 2-11=-455/190. 1-11=-400/2129, 3-11=-684/140, 3-9=0/237, 3-8=-684/139, 5-8=-455/190

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 10) All bearings are assumed to be SPF No.2

- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 211 lb uplift at joint 12 and 211 lb uplift at joint 7.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

16023 Swingley Ridge Rd. Chesterfield MO 63017

314.434.1200 / MiTek-US.com

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Plate Offsets ((X, Y): [4:0-5-8,0-2-4]], [9:0-3-8,0-2-4], [13:	0-1-4,0-2-0)], [18:Edge,0-	2-8], [20:0-5-4,0	-3-0], [21:0)-2-8,0-2-0],	[22:Edge	,0-6-13]				
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.88	Vert(LL)	-0.34	18-20	>999	360	MT20	197/144
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.96	- (-)	-0.65	18-20	>686	240		
CDL	10.0	Rep Stress Incr	YES		WB	0.94	Horz(CT)	0.14	14	n/a	n/a		
BCLL	10.0*	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.16	18	>999	240		
BCDL	10.0											Weight: 185 lb	FT = 10%
UMBER			2)		7-16; Vult=115								
OP CHORD					h; TCDL=6.0psf								
OT CHORD		ept* 18-7:2x3 SPF No			closed; MWFRS								
VEBS		ept* 22-2:2x6 SPF No	o.2,		ft and right expo								
	13-11:2x8 SP 2400	F 2.0E	2)		d; Lumber DOL: 7-16; Pr=25.0								
BRACING	.		,		1.15); Pg=20.0 p			1.15					
TOP CHORD		eathing directly applie			late DOL=1.15)								
	(3-1-0 max.): 4-9.	s, and 2-0-0 oc purlin	5		.; Ce=1.0; Cs=1			0					
BOT CHORD		y applied or 2-2-0 oc	4)		snow loads hav								
	bracing.		,	design.									
VEBS	1 Row at midpt	3-20, 5-20, 11-14, 9	-14. 5)		as been designe								
	i non ar mapr	7-16	,		psf or 1.00 time			sf on					
REACTIONS	(size) 14=0-3-8	3, (req. 0-3-15), 22=0-	3-8		on-concurrent w								
	Max Horiz 22=184 (6)		quate drainage t			g.					
	Max Uplift 14=-318		12) 7)		as been designe ad nonconcurre			ada					
	Max Grav 14=2496				has been design								
ORCES	(lb) - Maximum Cor	npression/Maximum	. 0)		n chord in all ar			opsi					
	Tension				by 2-00-00 wide			om					
OP CHORD	1-2=0/35, 2-3=-274	8/275, 3-4=-2234/285	5,		ny other membe								
	4-5=-1920/280, 5-7	,	9)		Required bearin								
	7-8=-2130/332, 8-9	,		than input be	earing size.		., .						The
		1=-145/908, 11-12=0			are assumed to							OF N	ALC AL
	2-22=-1647/238, 11		11		hanical connect							TATE OF M	ISS OF
OT CHORD	21-22=-326/640, 20	,			e capable of with		97 lb uplift a	t joint			A		1.5
	18-20=0/39, 17-18= 16-17=-424/3040, 1	, , ,			b uplift at joint 1						A	ANDR	EW PN
	13-14=-137/349	14-10=-330/342,	12		designed in acc Residential Co			and			a	7 THOM	IAS Y
VEBS		=-709/236, 4-20=-17/	660		nd referenced s			anu			10 +	JOANS	SON $\downarrow \star$
	5-20=-1254/250, 17	,	,		Ind representati			size					
	5-17=-121/971, 9-1				ation of the purli			0.20			N		
	2-21=-78/1760, 11-	14=-1045/333,		bottom chore							2	NUMI	SER /EA
	9-14=-1905/338, 10)-14=-572/242,	LC	DAD CASE(S)							N,	O PE-2017	018993
	8-16=-610/202, 7-1	6=-1245/184	_		- 10110010						0	NUMI PE-2017	BER 018993
OTES												VI OTO	ENCH
) Unbalance	ed roof live loads have	e been considered for										NA	L
this desigr	n.											an	and a

NOTES

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

April 17,2024
									RELEAS	E FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Lot 13 TCF	۲		ED FOR PLAN REVIEW
240654	H2		Piggyback Base		2	1	lob Refere	ence (option	1 5 5 10	LOPMENT SERVICES 164953152 SUMMIT, MISSOURI
Wheeler Lumber,	r, Waverly, KS - 66871,			Run: 8.73 E Jan 42 ID:EAYcGuaerqU1Z			2024 MiTek In	dustries, Inc.	/	30/2024
	2-1-11 -0-10-8 	7-4-0 5-2-5	<u>14-6-12</u> 7-2-12	<u>19-0-8</u> 4-5-12	<u>23-5-0</u> 4-4-8	4x5=	<u>30-4-8</u> 6-11-8		5.0.10	37-8-0 1-6-12 4x8=
CL	$ \begin{array}{c} 2 \\ 3 \\ 4x8 = 23 \\ 2x4 \\ 2-1-11 \\ 2-1-11 \\ -2-5 \end{array} $	6 ¹² 4x5 ± 4 22 2x4 II 10x12 ± 7-4-0 5-0-0	19 2x4 II 2x4 II	14-8-0 19-0-8 0-1-4 4-4-8			2= <u>30-5-12</u> 6-11-8	2x4 9 14 3x6		$\begin{array}{c} 46 = \\ 10 \\ 11 \\ 24 \\ 25 \\ 12 \\ 6x8 = \\ 3x6 = \\ 3x6 = \\ 3x6 = \\ 3x6 = \\ 0.3.8 \\ \hline 0.3.8 \\ \hline 0.3.8 \\ \hline \end{array}$
Plate Offsets (>		1		0-2-8], [20:0-6-0,0-3-12]						
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	BC ((LL) -0 (CT) -0 2(CT) 0	in (loc) 26 14-15 49 14-15 28 25 17 20	I/defl L >999 36 >912 24 n/a n/ >999 24	60 MT20 40 1/a	GRIP 197/144 FT = 10%
l	2.0E 2x4 SPF No.2 *Exce 16-8,14-9:2x3 SPF No.2 2x3 SPF No.2 *Exce No.2 2x4 SPF No.2 Left: 2x3 SPF No.2 Structural wood she 4-9-2 oc purlins, ex 2-0-0 oc purlins (3-0 Rigid ceiling directly bracing. 1 Row at midpt	athing directly applied cept end verticals, an -11 max.): 5-10. applied or 2-2-0 oc 4-20, 8-13, 6-17 -3-8, 25=1447/0-3-2 C 12), 25=-256 (LC 9 _C 3), 25=1773 (LC 4)	2, PF 1) Unbalance for this design d 2) Wind: ASC Vasd=91m I; Exp C; E cantilever I right expos 3) TCLL: ASC Plate DOL) DOL=1.15 2) Partially E; 4) Unbalance	3-23=0/60, 19-21=0/1 18-20=0/163, 5-20=-4 13-15=-416/2497, 8-1 10-13=-351/2239, 10- 4-22=0/324, 6-17=-10 17-20=-354/2121, 15- 6-15=-128/748, 6-20= 11-25=-1792/259 d roof live loads have b E 7-16; Vult=115mph (ph; TCDL=6.0psf; BCD Enclosed; MWFRS (env eft and right exposed ; ied; Lumber DOL=1.60): F 7-16; Pr=25.0 psf (re =1.15); Pg=20.0 psf; Pf: Plate DOL=1.15); Is=1. qp; Ce=1.0; Cs=1.00; C	3/864, 3=-395/67, 12=-1701/3 81/250, 17=-339/2: -139/550, een consic 3-second g L=6.0ps; t elope) exte end vertica plate grip I of LL: Lum =20.4 psf (0; Rough 0 Xt=1.10, Lu	340, 200, lered for ust) =25ft; Cat. erior zone; I left and DOL=1.60 I DOL=1.15 Lum Cat C; =50-0-0	bea 2 ar 12) This Inte R80 13) Gra or t bott LOAD (nring plate cand 256 lb up s truss is de ernational Re 02.10.2 and uphical purlir	apable of withstand lift at joint 25. signed in accordan esidential Code sec referenced standar n representation do on of the purlin alon	tions R502.11.1 and d ANSI/TPI 1. es not depict the size
TOP CHORD	Tension 1-2=0/6, 2-3=-1055/			has been designed for g					STATE	acon

- Tension TOP CHORD 1-2=0/6, 2-3=-1055/0, 3-26=-3917/384, 4-26=-3886/412, 4-5=-2727/346, 5-6=-2325/334, 6-27=-2502/387, 7-27=-2502/387, 7-8=-2502/387, 8-9=-2235/358, 9-28=-2243/356, 10-28=-2243/356, 10-11=-162/25, 12-25=-294/1742, 11-25=-294/1742 BOT CHORD 2-23=-30/0, 3-22=-554/3602, 21-22=-553/3605, 20-21=-553/3605, 18-19=0/0, 17-18=0/30, 16-17=-22/26, 15-16=0/75, 8-15=-342/168, 14-15=-9/70, 13-14=0/1411, 9-13=-612/202, 12-13=-115/532
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf.9) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.
- 10) Bearing at joint(s) 25 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

									RELEASE FOR CONSTRUCTION
Job	Truss	Т	russ Type		Qty	Ply	Lot 13 TC	R	AS NOTED FOR PLAN REVIEW
240654	НЗ	н	lip		1	1	lob Pofor	ence (optional	DEVELOPMENT SERVICES 164953153 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS	- 66871,		•	Run: 8.73 S Apr 32	024 Print:	8.730 S Apr	3 2024 MiTek Ir	ndustries, Inc. Tu	
				ID:elEkuwcW8ltcQGF	Fh3ODBjC	y6jdK-RfC?P	B70Hq3NSgP	qnL8w3ulTXbGk	WrCDoi754259#/ 30/2024
-0-10-8 - 0-10-8		8-3-15 6-4-4	<u>15-2-0</u> 6-10-1		21-6-0 2 2-1-14 1		<u>30-7-0</u> 7-2-0		<u>35-6-0 37-8-0</u> 4-11-0 2-2-0 6х6 и
1	3 27 3 8= 7x12: 2x4-0 -11-11 -11-11	6 ¹² 4x5 26 ⁴ 22 2x4 8-3-15 5-11-15	19 2x4 u 2x4 u 2x4 u 15-2-	8x8 = 4x1 5 = 6 29 18 = 17 5x12 = 5x1 0 15-3-4 19-4-2 0-1-4 4-0-14		8 x x x x x x x x x x x x x x x x x x x	2 29 12= 30-5-12 6-11-8	2x4 9 2 1 0 1 1 8x12 = 3x6	M18AHS 7x12 = 37-4-8 $37-8-06-10-12$ $0-3-8$
Scale = 1:73 Plate Offsets (X, Y): [3:0-4	0-4-5		2-8-1	0-1-4		_			0-3-8
			-						
Loading TCLL (roof) Snow (Pf/Pg) 20. TCDL BCLL BCDL	25.0 Pla 4/20.0 Lur	te Grip DOL 1. nber DOL 1. p Stress Incr Y	-0-0 .15 .15 ES RC2018/TPI2014	BC 0).97 Ve).70 Ve).90 Ho	ert(CT) - orz(CT)	in (loc) 0.36 14-15 0.57 14-15 0.35 25 0.15 20	l/defl L/d >999 360 >785 240 n/a n/a >999 240	MT20 197/144 M18AHS 142/136
2.0E BOT CHORD 2x4 SPF N 2100F 1.8E WEBS 2x3 SPF N 23-3,14-8,' OTHERS 2x4 SPF N LBR SCAB 1-4 SP 24 WEDGE Left: 2x4 SP BRACING TOP CHORD Structural 0 6-0-0 oc pt 2-0-0 oc pt 2-0-0 oc pt BOT CHORD Rigid ceilin bracing. WEBS REACTIONS (size) Max Horiz Max Grav Max Grav 12-206, 2- 4-5=-3131/ 6-8=-2901/ 9-10=-192' 12-24=-300 BOT CHORD 2-23=-35/0 21-22=-512 18-19=0/0, 15-16=0/10	o.2 *Except* 3 5, 16-8,9-13:2> o.2 *Except* 12-10,12-11:2x o.2 DOF 2.0E one s PF No.2 wood sheathin urlins, except urlins (3-0-12 r g directly appl hidpt 4-20 2=0-3-8, 25=0- 2=281 (LC 9) 2=-188 (LC 12) 2=2140 (LC 3) num Compres 3=-1265/22, 3 330, 5-6=-270 373, 8-9=-193 7/252, 10-11=- 0/2009, 11-24= 1, 3-22=-514/33 2/3909, 20-21= 17-18=0/44, 1 05, 8-15=0/645	4 SPF No.2 side g directly applied or end verticals, and nax.): 5-10. ied or 6-0-0 oc , 8-14, 10-12, 6-17 -3-2, (req. 0-3-3)), 25=-247 (LC 9) , 25=2044 (LC 42) sion/Maximum -4=-4250/353, 5/317, 1/248, 212/85, =-301/2003 309, =-512/3909,	 1 8 1 4 4 6 NOTES 1) Attached 10-0 2.0E with 2 rd o.c.except : s row(s) at 7" o 2) Unbalanced r this design. 3) Wind: ASCE Vasd=91mph II; Exp C; End cantilever left right exposed 4) TCLL: ASCE Plate DOL=1. DOL=1.15 Plate Partially Exp. 5) Unbalanced s design. 6) This truss has load of 12.0 p overhangs nd 7) Provide adeq 8) All plates are 9) This truss has chord live load 10) * This truss has on the bottom 3-06-00 tall b chord and an 	oof live loads have b 7-16; Vult=115mph (; ; TCDL=6.0psf; BCD losed; MWFRS (env- and right exposed ; 6 ; Lumber DOL=1.60 7-16; Pr=25.0 psf (ro 15); Pg=20.0 psf; Pf- te DOL=1.15); Is=1. Ce=1.0; Cs=1.00; C now loads have been been designed for g sf or 1.00 times flat r n-concurrent with oth uate drainage to prev MT20 plates unless of been designed for a d nonconcurrent with as been designed for chord in all areas wil y 2-00-00 wide will fit y other members, wit equired bearing size	4/1061, € 4=-135/5 12=-1988 73/270, 20=-387/ =-2064/2 face(s) 2 3") nails s e end at jo een cons 3-second L=6.0psf. elope) ex- end vertic plate grip of LL: Lu =20.4 psf 0; Rough t=1.10, L n conside greater of oof load ner live lo vent wate otherwise a 10.0 psl any other a live loz here a re between h BCDL =	S-15=-150/8 26, 3/367, 2473, 47 x8 SP 2400 spaced 9" oint 1, nail 2 idered for gust) ; h=25ft; Ca terior zone; cal left and 0 DOL=1.60 m DOL=1.61 (Lum 0 Cat C; .u=50-0.0 ered for this i min roof liv of 15.4 psf of ads. er ponding. e indicated. f bottom er live loads ad of 20.0ps ctangle o the bottom = 10.0psf.	79, 13) Be usi de: 14) Prc 2 a 15) Thi F Rs 16) Gra bot LOAD t. 5	aring at joint(s ng ANSI/TPI 1 signer should i vide mechani aring plate cap nd 247 lb upli s truss is desis ernational Res 20.10.2 and re aphical purlin f the orientation tom chord. CASE(S) St	gned in accordance with the 2018 idential Code sections R502.11.1 and eferenced standard ANSI/TPI 1. representation does not depict the size of the purlin along the top and/or

A chesterfield, MO 63017 314.434.1200 / MITek-US.com

							RELE	ASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Lot 13 TCR		OTED FOR PLAN REVIEW VELOPMENT SERVICES 164953154
240654	H4	Half Hip		1	1	Job Reference (opt		I64953154 E'S SUMMIT, MISSOURI
Vheeler Lumber, Waverly, K	KS - 66871,		Run: 8.73 S Apr ID:WWTFkHf1C_	3 2024 Print: 8 N2vuZSIDI7u2y	.730 S Apr 3 /6jdG-RfC?Ps	2024 MiTek Industries, li sB70Hq3NSgPqnL8w3ul	nc. Tue Apr 16 1600 TXbGI(WrCDoi76429	/30/2024
-0-10 	100	11-2-0 12-5-4 4-2-0 1-3-4 2x4 u	<u>17-11-2</u> 5-5-14	23-5-0 5-5-14		<u>30-7-0</u> 7-2-0	<u> 37-4-14</u> 6-9-14	
	$6^{1^{2}}$ 4 23 3 4x8= 22 7x12= 2x4 II 2-4-0	8x8= N 5 6 6 x5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4x8= 7 m 7 m 7 m 7 m 7 m 7 m 7 m 7 m 7 m 7 m		249 ×	25 x x x - 13 12= 8x12=		5x8= 11 4 5x8= 4 5x8= 4 5x8= 0 0 0 0 0 0 0 0 0 0 0 0 0
	1-11-11 7-0-0 	11-3-4 12-4-0 4-3-4 1-0-12	<u>17-11-2</u> 5-7-2	<u>23-6-4</u> 5-7-2		<u>30-5-12</u> 6-11-8	+ <u>37-4-14</u> 6-11-2	
Scale = 1:72.4 late Offsets (X, Y): [3:0	0-4-5,0-3-8], [20:0-2-8,0-1-8							
oading	(psf) Spacing	2-0-0	CSI	0.95 Vert		in (loc) l/defl	L/d PLATES	GRIP

Flate Olisets (, T). [3.0-4-3,0-3-6],	[20.0-2-0,0-1-0]										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Plate Grip DOL1Lumber DOL1Rep Stress Incr1	2-0-0 .15 .15 /ES RC2018/TPI2014	CSI TC BC WB Matrix-S	0.95 0.61 0.99	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.33 -0.60 0.38 0.23	(loc) 14-15 14-15 12 16	l/defl >999 >739 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 196 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	10.0 2x4 SPF No.2 *Exce 2.0E 2x4 SPF 2100F 1.8E 2-22,18-16:2x4 SPF 6-18,16-9,10-13:2x3 2x3 SPF No.2 *Exce SPF No.2 Structural wood she 4-7-10 oc purlins, e 2-0-0 oc purlins, (2-2 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 7 Max Horiz 2=249 (LC Max Uplift 2=-157 (L Max Grav 2=1797 (I (lb) - Maximum Com Tension 1-2=0/8, 2-3=-1085// 4-5=-3102/455, 5-6= 6-7=-2841/451, 7-9= 9-10=-2326/372, 100 11-12=-1770/353 2-22=-29/0, 3-21=-62 20-21=-629/3538, 19	Ppt* 1-5:2x8 SP 2400F = *Except* No.2, SPF No.2 spt* 11-12,22-3,14-9:2x4 athing directly applied c xcept end verticals, and -0 max.): 5-11. applied or 6-0-0 oc 11-12, 7-17, 9-14 12= Mechanical C 11) C 12), 12=-305 (LC 9) .C 3), 12=1843 (LC 35) .pression/Maximum 93, 3-4=-3808/469, -:2843/450, :=3654/595, -11=-2313/373, 31/3539, 9-20=-513/2705, 370/130, 17-18=-27/231 :=0/94, 9-15=0/484, 3-14=0/133,	 WEBS NOTES Unbalanc this desig Wind: AS Vasd=91r I; Exp C; cantilever right expc TCLL: AS Plate DOI DOL=1.1? Partially E Unbalanc design. This truss load of 12 overhang Provide a This truss chord live * This truss on the bo 3-06-00 tz chord anc All bearin Refer to g Provide ri bearing p 2 and 15 	3-22=0/60, 7-19= 15-17=-52/280 9-14=-1588/270, 11-14=-499/2748 17-19=-500/2605 4-20=-1059/229, ed roof live loads han. CE 7-16; Vult=115m nph; TCDL=6.0p5; I Enclosed; MWFRS left and right exposs sed; Lumber DOL= ⁻ CE 7-16; Pr=25.0 ps =1.15); Pg=20.0 ps 5 Plate DOL=1.15; I exp.; Ce=1.0; Cs=1.0; ed snow loads have has been designed 0.psf or 1.00 times a non-concurrent wit dequate drainage to has been designed to has been designed to an onconcurrent is has been designed to has been designed to has been designed to an onconcurrent is has been designed to has been designed	, 7-15=-2 12-14=-8 , 5-19=-1 , 4-21=0/ 5-20=-84 we been ph (3-sec 3CDL=6. (envelop ed ; end 1 1.60 plate sf (roof Ll fr (Pf=20. s=1.0; R 0); Ct=1. been coi for great flat roof Ll for a 10 ses where with any d for a lin as where with any d for a lin as where with the se SPF N russ com on (by off transition of the standing off	7-17=-1175/32 23/1096, 9/68, 94/756, 180, /794 considered for cond gust) 0psf; h=25ft; (C expected for cond gust) 0psf; h=25ft; (C expected for expected for the pole of the expected for the er of min roof poad of 15.4 ps ve loads. water ponding 0 psf bottom other live loads water ponding 0 psf bottom other live loads e load of 20.0 a rectangle veen the bottoc DL = 10.0psf. o.2. nections. ers) of truss to 305 lb uplift at	r Cat. he; d fo l.15 live sf on g. ds. ppsf om	13) Gra or t bot	aphical p	tation (rd.) Sta	epresentation doe of the purlin along	es not depict the size g the top and/or MISSOLUTION REW MASSON BER 018993
				nal Residential Code 2 and referenced sta			nd					17 2024

MiTek[®] 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

April 17,2024

Scale = 1:72.2

Plate Offsets (X, Y): [2:Edge,0-2-7], [3:0-2-0,0-1-10], [7:	0-4-0,0-4-0	0], [13:0-8-0,	0-4-12]									
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(lo	c) I/d	əfl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.54	Vert(LL)	-0.34		15 >99	99	360	MT20	197/144
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.86	Vert(CT)	-0.61		15 >73	34	240		
TCDL	10.0	Rep Stress Incr	NO		WB	0.68	Horz(CT)	0.32		11 n	/a	n/a		
BCLL	10.0*	Code	IRC2018	8/TPI2014	Matrix-S		Wind(LL)	0.47		15 >94	1	240		
BCDL	10.0												Weight: 444 lb	FT = 10%
L UMBER TOP CHORD	2x6 SPF No.2 *Ex 2.0E	cept* 1-4:2x6 SP 2400		OT CHORD	2-20=-160/48, 3- 19-36=-2373/520 18-37=-2373/520)7, 36-37=)7, 17-18=	-2373/5207, -28/182,		í i	Vasd=9 [.] II; Exp C	mph ; En	n; TCI close	d; MWFRS (enve	.=6.0psf; h=25ft; Ca elope) exterior zone
BOT CHORD	2x6 SPF No.2 *Ex SPF No.2	cept* 5-17,15-8,9-12:2	x4		5-18=-485/339, 1 38-39=-339/756,		,							nd vertical left and plate grip DOL=1.60
WEBS WEDGE	2x4 SPF No.2 Left: 2x3 SPF No.2	1			16-40=-339/756, 41-42=-194/401,	16-41=-1 42-43=-1	94/401, 94/401,		5)	TCLL: A Plate DC	SCE)L=1	7-16 .15);	; Pr=25.0 psf (roc Pg=20.0 psf; Pf=	of LL: Lum DOL=1. 20.4 psf (Lum
BRACING TOP CHORD		eathing directly applic xcept end verticals, a 1-3 max): 4-10			15-43=-194/401, 8-14=-426/366, 1 44-45=-3013/646 13-46=-3014/646	14-44=-30 60, 45-46=	13/6457, -3014/6462,		 	Partially Min. flat applied t	Exp. roof o all	; Ce= snow expo	load governs. R sed surfaces with	=1.10, Lu=50-0-0; Rain surcharge
BOT CHORD		y applied or 10-0-0 o			9-13=-1398/802, 47-48=-75/180, 4 11-49=-75/180	18-49=-75	180,		6)	Unbalan design.	ced	snow		considered for this
REACTIONS	9-3-4 oc bracing: 1	3-14. 0-3-8, 11=1732/	VV	EBS	3-20=-73/242, 4- 4-18=-975/2163,									reater of min roof li oof load of 15.4 psf
KEACTIONS	(lb/size) 2=1845 Mechan	,			6-18=-578/1206,								ncurrent with oth	
	Max Horiz 2=162 (14-16=-2518/572									ent water ponding.
	Max Uplift 2=-904	LC 12), 11=-1092 (LC			9-14=-1101/2579 10-13=-3007/647		171/101,						en designed for a nconcurrent with	10.0 psf bottom any other live loads
		(LC 29), 11=2483 (LC	^{, 43)} NO	DTES										-
ORCES	· · /	mpression/Maximum	1)	2-ply truss	to be connected to	ogether wi	th 10d							
TOP CHORD	4-21=-7070/3106, 5-22=-7072/3106, 25-26=-6991/3069 6-27=-8743/3923, 7-28=-8743/3923, 8-29=-8891/3992, 30-31=-8891/3992, 33-34=-6239/2851	, 24-25=-6991/3069, , 6-26=-6991/3069, 27-28=-8743/3923, 7-8=-8743/3923, 29-30=-8891/3992, , 31-32=-8891/3992,	,	(0.131"x3" Top chords staggered Bottom ch staggered Web conne All loads a except if nu CASE(S) s provided to unless other) nails as follows: s connected as foll at 0-9-0 oc, 2x4 - 1 ords connected as at 0-9-0 oc, 2x4 - 1 ected as follows: 2: re considered equa- bred as front (F) or vection. Ply to ply co distribute only loa erwise indicated. d roof live loads ha	ows: 2x6 - 1 row at 0- follows: 2 1 row at 0- x4 - 1 row ally applie back (B) connection ads noted	2 rows 9-0 oc. k6 - 2 rows 9-0 oc. at $0-9-0$ oc. d to all plies, face in the LC s have been as (F) or (B),				6	+	STEOF M ANDE THOM JOHN PE-2017	AAS SON BER

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 17,2024

IONAL

Continued on page 2

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	
240654	H5	Half Hip Girder	1	2	Job Reference (optional	DEVELOPMENT SERVICES 164953155 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Wave	erly, KS - 66871,	Run: ID:ps	8.73 E Jan 4 2024 Print: 8. OvCglQY7F2EyboCCwmgV	.730 E Jan 4 Vy6jd9-or?Bv	2024 MiTek Industries, Inc. W v7J0p2EbGHqOaN7n8i4DTXaF	d Apr 1 1 80/30/2024

10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.
- 12) Refer to girder(s) for truss to truss connections.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1092 lb uplift at joint 11 and 904 lb uplift at joint 2.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 17) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 88 lb down and 67 lb up at 37-3-2 on top chord, and 277 lb down and 170 lb up at 7-2-0, and 40 lb down and 14 lb up at 37-3-2 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

- Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)
 - Vert: 1-4=-51, 4-10=-61, 2-20=-20, 3-18=-20,
 - 15-17=-20, 13-14=-20, 11-12=-20
 - Concentrated Loads (lb)
 - Vert: 4=-34 (B), 7=-6 (B), 10=-26 (B), 11=-18 (B), 19=-242 (B), 21=-30 (B), 22=-30 (B), 23=-6 (B), 25=-6 (B), 26=-6 (B), 27=-6 (B), 28=-6 (B), 29=-7 (B), 31=-7 (B), 32=-7 (B), 33=-6 (B), 34=-6 (B), 35=-6 (B), 38=-10 (B), 39=-10 (B), 40=-10 (B), 41=-10 (B), 42=-10 (B), 43=-10 (B), 44=-10 (B), 45=-10 (B), 46=-10 (B), 47=-10 (B), 48=-10 (B), 49=-10 (B)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
000			<u></u>	,		DEVELOPMENT SERVICES 164953156
240654	J1	Diagonal Hip Girder	6	1	Job Reference (optional	
			-			

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tue Apr 16 10020/30/219:24 ID:psOvCgIQY7F2EyboCCwmgWy6jd9-RfC?PsB70Hq3NSgPqnL8w3uITXbCKWrCD6+34507

4-8-8

Scale = 1:34.6

Plate Offsets (X, Y): [5:0-5-7,0-1-8]

Plate Olisets (/	A, T). [5.0-5-7,0-1-6]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.36 0.23 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.02 -0.05 0.02 0.02	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 13 lb	GRIP 197/144 FT = 10%
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m II; Exp C; E cantilever 1 right expos 2) TCLL: ASC Plate DOL: DOL=1.15 Partially E: 3) Unbalance design. 4) This truss I load of 12. overhangs 5) This truss I	4-8-8 oc purlins, exe Rigid ceiling directly bracing. (size) 3= Mecha 5=0-4-9 Max Horiz 5=82 (LC Max Uplift 3=-68 (LC Max Grav 3=147 (LC (LC 19) (Ib) - Maximum Com Tension 2-5=-286/122, 1-2=0 4-5=0/0 E 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 CE 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F Plate DOL=1.0; IS= Plate DOL=1.0; Cs=1.00; d snow loads have be has been designed for 0 psf or 1.00 times flat non-concurrent with c has been designed for	applied or 10-0-0 oc nical, 4= Mechanical, 8) 12), 5=-92 (LC 8) C 19), 4=84 (LC 7), 5=3 pression/Maximum V32, 2-3=-82/38 (3-second gust) DL=6.0psf; h=25ft; Cat ivelope) exterior zone; end vertical left and 0 plate grip DOL=1.60 roof LL: Lum DOL=1.1: Yf=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10 ten considered for this r greater of min roof live t roof load of 15.4 psf of other live loads.	on the botto 3-06-00 tall chord and a 7) All bearings or 8) Refer to gir 9) Provide me bearing pla 5 and 68 lb 10) This truss i Internationa R802.10.2 11) "NAILED" i (0.148"x3.2 12) In the LOAH of the truss LOAD CASE(S 1) Dead + Si Increase= Uniform L Vert: 1- Concentra t. Vert: 8= 5	now (balanced): Lu 1.15	as where will fit betw s, with BC be SPF Ne truss com n (by oth standing 9 ordance w e sections andard AN 148"x3") c IDS guidli n, loads a ((F) or ba	a rectangle veen the bott iDL = 10.0ps o.2. nections. ers) of truss i2 lb uplift at ith the 2018 R F502.11.1 a ISI/TPI 1. or 2-12d nes. oplied to the ck (B).	tom f. joint and face		(*	STATE OF STATE OF AND THO PE-2017	MAS ISON

April 17,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
240654	J2	Jack-Open	12	1	Job Reference (optional	DEVELOPMENT SERVICES 164953157 LEE'S SUMMIT, MISSOURI
-				700.0.4		

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tuk Apr 16 160 00/30/20:24 ID:_A_no?GKzrDjRpY6soCO24y6jdn-RfC?PsB70Hq3NSgPqnL8w3uITXbGK/vrCDoi7942.0?

1-3-15

Scale = 1:25.6

Plate Offsets (X, Y): [5:0-5-9,0-1-8]

Fiale Olisels	(X, Y): [5:0-5-9,0-1-8]		-										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-R	0.07 0.02 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 0.00 0.00	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 5 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 Structural wood she 1-3-15 oc purlins, e Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-8 Max Horiz 5=37 (LC Max Uplift 3=-20 (LC (LC 12) Max Grav 3=17 (LC (LC 2)	xcept end verticals. applied or 10-0-0 oc anical, 4= Mechanica 9) 212), 4=-1 (LC 9), 5= 2), 4=20 (LC 7), 5=1	9) I, 10 =-22 LC	on the bottor 3-06-00 tall b chord and ar All bearings Refer to gird Provide mec bearing plate 5, 1 lb uplift a) This truss is International	has been designed in chord in all areas by 2-00-00 wide wi by other members, are assumed to be er(s) for truss to tr hanical connection e capable of withst at joint 4 and 20 lb designed in accorr Residential Code nd referenced star Standard	s where ll fit betw with BC SPF No suss con (by oth anding 2 uplift at dance w sections	a rectangle veen the both DL = $10.0psi$ 0.2. mections. ers) of truss t 2 lb uplift at j joint 3. ith the 2018 is R502.11.1 a	om f. to joint					
FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-5=-136/37, 1-2=0/32, 2-3=-29/5 BOT CHORD 4-5=0/0 NOTES 1) 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this											SON +		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 17,2024

						RELEASE FOR CONSTRUCTION
loh	Trucc	Truss Type	Qty	Phy	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
Job	Truss	Truss Type	Qty	гіу	LOUISTOR	DEVELOPMENT SERVICES 164953158
240654	J3	Jack-Open	15	1	Job Reference (optional	
						00/00/000/

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tue Apr 16 60031/30/2024 ID:_A_no?GKzrDjRpY6soCO24y6jdn-RfC?PsB70Hq3NSgPqnL8w3uITXbGK/VrCDoi75420?/

Scale = 1:25

Plate Offsets (X, Y): [5:0-5-9,0-1-8]

	, .). [ele e ele : e]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI20	CSI TC BC WB 14 Matrix-R	0.15 0.10 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.01 -0.01 0.01	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 10 lb	GRIP 197/144 FT = 10%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (s REACTIONS (s FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASCE Vasd=91mp II; Exp C; Er cantilever lea right expose 2) TCLL: ASCE Plate DOL= DOL=1.15 P Partially Exp 3) Unbalanced design. 4) This truss ha load of 12.0 overhangs n 5) This truss ha	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 3-5-0 oc purlins, ex Rigid ceiling directly bracing. size) 3= Mecha 5=0-3-8 Max Horiz 5=75 (LC Max Uplift 3=-58 (LC Max Uplift	cept end verticals. applied or 10-0-0 oc nical, 4= Mechanica 12) 12), 5=-24 (LC 12) C 19), 4=60 (LC 7), 5 pression/Maximum 35, 2-3=-63/37 (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and D plate grip DOL=1.6 roof LL: Lum DOL=1 Y=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10 een considered for th : greater of min roof t roof load of 15.4 ps ther live loads. a 10.0 psf bottom	Cat. Load CA Cat. legin of the second of	truss has been design bottom chord in all are 0 tall by 2-00-00 wide and any other membe arings are assumed to to girder(s) for truss to e mechanical connect g plate capable of with 58 lb uplift at joint 3. uss is designed in acc tational Residential Coo 10.2 and referenced st SE(S) Standard	eas where will fit betw ers, with BC be SPF No o truss con tion (by oth nstanding 2 cordance w de sections	a rectangle veen the bott CDL = 10.0ps o.2. nections. ers) of truss 24 lb uplift at ith the 2018 \$ R502.11.1 a	om f. to joint		Ĺ		STATE OF J STATE OF J ANDJ THOU JOHN PE-2017 BSJONA	VAS SOL BER 018993

w.tpinst.org) With the state of the state of

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION	
Job	Truss	Truss Type	Qty	Plv	Lot 13 TCR	AS NOTED FOR PLAN REVIEW	
665	11466		aly	,	Lot 10 TOIX	DEVELOPMENT SERVICES 164953159	
240654	J4	Diagonal Hip Girder	2	1	Job Reference (optional		

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tup Apr 16 (6) P21/30/20:24 ID:_A_no?GKzrDjRpY6soCO24y6jdn-RfC?PsB70Hq3NSgPqnL8w3uITXbGK/vrCDoi794201/30/20:24

2-4-14

3x10 ш

Scale = 1:23.2

Plate Offsets (X, Y): [5:0-5-7,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.15 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 0.00 0.00	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 8 lb	GRIP 197/144 FT = 10%
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m II; Exp C; E cantilever I right expos 2) TCLL: ASC Plate DOL= DOL=1.15 Partially Ex 3) Unbalance design. 4) This truss f load of 12.(overhangs 5) This truss f	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 2-4-14 oc purlins, e Rigid ceiling directly bracing. (size) 3= Mecha 5=0-4-9 Max Horiz 5=49 (LC Max Uplift 3=-31 (LC Max Grav 3=54 (LC (LC 19) (lb) - Maximum Com Tension 2-5=-202/96, 1-2=0/3 4-5=0/0 E 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er eft and right exposed sed; Lumber DOL=1.6 CE 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F Plate DOL=1.15); Is= (pc, Ce=1.0; Cs=1.00; d snow loads have be has been designed for 0 psf or 1.00 times flat non-concurrent with c has been designed for oad nonconcurrent with c	xcept end verticals. applied or 10-0-0 oc nical, 4= Mechanica 8) 12), 5=-79 (LC 8) 19), 4=39 (LC 7), 5= pression/Maximum 33, 2-3=-34/13 (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 roof LL: Lum DOL=1 Y=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10 een considered for th : greater of min roof t roof load of 15.4 ps ther live loads. a 10.0 psf bottom	c on the b 3-06-00 chord ar 7) All bearing 5 and 3' 10) This trust 100 This trust R802.10 LOAD CASI =230 Cat. te; d 50 1.15 his live sf on	us has been design ottom chord in all are tall by 2-00-00 wide d any other member ngs are assumed to girder(s) for truss to mechanical connecti plate capable of with I buplift at joint 3. ss is designed in acco onal Residential Coo 2. and referenced st E(S) Standard	eas where will fit betw rs, with BC be SPF No b truss con ion (by oth astanding 7 ordance w de sections	a rectangle veen the botto CDL = 10.0psf o.2. nections. ers) of truss t '9 lb uplift at j ith the 2018 & R502.11.1 a	om o oint		Ĺ	ti	AND THO JOH NUM PE-201'	MAS VICH HBER 7018993

April 17,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
366	11035			I IY	LOUISTON	DEVELOPMENT SERVICES 164953160
240654	J5	Jack-Open	2	1	Job Reference (optional	

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tur Apr 16 6021/30/28:24 ID:_A_no?GKzrDjRpY6soCO24y6jdn-RfC?PsB70Hq3NSgPqnL8w3uITXbGK/WrCDoi79429?/

1-9-8

Scale = 1:23.3

Plate Offsets (X, Y): [5:0-5-9,0-1-8]

	, .). [e.e e e,e : e]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TF		CSI TC BC WB Matrix-R	0.07 0.02 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 0.00 0.00	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 6 lb	GRIP 197/144 FT = 10%
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m II; Exp C; E cantilever I right expos 2) TCLL: ASC Plate DOL= DOL=1.1S Partially Ex 3) Unbalance design. 4) This truss I load of 12. overhangs 5) This truss I	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 1-9-8 oc purlins, exi Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-8 Max Horiz 5=43 (LC Max Uplift 3=-30 (LC Max Grav 3=40 (LC (LC 19) (lb) - Maximum Com Tension 2-5=-151/40, 1-2=0/: 4-5=0/0 CE 7-16; Vult=115mph uph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 CE 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F Plate DOL=1.15); Is= xp; Ce=1.0; Cs=1.00; d snow loads have be has been designed for 0 psf or 1.00 times flat non-concurrent with co has been designed for load nonconcurrent with co	cept end verticals. applied or 10-0-0 oc nical, 4= Mechanical 9) 12), 5=-22 (LC 12) 19), 4=29 (LC 7), 5= pression/Maximum 33, 2-3=-35/13 (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zono ; end vertical left and 0 plate grip DOL=1. 4/5 (Lum DOL=1. 2/5 (Lum DOL=	at. e; if on on 3. cr 7) A br 5 10) Ti R LOAE 171 in 171 in 171 in in in in in in in in in in	n the bottom -06-00 tall by hord and any all bearings an Refer to girder trovide mecha earing plate of and 30 lb up this truss is d international F	esigned in acco Residential Code d referenced sta	as where vill fit betw s, with BC be SPF No truss con on (by oth standing 2 ordance w e sections	a rectangle veen the botto DL = 10.0psf 5.2 . nections. ers) of truss t 2 lb uplift at j ith the 2018 R502.11.1 a	o o oint		(*	AND JOHN NUX PE-2017	

April 17,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
		Diagonal Hip Girder	,			DEVELOPMENT SERVICES 164953161
240654	J6	Job Reference (optional	LEE'S SUMMIT, MISSOURI			
Wheeler Lumber, Waverly, KS -						

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tuk Apr 16 16021/30/2024 ID:Xbay?XUgBtxO3KmWHVW4eNy6jcC-RfC?PsB70Hq3NSgPqnL8w3uITXtcKWrCDor/92/C30/2024

Scale = 1:36.3

Plate Offsets (X, Y): [8:0-5-7,0-1-8]

	X, 1): [0:0 0 7,0 1 0]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.33 0.39 0.27	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.04 -0.07 0.03 0.03	(loc) 5-6 5-6 5 5-6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 23 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=91m II; Exp C; E	2x4 SPF No.2 2x4 SPF No.2 *Exce 1.8E 2x3 SPF No.2 *Exce Structural wood she 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 8=118 (LC Max Grav 5=335 (LC (lb) - Maximum Com Tension 2.8=-372/139, 1-2=0 3-4=-99/20, 4-5=-12 7-8=-91/284, 6-7=0/ 5-6=-251/842 3-5=-825/265 CE 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er	- ept* 8-2:2x4 SPF No athing directly appli cept end verticals. applied or 10-0-0 o anical, 8=0-4-9 C 9) C 12), 8=-121 (LC 8) C 5), 8=414 (LC 2) apression/Maximum 0/32, 2-3=-379/70, 1/47 52, 3-6=0/145, (3-second gust) DL=6.0psf; h=25ft; avelope) exterior zo	5.2 ed or 7) 8) 9) 1(12 12 12 12 12 12 11 12 11 12 11 12 11 12 11 12 11 12 12	chord live lo * This truss I on the bottoo 3-06-00 tall I chord and at All bearings Refer to gird Provide mec bearing plate 8 and 87 lb (0) This truss is International R802.10.2 a 1) "NAILED" in (0.148"x3.25 2) In the LOAD of the truss a DAD CASE(S) Dead + Sm. Increase=1 Uniform Lo Vert: 1-2 Concentrat	ow (balanced): Lui .15	with any d for a liv swhere iill fit betv, with BC e SPF Neruss control system of the sections ndard AN 48"x3") of DS guidli , loads a (F) or ba mber Inc 3=-20, 5-	other live load e load of 20. a rectangle ween the bott DL = 10.0ps o.2. mections. ers) of truss (21 lb uplift a ith the 2018 & R502.11.1 a SI/TPI 1. or 2-12d nes. pplied to the ck (B). rease=1.15, 6=-20	Opsf form to t joint and face Plate			H	STE OF I	
cantilever	left and right exposed	; end vertical left an	nd								B	ST ANDI	EW E

- right exposed; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

April 17,2024

THOMAS

JØHNSON

NUMBER

PE-2017018993

RESSIONAL ET

C

							RELEASE FOR CONSTRUCTION
ſ	Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 164953162
	240654	J7	Jack-Open	2	1	Job Reference (optional	

-0-10-8

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tup Apr 16 10081/30/21024 ID:3P0aoBT2QZpXRBBKjo?r6Ay6jcD-RfC?PsB70Hq3NSgPqnL8w3uITXbGrWrCDoi794294

Scale = 1:32.4

Plate Offsets (X, Y): [8:0-5-9,0-1-8]

	() () () [0:0 0 0]0 : 0]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/T	PI2014	CSI TC BC WB Matrix-R	0.08 0.07 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 0.00 0.00	(loc) 3-6 3-6 5 3	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 10 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 *Exce 2x4 SPF No.2 Structural wood she 2-8-7 oc purlins, ex Rigid ceiling directly bracing.	athing directly appli cept end verticals. applied or 6-0-0 oc anical, 5= Mechanica 12) C 12), 5=-2 (LC 12),	.2 3 () A ed or 9) F b 8 al, 10) T 8 8 8 -17 LOAI	on the botton 3-06-00 tall b chord and an All bearings a Refer to girde Provide mech pearing plate 3, 31 lb uplift Fhis truss is o nternational	as been designeen n chord in all area y 2-00-00 wide w y other members are assumed to b er(s) for truss to 1 hanical connectio capable of withs at joint 4 and 2 lt designed in accor Residential Code nd referenced sta Standard	as where vill fit betw s, with BC e SPF No truss con on (by oth tanding 1 o uplift at rdance w e sections	a rectangle veen the botto CDL = 10.0psf o.2. nections. ers) of truss t 7 lb uplift at j joint 5. ith the 2018 & R502.11.1 a	om f. to oint					
Vasd=91r II; Exp C; cantilever right expo 2) TCLL: AS Plate DOI DOL=1.15	7-8=-16/26, 6-7=0/4 CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed osed; Lumber DOL=1.6 CE 7-16; Pr=25.0 psf (L=1.15); Pg=20.0 psf; Is 5 Plate DOL=1.15); Is=	34, 2-3=-74/0, 3-4=- 2, 3-6=-26/16, 5-6=((3-second gust) DL=6.0psf; h=25ft; nvelope) exterior zor ; end vertical left an 0 plate grip DOL=1. roof LL: Lum DOL=' 7=15.4 psf (Lum 1.0; Rough Cat C;	0/0 Cat. ne; d 60							/	*	STATE OF J	MAS Y
 Unbalance design. This truss load of 12 overhange This truss 	Exp.; Ce=1.0; Cs=1.00; sed snow loads have be s has been designed fo 2.0 psf or 1.00 times fla s non-concurrent with o has been designed fo load nonconcurrent with	een considered for th r greater of min roof t roof load of 15.4 pe other live loads. r a 10.0 psf bottom	live sf on							Ĺ	A PAR	NUM PE-2017	UL ENGLE

April 17,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 164953163
240654	J8	Diagonal Hip Girder	1	1	Job Reference (optional	

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tu: Apr 16 16 1991/30/26 24 ID:_A_no?GKzrDjRpY6soCO24y6jdn-RfC?PsB70Hq3NSgPqnL8w3uITXbGK/VrCDoi7542,9/1

0-8-12

Scale = 1:30.3

Ocale = 1.50.5												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2	CSI TC BC WB 014 Matrix-R	0.31 0.05 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 -0.01 0.00	(loc) 5 4-5 3 5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 5 lb	GRIP 197/144 FT = 10%
BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (FORCES TOP CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASCI Vasd=91mp II; Exp C; E cantilever le right expose 2) TCLL: ASC Plate DOL= DOL=1.15 f	10.0 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 0-8-12 oc purlins, e Rigid ceiling directly bracing.	athing directly appli xcept end verticals. applied or 10-0-0 o inical, 4= Mechanica 9) C 19), 4=-39 (LC 19 C 8) 8), 4=8 (LC 30), 5=- pression/Maximum 28, 2-5=-398/126 (3-second gust) DL=6.0psf; h=25ff; 0 velope) exterior zor ; end vertical left an 0 plate grip DOL=1. roof LL: Lum DOL=1? f=15.4 psf (Lum 1.0; Rough Cat C;	6) * Th on ti 3-06 choi 7) All bi ed or 8) Refe 9) Prov c 4, 21 al, 10) This Inter Refer al, 10) This Inter Refer al, 20 0), LOAD C 448	is truss has been design the bottom chord in all are -00 tall by 2-00-00 wide d and any other member earings are assumed to rr to girder(s) for truss to ide mechanical connecti ing plate capable of with 09 lb uplift at joint 3 and 1 truss is designed in acc national Residential Coc 2.10.2 and referenced st ASE(S) Standard	eas where will fit betw rs, with BC be SPF No b truss con ion (by oth standing 3 113 lb uplii ordance w de sections	e load of 20.0 a rectangle veen the botti DL = 10.0psl o.2. nections. ers) of truss t 9 lb uplift at j t at joint 5. th the 2018 R502.11.1 a	Opsf om oo oint				STATE OF STATE OF	MISSOL
 Unbalanced design. This truss h load of 12.0 	d snow loads have be has been designed for psf or 1.00 times fla	en considered for th r greater of min roof t roof load of 15.4 ps	live						(Link	Infit
5) This truss h	non-concurrent with one of the second s	r a 10.0 psf bottom	ds.							Ŷ	PE-2017	IL ENGINE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

trans April 17,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 164953164
240654	J9	Jack-Closed Girder	1	1	Job Reference (optional	

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tue Apr 16 1600 1 ID:xAG5dZWZUoJzwoU5ye3nG0y6jc9-RfC?PsB70Hq3NSgPqnL8w3uITXbC (WrCDored 2.9024)

Scale = 1:44.4

Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 25.0 20.4/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO		CSI TC BC WB	0.21 0.31 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.05 0.02	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144
BCLL BCDL	10.0* 10.0	Code	IRC2018/TI	PI2014	Matrix-S		Wind(LL)	0.03	9	>999	240	Weight: 21 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 *Exce 2x4 SPF No.2 *Exce 2x3 SPF No.2 *Exce Structural wood she 4-9-8 oc purlins; ax 2-0-0 oc purlins; 3-4 Rigid ceiling directly bracing, Except: 6-0-0 oc bracing; 7-8	pt* 9-7:2x3 SPF No pt* 11-2:2x4 SPF No eathing directly applie cept end verticals, ar applied or 10-0-0 oc 3.	2 6) T 2 cl 0.2 7) * dor 3- nd cl 8) A 9) R 10) P	his truss ha hord live loa This truss h n the bottor -06-00 tall b hord and ar all bearings tefer to girde provide mec earing plate	quate drainage i ss been designe ad nonconcurrein has been desigr n chord in all ar by 2-00-00 wile hy other membe are assumed to er(s) for truss to hanical connect e capable of with uplift at joint 11	d for a 10.0 nt with any ned for a liv eas where will fit betw rs, with BC be SPF No o truss conr tion (by oth nstanding 5	D psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf D.2. nections. ers) of truss t	ids. Opsf om f.					
	(size) 6= Mecha Max Horiz 11=114 (L Max Uplift 6=-54 (LC Max Grav 6=219 (LC (lb) - Maximum Com	; 75), 11=-150 (LC 59 ; 45), 11=314 (LC 47	11) T In 9) R 7) 12) G	his truss is nternational 802.10.2 ar Graphical pu	designed in acc Residential Co nd referenced s Irlin representat ation of the purli	cordance w de sections tandard AN ion does no	R502.11.1 a ISI/TPI 1. ot depict the s						

Tension TOP CHORD 1-2=0/73, 2-3=-130/22, 3-4=-110/13, 4-5=-92/28, 5-6=-129/49, 2-11=-255/139 BOT CHORD 10-11=-85/55, 9-10=-32/86, 7-9=-113/290, 7-8=-50/39, 6-7=-22/43 WEBS 3-10=-13/128, 8-10=-350/122, 4-8=-118/51

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this 3) design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

provided sufficient to support concentrated load(s) 108 . Ib down and 285 lb up at 0-4-12 on top chord, and 5 lb down and 52 lb up at 0-1-12 on bottom chord. The design/selection of such connection device(s) is the

13) "NAILED" indicates 3-10d (0.148"x3") or 2-12d

(0.148"x3.25") toe-nails per NDS guidlines.

14) Hanger(s) or other connection device(s) shall be

responsibility of others. 15) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

bottom chord.

- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15
 - Uniform Loads (lb/ft) Vert: 1-2=-51, 2-3=-51, 3-4=-61, 4-5=-51, 9-11=-20, 6-7=-20
 - Concentrated Loads (lb) Vert: 11=18 (B), 2=58 (B)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
000	11033		Gaty	1 19	LOC 13 TOIX	DEVELOPMENT SERVICES 164953165
240654	J10	Jack-Closed	1	1	Job Reference (optional	
Wheeler Lumber, Waverly, K	S - 66871,	Run: 8.73 S Apr 3	2024 Print: 8	.730 S Apr 3	2024 MiTek Industries, Inc. Tu	

ID:WzQPbfFiCX5tqfzwJ4h9Wty6jdo-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKVrCDoi7JaziG/30/2024

Scale = 1:36.3

Plate Offsets (X, Y): [3:0-4-1,0-3-0]

Loading TCLL (roof)(psf) 25.0 Snow (Pf/Pg)Spacing 2.0.4/20.0 Lumber DOL 1.15Spacing 1.152-0-0 1.15CSi TC TC DLDEFL TC Nin(loc) Vert(LL)PLATES 8GRIP MT20Snow (Pf/Pg) TCDL20.4/20.0 10.0Lumber DOL Lumber DOL 1.151.15 Lumber DOL CodeBC IRC2018/TPI2014BC BC Ndrix-S0.017.8 Vert(CT)>.0017.8 Vert(CT)>.999 Vert(CT)2.0.0 Vert(CT)N/a N/a N/aMT20197/144LUMBER TOP CHORD BCT CHORD 2x4 SPF No.2Top Stress Incr VERSYES CodeMatrix-SDEFL WB NO.4in or of live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.Weight: 23 lbFT = 10%LUMBER TOP CHORD BCT CHORD 2x4 SPF No.2This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.Provide adequate drainage to prevent water ponding.FT = 10%BRACING TOP CHORD COC CHORD 2-2-00 cp urlins: 3-5		A, T). [3.0-4-1,0-3-0]												
TOP CHORD BOT CHORD2x4 SPF No.2load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.WEBS2x3 SPF No.2 *Except* 10-2:2x4 SPF No.2Ioad of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.BRACING TOP CHORDStructural wood sheathing directly applied or 4-9-8 oc purlins; a-s5.Frovide adequate drainage to prevent water ponding.BOT CHORDStructural wood sheathing directly applied or 2-0-0 oc purlins; 3-5.Frovide adequate drainage to prevent water ponding.BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.7REACTIONS(size)7 = Mechanical, 10=0-3-8	TCLL (roof) Snow (Pf/Pg) TCDL BCLL	25.0 20.4/20.0 10.0 10.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	18/TPI2014	TC BC WB	0.27	Vert(LL) Vert(CT) Horz(CT)	-0.01 -0.01 0.02	8 7-8 7	>999 >999 n/a	360 240 n/a	MT20	197/144
 Max Horiz 10=115 (LC 9) Max Uplit 7=-54 (LC 12), 10=-46 (LC 12) Max Grav 7=203 (LC 3), 10=307 (LC 37) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-10=-181/80, 1-2=0/74, 2-3=-67/55, 3-4=-114/32, 4-5=-178/46, 5-6=-54/22, 6-7=-54/18 BOT CHORD 9-10=-64/93, 8-9=-52/43, 4-8=-24/71, 7-8=-48/162 WEBS 3-10=-197/27, 3-9=-29/88, 5-7=-206/75, 5-8=-20/35 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; i undvertical left and right exposed; i undvertical left and right exposed; i undvertical left and right exposed; i end vertical left and right	TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=91m II; Exp C; E	2x4 SPF No.2 *Exce 2x3 SPF No.2 *Exce 2x3 SPF No.2 *Exce 4-9-8 oc purlins; ax5 Rigid ceiling directly bracing. (size) 7= Mecha Max Horiz 10=115 (I Max Uplift 7=-54 (LC (Max Uplift 7=-54 (LC (Max Grav 7=203 (LC (Ib) - Maximum Com Tension 2-10=-181/80, 1-2=(3-4=-114/32, 4-5=-1 6-7=-54/18 9-10=-64/93, 8-9=-5 7-8=-48/162 3-10=-197/27, 3-9=- 5-8=-20/35 CE 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er	Athing directly applie cept end verticals, a arbitrary applied or 10-0-0 or anical, 10=0-3-8 _C 9) 212), 10=-46 (LC 12 C 3), 10=307 (LC 37 apression/Maximum 0/74, 2-3=-67/55, 78/46, 5-6=-54/22, 2/43, 4-8=-24/71, 29/88, 5-7=-206/75, (3-second gust) DL=6.0psf; h=25ft; (avelope) exterior zor	.2 o.2 6 ed or nd 7 c 8 9 9 () 1 1) 1 1 1 2 Cat. L Cat.	 load of 12.0 overhangs n Provide ade This truss ha chord live lo. * This truss lo on the bottoo 3-06-00 tall 1 chord and at All bearings Refer to gird Provide mec bearing plate 10 and 54 lb This truss is International Graphical pu or the orient bottom chord 	psf or 1.00 times on-concurrent wit as been designed ad nonconcurren has been designed m chord in all are by 2-00-00 wide to ny other member are assumed to I ler(s) for truss to chanical connecti- e capable of with: uplift at joint 7. designed in acco Residential Cod nd referenced st urlin representatic ation of the purlin d.	a flat roof lo the three lines of the lines of the lines of prevent with any ed for a live as where will fit betw will fit betw will fit betw s, with BC be SPF No truss conr on (by oth standing 4 ordance w le sections andard AN on does no	bad of 15.4 p re loads. water pondin 0 psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps 0.2. erections. ers) of truss 6 lb uplift at R502.11.1 a (SI/TPI 1.) the depict the	esf on g. ads. Opsf .om f. to joint					

- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- 3) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 17,2024

NUMBER

PE-2017018993

PB-2

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
300	11035	Truss Type	QUY	ту	LOUISTOR	DEVELOPMENT SERVICES 164953166
240654	J11	Jack-Closed	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
•						00/00/000

2-2-0

4-9-8

0-10-8

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tu Apr 16 6022/30/29:24 ID:Xn?hl5shCCWdRVMjol564dy6jd?-RfC?PsB70Hq3NSgPqnL8w3ulTXbGK VrCDoi794201/30/29:24

Scale = 1:35

Plate Offsets (X, Y): [2:0-2-15,0-2-0], [3:0-4-1,0-3-0], [6:0-2-4,0-4-0]

- 1410 0110010 ((,,, ,). [2:0 2 :0;0 2 0], [0:0 : 1,0 0 0], [0:		. •]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	018/TPI2014	CSI TC BC WB Matrix-S	0.09 0.08 0.04	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 -0.01 0.00	(loc) 5-6 5-6 5 5-6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 23 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 *Exce 2x3 SPF No.2 *Exce Structural wood she 4-9-8 oc purlins, ex 2-0-0 oc purlins: 3-4 Rigid ceiling directly	athing directly applie cept end verticals, a	.2 .2 ed or nd	chord live lo 7) * This truss on the botto 3-06-00 tall chord and a 8) All bearings 9) Refer to girc	as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide v ny other members are assumed to b ler(s) for truss to t chanical connection	t with any ed for a liv as where vill fit betv s, with BC be SPF No cruss conr	other live load e load of 20. a rectangle veen the bott CDL = 10.0ps b.2. mections.	0psf com f.					
REACTIONS	bracing.	anical, 8=0-3-8 C 7) C 7), 8=-30 (LC 10) C 3), 8=284 (LC 2)		8 and 71 lb 11) This truss is Internationa R802.10.2 a 12) Graphical pt	e capable of withs uplift at joint 5. designed in acco I Residential Code nd referenced sta urlin representatio ation of the purlin	ordance w e sections andard AN on does no	ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the	and					
TOP CHORD BOT CHORD	Tension 2-8=-262/57, 1-2=0/ 3-4=-29/24, 4-5=-86 7-8=-51/38, 6-7=-12	/38		bottom chor LOAD CASE(S)	d.	Jan							
WEBS NOTES	5-6=-73/136 3-5=-160/71, 3-6=-2 ed roof live loads have		r									STATE	ADDE
this design 2) Wind: ASC Vasd=91n II; Exp C; cantilever right expo 3) TCLL: ASC		(3-second gust) DL=6.0psf; h=25ft; (vvelope) exterior zor ; end vertical left an 0 plate grip DOL=1.0 roof LL: Lum DOL=1	Cat. ne; d 60							(A A	STATE OF J ANDI THOI JOHN	Son the

DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on

overhangs non-concurrent with other live loads.5) Provide adequate drainage to prevent water ponding.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

April 17,2024

EL

PE-2017018993

SIONAL

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
000	11033	indisa Type	Giy	i iy		DEVELOPMENT SERVICES 164953167
240654	J12	Jack-Closed	1	1	Job Reference (optional)	
						00/00/000/

3-1-10

0-10-8

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tu Apr 16 6082/30/26:24 ID:Xn?hI5shCCWdRVMjoI564dy6jd?-RfC?PsB70Hq3NSgPqnL8w3uITXbGK vrCDoi7.42.07

4-9-8

Scale = 1:34.7

Plate Offsets (X, Y): [3:0-4-1,0-3-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.17 0.08 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 5-6 6-7 5	l/defl >999 >999 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 25 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce Structural wood she 4-9-8 oc purlins, ex 2-0-0 oc purlins: 3-4	athing directly applie cept end verticals, a	ed or nd 9)	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and an All bearings	quate drainage to as been designed ad nonconcurrent has been designed m chord in all are by 2-00-00 wide hy other members are assumed to b	for a 10.0 t with any ed for a liv as where will fit betw s, with BC pe SPF No) psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps 0.2.	ads. Opsf					
BOT CHORD	Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 7=176 (LC Max Uplift 5=-93 (LC Max Grav 5=227 (LC	anical, 7=0-3-8 C 9) S 9), 7=-24 (LC 12)	1 ⁻ 12	 Provide med bearing plate 7 and 93 lb u This truss is International 	er(s) for truss to t chanical connection capable of withs uplift at joint 5. designed in acco Residential Code nd referenced sta	on (by oth standing 2 ordance w e sections	ers) of truss 4 lb uplift at ith the 2018 R502.11.1 a	joint					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 2-7=-339/68, 1-2=0/ 3-4=-58/45, 4-5=-77 6-7=-80/97, 5-6=-81	pression/Maximum 74, 2-3=-220/42, /43	, 13	 Graphical put 	Irlin representatic ation of the purlin d.	on does no	ot depict the	size					
WEBS	3-6=-25/100, 3-5=-2												
this design 2) Wind: ASC Vasd=91n II; Exp C; cantilever right expo: 3) TCLL: ASC Plate DOL DOL=1.15	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 CE 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F is Plate DOL=1.15); Is= (xp : Ca=1 00; Cs=1 00; C	(3-second gust) DL=6.0psf; h=25ft; (velope) exterior zor ; end vertical left an 0 plate grip DOL=1. roof LL: Lum DOL= ² Pf=20.4 psf (Lum 1.0; Rough Cat C;	Cat. ne; d 60 1.15									STE OF I STATE OF I ANDI THON JOHN	AAS SPN *

- Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 17,2024

PE-2017018993

SSIONAL ET

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	
240654	J13	Jack-Closed	1	1		DEVELOPMENT SERVICES 164953168 LEE'S SUMMIT, MISSOURI
240004	010	back bibbed	!	•	Job Reference (optional	

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tus Apr 16 602/30/20:24 ID:Xn?hI5shCCWdRVMjoI564dy6jd?-RfC?PsB70Hq3NSgPqnL8w3uITXbGK vrCDoi7

Scale = 1:52.1

Plate Offsets ((X, Y): [3:0-4-1,0-3-0],	[5:Edge,0-2-8]										-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-R	0.33 0.23 0.09	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.03 -0.05 0.00 0.04	(loc) 6-7 6-7 5 6-7	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 23 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce Structural wood she 4-9-8 oc purlins, ex 2-0-0 oc purlins; 3-4	athing directly applic cept end verticals, a	7 0.2 8 ed or and	 This truss has chord live lo * This truss on the botto 3-06-00 tall chord and a 	quate drainage to as been designed ad nonconcurrent has been designe m chord in all are by 2-00-00 wide v ny other members are assumed to b	for a 10.0 t with any ed for a liv as where will fit betw s, with BC) psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps	ads. Opsf					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o inical, 7=0-3-8 C 11) C 9), 7=-9 (LC 8)	1	 Provide med bearing plate and 119 lb u This truss is International 	ler(s) for truss to t chanical connection e capable of withs plift at joint 5. designed in accord I Residential Code	on (by oth standing 9 ordance w e sections	ers) of truss b uplift at jo ith the 2018 5 R502.11.1 a	oint 7					
FORCES	(lb) - Maximum Com Tension 2-7=-340/46, 1-2=0/	pression/Maximum 74, 2-3=-242/118,	,	3) Graphical pu	nd referenced sta urlin representatio ation of the purlin d.	on does no	ot depict the	size					
BOT CHORD WEBS	3-4=-69/64, 4-5=-98 6-7=-74/62, 5-6=-77 3-6=-141/145		L	OAD CASE(S)	Standard								
this design 2) Wind: ASG Vasd=91n II; Exp C; cantilever right expo 3) TCLL: AS Plate DOL DOL=1.15	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 CE 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F 5 Plate DOL=1.15); Is= xp.; Ce=1.0; Cs=1.00;	(3-second gust) DL=6.0psf; h=25ft; ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1. roof LL: Lum DOL= Pf=20.4 psf (Lum 1.0; Rough Cat C;	Cat. ne; id 60 1.15							L		STATE OF J STATE OF J HOL JOHN	HAS BON +

- Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
 Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

April 17,2024

PE-2017018993

ONAL ET

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	
240654	J14	Jack-Open	10	1	Job Reference (optional	DEVELOPMENT SERVICES 164953169 LEE'S SUMMIT, MISSOURI

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tup Apr 16 6082/30/2624 ID:WzQPbfFiCX5tqfzwJ4h9Wty6jdo-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7Jz20730/2624

Scale = 1:36.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	BC 0	.33 V .24 V .00 H	/ert(CT) -0 Horz(CT) -0	in (loc 03 4-5 05 4-5 08 3 05 4-5	>999 n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 16 lb	GRIP 197/144 FT = 10%
	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 4-9-8 oc purlins, ex Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-8 Max Horiz 5=145 (LC Max Grav 3=164 (LC 5=286 (LC	cept end verticals. applied or 10-0-0 oc nical, 4= Mechanica C 10) C 10), 4=-5 (LC 10) C 20), 4=98 (LC 20),	 7) Refer to gird 8) Provide medbearing plat 3 and 5 lb u 9) This truss is Internationa R802.10.2 a LOAD CASE(S) 	are assumed to be SP ler(s) for truss to truss thanical connection (by e capable of withstandi plift at joint 4. designed in accordand I Residential Code sect and referenced standard Standard	conned others ing 103 ce with tions R	ections. s) of truss to 3 lb uplift at join 1 the 2018 2502.11.1 and	ł				
Vasd=91m II; Exp C; E and right e: Lumber DC 2) TCLL: ASC Plate DOL= DOL=1.15 Partially E: load of 12. overhangs 4) This truss I chord live I 5) * This truss on the bott 3-06-00 tal	(lb) - Maximum Com Tension 2-5=-251/0, 1-2=0/5 4-5=0/0 E 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er xposed ; end vertical I DL=1.60 plate grip DO CE 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F Plate DOL=1.15); Is= tpc; Ce=1.0; Cs=1.00; has been designed foi 0 psf or 1.00 times flat non-concurrent with chas been designed foi load nonconcurrent with con bas been designed foi load nonconcurrent with con shas been designed foi on choro in all areas Il by 2-00-00 wide will any other members, w	(3-second gust) DL=6.0psf; h=25ft; C ivelope); cantilever le eft and right exposed L=1.60 roof LL: Lum DOL=1 Pf=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10 greater of min roof t roof load of 15.4 ps other live load of a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto	eft 1; .15 ive f on ls. psf m					(* Ph	NUM PE-2017	AAS SDN A BER 018993

April 17,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 164953170
240654	J15	Jack-Open	1	1	Job Reference (optional	

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tu Apr 16 6082/30/28:24 ID:KfQKSi9HSXQ?IWr?5z0x7Zy45cZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGr WrCDoi79429?/30/28:24

3-0-5

Scale	- 1.2	16

						· · · · · · · · · · · · · · · · · · ·						
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.12	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	-0.01	4-5	>999	240		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	3	n/a	n/a		
BCLL	10.0*	Code	IRC2018/TPI20	14 Matrix-R		Wind(LL)	0.00	4-5	>999	240		
BCDL	10.0										Weight: 9 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x3 SPF No.2 Structural wood she 3-0-5 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 or anical, 4= Mechanica 12) 2 12), 5=-23 (LC 12)	on the 3-06-(chord 7) All be: 8) Refer 9) Provic bearin 5 and 10) This tu Intern R802. LOAD CA	truss has been design bottom chord in all ar 0 tall by 2-00-00 wide and any other membe arings are assumed to to girder(s) for truss t e mechanical connect g plate capable of with 54 lb uplift at joint 3. uss is designed in acc ational Residential Con 10.2 and referenced s SE(S) Standard	eas where will fit betweers, with BC be SPF No o truss con tion (by oth hstanding 2 cordance we de sections	a rectangle veen the bott DL = 10.0ps o.2. nections. ers) of truss 23 lb uplift at ith the 2018 \$ R502.11.1 a	om f. to joint					
FORCES	(lb) - Maximum Corr Tension	pression/Maximum										
TOP CHORD	2-5=-198/51, 1-2=0/	22 2 2 57/22										
BOT CHORD	4-5=0/0	55, 2-551/52										
NOTES	4 3=0/0											
	CE 7-16; Vult=115mph	(3-second qust)										
Vasd=91n II; Exp C; cantilever right expo 2) TCLL: AS Plate DOL DOL=1.15 Partially E 3) Unbalance design. 4) This truss	nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 CC 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F 5 Plate DOL=1.15); Is= (xp.; Ce=1.0; Cs=1.00; ed snow loads have be has been designed fo	DL=6.0psf; h=25ft; (ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1. roof LL: Lum DOL=' Pf=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10 een considered for th r greater of min roof	ne; d 60 1.15 nis live						(STATE OF AND HO JOHT	SON *
	.0 psf or 1.00 times fla		sf on							27	DE 201	

overhangs non-concurrent with other live loads.5) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

And Lew THOMAS JOHNSON NUMBER PE-2017018993 STONAL ENGINE April 17,2024

						RELEASE FOR CONSTRUCTION
loh	Truss	Truce Tures	Qty	DIV	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
Job	Truss	Truss Type	Qiy	Fly	LOUISTOR	DEVELOPMENT SERVICES 164953171
240654	J16	Jack-Open	10	1	Job Reference (optional	

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tue Apr 16 6092/30/2024 ID:ZNTkLnGwKIYjtu1k7Mg2?Ty45cQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGk WrCDoi7423?

Scale = 1:29.9

00010 = 1.20.0					-							
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.18	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.10	Vert(CT)	-0.01	4-5	>999	240		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.03	3	n/a	n/a		
BCLL	10.0*	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	4-5	>999	240		
BCDL	10.0										Weight: 11 lb	FT = 10%
LUMBER			6) All beari	ngs are assumed to	be SPF N	0.2 .						
TOP CHORD	2x4 SPF No.2			girder(s) for truss t								
BOT CHORD	2x4 SPF No.2			nechanical connec								
WEBS	2x3 SPF No.2			late capable of wit	hstanding 7	74 lb uplift at	joint					
BRACING			O) This tax.	b uplift at joint 4.								
TOP CHORD	Structural wood she 3-1-0 oc purlins, ex	cept end verticals.	Internati	s is designed in acc onal Residential Co 2 and referenced s	de sections	s R502.11.1 a	and					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o		(S) Standard	Stanuaru Ar	NSI/TPTT.						
REACTIONS		anical, 4= Mechanic	al,									
	5=0-3-8 Max Horiz 5=97 (LC	10)										
	Max Uplift 3=-74 (LC											
	Max Grav 3=106 (L0	<i>,,</i> , , , , , , , , , , , , , , , , , ,										
	5=211 (L0	,. (,	,									
FORCES	(lb) - Maximum Com Tension	pression/Maximum	I									
TOP CHORD	2-5=-184/0, 1-2=0/4	8, 2-3=-93/63										
BOT CHORD	4-5=0/0											
NOTES												
1) Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)										
	nph; TCDL=6.0psf; BC											
	Enclosed; MWFRS (er											(The
	exposed ; end vertical		ed;								6 OF	MICH
	OL=1.60 plate grip DC		4.45							6	ALE OF	MISS
	CE 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; I		1.15							A	TATEOF	1.5
	Plate DOL=1.15); Is=									A	S AND	REW CA
	xp.; Ce=1.0; Cs=1.00;									a	7 THO	MAS V V
	has been designed fo		f live							X +	JOH	SON X
load of 12.	0 psf or 1.00 times fla	t roof load of 15.4 p	sf on						/			ZIAALAN.
	non-concurrent with									M	NUM	T~h
	has been designed fo									27		DER A
	load nonconcurrent w									N.	PE-2017	BER 7018993
	s has been designed f tom chord in all areas		opsi							Y	1 Per	1.SA
	Il by 2-00-00 wide will	•	om							0	Vh STOR	TENS
	any other members, v										UNA	
											utt	

April 17,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 164953172
240654	J17	Jack-Open	3	1	Job Reference (optional)	

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tur Apr 16 60 2/30/2 9 24 ID:kkWcxARbH2S122P6rRJyMuzQ5gw-RfC?PsB70Hq3NSgPqnL8w3uITXb6 KWrCD6wJ4z90?

Scale = 1:39

Plate Offsets	(X, Y): [2:0-3-0,0-1-4],	[6:0-1-7,Edge]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	J/TPI2014	CSI TC BC WB Matrix-R	0.27 0.15 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 0.01 -0.06	(loc) 5-6 5-6 3	l/defl >999 >999 n/a	L/d 240 180 n/a		GRIP 197/144 FT = 10%
 Vasd=91 II; Exp C; cantileve right expr 2) TCLL: AS Plate DO DOL=1.1 Partially I 3) This truss: load of 1: overhang 4) This truss: 	 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 3-1-0 cc purlins, ex. Rigid ceiling directly bracing. (size) 3 = Mecha 6=0-3-8 Max Horiz 6=136 (LC Max Uplift 3=-118 (L Max Grav 3=113 (LC 6=211 (LC (lb) - Maximum Com Tension 2-6=-184/0, 1-2=0/4 	cept end verticals. applied or 6-0-0 oc anical, 4= Mechanical C 10) C 10), 4=-17 (LC 10) C 22), 4=64 (LC 22), pression/Maximum 8, 2-3=-115/68 (3-second gust) DL=6.0psf; h=25ft; C twelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 roof LL: Lum DOL=1 $P_{f}=15.4 \text{ psf}$ (Lum 1.0; Rough Cat C; Ct=1.10 r greater of min roof 1 troof load of 15.4 ps ther live loads. r a 10.0 psf bottom	8) I, 9) 10) LO Cat. e; d 50 .15 live f on	on the bottor 3-06-00 tall to chord and ar All bearings Refer to gird Bearing at jo using ANSI/ designer sho Provide mect 3 and 17 lb u This truss is International	has been designed in chord in all areas by 2-00-00 wide wi by other members, are assumed to be er(s) for truss to tr int(s) 6 considers j IPI 1 angle to grain uld verify capacity hanical connection e capable of withsta uplift at joint 4. designed in accord Residential Code ind referenced stan Standard	s where Il fit betw with BC SPF No suss con parallel t formula of bearin (by oth anding 1 dance w sections	a rectangle veen the bott DL = 10.0ps o.2. o grain value a. Building ng surface. ers) of truss i 18 lb uplift ai ith the 2018 R502.11.1 a	om f. to t joint		l	t	STATE OF I STATE OF I ANDE THOM JOHN PE-2017	AAS SON BER 018993

April 17,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 164953173
240654	J19	Jack-Open	3	1	Job Reference (optional)	

3-1-0

-0-10-8

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tuk Apr 16 602/30/2024 ID:?U?QMNzQa7nxJJ9nEPha4iy45Yw-RfC?PsB70Hq3NSgPqnL8w3uITXbG WrCDoi w4294f

Scale = 1:37.3

Plate Offsets (X, Y): [2:0-3-0,0-1-4]

												-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-S	0.22 0.12 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 0.02 -0.07	(loc) 7 7 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 Structural wood shea 3-1-0 oc purlins, exa Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 od nical, 5= Mechanica C 10) C 10)	6) ed or 7) 8) c II, 9) LO	on the bottor 3-06-00 tall to chord and ar All bearings Refer to gird Provide mec bearing plate 4. This truss is International	as been designe n chord in all are by 2-00-00 wide v ny other members are assumed to b ref(s) for truss to hanical connection e capable of withs designed in accco Residential Code and referenced star Standard	as where will fit betw s, with BC be SPF No truss con on (by oth standing 1 ordance w e sections	a rectangle veen the bott DL = 10.0ps 0.2. nections. ers) of truss i 32 lb uplift a ith the 2018 3802.11.1a	om f. to t joint					
	(LC 2)	,, (,,											
FORCES	(lb) - Maximum Com Tension	pression/iviaximum											
TOP CHORD	2-8=-189/0, 1-2=0/48 3-4=-97/115	3, 2-3=-120/41,											
BOT CHORD WEBS	7-8=0/0, 5-6=0/0 6-7=-21/56, 3-6=-18/	/65											
NOTES													100
 Vasd=91m II; Exp C; I cantilever right exposition TCLL: ASC Plate DOL DOL=1.15 Partially E: This truss load of 12. overhangs This truss 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 CE 7-16; Pr=25.0 psf (r =1.15); Pg=20.0 psf; F Plate DOL=1.15); Is= xp.; Ce=1.0; Cs=1.00; has been designed for 0 psf or 1.00 times flat a non-concurrent with c has been designed for load nonconcurrent wi	DL=6.0psf; h=25ft; C ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1. froof LL: Lum DOL=1 Pf=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10 : greater of min roof : roof load of 15.4 ps ther live loads. : a 10.0 psf bottom	ne; d 50 I.15 live if on							(STATE OF J THE OF J THOM JOHN PE-2017 PE-2017	REW MAS SON AMAS

•		•				00/00/000/
240654	J20	Jack-Open	1	1	Job Reference (optional	
Job	Truss	Truss Type	QIY	Fiy	LOUISTOR	DEVELOPMENT SERVICES 164953174
lah	Truco	Truco Turco	Qty	Plv	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
						RELEASE FOR CONSTRUCTION

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tu Apr 16 0082/30/219:224 ID:?03GU?OIZZ36qYIJEYIYSty45YO-RfC?PsB70Hq3NSgPqnL8w3ulTXbGK WrCDoi73-229?

Scale = 1:27.6

Plate Offsets (X, Y): [2:0-2-0,0-1-4]

	X, Y): [2:0-2-0,0-1-4]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-R	0.15 0.08 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.02	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 197/144 FT = 10%
LUMBER 5) * This truss has been designed for a live load of 20.0psf TOP CHORD 2x4 SPF No.2 on the bottom chord in all areas where a rectangle BOT CHORD 2x4 SPF No.2 3-06-00 tall by 2-00-00 wide will fit between the bottom WEBS 2x3 SPF No.2 6) BRACING 7) Refer to girder(s) for truss to truss connections. TOP CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. 7) BOT CHORD (size) 3 = Mechanical, 4= Mechanical, 5=0-3-8 Max Horiz 5=0-3-8 Max Horiz Max Grav 3=66 (LC 22), 4=44 (LC 18), 5=170 (LC 2) FORCES (b) - Maximum Compression/Maximum Tension													
TOP CHORD BOT CHORD NOTES	2-5=-150/0, 1-2=0/48 4-5=0/0	8, 2-3=-78/39											
 Wind: ASC Vasd=91m II; Exp C; E cantilever I right expos TCLL: ASC Plate DOL DOL=1.15 Partially E: This truss load of 12. overhangs This truss 	E 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6i CE 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F Plate DOL=1.15); Is= xp.; Ce=1.0; Cs=1.00; has been designed for 0 psf or 1.00 times flat non-concurrent with c has been designed for load nonconcurrent wi	DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 roof LL: Lum DOL=1 Pf=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10 · greater of min roof I roof load of 15.4 ps ther live loads. · a 10.0 psf bottom	e; 1 .0 .15 ive f on							l	*	NUM PE-2017	MAS ISON

April 17,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
240654	J21	Jack-Open	1	1	Job Reference (optional)	DEVELOPMENT SERVICES 164953175 LEE'S SUMMIT, MISSOURI
						00/00/000/

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tu Apr 16 100 3/30/2021 ID:El69N4VPSKBrPwx2GxzfJmy45YF-RfC?PsB70Hq3NSgPqnL8w3ulTXbGtWrCD0104293 130/2021

Scale = 1:31.1

Scale = 1:31.1												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.10 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 5 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 1-0-3 oc purlins, ex Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-8 Max Horiz 5=61 (LC Max Grav 3=23 (LC (LC 2) (lb) - Maximum Com Tension 2-5=-133/7, 1-2=0/4 4-5=0/0 E 7-16; Vult=115mph ph; TCDL=6.0psf; BC	cept end verticals. applied or 10-0-0 o anical, 4= Mechanica 7) 5 10), 4=-30 (LC 10) 8), 4=33 (LC 8), 5= apression/Maximum 8, 2-3=-49/15 (3-second gust) DL=6.0psf; h=25ft; 6	7) Refer to 8) Provide bearing 4 and 4 ed or 9) This true Internat c R802.10 LOAD CAS al, 146	ngs are assumed to girder(s) for truss to mechanical connecti plate capable of with Ib uplift at joint 3. is is designed in acco onal Residential Coo .2 and referenced st E(S) Standard	o truss con ion (by oth istanding 3 ordance w de sections	nections. ers) of truss 0 lb uplift at j ith the 2018 5 R502.11.1 a	joint				Weight: 5 lb	FT = 10%
 cantilever la right expos; 2) TCLL: ASC Plate DOL= DOL=1.15 Partially Ex 3) This truss f load of 12.0 overhangs 4) This truss f chord live la 5) * This truss on the botto 3-06-00 tall 	inclosed; MWFRS (er eft and right exposed ed; Lumber DOL=1.6; E 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F Plate DOL=1.15); Is= tp;; Ce=1.0; Cs=1.00; as been designed fo o psf or 1.00 times fla non-concurrent with as been designed fo oad nonconcurrent with the bas been designed fo om chord in all areas I by 2-00-00 wide will any other members, w	; end vertical left an 0 plate grip DOL=1. roof LL: Lum DOL=' ?e15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10 r greater of min roof t roof load of 15.4 ps ther live loads. r a 10.0 psf bottom th any other live loa or a live load of 20.0 where a rectangle fit between the bottot	d 60 1.15 flive sf on ds. Opsf om						l	Ø.	STATE OF AND THO JOIN PE-2017	BER 7018993

April 17,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
305	11033	Tuss Type	Quy	l' 'y	LUCISTON	DEVELOPMENT SERVICES 164953176
240654	J22	Diagonal Hip Girder	1	1	Job Reference (optional	

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tup Apr 16 160 3/30/20:24 ID:MWw0gKsDNYza0XEp0EVhX5y45Xn-RfC?PsB70Hq3NSgPqnL8w3uITXt GKWrCDer79JcA

Scale = 1:45

Plate Offsets ((X, Y): [2:0-2-0,0-1-8],	[5:Edge,0-2-8]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/T	PI2014	CSI TC BC WB Matrix-S	0.36 0.40 0.03	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.04 -0.08 -0.01 0.04	(loc) 7-8 7-8 5 7-8	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 28 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASG Vasd=91n II; Exp C; i cantilever	2x4 SPF No.2 2x4 SPF No.2 *Exce 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 8=167 (LC Max Uplift 5=-143 (L Max Grav 5=314 (LC (lb) - Maximum Com Tension 2-8=-387/145, 1-2=0 3-4=-56/39, 4-5=-94	athing directly applie cept end verticals. applied or 6-0-0 oc unical, 8=0-6-5 C 9), 8=-140 (LC 12) C 26), 8=470 (LC 29) upression/Maximum)/59, 2-3=-261/66, /26 34/113, 3-6=-144/10 (3-second gust) DL=6.0psf; h=25ft; C tyelope) exterior zon ; end vertical left and	2 3 7) / d or 8) F 8 10) T 10) T 11) " 12) 12) 12) 12) 10 11) " N 12) 12) 10 11) " N 12) 10 11) 12] 10 11] 12] 10 11] 12] 10 11] 12] 10 11] 12] 10] 12] 1	on the bottom 3-06-00 tall b chord and an All bearings a Refer to girdd Provide mech bearing plate 8 and 143 lb This truss is 6 nternational R802.10.2 ar NAILED" inc NDS guidline the LOAD of the truss a D CASE(S) Dead + Sno Increase=11. Uniform Loa Vert: 1-2= Concentrate	CASE(S) section, re noted as front (Standard ww (balanced): Lun 15	s where Il fit betw with BC SPF Ne uss con (by oth anding 1 dance w sections dard AN (8"x3.25 loads a F) or ba hber Inc	a rectangle veen the bott iDL = 10.0ps o.2. nections. ers) of truss 40 lb uplift a ith the 2018 is R502.11.1 a ISI/TPI 1. ") toe-nails p oplied to the ck (B). rease=1.15, 6=-20	om f. to t joint and wer face				THE OF I	MISSOUL
 TCLL: ASI Plate DOL DOL=1.15 Partially E Unbalance design. This truss load of 12 overhange This truss 	CE 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F i Plate DOL=1.15); Is= ixp.; Ce=1.0; Cs=1.00; ed snow loads have be has been designed foi .0 psf or 1.00 times flat s non-concurrent with of has been designed foi load nonconcurrent with	roof LL: Lum DOL=1 Pf=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10 r greater of min roof I t roof load of 15.4 ps ther live loads. r a 10.0 psf bottom	.15 is ive f on							l		NUM PE-2017	BER 018993

April 17,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Truss Type		Ply	Lot 13 TCR	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 164953177
240654	К1	Common	Supported Gable	3	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Wa	verly, KS - 66871,		Run: 8.73 S Ap ID:_A_no?GKz	or 3 2024 Print: 8 rDjRpY6soCO24	3.730 S Apr y6jdn-RfC?P	3 2024 MiTek Industries, Inc. Tu PsB70Hq3NSgPqnL8w3uITXbGK	Apr 16 0083/30/2024
		-0-10-8 	<u>10-0-0</u> 10-0-0		<u>20-</u> 10-		
				3x4=			

20-	-0-0

Н

Plate Offsets (X, Y): [7:0-2-0,Edge],	, [14:Edge,0-1-8]										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 25.0 15.4/20.0 10.0 10.0*	Plate Grip DOL1Lumber DOL1Rep Stress IncrY	-0-0 15 15 ES RC2018/TPI2014	CSI TC BC WB Matrix-R	0.24 0.26 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0										Weight: 113 I	0 FI = 10%
	6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 14=20-0-(20=20-0-(24=20-0-(Max Horiz 24=-327 (14=-139 (16=-241 (L 20=-191 (16=257 (L 16=209 (L 20=209 (L 23=326 (L)	r applied or 10-0-0 oc 8-18, 6-19 0, 15=20-0-0, 16=20-0-0 0, 18=20-0-0, 19=20-0-0 0, 12=20-0-0, 23=20-0-0 0 (LC 9), 15=-381 (LC 11), (LC 10), 22=-41 (LC 10), (LC 10), 22=-41 (LC 10), (LC 10), 22=-41 (LC 10), (LC 10), 22=-41 (LC 23), LC 25), 15=322 (LC 23), LC 23), 19=404 (LC 22), LC 22), 24=425 (LC 24)	 this design. Wind: ASC: Vasd=91mj II; Exp C; E cantilever le right expose. Truss desi only. For s see Standa or consult of Plate DOL= DOL=1.15 Partially Ex. This truss h load of 12.0 overhangs All plates au 7) Gable requi 	8-18=-183/24, 9-1 10-16=-155/99, 1 6-19=-190/33, 5-2 3-23=-186/275 d roof live loads ha E 7-16; Vult=115m sh; TCDL=6.0psf; E nclosed; MWFRS oft and right expose df to wind loads uds exposed to wird loadstry Gable F ualified building de E 7-16; Pr=25.0 ps 1.15); Pg=20.0 psi Plate DOL=1.15); I p.; Ce=1.0; Cs=1.0; as been designed psf or 1.00 times non-concurrent wit e 2x4 MT20 unles res continuous bot fully sheathed from	1-15=-18 10=-149/1 ve been ph (3-sec 3CDL=6. (envelope ed; end v 1.60 plate s in the p nd (norm End Deta signer a: f(roof Ll f; Pf=15.4 s=1.0; Re 00; Ct=1.1 for great flat roof lu h other lir s otherwi tom choi	4/274, 199, 4-22=-154 considered for cond gust) Opsf; h=25ft; C e) exterior zon vertical left an or grip DOL=1.6 lane of the tru la to the face) lis as applicat s per ANSI/TF .: Lum DOL=1 d psf (Lum DOL=1 d psf (Lum DOL=1 ough Cat C; 10 er of min roof oad of 15.4 ps ve loads. se indicated. d bearing.	Cat. le; d S0 ss , le, l11. .15	bea 14, upli join 23. 14) This Inte	aring pla 149 lb u ift at join it 20, 41 s truss is ernationa 02.10.2	te capa iplift at t 16, 3 Ib uplif s desig al Resid and ref	able of withstan joint 24, 193 lb 81 lb uplift at joi ft at joint 22 and gned in accorda dential Code se ferenced standa ndard	by others) of truss to ding 139 lb uplift at joint uplift at joint 17, 41 lb int 15, 191 lb uplift at 3 84 lb uplift at joint nce with the 2018 ctions R502.11.1 and ard ANSI/TPI 1.
FORCES	,	' 3=-131/100, =-163/86, 10-11=-211/11	9) Gable stude 8 10) This truss h	inst lateral movem s spaced at 2-0-0 c as been designed	oc. for a 10.	0 psf bottom				A.	THC	DREW DMAS SDN
BOT CHORD	,	215/126, 4-5=-169/94, 131/102, 2-24=-313/110 -23=-162/292, -20=-162/292, -18=-162/292,	 chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 12) All bearings are assumed to be SPF No.2. 								7018993 10 H	

April 17,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITEk-US.com

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
						DEVELOPMENT SERVICES 164953178
240654	K2	Common	7	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tu Apr 16 10083/30/219:24 ID:SMY90LHyk8La3z6IQVjdbly6jdm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKVrCDoi734293/30/219:24

Scale = 1:70.2

Plate Offsets (X, Y):	[2:0-2-12,0-1-8],	[6:0-2-12,0-1-8]
-----------------------	-------------------	------------------

	,, ,, ,, [2:0 2 12,0 1 0	1) La				-							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0 2x4 SPF No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201		CSI TC BC WB Matrix-S as been designed psf or 1.00 times			f live	(loc) 9-10 9-10 8 10-11	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 103 lb	GRIP 197/144 FT = 10%
BOT CHORD WEBS	2x4 SPF No.2 2x3 SPF No.2 *Exce SPF No.2	pt* 12-2,8-6,10-4:2x		This truss ha	on-concurrent wi as been designed ad nonconcurren	d for a 10.0 It with any) psf bottom other live loa						
BRACING TOP CHORD	Structural wood she 5-10-8 oc purlins, e		6) ed or	on the botto 3-06-00 tall	nas been designe m chord in all are by 2-00-00 wide v	eas where will fit betv	a rectangle veen the bott	tom					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	; 7) 8)	All bearings	ny other member are assumed to l	be SPF No	o.2 .						
	(size) 8=0-3-8, 1 Max Horiz 12=-327 (Max Uplift 8=-93 (LC Max Grav 8=981 (LC	LC 8) : 11), 12=-93 (LC 10)) 9)	 bearing plate capable of withstanding 93 lb uplift at joint 12 and 93 lb uplift at joint 8. This truss is designed in accordance with the 2018 									
FORCES	(lb) - Maximum Com	,,	5)	International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.									
TOP CHORD	Tension 1-2=0/51, 2-3=-961/ 4-5=-735/247, 5-6=- 2-12=-908/120, 6-8=	961/154, 6-7=0/51,	L	OAD CASE(S)	Standard								
BOT CHORD	11-12=-314/386, 10- 9-10=0/649, 8-9=-76	,											
WEBS	2-11=0/551, 6-9=0/5 5-9=0/142, 3-10=-37 5-10=-371/245	56, 3-11=0/142,	06,									TATE OF M	AISS
 this design Wind: ASC Vasd=91mm II; Exp C; E cantilever I right expos TCLL: ASC Plate DOL: DOL=1.15 	ed roof live loads have DE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6; CE 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F Plate DOL=1.15); Is= xp.; Ce=1.0; Cs=1.00;	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 roof LL: Lum DOL=1 Pf=15.4 psf (Lum 1.0; Rough Cat C;	Cat. ie; d 60							(ai	ANDA THOM JOHN PE-2017 PE-2017	AS ON BER 018993

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) April 17,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
305	11055	Thuss Type	Quy	гіу	LUCISTOR	DEVELOPMENT SERVICES 164953179
240654	K3	Common	7	1	Job Reference (optional	

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tus Apr 16 6023/30/20:24 ID:qg_Bv6MPYohpso?biPKkEGy6jcM-RfC?PsB70Hq3NSgPqnL8w3uITXbGi WrCDoi

|--|

Plate Offsets (X, Y):	[2:0-2-12,0-1-8], [6:0-2-12,0-1-8]
-----------------------	------------------------------------

	A, T). [2.0-2-12,0-1-0], [0.0 2 12,0 1 0]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.32 0.26 0.56	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.03 -0.05 0.01 0.02	(loc) 8-9 9-10 7 9-10	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 101 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	No.2 Structural wood shea 5-8-10 oc purlins, ex	applied or 10-0-0 oc 11=0-3-8 .C 7) : 10), 11=-93 (LC 10)	6 d or 7 8	load of 12.0 overhangs n) This truss ha chord live loa) * This truss h on the bottor 3-06-00 tall b chord and ar) All bearings) Provide mec bearing plate 11 and 88 lb) This truss is	is been designed psf or 1.00 times i on-concurrent with s been designed ad nonconcurrent nas been designe n chord in all area by 2-00-00 wide w by other members are assumed to b hanical connectio o capable of withs uplift at joint 7. designed in accol Residential Code	flat roof I h other li for a 10. with any d for a liv as where rill fit betw with BC e SPF N n (by oth tanding s rdance w	bad of 15.4 p ve loads.) psf bottom other live load e load of 20. a rectangle veen the bott DL = 10.0ps 5.2. ers) of truss 3 lb uplift at ith the 2018	ads. Opsf tom if. to joint					
FORCES	(lb) - Maximum Com Tension		,	R802.10.2 a	nd referenced sta			and					
TOP CHORD	1-2=0/51, 2-3=-963/	153, 3-4=-737/247, 962/150, 2-11=-910/1		OAD CASE(S)	Standard								
BOT CHORD	10-11=-324/369, 9-1 7-8=-59/103	0=-117/748, 8-9=-13/	/641,										
WEBS	2-10=0/553, 6-8=-2/5 3-9=-371/245, 4-9=-2 5-8=-4/140	566, 3-10=0/142, 213/612, 5-9=-379/24	47,									OF M	AISSO
 this design Wind: ASC Vasd=91m II; Exp C; I cantilever right expos TCLL: ASC Plate DOL DOL=1.15 	ed roof live loads have CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 CE 7-16; Pr=25.0 psf; F Plate DOL=1.15); Is=: xp.; Ce=1.0; Cs=1.00;	(3-second gust) DL=6.0psf; h=25ft; Ca velope) exterior zone ; end vertical left and 0 plate grip DOL=1.60 roof LL: Lum DOL=1. Pf=15.4 psf (Lum 1.0; Rough Cat C;	e; 0							(ANDR THOM JOINT PE-20170 PE-20170	EW PH

April 17,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
000	11000			,	Lot 10 FOR	DEVELOPMENT SERVICES 164953180
240654	L1	Monopitch	2	1	Job Reference (optional	
	•					00/00/000/

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tup Apr 16 6023/30/2024 ID:xY5XDhHaVSTRh7hU_DEs7Vy6jdI-RfC?PsB70Hq3NSgPqnL8w3uITXbG WrCDoite4224f

Scale = 1:79.8

Plate Offsets (X, Y): [2:0-2-8,Edge], [9:0-2-7,Edge], [14:0-1-7,Edge]

	[2.0 2 0,Edg0],	, [9.0-2-7,Euge], [14.0	-1-7,Ľuge	-1									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.50 0.34 0.93	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.14 -0.25 0.48 0.21	(loc) 13 13-14 9 13	l/defl >999 >601 n/a >697	L/d 360 240 n/a 240	PLATES MT20 Weight: 95 lb	GRIP 197/144 FT = 10%
BOT CHORD 2x4 S WEBS 2x3 S OTHERS 2x4 S BRACING 5truc 3-2-6 BOT CHORD Rigid WEBS 1 Roo JOINTS 1 Bra	SPF No.2 stural wood she coc purlins, ex ceiling directly ng.	ept* 8-9:2x4 SPF No.2 athing directly applied cept end verticals. applied or 5-7-2 oc 8-9, 7-17	3)	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 P Partially Exp This truss ha load of 12.0 overhangs n Truss to be f	ned for wind loads uds exposed to wind d Industry Gable E alified building des 7-16; Pr=25.0 psf, 1.15); Pg=20.0 psf, late DOL=1.15); Is ;; Ce=1.0; Cs=1.00 us been designed fi psf or 1.00 times fl on-concurrent with ully sheathed from ust lateral moveme	d (norm nd Deta signer as (roof Ll Pf=15.4 =1.0; Rc 0; Ct=1. or great at roof le other lin one fac	al to the face ils as applica s per ANSI/T :: Lum DOL= 4 psf (Lum ough Cat C; 10 er of min roo bad of 15.4 p we loads. the or securely	e), able, PI 1. -1.15 f live osf on					
Max U Max G		_C 10)	8)	 6) Gable studs spaced at 2-0-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom 									
Tensi TOP CHORD 2-14= 3-4=-	ion =-861/451, 1-2= ·1059/357, 4-5=	=0/48, 2-3=-2513/112 =-905/277, 5-6=-240/5 1/78, 8-9=-114/80	, -,	chord and ar All bearings Bearing at jo	ny other members, are assumed to be int(s) 14, 9 conside IPI 1 angle to grain	with BC SPF Ne ers para	DL = 10.0ps 5.2 . Ilel to grain v	if.					~
BOT CHORD 13-14 11-12	4=-872/533, 12	-13=-1103/1682, 0-11=-710/1202,	11	designer sho) Provide mec	ould verify capacity hanical connection	of bear (by oth	ing surface. ers) of truss					STATE OF M	MISSO
WEBS 2-13= 3-15= 5-12= 16-17 4-15=	=-705/1813, 3-1 =-1197/852, 12 =-971/1576, 5-1 7=-1468/874, 9 =-123/163, 6-16 =-134/141, 10-1	-15=-1097/777, 16=-1429/850, -17=-1585/941, 3=-16/55, 11-16=0/64 17=-14/62		9.) This truss is International	e capable of withsta designed in accord Residential Code nd referenced stan Standard	dance w sections	ith the 2018 R502.11.1 a			l		ANDE THOM JOHN NUMI PE-2017	BER SON

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

April 17,2024

EL

SSIONAL

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
000	11000		Qiy	,		DEVELOPMENT SERVICES I64953181
240654	L2	Monopitch	6	1	Job Reference (optional	LEFTE CUMMIT MICCOURT

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tu Apr 16 6093/30/20224 ID:xY5XDhHaVSTRh7hU_DEs7Vy6jdl-RfC?PsB70Hq3NSgPqnL8w3ulTXbG WrCDonv42011

Scale = 1:76.9

Plate Offsets (X, Y): [2:0-2-8,Edge], [6:0-2-7,Edge], [9:0-1-7,Edge]

	() () () () () () () () () ()	[6:0-2-7,Edge], [9:0-1	,	1									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁷	8/TPI2014	CSI TC BC WB Matrix-S	0.52 0.43 0.89	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.14 -0.25 0.47 0.21	(loc) 8-9 8-9 6 8	l/defl >999 >605 n/a >713	L/d 360 240 n/a 240	PLATES MT20 Weight: 79 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x3 SPF No.2 *Exce Structural wood she 3-1-13 oc purlins, e Rigid ceiling directly bracing. 1 Row at midpt	applied or 5-7-9 oc 5-6, 4-6 9=0-3-8 C 10) C 10)	0	 chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings Bearing at jo using ANSI/7 designer shot Provide mec bearing plate 6. This truss is International 	s been designed id nonconcurrent ias been designe in chord in all area y 2-00-00 wide w y other members are assumed to b int(s) 9, 6 conside 'PI 1 angle to gra uld verify capacit nanical connectio capable of withs designed in accoo Residential Code	with any d for a liv as where vill fit betw , with BC e SPF No ers parallu in formula y of bearin n (by oth tanding 4 rdance w e sections	other live loze e load of 20. a rectangle veen the bott DL = 10.0ps 5.2. el to grain va a. Building ng surface. ers) of truss 09 lb uplift ar ith the 2018 R502.11.1 a	Opsf com f. lue to t joint					
FORCES	(lb) - Maximum Com		L	R802.10.2 a OAD CASE(S)	nd referenced sta Standard	ndard AN	ISI/TPI 1.						
TOP CHORD BOT CHORD	3-4=-999/305, 4-5=-)/48, 2-3=-2494/1102, 199/126, 5-6=-185/16 1086/1667,											
WEBS	6-7=-745/1275 2-8=-679/1787, 3-8= 3-7=-1099/761, 4-7= 4-6=-1555/942											THE OF L	MISS
NOTES											1	750	-00, W
 Wind: AS Vasd=91r II; Exp C; cantilever exposed; TCLL: AS Plate DOI DOL=1.1! Partially E This truss 	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed Lumber DOL=1.60 plat SCE 7-16; Pr=25.0 psf (L=1.15); Pg=20.0 psf; F 5 Plate DOL=1.15); Is= Exp.; Ce=1.0; Cs=1.00; a has been designed foi 2.0 psf or 1.00 times flat	DL=6.0psf; h=25ft; Ca velope) exterior zone ; end vertical left te grip DOL=1.60 roof LL: Lum DOL=1. /f=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10 · greater of min roof liv	; 15 ve							ζ		ANDI THOM JOHN NUM PE-2017	KAS Monthing

This truss has been designed for greater of min roof live 3) load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 17,2024

					RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty P	Ply Lot 13 TCR	AS NOTED FOR PLAN REVIEW
				,	DEVELOPMENT SERVICES 164953182
240654	L3	Monopitch	6 1	Job Reference (option	al LEE'S SUMMIT, MISSOURI

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tue Apr 16 16004/30/2024 ID:qg_Bv6MPYohpso?biPKkEGy6jcM-RfC?PsB70Hq3NSgPqnL8w3ulTXb6H WrCDoi 94294

Scale = 1:81.3 Plate Offsets (X, Y): [1:Edge,0-2-7], [5:0-2-7,Edge], [8:0-1-7,Edge]

	, f). [1.Euge,0-2-7],						555		(1)			DI 4750	
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		TC	0.74	DEFL Vert(LL)	in -0.14	(loc) 7	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.74	Vert(CT)	-0.14	7-8	>593	240	101120	137/144
TCDL	10.4/20.0	Rep Stress Incr	YES		WB	0.99	Horz(CT)	0.48	5	n/a	n/a		
BCLL	10.0*	Code		8/TPI2014	Matrix-S	0.00	Wind(LL)	0.21	7	>698	240		
BCDL	10.0											Weight: 78 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce	•	5) 6)	on the bottor 3-06-00 tall t chord and ar All bearings Bearing at jo	has been designe n chord in all are by 2-00-00 wide v by other members are assumed to b int(s) 8, 5 consid (PI 1 angle to gra	as where will fit betw s, with BC be SPF No lers paralle	a rectangle veen the bott DL = 10.0ps b.2. el to grain va	om f.					
TOP CHORD	Structural wood she 2-2-0 oc purlins, exe	cept end verticals.		designer sho	uld verify capaci	ty of beari	ng surface.						
BOT CHORD	Rigid ceiling directly bracing.	applied or 5-7-5 oc	()	bearing plate	hanical connection capable of withs								
WEBS		4-5, 3-5	8)	5.	designed in acco								
	(size) 5=0-3-8, 8 Max Horiz 8=491 (LC Max Uplift 5=-407 (L Max Grav 5=728 (LC	C 10) C 10)	.,	International	Residential Code	e sections	R502.11.1 a	and					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-8=-762/384, 1-2=- 2-3=-1014/309, 3-4=	,	/162										
BOT CHORD	7-8=-807/485, 6-7=- 5-6=-741/1279		102										
WEBS	5-6=-74171279 1-7=-751/1873, 2-7= 2-6=-1132/773, 3-6= 3-5=-1560/937	,										TATE OF I	MISS
NOTES											A	PAT	N'SON
Vasd=91m II; Exp C; E cantilever I exposed; L 2) TCLL: ASC Plate DOL:	E 7-16; Vult=115mph hph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed .umber DOL=1.60 plat CE 7-16; Pr=25.0 psf; Plate DOL=1.15); Is=	DL=6.0psf; h=25ft; (avelope) exterior zor ; end vertical left te grip DOL=1.60 roof LL: Lum DOL=1 2f=15.4 psf (Lum	ne;							l		ANDI THOM JOIN NUM PE-2017	MAS SON +

DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 This truss has been designed for a 10.0 psf bottom 3)

chord live load nonconcurrent with any other live loads.

April 17,2024

ESSIONAL ET

tran

										E FOR CONSTRUCTION
Job	Truss		Truss Type				Lot 13 TCR	२		LOPMENT SERVICES 164953183
40654	LAY	1	Lay-In Gable		ľ			ence (optiona	al LEE'S	S SUMMIT, MISSOURI
heeler Lumber,	r, Waverly, KS - 66871,			Run: 8.73 S Apr 3	32024 Print: 8.73	0 S Apr 3 20	24 MiTek In 70Ha3NSaF	Justries, Inc. T	Fue Apr 16 160024 G (WrCDoir 4232.1f	30/2024
				15.2107511147011		jui trio i i obr	onquitogr	1120Woull Abo		
			F	3-10-12		7-6-		7-9-8		
			I	3-10-12	I	3-7-1	11	0-3-1		
					4x5 =					
					3					
			-							
						$\langle \rangle$				
		4		2x4 II		// :	2x4 II			
		4-4-8 4-0-14		2			4			
		4 1	12	<u>,</u> / Ø		Y	,B,			
			12 13.42 Г					<.		
			— + 1,					5		
			لمحما	2x4 <i>y</i> 8	7	<u> </u>	<u>6</u>	2x4 💊		
				2x4 II	2x4 u	5	2x4 II	•		
			F		7-9-8					
Scale = 1:34.4				1						
L oading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.06 Vert(Ll			l/defl L/c n/a 999		GRIP 197/144
Snow (Pf/Pg) TCDL	15.4/20.0 10.0	Lumber DOL Rep Stress Incr	1.15 YES	BC	0.03 Vert(T 0.03 Horiz(ΓL) n/a	′a -	n/a 999 n/a n/a	9	-
BCLL	10.0*		IRC2018/TPI2014	Matrix-P	0.03	1L)) _	11/G		
BCDL	10.0								Weight: 29 lb	FT = 10%
LUMBER TOP CHORD			Plate DOL=1	E 7-16; Pr=25.0 psf (i 1.15); Pg=20.0 psf; P	Pf=15.4 psf (Lu	um				
BOT CHORD OTHERS	2x4 SPF No.2 2x4 SPF No.2		Partially Exp	Plate DOL=1.15);	; Ct=1.10					
BRACING TOP CHORD		neathing directly applie	ed or 6) Gable studs	res continuous bottor s spaced at 2-0-0 oc.		-				
	6-0-0 oc purlins.	tly applied or 10-0-0 oc	7) This truss ha	as been designed for bad nonconcurrent wit	or a 10.0 psf bot					
	bracing.		8) * This truss h	has been designed for om chord in all areas	for a live load o	of 20.0psf				
REACTIONS	8=7-9-8		⁼⁷⁻⁹⁻⁸ , 3-06-00 tall t	by 2-00-00 wide will than a reas	fit between the	e bottom				
		LC 6), 5=-10 (LC 7), 6=	9) All bearings	any other members, w are assumed to be S chanical connection (SPF No.2 .	•				
	. (LC 11),	, 8=-154 (LC 10) LC 23), 5=100 (LC 24)	bearing plate	te capable of withstar	nding 27 lb upli	lift at joint				
		LC 22), 7=152 (LC 24)	uplift at joint							
FORCES	(lb) - Maximum Cor	ompression/Maximum	International	s designed in accorda al Residential Code se	sections R502.1	11.1 and				
TOP CHORD		-101/79, 3-4=-92/64,	R802.10.2 a LOAD CASE(S)	and referenced stand	ard ANSI/TPI	1.				
BOT CHORD	4-5=-106/69 1-8=-45/94, 7-8=-4	45/94, 6-7=-45/94,								
WEBS	5-6=-45/94 3-7=-82/0, 2-8=-18	89/178, 4-6=-189/178							500	1000
NOTES		ve been considered for	-						FEOF	MISSO
this design.	۱.							1	STATE OF I	N N
Vasd=91m		BCDL=6.0psf; h=25ft; C						Å	THON	MAS Y
cantilever le	left and right exposed	envelope) exterior zone ed; end vertical left and	d							SON ALLE
Truss desi	signed for wind loads	.60 plate grip DOL=1.6 in the plane of the true	ISS					C C C	NUM	
only. For s	studs exposed to win	nd (normal to the face), End Details as applicab),					Ŷ	PE-2017	018993
		signer as per ANSI/TP							ESSIONA	ENGLE
									NA	L
										il 17,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEX REFERENCE PAGE MIL-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

3x4 🍫

		F			19-9-11							
Scale = 1:61.7 Plate Offsets	(X, Y): [13:Edge,0-2-	8], [14:Edge,0-2-8]										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 25.0 20.4/20.0 10.0 10.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.42 0.10 0.13	Vert(TL)	in n/a n/a 0.00	-	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0				-						Weight: 116 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x3 SPF No.2 2x4 SPF No.2 Structural wood sh 6-0-0 oc purlins, e 2-0-0 oc purlins (6- Rigid ceiling directl bracing. 1 Row at midpt	eathing directly appliec xcept end verticals, an 0-0 max.): 12-13. y applied or 10-0-0 oc 9-18, 8-19, 10-16 11, 14=19-9-11,		1-2=-351/265, 2-3 4-5=-256/202, 5-6 8-9=-192/180, 9-1 10-11=-146/123, 12-13=-98/74, 13 1-24=-98/75, 23-2 21-22=-98/75, 20 18-19=-98/75, 16 14-15=-98/75 9-18=-187/150, 8 6-20=-145/101, 5 3-23=-143/96, 2-2 10-16=-159/102,	5=-235/19 10=-174/1 11-12=-1 -14=-70/6 24=-98/75 -21=-98/7 -18=-98/7 -18=-98/7 -18=-98/7 -19=-161, -21=-148, 24=-167/1	16, 6-8=-218, 63, 24/93, 52 5, 22-23=-98, 5, 19-20=-9, 75, 15-16=-9, 796, 798, 4-22=-1, 08,	/194, /75, 8/75, 8/75,	on 1 3-0 cho 11) All 1 12) Pro bea 14, upli 21, upli join 13) This	the bott 6-00 tall ord and a bearing vide me aring pla 101 lb u ift at join 75 lb up ift at join t 15. s truss is	om cho by 2-0 any oth s are as chanic te capa uplift at t 19, 74 olift at ju t 24, 84 s desig	ord in all areas wh 20-00 wide will fit lear members, with ssumed to be SF al connection (by able of withstand i joint 1, 107 lb up 8 lb uplift at joint ioint 22, 71 lb uplift 4 lb uplift at joint gned in accordance	between the bottom h BCDL = 10.0psf. PF No.2. / y others) of truss to ing 9 lb uplift at joint blift at joint 18, 71 lb 20, 74 lb uplift at join ift at joint 23, 86 lb 16 and 70 lb uplift at ce with the 2018
REACTIONS	15=19-9 18=19-9 20=19-9 22=19-9 24=19-9 Max Horiz 1=355 (L Max Uplift 1=-101 (15=-70 (18=-107 (22=-75 (24=-86 (Max Grav 1=201 (L 15=230 (18=244) 20=215 (-11, 16=19-9-11, -11, 19=19-9-11, -11, 21=19-9-11, -11, 23=19-9-11, -11, 23=19-9-11, -11 -C 7) LC 8), 14=-9 (LC 7), LC 6), 16=-84 (LC 11), (LC 9), 19=-71 (LC 10 LC 10), 21=-74 (LC 10	 this design 2) Wind: ASC Vasd=91n II; Exp C; I cantilever right exposion 3) Truss des only. For is, see Stand or consult 4) TCLL: ASC 2), DOL=1.15 Partially E 1), DOL=1.19 	ed roof live loads ha CE 7-16; Vult=115m nph; TCDL=6.0psf; I Enclosed; MWFRS left and right exposi- sed; Lumber DOL=' igned for wind load studs exposed to wi ard Industry Gable qualified building de CE 7-16; Pr=25.0 ps =1.15); Pg=20.0 ps Plate DOL=1.15); I xp.; Ce=1.0; Cs=1.0; lequate drainage to	aph (3-see BCDL=6. (envelope ed ; end 1 1.60 plate s in the p ind (norm End Deta esigner a: sf (roof LL f; Pf=20.4 Is=1.0; R(00; Ct=1.	cond gust) Opsf; h=25ft; a) exterior zc; vertical left ai grip DOL=1 lane of the tr al to the facc; ils as applic; s per ANSI/T :: Lum DOL= bpsf (Lum Dugh Cat C; 10, Lu=50-0-	Cat. one; nd .60 russ e), able, FPI 1. =1.15	R80 14) Gra or t	02.10.2 aphical p he orien tom cho	and ref ourlin re tation o rd. () Sta	ferenced standar epresentation doe of the purlin alon	es not depict the size g the top and/or

All plates are 2x4 MT20 unless otherwise indicated.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Gable requires continuous bottom chord bearing.

Gable studs spaced at 2-0-0 oc.

24=252 (LC 21) FORCES (lb) - Maximum Compression/Maximum Tension

22=220 (LC 21), 23=209 (LC 21),

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

6)

7)

8)

9)

PL PL SSIONAL April 17,2024 16023 Swingley Ridge Rd.

Chesterfield MO 63017 314.434.1200 / MiTek-US.com

E

NUMBER

PE-2017018993

3x4 u

3x4=

										RELEASE	FOR CONSTRUCTION	
Job	Truss		Truss Type		Qty	Ply	Lc	ot 13 TCR			ED FOR PLAN REVIEW OPMENT SERVICES 164953185]
240654	LAY3		Lay-In Gable		1	1	Jc	b Referer	nce (optional		I64953185 SUMMIT, MISSOURI	
Vheeler Lumber, \	Waverly, KS - 66871,		-	Run: 8.73 S Apr ID:PlfvR1ICGmbl	3 2024 Pr IHGhYwl5	int: 8.730 S A gjy6jdk-RfC?I					30/2024	•
			 	17-1	0-11				ł			
3x10 ။ 9												
		 0-0-4	8.49 ¹² 1 3x4 = 17	4 3 16 15	5	6 7 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	x6 ≠ 8		F-8-21			
			 	17-1	0-11				1			
Scale = 1:67.3 Plate Offsets (X,	, Y): [9:0-4-10,Edge]	1. [10:Edge,0-3-8]										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 25.0 15.4/20.0 10.0 10.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.29	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 10	l/defl L/d n/a 999 n/a 999 n/a n/a	MT20	GRIP 197/144	-
BOT CHORD WEBS OTHERS BRACING TOP CHORD	10.0 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF 2400F 2.0E 2x4 SPF No.2 Structural wood shea 6-0-0 oc purlins, exc	athing directly applie	NOTES 1) Wind: ASCE Vasd=91mpł ed or II; Exp C; En	2-17=-228/147, 3-1 4-15=-155/102, 5-1 7-12=-136/117, 8-1 57-16; Vult=115mpl h; TCDL=6.0psf; B0 nclosed; MWFRS (ef t and right exposed	14=-146/9 11=-204/1 oh (3-seco CDL=6.0 envelope)	98, 6-13=-15 130 pnd gust) psf; h=25ft;) exterior zo	Cat.			Weight: 108 lb	FT = 10%	

BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc								
	bracing.								
WEBS	1 Row at	midpt 9-10, 7-12, 8-11							
REACTIONS	(size)	1=17-10-11, 10=17-10-11,							
		11=17-10-11, 12=17-10-11,							
		13=17-10-11, 14=17-10-11,							
		15=17-10-11, 16=17-10-11,							
		17=17-10-11							
	Max Horiz	1=488 (LC 7)							
	Max Uplift	1=-90 (LC 8), 10=-113 (LC 9),							
	-	11=-97 (LC 10), 12=-63 (LC 10),							
		13=-80 (LC 10), 14=-72 (LC 10),							
		15=-78 (LC 10), 16=-59 (LC 10),							
		17=-119 (LC 10)							
	Max Grav	1=268 (LC 22), 10=136 (LC 21),							
		11=247 (LC 21), 12=215 (LC 21),							
		13=218 (LC 21), 14=216 (LC 21),							
		15=230 (LC 21), 16=170 (LC 21),							
		17=349 (LC 21)							
FORCES	(lb) - Max	imum Compression/Maximum							
	Tension								

TOP CHORD 1-2=-452/296, 2-3=-392/244, 3-4=-356/228, 4-5=-315/201, 5-6=-295/186, 6-8=-270/187, 8-9=-174/122, 9-10=-73/36 BOT CHORD 1-17=-175/133, 16-17=-175/133, 15-16=-175/133, 14-15=-175/133, 13-14=-175/133, 12-13=-175/133,

right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum

- DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 All plates are 2x4 MT20 unless otherwise indicated. 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 2-0-0 oc.
- 6)
- This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) All bearings are assumed to be SPF No.2 .
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 113 lb uplift at joint 10, 90 lb uplift at joint 1, 119 lb uplift at joint 17, 59 lb uplift at joint 16, 78 lb uplift at joint 15, 72 lb uplift at joint 14, 80 lb uplift at joint 13, 63 lb uplift at joint 12 and 97 lb uplift at joint 11.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

April 17,2024

						RELEASE FOR CONSTRUCTION	
Job	Truss	Truss Type	Qty	Plv	Lot 13 TCR	AS NOTED FOR PLAN REVIEW	
000			<u> </u>	,		DEVELOPMENT SERVICES I64953186	
240654	LAY4	Lay-In Gable	1	1	Job Reference (optional		
			-	-			

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tus Apr 16 6084/30/20:24 ID:PlfvR1ICGmbIIHGhYwl5gjy6jdk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWcDoi7J42674/30/20:24

SSIONAL EN

April 17,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Scale = 1:71

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP			
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.05	Vert(LL)	n/a	-	n/a	999	MT20	197/144			
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.02	Vert(TL)	n/a	-	n/a	999					
TCDL	10.0	Rep Stress Incr	YES		WB	0.15	Horiz(TL)	0.00	8	n/a	n/a					
BCLL	10.0*	Code	IRC201	8/TPI2014	Matrix-S											
BCDL	10.0		_									Weight: 100 lb	FT = 10%			
LUMBER TOP CHORD	2x4 SPF 2100F 1.8E	:	1)		7-16; Vult=115mph n; TCDL=6.0psf; BC			Cat.								
BOT CHORD	2x4 SPF 2400F 2.0E				closed; MWFRS (e											
WEBS		*Except* 7-8:2x4 SP	F	cantilever left and right exposed ; Lumber DOL=1.60												
	No.2, 13-1:2x3 SPF			plate grip DOL=1.60												
OTHERS	2x4 SPF No.2		2)	,												
BRACING					ids exposed to wind											
TOP CHORD		athing directly applied	or		d Industry Gable Er											
	6-0-0 oc purlins, ex		2)		alified building desi											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	3)	 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum 												
	bracing.	7000540444		DOL=1.15 Plate $DOL=1.15$; Is=1.0; Rough Cat C;												
WEBS		7-8, 6-9, 5-10, 4-11			.; Ce=1.0; Cs=1.00											
REACTIONS		9=12-0-6, 10=12-0-6		All plates are 2x4 MT20 unless otherwise indicated.												
	11=12-0-6	6, 12=12-0-6, 13=12-0	^{-6,} 5)	 5) Gable requires continuous bottom chord bearing. 												
	Max Horiz 14=339 (L		6)		ully sheathed from											
	Max Uplift 8=-25 (LC	,			st lateral movemer		iagonal web)	•								
		C 10), 11=-65 (LC 10),) 7)		spaced at 2-0-0 oc.											
		C 10), 13=-601 (LC 1)		8) This truss has been designed for a 10.0 psf bottom												
	14=-198 (chord live load nonconcurrent with any other live loads.													
	Max Grav 8=64 (LC 21), 9=208 (LC 21),				9) * This truss has been designed for a live load of 20.0psf											
	10=196 (L	.C 21), 11=194 (LC 2	1),	on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom												
	12=203 (L	C 21), 13=429 (LC 2	1),													
	14=700 (L	.C 10)	10	chord and any other members, with BCDL = 10.0psf. 10) All bearings are assumed to be SPF No.2.									100			
FORCES	(lb) - Maximum Com	pression/Maximum			hanical connection			0				8. OF M	ALCON NICON			
	Tension				capable of withsta							TATE OF M	1080.1			
TOP CHORD 1-14=-683/220, 1-2=-380/151, 2-3=-289/111, 14, 25 lb uplift at joint 8, 601 lb uplift at joint 13, 71 lb								Ś			6	N	Nor			
	3-4=-221/90, 4-5=-1			uplift at joint 12, 66 lb uplift at joint 9, 69 lb uplift at joint												
	6-7=-42/20, 7-8=-44			10 and 65 lb	uplift at joint 11.						R	/ THOM	IAS \ Y			
BOT CHORD	13-14=-338/124, 12-		12	12) This truss is designed in accordance with the 2018								$\lambda \star$ JOHNSON $\lambda \star$				
WEBS	10-11=0/0, 9-10=0/0	,	2		Residential Code s			nd		- 1		h'in	anni a			
WED3	EBS 2-13=-193/128, 3-12=-139/94, 6-9=-139/92, 5-10=-135/90, 4-11=-131/87, 1-13=-221/604				R802.10.2 and referenced standard ANSI/TPI 1.											
NOTES	5 10-100/30, 4-11=	- 101/07, 1-10-221/0	°7 L(DAD CASE(S)	Standard						27	NUM				
NULES											N.	PE-2017	018993			
						RELEASE FOR CONSTRUCTION										
-----------------------------	----------	--------------	-----	------	--------------------------------	-----------------------------------										
Job	Truss	Truss Type	Qty	Plv	Lot 13 TCR	AS NOTED FOR PLAN REVIEW										
300	11035	Truss Type	Quy	l''y	LOUISTOR	DEVELOPMENT SERVICES 164953187										
240654	LAY5	Lay-In Gable	1	1	Job Reference (optional											
Wheeler Lumber, Waverly, KS	- 66871,				2024 MiTek Industries, Inc. Tu											

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tue Apr 16 6084/30/2 ID:PlfvR1ICGmbIIHGhYwl5gjy6jdk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKW CDoi7J42sC 3/30/2

April 17,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Scale = 1:73.4

Plate Offsets (X, Y): [7:0-1-9,Edge]

		i											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.06	Vert(LL)	n/a	-	n/a	999	MT20	197/144
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.03	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.03	Horiz(TL)	-0.01	9	n/a	n/a		
BCLL	10.0*	Code	IRC20	18/TPI2014	Matrix-S		()						
BCDL	10.0											Weight: 58 lb	FT = 10%
LUMBER			V		2-16=-147/136, 3-				,			ned in accordan	
TOP CHORD	2x4 SPF No.2				4-13=-166/157, 5-								tions R502.11.1 and
BOT CHORD	2x4 SPF No.2				6-11=-158/137, 8-	10=-148	/48					ferenced standar	
OTHERS	2x4 SPF No.2		1	IOTES									es not depict the size
BRACING			1) Unbalanced	roof live loads hav	e been	considered fo	or				of the purlin alon	g the top and/or
TOP CHORD	Structural wood she	athing directly applie		this design.						tom cho			
	6-0-0 oc purlins, exc		2		7-16; Vult=115m				LOAD	CASE(S) Sta	ndard	
	2-0-0 oc purlins (6-0				n; TCDL=6.0psf; E								
BOT CHORD		applied or 10-0-0 or)		closed; MWFRS (
	bracing, Except:				t and right expose								
	6-0-0 oc bracing: 9-				d; Lumber DOL=1 ned for wind loads								
REACTIONS		3, 9=13-5-13, 10=13	-5-13,		ids exposed to will								
		13, 12=13-5-13,			d Industry Gable E								
		13, 14=13-5-13,			alified building de								
	Max Horiz 1=488 (L0	13, 16=13-5-13	4		7-16; Pr=25.0 ps								
	Max Uplift 1=-134 (L				.15); Pg=20.0 psf								
		.C 6), 11=-113 (LC 1			late DOL=1.15); Is								
		(LC 10), 13=-132 (LC		Partially Exp	.; Ce=1.0; Cs=1.0	0; Ct=1.	10, Lu=50-0-0	0					
		(LC 10), 15=-40 (LC		 Provide adec 	quate drainage to	prevent	water ponding	g.					
	16=-122 (-,, 6		2x4 MT20 unless		se indicated.						
	Max Grav 1=409 (L0				spaced at 2-0-0 o								
		LC 23), 11=226 (LC 2			s been designed							Sam	alle
	12=241 (I	LC 21), 13=239 (LC 2			ad nonconcurrent							S OF	MISCO
	14=232 (I	LC 21), 15=129 (LC	10), ^g		as been designed			0psf			9	A TE	-050 M
	16=203 (I	_C 21)			n chord in all area						A	TATEOF	New
FORCES	(lb) - Maximum Com	pression/Maximum			y 2-00-00 wide w						B	S/ ANDI	
	Tension				iy other members are assumed to be			ι.			B	/ THO	MAS \ Y
TOP CHORD	1-2=-556/219, 2-3=-				hanical connection			to			12 🖈	JOHN	ISON X
	4-5=-169/79, 5-6=-6				capable of withst					/	N.A	1	Viadali
	7-8=-42/101, 8-9=-4				ft at joint 9, 40 lb					C	W-	NUM	REP OC
BOT CHORD	1-16=-101/42, 15-16	,			16, 154 lb uplift at						27		
	14-15=-159/77, 13-1				Ib uplift at joint 12						N	PE-2017	BER 018993
	12-13=-161/79, 11-1			and 24 lb upl		,	, ,				V V	PE-2017	154
	10-11=-161/81, 9-10	J=-100/70	1		d bearing conditio	n. Revie	ew required.				6	WSION.	TEN
					-		-					ESSIONA	

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 164953188
240654	LAY6	Lay-In Gable	2	1	Job Reference (optional	

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tur Apr 16 10284/30/210214 ID:PlfvR1ICGmbIlHGhYwl5gjy6jdk-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWcDoi7J4&c7

Scale = 1:89.2

Plate Offsets	(X, Y):	[8:0-1-9,Edge]
---------------	---------	----------------

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.10	Vert(LL)	n/a	-	n/a	999	MT20	197/144
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.05	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.03	Horiz(TL)	-0.01	10	n/a	n/a		
BCLL	10.0*	Code	IRC20	18/TPI2014	Matrix-S								
BCDL	10.0											Weight: 73 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins, exx 2-0-0 oc purlins (6-C Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 12 (size) 1=16-5-1: 11=16-5- 14=16-5- 16=16-5-	0-0 max.): 8-10. • applied or 10-0-0 oc 9-14,10-11. 3, 10=16-5-13, 13, 12=16-5-13, 13, 15=16-5-13, 13, 17=16-5-13,	l or	NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=91mpf II; Exp C; En cantilever lef right exposed 3) Truss design only. For stu see Standard	9-11=-144/53, 7-1 6-14=-174/176, 5- 4-16=-175/166, 3- 2-18=-206/190 roof live loads hav 7-16; Vult=115m n; TCDL=6.0psf; E closed; MWFRS 0 t and right exposed d; Lumber DOL=1 ned for wind loads uds exposed to wid 1 Industry Gable E	15=-165 17=-151 we been ph (3-sec 3CDL=6. (envelope ed ; end v .60 plate s in the p nd (norm End Deta	/155, /146, considered fc cond gust) 0psf; h=25ft; e) exterior zo vertical left ar e grip DOL=1. lane of the trn lane to the face ills as applica	Cat. ne; nd .60 uss e), ble,	bea 10, upliti joint and 13) Nor 14) This Inte R80 15) Gra or th	ring plat 133 lb u ft at join t 15, 142 34 lb up s standa s truss is rnationa j2.10.2 a phical p ne orien om choi	te capa uplift at t 12, 1 2 Ib up plift at ard bea s desig al Resi and re- urlin re- tation rd.	cal connection (b able of withstance i joint 1, 30 lb upi 52 lb uplift at joint 18. aring condition. I gned in accordan dential Code sec ferenced standa epresentation do of the purlin alon	y others) of truss to ling 150 lb uplift at joint ift at joint 11, 75 lb tt 14, 130 lb uplift at 5 lb uplift at joint 17 Review required. ce with the 2018 tions R502.11.1 and d ANSI/TPI 1. es not depict the size
	11=-30 (L 14=-152 16=-142 18=-34 (L Max Grav 1=+493 (L) 11=214 (l 14=244 (l	C 10) C 8), 10=-150 (LC 10), (LC 10), 12=-75 (LC 10), (LC 10), 15=-130 (LC (LC 10), 17=-125 (LC C 10), 10=94 (LC 21), LC 23), 12=214 (LC 2: LC 21), 17=224 (LC 2: LC 21), 17=22), 10), 10), 1), 1),	 4) TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Partially Exp 5) Provide adec 6) All plates are 7) Gable studs 8) This truss ha chord live loa * This truss h on the bottor 	alified building de 7-16; Pr=26.0 ps .15); Pg=20.0 ps late DOL=1.15); l: ; Ce=1.0; Cs=1.0 uate drainage to 2x4 MT20 unless spaced at 2-0-0 c is been designed ad nonconcurrent nas been designen n chord in all area	of (roof Ll f; Pf=20.4 s=1.0; Re 00; Ct=1.7 prevent s otherwin c. for a 10.4 with any d for a liv as where	L: Lum DOL= 4 psf (Lum bugh Cat C; 10, Lu=50-0-(water pondin, ise indicated. 0 psf bottom other live loa re load of 20.0 a rectangle	1.15 0 g. ads. 0psf			H	STATE OF	MISSOLUTE
FORCES	(lb) - Maximum Con Tension	'			by 2-00-00 wide w by other members						Å.	THO:	
TOP CHORD		47/120		 All bearings at jo Bearing at jo value using A 	are assumed to b int(s) 10, 11, 12 c ANSI/TPI 1 angle puld verify capacity	e SPF N considers to grain f	o.2 parallel to gr formula. Buil	ain		l	K	NUM PE-2017	BER
	16-17=-189/88, 15- 14-15=-189/88, 12- 11-12=-189/88, 10-	16=-189/88, 14=-188/88,									Ø	FESSION!	L ENGILE

April 17,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 164953189
240654	LAY7	Lay-In Gable	1	1	Job Reference (optional	

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tue Apr 16 16 PB5/30/2 10: TxDIeNJq13j9wQrt5eGKDwy6jdj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKW CDoi7J4zeC P

Scale = 1:58.6

Scale = 1:58.6													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-P	0.23 0.08 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 29 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 4-3-14 oc purlins, e Rigid ceiling directly bracing. (size) 3=4-3-12, 6=4-3-12 Max Horiz 6=-290 (L Max Uplift 3=-339 (L 5=-531 (L Max Grav 3=487 (LC	xcept end verticals. applied or 6-0-0 oc 4=4-3-12, 5=4-3-12 C 6) C 9), 4=-351 (LC 11 C 11), 6=-74 (LC 9)	ed or g	 chord live lo. This truss is on the botto 3-06-00 tall is chord and ai All bearings Provide mec bearing plate 6, 339 lb upi uplift at joint Beveled plata surface with This truss is International 	te or shim require truss chord at join designed in acco I Residential Code nd referenced sta	t with any ed for a liv as where will fit betw s, with BC be SPF No be SPF No bon (by oth standing 7 b uplift at d to provin nt(s) 6, 5. ordance w e sections	other live loa e load of 20.0 a rectangle veen the bott DL = 10.0psf 5.2. ers) of truss t 4 lb uplift at j joint 4 and 50 de full bearing ith the 2018 : R502.11.1 a	Opsf om o oint 31 Ib					
FORCES	(lb) - Maximum Com Tension												
TOP CHORD BOT CHORD WEBS	,												
Vasd=91r II; Exp C; cantilever right expc 2) Truss de only. For see Stanc or consult 3) TCLL: AS	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 signed for wind loads in studs exposed to wind dard Industry Gable En c qualified building desi iCE 7-16; Pr=25.0 psf (=1.15): Pr=20.0 psf.	DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 the plane of the tru I (normal to the face) d Details as applicat gner as per ANSI/TP roof LL: Lum DOL=1	ne; d 60 iss), ole, 21 1.							l		STATE OF I ANDI THOM JOHN PE-2017	BER E

- 2
- 3 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 2-0-0 oc.

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
240654	M1	Piggyback Base Structural Gable	2	1	Job Reference (optional)	DEVELOPMENT SERVICES 164953190 LEE'S SUMMIT, MISSOURI

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tu Apr 16 1005/30/210124 ID:IsXZ6SN1J6pgUyanF6sznUy6jcL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKyrCDoi734297/30/210124

Plate Offsets (2	X, Y): [2:0-1-12,0-1-8], [4:0-6-4,0-1-12]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.58 0.41 0.54	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.06 -0.10 0.01 0.02	(loc) 10-11 10-11 7 10-11	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 174 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 *Exce SPF No.2 2x4 SPF No.2 Structural wood she 5-4-3 oc purlins, exi 2-0-0 oc purlins, exi 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing, Except: 8-3-10 oc bracing: 1 Row at midpt (size) 7=0-3-8, 1	athing directly applie cept end verticals, a -0 max.): 4-6. applied or 10-0-0 or 1-12. 6-7, 3-10, 5-8, 4-8	3) ed or nd 4)	only. For str see Standar or consult qu TCLL: ASCE Plate DOL= ² DOL=1.15 P Partially Exp This truss ha load of 12.0 overhangs n Provide ade All plates arc Truss to be l braced again	ned for wind lc uds exposed to d Industry Gab ualified building 7-16; Pr=25.0 (1.15); Pg=20.0 late DOL=1.15 .; Ce=1.0; Cs= as been design psf or 1.00 tim on-concurrent quate drainage 2x4 MT20 un fully sheathed inst lateral mov spaced at 2-0.	wind (norm ble End Deta g designer at p opsf (roof LL psf; Pf=20.4 5); Is=1.0; Ro 1.00; Ct=1.4 es flat roof lk with other line to prevent v illess otherwit ender one fac ement (i.e. c	al to the face ils as applica s per ANSI/T .: Lum DOL= 4 psf (Lum ough Cat C; 10, Lu=50-0- er of min roo oad of 15.4 p ve loads. water pondin se indicated.	e), able, PI1. 1.15 0 f live psf on g.					

	Max Horiz 12=451 (LC 10)	8) 9)
	Max Uplift 7=-197 (LC 7), 12=-11 (LC 10)	3)
	Max Grav 7=1139 (LC 3), 12=1170 (LC 22)	10)
ORCES	(lb) - Maximum Compression/Maximum	,
	Tension	
FOP CHORD	1-2=0/51, 2-3=-1117/8, 3-4=-804/91,	
	4-5=-355/70, 5-6=-354/70, 6-7=-1015/219,	11)
	2-12=-1058/38	12)
BOT CHORD	11-12=-507/269, 10-11=-327/803,	,
	8-10=-148/502, 7-8=-1/4	
NEBS	3-11=0/277, 3-10=-466/272, 4-10=-144/634,	13)
	6-8=-194/972, 2-11=0/651, 5-8=-363/164,	
	4-8=-447/212	

NOTES

Scale = 1:77.2

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 197 lb uplift at joint 7 and 11 lb uplift at joint 12. 13) This truss is designed in accordance with the 2018

11) All bearings are assumed to be SPF No.2 .

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

10)

April 17,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
240654	M2	Piggyback Base	6	1	Job Reference (optional	DEVELOPMENT SERVICES 164953191 LEE'S SUMMIT, MISSOURI

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tuk Apr 16 6025/30/26:24 ID:IsXZ6SN1J6pgUyanF6sznUy6jcL-RfC?PsB70Hq3NSgPqnL8w3uITXbGK/rCDoi7,4JGA/30/26:24

Scale = 1:77.2	
Plate Offsets (X Y):	[2:0-1-12 0-1-8] [4:0-6-4 0-1-12] [7:Edge 0-1-8]

Plate Offsets (2	X, Y): [2:0-1-12,0-1-8], [4:0-6-4,0-1-12], [7	7:Edge,0-	1-8]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ²	18/TPI2014	CSI TC BC WB Matrix-S	0.44 0.41 0.66	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.06 -0.09 -0.01 -0.03	(loc) 10-11 10-11 7 7-8	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 136 lb	GRIP 197/144 FT = 10%
	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 *Exce 2.0E, 3-11,10-3,11-2 Structural wood she 5-4-3 oc purlins, exi 2-0-0 oc purlins, exi 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing, Except: 8-5-13 oc bracing: 1 1 Row at midpt (size) 7=0-3-8, 1 Max Horiz 12=483 (L Max Grav 7=1139 (L (Max Grav 7=1139 (L (10) - Maximum Com Tension 1-2=0/51, 2-3=-1143 4-5=-405/160, 5-6=- 2-12=-1051/107 11-12=-485/359, 10- 8-10=-238/565, 7-8= 3-11=0/277, 3-10=-4 6-8=-239/970, 2-11= 4-8=-475/146	2:2x3 SPF No.2 athing directly applie cept end verticals, a -0 max.): 4-6. applied or 10-0-0 or 1-12. 6-7, 3-10, 5-8, 4-8 12=0-3-8 LC 7) C 7), 12=-80 (LC 10 LC 3), 12=1163 (LC apression/Maximum 8/89, 3-4=-834/179, 404/160, 6-7=-1015, -11=-318/868, s-166/126 469/263, 4-10=-128/	5 ed or 6 nd 7 8 9)) 3) 1 /251, L 639,	 load of 12.0 overhangs n Provide ade This truss ha chord live lo * This truss l on the botton 3-06-00 tall l chord and al All bearings Provide mec bearing plate 7 and 80 lb u This truss is International R802.10.2 a Graphical pu 		flat roof k th other lin prevent v for a 10.0 with any d for a 10.1 with any d for a 10.2 with any as where vill fit betv s, with BC be SPF N. be SPF N. be SPF N. be SPF N. be SPF N. be sections and and A. h n does not	bad of 15.4 p ve loads. water pondinin.) psf bottom other live load e load of 20.1 a rectangle veen the bott DL = 10.0ps 0.2. ers) of truss i 55 lb uplift al ith the 2018 R502.11.1 a (SI/TPI 1.) the depict the single sing	esfon g. ads. Opsf tom f. to t joint				STATE OF M	TEW / C V
Vasd=91m II; Exp C; I cantilever right expos 2) TCLL: ASC Plate DOL DOL=1.15	CE 7-16; Vult=115mph rph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 CE 7-16; Pr=25.0 psf (.=1.15); Pg=20.0 psf; F Plate DOL=1.15); Is= xp.; Ce=1.0; Cs=1.00;	DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an 0 plate grip DOL=1.0 roof LL: Lum DOL=1 Pf=20.4 psf (Lum 1.0; Rough Cat C;	ne; d 60 1.15							l		THON JOHN PE-2017 SSIONA	SDN *

April 17,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 164953192
240654	M3	Piggyback Base	14	1	Job Reference (optional)	

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tu Apr 16 6025 ID:IsXZ6SN1J6pgUyanF6sznUy6jcL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKVrCDoi7Jz20

Scale = 1:77.2 DI

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.44	Vert(LL)	-0.06	9-1Ó	>999	360	MT20	197/144
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.41	Vert(CT)	-0.09	9-10	>999	240		
TCDL	10.0	Rep Stress Incr	YES	WB	0.67	Horz(CT)	-0.01	6	n/a	n/a		
BCLL	10.0*	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	-0.03	6-7	>999	240		
BCDL	10.0										Weight: 134 lb	FT = 10%

LOWIDER		• • •	
TOP CHORD	2x4 SPF No.2		chord live load nonconcurrent with any other live loads.
BOT CHORD	2x4 SPF No.2		* This truss has been designed for a live load of 20.0psf
WEBS	2x4 SPF No.2 *Except* 5-6:2x4 SPF 2400F		on the bottom chord in all areas where a rectangle
	2.0E, 2-10,9-2,10-1:2x3 SPF No.2		3-06-00 tall by 2-00-00 wide will fit between the bottom
BRACING			chord and any other members, with BCDL = 10.0psf.
TOP CHORD	Structural wood sheathing directly applied or		All bearings are assumed to be SPF No.2.
	5-3-8 oc purlins, except end verticals, and		Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 255 lb uplift at joint
	2-0-0 oc purlins (6-0-0 max.): 3-5.		6 and 57 lb uplift at joint 11.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc		This truss is designed in accordance with the 2018
	bracing, Except:		International Residential Code sections R502.11.1 and
WEBS	8-8-5 oc bracing: 10-11. 1 Row at midpt 5-6, 2-9, 4-7, 3-7		R802.10.2 and referenced standard ANSI/TPI 1.
		9)	Graphical purlin representation does not depict the size
REACTIONS			or the orientation of the purlin along the top and/or
	Max Horiz 11=465 (LC 9)		bottom chord.
	Max Uplift 6=-255 (LC 7), 11=-57 (LC 10) Max Grav 6=1141 (LC 3), 11=1116 (LC 24)	LOA	AD CASE(S) Standard
FORCES	(lb) - Maximum Compression/Maximum Tension		
TOP CHORD	1-2=-1145/82, 2-3=-836/180, 3-4=-410/161,		
	4-5=-409/161. 5-6=-1013/252. 1-11=-1004/83		
BOT CHORD			
	7-9=-238/566, 6-7=-166/126		
WEBS	2-10=0/276, 2-9=-477/265, 3-9=-130/641,		
	5-7=-238/967, 1-10=-4/690, 4-7=-361/179,		
	3-7=-467/144		
NOTES			
1) Wind: ASC	CE 7-16; Vult=115mph (3-second gust)		
	TODI O OF TODI O OF THE OFHION		

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 2)
- Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- 3) Provide adequate drainage to prevent water ponding.

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
0.4005.4						DEVELOPMENT SERVICES 164953193
240654	N1	Roof Special	4	1	Job Reference (optional	

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tur Apr 16 1005/30/20:24 ID:HWvQGOLjK_5knuaSnmq1qZy6jdg-RfC?PsB70Hq3NSgPqnL8w3ulTXbC

Scale = 1:51.1

Plate Offsets (X, Y): [2:0-2-8,Edge], [4:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-S	0.62 0.25 0.28	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.04 -0.09 0.01 -0.01	(loc) 6-7 6-7 6 6-7	l/defl >999 >755 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 62 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 6=13-0-0, 9=13-0-0 Max Horiz 9=-239 (L Max Uplift 6=-202 (L 9=-193 (L	cept end verticals. applied or 9-2-14 oc , 7=13-0-0, 8=13-0-0 C 8) C 11), 7=-71 (LC 7), C 11)	2 , 7) 8) 9)	load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall k All bearings Provide mec bearing plate 9, 202 lb upl This truss is International R802.10.2 a	as been designed for psf or 1.00 times fli- on-concurrent with the been designed for ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide will by other members, are assumed to be hanical connection a capable of withsta iff at joint 6 and 71 designed in accord Residential Code sin and referenced stan	lat roof lo other lin or a 10. with any l for a liv s where Il fit betw with BC SPF No h (by oth anding 1 Ib uplift dance w sections	bad of 15.4 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle veen the bott CDL = 10.0ps o.2. ers) of truss 93 lb uplift a at joint 7. tith the 2018 \$ R502.11.1 a	osf on ads. Opsf tom sf. to to t joint					
FORCES TOP CHORD	(lb) - Maximum Com Tension 2-9=-505/362, 1-2=0 3-4=-272/173, 4-5=0)/48, 2-3=-272/170,	LO	AD CASE(S)	Standard								
BOT CHORD WEBS		82/201, 6-7=-205/32											JOD
this design 2) Wind: AS Vasd=91n	ed roof live loads have	(3-second gust) DL=6.0psf; h=25ft; C	Cat.								*	STATE OF I	AAS V Y

cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

E

NUMBER

PE-2017018993

C

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
505	11033	Thuss Type	Quy	l' 'y	LOUISTOR	DEVELOPMENT SERVICES 164953194
240654	N2	Roof Special	4	1	Job Reference (optional	

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tu Apr 16 6025/30/29:24 ID:IRDhIUPwb1BFLPIMxFPgP6y6jcI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKvrCDoi754097/30/29:24

Scale = 1:51

Plate Offsets (X, Y): [2:0-2-8,Edge], [4:0-2-8,Edge], [8:0-1-7,Edge]

	(74, 1). [2.0 2 0,2030];	, [1.0 Z 0,Edg0], [0.0	17,Edg0]										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-S	0.65 0.29 0.54	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.18 -0.31 0.63 0.11	(loc) 6-7 6-7 5 6-7	l/defl >875 >492 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 60 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD WEBS	 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 3-10-15 oc purlins, Rigid ceiling directly bracing. (size) 5=0-3-8, 8 Max Horiz 8=230 (LC Max Uplift 5=-61 (LC Max Grav 5=611 (LC (Ib) - Maximum Corr Tension 2-8=-923/309, 1-2=(3-4=-2558/215, 4-5= 	eathing directly applie except end verticals applied or 9-2-3 oc 8=0-3-8 C 7) C 10), 8=-64 (LC 11) C 22), 8=659 (LC 23) pression/Maximum 0/48, 2-3=-2536/172, =-657/156 138/1130, 5-6=-135, 253/2031,	7) ed or ⁸⁾ 9) 10)	on the bottor 3-06-00 tall b chord and ar All bearings at Bearing at jo using ANSI/J designer sho Provide mec bearing platte 8 and 61 b u This truss is International	as been designed in chord in all areas by 2-00-00 wide wi y other members, are assumed to be int(s) 8, 5 conside 'PI 1 angle to grain uld verify capacity hanical connectior capable of withsta plift at joint 5. designed in accord Residential Code nd referenced star Standard	s where ill fit betw with BC SPF No rs paralle n formula of bear n (by oth anding 6 dance w sections	a rectangle veen the bott DL = 10.0ps o.2. el to grain va a. Building ng surface. ers) of truss : 44 lb uplift at j ith the 2018 i R502.11.1 a	to to joint					
this desig 2) Wind: AS Vasd=911 II; Exp C; cantileven right expo 3) TCLL: AS	ed roof live loads have n. iCE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er r left and right exposed osed; Lumber DOL=1.6 iCE 7-16; Pr=25.0 psf (10,10)	a (3-second gust) IDL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left and 0 plate grip DOL=1.6 (roof LL: Lum DOL=1	Cat. ne; d 60							(STATE OF I	VIAS VY

- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.1) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

April 17,2024

NUMBER

PE-2017018993

0

Scale = 1:38.7

Plate Offsets (X, Y): [2:0-2-6,0-1-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1:	(psf) 25.0 5.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-P	0.07 0.02 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 42 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc ı Rigid ceil bracing. (size) Max Horiz Max Uplift	No.2 No.2 No.2 I wood shea purlins, exc ing directly 2=8-9-5, 8 10=8-9-5, 2=172 (LC 2=-109 (L 9=-122 (L: 11=-133 (LC 9=233 (LC	athing directly applie cept end verticals. applied or 10-0-0 or 3=8-9-5, 9=8-9-5, 11=8-9-5, 12=8-9-5 C 7) C 6), 8=-32 (LC 6), C 11), 10=-75 (LC 9 LC 10), 12=-107 (LC 2 23), 8=71 (LC 23), C 23), 10=238 (LC 2. C 22), 12=204 (LC 2)	2 ed or 5 5 6 7 8 9, 8 9, 8 9, 8 9, 10 10, 1	 only. For st see Standar or consult q TCLL: ASCI Plate DOL= DOL=1.15 F Partially Exp This truss h load of 12.0 overhangs r All plates ar Gable requi Gable studs This truss h chord live lo * This truss on the botto 3-06-00 tall 	ned for wind load uds exposed to w rd Industry Gable ualified building of 7-16; Pr=25.0 p 1.15); Pg=20.0 p Plate DOL=1.15); 0.; Ce=1.0; Cs=1 as been designed psf or 1.00 times con-concurrent w e 2x4 MT20 unle res continuous b spaced at 2-0-0 as been designed an onconcurrer has been design m chord in all are by 2-00-00 wide	vind (norm End Deta lesigner a: sof (roof LL sof (roof LL sof; Pf=15.4 ls=1.0; RC 00; Ct=1.1 d for great f flat roof lk ith other lines so therwin bottom chor oc. d for a 10.4 t with any ed for a liv as where will fit betw	al to the face iils as applica s per ANSI/T .: Lum DOL= 4 psf (Lum ough Cat C; 10 er of min root oad of 15.4 p ve loads. ise indicated. rd bearing. 0 psf bottom other live loa re load of 20.1 a rectangle ween the bott), ble, Pl 1. 1.15 flive sf on ds. Opsf					
FORCES	Tension		pression/Maximum		 All bearings Provide med 	ny other member are assumed to chanical connection	be SPF No on (by oth	o.2 . iers) of truss	to					
		/152, 5-6=-	186, 3-4=-173/163, 117/131, 6-7=-54/55	ō,	8, 109 lb up	e capable of with lift at joint 2, 75 II : 11, 107 Ib uplift	o uplift at jo	oint 10, 133 l	b				STATE OF AND	MISC
BOT CHORD		/22, 11-12= /22, 8-9=-28	28/22, 10-11=-28/2 8/22		at joint 9.	designed in acc	•		piir			E	ATE	REW
WEBS	5-10=-18	,	=-184/157,	I	Internationa	Residential Coc and referenced st	le sections	s R502.11.1 a	ind			Å.	/ IHO	MAS
NOTES	od roof live l	loade bave	been considered for			rd Industry Piggy					1	a	r Jøhn	ISON
this desig	n.			I		onnection to base lified building des		applicable, of			l	MA	NUM	BER
2) Wind AS(CE 7-16: V/u	lt_115mph	(3-second quet)			Other shared						N -		DUR //

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 LOAD CASE(S) Standard

2-2-8

8

											E FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Lot 1	13 TCR	ļ		ED FOR PLAN REVIEW LOPMENT SERVICES 164953196
240654	P2		Piggyback		16	1	Job F	Reference ((optional	1 5 5 10	SUMMIT, MISSOURI
Vheeler Lumber	er, Waverly, KS - 66871,			Run: 8.73 S Apr ID:pJL232K5Zhz	3 2024 Print: { t9k?GD3JolLy	8.730 S Apr	3 2024 Mi	1iTek Industrie	es, Inc. Tu	ue Apr 16 16006 ArCDoi7J4=3C	30/2024
				10 10 0 L	ok. 02000,	Jun 1. 2	D1011-1-1	·9· 4··==···			
			-0-6-11	5-3-5			8-9-5				
			0-6-11	5-3-5		' :	3-6-0	,			
						4x5 = 4					
		\top \top			- /f	4 4					
				- 0							
				12 12 -		\parallel	\mathbf{X}				
					/	`	$\backslash /$				
		5-8-8		//			$\langle \rangle$	2x4 II			
		2		2x4 II				5	\top	-	
				3		1			φ		
			2/1	1					2-2-8		
		-2-3						6	\perp	-	
				8		<u>*******</u> 7		×××			
			2x4 =	2x4 II		2x4 u		2x4 II			
			—		8-9-5						
Scale = 1:40.2					<u> </u>						
L oading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC		EFL ert(LL)	in (n/a	(loc) l/de - n/			GRIP 197/144
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.10 Ver	ert(TL)	n/a	- n/	/a 999	9	1077111
TCDL BCLL	10.0 10.0*	Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-P	0.18 Hoi	oriz(TL)	0.00	6 n/	/a n/a		
BCDL	10.0									Weight: 32 lb	FT = 10%
				E 7-16; Pr=25.0 psf =1.15); Pg=20.0 psf;			15				
TOP CHORD BOT CHORD	2x4 SPF No.2		DOL=1.15 F	Plate DOL=1.15); Is	s=1.0; Rough						
WEBS OTHERS	2x3 SPF No.2 2x3 SPF No.2			p.; Ce=1.0; Cs=1.00 ires continuous bott		narina					
BRACING	233 OFF 110.2		6) Gable studs	s spaced at 4-0-0 oc	с.	U U					
TOP CHORD	Structural wood she 6-0-0 oc purlins, exe	eathing directly applied		has been designed for bad nonconcurrent v			S.				
BOT CHORD	Rigid ceiling directly	y applied or 10-0-0 oc	8) * This truss	has been designed om chord in all areas	d for a live loa	ad of 20.0ps					
REACTIONS	bracing. (size) 1=9-4-0, 2	2=9-4-0, 6=9-4-0, 7=9	3-06-00 tall	by 2-00-00 wide wi	ill fit between	n the bottom	n				
	8=9-4-0		chord and a	any other members, are assumed to be							
	Max Horiz 1=173 (LC Max Uplift 1=-81 (LC		10) Bearing at jo	oint(s) 1, 2 consider /TPI 1 angle to grain	rs parallel to	grain value	e				
	6=-89 (LC 8=-284 (L	C 11), 7=-26 (LC 7),	designer sh	ould verify capacity	of bearing s	surface.					
			11) Provide me	chanical connection							
	Max Grav 1=157 (LC		' bearing plat	te capable of withst.	andina 81 lb.	uplift at join	nr				
	Max Grav 1=157 (LC 6=200 (LC	C 23), 7=417 (LC 22),	bearing plat 1, 89 lb uplit	te capable of withsta ift at joint 6, 169 lb υ	uplift at joint 2						
	Max Grav 1=157 (LC	C 23), 7=417 (LC 22), C 22)	' bearing plat ' 1, 89 lb upli at joint 7 an		uplift at joint 2 nt 8.	2, 26 lb upli					

BOT CHORD WEBS

NOTES

1) Unbalanced roof live loads have been considered for this design.

4-5=-111/97, 5-6=-156/104

4-7=-269/77, 3-8=-371/324

2-8=-28/21, 7-8=-28/21, 6-7=-28/21

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- R802.10.2 and referenced standard ANSI/TPI 1. 13) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Tek 16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
305	11035	Truss Type	Quy	I IY	LOUISTON	DEVELOPMENT SERVICES 164953197
240654	P3	Piggyback	2	1	Job Reference (optional	

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tuk Apr 16 16026/30/2624 ID:pJL232K5Zhzt9k?GD3JoILy6jdh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKW CD0i7J4ccCP/30/2624

5-8-1

Scale = 1:41

Plate Offsets (X, Y): [2:0-2-6,0-1-0], [4:0-1-11,Edge], [5:0-3-8,0-2-0]

	(X, Y): [2:0-2-6,0-1-0],	[4.0 1 11,Eugo], [0.0	0 0 0,0 2 0	, i									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.19 0.09 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 31 lb	GRIP 197/144 FT = 10%
 this designed to the second second	 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood sheat 6-0-0 oc purlins, exit 2-0-0 oc purlins, exit 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 2=8-9-5, 7 Max Horiz 2=161 (LC Max Uplift 2=-120 (LC Max Grav 2=152 (LC (lb) - Maximum Com Tension 1-2=0/15, 2-3=-204/ 4-5=-69/111, 5-6=-12 2-9=-29/27, 8-9=-29, 5-8=-222/74, 3-9=-3 ced roof live loads have 	cept end verticals, ar -0 max.): 4-5. applied or 10-0-0 oc 7=8-9-5, 8=8-9-5, 9= C 7) C 6), 7=-77 (LC 11), ; 7), 9=-191 (LC 10) C 9), 7=188 (LC 23), C 22), 9=424 (LC 22) pression/Maximum 187, 3-4=-181/124, 28/94, 6-7=-148/92 /27, 7-8=-30/30 11/236 been considered for (3-second gust) DL=6.0psf; h=25ft; C twelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 the plane of the true: (normal to the face) d Details as applicab	5) d or nd 7) 8) 9) 8-9-5 10 11 12 13 13 14 15 cat. e; t 4 00 css ke,	Plate DOL=1 DOL=-115 P Partially Exp This truss ha load of 12.0 overhangs n Provide ader Gable requir Gable studs This truss ha chord live loa on the bottor 3-06-00 tall th chord and ar) All bearings Provide mec bearing plate 7, 120 lb upl uplift at joint) This truss ha chord and ar) All bearings International R802.10.2 a) See Standar Detail for Co consult quali	designed in accorc Residential Code s ad referenced stan d Industry Piggyba nnection to base tr fied building desigr rlin representation ation of the purlin a f.	Pf=20.4 =1.0; Rc 20; Ct=1.1 or great at roof k or great at roof k or great at roof k or great at roof k or a nor k or a 10.0 with any for a liv s where ll fit betw with BC e SPF No a for a liv s where ll fit betw with BC e SPF No anding 7 uplift at jo dance w sections adard AN ack Trus: russ as a ner. does no	 I psf (Lum pugh Cat C; I(0, Lu=50-0-0) I(0, Lu=50-0-0) I(1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,) live sf on g. ds.)psf om o ont I lb		(STATE OF J STATE OF J ANDI THOM JOHN PE-2017	MAS BER 018993

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017

314.434.1200 / MiTek-US.com

Come April 17,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	
240654	P4	Piggyback	2	1	Job Reference (optional	DEVELOPMENT SERVICES 164953198 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -	66871,	Run: 8.73 S Apr 3 2	024 Print: 8.3	730 S Apr 3	2024 MiTek Industries, Inc. Tu	

ID:pJL232K5Zhzt9k?GD3JolLy6jdh-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWCDoi7J3zec073U/2024

Scale = 1:34.3

Plate Offsets (X, Y): [2:0-2-6,0-1-0], [4:0-0-11,Edge], [5:0-3-8,0-2-0]

Plate Offsets ((X, Y): [2:0-2-6,0-1-0],	[4:0-0-11,Edge], [5:	0-3-8,0-2-0	ון									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.18 0.14 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 30 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly	cept end verticals, a -0 max.): 4-5.	nd 6) 7)	Plate DOL=1 DOL=1.15 P Partially Exp This truss ha load of 12.0 overhangs n Provide adee Gable requir Gable studs	7-16; Pr=25.0 ps .15); Pg=20.0 ps late DOL=1.15); ls .; Ce=1.0; Cs=1.0 s been designed ps for 1.00 times 1 on-concurrent with quate drainage to es continuous bot spaced at 4-0-0 o is been designed	f; Pf=20.4 s=1.0; Rc 00; Ct=1.7 for greate flat roof lo h other liv prevent v tom chor bc.	4 psf (Lum bugh Cat C; 10, Lu=50-0-0 er of min roof bad of 15.4 ps ve loads. water ponding d bearing.) [:] live sf on					
REACTIONS	Max Horiz 2=135 (LC Max Uplift 2=-56 (LC 9=-107 (L Max Grav 2=176 (LC	C 7), 7=-41 (LC 10), C 7)	8-9-5 10	chord live loa) * This truss h on the bottor 3-06-00 tall h chord and ar) All bearings	ad nonconcurrent nas been designed n chord in all area by 2-00-00 wide w hy other members are assumed to b hanical connectio	with any d for a liv as where vill fit betw s, with BC e SPF No	other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf 0.2.	Opsf om f.					
FORCES TOP CHORD BOT CHORD	4-5=-48/66, 5-6=-91 2-9=-37/25, 8-9=-37	134, 3-4=-128/77, /64, 6-7=-101/51 /25, 7-8=-37/25	13	 bearing plate 7, 56 lb uplifi This truss is International R802.10.2 a 	e capable of withst at joint 2 and 107 designed in accor Residential Code nd referenced star	tanding 4 7 lb uplift rdance w sections ndard AN	1 lb uplift at j at joint 9. ith the 2018 R502.11.1 a ISI/TPI 1.	oint					- an
this design 2) Wind: ASC Vasd=91n II; Exp C; cantilever right expo 3) Truss des	5-8=-185/53, 3-9=-2 ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed issed; Lumber DOL=1.6 signed for wind loads ir studs exposed to wind	been considered for (3-second gust) DL=6.0psf; h=25f; C ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1.6 h the plane of the tru	2at. e; LC d 50 ss	Detail for Co consult quali Graphical pu		truss as a gner. n does no	applicable, or ot depict the s			(the second	STATE OF J STATE OF J ANDI THOM JOINT NUM OF PE-2017	SON BER

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 17,2024

EL

SIONAL

									RELEAS	SE FOR CONSTRUCTION
Job	Trus	s	Truss Type		Qty	Ply	Lot 13 TCI	२		TED FOR PLAN REVIEW
240654	P8		Piggyback		12	1	Joh Refer	ence (optiona	1.000	ELOPMENT SERVICES 164953199 S SUMMIT, MISSOURI
Wheeler Lumber	r, Waverly, KS - 66871,			Run: 8.73 S Apr 3 2	024 Print: 8	8.730 S Apr	3 2024 MiTek In	dustries. Inc. T	ue Apr 16 6006	(30/2024
				ID:asq4InR6g8_k7zcd	ohkSgc1y6	ijdZ-RfC?PsE	370Hq3NSgPqnl	L8w3ulTXbGK\	NCDoi7J4zJC	00/2024
		-0-11-5	I	6-0-11		1		12-1-6		13-0-11
		0-11-5		6-0-11				6-0-11		0-11-5
						4x5 =				
				10		4 1				
				12 6						
			2x4 II				\sim	2	2x4 u	
	3-6-0 3-4-8		3						5	
	м. м.		11						12	
		2							\sum	6
	-4-3			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~		~~~~~~			7
			3x4 = 10			9		8	3	×4 =
			2x4 II			2x4 I		2	2x4 II	
					12	-1-6				-
Scale = 1:31.7		1	· ·							·
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC 0).19 Ver	rt(LL)	in (loc) n/a -	l/defl L/c n/a 999		GRIP 197/144
Snow (Pf/Pg) TCDL	15.4/20.0 10.0	Lumber DOL Rep Stress Incr	1.15 YES			rt(TL) riz(TL)	n/a - 0.00 7	n/a 999 n/a n/a		
BCLL	10.0		IRC2018/TPI2014	Matrix-S		112(12)	0.00 7	1/4 1/6		FT 400/
BCDL	10.0		4) TOLL ADOF	7.40: Dr. 05.0 6 /	-411.1				Weight: 35 lb	FT = 10%
LUMBER TOP CHORD			Plate DOL=1.	7-16; Pr=25.0 psf (ro 15); Pg=20.0 psf; Pf=	=15.4 psf	(Lum	5			
BOT CHORD OTHERS	2x4 SPF No.2 2x3 SPF No.2		Partially Exp.	ate DOL=1.15);	t=1.10					
BRACING TOP CHORD	Structural wood s	heathing directly applied	docian	now loads have beer	n conside	red for this				
BOT CHORD	6-0-0 oc purlins.	tly applied or 10-0-0 oc	Gable require	s continuous bottom paced at 4-0-0 oc.	chord be	aring.				
	bracing.		This truss has	s been designed for a d nonconcurrent with						
REACTIONS	7=14-0	-0, 2=14-0-0, 6=14-0-0, -0, 8=14-0-0, 9=14-0-0,	9) * This truss h	as been designed for I chord in all areas wh	a live loa	ad of 20.0ps				
	10=14- Max Horiz 1=59 (L	.C 12)	3-06-00 tall by	y 2-00-00 wide will fit y other members, with	between	the bottom				
	(LC 13)	LC 13), 2=-3 (LC 12), 7= , 8=-111 (LC 13), 10=-1	10 10) All bearings a	re assumed to be SP anical connection (by	PF No.2 .					
	(LC 12)		bearing plate	capable of withstand	ing 26 lb	uplift at joir				
	(LC 2),	7=42 (LC 20), 8=366 (L 336 (LC 3), 10=366 (LC	c joint 10 and 1	at joint 7, 3 lb uplift at 11 lb uplift at joint 8.			αι			
FORCES		ompression/Maximum	International	lesigned in accordan Residential Code sec	tions R50	02.11.1 and	I			
TOP CHORD	1-2=-63/70, 2-3=-	73/40, 3-4=-110/84,	13) See Standard	d referenced standar I Industry Piggyback	Truss Co	nnection				
BOT CHORD	2-10=0/55, 9-10=0	-55/29, 6-7=-15/12 0/55, 8-9=0/55, 6-8=0/55	consult qualif	nection to base truss ed building designer.		cable, or			6000	Aller
WEBS NOTES	4-9=-227/38, 3-10	=-300/153, 5-8=-300/15	² LOAD CASE(S)	Standard					ATE OF	MISSOL
 Unbalance this design 		ve been considered for						A	S' ANI	REW Y
2) Wind: ASC	CE 7-16; Vult=115m	ph (3-second gust) 3CDL=6.0psf; h=25ft; Ca	at.					A		
II; Exp C; I	Enclosed; MWFRS	(envelope) exterior zone ed ; end vertical left and						()	nin	build
right expos	sed; Lumber DOL=1	.60 plate grip DOL=1.60						N.		ABER
only. For s	studs exposed to wi	s in the plane of the trust nd (normal to the face),						y y		7018993
		End Details as applicable signer as per ANSI/TPI							CSSION.	AL EN
										ril 17,2024
							<u></u>		Ар	iii i <i>i</i> ,2024
		meters and READ NOTES ON	THIS AND INCLUDED MITEK							iTal

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

									RELEAS	E FOR CONSTRUCTION	4
Job	Truss	Tru	uss Type		Qty	Ply	Lot 13 TCF	R		ED FOR PLAN REVIEW LOPMENT SERVICES 164953200	٦
240654	P9	Pig	ggyback		2	1	Job Refere	nce (optiona		64953200 SUMMIT, MISSOURI	
Wheeler Lumber, Waverly,				Run: 8.73 S Apr 3 2 ID:asq4InR6g8_k7zc	024 Print: 8 ohkSgc1y6jo	730 S Apr 3 JZ-RfC?PsB	2024 MiTek Ind 70Hq3NSgPqnL	.8w3ulTXbGK	u apr 16 160006 W CDoi7J4z9C++	30/2024	1
		-0-11-5 0-11-5		- <u>0-11</u> -0-11				<u>12-1-6</u> 6-0-11		0-11-5	
						4x5 =					
3-6-0	0-4-3	1 3x4 :	15 15 15 15 14	12 6 4 7 7 7 7 7 7 7 7 7	1	5	6		7 16 0 10	8 9 9 3x4 =	
Scale = 1:30.1					12	-1-6					
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) Spacing 25.0 Plate Gri 15.4/20.0 Lumber I 10.0 Rep Stre 10.0* Code	p DOL 1.15 DOL 1.15 ss Incr YES	5 · · · · · · · · · · · · · · · · · · ·	BC (0.06 Vert 0.03 Vert 0.03 Hori	(LL) (TL)	in (loc) n/a - n/a - 0.00 9	l/defl L/ n/a 99 n/a 99 n/a n/	9 MT20 9	GRIP 197/144 FT = 10%	
6-0-0 or BOT CHORD Rigid ce bracing REACTIONS (size) Max Hori Max Uplit Max Grav FORCES (lb) - Ma Tensior TOP CHORD 1-2=-66 4-5=-51 7-8=-53 BOT CHORD 2-14=-4 11-12= WEBS 3-14=-1	T No.2 No.2 No.2 al wood sheathing direct purlins. iiling directly applied or 1=14-0-0, 2=14-0-0, 9=14-0-0, 10=14-0-0 12=14-0-0, 10=14-0-0 12=14-0-0, 13=14-0-0 2 = 1=59 (LC 16) t $1=-23$ (LC 17), 2=-32 8=-24 (LC 13), 9=-1 (LC 12), 11= 13=-60 (LC 12), 11= 13=-60 (LC 12), 14= 4 1=31 (LC 12), 2=148 (LC 2), 9=8 (LC 13), 6), 11=207 (LC 20), 29), 13=216 (LC 19) 5) tximum Compression/W (74, 2-3=-69/41, 3-4=-4 (84, 5-6=-50/76, 6-7=-4 (26, 8-9=-2/26 (54, 13-14=-4/54, 12-13) (4/57, 10-11=-4/55, 8-10) (6/57), 4-13=-177/84, 5 (6/50, 7-10=-153/82)	10-0-0 oc 8=14-0-0, , 11=14-0-0, 0, 14=14-0-0 4 (LC 12), 0 (LC 35), -56 (LC 13), -55 (LC 12) 0 (LC 2), 8=161 10=205 (LC 12=174 (LC , 14=195 (LC flaximum 6/58, 6/35, 3=-4/54, 0=-4/55 -12=-115/0,	 Vasd=91mph; II; Exp C; Encl. cantilever left a right exposed; Truss designe only. For stud: see Standard I or consult qual TCLL: ASCE 7 Plate DOL=1.1 DOL=1.15 Plat Partially Exp.; Unbalanced sr design. All plates are 2 Gable requires Gable requires Gable studs sp on the bottom 3-06-00 tall by chord and any All bearings ar Provide mecha bearing plate of 1, 10 lb uplift at joint 8, 55 lb up uplift at joint 11 This truss is de International R R802.10.2 and See Standard Detail for Conr 	-16; Vult=115mph (; TCDL=6.0psf; BCD osed; MWFRS (env and right exposed; i Lumber DOL=1.60 df or wind loads in 1 s exposed to wind (i industry Gable End iffied building desigr '-16; Pr=25.0 psf (rc 5); Pg=20.0 psf; Pf: te DOL=1.15); Is=1. Ce=1.0; Cs=1.00; C ow loads have bee ex4 MT20 unless ott a continuous bottom paced at 2-0-0 oc. been designed for a nonconcurrent with s been designed for a nonconcurrent with s abeen designed for a nonconcurrent with s been designed for a nonconcurrent with s and 57 lb uplift at joint 14, 60 lb l and 57 lb uplift at joingyback hection to base truss ad building designer Standard	L=6.0psf; Î lelope) exte and vertica plate grip l he plane c hormal to t Details as ler as per l of LL: Lum =15.4 psf (0; Rough 0 t=1.10 n consider nerwise inc chord bea a 10.0 psf l any other a live loac here a rect between t h BCDL = PF No.2. y others) o ing 23 lb u at joint 2, 2 uplift at jo oint 10. ce with the titons R507 d ANS/TFF Truss Con s as applici	h=25ft; Cat prior zone; il left and DOL=1.60 of the truss he face), applicable, ANSI/TPI 1 DOL=1.15 Lum Cat C; ed for this licated. ring. bottom live loads. d of 20.0psf. f truss to plift at joint 24 lb uplift at int 13, 56 ll 2018 2.11.1 and 11. nection	f f	8	★ JOH NUM PE-201'	MAS SON IBER 7018993	

MiTek[®] 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Plate Offsets (X, Y): [6:0-2-0,0-2-8]

	7, 1). [0.0 2 0,0 2 0]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.06 0.03 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 47 lb	GRIP 197/144 FT = 10%
	12=11-4- 14=11-4- Max Horiz 2=168 (LC Max Uplift 2=-1 (LC (LC 8), 12 12), 14=-5 12) Max Grav 2=156 (LC 11=199 (L 13=221 (L 15=230 (L	cept end verticals, ar +0 max.): 6-9. applied or 10-0-0 oc 1, 10=11-4-11, 11=11 11, 13=11-4-11, 11, 15=11-4-11 C 9) 8), 10=-10 (LC 9), 11 =-44 (LC 9), 13=-55 53 (LC 12), 15=-59 (LC C 40), 10=45 (LC 33) LC 33), 12=188 (LC 32) LC 34), 14=210 (LC 32) LC 34), 14=210 (LC 32) LC 34)	nd 4) -4-11, 5) =-37 6) (LC .C 7) , 8) 3, 9) (4) 10	Vasd=91mpl II; Exp C; En cantilever lef right expose Truss desig only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 P Partially Exp Unbalanced design. This truss ha load of 12.0 overhangs n Provide adec All plates are Gable requir) Gable studs) This truss ha	7-16; Vult=115m, n; TCDL=6.0psf; E closed; MWFRS (t and right exposed d; Lumber DOL=1 ned for wind loads uds exposed to wi d Industry Gable E ialified building de :7-16; Pr=25.0 ps .15); Pg=20.0 psl late DOL=1.15); I: :; Ce=1.0; Cs=1.0 snow loads have us been designed psf or 1.00 times i es continuous bot spaced at 2-0-0 c us been designed ad onconcurrent	SCDL=6. (enveloped): .60 plates in the p nd (norm End Deta ssigner a of (roof LI ;; Pf=20. A s=1.0; R 0; Ct=1. been col for great flat roof I h other li prevent s otherwittom chor c. for a 10.	Dpsf; h=25ft; (a) exterior zor vertical left an grip DOL=1. lane of the tru al to the face ils as applica s per ANSI/TI :: Lum DOL= 4 psf (Lum bugh Cat C; 10, Lu=50-0-0 sidered for ti er of min roof bad of 15.4 pi ve loads. water ponding se indicated. d bearing.	ne; d 60 uss ble, PI 1. 1.15) nis live sf on g.	Det con 17) Gra or ti	ail for C sult qua phical p he orien com cho	onnect lified b urlin re tation o rd.) Sta	ion to base truss uilding designer. ppresentation dor of the purlin alon ndard	es not depict the size g the top and/or
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	3-15=-182/82, 4-14= 7-12=-141/66, 8-11= ed roof live loads have	50, 3-4=-108/46, /42, 9-7=-55/42, /42, 9-10=-37/25 56/42, 13-14=-56/4 2=-56/42, 10-11=-56/ 172/78, 5-13=-181/ 163/62	2, 13 2, 14 42 78,	 this truss h on the bottor 3-06-00 tall b chord and ar All bearings - Provide mec bearing plate 10, 1 lb uplift at joint 14, 53 and 37 lb up This truss is International 	as been designer n chord in all area by 2-00-00 wide w ny other members are assumed to b hanical connectio capable of withs a t joint 2, 59 lb u 5 lb uplift at joint 11. designed in accon Residential Code nd referenced sta	d for a liv as where rill fit betw , with BC e SPF N n (by oth tanding 1 plift at jo 13, 44 lb rdance w s sections	e load of 20.0 a rectangle veen the bott CDL = 10.0psl o.2. ers) of truss t 0 lb uplift at j nt 15, 53 lb u uplift at joint 1 ith the 2018 s R502.11.1 a	Opsf om co oint plift 12		(NUM PE-2017	MAS SON *

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 17,2024

										FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Lot 13 TC	R		ED FOR PLAN REVIEW OPMENT SERVICES 164953202
240654	P11		Piggyback		4	1	Job Refe	ence (optional		I64953202 SUMMIT, MISSOURI
Wheeler Lumber	r, Waverly, KS - 66871,			Run: 8.73 S Apr	3 2024 Print:	8.730 S Apr	3 2024 MiTek I	ndustries, Inc. Tu	Apr 16 1600.7	30/2024
				ID:L7ngsiKToNr0	/aQ3fLoZl8y6	ijdi-RfC?PsE	370Hq3NSgPqnl	_8w3uITXbGKWr	CDoi7J423C?	
			-0-11-5		11-4-11					
			0-11-5		11-4-11			I		
								2x4 II		
								5	—	
								P		
					_1 <u>2</u> 6 Г	2x4 II	//			
					9	4				
		6-2-0		2x4 II					6-0-8	
		6-0		3					Ğ	
				1						
		0-4-3	1 2	•		•		e 6		
			3x4 =	8 2x4 и		7 2x4 u		2x4 u		
					11-4-11	274 1				
Scale = 1:42.8					-4-					
Loading	(psf)	Spacing	2-0-0	CSI	DE	FL	in (loc)	l/defl L/d	PLATES	GRIP
TCLL (roof) Snow (Pf/Pg)	25.0 15.4/20.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC		rt(LL) rt(TL)	n/a - n/a -	n/a 999 n/a 999	MT20	197/144
TCDL	10.0	Rep Stress Incr	YES	WB		oriz(TL)	0.00 6	n/a n/a		
BCLL BCDL	10.0* 10.0	Code	IRC2018/TPI2014	Matrix-S					Weight: 37 lb	FT = 10%
LUMBER				CE 7-16; Pr=25.0 psf			15		-	
TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2			=1.15); Pg=20.0 psf; Plate DOL=1.15); Is=						
WEBS OTHERS	2x3 SPF No.2 2x3 SPF No.2			xp.; Ce=1.0; Cs=1.00 ed snow loads have b		ered for this	5			
BRACING			design.	uires continuous botto			-			
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex	eathing directly applie acept end verticals.	6) Gable stud	s spaced at 4-0-0 oc		-				
BOT CHORD	Rigid ceiling directly bracing.	/ applied or 10-0-0 oc	, chord live	has been designed fo load nonconcurrent w	ith any othe	er live loads				
REACTIONS		, 2=12-4-0, 6=12-4-0, . 8=12-4-0	,	s has been designed tom chord in all areas			sf			
	Max Horiz 1=243 (LC	C 9)		Il by 2-00-00 wide will any other members,			n			
		C 9), 7=-120 (LC 12),		s are assumed to be joint(s) 1, 2 considers			9			
	8=-101 (L Max Grav 1=120 (LC		using ANS	I/TPI 1 angle to grain hould verify capacity	formula. B	uilding				
	6=209 (LC (LC 3)	C 5), 7=516 (LC 5), 8	11) Provide me	echanical connection	(by others)	of truss to				
FORCES	(lb) - Maximum Com	npression/Maximum	1, 35 lb up	ate capable of withsta lift at joint 6, 51 lb upl	ift at joint 2,					
TOP CHORD	Tension 1-2=-270/92, 2-3=-1			nd 101 lb uplift at join is designed in accord		ne 2018				
BOT CHORD	4-5=-135/61, 5-6=-12 2-8=-80/62, 7-8=-80/			al Residential Code s and referenced stand			d			alle
WEBS NOTES	4-7=-317/161, 3-8=-	·258/149	13) See Stand	ard Industry Piggybac Connection to base tru	ck Truss Co	onnection			E OF I	MISSOL
1) Wind: ASC	CE 7-16; Vult=115mph		consult qu	alified building design		cable, U		6	STATE OF I	EW CA
	nph; TCDL=6.0psf; BC Enclosed; MWFRS (er			S) Standard				A	/ THOM	AAS Y
	left and right exposed sed; Lumber DOL=1.6							A	JOHN	SON *
Truss des	signed for wind loads in study exposed to wind	n the plane of the true	SS					U.	NUM	BER
see Stand	ard Industry Gable En	nd Details as applicab	le,					N.	PE-2017	
or consult	qualified building desig	gner as per ANSI/TP	11.					X	235	GIT
									SSIONA	LEL
										17.2024

April 17,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
						DEVELOPMENT SERVICES 164953203
240654	P12	Piggyback	2	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Wheeler Lumber Weyerly KS	66971	Bun 972 6 Apr 2.2	024 Drint: 0 T	20 C Apr 2	2024 MiTek Industrias, Inc. Tu	

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tur Apr 16 6087/30/20:24 ID:Xn?hl5shCCWdRVMjol564dy6jd?-RfC?PsB70Hq3NSgPqnL8w3ulTXbGK vrCDoi7.42.01

Scale = 1:40.1

Plate Offsets (X, Y): [5:0-2-0,0-2-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI	CSI TC BC WB I2014 Matrix-S	0.25 0.19 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 36 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, exi 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	applied or 10-0-0 oc 2=12-4-0, 7=12-4-0,	d or DC d or DC d or DC d 5) Un d 5) Un d 7) Ga 8) Ga	uss designed for wind lo ly. For studs exposed to e Standard Industry Gab consult qualified building CLL: ASCE 7-16; Pr=25.0 ate DOL=1.15); Pg=20.0 L=1.15 Plate DOL=1.15 ritially Exp.; Ce=1.0; Cs= ibalanced snow loads ha sign. ovide adequate drainage ible requires continuous ble studs spaced at 4-0-	wind (norm le End Deta) designer a:) psf (roof LL psf; Pf=20.4); Is=1.0; R(1.00; Ct=1.); ve been cor to prevent bottom chor 0 oc.	al to the face ils as applical s per ANSI/TF .: Lum DOL=: 4 psf (Lum ough Cat C; 10, Lu=50-0-C nsidered for th water ponding d bearing.), ble, PI 1. 1.15) his				<u>.</u>	
	9=-107 (L Max Grav 1=110 (LC	38), 2=-51 (LC 12), 9), 8=-96 (LC 12), C 12) 9), 2=328 (LC 38), C 35), 8=552 (LC 36),	chc 10) * T on 3-0 chc ' 11) All	is truss has been design ord live load nonconcurr his truss has been desig the bottom chord in all a 06-00 tall by 2-00-00 wid ord and any other memb bearings are assumed t	ent with any gned for a liv areas where e will fit betw ers, with BC o be SPF No	other live loa re load of 20.0 a rectangle veen the botto DL = 10.0psf o.2.	Opsf om f.					
FORCES	(lb) - Maximum Com Tension 1-2=-240/93, 2-3=-1		usi des	aring at joint(s) 1, 2 cons ing ANSI/TPI 1 angle to signer should verify capa	grain formul acity of bear	a. Building ing surface.					- CONT	an
BOT CHORD WEBS	4-5=-122/54, 5-6=-7	0/53, 6-7=-109/46 /54, 7-8=-72/54	bea 1, 3	ovide mechanical conne aring plate capable of wi 35 lb uplift at joint 7, 51 l nt 8 and 107 lb uplift at jo	thstanding 9 b uplift at joi	95 lb uplift at j	oint			Å	STATE OF I	MISSOL
this desigr 2) Wind: ASC Vasd=91n II; Exp C;	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed	(3-second gust) DL=6.0psf; h=25ft; C avelope) exterior zone	14) Thi Inte R8 15) Se at. De e; cor	is truss is designed in ac ernational Residential C 102.10.2 and referenced e Standard Industry Pig tail for Connection to ba nsult qualified building d aphical purlin representa	ccordance w ode sections standard AN gyback Trus se truss as a esigner.	R502.11.1 a NSI/TPI 1. s Connection applicable, or			l		ANDI THOM JOHN NUM PE-2017	BER

III; EXP C; Enclosed; MWFRS (envelope) exterior zone;
cantilever left and right exposed; end vertical left and
right exposed; Lumber DOL=1.60 plate grip DOL=1.60
IG Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

April 17,2024

E

SIONAL

									RELEASI	E FOR CONSTRUCTION	
Job	Tru	SS	Truss Type		Qty	Ply	Lot 13 TCF	२		ED FOR PLAN REVIEW	1
240654	P1:	3	Piggyback		4	1	Job Refere	ence (optional		OPMENT SERVICES 164953204 SUMMIT, MISSOURI	
Wheeler Lumber	r, Waverly, KS - 66871	,		Run: 8.73 S Apr 3 2 ID:Xn?hl5shCCWdR	024 Print: 8 VMjol564d	8.730 S Apr y6jd?-RfC?Ps	3 2024 MiTek In	dustries. Inc. Tu	Apr 16 600.7	30/2024	-
		<u>-0-11-5</u> 0-11-5	5	6-0-11 6-0-11				-4-11 -4-0			
						4x5 =					
	\top \top			1 <u>2</u> 6 [4					
				01		\square			3х6 ш		
	<u>ه</u>		2x4 II					2	x4 u		
	3-6-0 3-4-8		3 11						5 12		
		2							6	œ	
	-4-0			*****	~~~~~		*****	<u> </u>		8-8-0 0	
			3x4 = 10			<u>9</u>		8			
			3x4 = 2x4 ш	I		2x4 II		2	x4 II		
			<u> </u>		11-4-	11					
Scale = 1:31.7									1		_
Loading TCLL (roof)	(psf) 25.0	_ · ·	2-0-0 1.15	CSI TC 0	0.20 Ve	F L rt(LL)	in (loc) n/a -	l/defl L/d n/a 999	PLATES MT20	GRIP 197/144	
Snow (Pf/Pg) TCDL	15.4/20.0 10.0	Lumber DOL	1.15 YES	BC 0).10 Ve	rt(TL)	n/a - 0.00 7	n/a 999 n/a n/a			
BCLL BCDL	10.0 10.0	* Code	IRC2018/TPI2014	Matrix-S					Weight: 33 lb	FT = 10%	
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp C; F cantilever right expos 3) Truss des only. For s see Standa	6-0-0 oc purlins, Rigid ceiling direc bracing. (size) 1=12-4 8=12-4 Max Horiz 1=67 (Max Uplift 1=-11 (LC 20 (LC 13 3), 10= (Ib) - Maximum C Tension 1-2=-68/45, 2-3=- 4-5=-87/59, 5-6=- 2-10=-11/22, 9-11 7-8=-11/22 4-9=-248/41, 3-11 ed roof live loads ha b CE 7-16; Vult=115m rph; TCDL=6.0psf; Enclosed; MWFRS left and right exposs sed; Lumber DOL=- signed for wind load stude exposed to w ard Industry Gable	(LC 8), 2=-5 (LC 12), 7=-), 8=-122 (LC 13), 10=-1	A construction of the second s	7-16; Pr=25.0 psf (ro .15); Pg=20.0 psf; Pf ate DOL=1.15); Is=1. ; Ce=1.0; Cs=1.00; C snow loads have been es continuous bottom spaced at 4-0-0 oc. s been designed for a d nonconcurrent with as been designed for a d sesumed to be SF nanical connection (by capable of withstand at joint 7, 5 lb uplift a 122 lb uplift at joint 8. designed in accordan Residential Code sec and referenced standard d Industry Piggyback i nection to base truss ied building designer. Standard	=15.4 psf 0; Rough t=1.10 n conside chord be a 10.0 psf any othe a live loa here a rec between h BCDL = PF No.2 . y others) ing 11 lb t joint 2, 1 ce with th titons R5C of ANSI/T Truss Co s as applie	(Lum Cat C; ered for this aring. bottom er live loads ad of 20.0ps ctangle the bottom = 10.0psf. of truss to uplift at join 112 lb uplift be 2018 02.11.1 and PI 1. nnection	if it at		ANDI THOM VOHN PE-2017 PE-2017	MAS SON BER 018993	
		ameters and READ NOTES ON							NЛ	Tok	

Design valid for use only with MTeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclasse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

								RELEASE FOR CONSTRUCTION
Job	Truss		Truss Type	Qt	/ Ply	Lot 13 TCR		AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 164953206
240654	P19		Piggyback	1	1	Job Reference (optional	I64953206 LEE'S SUMMIT, MISSOURI
Wheeler Lumbe	r, Waverly, KS - 66871,		•	Run: 8.73 S Apr 3 2024 F	rint: 8.730 S Apr	3 2024 MiTek Industrie	s, Inc. Tu	Apr 16 00 7/30/2024
				ID:6gGhXSQUvqstVp1c71	xR4qy6jda-RfC?F	sB70Hq3NSgPqnL8w3	ulTXbGK	WrCDoi754zJe?!
		-0-11-5	7745		4 4 4 4 5			20-7-3
		0-11-5	<u>7-7-15</u> 7-7-15		<u>1-11-15</u> 4-4-0			-7-14 20-7-3 -7-15 0-11-5
				2x4 II				
			1 <u>2</u> 6 [3x4 =		4x5 =		
₽3 ⊤	0-2-2		2x4 I		\square	6 -+1		
4	0		15				16	6.4
			3				\searrow	2x4 II
4-3-10	4-0-0		8					
4 4	4	14						17
	e	1 2						8 9
	0-4-3							
		3x4 =	13	12	*****	11	******	10 3x4 =
		0	2x4 II	2x4 II		2x4 II		2x4 II
					19-7-14			
Scale = 1:41					15 / 14			
	X, Y): [4:0-2-0,Edge]						
oading	(psf)	Spacing	2-0-0	CSI	DEFL	in (loc) l/de	fl L/d	PLATES GRIP
CLL (roof) Snow (Pf/Pg)	25.0 20.4/20.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC 0.26 BC 0.13	Vert(LL) Vert(CT)	n/a - n/a	a 999	MT20 197/144
CDL	20.4/20.0	Rep Stress Incr	YES	WB 0.10	. ,	n/a - n/a 0.00 8 n/a		
BCLL BCDL	10.0* 10.0	Code	IRC2018/TPI2014	Matrix-S				Weight: 58 lb FT = 10%
UMBER		•	· · · · · ·					3
OP CHORD			 I russ design 	ied for wind loads in the p	ane of the truss	3		
	2x4 SPF No.2		only. For stu	ned for wind loads in the p ds exposed to wind (norm I Industry Gable End Deta	al to the face),			
SOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2		only. For stud see Standard or consult qua	ds exposed to wind (norm I Industry Gable End Deta alified building designer as	al to the face), ls as applicable s per ANSI/TPI	e, 1.		
BOT CHORD	2x4 SPF No.2 2x3 SPF No.2	eathing directly applied	only. For stur see Standard or consult qua 4) TCLL: ASCE Plate DOL=1.	ds exposed to wind (norm I Industry Gable End Deta alified building designer as 7-16; Pr=25.0 psf (roof LI .15); Pg=20.0 psf; Pf=20.4	al to the face), Is as applicable per ANSI/TPI Lum DOL=1.1 psf (Lum	e, 1.		
BOT CHORD DTHERS BRACING	2x4 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex	cept	only. For stur see Standard or consult qua 4) TCLL: ASCE Plate DOL=1. DOL=1.15 Pla Partially Exp.	ds exposed to wind (norm I Industry Gable End Deta alified building designer a: 7-16; Pr=25.0 psf (roof LL 15); Pg=20.0 psf; Pf=20.4 ate DOL=1.15); Is=1.0; Rd ; Ce=1.0; Cs=1.00; Ct=1.1	al to the face), Is as applicable per ANSI/TPI : Lum DOL=1.1 psf (Lum pugh Cat C; 0, Lu=50-0-0	9, 1. 15		
BOT CHORD DTHERS BRACING	2x4 SPF No.2 2x3 SPF No.2 Structural wood shi 6-0-0 oc purlins, ex 2-0-0 oc purlins (6- Rigid ceiling directh	cept	only. For stur see Standard or consult qua 4) TCLL: ASCE Plate DOL=1. DOL=1.15 Pla Partially Exp.	ds exposed to wind (norm I Industry Gable End Deta alified building designer a: 7-16; Pr=25.0 psf (roof LL 15); Pg=20.0 psf; Pf=20.4 ate DOL=1.15); Is=1.0; Rd	al to the face), Is as applicable per ANSI/TPI : Lum DOL=1.1 psf (Lum pugh Cat C; 0, Lu=50-0-0	9, 1. 15		
BOT CHORD DTHERS BRACING TOP CHORD	2x4 SPF No.2 2x3 SPF No.2 Structural wood shi 6-0-0 oc purlins, ex 2-0-0 oc purlins (6- Rigid ceiling direct bracing. (size) 2=19-7-1	ccept 0-0 max.): 4-6. y applied or 6-0-0 oc 14, 8=19-7-14, 10=19-	only. For stur see Standard or consult qua to r CLL: ASCE Plate DOL=1. DOL=1.15 Pla Partially Exp. 5) Unbalanced s design. 7.11 6) This truss has	ds exposed to wind (norm I Industry Gable End Deta alified building designer a: 7-16; Pr=25.0 psf (roof LL 15); Pg=20.0 psf; Pf=20.4 ate DOL=1.15); Is=1.0; Ro ; Ce=1.0; Cs=1.00; Ct=1.4 snow loads have been cor s been designed for great	al to the face), Is as applicable per ANSI/TPI : Lum DOL=1.1 psf (Lum ough Cat C; 0, Lu=50-0-0 sidered for this er of min roof liv	9, 1. 5		
BOT CHORD DTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x3 SPF No.2 Structural wood sh 6-0-0 oc purlins, ex 2-0-0 oc purlins (6- Rigid ceiling directh bracing. (size) 2=19-7-1 11=19-7- 13=19-7-	ccept 0-0 max.): 4-6. y applied or 6-0-0 oc 14, 8=19-7-14, 10=19- -14, 12=19-7-14, -14	 only. For sturse Standard or consult quarts and the second standard or consult quarts. 4) TCLL: ASCE Plate DOL=1. DOL=1.15 Plate DOL=1. DOL=1.15 Plate DOL=1. This truss has load of 12.0 poverhangs no 	ds exposed to wind (norm I Industry Gable End Deta alified building designer a: 7-16; Pr=25.0 psf (roof LL 15); Pg=20.0 psf; Pf=20.4 ate DOL=1.15); Is=1.0; Rd ; Ce=1.0; Cs=1.00; Ct=1.5 snow loads have been cor s been designed for great sof or 1.00 times flat roof k on-concurrent with other line	al to the face), Is as applicable per ANSI/TPI :: Lum DOL=1.1 .: psf (Lum rugh Cat C; 0, Lu=50-0-0 .sidered for this er of min roof liv aad of 15.4 psf of re loads.	9, 1. 5		
BOT CHORD DTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x3 SPF No.2 Structural wood shi 6-0-0 oc purlins, ex 2-0-0 oc purlins (6- Rigid ceiling directh bracing. (size) 2=19-7-1 11=19-7- 13=19-7 Max Horiz 2=-72 (L	ccept 0-0 max.): 4-6. y applied or 6-0-0 oc 14, 8=19-7-14, 10=19- -14, 12=19-7-14, 14 C 17)	 only. For stursee Standard or consult quation of consult quation of consult quation of consult quation of the provided of the partially Exp. the partially Exp. the partially Exp. This truss has load of 12.0 poverhangs no overhangs no quation over a degineral provide adeq and the partial provide adeq and the partial provide adeq and the partial provided p	ds exposed to wind (norm I Industry Gable End Deta alified building designer a: 7-16; Pr=25.0 psf (roof LL .15); Pg=20.0 psf; Pf=20.4 ate DOL=1.15); Is=1.0; Rd ; Ce=1.0; Cs=1.00; Ct=1.1 snow loads have been cor s been designed for great part of 1.00 times flat roof lu on-concurrent with other lin uate drainage to prevent version of the top of the top as continuous bottom chor	al to the face), Is as applicable s per ANSI/TPI : Lum DOL=1.1 opsf (Lum ough Cat C; 0, Lu=50-0-0 isidered for this er of min roof liv bad of 15.4 psf re loads. vater ponding.	9, 1. 5		
BOT CHORD DTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x3 SPF No.2 Structural wood shi 6-0-0 oc purlins, ex 2-0-0 oc purlins (6- Rigid ceiling direct bracing. (size) 2=19-7-1 11=19-7- 13=19-7- Max Horiz 2=-72 (L Max Uplift 2=-21 (L 10=-125	ccept 0-0 max.): 4-6. y applied or 6-0-0 oc 14, 8=19-7-14, 10=19- -14, 12=19-7-14, -14, C 17), C 12), 8=-19 (LC 13), (LC 13), 11=-27 (LC 8)	 only. For sturse Standard or consult quares 4) TCLL: ASCE Plate DOL=1. DOL=1.15 Plate DOL=1. DOL=1.15 Plate DOL=1. ODL=1.15 Plate DOL=1. On This truss hard load of 12.0 provide adeq (able requires) Gable requires (b) Gable requires (c) This truss hard load of 12.0 provide adeq (c) Gable studes setudes (c) Gable studes setudes (c) This truss hard load of 12.0 provide adeq (c) Gable studes (c) Gable studes setudes (c) This truss hard load of 12.0 provide adeq (c) Gable studes (c) Gable studes setudes (c) This truss hard load of 12.0 provide adeq (c) Gable studes (c) Gable studes setudes 	ds exposed to wind (norm I Industry Gable End Deta alified building designer a 7-16; Pr=25.0 psf (roof LL 15); Pg=20.0 psf; Pf=20.4 ate DOL=1.15); Is=1.0; Rd ; Ce=1.0; Cs=1.00; Ct=1.4 snow loads have been cor s been designed for great bef or 1.00 times flat roof k on-concurrent with other linuate drainage to prevent es continuous bottom chor spaced at 4-0-0 oc.	al to the face), Is as applicable as per ANSI/TPI : Lum DOL=1.1 psf (Lum bugh Cat C; 0, Lu=50-0-0 isidered for this er of min roof liv bad of 15.4 psf re loads. vater ponding. d bearing.	a, 1. 5 7e on		
BOT CHORD DTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x3 SPF No.2 Structural wood shi 6-0-0 oc purlins, ex 2-0-0 oc purlins (6- Rigid ceiling directh bracing. (size) 2=19-7-1 11=19-7- 13=19-7 Max Horiz 2=-72 (L Max Uplift 2=-21 (L) 10=-125 12=-43 (Max Grav 2=260 (L	ccept 0-0 max.): 4-6. y applied or 6-0-0 oc 14, 8=19-7-14, 10=19- 14, 12=19-7-14, -14 C 17) C 12), 8=-19 (LC 13), (LC 13), 11=-27 (LC 8 LC 9), 13=-123 (LC 12 .C 37), 8=226 (LC 37),	 only. For sturses Standard or consult qua or consult qua TCLL: ASCE Plate DOL=1. DOL=1.15 Plate DOL=1. DOL=1.15 Plate JOL=1. This truss has load of 12.0 p overhangs no T) Provide adeq Bable require Gable studs s chord live loa This truss has chord live loa This truss has chord live loa 	ds exposed to wind (norm I Industry Gable End Deta alified building designer a: 7-16; Pr=25.0 psf (roof LL 15); Pg=20.0 psf; Pf=20.4 ate DOL=1.15); Is=1.0; Ro ; Ce=1.0; Cs=1.00; Ct=1.4 snow loads have been cor s been designed for great basf or 1.00 times flat roof lu on-concurrent with other lin juate drainage to prevent se continuous bottom chor spaced at 4-0-0 oc.	al to the face), Is as applicable or per ANSI/TPI :: Lum DOL=1.1 .: psf (Lum rugh Cat C; 0, Lu=50-0-0 .sidered for this er of min roof liv or loads of 15.4 psf re loads. vater ponding. d bearing.	a, 1. 5 7e on		
BOT CHORD DTHERS BRACING OP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 Structural wood shi 6-0-0 oc purlins, ex 2-0-0 oc purlins (6- Rigid ceiling directh bracing. (size) 2=19-7-1 13=19-7 Max Horiz 2=-72 (L Max Uplift 2=-21 (L 10=-125 12=-43 (L 10=480 (12=367 (teept 0-0 max.): 4-6. y applied or 6-0-0 oc 14, 8=19-7-14, 10=19- 14, 12=19-7-14, 14 C 17) C 12), 8=-19 (LC 13), (LC 13), 11=-27 (LC 8 LC 9), 13=-123 (LC 12, C 37), 8=226 (LC 37), (LC 37), 11=365 (LC 5 (LC 5), 13=498 (LC 37)	 only. For stursee Standard or consult qua or Consult qua or Consult qua function consult qua design. d or DOL=1.15 Plate DOL=1. DOL=1.15 Plate DOL=1.15 Plate DOL=1.15 Plate adega design. for this truss has load of 12.0 p overhangs no overhangs no overhangs no overhangs no the stude set of the stude se	ds exposed to wind (norm I Industry Gable End Deta alified building designer a: 7-16; Pr=25.0 psf (roof LL .15); Pg=20.0 psf; Pf=20.4 ate DOL=1.15); Is=1.0; Rd ; Ce=1.0; Cs=1.00; Ct=1.1 snow loads have been cor s been designed for great usf or 1.00 times flat roof lk on-concurrent with other linuate drainage to prevent v as continuous bottom chor spaced at 4-0-0 oc. s been designed for a 10.0 d nonconcurrent with any as been designed for a live n chord in all areas where	al to the face), Is as applicable or er ANSI/TPI : Lum DOL=1.1 psf (Lum ough Cat C; 0, Lu=50-0-0 isidered for this er of min roof liv or for the for this er of min roof liv or loads. vater ponding. d bearing. 0 psf bottom other live loads e load of 20.0p; a rectangle	9, 1. 55 Ye on 5f		
BOT CHORD DTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x3 SPF No.2 Structural wood shi 6-0-0 oc purlins, ex 2-0-0 oc purlins (6- Rigid ceiling directh bracing. (size) 2=19-7-1 13=19-7 Max Horiz 2=-72 (L Max Uplift 2=-21 (L 10=-125 12=-43 (L 10=480 (12=367 (teept 0-0 max.): 4-6. y applied or 6-0-0 oc 14, 8=19-7-14, 10=19- 14, 12=19-7-14, 14 C 17) C 12), 8=-19 (LC 13), (LC 13), 11=-27 (LC 8 LC 9), 13=-123 (LC 12 C 37), 8=226 (LC 37), (LC 37), 11=365 (LC 5	 only. For sturse Standard or consult quares or consult quares of the second of the second of the second of the second or consult quares of the second of the second	ds exposed to wind (norm I Industry Gable End Deta alified building designer a 7-16; Pr=25.0 psf (roof LL 15); Pg=20.0 psf; Pf=20.4 ate DOL=1.15); Is=1.0; Rd ; Ce=1.0; Cs=1.00; Ct=1.4 snow loads have been cor s been designed for great bef or 1.00 times flat roof k on-concurrent with other linuate drainage to prevent ses continuous bottom chor spaced at 4-0-0 oc. s been designed for a 10.4 d nonconcurrent with any as been designed for a 10.4 d nonconcurrent with any as been designed for a linu chord in all areas where y 2-00-00 wide will fit betw y other members, with BC	al to the face), Is as applicable as per ANSI/TPI : Lum DOL=1.1 psf (Lum bugh Cat C; 0, Lu=50-0-0 isidered for this er of min roof live bad of 15.4 psf re loads. vater ponding. d bearing. 0 psf bottom other live loads e load of 20.0ps a rectangle veen the bottom DL = 10.0psf.	9, 1. 55 Ye on 5f		
BOT CHORD DTHERS BRACING OP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 Structural wood shi 6-0-0 oc purlins, ex 2-0-0 oc purlins (6- Rigid ceiling directh bracing. (size) 2=19-7-1 11=19-7 13=19-7 Max Horiz 2=-72 (L Max Uplift 2=-21 (L 10=-125 12=-43 (Max Grav 2=260 (L 10=480 (12=367 ((lb) - Maximum Cor Tension 1-2=0/22, 2-3=-134	Accept 0-0 max.): 4-6. y applied or 6-0-0 oc 14, 8=19-7-14, 10=19- -14, 12=19-7-14, -14 C 17) C 12), 8=-19 (LC 13), (LC 13), 11=-27 (LC 8 LC 9), 13=-123 (LC 12), C 37), 8=226 (LC 37), (LC 37), 11=365 (LC 5), (LC 37), 11=365 (LC 57), mpression/Maximum 1/79, 3-4=-143/91,	 only. For stursee Standard or consult quador consult quad	ds exposed to wind (norm I Industry Gable End Deta alified building designer a: 7-16; Pr=25.0 psf (roof LL .15); Pg=20.0 psf; Pf=20.4 ate DOL=1.15); Is=1.0; Rd ; Ce=1.0; Cs=1.00; Ct=1.1 snow loads have been cor s been designed for great sof or 1.00 times flat roof lk on-concurrent with other lin uate drainage to prevent to es continuous bottom chor spaced at 4-0-0 oc. s been designed for a 10.1 d nonconcurrent with any as been designed for a 10.1 d nonconcurrent with any as been designed for a live n chord in all areas where y 2-00-00 wide will fit betw y other members, with BC are assumed to be SPF Na nanical connection (by oth	al to the face), Is as applicable a per ANSI/TPI sper ANSI/TPI psf (Lum hugh Cat C; 0, Lu=50-0-0 isidered for this er of min roof liv pad of 15.4 psf ve loads. vater ponding. d bearing. 0 psf bottom other live loads e load of 20.0p; a rectangle veen the bottorr DL = 10.0psf. b, 2. ers) of truss to	a, 1. 5 ve on sf		OF MUSS
OT CHORD DTHERS BRACING OP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 Structural wood shi 6-0-0 oc purlins, ex 2-0-0 oc purlins (6- Rigid ceiling directl bracing. (size) 2=19-7-1 13=19-7 Max Horiz 2=-72 (L Max Uplift 2=-21 (L 10=-125 12=-43 (C) 10=480 (10=480 (12=367 (C) (lb) - Maximum Cor Tension 1-2=0/22, 2-3=-134 4-5=-71/89, 5-6=-51 7-8=-112/92, 8-9=0	Accept 0-0 max.): 4-6. y applied or 6-0-0 oc 14, 8=19-7-14, 10=19-7 -14, 12=19-7-14, -14 C 17) C 12), 8=-19 (LC 13), (LC 13), 11=-27 (LC 8 LC 9), 13=-123 (LC 12), (LC 37), 8=226 (LC 37), (LC 37), 11=365 (LC 5), (LC 5), 13=498 (LC 37) mpression/Maximum 1/79, 3-4=-143/91, 6/92, 6-7=-144/84, 1/22	 only. For sturse Standard or consult qua or consult qua TCLL: ASCE Plate DOL=1. DOL=1.15 Plate DOL=1.15 Plat	ds exposed to wind (norm I Industry Gable End Deta alified building designer a: 7-16; Pr=25.0 psf (roof LL 15); Pg=20.0 psf; Pf=20.4 ate DOL=1.15); Is=1.0; Rd ; Ce=1.0; Cs=1.00; Ct=1.4 snow loads have been cor s been designed for great bef or 1.00 times flat roof lo on-concurrent with other li uate drainage to prevent se continuous bottom chor spaced at 4-0-0 oc. s been designed for a 10.4 d nonconcurrent with any as been designed for a 10.4 d nonconcurrent with servent so chord in all areas where y 2-00-00 wide will fit betw y other members, with BC are assumed to be SPF Nu nanical connection (by oth capable of withstanding 2 at joint 8, 27 lb uplift at joint	al to the face), Is as applicable or per ANSI/TPL sper ANSI/TPL psf (Lum bugh Cat C; 0, Lu=50-0-0 isidered for this er of min roof liv bad of 15.4 psf re loads. vater ponding. d bearing. 0 psf bottom other live loads e load of 20.0psf a rectangle reen the bottom DL = 10.0psf. .2. ers) of truss to 1 lb uplift at joir nt 11, 43 lb upli	a, 1. 55 ve on s. sf	Å	OF MISSOL
OT CHORD DTHERS BRACING OP CHORD BOT CHORD CORCES OP CHORD BOT CHORD	2x4 SPF No.2 2x3 SPF No.2 Structural wood shi 6-0-0 oc purlins (6- Rigid ceiling directh bracing. (size) 2=19-7-1 11=19-7 13=19-7 Max Horiz 2=-72 (L Max Uplift 2=-21 (L 10=-125 12=-43 (Max Grav 2=260 (L 10=480 (12=367 ((lb) - Maximum Cor Tension 1-2=0/22, 2-3=-134 4-5=-71/89, 5-6=-51 7-8=-112/92, 8-9=0 2-13=-26/82, 12-13 10-11=-33/79, 8-10	Accept 0-0 max.): 4-6. y applied or 6-0-0 oc 14, 8=19-7-14, 10=19- -14, 12=19-7-14, -14 C 12), 8=-19 (LC 13), (LC 13), 11=-27 (LC 8 LC 9), 13=-123 (LC 12, C 37), 8=226 (LC 37), (LC 37), 11=365 (LC 5 (LC 5), 13=498 (LC 37), mpression/Maximum 1/79, 3-4=-143/91, 6/92, 6-7=-144/84, 1/22 =-26/82, 11-12=-26/82 =-33/79	 only. For stursee Standard or consult qua or consult qua or consult qua fue to consult qua to consult qua fue to consu	ds exposed to wind (norm I Industry Gable End Deta alified building designer a: 7-16; Pr=25.0 psf (roof LL 15); Pg=20.0 psf; Pf=20.4 ate DOL=1.15); Is=1.0; Ro ; Ce=1.0; Cs=1.00; Ct=1.1 snow loads have been cor s been designed for great to for 1.00 times flat roof lu on-concurrent with other lin uate drainage to prevent vis se continuous bottom chor spaced at 4-0-0 oc. s been designed for a 10.0 d nonconcurrent with any as been designed for a 10.0 d nonconcurrent with they n chord in all areas where y 2-00-00 wide will fit betw y other members, with BC are assumed to be SPF Na nanical connection (by oth capable of withstanding 2	al to the face), Is as applicable or per ANSI/TPL sper ANSI/TPL psf (Lum bugh Cat C; 0, Lu=50-0-0 isidered for this er of min roof liv bad of 15.4 psf re loads. vater ponding. d bearing. 0 psf bottom other live loads e load of 20.0psf a rectangle reen the bottom DL = 10.0psf. .2. ers) of truss to 1 lb uplift at joir nt 11, 43 lb upli	a, 1. 55 ve on s. sf		STATE OF MISSOLANDREW
CORCES	2x4 SPF No.2 2x3 SPF No.2 Structural wood shi 6-0-0 oc purlins (6- Rigid ceiling directh bracing. (size) 2=19-7-1 11=19-7 13=19-7 Max Horiz 2=-72 (L Max Uplift 2=-21 (L 10=-125 12=-43 (Max Grav 2=260 (L 10=480 (12=367 ((lb) - Maximum Cor Tension 1-2=0/22, 2-3=-134 4-5=-71/89, 5-6=-51 7-8=-112/92, 8-9=0 2-13=-26/82, 12-13 10-11=-33/79, 8-10	Accept 0-0 max.): 4-6. y applied or 6-0-0 oc 14, 8=19-7-14, 10=19- -14, 12=19-7-14, -14 C 17) (LC 13), 11=-27 (LC 8 LC 9), 13=-123 (LC 12 C 37), 8=226 (LC 37), (LC 37), 11=365 (LC 3 (LC 37), 11=365 (LC 37), (LC 37), 11=365 (LC 37), (LC 37), 13=3498 (LC 37), mpression/Maximum 1/79, 3-4=-143/91, 6/92, 6-7=-144/84, 1/22 =-26/82, 11-12=-26/82	 only. For sturse Standard or consult qua or consult qua or consult qua fue to consult qua to consult qua fue to consul	ds exposed to wind (norm I Industry Gable End Deta alified building designer a: 7-16; Pr=25.0 psf (roof LL .15); Pg=20.0 psf; Pf=20.4 ate DOL=1.15); Is=1.0; Rd ; Ce=1.0; Cs=1.00; Ct=1.1 snow loads have been cor s been designed for great to for 1.00 times flat roof Ik on-concurrent with other lin uate drainage to prevent vis se continuous bottom chor spaced at 4-0-0 oc. s been designed for a 10.1 d nonconcurrent with any as been designed for a 10.1 d nonconcurrent with ether y 2-00-00 wide will fit betw y 2-00-00 wide will fit betw y other members, with BC are assumed to be SPF Na nanical connection (by oth capable of withstanding 2 at joint 8, 27 lb uplift at joint 23 lb uplift at joint 13 and 1 designed in accordance w	al to the face), Is as applicable or an ANSI/TPU per ANS	a, 1. 55 ve on sf n t ft		STATE OF MISSOLUTION
CORCES	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood shi 6-0-0 oc purlins, ex 2-0-0 oc purlins (6- Rigid ceiling directh bracing. (size) 2=19-7-1 11=19-7 13=19-7 Max Horiz 2=-72 (L Max Uplift 2=-21 (L 10=-125 12=-43 (Max Grav 2=260 (L 10=480 (12=367 ((lb) - Maximum Cor Tension 1-2=0/22, 2-3=-134 4-5=-71/89, 5-6=-5i 7-8=-112/92, 8-9=0 2-13=-26/82, 12-13 10-11=-33/79, 8-10 6-11=-277/76, 5-12 7-10=-390/170	Accept 0-0 max.): 4-6. y applied or 6-0-0 oc 14, 8=19-7-14, 10=19- 14, 12=19-7-14, 14 C 17) C 12), 8=-19 (LC 13), (LC 13), 11=-27 (LC 8 LC 9), 13=-123 (LC 12 LC 37), 8=226 (LC 37), (LC 37), 11=365 (LC 5 (LC 5), 13=498 (LC 37) mpression/Maximum 1/79, 3-4=-143/91, 6/92, 6-7=-144/84, 1/22 =-26/82, 11-12=-26/82 =-33/79 =-286/91, 3-13=-394/1	 only. For sturse Standard or consult que or consult que or consult que 4) TCLL: ASCE Plate DOL=1. DOL=1.15 Plate DOL=1. DOL=1.15 Plate DOL=1. DOL=1.15 Plate DOL=1. This truss has load of 12.0 p overhangs no 7) Provide adeq 8) Gable require 9) Gable require 9) Gable require 9) Gable studs si chord live loa to the bottom 3-06-00 tall b chord and an 12) All bearings a 13) Provide mech bearing plate 2, 19 lb uplift at joint 12, 12 joint 10. 69, 14) This truss has chord live loa an 12. All bearings a 13) Provide mech bearing plate 2, 19 lb uplift at joint 12, 12 joint 10. 69, 14) This truss is control and an 12. 	ds exposed to wind (norm I Industry Gable End Deta alified building designer a: 7-16; Pr=25.0 psf (roof LL 15); Pg=20.0 psf; Pf=20.4 ate DOL=1.15); Is=1.0; Rc ; Ce=1.0; Cs=1.00; Ct=1.4 snow loads have been cor s been designed for great bef or 1.00 times flat roof lo on-concurrent with other li uate drainage to prevent se continuous bottom chor spaced at 4-0-0 oc. s been designed for a 10.4 d nonconcurrent with any as been designed for a 10.4 d nonconcurrent with servent se continuous bottom chor spaced at 4-0-0 oc. s been designed for a 10.4 d nonconcurrent with servent y 2-00-00 wide will fit betw y other members, with BC are assumed to be SPF Nu- nanical connection (by oth capable of withstanding 2 at joint 8, 27 lb uplift at joint 23 lb uplift at joint 13 and 1 designed in accordance w Residential Code sections	al to the face), Is as applicable as per ANSI/TPI : Lum DOL=1.1 psf (Lum bugh Cat C; 0, Lu=50-0-0 isidered for this er of min roof live bad of 15.4 psf re loads. vater ponding. d bearing.) psf bottom other live loads e load of 20.0gsf a rectangle reen the bottom DL = 10.0psf. .2. ers) of truss to 1 lb uplift at joir nt 11, 43 lb upli 25 lb uplift at th the 2018 R502.11.1 and ISI/TPI 1.	a, 1. 55 ve on sf n t ft		S ANDREW THOMAS JOHNSON
OT CHORD DTHERS BRACING TOP CHORD BOT CHORD REACTIONS CORCES TOP CHORD BOT CHORD VEBS IOTES) Unbalance this design	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood shi 6-0-0 oc purlins, ex 2-0-0 oc purlins (6- Rigid ceiling directh bracing. (size) 2=19-7-1 11=19-7: 13=19-7: Max Horiz 2=-72 (LI Max Uplift 2=-21 (LI 10=-125 12=-43 (Max Grav 2=260 (L 10=480 (12=367 ((lb) - Maximum Cor Tension 1-2=0/22, 2-3=-134 4-5=-71/89, 5-6=-5i 7-8=-112/92, 8-9=0 2-13=-26/82, 12-13 10-11=-33/79, 8-10 6-11=-277/76, 5-12 7-10=-390/170	Accept 0-0 max.): 4-6. y applied or 6-0-0 oc 14, 8=19-7-14, 10=19- -14, 12=19-7-14, -14 C 17) C 12), 8=-19 (LC 13), (LC 13), 11=-27 (LC 8 LC 9), 13=-123 (LC 12 C 37), 8=226 (LC 37), (LC 37), 11=365 (LC 5 (LC 5), 13=498 (LC 37) mpression/Maximum 1/79, 3-4=-143/91, 6/92, 6-7=-144/84, 1/22 =-26/82, 11-12=-26/82 =-33/79 =-286/91, 3-13=-394/1 e been considered for	 only. For sturse Standard or consult qua or consult qua or consult qua function consult qua anticol consult qua function consult qua anticol consult qua function consult qua anticol consult qua function and qua function consult qua function and qua funct	ds exposed to wind (norm I Industry Gable End Deta alified building designer a: 7-16; Pr=25.0 psf (roof LL 15); Pg=20.0 psf; Pf=20.4 ate DOL=1.15); Is=1.0; Rd ; Ce=1.0; Cs=1.00; Ct=1.1 snow loads have been cor s been designed for great bsf or 1.00 times flat roof lk on-concurrent with other linuate drainage to prevent to es continuous bottom chor spaced at 4-0-0 oc. s been designed for a 10.1 d nonconcurrent with any as been designed for a 10.1 d nonconcurrent with any at joint 8, 27 lb uplift at joint 23 lb uplift at joint 13 and 1 designed in accordance w Residential Code sections and referenced standard AN d Industry Piggyback Trus nection to base truss as a	al to the face), Is as applicable as per ANSI/TPI : Lum DOL=1.1 psf (Lum bugh Cat C; 0, Lu=50-0-0 isidered for this er of min roof live bad of 15.4 psf re loads. vater ponding. d bearing.) psf bottom other live loads e load of 20.0pp a rectangle veen the bottom DL = 10.0psf. 5.2. ers) of truss to 1 lb uplift at join th 11, 43 lb upli 25 lb uplift at th the 2018 R502.11.1 and SI/TPI 1. s Connection	a, 1. 55 ve on sf n t ft		ANDREW THOMAS JOHNSON
CORCES CORCES COP CHORD COP CHORD COP CHORD CORCES CORCES COP CHORD CHORD VEBS COT CHORD VEBS COT CHORD VEBS COT CHORD VEBS COT CHORD VEBS COT CHORD VEBS	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood shi 6-0-0 oc purlins, ex 2-0-0 oc purlins (6- Rigid ceiling directh bracing. (size) 2=19-7-1 11=19-7- 13=19-7 Max Horiz 2=-72 (L Max Uplift 2=-21 (L) 10=-125 12=-43 (Max Grav 2=260 (L 10=480 (12=367 ((lb) - Maximum Cor Tension 1-2=0/22, 2-3=-134 4-5=-71/89, 5-6=-56 7-8=-112/92, 8-9=0 2-13=-26/82, 12-13 10-11=-33/79, 8-10 6-11=-277/76, 5-12 7-10=-390/170 ed roof live loads have CE 7-16; Vult=115mpl	Accept 0-0 max.): 4-6. y applied or 6-0-0 oc 14, 8=19-7-14, 10=19- -14, 12=19-7-14, -14 C 17) C 12), 8=-19 (LC 13), (LC 13), 11=-27 (LC 8 LC 9), 13=-123 (LC 12 C 37), 8=226 (LC 37), (LC 37), 11=365 (LC 5 (LC 5), 13=498 (LC 37) mpression/Maximum 1/79, 3-4=-143/91, 6/92, 6-7=-144/84, 1/22 =-26/82, 11-12=-26/82 =-33/79 =-286/91, 3-13=-394/1 e been considered for	 only. For sturse Standard or consult quador or consult quador consult quador consult quador consult quador consult quador quad	ds exposed to wind (norm I Industry Gable End Deta alified building designer a 7-16; Pr=25.0 psf (roof LL 15); Pg=20.0 psf; Pf=20.4 ate DOL=1.15); Is=1.0; Rd ; Ce=1.0; Cs=1.00; Ct=1.4 snow loads have been cor s been designed for great bef or 1.00 times flat roof k on-concurrent with other linuate drainage to prevent ses continuous bottom chor spaced at 4-0-0 oc. s been designed for a 10.4 d nonconcurrent with any as been designed for a 10.4 d nonconcur	al to the face), Is as applicable or er ANSI/TPI : Lum DOL=1.1 psf (Lum ough Cat C; 0, Lu=50-0-0 isidered for this er of min roof live ad of 15.4 psf er loads. vater ponding. d bearing. 0 psf bottom other live loads e load of 20.0ps a rectangle veen the bottom DL = 10.0psf. 0.2. ers) of truss to 1 lb uplift at join nt 11, 43 lb uplif 25 lb uplift at th the 2018 R502.11.1 and SI/TPI 1. s Connection ipplicable, or	a, 1. 55 ve on s. sf n nt ft	Q.	ANDREW THOMAS JOHNSON
CORCES COP CHORD COP CHORD COP CHORD CORCES COP CHORD COP CHORD COP CHORD COP CHORD COP CHORD COP CHORD VEBS COP CHORD COP CHORD VEBS COP CHORD VEBS COP CHORD VEBS COP CHORD COP CHORD VEBS COP CHORD COP CHORD VEBS COP CHORD COP COP CHORD COP CHORD COP COP CHORD COP COP CHORD COP COP COP COP COP COP COP COP COP COP	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood shi 6-0-0 oc purlins, ex 2-0-0 oc purlins (6- Rigid ceiling directh bracing. (size) 2=19-7-1 11=19-7- 13=19-7 Max Horiz 2=-72 (L Max Uplift 2=-21 (L 10=-125 12=-43 (C) (Max Grav 2=260 (L 10=480 (12=367 (C) (lb) - Maximum Cor Tension 1-2=0/22, 2-3=-134 4-5=-71/89, 5-6=-51 7-8=-112/92, 8-9=0 2-13=-26/82, 12-13 10-11=-337/9, 8-10 6-11=-277/76, 5-12 7-10=-390/170 ed roof live loads have CE 7-16; Vult=115mpl ph; TCDL=6.0psf; BC	Accept 0-0 max.): 4-6. y applied or 6-0-0 oc 14, 8=19-7-14, 10=19- -14, 12=19-7-14, 14 C 17) (LC 13), 11=-27 (LC 8 LC 9), 13=-123 (LC 12 C 37), 8=226 (LC 37), (LC 37), 11=365 (LC 5 (LC 5), 13=498 (LC 37) npression/Maximum 1/79, 3-4=-143/91, 6/92, 6-7=-144/84, 1/22 =-26/82, 11-12=-26/82 =-33/79 =-286/91, 3-13=-394/1 e been considered for h (3-second gust) CDL=6.0psf; h=25ft; C	 only. For sturse Standard or consult quares or consult qu	ds exposed to wind (norm I Industry Gable End Deta alified building designer a: 7-16; Pr=25.0 psf (roof LL 15); Pg=20.0 psf; Pf=20.4 ate DOL=1.15); Is=1.0; Rc ; Ce=1.0; Cs=1.00; Ct=1.4 snow loads have been cor s been designed for great bof or 1.00 times flat roof k on-concurrent with other li uate drainage to prevent ses continuous bottom chor spaced at 4-0-0 oc. s been designed for a 10.4 d nonconcurrent with any as been designed for a 10.4 d nonconcurrent with any as been designed for a 10.4 d nonconcurrent with BC are assumed to be SPF Nk nanical connection (by oth capable of withstanding 2 at joint 8, 27 lb uplift at joint 23 lb uplift at joint 13 and 1 designed in accordance w Residential Code sections d referenced standard AN d Industry Piggyback Trus nection to base truss as ied building designer.	al to the face), Is as applicable as per ANSI/TPL to STANSI/TPL psf (Lum pugh Cat C; 0, Lu=50-0-0 isidered for this er of min roof live bad of 15.4 psf re loads. vater ponding. d bearing. 0 psf bottom other live loads e load of 20.0ps a rectangle reen the bottom DL = 10.0psf. .2. ers) of truss to 1 lb uplift at join nt 11, 43 lb upli 25 lb uplift at th the 2018 R502.11.1 and ISI/TPL 1. s Connection upplicable, or ot depict the siz-	a, 1. 55 ve on s. sf n nt ft	C C C	ANDREW THOMAS JOHNSON
OT CHORD THERS RACING OP CHORD OT CHORD EACTIONS ORCES OP CHORD OT CHORD VEBS OTES) Unbalance this design) Wind: ASC Vasd=91m II; Exp C; cantilever	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood shi 6-0-0 oc purlins, ex 2-0-0 oc purlins (6- Rigid ceiling directh bracing. (size) 2=19-7-1 11=19-7: 13=19-7: Max Horiz 2=-72 (LI Max Uplift 2=-21 (LI 10=-125 12=-43 (Max Grav 2=260 (L 10=480 (12=367 ((lb) - Maximum Cor Tension 1-2=0/22, 2-3=-134 4-5=-71/89, 5-6=-5i 7-8=-112/92, 8-9=0 2-13=-26/82, 12-13 10-11=-33/79, 8-10 6-11=-277/76, 5-12 7-10=-390/170 ed roof live loads haven. CE 7-16; Vult=115mp ph; TCDL=6.0ps; BG left and right exposed	Accept 10-0 max.): 4-6. y applied or 6-0-0 oc 14, 8=19-7-14, 10=19- 14, 12=19-7-14, 14 C 17) C 12), 8=-19 (LC 13), (LC 13), 11=-27 (LC 8 LC 9), 13=-123 (LC 12) C 37), 8=226 (LC 37), (LC 37), 11=365 (LC 5) (LC 37), 11=365 (LC 5) (LC 37), 11=365 (LC 37) mpression/Maximum 1/79, 3-4=-143/91, 6/92, 6-7=-144/84, 1/22 =-26/82, 11-12=-26/82 =-33/79 =-286/91, 3-13=-394/12 e been considered for h (3-second gust) CDL=6.0psf; h=25ft; C	 only. For sturse Standard or consult qua or consult qua or consult qua for consult qua for consult qua and consult qua for consu for consult qua for	ds exposed to wind (norm I Industry Gable End Deta alified building designer a: 7-16; Pr=25.0 psf (roof LL .15); Pg=20.0 psf; Pf=20.4 ate DOL=1.15); Is=1.0; Rt ; Ce=1.0; Cs=1.00; Ct=1.1 snow loads have been cor s been designed for great participation of the state of the on-concurrent with other in uate drainage to prevent the as continuous bottom chor spaced at 4-0-0 oc. s been designed for a 10.4 d nonconcurrent with any as been designed for a live n chord in all areas where y 2-00-00 wide will fit betw y other members, with BC are assumed to be SPF No nanical connection (by oth capable of withstanding 2 at joint 8, 27 Ib uplift at joi 23 Ib uplift at joint 13 and 10 designed in accordance w Residential Code sections d referenced standard AN d Industry Piggyback Trus nection to base truss as a ied building designer. din representation does not toon of the purlin along the	al to the face), Is as applicable as per ANSI/TPL to STANSI/TPL psf (Lum pugh Cat C; 0, Lu=50-0-0 isidered for this er of min roof live bad of 15.4 psf re loads. vater ponding. d bearing. 0 psf bottom other live loads e load of 20.0ps a rectangle reen the bottom DL = 10.0psf. .2. ers) of truss to 1 lb uplift at join nt 11, 43 lb upli 25 lb uplift at th the 2018 R502.11.1 and ISI/TPL 1. s Connection upplicable, or ot depict the siz-	a, 1. 55 ve on s. sf n nt ft		S ANDREW THOMAS JOHNSON

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
005	11000		Guy	,		DEVELOPMENT SERVICES 164953207
240654	P20	Piggyback	1	1	Job Reference (optional	
			-			00/00/000/

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tu Apr 16 6027/30/29:24 ID:asq4InR6g8_k7zcohkSgc1y6jdZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKW CDoi7J4acC

Scale = 1:41.1

Plate Offsets (X, Y): [3:0-2-0,Edge]

	A, T). [3.0-2-0,Euge]				-								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.24 0.14 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 53 lb	GRIP 197/144 FT = 10%
	2x4 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, exo 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 2=19-7-14 13=19-7-1 Max Horiz 2=-36 (LC Max Uplift 2=-52 (LC 10=-38 (L 12=-77 (LC 10=375 (L 12=437 (L	-0 max.): 3-7. applied or 6-0-0 oc 4, 8=19-7-14, 10=19-7 14, 12=19-7-14, 4 : 13) : 12), 8=-49 (LC 13), C 8), 11=-76 (LC 9), C 8), 13=-45 (LC 9), C 37), 8=262 (LC 37), C 55), 11=448 (LC 3), C 36), 13=402 (LC 5)	5) 7-14, 6) 7) 8) 9) 10 6), ¹¹	only. For stt see Standarr or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 P Partially Exp Unbalanced design. This truss ha load of 12.0 overhangs n Provide ader Gable requir Gable studs)) This truss ha chord live loa) * This truss fa on the bottor	hed for wind loac dis exposed to w d Industry Gable lalified building d 7-16; Pr=25.0 p 1.15); Pg=20.0 ps late DOL=1.15); .; Ce=1.0; Cs=1. snow loads have is been designed ps for 1.00 times on-concurrent wi quate drainage to es continuous bo spaced at 4-0-0 is been designed ad nonconcurren nas been designed ad nonconcurren nas been designed ad nonconcurren py 2-00-00 wide v	ind (norm End Deta esigner a: sf (roof LL sf; Pf=20.2 Is=1.0; Rc 00; Ct=1.7 been cor I for great flat roof Ik th other lin o prevent to thor of a 10.0 t with any ad for a liv as where	al to the face ils as applical s per ANSI/TF t psf (Lum ough Cat C; 10, Lu=50-0-C nsidered for th er of min roof pad of 15.4 p: ve loads. water ponding d bearing. D psf bottom other live loa e load of 20.0 a rectangle), ble, Pl 1. 1.15) nis live sf on g. ds. Dpsf					
FORCES	(lb) - Maximum Com Tension 1-2=0/22, 2-3=-154/ 4-5=-74/51, 5-6=-74, 7-8=-142/89, 8-9=0/	55, 3-4=-94/58, /51, 6-7=-75/52,		 All bearings Provide mec bearing plate 	ny other member are assumed to h hanical connection capable of with	oe SPF No on (by oth standing 5	o.2 . ers) of truss t 2 lb uplift at j	o oint			6	TATE OF J	MISSO
BOT CHORD WEBS	,	19/83, 11-12=-19/83 29/78 369/124,		at joint 11, 7 13.) This truss is	at joint 8, 38 lb i 7 lb uplift at joint designed in acco	12 and 45 ordance w	ib uplift at jo ith the 2018	int				STANDI THOM	MAS Y
this design 2) Wind: ASC Vasd=91m II; Exp C; I cantilever	ed roof live loads have	been considered for (3-second gust) DL=6.0psf; h=25ft; Ca velope) exterior zone ; end vertical left and	at. 16 ;;	 R802.10.2 a See Standar Detail for Co consult quali Graphical put 		andard AN back Trus truss as a igner. on does no	ISI/TPI 1. s Connection applicable, or ot depict the s			(A start	NUM PE-2017	BER 018993

April 17,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	
240654	R1	Roof Special Girder	1	2	Job Reference (optional	DEVELOPMENT SERVICES 164953208 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -	66871,	Run: 8.73 S Apr 3 2	024 Print: 8.	730 S Apr 3	2024 MiTek Industries, Inc. Tu	

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tuk Apr 16 (6) 28/30/2024 ID:m35xKoOf4PxX569_pqNCJhy6jcK-RfC?PsB70Hq3NSgPqnL8w3uITXbGFWrCDoi7-420?

Scale = 1:45.8

Plate Offsets	(X, Y):	[5:0-5-8,Edge]
---------------	---------	----------------

Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 25.0 20.4/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO		CSI TC BC WB	0.80 0.35 0.82	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.13 0.04	(loc) 2 2 5	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES M18AHS MT20	GRIP 142/136 197/144
BCLL BCDL	10.0 <i>*</i> 10.0	Code	IRC2018/	I PI2014	Matrix-S		Wind(LL)	-0.01	2	>999	240	Weight: 221 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES	9-1:2x4 SPF 2100F2-0-0 oc purlins (6-0 end verticals.Rigid ceiling directly bracing.	pt* 10-1:2x6 SPF No 1.8E -0 max.): 1-4, excep applied or 10-0-0 oc ► bearing block), (req =0-6-0 .C 9), 10=7162 (LC pression/Maximum 7937/0, 2-3=-7963/0, 430/0 /141, 2-9=-4764/0, 61 067, 3-9=0/4908,	2.2, 4) 5) 20) 6) 7) 2 8) 9) 10) 1	each face wit 3" o.c. 12 Toi to be SPF NG Wind: ASCE Vasd=91mph II; Exp C; End and right exp Lumber DOL=1 TCLL: ASCE Plate DOL=1 DOL=1.15 PI Partially Exp. Provide adec All plates are this truss ha chord live loas * This truss ha chord and and All bearings a This truss is of	2 bearing block 12 h 3 rows of 10d ((tal fasteners per bl b.2. 7-16; Vult=115mp i; TCDL=6.0psf; Bi closed; MWFRS ((osed ; end vertica =1.60 plate grip D 7-16; Pr=25.0 psf; ate DOL=1.15); B ; Ce=1.0; Cs=1.00 uate drainage to p MT20 plates unle s been designed fi di nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wii y other members, are assumed to be designed in accord	0.131 [°] x; lock. Be h (3-sec CDL=6.0 envelope I left and OL=1.60 (roof LL PF=20.2 =1.0; Rc 0; Ct=1.7 or event h resvent h or a liv s where II fit betw with BC SPF Nd SPF Nd dance w	3^{n}) nails spac aring is assu cond gust) Dpsf; h=25ft; cantilever d right expose) :: Lum DOL= d psf (Lum bugh Cat C; 10, Lu=50-0-(water pondin wise indicate e load of 20.1 a rectangle veen the bott DL = 10.0ps .2. ith the 2018	ed med Cat. left ed; 1.15 0 g. dd. dg. dg. dg. om f.		oncentra Vert: 3= 14=-13	-1393, 93, 15=	11=-1396, 12=- 1390	
 2-ply truss (0.131"x3" Top chord staggered oc, 2x4 - 1 Bottom ch staggered Web conn All loads a except if n CASE(S) s provided to 	to be connected toge) nails as follows: s connected as follows: at 0-9-0 oc, 2x8 - 2 ro ords connected as follows: ords connected as follows: at 0-9-0 oc, 2x4 - 1 ro ected as follows: 2x4 - rre considered equally oted as front (F) or ba section. Ply to ply conr o distribute only loads erwise indicated.	5: 2x6 - 2 rows ws staggered at 0-9-0 cows: 2x6 - 2 rows w at 0-9-0 oc. 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO/ bections have been	12)) 13)	R802.10.2 ar Graphical pu or the orienta bottom chord Hanger(s) or provided suff Ib down and design/select responsibility AD CASE(S) Dead + Snot Increase=1. Uniform Loa	nd referenced stan rlin representation titon of the purlin a l. other connection of icient to support of 238 lb up at 12-9- ion of such conne of others. Standard w (balanced): Lun 15	dard AN does no long the device(s oncentra 4 on top ction de	ISI/TPI 1. tot depict the set top and/or) shall be ated load(s) 3 o chord. The vice(s) is the	size 338		l	*	ANDI THOM THOM PE-2017	LENGING

April 17,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
240654	R2	Roof Special Girder	1	2	Job Reference (optional	DEVELOPMENT SERVICES 164953209 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -	66871,	Run: 8.73 S Apr 3 2	024 Print: 8.7	730 S Apr 3	2024 MiTek Industries, Inc. Tu	

Kun: 6.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 Millek Industries, Inc. Tup Apr 16 (600-87 30/200124 ID:m35xKoOf4PxX569_pqNCJhy6jcK-RfC?PsB70Hq3NSgPqnL8w3uITXbGFWrCDoi754259?

Scale = 1:45.8 Plate Offsets (X, Y): [5:0-5-8,Edge]

	, , [, -3-]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/	/TPI2014	CSI TC BC WB Matrix-S	0.80 0.35 0.82	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.08 -0.13 0.04 -0.01	(loc) 2 2 5 2	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES M18AHS MT20 Weight: 221 lb	GRIP 142/136 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0.131*X3") Top chords staggered a oc, 2x4 - 1 Bottom chor staggered a oc, 2x4 - 1 Bottom chor staggered a oc, 2x4 - 1	2x8 SP 2400F 2.0E 2x6 SPF No.2 *Exce 2x4 SPF No.2 *Exce 9-1:2x4 SPF 2100F 2-0-0 oc purlins (6-0 end verticals. Rigid ceiling directly bracing. (size) 5=(0-3-8 - 0-5-2), 10 Max Horiz 10=147 (I Max Grav 5=6552 (I (Ib) - Maximum Com Tension 1-10=-6941/0, 1-2=- 3-4=-3641/0, 1-2=- 3-5000, 1-2=-3641/0, 1-2=-3641/0, 1-2=- 3-5000, 1-2=-3641/0, 1-2=-3641/0, 1-2=-3641/0, 1-2=-3641/0, 1-2=-3641/0, 1-2=-3641/0, 1-2=-3641/0, 1-2=-364	A-0 max.): 1-4, except applied or 10-0-0 oc + bearing block), (req. =0-6-0 _C 9) _C 19), 10=7162 (LC - pression/Maximum 7937/0, 2-3=-7963/0, 430/0 0/141, 2-9=-4764/0, 61 0067, 3-9=0/4908, 6344 ther with 10d s: 2x6 - 2 rows ws staggered at 0-9-0 ows: 2x6 - 2 rows ws to -9-0 oc. -1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LOP fections have been	2.2, 4) t 5) 20) 6) 7) 8) 9) 10) 11) 12)) 13)	each face wii 3" o.c. 12 Too to be SPF Nc Wind: ASCE Vasd=91mpt II; Exp C; En and right exp Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15 PI Partially Exp. Provide adec All plates are This truss ha chord live loa chord live loa chord and ar All bearings a This truss is International R802.10.2 ar Graphical pu or the orienta bottom choro Hanger(s) or provided suff Ib down and design/seleci responsibility AD CASE(S) Dead + Snc	7-16; Vult=115m, n; TCDL=6.0psf; E closed; MWFRS i osed; end vertica =.1.60 plate grip ID : 7-16; Pr=25.0 ps .15); Pg=20.0 ps late DOL=1.15); I: ; Ce=1.0; Cs=1.0 quate drainage to be MT20 plates unh is been designed ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w by other members are assumed to b designed in accor Residential Code and referenced sta rlin representation ation of the purlin b, other connection ficient to support 238 lb up at 12-9 tion of such conner of others. Standard w (balanced): Lu .15	(0.131"x: olock. Be ph (3-sec 3CDL=6. (envelope al left and OOL=1.6 ff (roof LL f; Pf=20.4 s=1.0; Re 00; Ct=1.7 prevent ' ess other for a 10.0; Re 100; Ct=1.7 prevent ' ess other for a 10.0; Re 100; Ct=1.7 prevent ' ess other for a 10.0; Re do for a liv as where vill fit betv, with BC e SPF Ne dance we sections ndard AN n does no along the device(sconcentra -)-4 on top ection de	3") nails spac aring is assu cond gust) Dpsf; h=25ft; e); cantilever d right expose D :: Lum DOL= H psf (Lum Dugh Cat C; 10, Lu=50-0-(Nater pondin water pondin water pondin water pondin water pondin water pondin water pondin water pondin water pondin water pondin twe indicate D psf bottom other live loa e load of 20. a rectangle ween the bott DL = 10.0ps D.2. the 2018 is R502.11.1 a ISI/TPI 1. Dt depict the se a top and/or is shall be ated load(s) 3 o chord. The vice(s) is the	eed med Cat. left ed; 1.15 0 g. ed. ogs f. om f. and size	Ca	14=-13	1393, 93, 15=	ads (lb) 11=-1396, 12=-1 -1390 -13	1394, 13=-1393, MISSOLIN ASSON

April 17,2024

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.66	Vert(LL)	-0.12	8	>999	360	MT20	197/144
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.59	Vert(CT)	-0.19	8	>785	240	M18AHS	142/136
TCDL	10.0	Rep Stress Incr	NO		WB	0.96	Horz(CT)	0.11	6	n/a	n/a		
BCLL	10.0*	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.08	8	>999	240		
BCDL	10.0											Weight: 196 lb	FT = 10%
LUMBER			2) All loads are	considered e	qually applie	d to all plies,		15) Hai	nger(s) o	or othe	r connection devi	ce(s) shall be
TOP CHORD	2x6 SPF No.2 *Exce	ept* 3-5:2x6 SP 2400)F	except if not	ed as front (F)	or back (B)	face in the L	OAD					entrated load(s) 20
	2.0E	*=			ction. Ply to pl distribute only								nd 1828 lb down own and 250 lb ur
BOT CHORD	2x6 SP 2400F 2.0E No.2	"Except" 8-4:2x4 SF	' F		wise indicated		as (F) 01 (D),	,				,	down and 1104 lb
WEBS	2x4 SPF No.2 *Exce	ept* 10-2:2x6 SPF N	o.2 3		7-16; Vult=11		cond gust)						7 lb up at 5-1-12
BRACING		-			h; TCDL=6.0p								n of such connect
TOP CHORD	Structural wood she	athing directly applie	ed or		nclosed; MWFI							sponsibility of oth	ers.
	6-0-0 oc purlins, ex		nd		posed ; end ve			ed;		CASE(S	<i>'</i>		
	2-0-0 oc purlins (5-4		. 4		L=1.60 plate g E 7-16; Pr=25.			1 15				alanced): Lumber	r Increase=1.15, F
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	c 4		1.15); Pg=20.0			-1.15		crease= niform L		h/ft)	
REACTIONS	•	10=0-3-8, (req. 0-4-5	5)		late DOL=1.1				0		,	,	, 8-10=-20, 6-7=-
REACTIONS	Max Horiz 10=132 (L)		o.; Ce=1.0; Cs=				C	oncentra			, ,
	Max Uplift 6=-928 (L	,	10) 5		as been desigr							()	1689, 13=-2029 (F
	Max Grav 6=5800 (L	<i>,,</i>	,		psf or 1.00 tim on-concurrent			ost on		14=-18	18 (F)		
FORCES	(lb) - Maximum Com		, 6		quate drainage			a					
	Tension		7		e MT20 plates								
TOP CHORD	1-2=0/55, 2-3=-5711	/1241, 3-4=-11381/			as been desigr								
	4-5=-415/75, 5-6=-1	086/174,		chord live loa	ad nonconcurr	rent with any	other live loa	ads.					
	2-10=-5070/1073		9		has been desi			.0psf					
BOT CHORD	9-10=-293/507, 8-9=	,	,		m chord in all							000	ADC
WEBS	4-7=-285/849, 6-7=- 3-9=-453/753, 7-9=-				by 2-00-00 wid							8. OF	MIG DI
WEBO	3-7=-1020/7681, 4-6	,	1	0) WARNING:	ny other memb			il.				BAE	-050 M
	2-9=-734/3746	, , , , , , , , , , , , , , , , , , , ,			input bearing		Jiiii(S) 0, 10				A	N	- Con
NOTES			1	1) All bearings			o.2 .				H	STATE OF M	TEM / C Y
	to be connected toge	ther with 10d		2) Provide med				to			A.	/ THOM	AAS
) nails as follows:				e capable of w						8 🖈	T JOHN	SON 🗡
Top chord	s connected as follows	s: 2x6 - 2 rows		6 and 1251 I	lb uplift at joint	t 10.				- 1	X L	And the	min

staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-5-0 oc, 2x4 - 1 row at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

2098 n and up at lb up 12 on ection

Plate

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

									RELEASE	FOR CONSTRUCTION	
Job	Truss		Truss Type		Qty	Ply	Lot 13 TCR				٦
240654	V3		Valley		3	1	lah Dafaman	. (OPMENT SERVICES 164953211 SUMMIT, MISSOURI	
	Waverly, KS - 66871,		- and y	Run: 8.73 S Apr 3 20	1 024 Print: 8.	730 S Apr 3 2	Job Reference 2024 MiTek Indus	stries, Inc. Tu	Apr 16 6008	20/2021	
-				ID:Du0Bh4NzscLS0C	kruBsVw_y	6jde-RfC?PsB	70Hq3NSgPqnL	8w3uITXbGK	WrCDoi754z9	JU/2024	ŀ
						5.	40.0	8	0.0		
				5-7-0			10-0	-1	-8-0		
			I	5-7-0		0-	-3-0 2-3	-1 0-	6-15		
							6x6 =				
							3				
	_					2	, A				
		1-1-8					$\square \$				
	4								4		
	2-11-4		12 6 Г	8		6	5	~	\geq_{\top}		
	~								0-9-		
		+	1				4	x5 II	,		
		- 0-0-0-					_ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	******			
				******	******	*******	7	2.4	****		
			2x	<4 =		2	х4 ш	2x4 👟			
			I	5-8-4			I 8.	-8-0	I		
				<u>5-8-4</u> 5-8-4				- <u>8-0</u> 1-12	—		
Scale = 1:29.5		1		1					1		_
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC 0	.21 Vert		in (loc) l₄ n∕a -	/defl L/d n/a 999	PLATES MT20	GRIP 197/144	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC 0	.26 Vert	(TL) r	n/a -	n/a 999		101/111	
TCDL BCLL	10.0 10.0*	Rep Stress Incr Code	YES IRC2018/TPI2014	WB 0 Matrix-P	.21 Hori:	z(TL) 0.0	00 4	n/a n/a			
BCDL	10.0								Weight: 22 lb	FT = 10%	_
LUMBER TOP CHORD	2v4 SPF 2100F 1.8E	E *Except* 3-4:2x4 SF	·	E 7-16; Pr=25.0 psf (ro 1.15); Pg=20.0 psf; Pf=							
BOT CHORD	No.2	ept* 7-2:2x3 SPF No.2	DOL=1.15 F	Plate DOL=1.15); Is=1.0 p.; Ce=1.0; Cs=1.00; Ci); Rough C						
OTHERS	2x3 SPF No.2	pt 1-2.2.0 0.1 110.2		snow loads have beer		ed for this					
BRACING TOP CHORD	Structural wood she	eathing directly applied	tor 6) Gable requi	res continuous bottom	chord bea	ring.					
BOT CHORD	6-0-0 oc purlins. Rigid ceiling directly	- applied or 6-0-0 oc	This truss h	s spaced at 4-0-0 oc. as been designed for a							
	bracing.		a) * This trues	bad nonconcurrent with has been designed for							
REACTIONS	7=8-9-0	4=8-9-0, 5=8-9-0, 6=8	on the botto	om chord in all areas wh by 2-00-00 wide will fit	nere a rect	angle					
	Max Horiz 1=81 (LC Max Uplift 1=-7 (LC	,	chord and a	any other members, with are assumed to be SP	n BCDL =						
		_C 31), 6=-511 (LC 12 C 33), 4=105 (LC 19),	11) Bearing at jo	oint(s) 6 considers para	allel to grai						
		C 12), 6=837 (LC 2),	designer sh	/TPI 1 angle to grain for ould verify capacity of b	bearing su	rface.					
FORCES	(lb) - Maximum Com			chanical connection (by te capable of withstandi							
TOP CHORD	Tension 1-2=-66/98, 2-3=-29	0/184, 3-4=-28/44	32 lb uplift a uplift at joint	at joint 4, 511 lb uplift at t 5.	i joint 6 an	d 543 lb					
BOT CHORD	1-7=-4/3, 6-7=0/0, 2- 4-5=-11/6	2-6=-880/485, 5-6=-11/	^{/6,} 13) Beveled pla	te or shim required to p truss chord at joint(s)		bearing					
WEBS NOTES	3-5=-362/618		14) This truss is	s designed in accordance	ce with the				CONTRACTOR N	APPE	
1) Unbalance	d roof live loads have	been considered for	R802.10.2 a	al Residential Code sect and referenced standar				4	THEOFN	AISSOL	
this design. 2) Wind: ASC	E 7-16; Vult=115mph	(3-second gust)	LOAD CASE(S)) Standard				B	S ANDR	EW / Z V	
		CDL=6.0psf; h=25ft; Ca nvelope) exterior zone									
cantilever le	eft and right exposed	; end vertical left and 0 plate grip DOL=1.60						(M	hill	ling	•
Truss desi	gned for wind loads ir	n the plane of the trus						N.			
see Standa		d Details as applicable						Ø	O PE-2017	120	
or consult of	Jualified building desig	igner as per ANSI/TPI	1.					6	C'SSIONA	LENG	
									an		
									Apri	17,2024	

- 9) All bearings are assumed to be SPF No.2.
 9) Structural wood sheathing directly applied or 3-10-8 oc purlins, except end verticals.
 Rigid ceiling directly applied or 10-0-0 oc
 9) All bearings are assumed to be SPF No.2.
 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 1 and 35 lb uplift at joint 3.
 - This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 LOAD CASE(S) Standard

 Max Uplift
 1=-18 (LC 12), 3=-35 (LC 12) Max Grav
 1=150 (LC 5), 3=150 (LC 5)

 FORCES
 (lb) - Maximum Compression/Maximum Tension
 TOP CHORD
 1-2=-60/41, 2-3=-116/54

 BOT CHORD
 1-3=-22/17
 1-3=-22/17
 1-3=-22/17

Max Horiz 1=66 (LC 9)

bracing.

NOTES

TOP CHORD

BOT CHORD

REACTIONS (size)

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

1=3-10-8, 3=3-10-8

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
505	11033	Truss Type	Giy	i iy	LOUISTON	DEVELOPMENT SERVICES 164953213
240654	V5	Valley	2	1	Job Reference (optional	

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tus Apr 16 60 9/30/2024 ID:Du0Bh4NzscLS0CkruBsVw_y6jde-RfC?PsB70Hq3NSgPqnL8w3uITXbGkwrCDoi79429/30/2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Scale = 1:17.5

Scale = 1:17.5							1					
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.03 0.02 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 5 lb	GRIP 197/144 FT = 10%
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m II; Exp C; E cantilever II right expos 2) Truss desis only. For s see Standa or consult (3) TCLL: ASC Plate DOL DOL=1.15 Partially Ex 4) Unbalance design. 5) Gable requ (6) Gable stud 7) This truss f	2x4 SPF No.2 2x3 SPF No.2 Structural wood shea 2-2-8 oc purlins, exa Rigid ceiling directly bracing. (size) 1=2-2-0, 3 Max Horiz 1=31 (LC Max Grav 1=68 (LC (lb) - Maximum Com Tension 1-2=-28/19, 2-3=-52/	cept end verticals. applied or 10-0-0 or 3=2-2-0 9) 12), 3=-16 (LC 12) 3), 3=69 (LC 25) pression/Maximum /25 (3-second gust) DL=6.0psf; h=25ft; (ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1.1 n the plane of the tru (normal to the face) d Details as applical gner as per ANSI/TF roof LL: Lum DOL=? Yf=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10 then considered for the m chord bearing.	Cat. Cat. 10; 10; 10; 11; 11; 11; 12; 14; 14; 15; 15; 15; 16; 16; 16; 16; 17; 17; 17; 10; 10; 10; 11; 11; 11; 11; 11	s has been designe tom chord in all are il by 2-00-00 wide v any other members is are assumed to b echanical connection atte capable of withs uplift at joint 3. is designed in acco al Residential Code and referenced sta S) Standard	as where will fit betv s, with BC be SPF N on (by oth standing & ordance w e sections	a rectangle ween the botto CDL = 10.0psl o.2. hers) of truss t 3 lb uplift at jo vith the 2018 s R502.11.1 a	om f. to tint 1		(STATE OF STATE OF STATE OF NUM PE-2017	MAS SSDN teler 7018993 AL ENGINE
											Арі	ril 17,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
						DEVELOPMENT SERVICES I64953214
240654	V6	Valley	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
	00074	D 0 T 0 T 0 D 0 T 0				

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tu Apr 16 10009/30/20:24 ID:Du0Bh4NzscLS0CkruBsVw_y6jde-RfC?PsB70Hq3NSgPqnL8w3uITXbGK/wrCDoi7-42-0?

3-2-0

2x4 🍃

1-5-4

2x4 🛚

Scale = 1.21.6

Scale = 1:21.6			1								
Loading TCLL (roof) Snow (Pf/Pg) 15. TCDL BCLL BCDL	(psf) Spacing 25.0 Plate Grip L 4/20.0 Lumber DO 10.0 Rep Stress 10.0* Code 10.0 Kep Stress	L 1.15	4 CSI TC BC WB Matrix-P	0.11 0.06 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD 2x4 SPF No BOT CHORD 2x4 SPF No WEBS 2x3 SPF No BRACING TOP CHORD Structural v 3-2-8 oc pu BOT CHORD Rigid cellin bracing. REACTIONS (size) 1 Max Horiz 1 Max Uplift 1 Max Grav 1	b.2 b.2 vood sheathing directly rlins, except end verti g directly applied or 10 =3-2-0, 3=3-2-0 =52 (LC 11) =-14 (LC 12), 3=-27 (L =115 (LC 5), 3=116 (L num Compression/Max , 2-3=-88/42 =115mph (3-second gu , 2-3=-88/42 =115mph (3-second gu , 2-3=-88/42 =105mph (3-second gu , 2-3=-88/42 =105mph (3-second gu , 2-3=-88/42 =105mph (3-second gu , 2-3=-88/42 =115mph (3-second gu , 3-3=-88/42 =115mph (3-s	st) st) st) st) st) st) st) st)	russ has been designe pottom chord in all are 0 tall by 2-00-00 wide v ind any other member rings are assumed to t e mechanical connection plate capable of withs 7 lb uplift at joint 3. ss is designed in accordinate tional Residential Cod 0.2 and referenced sta iE(S) Standard	eas where will fit betw rs, with BC be SPF No on (by oth standing 1 ordance wi le sections	a rectangle veen the botto DL = 10.0 psf b.2. ers) of truss to 4 lb uplift at jo th the 2018 R502.11.1 a	o o oint		Ĺ		NUM PE-2017	MISSOLP REW MAS SDN BER 018993

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS (size)

BRACING

WFBS

Max Uplift 1=-22 (LC 12), 3=-42 (LC 12) Max Grav 1=187 (LC 5), 3=187 (LC 5) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-73/53, 2-3=-146/66 1-3=-27/21

Max Horiz 1=80 (LC 9)

2x4 SPF No.2

2x3 SPF No.2

bracing.

Structural wood sheathing directly applied or

4-7-0 oc purlins, except end verticals.

1=4-7-0, 3=4-7-0

Rigid ceiling directly applied or 10-0-0 oc

BOT CHORD

NOTES

Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

Unbalanced snow loads have been considered for this 4) design.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 4-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) All bearings are assumed to be SPF No.2.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 1 and 42 lb uplift at joint 3.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

									RELEASE		N
Job	Truss	;	Truss Type		Qty	Ply	Lot 13 TCR			D FOR PLAN REVIEW	
240654	V8		Valley		1	1	Job Referen	ce (optional		OPMENT SERVICES 164953216 SUMMIT, MISSOURI	
Wheeler Lumber,	Waverly, KS - 66871,			Run: 8.73 S Apr 3 20)24 Print: 8.	730 S Apr 3	2024 MiTek Indu	ustries, Inc. Tu	Apr 16 16009	30/2924	1
				ID:i5aZvQNbdvTJeLI1	SuNkSBy6	jdd-RfC?PsB	70Hq3NSgPqnL	8w3ulTXbGK\	/rCDoi7J42JOA	50/202-	T
				8-6-	8			_			
								2x4 II			
							3				
						/	//				
					2x4 II	//					
		4-3-8		2					4-3-8		
			10		8				4		
			6 T								
			1								
		6 			<u>⊌</u> ∞∞∞∞	*****	******	₩ 4			
		0			5 5			×			
			2x4 ≠		2x4 II			2x4 II			
			1	8-6-	8			1			
Scale = 1:31.1				•							
Loading	(psf)	Spacing	2-0-0	CSI	DEF			l/defl L/d	PLATES	GRIP	
TCLL (roof) Snow (Pf/Pg)	25.0 15.4/20.0	Plate Grip DOL Lumber DOL	1.15 1.15	BC 0	.25 Vert	. ,	n/a - n/a -	n/a 999 n/a 999	MT20	197/144	
TCDL BCLL	10.0 10.0*	Rep Stress Incr Code	YES IRC2018/TPI2014	WB 0. Matrix-P	.07 Hori:	z(TL) 0	.00 4	n/a n/a			
BCDL	10.0							-	Weight: 24 lb	FT = 10%	
LUMBER TOP CHORD	2x4 SPF No.2			s been designed for a ad nonconcurrent with							
BOT CHORD WEBS	2x4 SPF No.2 2x3 SPF No.2			as been designed for n chord in all areas wh							
OTHERS BRACING	2x3 SPF No.2			by 2-00-00 wide will fit by other members, with							
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex	eathing directly applied	10) Provide mec	are assumed to be SP hanical connection (by	others) of	f truss to					
BOT CHORD		y applied or 10-0-0 oc		e capable of withstandi uplift at joint 5.	ng 27 lb u	plift at joint					
REACTIONS (size) 1=8-7-0,	4=8-7-0, 5=8-7-0		designed in accordance Residential Code sect							
1		C 9), 5=-132 (LC 12)	LOAD CASE(S)	nd referenced standard Standard	d ANSI/TP	YI 1.					
	5=453 (L	,									
FORCES	(lb) - Maximum Cor Tension	mpression/Maximum									
	1-2=-131/79, 2-3=- 1-5=-56/42, 4-5=-50	118/43, 3-4=-123/44 6/42									
WEBS NOTES	2-5=-343/191										
1) Wind: ASCI	E 7-16; Vult=115mpl	h (3-second gust) CDL=6.0psf; h=25ft; Ca	at								
II; Exp C; E	nclosed; MWFRS (e	envelope) exterior zone d ; end vertical left and	;						OF	MISSOL	
right expose	ed; Lumber DOL=1.	60 plate grip DOL=1.60 in the plane of the trus)					E	TATEOFI	0200	
only. For s	uds exposed to win	d (normal to the face), nd Details as applicabl						A	ANDR THOM	EW / Z V	
or consult q	ualified building des	igner as per ANSI/TPI (roof LL: Lum DOL=1.	1.						JOHN		<u>_</u>
Plate DOL=	:1.15); Pg=20.0 psf; Plate DOL=1.15); Is:	Pf=15.4 psf (Lum						UN -	NUM	BER A	
Partially Ex	p.; Ce=1.0; Cs=1.00	; Ct=1.10	s.					Ø	PE-2017		
design.		een considered for this	,					Y	ESSIONA	LENG	
	res continuous botto s spaced at 4-0-0 oc								un		
									Apri	17,2024	

Sca	e –	1.42 :	2

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.31 0.19 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 39 lb	GRIP 197/144 P FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	JMBER DP CHORD 2x4 SPF No.2 DT CHORD 2x4 SPF No.2 EBS 2x3 SPF No.2 THERS 2x3 SPF No.2 RACING DP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. DT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.		5) 6) 7) d or 8) 9) 10	design. Gable requir Gable studs This truss ha chord live loa * This truss f on the bottor 3-06-00 tall t chord and ar All bearings 9 Provide mec bearing plate 5, 115 lb upli) This truss is International R802.10.2 at	snow loads have es continuous bot spaced at 4-0-0 o s been designed ad nonconcurrent nas been designer n chord in all area y 2-00-00 wide w ny other members are assumed to be hanical connection e capable of withst ft at joint 6 and designed in accor Residential Code nd referenced star	tom choic. for a 10. with any f for a liv s where ill fit betw with BC e SPF N h (by oth anding 3 9 lb upli dance w sections	d bearing. 0 psf bottom other live loa re load of 20.1 a rectangle veen the bott DL = 10.0psf DL = 10.0psf DL = 1.0psf to 2.1 ers) of truss f ft at joint 7. th the 2018 s R502.11.1 a	ds.)psf om o oint					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-205/79, 2-3=-10 4-5=-130/46 1-7=-84/64, 6-7=-84/ 3-6=-309/155, 2-7=-	60/71, 3-4=-137/64, /64, 5-6=-84/64	LC	DAD CASE(S)	Standard								
Vasd=91n II; Exp C; cantilever	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6	DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and	e; I									/ THO	MISSOL DREW OMAS

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
240654	V10	Valley	2	1	Job Reference (optional	DEVELOPMENT SERVICES 164953218 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS	- 66871,	Run: 8.73 S Apr 3 2	024 Print: 8.	730 S Apr 3	2024 MiTek Industries, Inc. Tu	

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tup Apr 16 (6003) 30/26 24 ID:IIToUKML5IDbP29eKTLGNmy6jdf-RfC?PsB70Hq3NSgPqnL8w3uITXbGK VrCDoi7342,561

Scale = 1:52.5

	., . ,. [= =,],	[7:Edge,0-2-8]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2		CSI TC BC WB Matrix-R	0.55 0.14 0.28	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 51 lb	GRIP 197/144 FT = 10%
BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS (FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASCI Vasd=91mg II; Exp C; E cantilever fe	size) 7=14-0-0, 10=14-0-0 Max Horiz 11=336 (L Max Uplift 7=-46 (LC 9=-95 (LC 11=-15 (L Max Grav 7=206 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 6-7 8=14-0-0, 9=14-0-0, 0, 11=14-0-0 .C 11) (3), 8=-120 (LC 12), 12), 10=-229 (LC 12), (10) (26), 8=545 (LC 5), (23), 10=369 (LC 26) (C 27) pression/Maximum 1/31, 2-3=-298/65, 90/83, 5-6=-154/83, 10=-114/86, 8-9=-114/ 284/157, 3-10=-219/ (3-second gust) DL=6.0psf; h=25ft; C welope) exterior zon ; end vertical left and	only see or c 3) TCL Plat DOI Part 4) Unb desi 5) This load over 6) Gab 7) Trus brac 2), 8) Gat 9) This choi choi 10) * Th 3-06 choi 11) All b 12) Prov bea 36, 11, 13) This Inte R80 at. LOAD C	r. For stud: Standard I onsult qual tonsult qual tonsult qual tonsult qual tonsult qual tonsult qual tonsult qual tonsult plate of pole plate of 12.0 ps rhangs nor so truss has d of 12.0 ps rhangs nor ble requires so to be ful ced against ole studs sp s truss has d ton 12.0 ps rhangs nor ble requires so to be ful ced against ole studs sp s truss has d ton 12.0 ps rhangs nor ble requires so to be ful ced against ole studs sp s truss has d of 12.0 ps rhangs nor ble requires so to be ful ced against ole studs sp s truss has d of 12.0 ps rhangs nor ble requires so to be ful ced against ole studs sp s truss has into load d is truss has ring plate c d 10 uplit to int 9 and 2 s truss is de rnational R	d for wind loads s exposed to win Industry Gable E lified building dee r-16; Pr=25.0 psf; t5); Pg=20.0 psf; te DOL=1.15); Is Ce=1.0; Cs=1.00 now loads have t been designed f of or 1.00 times fl n-concurrent with s continuous bott ly sheathed from t lateral moveme baced at 4-0-0 or been designed f nonconcurrent v s been designed chord in all areas 2-00-00 wide wi other members, e assumed to be anical connectior capable of withsta at joint 7, 120 lb t29 lb uplift at join esigned in accorre tesidential Code the referenced stan Standard	d (norm nd Deta signer as (roof LL PF=15.4 =1.0; Rc); Ct=1.1; peen cor or greate at roof k other lin om chor one fac to other lin om chor one fac to so the lin on chor one fac to so the lin on chor one fac to so the lin on chor one fac to so the lin one do so the lin one fac to so the lin	al to the face al to the face Is as applical as per ANSI/TK psf (Lum bugh Cat C; 0 asidered for th er of min roof bad of 15.4 ps re loads. d bearing. e or securely iagonal web) 0 psf bottom other live load e load of 20.0 a rectangle veen the bottt DL = 10.0psf blup lift at j joint 8, 95 lb th the 2018 R502.11.1 a), ble, Pl 1. 1.15 his live sf on ds. Dpsf om o ont uplift		(*	STATE OF I STATE OF I ANDE THOM JOHN PE-2017	Plutt

April 17,2024

						RELEASE FOR CONSTRUCTION
lob	Truss		Qty	Plv	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
Job	TTUSS	Truss Type	Qly	Fiy	LOUISTOR	DEVELOPMENT SERVICES 164953219
240654	V11	Valley	2	1	Job Reference (optional	
	•	•				00/00/000/

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tus Apr 16 6029/30/20224 ID:IITOUKML5IDbP29eKTLGNmy6jdf-RfC?PsB70Hq3NSgPqnL8w3uITXbGK rCDoi7.4291/30/20224

Scale = 1:34.7

Plate Offsets (X, Y): [2:0-3-0,0-1-4]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-R	0.28 0.14 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 22 lb	GRIP 197/144 FT = 10%
	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 5-5-8 oc purlins, ex Rigid ceiling directly bracing. (size) 6=5-5-8, 7 Max Horiz 8=201 (L0 Max Uplift 6=-95 (L0 8=-14 (L0 Max Grav 6=285 (L0 8=227 (L0 8=227 (L0 8=227 (L1 (lb) - Maximum Com Tension 2-8=-169/26, 1-2=0/ 3-7=-60/42, 6-7=-60 3-7=-161/121	Accept end verticals. / applied or 6-0-0 oc 7=5-5-8, 8=5-5-8 C 9) C 9), 7=-121 (LC 12) C 9), 7=264 (LC 26 C 27) npression/Maximum /31, 2-3=-150/48, 0/0, 4-6=-265/105	6), 1), 6), 1 1 1 1	 design. This truss ha load of 12.0 overhangs n Gable requir Truss to be to braced again Gable study Gable study This truss ha chord live lo * This truss lo on the bottoo 3-06-00 tall 1 chord and ai All bearings Provide mechang platt 8, 95 lb uplif This truss is International 	snow loads hav as been designe psf or 1.00 timese on-concurrent w es continuous b fully sheathed fro st lateral mover spaced at 4-0-0 as been designe ad nonconcurrer nas been designe ad nonconcurrer nas been designe at nonconcurrer py 2-00-00 wide y other membe are assumed to chanical connect e capable of with a ta joint 6 and 1 designed in acc Residential Cos nd referenced s	d for greats s flat roof k ith other liv ottom chor om one fac ment (i.e. d oc. d for a 10.0 t with any ed for a liv eas where will fit betv rs, with BC be SPF No ion (by oth standing 1 21 lb uplift ordance w de sections	er of min roof pad of 15.4 p ve loads. d bearing. e or securely iagonal web)) psf bottom other live loa e load of 20.1 a rectangle veen the bott DL = 10.0psi DL = 10.0psi DL = 10.1psi DL = 10.1psi	f live sf on / dds. Opsf om f. to joint					
	CE 7-16; Vult=115mph		_								6	TEOF	MISSO

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15
- 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

April 17,2024

										RELEA	SE FOR CONSTRUCTION	I
Job	Truss		Truss T	уре	Qty	,	Ply	Lot 13 TCR				٦
240654	V12		Valley		2		1	Job Refere	nan (ontion		ELOPMENT SERVICES 164953220 SUMMIT, MISSOURI	
Wheeler Lumber,	, Waverly, KS - 66871,		<u> </u>	Run: 8.73 S Apr 3 2	2024 Pr	rint: 8.73	0 S Apr 3 2	024 MiTek Ind	lustries. Inc.	Tue Apr 16 6000	/20/201	1
				ID:IiToUkML5IDbP29	eKTLG	3Nmy6jd	lf-RfC?PsB7	70Hq3NSgPqn	L8w3ulTXbG	K VrCDoi7 J42 JC7		r
				6-	1-8				1			
									1			
								2:	x4 u			
								2				
	_	\top							1	\neg		
								r r]			
							//					
	c ·	3-1-0		1)	/					3-1-0		
	¢	<u>ب</u>		6 ¹²						Ċ		
				4								
		4		1					3			
	-	0-0			***	****	*****		, 5 ,			
					<u> </u>				2			
				2x4 ≠				2:	x4 u			
				6-	1-8				1			
Scale = 1:25.2					-							
Loading	(psf)	Spacing	2-0-0	CSI		DEFL		in (loc)	l/defl L/	d PLATES	GRIP	_
TCLL (roof) Snow (Pf/Pg)	25.0 15.4/20.0	Plate Grip DOL Lumber DOL	1.15 1.15			Vert(Ll Vert(Tl	,	n/a - n/a -	n/a 99 n/a 99		197/144	
TCDL	10.0	Rep Stress Incr	YES	WB 0		Horiz(,		n/a 99			
BCLL BCDL	10.0* 10.0	Code	IRC2018	8/TPI2014 Matrix-P						Weight: 16 lb	• FT = 10%	
LUMBER		·	8)									_
	2x4 SPF No.2 2x4 SPF No.2			on the bottom chord in all areas wh 3-06-00 tall by 2-00-00 wide will fit	t betwo	een the	bottom					
WEBS BRACING	2x3 SPF No.2		9)	chord and any other members, with All bearings are assumed to be SP).0psf.					
		eathing directly applied	10	 Provide mechanical connection (by bearing plate capable of withstand 	y othe	ers) of tr						
BOT CHORD		ccept end verticals. y applied or 10-0-0 oc	11	1 and 60 lb uplift at joint 3.) This truss is designed in accordance	-	-	-					
	bracing. (size) 1=6-2-0, 3		11	International Residential Code sec	ctions	R502.1	1.1 and					
Ň	Max Horiz 1=113 (LC Max Uplift 1=-31 (LC	.C 9)	LC	R802.10.2 and referenced standar DAD CASE(S) Standard	rd Ains	SI/TPL	1.					
Ν	Max Grav 1=255 (L0	.C 5), 3=270 (LC 5)										
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
	1-2=-104/77, 2-3=-2 1-3=-39/29	15/92										
NOTES												
Vasd=91mp		CDL=6.0psf; h=25ft; Ca										
cantilever le	eft and right exposed	nvelope) exterior zone I; end vertical left and	l									
		60 plate grip DOL=1.60 in the plane of the trus								5555	aller	
only. For st	tuds exposed to wind	d (normal to the face), nd Details as applicable								TATE OF	MISSO	
or consult q	qualified building desig	igner as per ANSI/TPI (roof LL: Lum DOL=1.	11.						ŀ	1220	DREW	
Plate DOL=	=1.15); Pg=20.0 psf; F	Pf=15.4 psf (Lum	15						A		OMAS	
Partially Exp	Plate DOL=1.15); ls= (p.; Ce=1.0; Cs=1.00;	; Ct=1.10								Arris	Sunt	4
design.		een considered for this	3						Vg		MBER	
	ires continuous botto s spaced at 4-0-0 oc.								V	PE-20	17018993	
7) This truss h	has been designed for		<u> </u>							CSSION	AT ENGI	
	Jau nonconcurrent	All driy Outer two today	3.							-		
										Ap	oril 17,2024	

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
240654	V13	Valley	2	1	Job Reference (optional	DEVELOPMENT SERVICES 164953221 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS	Apr 16 00 0/30/2024					

Scale = 1:17.4

Scale = 1:17.4					•							-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TF	PI2014	CSI TC BC WB Matrix-P	0.03 0.02 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 5 lb	GRIP 197/144 FT = 10%
BOT CHORD 2x WEBS 2x BRACING TOP CHORD St 2- BOT CHORD St 2- BOT CHORD R FORCES (siz Ma: Ma: Ma: FORCES (th FORCES (th TOP CHORD 1- BOT CHORD 1- BOT CHORD 1- BOT CHORD 1- BOT CHORD 1- BOT CHORD 1- NOTES 1) Wind: ASCE 7 Vasd=91mph; II; Exp C; Encl cantilever left a right exposed; 2) Truss designe only. For stud see Standard or consult qua 3) TCLL: ASCE 7 Plate DOL=1.15 DIa Partially Exp.; 4) Unbalanced st design. 5) Gable requires 6) Gable studs sp 7) This truss has	2-0 oc purlins, ex gid ceiling directly acing. e) 1=2-2-0.3 × Horiz 1=30 (LC × Uplift 1=-8 (LC × Grav 1=66 (LC •) - Maximum Com- ension 2=-27/18, 2-3=-50 3=-10/8 -16; Vult=115mph TCDL=6.0psf; BC osed; MWFRS (er and right exposed Lumber DOL=1.6 ed for wind loads ir s exposed to wind Industry Gable En- lified building desig 7-16; Pr=25.0 psf (5); Pg=20.0 psf; F te DOL=1.15); Is= Ce=1.0; Cs=1.00; how loads have be s continuous bottor baced at 4-0-0 oc. been designed for	9) 12), 3=-16 (LC 12) 3), 3=67 (LC 25) pression/Maximum /24 (3-second gust) DL=6.0psf; h=25f; (welope) exterior zor ; end vertical left an 0 plate grip DOL=1.4 the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL= ² Pf=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10 seen considered for the m chord bearing.	Cat. P; d Cat. P; d Cat. P; d 60 p; d 60 p; d 1.15 his	n the bottom -06-00 tall b hord and an Il bearings a rovide mech earing plate nd 16 lb upli his truss is c nternational	designed in accord Residential Code s d referenced stan	s where I fit betw with BC SPF No (by oth anding 8 dance w sections	a rectangle veen the botto DL = 10.0psf. o.2. ers) of truss to b uplift at joi ith the 2018 R502.11.1 at	om nt 1		(STATE OF STATE OF HOU JOHN PE-2017	MAS NON

April 17,2024

CONAL CONAL

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
000	Truss Type		aty	,		DEVELOPMENT SERVICES 164953222
240654	V14	Valley 2 1 Job Reference (or		Job Reference (optional		
Wheeler Lumber, Waverly, KS -						

ID:IIToUkML5IDbP29eKTLGNmy6jdf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7

6-5-8

Scale = 1:40.3

						· · · · ·						
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.51	Vert(LL)	n/a	-	n/a	999	MT20	197/144
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.19	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	10.0*	Code	IRC2018/TPI2014	Matrix-P								
BCDL	10.0										Weight: 24 lb	FT = 10%
LUMBER TOP CHORD	2x4 SPF No.2		chord live	has been designed load nonconcurrent	with any	other live load						
BOT CHORD	2x4 SPF No.2			s has been designe			osf					
WEBS	2x3 SPF No.2			om chord in all area								
OTHERS	2x3 SPF No.2			I by 2-00-00 wide w any other members			n					
BRACING		athing disastly applie	9) All booring	s are assumed to b								
TOP CHORD	6-0-0 oc purlins, ex		9) Provide m	echanical connection at a connection of with the capable of with t	on (by oth	ers) of truss to						
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	1, 86 lb up	lift at joint 4 and 23	2 lb uplift	at joint 5.	m					
	. ,	, 4=6-5-12, 5=6-5-12		is designed in acco al Residential Code			d					
	Max Horiz 1=240 (LC Max Uplift 1=-90 (LC		_ 222 R802.10.2	and referenced sta	ndard Al	NSI/TPI 1.						
	(LC 10)	5 0), 4=-00 (LC 7), 3-	LOAD CASE	Standard								
	Max Grav 1=181 (L0	C 7), 4=248 (LC 21),										
	5=539 (L0	C 21)										
FORCES	(lb) - Maximum Com	npression/Maximum										
	Tension	004/400 0 4 440/4	05									
TOP CHORD BOT CHORD	1-2=-257/189, 2-3=- 1-5=-86/65, 4-5=-86		05									
WEBS	2-5=-321/280	//05										
NOTES	2 0- 02 1/200											
	CE 7-16; Vult=115mph	(3-second aust)										
	ph; TCDL=6.0psf; BC		Cat.								Sam	alle
	Enclosed; MWFRS (er										B.F. OF	MISS
	left and right exposed									A	TATEOF	N.S.
	sed; Lumber DOL=1.6 igned for wind loads in									A	S AND	REW
,	studs exposed to wind									A	THQ	MAS Y
	ard Industry Gable En	(/	· ·							1 🗙 ★	JOHN	$(\mathbf{A} \mathbf{A}) \star (\mathbf{A} \mathbf{A})$
	qualified building desi								/	4	LAAAA I	Imp
	CE 7-16; Pr=25.0 psf (1.15						L	MY X	NUM	BER A
	=1.15); Pg=20.0 psf; F Plate DOL=1.15); Is=									47	PE-2017	018003
	xp.; Ce=1.0; Cs=1.00;									N.	The second secon	
	uires continuous botto									X	1ºSer	BER 018993
5) Gable stud	ls spaced at 4-0-0 oc.	Ū									ESSIONA	LEIA
											Apr	1 17 2024

April 17,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
000	11000		Guy	,	Lot 10 FOR	DEVELOPMENT SERVICES 164953223
240654	V15	Valley	2	1	Job Reference (optional	

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tuk Apr 16 1000 30/20:24 ID:IITOUKML5IDbP29eKTLGNmy6jdf-RfC?PsB70Hq3NSgPqnL8w3uITXbGK rCDoi7.4201 30/20:24

5-5-8

Scale = 1:37

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2	CSI TC BC WB 014 Matrix-P	0.35 0.10 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 197/144 FT = 10%
BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS (Max Horiz 1=200 (LC Max Uplift 1=-161 (L 5=-242 (L Max Grav 1=198 (LC	xcept end verticals. applied or 10-0-0 od 4=5-5-12, 5=5-5-12 0 9) C 21), 4=-77 (LC 7), C 10) 0 10), 4=198 (LC 21)	c chor 7) * Thi on th 3-06 chor 8) All b 9) Prov bear 1, 77 10) This Inter R802 LOAD C	truss has been designed d live load nonconcurre s truss has been designed e bottom chord in all a e00 tall by 2-00-00 widd d and any other member aarings are assumed to ide mechanical connect ing plate capable of wid 'I buplift at joint 4 and 2 'I buplift at joint 4 and truss is designed in ac national Residential Co 2.10.2 and referenced st ASE(S) Standard	ent with any ned for a liv reas where e will fit betv ers, with BC o be SPF Ne tion (by oth thstanding 1 242 lb uplift cordance w ode sections	other live load e load of 20.0 a rectangle veen the botto DL = 10.0psf o.2. ers) of truss to 61 lb uplift at at joint 5. ith the 2018 R502.11.1 a	0psf om o joint					
BOT CHORD WEBS	5=483 (LC (lb) - Maximum Com Tension 1-2=-255/193, 2-3=- 1-5=-71/54, 4-5=-71, 2-5=-335/293	pression/Maximum 189/98, 3-4=-143/96	5									
 Vasd=91mp II; Exp C; E cantilever le right exposition 2) Truss design only. For sissee Standa or consult of 3) TCLL: ASC Plate DOL= DOL=1.15 I Partially Ex 4) Gable require 	E 7-16; Vult=115mph ph; TCDL=6.0psf; BC inclosed; MWFRS (er eft and right exposed ed; Lumber DOL=1.6 gned for wind loads ir tuds exposed to wind tuds exposed to wind walified building desig E 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F Plate DOL=1.15); Is= p; Ce=1.0; Cs=1.00; ires continuous botton s spaced at 4-0-0 oc.	DL=6.0psf; h=25ff; (velope) exterior zor ; end vertical left an 0 plate grip DOL=1.6 the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL=1 ?f=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10	ne; d 60 Iss), ole, PI 1.						Ĺ	*	NUM PE-2017	MAS SON

- 5) Gable studs spaced at 4-0-0 oc.

Course April 17,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

											FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Lot 13 T	CR			ED FOR PLAN REVIEW
240654	V16		Valley		2	1	Job Refe	rence (or	otional	LEE'S	OPMENT SERVICES 164953224 SUMMIT, MISSOURI
Wheeler Lumber, Wav	erly, KS - 66871,			Run: 8.73 S Apr 3 20 ID:liToUkML5IDbP29e	24 Print: 8 KTLGNmy	.730 S Apr 3 6jdf-RfC?Ps				Apr 16 160000 /rCDoi7342JO11	30/2024
				4-5-6	3						
						2x	4 u				
		4-5-12		2 ¹²		2	3	4-5-12			
			- 0 4								
				2x4 🍬		2x-	4 u				
Scale = 1:30.4				4-5-	8						
_oading FCLL (roof) Snow (Pf/Pg) FCDL BCLL	(psf) 25.0 15.4/20.0 10.0 10.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	BC 0.		:(LL) :(TL)	in (loc) n/a n/a).00 3	n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0		11/02010/1712014	wattix-r						Weight: 15 lb	FT = 10%

- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 2x3 SPF No.2 WFBS BRACING TOP CHORD Structural wood sheathing directly applied or 4-5-12 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 1=4-5-12, 3=4-5-12 Max Horiz 1=160 (LC 7) Max Uplift 3=-78 (LC 7) Max Grav 1=229 (LC 22), 3=245 (LC 21) FORCES (lb) - Maximum Compression/Maximum
- Tension TOP CHORD 1-2=-150/118, 2-3=-175/103 BOT CHORD 1-3=-57/43

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8) All bearings are assumed to be SPF No.2.
- 9)
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 78 lb uplift at joint 3
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
240654	V17	Valley	2	1	Job Reference (optional	DEVELOPMENT SERVICES 164953225 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Wa	averly, KS - 66871,	F	Run: 8.73 S Apr 3 2024 Print: 8 D:liToUkML5IDbP29eKTLGNm	3.730 S Apr y6jdf-RfC?F	r 3 2024 MiTek Industries, Inc. Tu PsB70Hq3NSgPqnL8w3uITXbGK	PApr 16 00 00 00 00 00 00 00 00 00 00 00 00 00
		ł	3-5-8			
				_		

Scolo - 1.26 5

Scale = 1:26.5												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2	CSI TC BC WB Matrix-P	0.17 0.09 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 11 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 3-5-12 oc purlins, e Rigid ceiling directly bracing. (size) 1=3-5-12, Max Horiz 1=120 (LC Max Uplift 3=-59 (LC Max Grav 1=172 (LC	xcept end verticals. applied or 10-0-0 oc 3=3-5-12 C 9) C 7)	on th 3-06 chor 8) All b 9) Prov bear 3. 10) This Inter R802 LOAD C	s truss has been designe e bottom chord in all are 00 tall by 2-00-00 wide w d and any other member parings are assumed to t de mechanical connectin ng plate capable of withs truss is designed in acco national Residential Cod 2.10.2 and referenced sta ASE(S) Standard	eas where will fit betw s, with BC be SPF No on (by oth standing f ordance w e sections	a rectangle veen the botto DL = 10.0psl o.2. ers) of truss t 9 lb uplift at j th the 2018 R502.11.1 a	om o oint					
FORCES TOP CHORD BOT CHORD	(Ib) - Maximum Com Tension 1-2=-113/88, 2-3=-1 1-3=-43/33											
NOTES	1-3=-43/33											
 Wind: ASC Vasd=91m II; Exp C; I cantilever right expor Truss des only. For see Stand or consult TCLL: ASC Plate DOL DOL=1.15 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 signed for wind loads in studs exposed to wind ard Industry Gable En- qualified building desig CE 7-16; Pr=25.0 psf (_=1.15); Pg=20.0 psf; f Plate DOL=1.15); Is= xp.; Ce=1.0; Cs=1.00;	DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TP roof LL: Lum DOL=1 f=15.4 psf (Lum 1.0; Rough Cat C;	e; d 50 ss , ole, 1 1.						(*	STATE OF I	AS YY

- 4) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- 5)
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

PE-2 April 17,2024

NUMBER

PE-2017018993

						RELEASE FOR CONSTRUCTION			
Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	AS NOTED FOR PLAN REVIEW			
240654	V18	Valley	2	1	Job Reference (optional	DEVELOPMENT SERVICES 164953226 LEE'S SUMMIT, MISSOURI			
Wheeler Lumber, Waverly, KS -	Wheeler Lumber, Waverly, KS - 66871, ID:liToUkML5IDbP29eKTLGNmy6jdf-RfC?PsB70Hq3NSqPqnL8w3uITXbGK								

2-5-8

Scale = 1:22.6

Scale = 1.22.0												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	BC	0.07 0.04 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 197/144 FT = 10%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (M	2-5-12 oc purlins, e Rigid ceiling directly bracing. size) 1=2-5-12 Max Horiz 1=81 (LC Max Uplift 3=-39 (LC	/ applied or 10-0-0 oc , 3=2-5-12 7)	on the botto 3-06-00 tall chord and a 8) All bearings 9) Provide med bearing plat 3. 10) This truss is Internationa R802.10.2 a LOAD CASE(S)	has been designed for m chord in all areas w by 2-00-00 wide will fit ny other members, wit are assumed to be SF chanical connection (b e capable of withstance designed in accordant Residential Code sec and referenced standato Standard	there a t betw th BC PF No by othe ding 3 nce wi ctions	a rectangle reen the botto DL = 10.0psf. 0.2 . ers) of truss to 9 lb uplift at jo th the 2018 R502.11.1 ar	m D Dint					
TOP CHORD BOT CHORD NOTES 1) Wind: ASCE Vasd=91mp II; Exp C; Er cantilever le right expose 2) Truss desig only. For st see Standal	E 7-16; Vult=115mph bh; TCDL=6.0psf; BC nclosed; MWFRS (er ff and right exposed ed; Lumber DOL=1.6 gned for wind loads in uds exposed to winc rd Industry Gable En	h (3-second gust) DL=6.0psf; h=25ft; C nvelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 n the plane of the trus d (normal to the face) d Details as applicab	e; d 50 ss , ole,								STATE OF M	AISSOF
 TCLL: ASCI Plate DOL= 									(ANDR THOM	

DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

Gable requires continuous bottom chord bearing. 4)

5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

JOHNSON NUMBER PE-2017018993 C HESSIONAL ET

April 17,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 164953227
240654	V19	Valley	2	1	Job Reference (optional	

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tuk Apr 16 6020/30/2020 24 ID:IITOUKML5IDbP29eKTLGNmy6jdf-RfC?PsB70Hq3NSgPqnL8w3uITXbGK vrCDoi7.4.041 30/2021

1-5-12

1-5-8

2x4 II

Scale - 1:20.8

Scale = 1:20.8												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.02	Vert(LL)	n/a	-	n/a	999	MT20	197/144
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.01	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	10.0*	Code	IRC2018/TPI20	14 Matrix-P								
BCDL	10.0										Weight: 4 lb	FT = 10%
LUMBER			7) * This	truss has been desigr	ned for a liv	e load of 20.0	Opsf					
TOP CHORD	2x4 SPF No.2			bottom chord in all ar								
BOT CHORD	2x4 SPF No.2		3-06-0	0 tall by 2-00-00 wide	will fit betw	veen the botte	om					
WEBS	2x3 SPF No.2			and any other membe			f.					
BRACING				arings are assumed to								
TOP CHORD	Structural wood she	athing directly applie		e mechanical connect								
	1-5-12 oc purlins, e		2	g plate capable of with	nstanding 2	10 lb uplift at j	joint					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	c 3.	uss is designed in acc	ordonoo w	ith the 2019						
	bracing.			ational Residential Co			and					
REACTIONS	· · · · · ·	, 3=1-5-12		10.2 and referenced s								
	Max Horiz 1=41 (LC			SE(S) Standard								
	Max Uplift 3=-20 (LC	/	20/12 0/1									
	Max Grav 1=58 (LC											
FORCES	(lb) - Maximum Com	npression/Maximum										
	Tension	100										
TOP CHORD	1-2=-38/30, 2-3=-44	/26										
BOT CHORD	1-3=-15/11											
NOTES		(*)										
	CE 7-16; Vult=115mph		0-4									
	nph; TCDL=6.0psf; BC Enclosed; MWFRS (er											
	left and right exposed											
	sed; Lumber DOL=1.6											Traine 1
	signed for wind loads in										6000	m
	studs exposed to wind										A OF	MISC
see Standa	ard Industry Gable En	d Details as applical	ble,							1	750	-00 M
	qualified building desig									R	S AND	DEM X
	CE 7-16; Pr=25.0 psf (1.15							R	STATE OF	KEW /Y
	.=1.15); Pg=20.0 psf; F									A .	/ IHU	MAS Y
	Plate DOL=1.15); Is=									19 *	и он	tson 🖈

Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

Gable requires continuous bottom chord bearing. 4)

5) Gable studs spaced at 4-0-0 oc.

This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 17,2024

NUMBER

PE-2017018993

HRSSIONAL ET

C

							RELEASE FOR CONSTRUCTION
	Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 164953228
	240654	V20	Valley	2	1	Job Reference (optional	
-	Wheeler Lumber, Waverly, KS - 6	66871,	Run: 8.73 S Apr 3 20 ID:IiToUkML5IDbP29	024 Print: 8.7 eKTLGNmy6j	30 S Apr 3 2 df-RfC?PsB7	2024 MiTek Industries, Inc. Tu 70Hq3NSgPqnL8w3uITXbGK	Apr 16 008 / 30/2024
			3-10	-0			
					2x4 II		
		3-10-4	12 12		2	3-10-4	

2x4 🥠

3-10-0

3

2x4 u

Loading TCLL (roof) Snow (Pf/Pg)	(psf) 25.0 15.4/20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.22 0.11	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) -	l/defl n/a n/a	L/d 999 999	PLATES MT20
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a	
BCLL BCDL	10.0* 10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 13 lb
	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood shea 3-10-4 oc purlins, ex Rigid ceiling directly bracing. (size) 1=3-10-4, Max Horiz 1=135 (LC Max Uplift 3=-66 (LC Max Grav 1=193 (LC	xcept end verticals. applied or 10-0-0 or 3=3-10-4 2 7) 7) 2 22), 3=207 (LC 21	ed or 100 minute for the second seco	has been designed in chord in all areas by 2-00-00 wide will ny other members, are assumed to be thanical connection e capable of withste designed in accord Residential Code s ind referenced stan Standard	s where with BC SPF No (by oth anding 6 dance w sections	a rectangle veen the bott CDL = 10.0psi o.2. ers) of truss t 66 lb uplift at j ith the 2018 \$ R502.11.1 a	om f. to joint				
FORCES	(lb) - Maximum Com Tension	pression/Maximum									
TOP CHORD BOT CHORD	1-2=-127/99, 2-3=-1 1-3=-48/37	48/87									
NOTES	1-3=-40/37										

NOTES

Scale = 1:28

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

OF MISSOL TE ANDREW THOMAS JOHNSON NUMBER PE-PE-SSIONAL ET PE-2017018993

April 17,2024

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

GRIP 197/144

FT = 10%

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
000	11035	Truss Type	Giy	l''y	Lot 13 TOR	DEVELOPMENT SERVICES 164953229
240654	V21	Valley	2	1	Job Reference (optional	
Wheeler Lumber, Waverl						

umber, Waverly, KS - 66871,

ID:IToUKML5IDbP29eKTLGNmy6jdf-RfC?PsB70Hq3NSgPqnL8w3uITXbGK

1-10-8

Scale = 1:25.7

Plate Offsets (X, Y): [2:0-0-11,Edge]

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.07 0.05 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x3 SPF No.2 Structural wood she 2-10-4 oc purlins, e 2-0-0 oc purlins: 2-3 Rigid ceiling directly bracing.	xcept end verticals, applied or 10-0-0 of	chord li 9) * This ti on the b 3-06-00 chord a 10) All bear 11) Provide bearing and 32	ss has been designed ve load nonconcurrent uss has been designe ottom chord in all area tall by 2-00-00 wide w nd any other members ings are assumed to b mechanical connectic plate capable of withs b uplift at joint 4. ss is designed in acco	t with any ed for a liv as where will fit betw s, with BC be SPF No on (by oth standing 6	other live loa e load of 20.0 a rectangle veen the botto CDL = 10.0psf 5.2. ers) of truss t 5 lb uplift at jo	Opsf om f.					
REACTIONS FORCES	Max Horiz 1=63 (LC Max Uplift 1=-6 (LC Max Grav 1=115 (LC (lb) - Maximum Com Tension	10), 4=-32 (LC 7) C 24), 4=111 (LC 3) pression/Maximum	Internat R802.1 13) Graphic or the o bottom	ional Residential Code 0.2 and referenced sta al purlin representatio rientation of the purlin	e sections andard AN on does no	R502.11.1 a SI/TPI 1. ot depict the s						
BOT CHORD		124, 0 4= 14/00										
 this design Wind: ASC Vasd=91n II; Exp C; cantilever right expo Truss des only. For see Stand 	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 signed for wind loads ir studs exposed to wind lard Industry Gable En- qualified building designed	(3-second gust) DL=6.0psf; h=25ft; (velope) exterior zor ; end vertical left and 0 plate grip DOL=1.6 of the glane of the tru (normal to the face) d Details as applicat	Cat. le; d 50 ss , ole,						(STATE OF J STATE AND THOM	MAS Y

 4) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C;

- Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- 5) Provide adequate drainage to prevent water ponding. Gable requires continuous bottom chord bearing.
- 6) 7) Gable studs spaced at 4-0-0 oc.

April 17,2024

HESSIONAL ET

NUMBER PE-2017018993

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 164953230
240654	V22	Valley	2	1	Job Reference (optional)	
Wheeler Lumber, Waverly, KS -	66871,	Run: 8.73 S Apr 3 20 ID:IiToUkML5IDbP29e)24 Print: 8.7 KTLGNmy6	/30 S Apr 3 2 jdf-RfC?PsB7	2024 MiTek Industries, Inc. Tu 70Hq3NSgPqnL8w3uITXbGK	Apr 16 0081/30/2024
		0-6-15 2-6-8 0-6-15 1-11-9				
			2	x4 u		
			2	3	1-3-8	

2x4 🍃

2x4 🛚

2-6-8

Scale - 1.21

Scale = 1:21			•									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.06 0.03 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 6 lb	GRIP 197/144 FT = 10%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (2-7-0 oc purlins, ex Rigid ceiling directly bracing. size) 1=2-7-0, 5 Max Horiz 1=39 (LC Max Uplit 1=-11 (LC Max Grav 1=86 (LC (lb) - Maximum Com	applied or 10-0-0 oc 3=2-7-0 9) 2 12), 3=-20 (LC 12) 3), 3=87 (LC 25)	on the bottor 3-06-00 tall b chord and ar 9) All bearings 10) Provide mec bearing plate 1 and 20 b u 11) This truss is International	has been designed for n chord in all areas y yy 2-00-00 wide will a yo other members, w are assumed to be S hanical connection (e capable of withstan uplift at joint 3. designed in accorda Residential Code se nd referenced standa Standard	where fit betw /ith BC SPF No by othe inding 1 ance wi ections	a rectangle veen the botto DL = 10.0psf. o.2. ers) of truss to 1 lb uplift at jo ith the 2018 R502.11.1 ar	m o vint					
	Tension 1-2=-35/23, 2-3=-65 1-3=-13/10	/32										
1) Wind: ASCI Vasd=91mp II; Exp C; E cantilever le	nclosed; MWFRS (er eft and right exposed	(3-second gust) DL=6.0psf; h=25ft; C nvelope) exterior zone ; end vertical left and 0 plate grip DOL=1.6	9;									
 Truss designed only. For standa 	gned for wind loads in uds exposed to wind rd Industry Gable En	n the plane of the trus I (normal to the face), d Details as applicabl gner as per ANSI/TPI	e,							6	TATE OF	MISSOL
3) TCLL: ASC Plate DOL= DOL=1.15		roof LL: Lum DOL=1. Pf=15.4 psf (Lum 1.0; Rough Cat C;							1		ANDI THOI JOHN	MAS Y

Unbalanced snow loads have been considered for this 4) design.

5) Gable requires continuous bottom chord bearing.

Gable studs spaced at 4-0-0 oc. 6)

7) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

NUMBER PE-2. PE-2017018993 G

April 17,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

										RELEASE	FOR CONSTRUCTION	N
Job	Trus	S	Truss Type		Qty	Ply	Lot 13 TCF	R			D FOR PLAN REVIEW DPMENT SERVICES 164953231	
240654	V23		Valley		2	1	Job Refere	nce (opti	onali		164953231 SUMMIT, MISSOURI	
Wheeler Lumber,	, Waverly, KS - 66871,			Run: 8.73 S Apr 32	2024 Print: 8	3.730 S Apr 3	2024 MiTek Ind	dustries, In	c. Tu	Apr 16 160001	30/2024	1
				ID:IIToUkML5IDbP29	9eKTLGNm	y6jdf-RfC?PsE	370Hq3NSgPqr	1L8w3uITX	bGK	VrCDoi7J42JC	50,202	
				6-6	5-8			4				
			I				2	<4 u				
								(+ II				
							3	1				
						/	P					
				2x4 II		//						
		3-3-8 			//					3-3-8		
		ń	12 6 Г	2 6						က်		
			1	P								
		4	-	•			•	4				
			2x	5 4 ≠			2>	.4 u				
				2x4 u								
			L	6-6	6-8			ļ				
Scale = 1:27.1		-	I	- i								
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.21 Ver		in (loc) n/a -		L/d 999	PLATES MT20	GRIP 197/144	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.10 Ver	t(TL)	n/a -	n/a	999	11120	101/111	
TCDL BCLL	10.0 10.0*	Rep Stress Incr Code	YES IRC2018/TPI2014	WB (Matrix-P	0.05 Hor	riz(TL) 0	0.00 4	n/a	n/a			
BCDL	10.0			has been desired for	10.0 mol	hattan				Weight: 18 lb	FT = 10%	
LUMBER TOP CHORD	2x4 SPF No.2		chord live	has been designed for a load nonconcurrent with s has been designed for	n any othe	r live loads.	:					
WEBS	2x4 SPF No.2 2x3 SPF No.2		on the bot	tom chord in all areas w Il by 2-00-00 wide will fi	here a rec	tangle .						
OTHERS BRACING	2x3 SPF No.2		chord and	any other members, with any other members, with any other members, with any are assumed to be SI	th BCDL =							
TOP CHORD	6-0-0 oc purlins, e	neathing directly applied except end verticals.	10) Provide m	echanical connection (b	y others) o	of truss to						
BOT CHORD	Rigid ceiling direct bracing.	ly applied or 10-0-0 oc	4 and 108	ate capable of withstand Ib uplift at joint 5.	-							
REACTIONS	(size) 1=6-7-0 Max Horiz 1=122 (, 4=6-7-0, 5=6-7-0 LC 9)	¹ Internation	is designed in accordan	ctions R50	2.11.1 and						
	Max Uplift 4=-28 (L	_C 12), 5=-108 (LC 12) C 26), 4=159 (LC 18),	LOAD CASE(and referenced standa S) Standard	IU ANSI/T	PI I.						
FORCES	5=391 (
TOP CHORD	Tension	-103/43, 3-4=-127/47										
	1-5=-42/32, 4-5=-4 2-5=-307/157											
NOTES	2-5=-507/157											
	E 7-16; Vult=115mp ph; TCDL=6.0psf; B	oh (3-second gust) 3CDL=6.0psf; h=25ft; Ca	at.								F	
		envelope) exterior zone d ; end vertical left and								GE OF M	AISS	
2) Truss desi	igned for wind loads	.60 plate grip DOL=1.60 in the plane of the trus	S						B	STATE OF ANDR	AISSOLA	
see Standa	ard Industry Gable E	nd (normal to the face), and Details as applicabl	le,					~	Ø.	THOM		
3) TCLL: ASC	CE 7-16; Pr=25.0 ps	signer as per ANSI/TPI f (roof LL: Lum DOL=1.							hi	JOHN	tunta	-
	=1.15); Pg=20.0 psf Plate DOL=1.15); Is	; Pf=15.4 psf (Lum s=1.0; Rough Cat C;						V	83	PE-20170		
Partially Ex	cp.; Ce=1.0; Cs=1.0		S						Ø	11/2	120	
design. 5) Gable requ	ires continuous bott	tom chord bearing.							0	E'SSIONA	LENG	
	s spaced at 4-0-0 o									an		
										April	17,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

LUMBER				
TOP CHORD				
BOT CHORD				
WEBS	2x3 SPF			
OTHERS	2x3 SPF	No.2		
BRACING				
TOP CHORD			athing directly applied or cept end verticals.	
BOT CHORD	Rigid ceil bracing.	ing directly	applied or 10-0-0 oc	
REACTIONS	(size)	1=10-7-0,	5=10-7-0, 6=10-7-0,	
		7=10-7-0		
	Max Horiz	1=205 (LC	C 11)	
	Max Uplift	5=-32 (LC 7=-89 (LC	5 9), 6=-121 (LC 12), 5 12)	
	Max Grav		26), 5=204 (LC 5), 6=502 =347 (LC 3)	2
FORCES	(lb) - Max Tension	timum Com	pression/Maximum	
TOP CHORD	1-2=-178	/51, 2-3=-14	45/70, 3-4=-128/53,	
	4-5=-128	/44		
BOT CHORD	1-7=-69/5	54, 6-7=-69/	/54, 5-6=-69/54	
WEBS	3-6=-321	/167, 2-7=-2	230/131	
NOTES				
	CE 7-16: \/u	lt-115mph	(3-second gust)	
			DL=6.0psf; h=25ft; Cat.	
v d5u=911			$DL = 0.00031, \Pi = 2011, Udl.$	

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat
 II; Exp C; Enclosed; MWFRS (envelope) exterior zone;
 cantilever left and right exposed; end vertical left and
 right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) Truss designed for wind loads in the plane of the truss
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 TCLL: ASCE 7-16: Pr=25.0 psf (roof LL: Lum DOL=1.15)
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) All bearings are assumed to be SPF No.2 .
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 5, 121 lb uplift at joint 6 and 89 lb uplift at joint 7.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 LOAD CASE(S) Standard

ANDREW THOMAS JOHNSON NUMBER PE-2017018993 STONAL ENGINE April 17,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbsccomponents.com)

							RELEA	SE FOR CONSTRUCTION
Job	Truss	Truss Type	Qt	/ Ply	Lot 13 1	CR		TED FOR PLAN REVIEW
240654	V25	Valley	2	1	Joh Dof	aranaa (anti		ELOPMENT SERVICES 164953233 'S SUMMIT, MISSOURI
Vheeler Lumber, Waverly, KS - (Į		Run: 8.73 S Apr 3 2024 F ID:Du0Bh4NzscLS0CkruB	rint: 8.730 S Ap sVw_y6jde-RfC	or 3 2024 MiTel	erence (options) Industries, In PqnL8w3uIT>	c. Tue Apr 16 160001	/20/202
	F		14-6-8					
						3x4	¹ и	
	T					5	T	
				4	x4 II			
				10				
	7-3-8		2x4 II 3				7-3-8	
	Ľ	0.4					~	
	6	2x4 II 12 2						
	<u>6</u>	1					6	
	é é					×××××	0	
	- 8				7			
	6 §	11 9	8 12			3x4	4 u	
	-0 <u>8</u>	11 9 3x4 ≠ ^{2x4} ∎	8 12 2x4 II		x4 II	3x4	4 u	
Scale = 1:46.6	- <u>k</u>					3x4	4 u	
	F		2x4 I			3x4	\$ n	
ate Offsets (X, Y): [6:Edge	⊢ e,0-2-8] (psf) Spacing	3x4 ≈ 2x4 ∎ 2-0-0	2x4 II 14-6-8 CSI	2 DEFL	in (loo) l/defl	L/d PLATES	GRIP
late Offsets (X, Y): [6:Edg oading CLL (roof)		3x4 ≈ 2x4 ∎	2x4 u 14-6-8	2 DEFL Vert(LL)	x4 II	c) l/defl - n/a		GRIP 197/144
Scale = 1:46.6 late Offsets (X, Y): [6:Edgr oading CLL (roof) now (Pf/Pg) 15.4 CDL CLL	(psf) Spacing 25.0 Plate Grip DOL	3x4 ≈ 2x4 ∎ 2-0-0 1.15	2x4 II 14-6-8 CSI TC 0.43	2 DEFL	in (loo n/a n/a	c) l/defl - n/a - n/a	L/d PLATES 999 MT20	

BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 OTHERS 2x3 SPF No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 1=14-7-0, 6=14-7-0, 7=14-7-0, 8=14-7-0, 9=14-7-0 REACTIONS (size) Max Horiz 1=288 (LC 9) Max Uplift 6=-41 (LC 9), 7=-118 (LC 12), 8=-109 (LC 12), 9=-94 (LC 12) Max Grav 1=113 (LC 9), 6=208 (LC 5), 7=539 (LC 5), 8=439 (LC 3), 9=366 (LC 3) FORCES (Ib) - Maximum Compression/Maximum Tension 1-2=-253/62, 2-3=-213/77, 3-4=-174/78, TOP CHORD 4-5=-146/74. 5-6=-129/47 BOT CHORD 1-9=-98/75, 8-9=-98/75, 7-8=-98/75, 6-7=-98/75WFBS 4-7=-313/152, 3-8=-282/162, 2-9=-241/133

NOTES

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Plate DOL=1.15); Pg=20.0 psr; P1=15.4 psr (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
4) Unbalanced snow loads have been considered for this design.
5) Gable requires continuous bottom chord bearing.

- Gable studs spaced at 4-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 9) All bearings are assumed to be SPF No.2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 41 lb uplift at joint 6, 118 lb uplift at joint 7, 109 lb uplift at joint 8 and 94 lb uplift at joint 9.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPH Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com) 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

											RELEASE	FOR CONSTRUCTION	4
Job	Truss		Truss Type		Qty	Ply	Lot	13 TCR	R			ED FOR PLAN REVIEW OPMENT SERVICES 164953234	
240654	V26		Valley		1	1	Job	Refere	nce (opt	ional		I64953234 SUMMIT, MISSOURI	
Wheeler Lumber	, Waverly, KS - 66871,			Run: 8.73 S Apr 3	2024 Print: 8	3.730 S Apr	3 2024 N	MiTek Ind	dustries, I	nc. Tu	Apr 16 6001	30/2024	1
				ID:Du0Bh4NzscLS0	CkruBsVw_	y6jde-RfC?F	sB70Hq	3NSgPqi	nL8w3ulT	XbGK	WrCDoi754z5C?!	00/202-	т
			-0-10-8	14-									
			0-10-8	14-	0-0								
								3x4 6	¥ II				
		9-3-8	2x4 u 3x4 = 3 1 2	6 2x4 II 4	12 F 12	2x4 II			8-5-6				
Scale = 1:58.5			$11 \xrightarrow{2 -0 - 0} \xrightarrow{2 -0 - 0} \xrightarrow{-1}$	13 9 2x4 II	<u>14-0-0</u> 12-0-0	8 2x4 II		3x4	7	-			
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 25.0 15.4/20.0 10.0 10.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	BC	0.21 Ve	FL t(LL) t(CT) rz(CT)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144	
BCDL	10.0										Weight: 60 lb	FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, exx Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 10	applied or 10-0-0 oc -11.	only. For stu see Standarn or consult qu 3) TCLL: ASCE Plate DOL=1 DOL=1.15 P Partially Exp 4) Unbalanced design. 5) This truss ha	ned for wind loads in ids exposed to wind d Industry Gable End valified building desig 7-16; Pr=25.0 psf (r .15); Pg=20.0 psf; Pl late DOL=1.15); Is=1 .; Ce=1.0; Cs=1.00; C snow loads have been us been designed for psf or 1.00 times flat	(normal to I Details as ner as per oof LL: Lui f=15.4 psf .0; Rough Ct=1.10 en conside greater of	the face), applicable ANSI/TPI m DOL=1. ⁻ (Lum Cat C; red for this min roof liv	e, 1. 15						
REACTIONS	(size) 7=14-0-0, 10=14-0-0 Max Horiz 11=373 (L Max Uplift 7=-50 (LC 9=-110 (L Max Grav 7=210 (LC 9=493 (LC 11=405 (L	: 9), 8=-116 (LC 12), C 12), 10=-316 (LC 9 C 10) C 26), 8=532 (LC 5), C 3), 10=410 (LC 26), .C 9)	overhangs n 6) Gable requir 7) Truss to be f braced agair 8) Gable studs 9) This truss ha chord live loa 10) * This truss h on the bottor	on-concurrent with of es continuous bottom ully sheathed from on ist lateral movement spaced at 4-0-0 oc. is been designed for ad nonconcurrent with has been designed for n chord in all areas w by 2-00-00 wide will fi	ther live loo in chord be ne face or (i.e. diago a 10.0 psf h any othe or a live loa where a red	ads. aring. securely nal web). bottom r live loads id of 20.0p ctangle	s. Sf						
FORCES	(lb) - Maximum Com Tension 2-11=-396/62, 1-2=0 3-4=-231/85, 4-5=-2 6-7=-130/50	//31, 2-3=-269/62, 06/85, 5-6=-166/94,	chord and ar 11) All bearings 12) Provide mec bearing plate 11, 50 lb upl	ny other members, wi are assumed to be S hanical connection (t capable of withstan ift at joint 7, 116 lb up	ith BCDL = PF No.2 . by others) ding 57 lb	= 10.0psf. of truss to uplift at joir					TATE OF I	MISSO	
BOT CHORD	7-8=-126/97	0=-126/97, 8-9=-126/	97, uplift at joint 13) This truss is	9 and 316 lb uplift at designed in accorda	joint 10. nce with th	e 2018				A	S ANDE	EW E	
WEBS	5-8=-307/141, 4-9=- 2-10=-95/400	285/166, 3-10=-220/1	24, International	Residential Code se	ctions R50)2.11.1 and	1			И	/ THOM	AAS \ YA	

- NOTES
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 17,2024

PE-2017018993 PE-2017018993

SSIONAL SIONAL

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 13 TCR	AS NOTED FOR PLAN REVIEW
240654	V28	Valley	1	1	Job Reference (optional)	DEVELOPMENT SERVICES 164953235 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -	2024 MiTek Industries, Inc. Tu 370Hq3NSgPqnL8w3uITXbGK	Apr 16 6081/30/2024				

Scale = 1:33

		i										1	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.22	Vert(LL)	n/a	-	n/a	999	MT20	197/144
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.10	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.06	Horz(CT)	0.00	5	n/a	n/a		
BCLL	10.0*	Code	IRC2	018/TPI2014	Matrix-P								
BCDL	10.0											Weight: 23 lb	FT = 10%
LUMBER				4) Unbalanced	snow loads have	e been cor	sidered for t	his					
TOP CHORD	2x4 SPF No.2			design.									
BOT CHORD	2x4 SPF No.2			5) This truss ha	as been designed	d for great	er of min root	f live					
WEBS	2x3 SPF No.2			load of 12.0	psf or 1.00 times	flat roof lo	oad of 15.4 p	sf on					
OTHERS	2x3 SPF No.2				on-concurrent wi								
WEDGE	Left: 2x3 SPF No.2			, ,	es continuous bo		d bearing.						
BRACING					spaced at 4-0-0								
TOP CHORD	Structural wood shea	athing directly appli	ed or		as been designed								
	6-0-0 oc purlins, exc	cept end verticals.			ad nonconcurren								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	C		has been designe			Opst					
	bracing.				m chord in all are		0						
REACTIONS	(size) 2=7-0-0, 5	5=7-0-0, 6=7-0-0			ny other member								
	Max Horiz 2=158 (LC	C 9)		10) All bearings									
	Max Uplift 2=-4 (LC 8	8), 5=-27 (LC 9), 6=	-124	11) Provide med				to					
	(LC 12)				e capable of with								
	Max Grav 2=167 (LC 6=404 (LC		9),	5, 4 lb uplift	at joint 2 and 124	1 lb uplift a	it joint 6.						
FORCES	(lb) - Maximum Com	,		 This truss is International 	Residential Cod			and					
	Tension			R802.10.2 a	nd referenced sta	andard AN	ISI/TPI 1.						
TOP CHORD	1-2=0/11, 2-3=-130/7	70, 3-4=-113/45,		LOAD CASE(S)	Standard								
	4-5=-128/45	110		.,									
BOT CHORD	2-6=-53/40, 5-6=-53/	/40											
WEBS	3-6=-307/177												The second
NOTES												ATT	Aller
1) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)										A OF I	MISC

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

Max Uplift 1=-20 (LC 12), 3=-38 (LC 12) Max Grav 1=165 (LC 5), 3=165 (LC 5) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-65/46, 2-3=-128/58 BOT CHORD 1-3=-24/19

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- iferenced standard ANSI/TPI 1. andard
 - ANDREW THOMAS JOHNSON NUMBER PE-2017018993 SSIONAL ENGINE April 17,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbsccomponents.com)

