

RE: P240834 -

MiTek, Inc.

16023 Swingley Ridge Rd. Site Information: Project Customer: Clayton Properties Project Name: Basswood - Transitional 3Carte. 4.434.1200 Lot/Block: 192 Subdivision: Highland Meadows Model: Address: 1042 SW Fiord Dr City: Lee's Summit State: MO General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Code: IRC2018/TPI2014 Design Program: MiTek 20/20 8.6 Wind Code: ASCE 7-16 Wind Speed: 115 mph Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16 Roof Load: 45.0 psf Floor Load: N/A psf Mean Roof Height (feet): 35 Exposure Category: C

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Premier Building Supply (Springhill, KS)20300 W 207th Street.

Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2025.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Sevier, Scott

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qtv	Plv		AS NOTED FOR PLAN REVIEW
						DEVELOPMENT SERVICES I67129679
P240834	B1	Monopitch Supported Gable	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springh	ill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Jul 12 20	024 Print: 8.6	30 S Jul 12 2	2024 MiTek Industries, Inc. Th	

ID:rc4sjKzIJtfsErm8VGMRJ_zwwqN-RfC?PsB70Hq3NSgPqnL8w3uITXbGK

4-11-8

Scale - 1:28 5

00010 = 1.20.0													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.12	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.07	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.07	Horz(CT)	n/a	-	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-P							Weight: 19 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 5-0-0 oc purlins, ex Rigid ceiling directly	athing directly applie cept end verticals. applied or 10-0-0 oc	d or	 All bearings capacity of 1 Provide me bearing plat 5, 49 lb upli This truss is Internationa R802.10.2 a CAD CASE(S 	are assumed t 565 psi. chanical conne te capable of wi ft at joint 2 and s designed in ac al Residential Co and referenced) Standard	to be SP No. ction (by oth ithstanding 1 78 lb uplift a ccordance w ode sections standard AN	2 crushing ers) of truss t 4 lb uplift at j t joint 6. ith the 2018 i R502.11.1 a ISI/TPI 1.	to joint and					

	bracing.	
EACTIONS	(size)	2=5-0-0, 5=5-0-0, 6=5-0-0
	Max Horiz	2=85 (LC 8)
	Max Uplift	2=-49 (LC 8), 5=-14 (LC 8), 6=-78
		(LC 12)
	Max Grav	2=182 (LC 1), 5=47 (LC 1), 6=269
		(LC 1)
ORCES	(lb) - Max	imum Compression/Maximum
ORCES	Max Grav (lb) - Max	(LC 12) 2=182 (LC 1), 5=47 (LC 1), 6=26 (LC 1) imum Compression/Maximum

2-3-0

Tension TOP CHORD 1-2=0/6, 2-3=-141/58, 3-4=-29/8, 4-5=-37/47 BOT CHORD 2-6=0/0, 5-6=0/0 WEBS 3-6=-205/304

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 4-10-4 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.

Gable studs spaced at 2-0-0 oc. 4)

- 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

July 29,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

								RELEASE FOR CONSTRUCTION
	lob	Truce	Truss Type		Otv	Plv		AS NOTED FOR PLAN REVIEW
	300	11035	Truss Type		Quy	i iy		DEVELOPMENT SERVICES
	P240834	B2	Monopitch		3	1	lob Roforance (antional	LEE'S SUMMIT, MISSOURI
1							JOD Reference (optional	00/01/0001
	Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083, Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Th					1 Jul 25 18:13:58 7 Page 1		
	ID:4QEzufucAXMxzh8xWxEVwDzwwpA-RfC?PsB70Hq3NSgPqnL8w3uITXb <mark>5</mark> K							

-0-10-8 4-11-8 0-10-8 4-11-8 1.5x4 🛚 12 4 ∟ 3 5 2-1-13 2-3-0 2 0-9-0 ð 4 X 3x4 = 1.5x4 u

4-11-8

Scale = 1:27.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.49	Vert(LL)	-0.03	2-4	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.27	Vert(CT)	-0.06	2-4	>958	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	n/a	-	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 18 lb	FT = 20%
LUMBER												
TOP CHORE	2x4 SP No.2											
BOT CHORE	2x4 SP No.2											
WEBS	2x3 SPF No.2											
BRACING												
TOP CHORE	O Structural wood she 5-0-0 oc purlins, ex	athing directly appli cept end verticals.	ed or									
BOT CHORE	D Rigid ceiling directly bracing.	applied or 10-0-0 o	с									
REACTIONS	s (size) 2=0-3-8, 4	4= Mechanical										
	Max Horiz 2=85 (LC	8)										
	Max Uplift 2=-83 (LC	C 8), 4=-59 (LC 12)										
	Max Grav 2=291 (L0	C 1), 4=204 (LC 1)										
FORCES	(lb) - Maximum Corr Tension	npression/Maximum										
TOP CHORE	0 1-2=0/6, 2-3=-100/4	5, 3-4=-157/228										
BOT CHORE	0 2-4=0/0											
NOTES												
1) Wind: AS	SCE 7-16: Vult=115mph	(3-second aust)										
Vasd=91	mph: TCDL=6.0psf: BC	DL=6.0psf: h=35ft:										
Ke=1.00	; Cat. II; Exp C; Enclose	ed; MWFRS (envelo	pe)									
exterior 2	zone and C-C Exterior(2	2E) -0-10-8 to 4-1-8,	· ·									
Interior (1) 4-1-8 to 4-10-4 zone;	cantilever left and r	ight									
exposed	; end vertical left expos	ed;C-C for member	S									an .
and force	es & MWFRS for reaction	ons shown; Lumber									A TI	and the
DOL=1.6	60 plate grip DOL=1.60										EF OF I	VIISS D
2) This trus	s has been designed fo	r a 10.0 psf bottom								4		N'S
chord liv	e load nonconcurrent wi	ith any other live loa	ds.							H	SCOT	TM XPN
3) Bearings	are assumed to be: Joi	int 2 SP No.2 crushi	ng							И.	SEV	
4) Refer to	or ooo psi.									RL		
4) Relef to	mechanical connection	(by others) of trues t	0							2		0
bearing	plate capable of withsta	nding 59 lb unlift at i	oint									Air link
4 and 83	Ib uplift at joint 2.										AUM	
6) This trus	s is designed in accorda	ance with the 2018								N	O PE-2001	018807
Internatio	onal Residential Code s	ections R502.11.1 a	ind							N	The second	18A

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
loh	Truss	Truss Type	Otv	Plv		AS NOTED FOR PLAN REVIEW
300	11033		Galy	i iy		DEVELOPMENT SERVICES
P240834	B3	Monopitch	7	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

2-11-8

Scale = 1:25.4	Scale = 1:25.4						I					
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.13	Vert(LL)	0.00	2-4	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	-0.01	2-4	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	n/a	-	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 11 lb	FT = 20%

LUMBER

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x3 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	3-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
DELOTIONO	

REACTIONS	(size)	2=0-3-8, 4= Mechanical
	Max Horiz	2=56 (LC 8)
	Max Uplift	2=-72 (LC 8), 4=-32 (LC 12)
	Max Grav	2=207 (LC 1), 4=108 (LC 1)
FORCES	(lb) - Max Tension	imum Compression/Maximum

 TOP CHORD
 1-2=0/6, 2-3=-61/28, 3-4=-81/124

 BOT CHORD
 2-4=0/0

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Bearings are assumed to be: Joint 2 SP No.2 crushing capacity of 565 psi.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 4 and 72 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

July 29,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
loh	Trues	Trues Type	Otv	DIV		AS NOTED FOR PLAN REVIEW
300	11055	Truss Type	Quy	гіу		DEVELOPMENT SERVICES
P240834	D1	Roof Special Supported Gable	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. The Jul 25 Bigs/21/29:24 ID:wijvgVRNMEbdXh3iv6zXHnzww7s-RfC?PsB70Hq3NSgPqnL8w3ulTXbGrWrCDoi794297

Plate Offsets (X, Y): [2:0-3-0,0-1-12], [8:Edge,0-3-8], [14:0-3-0,0-1-12], [23:0-5-8,0-3-4]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	4-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.80 0.93 0.52	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.23 -0.28 0.17	(loc) 25-26 25-26 16	l/defl >691 >572 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 76 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce 2400F 2.0E 2x3 SPF No.2	W SP N	VEBS	EBS 7-23=-460/918, 9-21=-242/763, 8-22=-199/702, 6-24=-226/246, 5-25=-76/101, 4-26=-102/121, 3-27=-491/38, 10-20=-238/257, 11-19=-76/103, 12-18=-102/122, 13-17=-508/67, 2-27=0/1511, 14-17=-99/1658 DTES						desig al Resid and ref urlin re tation o rd. Stai	ned in accordance dential Code sect erenced standare presentation doe of the purlin along ndard	e with the 2018 ions R502.11.1 and J ANSI/TPI 1. is not depict the size g the top and/or	
TOP CHORD	2-0-0 oc purlins (3-7 verticals (Switched from she	7-6 max.), except en eted: Spacing > 2-8-0	d 1) 0). 2)	Unbalanced this design. Wind: ASCE	roof live loads have 7-16; Vult=115mp	e been h (3-seo	considered fo	r					
BOT CHORD	Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 27	applied or 10-0-0 or 7-28,16-17.	0	Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-2-0.									
REACTIONS	(size) 16=0-3-8 Max Horiz 28=428 (I Max Uplift 16=-197 Max Grav 16=1347	, 28=0-3-8 _C 11) (LC 13), 28=-197 (LC (LC 1), 28=1347 (LC	C 12) C 1)	Interior (1) 4-2-0 to 6-10-0, Exterior(2R) 6-10-0 to 11-10-0, Interior (1) 11-10-0 to 14-6-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for									
FORCES	(lb) - Maximum Con	pression/Maximum		DOL=1.60	own; Lumber DOL=	=1.60 pi	ate grip						
TOP CHORD	2-28=-1440/253, 1-/ 3-4=-1972/205, 4-5- 5-6=-1825/388, 6-7= 7-8=-1300/401, 8-9= 9-10=-1760/482, 10 11-12=-1927/345, 1 13-14=-1776/198, 1 14-16=-1440/324	2=0/91, 2-3=-1767/16 1896/303, 1773/510, 1470/517, -11=-1864/433, 2-13=-2002/259, 4-15=0/91,	62, 3) 4) 5) 6) 7	I russ designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. All plates are 1.5x4 MT20 unless otherwise indicated. Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). Gable studs spaced at 1-4-0 oc.							MISSOL		
BOT CHORD	27-28476/455, 26 25-2691/1683, 24 23-24177/1843, 2 21-2242/1476, 20 19-2044/1697, 18 17-1857/1599, 16	-27=-75/1613, -25=-83/1729, 2-23=-51/1483, -21=-48/1660, -19=-35/1642, -17=-68/39	7) 8) 9)	 This truss ha chord live loa All bearings capacity of 5 Bearing at jo value using a 	as been designed for a 10.0 psf bottom ad nonconcurrent with any other live loads. are assumed to be SP No.2 crushing 565 psi. oint(s) 28, 16 considers parallel to grain ANSI/TPI 1 angle to grain formula. Building							SCOT SEVI	ER Server

designer should verify capacity of bearing surface.

Mitek 16023 Swingley Ridge Rd.

Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

July 29,2024

E

PE-2001018807

ONAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qtv	Plv		AS NOTED FOR PLAN REVIEW
						DEVELOPMENT SERVICES I67129683
P240834	D2	Roof Special Structural Gable	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. The Jul 25 Bigg/21/2024 ID:0Un07T0ZcCLyQZnshImJUDzwwdO-RfC?PsB70Hq3NSgPqnL8w3ulTXbeKWrCDorJ.@e?21/2024

Scale = 1:63.4 Plate Offsets (X, Y): [1:Edge,0-8-6], [22:0-4-4,0-2-8]

Loading	((psf)	Spacing	2-0-0		CSI	0.55	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (root)	2	25.0	Plate Grip DOL	1.15			0.50	Vert(LL)	-0.09	22-23	>999	240	MT20	197/144		
		10.0	Lumber DOL Bon Stroop Inor	1.15 VES		BC	0.45		-0.17	22-23	>512	180				
		10.0	Rep Stress Incr	TEO		VVB Matrix C	0.96	HOIZ(CT)	0.06	10	n/a	n/a	Waisht 140 lb	FT 200/		
BCDL		10.0	Code	IRC20	18/1912014	iviatrix-5							weight: 140 lb	FI = 20%		
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 16-15:2x6 SP 2x3 SPF No.2 Structural wo 6-0-0 oc purli	2 *Exce PF No.2 2 od shea ns, exc	pt* 23-1:2x4 SP No.2 athing directly applied cept end verticals.	V 2, d or	VEBS	7-22=-872/234, 13 24-26=-711/344, 2 25-27=-717/349, 2 22-28=-740/350, 1 7-29=0/480, 29-30 10-19=-201/11, 15 31-32=-469/135, 1 14-17=-204/231, 3 2-26=-57/81, 5-27	8-17=0/4: 24-25=-7 27-28=-7 4-16=-5 9=0/557, 9-31=-49 3-32=-6 3-24=-52 =-34/38,	39, 1-26=-71 15/347, 19/351, 37/112, 19-30=0/521 2/148, 48/212, 48/212, 42, 4-25=-27 6/2 2 2 40/	7/349, , 7/20,	 bearing plate capable of withstanding 156 lb uplift at joint 23, 171 lb uplift at joint 22 and 71 lb uplift at joint 16. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 						
30T CHORD	Rigid ceiling o	directly	applied or 6-0-0 oc			8-29=-124/45, 21- 20-30=-20/19 11-	29=-137. 31=-28/1	'0, 9-30=-48/ 5 12-32=-87	17, 7/202							
JOINTS	bracing. 1 Brace at Jt(27. 30. 31	(s): 24,		N 1	IOTES) Unbalanced	roof live loads hav	/e been	considered fo	or							
REACTIONS	(size) 16: Max Horiz 23: Max Uplift 16: 23: Max Grav 16: 23: 23:	=0-3-8, =272 (L =-71 (L0 =-156 (L =416 (L =169 (L	22=7-4-8, 23=7-4-8 C 11) C 13), 22=-171 (LC 1 LC 26) C 1), 22=1412 (LC 1 C 25)	2 2),),	 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 5-2-15, Interior (1) 5-2-15 to 10-4-8, Exterior(2R) 10-4-8 to 											
FORCES	(lb) - Maximu	m Com	pression/Maximum		and right exp	posed ; end vertica	al left and	le; cantilever 1 right	ien							
FOP CHORD	1-2=-82/367, 4-5=-52/467, 7-8=-119/213 10-11=-72/15 12-13=-177/1 14-15=-207/7	2-3=-10 5-6=-23 3, 8-9=-9 5, 11-12 68, 13- 71 1-23	00/427, 3-4=-70/436, 3/502, 6-7=-11/473, 96/161, 9-10=-87/165 2=-79/135, 14=-482/63, =-97/26, 15-16=-19	5, 3	exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,								AISSOL			
3OT CHORD	13-207/5 20-21=-423/2 18-19=-31/27 16-17=-106/5	22=-4771/75, 20=-418/223, 8=-20/244,	ualified building designer as per ANSI/TPI 1. scott M. re 1.5x4 MT20 unless otherwise indicated. fully sheathed from one face or securely inst lateral movement (i.e. diagonal web). s spaced at 1-4-0 oc. as been designed for a 10.0 psf bottom code of the securely bad nonconcurrent with any other live loads. per-200101880 s are assumed to be SP No.2 crushing per-200101880							T M. ER 018807						

Bearing at joint(s) 16 considers parallel to grain value

using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

SSIONAL

E

July 29,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

9)

						RELEASE FOR CONSTRUCTION
loh	Truss	Truss Type	Otv	Plv		AS NOTED FOR PLAN REVIEW
000	11033		Quy	1 19		DEVELOPMENT SERVICES
P240834	D3	Roof Special	7	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. The Jul 25 6 RS 21/20:24 ID:pwt0jO1hEphDIMFL4rgrrezwwfy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKW CDoi7J4acC

Scale = 1:63.3	
Plate Offsets (X, Y):	[1:0-1-12,0-1-8], [11:0-4-4,0-2-8]

members and forces & MWFRS for reactions shown;

Lumber DOL=1.60 plate grip DOL=1.60

Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.76	DEFL Vert(LL)	in -0.10	(loc) 11-12	l/defl >999	L/d 240	PLATES MT20	GRIP 197/144	
TCDL	10.0	Lumber DOL	1.15		BC	0.48	Vert(CT)	-0.20	11-12	>999	180			
BCLL	0.0	Rep Stress Incr	YES		WB	0.83	Horz(CT)	0.13	8	n/a	n/a			
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 112 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce 8-7:2x6 SPF No.2 Structural wood she: 2-2-0 oc purlins, exc Rigid ceiling directly bracing. (size) 8=0-3-8, 1 Max Horiz 12=263 (L Max Uplift 8=-112 (L Max Grav 8=917 (LC	pt* 12-1:2x4 SP No.2 athing directly applied sept end verticals. applied or 10-0-0 oc 2=0-3-8 .C 11) C 13), 12=-113 (LC 1 C 1), 12=917 (LC 1)	3) 4) 2, 5) d or 6) 7) 12) LC	This truss ha chord live loa All bearings a capacity of 5 Bearing at jo using ANSI/1 designer sho Provide mec bearing plate 12 and 112 ll This truss is International R802.10.2 an	s been designed f and nonconcurrent v are assumed to be 65 psi. int(s) 8 considers PI 1 angle to grain uld verify capacity hanical connection capable of withst o uplift at joint 8. designed in accorr Residential Code and referenced star Standard	for a 10. with any e SP No. parallel f n formula of bear n (by oth anding 1 dance w sections ndard AN	D psf bottom other live loa 2 crushing o grain value a. Building ng surface. ers) of truss f 13 lb uplift at ith the 2018 s R502.11.1 a ISI/TPI 1.	ads. to t joint						
FORCES	(lb) - Maximum Com	pression/Maximum												
TOP CHORD	Tension 1-2=-1033/192, 2-3= 3-4=-1613/377, 4-5= 5-6=-1819/275, 6-7= 7-8=-273/83	812/200, 1676/299, 311/84, 1-12=-843/ ⁻	171,											
BOT CHORD	11-12=-280/488, 10- 9-10=-80/1243, 8-9=	11=-135/836, -238/1395												
NEBS	2-11=-253/116, 2-10 3-10=-351/1435, 4-1 4-9=-88/634, 5-9=-1 6-8=-1587/272, 6-9=	=-251/241, 0=-757/247, 7/40, 1-11=-23/417, -40/190									ŀ	TE OF M	AISSOL	
NOTES											B	ST SCOTT	N SA	
 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; BCDL=6.0psf; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 5-1-12, Interior (1) 5-1-12 to 10-4-8, Exterior(2R) 10-4-8 to 15-4-8, Interior (1) 15-4-8 to 20-6-4 zone; cantilever left and right exposed ; end vertical right exposed; C-C for 														

July 29,2024

ONAL

n/a n/a 999 16 0.01 n/a n/a Weight: 138 lb FT = 20% 8) All bearings are assumed to be SP No.2 crushing

16

22-2-4

0-5-8

L/d

999

17 6x6 II

l/defl

n/a

capacity of 565 psi.

PLATES

MT20

GRIP

244/190

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 91 lb uplift at joint 16, 36 lb uplift at joint 2, 126 lb uplift at joint 18, 123 lb uplift at joint 19, 126 lb uplift at joint 20, 122 lb uplift at joint 21, 123 lb uplift at joint 22, 121 lb uplift at joint 23, 129 lb uplift at joint 24, 91 lb uplift at joint 26, 261 lb uplift at joint 27 and 77 lb uplift at joint 17.

- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or

27

4-0-0

1.15

1.15

NO

IRC2018/TPI2014

TOP CHORD

BOT CHORD

WEBS

3x4 u

Plate Offsets (X, Y): [2:0-2-1,0-0-5], [5:0-1-12,0-1-8], [16:Edge,0-3-8]

Spacing

Code

2x3 SPF No.2 *Except* 28-15:2x6 SPF No.2

2-0-0 oc purlins (5-6-9 max.), except end

(Switched from sheeted: Spacing > 2-8-0).

Rigid ceiling directly applied or 9-7-14 oc

Plate Grip DOL

Rep Stress Incr

15-16, 13-18, 12-19,

Lumber DOL

(psf)

25.0

10.0

0.0

10.0

2x4 SP No.2

2x4 SP No.2

verticals

bracing.

1 Row at midpt

2x4 SP 1650F 1.5E

Left 2x4 SP No.2 -- 1-6-7

Scale = 1:64.5

Loading

TCDL

BCLL

BCDL

WEBS

OTHERS

SLIDER

BRACING

TOP CHORD

BOT CHORD

WEBS

LUMBER

TOP CHORD

BOT CHORD

TCLL (roof)

26

25 24

3x4=

CSI

TC

BC

WB

Matrix-S

15-16=-388/528

16-17=-305/391

23

22

21-8-12 21-8-12

0.87

0.51

0.40

1-2=0/11, 2-4=-990/650, 4-6=-779/549

9-10=-397/410, 10-11=-365/426,

11-12=-365/540, 12-13=-396/635

13-14=-395/613, 14-15=-450/603,

2-27=-305/391, 26-27=-305/391,

24-26=-305/391, 23-24=-305/391,

22-23=-305/391, 21-22=-305/391,

20-21=-305/391, 19-20=-305/391,

18-19=-305/391, 17-18=-305/391,

13-18=-377/221, 12-19=-298/197,

11-20=-279/206, 10-21=-280/193,

6-7=-690/525, 7-8=-578/485, 8-9=-471/448,

21

DEFL

Vert(LL)

Vert(CT)

Horz(CT)

20

19

in (loc)

n/a

18

- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

THE SSIONAL

July 29,2024

E

L	U	N	IB	E	R

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2 *Except* 9-8:2x3 SPF No.2
WEBS	2x3 SPF No.2
OTHERS	2x6 SPF No.2
SLIDER	Left 2x4 SP No.2 3-2-3
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	3-5-6 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 8-4-8 oc
	bracing.
WEBS	1 Row at midpt 4-10, 7-9
REACTIONS	(size) 2=0-3-8, 13=0-3-2
	Max Horiz 2=384 (LC 12)
	Max Uplift 2=-153 (LC 12), 13=-235 (LC 12)
	Max Grav 2=1036 (LC 1), 13=972 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/6, 2-4=-1623/208, 4-6=-943/124,
	6-7=-924/283, 7-8=-64/49
BOT CHORD	9-13=-213/848, 8-13=-124/66,
	2-12=-483/1364, 10-12=-483/1364,
	9-10=-82/264
WEBS	6-10=-521/308, 7-10=-338/1066, 4-12=0/277,

Unbalanced roof live loads have been considered for 1) this design.

4-10=-680/274, 7-9=-822/263

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 18-6-0, Exterior(2E) 18-6-0 to 21-7-8 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.

- 4) Bearings are assumed to be: Joint 2 SP No.2 crushing capacity of 565 psi, Joint 13 SPF No.2 crushing capacity of 425 psi.
- Bearing at joint(s) 13 considers parallel to grain value 5) using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 153 lb uplift at joint 2 and 235 lb uplift at joint 13.
- This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- LOAD CASE(S) Standard

July 29,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

									RELEASE	FOR CONSTRUCTION	N
Job	Truss		Truss Type		Qty	Ply			AS NOTE	D FOR PLAN REVIEW	
P240834	E5		Roof Special		2	1	lob Refer	ence (ontional	LEE'S	SUMMIT, MISSOURI	
Premier Building	g Supply (Springhill, KS), S	Spring Hills, KS - 66083,		Run: 8.63 S Jul 1:	2 2024 Print:	8.630 S Jul 1	2 2024 MiTek Ir	ndustries, Inc. Th	u Jul 25 8:19	21/202/	1
	ID:X3j9csSdTd?hyQgxh8rn6OzwvzW-RfC?PsB70Hq3NSgPqnL8w3uITXbGHWrCDoi754259?/ エリノムロー										
		-0-10-	8 5-9-2	13-9-2		16-0-4	18-6-0 21	-7-8 22-2-4			
		0-10-	8 5-9-2	8-0-0		2-3-2	2-5-12 3·	-1-8 0-6-12			
							. 8				
$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$											
		ł	5-9-2	13-9-2		16-1-8	19-3-12 2	21-6-4			
Scale = 1:71.7			5-5-2	8-0-0		2-4-0	5-2-4	0-2-8 0-5-8			
Loading	(psf)	Spacing	2-0-0	D CSI DEFL in (loc) I/defl L/						GRIP	
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC	0.82 Ve 0.59 Ve	rt(LL) - rt(CT) -	0.10 16-18 0.22 16-18	>999 240 >999 180	0 MT20 244/190 0		
BCLL	0.0	Rep Stress Incr	YES	WB Matrix-S	0.73 Ho	rz(CT)	0.04 19	n/a n/a	a Weight: 134 lb ET - 20%		
	10.0	Code	2) Wind: ASCE	7 16: Vult-115mph	(2 000000	quet)			weight. 134 lb	F1 = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING	2x4 SP No.2 2x4 SP No.2 *Excep SPF No.2 2x3 SPF No.2 2x6 SPF No.2 Left 2x4 SP No.2 5	ot* 15-7,13-11,10-9:2) 3-2-3	2) Wind: ASCE Vasd=91mp Ke=1.00; Ca exterior zone Interior (1) 4 zone; cantile exposed;C-C reactions sh	7-16; Vult=115mpr h; TCDL=6.0psf; BC it. II; Exp C; Enclose e and C-C Exterior(2 -1-8 to 18-6-0, Exterior(2 -1-8 to 18-6-0, Exterior ver left and right ex c for members and f own; Lumber DOL=	(3-second DL=6.0psf; ed; MWFRS 2E) -0-10-8 rior(2E) 18- posed ; enc orces & MV 1.60 plate g	gust) h=35ft; (envelope) to 4-1-8, 6-0 to 21-7- d vertical lef VFRS for grip	8 t				
TOP CHORD	Structural wood she 3-10-14 oc purlins	athing directly applie	d or DOL=1.60 3) This truss ha	as been designed fo	r a 10.0 psf	bottom					
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc	chord live loa 4) Bearings are	ad nonconcurrent w assumed to be: Jo	ith any othe int 2 SP No	er live loads .2 crushing					
WEBS REACTIONS	1 Row at midpt	4-16, 8-12 19-0-3-2	of 425 psi.	65 psi, Joint 19 SPI	- NO.2 Crus	ning capaci	ty				
REACTIONS	Max Horiz 2=384 (LC 12) Max Uplift 2=-153 (LC 12), 19=-235 (LC 12) Max Grav 2=1036 (I C 1), 19=-972 (I C 1) Max Grav 3=1036 (I C 1), 19=-972 (I C 1) Max										
FORCES	(lb) - Maximum Com	pression/Maximum	bearing plate	e capable of withsta	nding 153 ll	b uplift at					
TOP CHORD	1-2=0/6, 2-4=-1624/2	204, 4-6=-940/129,	7) This truss is	designed in accord	ance with th	ne 2018					
BOT CHORD	2-18=-480/1364, 16-	-18=-480/1364,	R802.10.2 a	nd referenced stand	lard ANSI/T	PI 1.					
WEBS	LOAD CASE(S) Standard 13-10=-10/1, 14-13=-43/0, 7-14=-20/02, 13-14=-116/391, 12-13=-117/391, 11-13=0/41, 10-11=0/2, 10-12=0/47, 12-19=-209/852, 9-19=-122/68 EBS 6-16=-566/286, 8-14=-303/1001, 4-18=0/294, 4-16=-682/265, 8-12=-875/265,										

1) Unbalanced roof live loads have been considered for this design.

14-16=-374/1218, 6-14=-16/34

SCOTT M. SEVIER PE-2001018807 FESSTONAL ENGINE July 29,2024

lek

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

													RELEASE	FOR CO	NSTRUCTION	
Job		Truss		Truss Ty	/pe		Qty	Ply					AS NOTE	D FOR PL	AN REVIEW	
P240834		E6		Commo	on		7	1		h Refere	ance (on	LEE'S SUMMIT, MISSC				
Premier Building	Supply (Springh	ill, KS), S	pring Hills, KS - 66083,	Į		Run: 8.63 S J	ul 12 2024 Pri	int: 8.630 S J	ul 12 2024	MiTek In	dustries, I	nc. Th	ı Jul 25 8:1400	21/	2024	
						ID:TnZ3x61kR	md3IVZaqXd	QQ5zwvtc-Rf	C?PsB70H	lq3NSgP	qnL8w3ul	TXbG	WrCDoi7942967f	2 1/4	2027	
	-0-10-8	5	0.2	12	0.2	19.6.0	h	22 2 14			21 2 1/	1		27 0 0	37-10-8	
	0-10-8	5	-9-2	8-0	<u>9-2</u>)-0	4-8-14	4	4-8-14			8-0-0	•	``	5-9-2	0-10-8	
							5x5=									
тт							6									
				10		1.5x4 🛚			1.5x4 ı							
				1 <u>2</u> 6		5			7							
				3	x8 =		// ``	//		\searrow	3x8 ≈					
က္ ဝု				4			/				8					
9-11			3x4 =									\sim	3x4			
			20										9 21			
					87			//			A					
0	- 1 2														10 11	
	I 'un	<u>ــــــــــــــــــــــــــــــــــــ</u>													12"	
	7x	8 =	18 4x6=		17 16 3x6= 4x8= 4x8= 3x6 4x8= 3x6 4x8 4x8 4x8 4x8 4x8 4x8 4x8 4x8				15 4x8=	14 3x6=			13 4x6=		7x8 II	
		5	-0-2	13-	0-2		23-2-14				31-2-1/	1		87-0-0		
	H	5	-9-2	8-0	<u>9-2</u>)-0	-	9-5-12				8-0-0	•	``	5-9-2		
Scale = 1:67.8																
Plate Offsets ()	X, Y): [12:Edg	ge,0-3-8	, [13:0-2-8,0-2-0], [18 	8:0-2-8,0-2	2-0], [19:0-3-8,	,0-3-4] I										
Loading		(psf)	Spacing	2-0-0 1 15		CSI	0.64	DEFL	in -0 19	(loc)	l/defl ∖ooo	L/d	PLATES	GRIP	h	
TCDL		10.0	Lumber DOL	1.15		BC	0.90	Vert(CT)	-0.44	15-16	>993	180	101120	244/130	5	
BCLL BCDI		0.0 10.0	Rep Stress Incr	YES IRC2018	/TPI2014	WB Matrix-S	0.92	Horz(CT)	0.10	12	n/a	n/a	Weight: 176 lb	FT = 20)%	
			0000	2)	Wind: ASCE	7-16: Vult=115r	mph (3-seco	and aust)					Tronginii Trono			
TOP CHORD	2x4 SP 1650)F 1.5E		2)	Vasd=91mpl	n; TCDL=6.0psf;	BCDL=6.0p	psf; h=35ft;	>							
BOT CHORD WEBS	2x4 SP No.2 2x3 SPF No.	2 *Exce	pt* 19-2:2x6 SPF No	.2,	exterior zone	and C-C Exteri	or(2E) -0-10	0-8 to 4-1-8	pe)							
	12-10:2x4 SI	P 1650F	1.5E		Interior (1) 4- 23-2-14, Inte	-1-8 to 18-6-0, E rior (1) 23-2-14	xterior(2R) to 37-10-8 z	18-6-0 to zone; cantile	ever							
TOP CHORD	Structural wo	ood shea	athing directly applied	d or	left and right	exposed ; end \	vertical left a	and right	r							
BOT CHORD	3-4-13 oc pu Rigid ceiling	irlins, ex directly	cept end verticals. applied or 10-0-0 oc		reactions sho	own; Lumber DC	DL=1.60 plat	te grip	•							
	bracing, Except: 8-5-5 oc bracino: 16-18. 3) The Fabrication Tolerance at joint 10 = 16%															

	bracing, Except:
	8-5-5 oc bracing: 16-18.
WEBS	1 Row at midpt 3-16, 9-15
REACTIONS	(size) 12=0-5-8, 19=0-3-8
	Max Horiz 19=-166 (LC 17)
	Max Uplift 12=-276 (LC 13), 19=-278 (LC 12)
	Max Grav 12=1719 (LC 1), 19=1726 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=0/35, 2-3=-2848/431, 3-5=-2360/418,
	5-6=-2337/549, 6-7=-2343/549,
	7-9=-2365/419, 9-10=-2884/437, 10-11=0/32,
	2-19=-1661/338, 10-12=-1654/334
BOT CHORD	18-19=-249/555, 16-18=-474/2474,
	15-16=-102/1561, 13-15=-312/2506,
	12-13=-114/613
WEBS	5-16=-512/308, 6-16=-325/1012,
	9-13=-32/166, 7-15=-511/308, 3-18=-52/151,
	10-13=-208/1899, 3-16=-556/246,
	6-15=-327/1021, 2-18=-225/1934,
	9-15=-581/251

1) Unbalanced roof live loads have been considered for this design.

This truss has been designed for a 10.0 psf bottom 4) chord live load nonconcurrent with any other live loads. 5) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 276 lb uplift at joint 12 and 278 lb uplift at joint 19. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

July 29,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
loh	Truss	Truss Type	Otv	Plv		AS NOTED FOR PLAN REVIEW
005	11033		Guy	i iy		DEVELOPMENT SERVICES
P240834	E7	Common Supported Gable	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. The Jul 25 81409/21/209:24 ID:30TC0Xcr8WgF3uEpecUgNDzwyss-RfC?PsB70Hq3NSgPqnL8w3uITXbc WrCD0F942027

Scale = 1:67.8

Plate Offsets (X, Y): [17:0-0-0,0-0-0]

		,	1													
Loading		(psf)	Spacing	4-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GR	RIP	
TCLL (roof)		25.0	Plate Grip DOL	1.15		тс	0.22	Vert(LL)	n/a	-	n/a	999	MT20	244	4/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.16	Vert(CT)	n/a	-	n/a	999	-			
BCLL		0.0	Rep Stress Incr	NO		WB	0.40	Horz(CT)	0.02	24	n/a	n/a				
BCDL		10.0	Code	IRC2	018/TPI2014	Matrix-R							Weight: 191	lb FT	= 20%	
											Ŭ			-		
LUMBER					FORCES	(lb) - Maximum C	Compressi	on/Maximum		2) Wir	nd: ASCI	E 7-16	; Vult=115mp	h (3-seco	ond gust)	
TOP CHORD	2x4 SP N	0.2				Tension				Vas	sd=91mp	bh; TC	DL=6.0psf; B	CDL=6.0	psf; h=35ft;	
BOT CHORD	2x4 SP N	0.2			TOP CHORD	2-44=-331/145, 1	1-2=0/64, 2	2-3=-395/168,	07	Ke	=1.00; C	at. II; E	Exp C; Enclos	ed; MWF	-RS (envelope)	
WEBS	2x4 SP N	0.2				3-4=-263/184, 4-	0 474/42	2, 5-6=-163/2	87, (504	ext	erior zor	e and) - 0-10	-8 to 4-1-8,	
OTHERS	2x3 SPF I	No.2				0-8=-139/343, 8= 10 11 - 249/646	·9=-171/42	24, 9-10=-208/	531,	22) 4-1-8 prior(2)	N) 22 6 0 to 2) 18-6-0 (0	
BRACING						10-11=-240/040,	13-142	18/6/6		23- left	and righ		ised : end ver	tical left :	and right	
TOP CHORD	2-0-0 oc p	ourlins (6-0	-0 max.), except end	d		14-15-202/730,	15-161	71/424		evr	osed C-	C for r	nembers and	forces &	MWERS for	
	verticals					16-18=-133/316	18-19=-9	6/209		rea	ctions st	nown.	l umber DOI =	=1 60 pla	ite arin	
	(Switched	trom shee	eted: Spacing > 2-8-0)).		19-20=-128/127.	20-21=-1	77/81.		DO	L=1.60				tto grip	
BOT CHORD	Rigid cell	ing directly	applied or 10-0-0 oc	;		21-22=-285/79.2	22-23=0/64	4. 22-24=-331	/154	3) Tri	uss desi	aned fo	or wind loads	in the pla	ane of the truss	
	Dracing.	ا مرام ا	40.04 44.05 40.00		BOT CHORD	43-44=-78/318, 4	42-43=-78/	318,		onl	. For s	uds ex	posed to win	d (norma	al to the face),	
	I ROW at		12-34, 11-35, 13-33	0.0		41-42=-78/318, 4	40-41=-78/	/318,		see	Standa	rd Indu	ustry Gable E	nd Detail	ls as applicable,	
REACTIONS	(size)	24=37-0-0	J, 25=37-0-0, 26=37-	-0-0,		39-40=-78/318, 3	37-39=-78/	/318,		oro	consult q	ualifie	d building des	igner as	per ANSI/TPI 1.	
		21=37-0-0), 20=37-0-0, 29=37-) 32=37-0-0 33=37-	-0-0, .0-0		36-37=-78/318, 3		4) All	All plates are 1.5x4 MT20 unless otherwise indicated.							
		34=37-0-0) 35=37-0-0 36=37-	-0-0		34-35=-78/318, 3	33-34=-78/	/318,		5) Gable requires continuous bottom chord bearing.						
		37=37-0-0) 39=37-0-0 40=37-	-0-0		32-33=-78/318, 31-32=-78/318, 6) Truss to be fully sheathed from one face or s								e or securely		
		41=37-0-0), 42=37-0-0, 43=37-	-0-0.		29-31=-78/318, 2	28-29=-78	′318,		bra	ced aga	inst lat	eral moveme	nt (i.e. dia	agonal web).	
		44=37-0-0)	,		27-28=-78/318, 2	26-27=-78	'318, '24.9		7) Ga	ole stude	space	ed at 2-0-0 oc	·.		
	Max Horiz	44=-334 (LC 17)		WEDO	20-20=-78/318, 2	24-25=-78/	318		8) Ini	s truss h	as bee	en designed fo	or a 10.0	pst bottom	
	Max Uplift	24=-20 (L	C 9), 25=-225 (LC 13	3),	WEDS	12-34=-472/99, 1	0 27- 29	0/100, 0/100			hooring	bad no	nconcurrent v	Vith any c	other live loads.	
		26=-92 (L	C 13), 27=-129 (LC	13),		8-30280/103 6	3-37 200 3-40280	/193		9) Ali 00r	ocity of	565 pc		3F NU.2	crushing	
		28=-121 (LC 13), 29=-123 (LC	; 13),		5-41=-281/197 4	4-42=-275	205		Cap	acity of	000 pa	51.			
		31=-120 (LC 13), 32=-135 (LC	; 13),		3-43=-302/378, 1	13-33=-29	6/158.					600	m	T	
		33=-99 (L	C 13), 35=-105 (LC	12),		14-32=-279/210,	15-31=-28	80/190,					A 0	F MIS	1 all	
		36=-132 (LC 12), 37=-120 (LC	; 12),		16-29=-280/193,	18-28=-28	80/193,				1	950		20,4	
		39=-123 (LC(12), 40=-120 (LC	• 12), 10)		19-27=-281/197,	20-26=-2	75/206,				B	Nº sc	OTT M	NA	
		41=-132 (LC 12, $42 = -03$ (LC 12), $44 = -78$ (LC 12)	1 <i>2)</i> , 9)		21-25=-302/375						R	2 20	CUTED	· /~ W	
	Max Grav	43=-254 (24-375 (I	(10, 12), 44 = 70 (10, 0)	5) 3)	NOTES							Ø .		EVIER	1,1	
		24=373 (L 26=350 (L	C 1) 27=363 (LC 26	5), 5)	1) Unbalance	d roof live loads ha	ave been o	considered for				87		- 1		
		28=359 (L	_C 1), 29=360 (LC 26	5), 5).	this design							NX		7.5		
		31=360 (L	_C 1), 32=359 (LC 26	5).								17	con	JMELE	enny	
		33=376 (L	_C 26), 34=431 (LC 2	22),								127	PE-20	010189	807 184	
		35=376 (L	_C 25), 36=359 (LC 2	25),								N	- m	010100	12B	
		37=360 (L	_C 1), 39=360 (LC 25	5),								Y	A Sa		JO'H	
		40=359 (L	_C 1), 41=363 (LC 25	5),									10101	VAT Y	ENA	
		42=350 (L	-C 1), 43=397 (LC 25	5),									Solo Cher	The	5	
		44=375 (L	LC 1)											Julv 29	.2024	
															,·	

MiTek 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and KEAD KO LES ON THIS AND INCLUDED MILEK REFERENCE PAGE MIL-7473 rev. 17/2/2023 BEFORE USE. Design valid for use only with MITeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

							RELEASE FOR CONSTRUCTION		
	h	Truce		011	DIV		AS NOTED FOR PLAN REVIEW		
50	D	11055	Truss Type	Quy	гіу		DEVELOPMENT SERVICES		
P2	240834	E7	Common Supported Gable	1	1	lob Boforonoo (ontional	LEE'S SUMMIT, MISSOURI		
Pre	mier Building Supply (Springr	hill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Juli 12 2024 Print: 8.630 S Juli 12 2024 Millek Industries, Inc. Thiu Jul 25 83,400						
			ID:301 CUXcr8wgF3u	Epecuginuz	wvss-RtC?P	sB70Hq3NSgPqnL8w3u11XbG	KWICD01934250?T		

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 78 lb uplift at joint 44, 20 lb uplift at joint 24, 105 lb uplift at joint 35, 132 lb uplift at joint 36, 120 lb uplift at joint 37, 123 lb uplift at joint 39, 120 lb uplift at joint 40, 132 lb uplift at joint 41, 83 lb uplift at joint 42, 254 lb uplift at joint 43, 99 lb uplift at joint 33, 135 lb uplift at joint 32, 120 lb uplift at joint 31, 123 lb uplift at joint 29, 121 lb uplift at joint 28, 129 lb uplift at joint 27, 92 lb uplift at joint 26 and 225 lb uplift at joint 25.

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

													RELEASE	FOR CONSTRUCTION
Job		Truss		Truss T	ype		Qt	/ P	ly				AS NOTE	D FOR PLAN REVIEW
P240834		G1		Comm	on Supporte	d Gable	1	1		h Refere	nce (on	tional	LEE'S	I67129690 SUMMIT, MISSOURI
Premier Building	g Supply (Sprin	ghill, KS), S	pring Hills, KS - 66083,			Run: 8.63 S Ju	ıl 12 2024 F	Print: 8.630	S Jul 12 2024	MiTek Ind	dustries, I	nc. Th	I Jul 25 8:1400	21/2024
						ID:OniToTBJcu	i5e4i7ZBJU	?9SypbwQ∙	-RfC?PsB70H	lq3NSgPq	nL8w3ul	TXbGF	WrCDoi794z36?1	21/2024
	-0-	10-8		11	-0-4						22-0-	8		22-11-0
	b-10-8			11	-0-4		I				11-0-	4		0-10-8
							4x4	! =						
							7							
T				4	1 <u>2</u>	6			8					
				·	26 5	-			B	9	27			
N				4	-					×.	_	10		
4-6-			3										11	
	4	2												12
-10-1		-		a			A		Q	R		6		
	_ 2	25 □						*****						
		3x8 II	24	23	22 21	20	19		18	17		16	15	3х8 ш
					3x4 =									
							22-0-	8						
Scale = 1:42.2														'
		(201	Creating	2.0.0		0.01		DEEL		(10.0)	/dof	I /al		
TCLL (roof)		(psi) 25.0	Plate Grip DOL	2-0-0 1.15		TC	0.10	Vert(LL)	n/a	(100)	n/a	999	MT20	197/144
TCDL BCU		10.0 0.0	Lumber DOL Rep Stress Incr	1.15 YES		BC WB	0.06 0.05	Vert(CT) Horz(CT	n/a 0.00	- 14	n/a n/a	999 n/a		
BCDL		10.0	Code	IRC2018	3/TPI2014	Matrix-R	0.00		,				Weight: 89 lb	FT = 20%
	0 4 0D N			W	EBS	7-19=-112/0, 6-2	0=-150/13	4, 5-21=-	141/129,					
BOT CHORD	2x4 SP No 2x4 SP No).2).2				4-23=-128/82, 3-2 8-18=-150/134, 9	24=-179/1)-17=-141/	20, /129,						
WEBS OTHERS	2x4 SP No 2x3 SPF N).2 Io.2		NC	DTES	10-16=-128/81, 1	1-15=-17	9/123						
BRACING				1)	Unbalanced	roof live loads ha	ave been o	considered	d for					
TOP CHORD	Structural 6-0-0 oc p	wood shea urlins, exc	athing directly applied cept end verticals.	or 2)	this design. Wind: ASCE	7-16; Vult=115m	nph (3-sec	ond gust)						
BOT CHORD	Rigid ceilir bracing.	ng directly	applied or 10-0-0 oc		Vasd=91mpl Ke=1.00; Ca	h; TCDL=6.0psf; t. II; Exp C; Enclo	BCDL=6.0 osed; MW	0psf; h=35 FRS (env	ift; elope)					
REACTIONS	(size)	14=22-0-8	, 15=22-0-8, 16=22-0	-8,	exterior zone	and C-C Corner	r(3E) -0-1	0-8 to $4-1-$	·8,					
		17=22-0-8 20=22-0-8	, 18=22-0-8, 19=22-0 , 21=22-0-8, 23=22-0	-8, -8,	16-0-4, Exte	rior(2N) 16-0-4 to	22-11-0	zone; can	tilever					
	Max Horiz	24=22-0-8 25=-53 (L)	, 25=22-0-8 C 13)		exposed;C-C	exposed ; end vo for members ar	ertical left nd forces a	and right & MWFRS	for					
	Max Uplift	14=-68 (L0	C 9), 15=-78 (LC 13),		reactions sh DOI =1 60	own; Lumber DO	L=1.60 pl	ate grip						
		16=-42 (L0 18=-51 (L0	C 13), 17=-51 (LC 13), C 13), 20=-51 (LC 12)	, 3)	Truss desig	ned for wind load	ls in the p	lane of the	e truss					
		21=-52 (L0 24=-82 (L0	C 12), 23=-41 (LC 8), C 12), 25=-64 (LC 8)		see Standar	ds exposed to w	End Deta	al to the fa ils as appl	icable,					
	Max Grav	14=208 (L	C 1), 15=237 (LC 26)	, 4)	or consult qu All plates are	alified building d 1.5x4 MT20 unl	esigner as ess other	s per ANS wise indica	I/TPI 1. ated.					
		18=189 (L	C 26), 19=152 (LC 1)	, 5)	Gable requir	es continuous bo	ttom chor	d bearing.						
	20=189 (LC 25), 21=183 (LC 1), 6) Truss to b 23=162 (LC 1), 24=237 (LC 25), braced ag					nst lateral movem	nent (i.e. d	iagonal w	eb).					
FORCES	25=208 (LC 1) 8) This trues bas ba) psf botto	m				OF I	MISS
FURGES	(ID) - Maxi Tension	mum Com	pression/waximum) O)	chord live loa	ad nonconcurrent	t with any	other live	loads.			6	ATE	13000
TOP CHORD	HORD 2-25=-182/129, 1-2=0/23, 2-3=-71/57, 3-4=-51/96, 4-5=-61/130, 5-6=-73/166. 9) All bearings capacity of					of 565 psi.								TM. YZY
	6-7=-86/201, 7-8=-86/196, 8-9=-73/152, 10) Provide mech					hanical connection capable of withs	on (by oth standing 6	ers) of tru: 4 lb uplift	ss to at joint			8.	SEVI	
	9-10=-01/ 12-13=0/2	3, 12-14=-	=-52/62, 11-12=-63/4 182/122	υ,	25, 68 lb upl	ift at joint 14, 51 l	b uplift at	joint 20, 5	i2 lb			XX/	atts	Louist
BOT CHORD	24-25=-7/5 20-21=-7/5	58, 23-24= 58, 19-20=	-7/58, 21-23=-7/58, -7/58, 18-19=-7/58.		24, 51 lb upl	ift at joint 18, 51 l	b uplift at	joint 17, 4	2 lb		4	NY	NUM	BER
	17-18=-7/58, 16-17=-7/58, 15-16=-7/58, 11) This truss					designed in acco	π at joint [·] ordance w	າວ. ith the 201	18			Ø	PE-2001	
	14-15=-7/58 International Residential Co						e sections	R502.11	1 and			1	1 d'a	10'9

STONAL ENSE R802.10.2 and referenced standard ANSI/TPI 1. July 29,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

LOAD CASE(S) Standard

MiTek[®] 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

									RELEASI		
Job	Truss		Truss Type	Qty	Ply			AS NOTI DEVEL	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES		
P240834	G2		Common 5					ence (optional)	LEE'S SUMMIT, MISSOURI		
Premier Building Supply (Sp	ringhill, KS),	Spring Hills, KS - 66083,		Run: 8.63 S Jul	12 2024 Print m7TW0ieK7	t: 8.630 S Jul 12 /amyphwY-RfC?	2024 MiTek In PsB70Hq3NSq	ndustries, Inc. Th Panl 8w3uITXb	I Jul 25 18:14:00	21/2024	
					.,.						
-(-)-10-8	5-7-6		11-0-4		16-	5-2		22-0-8	22-11-0	
ć	-10-8	5-7-6	l	5-4-14	I	5-4-	-14	I	5-7-6	0-10-8	
					4x6=						
			1 <u>2</u> 4 [4						
			4x4 🚅		A			4x4 =			
			3 14			\backslash		15 ₅			
2-5		13	3	_ //				Tool -	16		
4-6	4x4 I						/			4x4 II	
<u> </u>	2					/	\setminus //	/		6 7	
	12		(†)								
	Ŕ		11	10			9			Ŕ	
	3x6 =		3x4 =	3x4 =			3x4 =			3x6 =	
		7-5-0)		<u>14-7-8</u> 7-2-8				<u>22-0-8</u> 7-5-0		
Scale = 1:42.2											
Plate Offsets (X, Y): [2:0)-2-0,0-1-12	2], [6:0-2-0,0-1-12]							1		
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.45 V	DEFL /ert(LL) -C	in (loc) 0.10 9-10	l/defl L/d >999 240	PLATES MT20	GRIP 197/144	
	10.0	Lumber DOL Rep Stress Incr	1.15 YES	BC WB	0.60 V	/ert(CT) -0	0.20 9-10	>999 180			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S	0.00			1/4 1/4	Weight: 94 lb	FT = 20%	
CLL 1U.0 LODe Int C2UTOR IN2014 Matrix-S Weight: 94 lb FT = 20% UMBER 0P CHORD 2x4 SP No.2 All bearings are assumed to be SP No.2 crushing capacity of 565 ps. Structural wood sheathing directly applied or 3-10-5 oc purilins, except end verticals. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 218 bup/if at joint 8. This truss is designed with the 2018 International Residential Code sections R502.11.1 and R802.02.02 and referenced standard ANSI/TPI 1. DAD CASE(S) Standard Vasta Tizz 12-53 (LC 17) Max Upift 8-218 (LC 9), 12=-218 (LC 8) Max Grav 8-1050 (LC 1). Provide mechanical connection (by others) of truss to bearing section and concent on the 2018 International Residential Code sections R502.11.1 and R802.01.2 and referenced standard ANSI/TPI 1. DAD CASE(S) Standard DAD CASE(S) Standard CASE(S) Standard Vasta Section (C 1). DR CES (b) - Maximum Compression/Maximum Tension OP CHORD 1-2-207/103, 9-10=-250/1267, 8-9=-008/1703 (C 10). CHORD 10:12227/103, 9-10=-250/1267, 8-9=-008/1703 (C 10). CHORD 10:12227/103, 9-10=-82/0428, 3-10=-287/199, 3-12=-1400/382, 5-8=-1400/362 Diverse on the loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasta-9 impt; TCDL=6.06 pt 61 + 1-8. Hereiro (1) 4-1-8 to 11-04, Extender(2R) 11-04 to 16-04, Interior (1) 4-1-8 to 10-04, Extender(2R) 11-04 to 16-04, Interior (1) 4-1-8 to 10-04, Extender(2R) 11-04 to 16-04, CHORD 10:0 And CASE (1) And C									MISSOUR T M. ER		
right exposed ; end v for members and for Lumber DOL=1.60 p 3) This truss has been chord live load nonce	rertical left a ces & MWF late grip DC designed fo oncurrent w	and right exposed;C-C RS for reactions show DL=1.60 or a 10.0 psf bottom ith any other live loads	; vn; s.					Ø	July	L ENGLISH (29,2024	
A											
WARNING - Verify Design valid for use or a truss system. Before	ly with MiTek use, the build	eters and READ NOTES ON 3 connectors. This design is ing designer must verify the to provent huckling of indivi-	based only upon parame applicability of design par	ILEK REFERENCE PAGE M ters shown, and is for an ind rameters and properly incorp	II-7473 rev. 1/ ividual buildin orate this des	g component, not ign into the overal	JSE.		Mi	Tek	

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

LUMBER	
TOP CHORD	2x8 SPF No.2
BOT CHORD	2x6 SPF No.2
WEBS	2x3 SPF No.2 *Except* 12-1,5-7,12-2:2x4 SP
	No.2
OTHERS	2x4 SP No.2
BRACING	
TOP CHORD	2-0-0 oc purlins (5-10-6 max.): 1-6, except
	end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
WEBS	1 Row at midpt 5-7, 2-12
REACTIONS	(size) 7=0-3-8, (req. 0-4-1), 12=0-3-8,
	(req. 0-4-8)
	Max Uplift 7=-1154 (LC 8), 12=-1281 (LC 8)
	Max Grav 7=5155 (LC 1), 12=5719 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-12=-1320/361, 1-2=-76/18,
	2-3=-8293/2099, 3-5=-6403/1622,
	5-6=-72/17, 6-7=-768/252
BOT CHORD	11-12=-1628/6426, 9-11=-1628/6426,
	8-9=-2099/8293, 7-8=-1622/6403
WEBS	5-7=-7649/1939, 2-11=0/188,
	2-12=-7674/1945, 2-9=-570/2256,
	3-9=-1153/3/3, 3-8=-2284/5/7,
	5-8=-239/1336
NOTES	
 2-ply truss 	to be connected together with 10d

(0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x8 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc

Web connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x3 -1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 3) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding. 4)
- All plates are MT20 plates unless otherwise indicated. 5)
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. WARNING: Required bearing size at joint(s) 12, 7 7)
- greater than input bearing size. All bearings are assumed to be SPF No.2 crushing
- 8) capacity of 425 psi.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1281 lb uplift at joint 12 and 1154 lb uplift at joint 7.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 916 Ib down and 206 lb up at 0-9-0, 902 lb down and 203 lb up at 2-9-0, 902 lb down and 203 lb up at 4-9-0, 902 lb down and 203 lb up at 6-9-0, 902 lb down and 203 lb up at 8-9-0, 902 lb down and 203 lb up at 10-9-0, 902 lb down and 203 lb up at 12-9-0, 902 lb down and 203 lb up at 14-9-0, and 902 lb down and 203 lb up at 16-9-0, and 902 lb down and 203 lb up at 18-9-0 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15

- Uniform Loads (lb/ft)
- Vert: 1-6=-70, 7-12=-20
- Concentrated Loads (lb)
- Vert: 13=-916, 14=-902, 15=-902, 16=-902, 17=-902, 18=-902, 19=-902, 20=-902, 21=-902, 22=-902
 - OF MISS 0 SCOTT M. SEVIER NUMBER 6 PE-2001018807 HESSIONAL

July 29,2024

E

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

3

12

11

13-9-7

10

2

13

1<u>2</u> 6 [1

┝

3x4 ≠

7-0-0

Scale = 1:43 Plate Offsets (X, Y): [8:Edge,0-2-8]

Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD	(psf, 25.0 10.0 0.0 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood s 6-0-0 oc purlins, Rigid ceiling dire- bracing.	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201 1) ed or _{rc} 2)	8/TPI2014 Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5- right expose for members Lumber DOL Truss design only. For stu	CSI TC BC WB Matrix-S 7-16; Vult=115mp r; TCDL=6.0psf; B t. II; Exp C; Enclos e and C-C Exterior 9-15 to 13-8-11 zc d; end vertical left and forces & MW =1.60 plate grip D ned for wind loads ids exposed to wind loadwire Cochic	0.55 0.18 0.12 0h (3-sec CDL=6.0 sed; MW (2E) 0-7 one; can and righ FRS for OL=1.60 in the pi d (norm	DEFL Vert(LL) Vert(TL) Horiz(TL) Dpsf; h=35ft; FRS (envelop 9 to 5-9-15, tilever left and tt exposed;C- reactions sho ane of the frue al to the face	in n/a n/a 0.00 be) d C C c wwn; uss),	(loc) - - 8	l/defi n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 61 lb	GRIP 244/190 FT = 20%
REACTIONS	(size) 1=13-5 10=13 13=13 Max Horiz 1=292 Max Uplift 8=-38 10=-55 12=-47 Max Grav 1=156 9=193 11=19 13=29	P-7, 8=13-9-7, 9=13-9-7 -9-7, 11=13-9-7, 12=13 -9-7 (LC 9) (LC 9), 9=-67 (LC 12), (LC 12), 11=-65 (LC 12), (LC 12), 13=-100 (LC (LC 20), 8=73 (LC 19) (LC 1), 10=176 (LC 1) 0 (LC 1), 12=138 (LC 14) 4 (LC 1)	7, 3-9-7, 3) 4) 5) 12), 6) 12), 7) , , , 8)	see Standarr or consult qu All plates are Gable requir Gable studs This truss ha chord live loa All bearings capacity of 5 Provide mec bearing plate	a industry Gable E laified building des a 1.5x4 MT20 unles es continuous bott spaced at 2-0-0 oc is been designed f ad nonconcurrent v are assumed to be 65 psi. hanical connectior e capable of withst	nd Deta signer as ss other om chor c. or a 10.0 with any e SP No. n (by oth anding 3	IS as applical s per ANSI/TF wise indicated d bearing. 0 psf bottom other live loa 2 crushing ers) of truss t 8 lb uplift at j	bie, PI 1. d. ds. o oint					
FORCES	(lb) - Maximum C Tension	ompression/Maximum		8, 67 lb uplift at joint 11, 4 13.	at joint 9, 58 lb up 7 lb uplift at joint 12	2 and 10	nt 10, 65 lb u 10 lb uplift at j	oint					T
TOP CHORD	1-2=-441/258, 2- 4-5=-254/175, 5- 7-8=-54/50	3=-357/213, 3-4=-312/ 6=-198/158, 6-7=-124/	199, 9) 116, ⁹⁾	This truss is International R802.10.2 a	designed in accord Residential Code	dance w sections	ith the 2018 R502.11.1 a ISI/TPI 1.	nd				TE OF I	AISSO
BOT CHORD	1-13=-132/143, 1 11-12=-132/143, 9-10=-132/143, 8	2-13=-132/143, 10-11=-132/143, -9=-132/143	L	3 SCOTT M. SEVIER									Г М. ER
WEBS	6-9=-149/167, 5- 4-11=-146/104, 3	10=-138/110, -12=-112/84, 2-13=-21	9/173										lon non
NOTES										đ	NT.	NUM PE-2001	BER 018807

July 29,2024

SIONAL ET

8

X

3x4 II

9

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply		
P240834	V2	Valley	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Spring	ghill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Jul 12 2 ID:k9HPTm2vTtVcN0	024 Print: 8.0 Gw8ZzmicAz	530 S Jul 12 JtkT-RfC?Ps	2024 MiTek Industries, Inc. Th 370Hq3NSgPqnL8w3uITXbGł	u Jul 25 6148/21/2024 WrCD0i M4294
		10-6-	11			
					3х4 и	

Scale = '	1:37.9
-----------	--------

Plate Offsets (X, Y): [5:Edge,0-2-8]

	(, , [- 3-,1												
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.32	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.13	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.08	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018	8/TPI2014	Matrix-S		. ,					Weight: 39 lb	FT = 20%
												ÿ	
LUMBER			5)	This truss ha	s been designed	for a 10.0) psf bottom						
TOP CHORD	2x4 SP No.2		•	chord live loa	ad nonconcurrent	with any	other live load	ds.					
BOT CHORD	2x4 SP No.2		6)	All bearings	are assumed to b	e SP No.	2 crushing						
WEBS	2x3 SPF No.2		7)	Drovido mod	oo psi. haniaal aannaatia	n (hu oth	ara) of truca t	~					
OTHERS	2X3 SPF No.2 // Provide micechanical connection (by oriers) or russ to bearing plate capable of withstanding 37 lb unlift at joint												
BRACING	.			5 137 lb unli	ft at joint 6 and 1	01 lh unlif	t at ioint 7	Jint					
TOP CHORD	Structural wood she	athing directly applie	ed or 8)	This truss is	designed in acco	rdance wi	th the 2018						
	6-0-0 oc purlins, ex	cept end verticals.	•	International	Residential Code	esections	R502.11.1 a	nd					
BOLCHORD	Rigid celling directly	applied or 10-0-0 oc	C	R802.10.2 a	nd referenced sta	ndard AN	SI/TPI 1.						
REACTIONS		1 5-10 6 11 6-10 6	2 1 LC	DAD CASE(S)	Standard								
REACTIONS	(SIZE) 1=10-0-11 7-10.6.11	1, 5=10-6-11, 6=10-6 1	5-11,	()									
	Max Horiz 1-220 /I (י ר מ)											
	Max I Inlift 537 (I C	3 9) 6137 (I C 12)											
	7=-101 (I	C 12)	,										
	Max Grav 1=88 (LC	20), 5=140 (LC 1), 6	6=405										
	(LC 1), 7=	=296 (LC 1)											
FORCES	(lb) - Maximum Com	pression/Maximum											
	Tension												
TOP CHORD	1-2=-377/217, 2-3=-	294/184, 3-4=-137/1	11,										
	4-5=-108/124												
BOT CHORD	1-7=-99/110, 6-7=-9	9/110, 5-6=-99/110											
WEBS	3-6=-315/302, 2-7=-	230/225											Th
NOTES												ALL	and
1) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)										B.F. OF M	11SS C
Vasd=91r	nph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;									6	A	NSON
Ke=1.00;	Cat. II; Exp C; Enclose	d; MWFRS (envelop	be)								B	SCOTT	CM XPN
exterior z	one and C-C Exterior(2	E) 0-7-9 to 5-7-9,									8	SEVI	FR YY
Interior (1) 5-7-9 to 10-5-15 zone	; cantilever left and	~							1	ha		
right expo	sed ; end vertical left a	ind right exposed;C-	С							. L	SIV.	1.1-3	
for memb	ers and forces & WWFI	RS for reactions sho	own;							•	N	att 1	STER HUNT
2) Trues do	OL = 1.00 plate grlp DO	uL=1.00 the plane of the tru	100							-	5	NUMI	BER
2) Thuss de	stude exposed to wind	(normal to the face)	133								N	>>> PE-20010	018807
see Stand	ard Industry Gable Fn	d Details as applicat	ole.								N	m l	18A
or consult	qualified building desig	oner as per ANSI/TF	PI 1.								X	Ser	JO'A
 Gable rec 	uires continuous botto	m chord bearing.										ONA	LEFA
4) Gable stu	ds spaced at 4-0-0 oc.	5										an	and a

July 29,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Scale = 1:28.5			•									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.23	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.08	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 25 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2	 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 4 and 418 lb uplift at joint 5 										

DOT OTIOND	274 01 14	0.2
WEBS	2x3 SPF I	No.2
OTHERS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	6-0-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=7-2-11, 4=7-2-11, 5=7-2-11
	Max Horiz	1=146 (LC 9)
	Max Uplift	4=-31 (LC 12), 5=-128 (LC 12)
	Max Grav	1=85 (LC 20), 4=141 (LC 1), 5=378
		400

(LC 1) FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-280/164, 2-3=-126/93, 3-4=-111/141 BOT CHORD 1-5=-67/73, 4-5=-67/73 2-5=-294/316 WFBS NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-7-9 to 5-7-9, Interior (1) 5-7-9 to 7-1-15 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 4-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5)
- chord live load nonconcurrent with any other live loads. 6) All bearings are assumed to be SP No.2 crushing
- capacity of 565 psi.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

July 29,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with with the contractions. This design is based only door plantaters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.6) All bearings are assumed to be SP No.2 crushing

capacity of 565 psi.Provide mechanical connection (by others) of truss t

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 1 and 40 lb uplift at joint 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria, and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Joh	Truss	Truss Type	Otv	Plv		AS NOTED FOR PLAN REVIEW
000	11466		Guy	,		DEVELOPMENT SERVICES
P240834	V7	Valley	1	1	Job Reference (optional)	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springh	ill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Jul 12 20 ID:X3j9csSdTd?hyQg	D24 Print: 8.6 xh8rn6Ozwv	30 S Jul 12 2 zW-RfC?PsE	2024 MiTek Industries, Inc. Th 370Hq3NSgPqnL8w3uITXbGk	Jul 25 6:18/21/2024

2-7-11

Scale = 1:18.4

Scale = 1.10.4												
Loading TCLL (roof) TCDL BCLL BCDI	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.07 0.04 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a n/a	(loc) - - -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190 ET = 20%
BCDL	10.0	Code	162010/1112014	Maurix-F							weight. 6 ib	FT = 20.70
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2		8) This truss is Internationa R802.10.2 LOAD CASE(S	s designed in acco al Residential Cod and referenced sta) Standard	ordance w le sections andard AN	ith the 2018 R502.11.1 ar ISI/TPI 1.	nd					
TOP CHORD	Structural wood she	athing directly appli-	ed or									
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	с									
REACTIONS	(size) 1=2-8-3, 3 Max Horiz 1=43 (LC Max Uplift 1=-8 (LC Max Grav 1=88 (LC	3=2-8-3 12) 12), 3=-30 (LC 12) 1), 3=88 (LC 1)										
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD BOT CHORD	1-2=-46/25, 2-3=-68 1-3=0/0	/81										
NOTES												
1) Wind: AS0 Vasd=91n Ke=1.00; exterior zo and right e members Lumber D	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I and forces & MWFRS IOL=1.60 plate grip DO	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever left exposed;C-C for for reactions shown DL=1.60	pe) left ;								CONT	an
2) Truss des only. For see Stand	signed for wind loads ir studs exposed to wind lard Industry Gable En	n the plane of the tru (normal to the face d Details as applica	uss), ble,							B	TATE OF	MISSOLA
 or consult 3) Gable req 4) Gable study 5) This truss 	 qualified building designing puires continuous botton ds spaced at 4-0-0 oc. has been designed for 	gner as per ANSI/TI m chord bearing. r a 10.0 psf bottom	기 1.								SEV	
chord live6) All bearing capacity of	load nonconcurrent wi gs are assumed to be \$ of 565 psi.	th any other live loa SP No.2 crushing	ds.							8	PE-2001	018807
7) Provide m	echanical connection ((by others) of truss t	0							N.	12	120

7) bearing plate capable of withstanding 8 lb uplift at joint 1 and 30 lb uplift at joint 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

- capacity of 565 psi.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 23 lb uplift at joint 1 and 81 lb uplift at joint 3.

SSIONAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

E

July 29,2024

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.34	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.18	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.08	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 33 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=9-3-11, Max Horiz 1=188 (LC Max Horiz 1=188 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc .4=9-3-11, 5=9-3-11 C 12) 212) 5- 164 (LC 12)	7) Provide n bearing p 4 and 164 8) This truss Internatio R802.10. d or LOAD CASE	nechanical connec late capable of with l b uplift at joint 5. is designed in acc nal Residential Co 2 and referenced s S) Standard	tion (by oth hstanding 4 cordance w de sections standard AN	ers) of truss t l2 lb uplift at j ith the 2018 s R502.11.1 a ISI/TPI 1.	o oint nd					
	Max Opint 4=-42 (LC	2 12), 5=-164 (LC 12)	400									
	(LC 1)	5 T), 4=123 (LC T), 5	=483									
FORCES	(lb) - Maximum Corr Tension	pression/Maximum										
TOP CHORD	1-2=-241/113, 2-3=-	84/29, 3-4=-97/97										
BOT CHORD	CHORD 1-5=-2/3, 4-5=-2/3											
WEBS	2-5=-366/342											

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-7-9 to 5-4-3, Interior (1) 5-4-3 to 9-2-15 zone; cantilever left and right exposed; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.All bearings are assumed to be SP No.2 crushing
- capacity of 565 psi.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

Design valid for use only with MTeK exponents. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

			3x4 ≠	7		6			1.5	x4 u		
				1.5x4 u		1.5x4	II					
			12-7-11						1			
Scale = 1:42.3	3											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.24	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.13	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.12	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S	-						Weight: 48 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	 2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 	eathing directly applie cept end verticals. / applied or 10-0-0 or	5) This truss I chord live I 6) All bearing capacity of 7) Provide me bearing pla 5, 129 Ib u 8) This truss i Internation R802.10.2	has been designed oad nonconcurren s are assumed to 565 psi. echanical connecti the capable of with plift at joint 6 and is designed in acco al Residential Cod and referenced st 0. Standard	d for a 10. It with any be SP No on (by oth standing 4 138 lb upli ordance w le sections andard AN	0 psf bottom other live loa .2 crushing uers) of truss t 49 lb uplift at j ft at joint 7. vith the 2018 s R502.11.1 a NSI/TPI 1.	ids. io oint and					
REACTIONS	(size) 1=12-7-1 7=12-7-1 Max Horiz 1=261 (L Max Uplift 1=261 (L 7=-138 (I Max Grav 1=149 (L 6=381 (L	1, 5=12-7-11, 6=12-7 1 C 12) C 12), 6=-129 (LC 12 LC 12) C 21), 5=144 (LC 1), C 1), 7=403 (LC 1)),									
FORCES	(lb) - Maximum Cor Tension	npression/Maximum										
TOP CHORD	1-2=-310/137, 2-3= 4-5=-111/94	-193/83, 3-4=-81/35,										
BOT CHORD WEBS	1-7=-2/3, 6-7=-2/3, 3-6=-299/245, 2-7=	5-6=-2/3 -305/244										
NOTES	,											
 Wind: AS Vasd=91r Ke=1.00; exterior z Interior (1 right expo members Lumber D Truss de only. For see Stand 	CE 7-16; Vult=115mpl mph; TCDL=6.0psf; BC Cat. II; Exp C; Encloss one and C-C Exterior(;) 5-7-9 to 12-6-15 zon osed ; end vertical left and forces & MWFRS DOL=1.60 plate grip DC signed for wind loads i studs exposed to wind dard Industry Gable Er	n (3-second gust) CDL=6.0psf; h=35ft; ad; MWFRS (envelop 2E) 0-7-9 to 5-7-9, e; cantilever left and exposed;C-C for for reactions shown DL=1.60 n the plane of the trud d (normal to the face) ad Details as applicat	ne) ; ss ,								SCOT SEV ON NUM PE-2001	MISSOLA T M. HER Serven 018807

or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 3)

0-0-4

4)́ Gable studs spaced at 4-0-0 oc.

ESSIONAL E

5

July 29,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

