

RE: P240762

RELEASE FOR CONSTRUCTION AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES LEE'S SUMMIT, MISSOURI 08/21/2024

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Site Information:Customer: Clayton PropertiesProject Name: P240762Lot/Block: 190Model:Address: 1050 SW Fiord DrSubdivision: Highland MeadowsCity: Lee's SummitState: MO

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.6 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 45 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Seal# 165739510 165739511 165739512 165739513 165739514 165739515 165739516 165739517 165739518 165739519 165739520 165739521 165739522 165739523 165739523 165739524 165739524 165739525 165739526	Truss Name A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 B1	Date 5/22/2024 5/22/2024 5/22/2024 5/22/2024 5/22/2024 5/22/2024 5/22/2024 5/22/2024 5/22/2024 5/22/2024 5/22/2024 5/22/2024 5/22/2024 5/22/2024 5/22/2024 5/22/2024 5/22/2024	No. 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 22	Seal# 165739530 165739531 165739532 165739533 165739533 165739536 165739537 165739538 165739538 165739540 165739540 165739541 165739542 165739543 165739545 165739544 165739545	Truss Name C1 C2 CG1 CG2 D1 D2 D3 GR1 J1 J2 J3 J4 J5 J6 J7 LG1 LG2	Date 5/22/2024 5/22/2024 5/22/2024 5/22/2024 5/22/2024 5/22/2024 5/22/2024 5/22/2024 5/22/2024 5/22/2024 5/22/2024 5/22/2024 5/22/2024 5/22/2024 5/22/2024
16	165739525	A16	5/22/2024	36	165739545	LG1	5/22/2024
17	165739526	A17	5/22/2024	37	165739546	LG2	5/22/2024
18	165739527	B1	5/22/2024	38	165739547	LG3	5/22/2024
19	165739528	B2	5/22/2024	39	165739548	LG4	5/22/2024
20	165739529	B3	5/22/2024	40	165739549	LG5	5/22/2024

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision based on the parameters provided by . Truss Design Engineer's Name: Nathan Fox My license renewal date for the state of Missouri is December 31, 2024.

My license renewal date for the state of Missouri is December 31, 2 Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Nathan Fox

release for construction as noted for plan review development services lee's summit, missouri 08/21/2024

RE: P240762 -

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Site Information:

Project Customer: Clayton PropertiesProject Name: P240762Lot/Block: 190Subdivision: Highland MeadowsAddress: 1050 SW Fiord DrState: MO

No.	Seal#	Truss Name	Date
41	165739550	V1	5/22/2024
42	165739551	V2	5/22/2024
43	165739552	V3	5/22/2024
44	165739553	V4	5/22/2024
45	165739554	V5	5/22/2024

									RELEA	SE FOR CONS	TRUCTION
Job	Truss	Truss	Туре		Qty	Ply			AS NO	TED FOR PLA	
P240762	A1	Hip C	Girder		1	2	Job Reference	ce (optional	LEE	1657395 SUMMIT, MI	SSOURI
Premier Building Su	oply (Springhill, KS), Spring H	ills, KS - 66083,		Run: 8.63 S Apr ID:g1ZyteE7snZu	26 2024 Print: ISSx7um5LZC	: 8.630 S Apr 2 2Z?q7-RfC?P	26 2024 MiTek Ind sB70Hq3NSgPqn	ustries, Inc. Tu L8w3uITXbGH	e May 21 45:0 WrCDoi/94292	21/2	024
								-			
	-0-10-8 <u>5-11-4</u> 	10-6-5 4-7-1 NAILED NAILED NAI	15-3-3 4-8-13 LED NAILED NAILE	19-11-4 4-8-1 ED NAILED NAILED	20-0-0 2/ 0-0-12 4 NAILED NA	4-8-13 1-8-13 IILED NAILED	29-5-11 4-8-13 NAILED NAILEI	34-0 4-7 D NAILED NA)-12 7-1 ILED NAILED	40-0-0 5-11-4	40-10-8
<u>+ 2-9-1</u> 2-7112 + <u>2-6-5 </u>	4 ¹² +	5x8= 3 22 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4x6= 34 24 25 26	4x4= 5 27 28	7x8=	4x 29 30 7 □ □ □ □		4x6= 834 1	5x8= 35 9	36	
+ 0	- ⊠ MT18HS 5x8 ≥	20 37 3 3x6 II 5 THJA26 NAILED NAI	819 39 40 5x8= LED NAILED NAILE	18 17 41 6x6 = MT18HS 9x18 = D NAILED NAILED	16 5x8= NAILED NA	42 151 MT18HS 9> ILED 6 NAILED	4 43 44 (18 = x6 = NAILEI NAILED	1345 4 5x8= NAILED NA	46 12 3x6 II ILED THJA26	MT1	⊠ ~ 8HS 5x8 🖕
	5-10-0 5-10-0	10-6-5 4-8-5	15-3-3 4-8-13	<u>20-0-0</u> 4-8-13	<u>2</u> 4	4-8-13 1-8-13	29-5-11 4-8-13	<u>34-</u> 4-8	<u>2-0</u> 3-5	40-0-0 5-10-0	—

Scale = 1:72.2

[2:0-5-6,0-2-1], [3:0-4-8,0-1-12], [4:0-2-8,0-2-0], [6:0-4-0,0-4-8], [8:0-2-8,0-2-0], [9:0-4-8,0-1-12], [10:0-5-6,0-2-1], [13:0-2-8,0-2-8], [14:0-2-8,0-3-0], [15:0-7-10,0-4-8], [15:0-7-Plate Offsets (X, Y): [17:0-7-10,0-4-8], [18:0-2-8,0-3-0], [19:0-2-8,0-2-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.38	Vert(LL)	-0.63	16	>750	240	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15		BC	0.45	Vert(CT)	-1.14	16	>417	180	MT18HS	244/190	
BCLL	0.0	Rep Stress Incr	NO		WB	0.86	Horz(CT)	0.10	10	n/a	n/a			
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 575 lb	FT = 20%	
LUMBER			1)	2-ply truss to	be connected too	ether wi	th 10d		11) Gra	phical p	urlin re	epresentation do	es not depict the si	ze
TOP CHORD	2x6 SP 2400F 2.0E		,	(0.131"x3") n	ails as follows:				or t	he orient	tation	of the purlin alon	g the top and/or	
BOT CHORD	2x10 SP 2400F 2.0E			Top chords o	connected as follo	ws: 2x6 ·	2 rows		bott	om chor	rd.			
WEBS	2x3 SPF No.2			staggered at	0-9-0 oc.				12) Use	Simpso	on Stro	ng-Tie THJA26	THJA26 on 2 ply, I	Left
BRACING				Bottom chore	ds connected as fo	ollows: 2	x10 - 2 rows		Har	nd Hip) c	or equi	valent at 5-11-10	from the left end to	0
TOP CHORD	Structural wood she	athing directly applie	ed or	staggered at	0-9-0 oc.				con	nect trus	ss(es)	to front face of b	ottom chord.	
	6-0-0 oc purlins, exc	ept		Web connec	ted as follows: 2x3	3 - 1 row	at 0-9-0 oc.		13) Use	e Simpso	on Stro	ong-Tie THJA26	THJA26 on 2 ply,	
	2-0-0 oc purlins (4-1	1-11 max.): 3-9.	2)	All loads are	considered equal	ly applie	d to all plies,		Rig	ht Hand	Hip) o	r equivalent at 3	4-0-6 from the left e	end
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	0	except if note	ed as front (F) or t	ack (B)	face in the LO	DAD	to c	onnect t	russ(e	s) to front face of	i bottom chord.	
	bracing.			CASE(S) sec	ction. Ply to ply co	nnection	s have been		14) Fill	all nail n	oles w	here hanger is in	1 contact with lumb	er.
REACTIONS	(size) 2=0-5-8, 1	10=0-5-8		provided to d	viae indicated	is noted	as (F) or (B),		15) "INA		ideline	es Girder: 3-10d ((0.148" x 3") toe-na	alis
	Max Horiz 2=-42 (LC	; 17)	3)	Linbalanced	roof live loads have	o haan i	considered fo	hr.	Per			5 5. 		
	Max Uplift 2=-990 (L	C 8), 10=-990 (LC 9) 3,	this design						ASE(S) Sia		mhar Ingrana 1 1	-
	Max Grav 2=3512 (L	_C 1), 10=3512 (LC	1) 4)	Wind: ASCE	7-16: Vult=115m	oh (3-seo	cond aust)			au + Ru		e (balanced): Lur	nder increase=1.1	э,
FORCES	(lb) - Maximum Com	pression/Maximum	,	Vasd=91mph	n; TCDL=6.0psf; E	CDL=6.	Opsf; h=35ft;		l lr	ate more	nade (l	h/ft)		
	Tension			Ke=1.00; Ca	t. II; Exp C; Enclos	sed; MW	FRS (envelo	pe)	01	Vort 1_	3– <u>-</u> 70	3-970 9-11	70 2-1020	
TOP CHORD	1-2=0/17, 2-3=-9808	8/2792, 3-4=-13711/3	3921,	exterior zone	and C-C Exterior	(2E) -0-1	0-8 to 4-1-8	,	Co	ncentra	ted I o	ads (lb)	0, 2 10- 20	
	4-5=-16651/4701, 5-	-7=-17404/4881,		Interior (1) 4-	-1-8 to 5-11-4, Ext	erior(2R) 5-11-4 to 13	3-0-2,	00	noonna				
	7-8=-16649/4690, 8-	-9=-13709/3913,		Interior (1) 13	3-0-2 to 34-0-12, I	Exterior(2	2E) 34-0-12 t	0						
	9-10=-9807/2787, 10	0-11=0/17		40-10-8 zone	e; cantilever left ar	nd right e	xposed ; end	d.						
BOT CHORD	2-20=-2552/9212, 19	9-20=-2546/9171,		vertical left a	nd right exposed;	C-C for n	nembers and	1						
	18-19=-3800/13707,	10-10=-4083/1000	I, 5		FRS for reactions	snown;	Lumber						an	
	12-13-2542/9170	10-122547/92/13/00	J, E\	DOL=1.60 pi	ate grip DOL=1.6	J	votor pondin	~				S OF	MIG	
WEBS	3-20=-102/772 9-12	P=-103/771	5)	All plates are	MT20 plates uply	prevent v	water porium	y. .d			G	ARE	MIS'S	
LDO	3-19=-1373/4989. 9-	13=-1373/4988.	7)	This trues ha	s heen designed	for a 10°	nef hottom	.			A	T. M.	N.S	
	4-19=-1963/708, 4-1	8=-881/3214,	')	chord live loa	ad nonconcurrent	with any	other live los	ads			R	S/ NATHA	ANIEL VEV	k .
	5-18=-976/426, 5-16	S=-230/857,	8)	All bearings	are assumed to be	• SP 240	0F 2.0E crus	shina			1	FO	X V	۸.
	6-16=-599/327, 7-16	5=-220/838,	- /	capacity of 8	05 psi.			5			TA +			8
	7-14=-978/427, 8-14	=-881/3214,	9)	Provide mec	hanical connection	n (by oth	ers) of truss	to			W		1 - 61	12
	8-13=-1961/706			bearing plate	e capable of withst	anding 9	90 lb uplift a	t			XL	KAME	In I AD	Ø
NOTES				joint 2 and 99	90 lb uplift at joint	10.					1	S/ WINDIN	BEK 7	7
			10)) This truss is	designed in accor	dance w	ith the 2018				N.	OX PE-2022	.042259	1
				International	Residential Code	sections	: R502.11.1 a	and			V)	Tr's	120	

R802.10.2 and referenced standard ANSI/TPI 1.

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPTI Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

lek 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

May 22,2024

SSIONAL ET

ONAL D

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply		AS NOTED FOR PLAN REVIEW
50 (0700						DEVELOPMENT SERVICES 165739510
P240762	A1	Hip Girder	1	2	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Apr 26 2	024 Print: 8.	630 S Apr 26	2024 MiTek Industries, Inc. T	ie May 2 4 4 6 10 7 1 / 가요 2 /
		ID:g1ZyteE7snZuSSx	7um5LZQzZ	?q7-RfC?PsE	370Hq3NSgPqnL8w3ulTXbGl	WrCDoil 42507 CI/CUZH

Vert: 3=-131 (F), 17=-39 (F), 20=-420 (F), 12=-420 (F), 9=-131 (F), 15=-39 (F), 16=-39 (F), 6=-131 (F), 22=-131 (F), 23=-131 (F), 24=-131 (F), 26=-131 (F), 27=-131 (F), 28=-131 (F), 29=-131 (F), 30=-131 (F), 31=-131 (F), 33=-131 (F), 34=-131 (F), 35=-131 (F), 37=-39 (F), 38=-39 (F), 39=-39 (F), 40=-39 (F), 41=-39 (F), 42=-39 (F), 43=-39 (F), 44=-39 (F), 45=-39 (F), 45=-39 (F), 45=-39 (F), 46=-39 (F)

								RELEASE	FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply		AS NOTE	D FOR PLAN REVIEW
P240762	A2		Нір		1	1	Job Reference (optional	LEE'S	165739511 SUMMIT, MISSOURI
Premier Building Supp	oly (Springhill, KS), Sp	ring Hills, KS - 66083,		Run: 8.63 S Ap ID:y6yAmD7sDj	r 26 2024 Print: jIJFwACJgw?9J₂	8.630 S Apr 26 Z?qH-RfC?PsB	2024 MiTek Industries, Inc. 1 70Hq3NSgPqnL8w3uITXbG	ie May 21 463:01 I WrCDoil 942521	21/2024
	-0-10-8 <u>3-10-9</u> 	<u>7-11-4</u> 4-0-11	<u>13-10-12</u> 5-11-8	20-0-0		<u>26-1-4</u> 6-1-4	<u>32-0-12</u> 5-11-8	<u> </u>	<u>+ 40-0-0</u> 40-10-8 3-10-9 0-10-8
3-3 0-1-9 0	240	4^{12}_{1} 7xt 3x4 = 5 3x4 = 5	3=	3x4= <u>6 23</u> <u>∞</u>	1.5x4 u 7	3x6= 8_24 □	3x4= 9⊠⊠⊠	7x8= 10 3	×4≈
3-3-12 3-2-3 8-0	3x6 = 2 22 3 1	4							11 3×0≈ 12 25 ₁₃ 14
⊥ ⊥ ¦⊤	5x5= 7x8=	21 20 3x4 II 4x4	= MT	19 18HS 9x18 =	18 4x8=	MT1	17 8HS 9x18 =	16 4x4= 3	15 3x4 u 7x8 = 5x5 =
	<u>3-10-9</u> 3-10-9	7-10-0	<u>13-10-12</u> 6-0-12	<u>20-0-0</u> 6-1-4		<u>26-1-4</u> 6-1-4	32-2-0	<u> </u>	40-0-0 3-10-9

Scale = 1:72.3

Plate Offsets	(X, Y): [2:0-1-9,0-3-8],	[2:Edge,0-3-2], [13:0	0-1-9,0-3-8	3], [13:Edge,0-	3-2]								
Plate Offsets (Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD	(X, Y): [2:0-1-9,0-3-8], (psf) 25.0 10.0 0.0 10.0 2x4 SP 2400F 2.0E 2x6 SPF No.2 *Exce 2.0E 2x3 SPF No.2 Left 2x4 SP No.2 1 1-10-0 Structural wood shea 3-4-11 oc purlins, ex 2-0-0 oc purlins (2-1) Rigid ceiling directly bracing. (size) 2=0-5-8, 1	[2:Edge,0-3-2], [13: Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code pt* 19-17:2x6 SP 24 I-8-2, Right 2x4 SP N athing directly applie ccept 0-10 max.): 5-10. applied or 7-11-15 of I3=0-5-8	2-0-0 1.15 1.15 1.15 YES IRC2011 2) 00F No.2 d or c 3) 4) 5)	8/TPI2014 Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 3 15-0-2, Interi 32-0-12 to 3 cantilever lef right expose for reactions DOL=1.60 Provide adec All plates are This truss ha	3-2] CSI TC BC WB Matrix-S 7-16; Vult=115mp r; TCDL=6.0psf; B t. II; Exp C; Enclose and C-C Exterior 10-9 to 7-11-4, Ex- for (1) 15-0-2 to 32 9-1-10, Interior (1) t and right expose d;C-C for members shown; Lumber D quate drainage to p MT20 plates unles be en designed for the dispense of the termination of the termination the termination of the termination of the termination of the termination of the termination of the termination termination of the termination of termination of the termination of termina	0.60 0.82 0.72 oh (3-sec CDL=6.4 (2E) -0- tterior(21 2-0-12, E 39-1-10 d; end \ s and fou (OL=1.6(prevent) ess other or a 10.0	DEFL Vert(LL) Vert(CT) Horz(CT) Dpsf; h=35ft; FRS (envelop (0-8 to 3-10-9 R) 7-11-4 to xterior(2R) to 40-10-8 zc vertical left an cces & MWFR 0 plate grip water ponding wise indicate 0 psf bottom	in -0.54 -0.97 0.15 Dee) 9, dee) 3, dec	(loc) 18 18 13	I/defl >884 >491 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 186 lb	GRIP 197/144 197/144 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig	Max Horiz 2=-54 (LC Max Uplift 2=-428 (LI Max Grav 2=1857 (L (Ib) - Maximum Com Tension 1-2=0/1, 2-4=-3811/5 5-6=-5737/1416, 6-7 7-9=-6271/1475, 9-1 10-11=-4122/1017, 1 13-14=0/1 2-21=-805/3470, 20- 18-20=-1261/5707, 1 15-16=-803/3483, 13 5-20=-32/163, 10-16 5-19=-477/2108, 10- 4-20=-115/639, 11-1 6-19=-798/285, 6-18 7-18=-417/187, 9-18 9-17=-798/285, 4-21 ed roof live loads have n.	: 13) C 8), 13=-428 (LC 9), C 1), 13=1857 (LC 1) pression/Maximum 922, 4-5=-4122/1017 '=-6271/1475, 0=-5738/1416, 11-13=-3832/925, :21=-805/3470, 16-18=-1266/5707, 3-15=-803/3483 i=-31/164, 17=-477/2109, 6=-113/626, i=-162/706, i=-162/706, i=-162/706, i=-162/706, i=-155/94, 11-15=-13 been considered for	6)) 7) ; 8) 9) LC	All bearings : capacity of 4 Provide mec bearing plate joint 2 and 4: This truss is International R802.10.2 and Graphical put or the orienta bottom chore DAD CASE(S)	a nonconcentre of the second s	SPF Notes and the second s	one invertea o.2 crushing ers) of truss to 28 lb uplift at ith the 2018 i R502.11.1 a ISI/TPI 1. of depict the s e top and/or	o nd size		۲ ۱		STATE OF M NATHA FO PE-2022	MISSOLP NIEL X 042259 L ENGINE

May 22,2024

JobTrussTruss TypeQtyPlyJob Reference (optionalAs Noted For PLAN Review DevelopMENT 585736572 LEE'S SUMMIT, MISSOURIPremier Building Supply (Springhill, KS), Spring Hills, KS - 66083,Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. The May 2018/1/2 1/2 024 ID-QWY_Z7U_0OAt3IOSNREhXz27qG-RIC7PBB70Hq3NSgPqnLBw3uTtxde KWrCDWHAW 21/2 00443IOSNREhXz27qG-RIC7PBB70Hq3NSgPqnLBw3uTtxde KWrCDWHAW 21/2 004 15.04 4-9-11 $f = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0$													RELEA	SE FOR CON	STRUCTION
P240762A3Hip11Job Reference (optional Job Reference (optional LEE'S SUMMT, MISSOURPremier Building Supply (Springhill, KS), Spring Hills, KS - 66083.Rur: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MTek Industries, Inc. Te May Option 21/2024 Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083.Rur: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MTek Industries, Inc. Te May Option 21/2024 Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083.Rur: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MTek Industries, Inc. Te May Option 21/2024 Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083.Rur: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MTek Industries, Inc. Te May Option 21/2024 Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083.Rur: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MTek Industries, Inc. Te May Option 21/2024 Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083.State State Stat	Job		Truss			Truss Type	e		Qty	Ply				FED FOR PLA	N REVIEW
Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083, Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MTek Industries, Inc. The May 108 of 21/2024 D.QIWY_Z7U_0QAUGIOSNREhXzZ?qG-RfC?PsB70Hq3NSgPqnL&w3UTXbe KVrCDD-1000 40-10-8 0-10-8 5-1-9 9-11-4 16-7-5 23-4-11 30-0-12 34-10-7 40-0-0 40-10-8 0-10-8 5-1-9 4-9-11 6-8-1 6-8-1 6-9-5 6-8-1 6-8-1 4-9-11 5-1-9 0-10-8 41/2 6-8-1 6-8-1 6-9-5 6-8-1 4-9-11 5-1-9 0-10-8 1.5x4 15-1-9 1.5x4 5-1-9 0-10-8 1.5x4 15-1-9 1.5x4 5-1-9 1.5x4 5-1-9 0-10-8 1.5x4 15-1-9 1.5x4 5-1-9 1.5x4 5-1-9 0-10-8 1.5x4 15-1-9 1.5x4 5-1-9 0-10-8 1.5x4 15-1-9 1.5x4 5-1-9 1.5x4 5-1-9 0-10-8 1.5x4 15-1-9	P240762		A3			Hip			1	1	Job Reference	e (optional	LEE	165739 s summit, m	512 ISSOURI
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Premier Building Sup	oply (Springh	ill, KS), Sprinç	g Hills, KS - 6	66083,			Run: 8.63 S ID:QIWY_Z7	Apr 26 2024 Print: U_0QAt3lOsNREh	8.630 S Apr XzZ?qG-RfC	26 2024 MiTek Indus ?PsB70Hq3NSgPqn	stries, Inc. T L8w3uITXb(ie May 21 463:0 KWrCDoir J4230	<u>21/2;</u>	2024
9-10-0 16-7-5 23-4-11 30-2-0 40-0-0 9-10-0 6-9-5 6-9-5 6-9-5 9-10-0	$\begin{array}{c c} & -3-11-12 \\ \hline & 3-10-3 \\ \hline & 3-10-3 \\ 0-8-0 \\ \hline \\ \hline \\ \hline \end{array}$	-0-10-8 0-10-8	$\frac{5-1-9}{5-1-9}$ 3x10 = 2 3 3 3	4 ¹² 1.5x4= 04 9-10-0 9-10-0	<u>9-11-4</u> 4-9-11	6x6= 5 19 4x8=	16-7-5 6-8-1 ∞ ∞ 11 18 MT18HS 16-7-5 6-9-5	3x8= 621 17 5x8 = 3x4 ⊪	23-4-11 6-9-5 3x6= 7 ⊠ H 23-4-11 6-9-5	3x4= 228 s 16 4x4=	30-0-12 6-8-1 3 ⊠ ⊠ [1] 15 MT18HS 5x8 = 30-2-0 6-9-5	6x6= 9 14 4x8=	4-9-11 1.5x4 10 4-9-11 4-9-11	<u>40-0-0</u> 5-1-9 23 3×10= 11 -0 -0	40-10-8 0-10-8

Scale = 1:72.4

Plate Offsets (X, Y): [2:0-1-9,0-4-0], [[2:Edge,0-3-2], [12:0	-1-9,0-4-0], [12:Edge,0-3	3-2]									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.86 0.94 0.84	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.46 -0.84 0.18	(loc) 16-17 16-17 12	l/defl >999 >566 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 179 lb	GRIP 197/144 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES	2x4 SP 1650F 1.5E 2x6 SPF No.2 2x3 SPF No.2 Left 2x4 SP No.2 - 2- - 2-5-9 Structural wood sheat 2-2-0 oc purlins, exce 2-0-0 oc purlins, exce 2-0-0 oc purlins (2-7-7 Rigid ceiling directly a bracing. 1 Row at midpt 6 (size) 2=0-5-8, 12 Max Horiz 2=-67 (LC Max Uplift 2=-421 (LC (lb) - Maximum Comp Tension 1-2=0/1, 2-4=-4057/10 5-6=-3707/949, 6-8=- 	-5-9, Right 2x4 SP N thing directly applied spt 13 max.): 5-9. applied or 2-2-0 oc 3-19, 8-14 2=0-5-8 13) 2 8), 12=-421 (LC 9) C 1), 12=1857 (LC 1) oression/Maximum 075, 4-5=-3946/972, 4974/1273, 2-3947/973, 2-13=0/1 19=-1108/4982, 4-16=-1107/4974, =-1558/386, 6-17=0// =0/2249, 8-14=-1548/(=0/323, 10-14=0/324	2) i or 3) 4) 5) 6) 7) 8) 9) 253, 822,	Wind: ASCE Vasd=91mph Ke=1.00; Car exterior zone Interior (1) 4- Interior (1) 17 37-1-10, Inte left and right exposed;C-C reactions sho DOL=1.60 Provide adec All plates are This truss ha chord live loa All bearings a capacity of 4. Provide med bearing plate joint 2 and 42 This truss is International R802.10.2 ar Graphical pu or the orienta bottom chorc DAD CASE(S)	7-16; Vult=115mp ; TCDL=6.0psf; B t. II; Exp C; Enclos and C-C Exterior 1-8 to 9-11-4, Ext 7-0-2 to 30-0-12, E rior (1) 37-1-10 to exposed ; end vei for members and own; Lumber DOL uate drainage to p MT20 plates unle s been designed to denonconcurrent t are assumed to be 25 psi. hanical connection capable of withst 21 Ib uplift at joint designed in accor Residential Code to referenced star flin representation tion of the purlin a Standard	h (3-sec CDL=6.0 sed; MW (2E) -0-1 erior(2R) Exterior(24) 40-10-8 trical left forces & =1.60 pla prevent v ss other for a 10.0 with any e SPF Not n (by other anding 4 12. dance wis sections indard AN a does not along the	ond gust) Dpsf; h=35ft; FRS (envelop 0-8 to 4-1-8, 9-11-4 to 17 IR) 30-0-12 tr zone; cantile and right & MWFRS for ate grip vater ponding wise indicate 0 psf bottom other live loa 0.2 crushing ers) of truss t 21 lb uplift at th the 2018 R502.11.1 a to depict the s top and/or	be) -0-2, o ver d. ds. ds. o nd				STATE OF M STATE OF M NATHAI FOX	AISSOLIR NIEL	
 Unpalance 	ea root live loads have b	been considered for												

this design.

PE-2022042259 PE-2022042259 FSSIONAL ENGL May 22,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply		AS NOTED FOR PLAN REVIEW
P240762	A4	Hip	1	1 Job R	eference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply	(Springhill, KS), Spring Hills, KS	- 66083,	Run: 8.63 S Apr 26 2024 Prin ID:vU4wBv86kKZ1VDKbQ5yT	t: 8.630 S Apr 26 2024 M EkzZ?qF-RfC?PsB70Hq3	iTek Industries, Inc. T ie May 3NSgPqnL8w3uITXbC KWrC	08/21/2024
	-0-10-8 6-0-14 	<u>11-11-4</u> 5-10-6	<u> </u>	22-8-11 5-5-5	<u>28-0-12</u> 5-4-1	2 <u>31-2-0</u> 3-1-4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3x4 = 1 3x4 = 3 1 2	4 ¹² 3x4 = 7 18 16 1.5x4 II	4x6 = 5 x $x15$ $143x8 =$ $4x6 =20 - 0 - 0$	3x4= 6 19 20 19 19 13 3x4=	3x4= 3x4= 0 7 8 (F) (F) 28-2-0	4x4= 9 5x5= 10 11 12 5x8= 1.5x4
	6-0-14	5-9-2	8-2-0		8-2-0	3-0-0

Plate Offsets (X, Y): [2:0-3-13,0-1-5]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.98 0.83 0.68	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.40 0.12	(loc) 15-16 13-15 11	l/defl >999 >937 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 140 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce Left 2x4 SP No.2 - 5 Structural wood she except end verticals (3-4-6 max.): 5-9. Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-5-8, 5 Max Horiz 2=145 (LC Max Uplift 2=-338 (L Max Grav 2=1458 (I	ept* 11-10:2x4 SP No 3-2-0 athing directly applie , and 2-0-0 oc purlin: • applied or 6-2-6 oc 7-12 11=0-5-8 C 9) C 8), 11=-280 (LC 9 _C 1), 11=1395 (LC -	2) 0.2 d, s 3) 4) 5) 1) 6)	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 19-0-2, Inter 28-0-12 to 3 exposed ; er members an Lumber DOL Provide aded This truss ha chord live loa All bearings capacity of 5 Provide mec bearing plate	7-16; Vult=115m n; TCDL=6.0psf; I t. II; Exp C; Enclo e and C-C Exterio -1-8 to 11-11-4, E tor (1) 19-0-2 to 2 1-0-4 zone; cantil d vertical left and d forces & MWFF I quate drainage to is been designed ad nonconcurrent are assumed to b 65 psi. hanical connectic e capable of withs	ph (3-see BCDL=6. bsed; MW r(2E) -0- ixterior(2I 8-0-12, E 8-0-12, E 8-0-12, E 8-0-12, E 9 cover left a 1 right exp 2S for ree DDL=1.60 prevent for a 10.0 with any be SP No. on (by oth tstanding 3	cond gust) Dpsf; h=35ft; (FRS (envelop I0-8 to 4-1-8, R) 11-11-4 to xterior(2E) and right bosed;C-C for ctions shown boxed;C-C for ctions shown boxed;	pe) r ; g. ds.					
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=-5/0, 2-4=-3153 5-6=-2433/676, 6-7= 7-9=-882/301, 9-10= 10-11=-1391/390 2-16=-902/2866, 15.	npression/Maximum /772, 4-5=-2625/684 2345/634, 950/293, -16=-002/2866	, , 8)	joint 2 and 2 This truss is International R802.10.2 a Graphical pu or the orienta	80 lb uplift at joint designed in acco Residential Code nd referenced sta rlin representatio ation of the purlin	t 11. rdance w e sections indard AN n does no along the	ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the s top and/or	and size					
WEBS	2-10=-302/2806, 15- 13-15=-735/2547, 12 11-12=-65/69 4-16=0/214, 4-15=-4 9-12=-27/115, 10-12 6-13=-381/197, 6-15 7-13=-72/582, 7-12-	-10=-902/2806, 2-13=-619/2034, 463/217, 5-15=-36/42 2=-358/1350, 5=-343/109, -1474/419	LC 21,	DOLTON CHOR	1. Standard							STATE OF M	MISSOURI NIEL
NOTES 1) Unbalanc this desig	red roof live loads have n.	been considered for									K	Thank	ER HOR

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

May 22,2024

PE-202204222 TESSIONAL EN 22,202

									RELEASE FOI	
Job	Truss		Truss Type		Qty	Ply				OR PLAN REVIEW
P240762	A5		Hip		1	1	Job Refere	ence (optional)	LEE'S SUM	65739514 MIT, MISSOURI
Premier Building Supply	(Springhill, KS), Sp	ring Hills, KS - 66083,		Run: 8.63 S ID:NheIPF9	Apr 26 2024 Pri kVehu6Nvn_oTin	nt: 8.630 S Apr yzZ?qE-RfC?P	26 2024 MiTek li sB70Hq3NSgPqi	ndustries, Inc. Tu nL8w3uITXbGK	ie May 2048:022	1/2024
	-0-10-8	7-0-14	I	13-11-4		20-0-0	I	26-0-12	31-2-0	1
	0-10-8	7-0-14	I	6-10-6	6	6-0-12	I	6-0-12	5-1-4	1
8 6					4x6=		3x8=		4x6=	
0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1			412	0-1-0 						4x6 ≈

•

3x4=

20-0-0

6-2-0

11

1.5x4 **I**

26-2-0

6-2-0

13 12

3x8 =

3x4 =

4

14

1.5x4 **I**

13-10-0

6-9-2

3x4 🚅

7-0-14

7-0-14

3x4 🚅

6x6 II

15 3

Scale = 1:59.2

5-3-12

5-2-3 5-2-3

0-8-0

Plate Offsets (X, Y): [2:0-3-13,0-1-5]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.75 0.83 0.93	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.35 0.11	(loc) 13-14 13-14 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 142 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Excep 1.5E 2x4 SP No.2 2x3 SPF No.2 *Exce Left 2x4 SP No.2 - 3 Structural wood she 2-4-4 oc purlins, exx 2-0-0 oc purlins (3-4 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-5-8, § Max Horiz 2=136 (LC Max Uplift 2=-333 (L Max Grav 2=1458 (L	t* 1-5:2x4 SP 1650F ept* 9-8:2x4 SP No.2 3-8-5 athing directly applie cept end verticals, ar -12 max.): 5-7. applied or 6-2-1 oc 6-10 0=0-5-8 C 9) C 8), 9=-267 (LC 9) .C 1), 9=1395 (LC 1)	2) Ind or Ind 3) 4) 5) 6)	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 21-0-2, Inter 26-0-12 to 3 exposed ; er members an Lumber DOL Provide aded This truss ha chord live loa All bearings capacity of 5 Provide mec bearing plate ioint 2 and 2	7-16; Vult=115mp h; TCDL=6.0psf; B it. II; Exp C; Enclos e and C-C Exterior 1-8 to 13-11-4, Ex- ior (1) 21-0-2 to 26 1-0-4 zone; cantile d vertical left and d forces & MWFR. =1.60 plate grip D quate drainage to p seen designed f ad nonconcurrent are assumed to be 65 psi. hanical connectior e capable of withst 67 lb uplift at joint	wh (3-sec CDL=6.0 Sed; MW (2E) -0 deterior(2I) -0-12, E ever left a right exp S for rea OL=1.60 prevent for a 10.0 with any e SP No. h (by oth anding 3 9	cond gust) psr, h=35ft; FRS (envelog 10-8 to 4-1-8, R) 13-11-4 to xterior(2E) and right bossed;C-C for ctions shown water ponding 0 psf bottom other live loa 2 crushing ers) of truss t i33 lb uplift at	pe) ; g. ds.					
FORCES	(lb) - Maximum Com Tension 1-2=-5/0, 2-4=-3134, 5-6=-2210/662, 6-7= 7-8=-1301/404, 8-9=	pression/Maximum /785, 4-5=-2402/653 1192/420, 1352/440	 joint 2 and 267 Ib uplift at joint 9. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Graphical purlin representation does not depict the size 										
BOT CHORD	2-14=-899/2864, 13- 11-13=-641/2086, 10 9-10=-61/71	-14=-899/2864, 0-11=-641/2086,	LC	bottom chore DAD CASE(S)	d. Standard							OF M	Also
WEBS	4-14=0/282, 4-13=-7 6-13=-110/184, 6-11 7-10=-26/159, 8-10=	708/259, 5-13=-2/359 =0/243, 6-10=-1185/ =-405/1415), /312,								Ø	STATE NATHA	NIEL
NOTES	, ad yoof live loads have	haan annaidear difer									8	I IA FOI	X A S G + B
(1) Unbalance	ed root live loads have	peen considered for									N 1		

this design.

May 22,2024

SSIONAL ET

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

ABEL 2022042 4x6≈

97

10

5x8=

31-2-0

5-0-0

8

9 Ŭ

3x6 II

3-7-5

						RELEASE FOR CONSTRUC	TION
Job	Truss	Truss Type	Qty	Ply		AS NOTED FOR PLAN REV	/IEW FS
P240762	A6	Нір	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOL	IRI
Premier Building Supply (Spring	ghill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Apr 26 2 ID:rtBgcbANGxpkkXI	2024 Print: 8 JzYW_xJ9z2	.630 S Apr 26 Z?qD-RfC?Ps	2024 MiTek Industries, Inc. T B70Hq3NSgPqnL8w3uITXbG	ue May 2048:021/202 WrCDoil 442921	24
-0- - 0-1	10-8 8-0-14 0-8 8-0-14	<u> </u>		24	1-0-12 3-1-8	31-2-0	
N			7x8=		4x8=		

Plate Offsets (X, Y): [2:0-3-13,0-1-5], [5:0-2-0,Edge]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.99	Vert(LL)	-0.17	12-14	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.90	Vert(CT)	-0.34	12-14	>999	180		
BCLL	0.0	Rep Stress Incr	YES		WB	0.74	Horz(CT)	0.10	9	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 139 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP 1650F 1.5E *E No.2	Except* 7-8:2x4 SP	2)	Wind: ASCE Vasd=91mpl Ke=1.00; Ca	7-16; Vult=115mp n; TCDL=6.0psf; B t. II; Exp C; Enclos	oh (3-sec CDL=6.0 sed; MW	ond gust))psf; h=35ft; FRS (envelor	be)					
BOT CHORD	2x4 SP No.2			exterior zone	and C-C Exterior	(2E) -0-1	0-8 to 4-1-8,						
WEBS SLIDER BRACING	2x3 SPF No.2 *Excep Left 2x4 SP No.2 4-	t* 9-8:2x4 SP No.2 ·2-10	Interior (1) 4- 23-0-2, Interi 24-0-12 to 3	1-8 to 15-11-4, Ex or (1) 23-0-2 to 24 I-0-4 zone; cantile	kterior(2F I-0-12, E ver left a	R) 15-11-4 to xterior(2E) nd right							
TOP CHORD	Structural wood sheat except end verticals, a (2-2-0 max.): 6-7.	thing directly applied and 2-0-0 oc purlins	members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60										
BOT CHORD	(2-2-0 max.): 6-7. Rigid ceiling directly applied or 6-2-1 oc 3) bracing. 4)			This truss ha	luate drainage to j s been designed f	orevent v or a 10.0	vater ponding) psf bottom].					
WEBS	1 Row at midpt 4	-12, 6-10		chord live load nonconcurrent with any other live loads.									
REACTIONS	(size) 2=0-5-8, 9= Max Horiz 2=127 (LC Max Uplift 2=-326 (LC Max Grav 2=1458 (LC	5) 6)	All bearings are assumed to be SP No.2 crushing capacity of 565 psi. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 326 lb uplift at										
FORCES	(lb) - Maximum Comp Tension	ression/Maximum	7)	This truss is	designed in accord	dance wi	th the 2018 R502 11 1 a	nd					
TOP CHORD	1-2=-5/0, 2-4=-3095/7 6-7=-1390/515, 7-8=- 8-9=-1335/452	787, 4-6=-2183/628, 1530/484,	8)	R802.10.2 ar Graphical pu or the orienta	nd referenced star rlin representation ation of the purlin a	dard AN does no	SI/TPI 1. t depict the s top and/or	ize					
BOT CHORD	2-14=-894/2827, 12-1 10-12=-627/1984, 9-1	4=-894/2827, 0=-73/87	10	bottom chord	l. Standard	5	,					COLOR	all
WEBS	4-14=0/323, 4-12=-90 6-10=-804/218, 7-10= 8-10=-413/1488	05/309, 6-12=-18/53 183/171,	6, 20		Clandard						ä	TATE OF N NATHA	AISSOLA

NOTES

 Unbalanced roof live loads have been considered for this design.

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

								RELEASE FO	
Job	Truss		Truss Type		Qty	Ply		AS NOTED F	OR PLAN REVIEW
P240762	A7		Hip		1	1	Job Reference (optiona	LEE'S SUM	I65739516 MMIT, MISSOURI
Premier Building Supply ((Springhill, KS), Spring	g Hills, KS - 66083,		Run: 8.63 S Apr 26 20 ID:J3l3qxA?1FxbMh3A)24 Print: 8 A5DVAsNz	8.630 S Apr 26 Z?qC-RfC?Ps	5 2024 MiTek Industries, Inc. B70Hq3NSgPqnL8w3uITXb0	Tile May 2048:02 G WrCDon 4232.1	1/2024
	-0-10-8								
	0-10-8	<u>9-0-14</u> 9-0-14		<u> </u>			2-0-12 4-1-8	<u>31-2-0</u> 9-1-4	———————————————————————————————————————
						6x6=	4x8 =		
6-7-12 6-6-3 6-6-3 0-1-9	3	3x4 = 3x4 = 143	41 ² 3x4 = 15 4	3x8 =	0-1-9	6		16	17 5×5≈ 8
			13	 1:	2	<u>- 11</u>	10		H9 ⊥ ⊠

Plate Offsets (X, Y): [2:0-3-13,0-1-5], [8:0-2-0,0-1-12], [9:Edge,0-3-8]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.95	Vert(LL)	-0.19	9-10	>999	240	MT20	244/190		
TCDL	10.0	Lumber DOL	1.15		BC	0.80	Vert(CT)	-0.40	9-10	>926	180				
BCLL	0.0	Rep Stress Incr	YES		WB	0.95	Horz(CT)	0.09	9	n/a	n/a				
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S		. ,					Weight: 141 lb	FT = 20%		
LUMBER			2)	Wind: ASCE	7-16; Vult=115mp	h (3-sec	ond gust)								
TOP CHORD	2x4 SP 2400F 2.0E * No.2, 1-5:2x4 SP 16	*Except* 6-7:2x4 SP 50F 1.5E	,	Vasd=91mpł Ke=1.00; Ca	n; TCDL=6.0psf; B t. II; Exp C; Enclos	CDL=6.0 sed; MW)psf; h=35ft; FRS (envelop	ce)							
BOT CHORD	2x4 SP 1650F 1.5E * No.2	*Except* 12-9:2x4 SF	D	exterior zone Interior (1) 4-	and C-C Exterior 1-8 to 17-11-4, E>	(2E) -0-1 (terior(2E	0-8 to 4-1-8,) 17-11-4 to								
WEBS	2x3 SPF No.2 *Exce	pt* 9-8:2x4 SP No.2		22-0-12, Exte	erior(2R) 22-0-12 t	o 29-1-1	0, Interior (1)	1							
SLIDER	Left 2x4 SP No.2 4	-9-0		29-1-10 to 31-0-4 zone; cantilever left and right											
BRACING				exposed ; en											
TOP CHORD	Structural wood shea	athing directly applied	d,	members and forces & MWFRS for reactions shown;											
	except end verticals,	and 2-0-0 oc purlins	Lumber DOL=1.60 plate grp DOL=1.60												
	(4-3-7 max.): 6-7.		3)	Provide adec	juate drainage to	prevent v	vater ponding] .							
BOT CHORD	Rigid ceiling directly	applied or 6-4-9 oc	4)	This truss ha	s been designed f	or a 10.0) pst bottom								
	bracing.		-	chord live loa	ad nonconcurrent	with any	other live loa	ds.							
WEBS	1 Row at midpt	4-11	5)	Bearings are	assumed to be: J	oint 2 Si	2 1650F 1.5E								
REACTIONS	(size) 2=0-5-8, 9	9=0-5-8		crusning cap	acity of 565 psi, Jo	DINT 9 SF	' No.2 crushir	ng							
	Max Horiz 2=127 (LC	2 12)	()	Capacity of 5	oo psi. hamiaal aanna atiar	(h., ath									
	Max Uplift 2=-318 (LO	C 8), 9=-235 (LC 9)	6)	Provide med	nanical connection	i (by oth	19 Ib uplift of	0							
	Max Grav 2=1458 (L	.C 1). 9=1395 (LC 1)		ioint 2 and 2	E lb uplift of igint	anuing s o	to ib upilit at								
FORCES	(lb) - Maximum Com	pression/Maximum	7)	This trues is	designed in accord	y. danco w	th the 2018								
I ONOLO	Tension	procolori/maximum	')	International	Residential Code	sections	P502 11 1 a	nd							
TOP CHORD	1-2=-5/0. 2-4=-3056/	738. 4-6=-1922/563.		R802 10 2 a	nd referenced star	Aard AN	ISI/TPI 1	nu							
	6-7=-1457/530.7-8=	-1631/493.	8)	Graphical pu	rlin representation	does no	t denict the s	170							
	8-9=-1308/452	,	0)	or the orients	ation of the purlin a	along the	ton and/or	5120							
BOT CHORD	2-13=-841/2789. 11-	13=-841/2789.		bottom chore		along the						2000	all		
	10-11=-527/1718, 9-	10=-84/116	10	AD CASE(S)	Standard							S OF M	Alson		
WEBS	4-13=0/392, 4-11=-1	153/349, 6-11=-60/5	32, LO	AD CASE(3)	Stanualu							4 SE	1.0°		
	6-10=-591/157, 7-10	=-140/194,									6	N	Ne		
	8-10=-378/1454										H	∽⁄ NATHA	NIEL / C> V		
NOTES											B	FOI INFOI			
												///			

1) Unbalanced roof live loads have been considered for this design.

PE-2022042259 ESSIONAL ET May 22,2024

									RELEASE FOR CONSTRUCTION
Job	Truss	S	Truss Type		Qty PI	у			AS NOTED FOR PLAN REVIEW
P240762	A8		Common	:	3 1	Jo	b Reference (opti	ional	LEE'S SUMMIT, MISSOURI
Premier Building	Supply (Springhill, KS),	, Spring Hills, KS - 66083	•	Run: 8.63 S Apr 26 202 ID:Q1_7Plwq_oHaLSy7	24 Print: 8.630 NJdFVxzZ?qX	S Apr 26 202 -RfC?PsB70	24 MiTek Industries, Hq3NSgPqnL8w3ul	Inc. Tue May TXbG (WrCE	08/21/2024
	-0-10-8	6-6-9	13-3-9		20-0-0		25-5-9		31-2-0
	0-10-8	6-6-9	6-9-0	I	6-8-7	I	5-5-9	I	5-8-7
	3x4, 1 2 4x8=	3x4 = 4 = 3 15 = 10-1-4 = 10-1-4	4 ¹² .5x4	3x4 = 3x4 = 16 5 6 10 7 13 4x6 = 20-0-0 9-10-12	*	7 7 12 3x8=	25-5-9	3x4 s 17 8 18 11 11 3x8=	3 4x6 = 9 10 10 1.5x4 =
Scolo - 1:57									
Plate Offsets (X, Y): [2:Edge,0-2-5	5], [11:0-2-8,0-1-8]							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.8 BC 0.7 WB 0.6 Matrix-S	5 DEFL Vert(LL) 9 Vert(CT) 6 Horz(CT)	in -0.23 -0.50) 0.09	(loc) l/defl 2-14 >999 2-14 >752 10 n/a	L/d PL 240 MT2 180 n/a Wei	ATES GRIP 20 244/190 ight: 141 lb FT = 20%
LUMBER TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP 1650F 1 5F	- = *Excent* 13-10:2x4	2) Wind: ASCE Vasd=91mpt SP Ke=1.00: Ca	7-16; Vult=115mph (3-s n; TCDL=6.0psf; BCDL= t. II: Exp C: Enclosed: M	econd gust) 6.0psf; h=35	ft; elope)		·	

exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 20-0-0, Exterior(2R) 20-0-0 to 25-0-0, Interior (1) 25-0-0 to 31-0-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for

reactions shown; Lumber DOL=1.60 plate grip

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Bearings are assumed to be: Joint 2 SP 1650F 1.5E

crushing capacity of 565 psi, Joint 10 SP No.2 crushing

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 306 lb uplift at

This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

DOL=1.60

capacity of 565 psi.

LOAD CASE(S) Standard

joint 2 and 215 lb uplift at joint 10.

4)

5)

6)

	No.2
WEBS	2x3 SPF No.2 *Except* 10-9:2x4 SP No.2
SLIDER	Left 2x4 SP No.2 3-4-14
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	2-2-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 7-3-2 oc
	bracing.
WEBS	1 Row at midpt 6-12
REACTIONS	(size) 2=0-5-8, 10=0-5-8
	Max Horiz 2=142 (LC 12)
	Max Uplift 2=-306 (LC 8), 10=-215 (LC 9)
	Max Grav 2=1458 (LC 1), 10=1395 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-5/0, 2-4=-3103/743, 4-6=-2739/619,
	6-7=-1604/466, 7-8=-1585/462,
	8-9=-1388/390, 9-10=-1338/400
BOT CHORD	2-14=-804/2831, 12-14=-636/2264,
	11-12=-371/1266, 10-11=-61/75
WEBS	7-12=-101/586, 9-11=-363/1442,
	4-14=-375/251, 6-14=-9/552,
	6-12=-1027/331, 8-12=-60/358,
	8-11=-654/255

NOTES

1) Unbalanced roof live loads have been considered for this design.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Interior (1) 5-0-0 to 20-0-0, Exterior(2R) 20-0-0 to 25-0-0, Interior (1) 25-0-0 to 31-0-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for

reactions shown; Lumber DOL=1.60 plate grip

Refer to girder(s) for truss to truss connections.

joint 1 and 215 lb uplift at joint 9.

This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads. Bearings are assumed to be: , Joint 9 SP No.2 crushing

Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 265 lb uplift at

This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

DOL=1.60

capacity of 565 psi.

LOAD CASE(S) Standard

3)

4)

5)

6)

7)

	No.2
WEBS	2x3 SPF No.2 *Except* 9-8:2x4 SP No.2
SLIDER	Left 2x4 SP No.2 3-4-14
BRACING	
TOP CHORD	Structural wood sheathing directly applied,
	except end verticals.
BOT CHORD	Rigid ceiling directly applied or 7-3-1 oc
	bracing.
WEBS	1 Row at midpt 5-11
REACTIONS	(size) 1= Mechanical, 9=0-5-8
	Max Horiz 1=144 (LC 16)
	Max Uplift 1=-265 (LC 8), 9=-215 (LC 9)
	Max Grav 1=1396 (LC 1), 9=1396 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-3=-3113/774, 3-5=-2746/638,
	5-6=-1605/471, 6-7=-1587/467,
	7-8=-1389/393, 8-9=-1339/400
BOT CHORD	1-13=-808/2840, 11-13=-637/2267,
	10-11=-372/1267, 9-10=-61/75
WEBS	6-11=-104/587, 8-10=-363/1443,
	3-13=-379/265, 5-13=-18/554,
	5-11=-1030/332, 7-11=-60/359,
	7-10=-654/255

NOTES

 Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

										_ [RELEASE	FOR CONSTRUCTION
Job	Truss		Truss Type		Qt	y Ply					AS NOTE	
P240762	A10		Half Hip		1	1	Joh	Refere	nce (op	tional	LEE'S	I65739519 SUMMIT, MISSOURI
Premier Building Supply (Sp	ringhill, KS), S	pring Hills, KS - 66083,		Run: 8.63 S Apr ID:8ybuWA25dtY	26 2024 ′9X?j2yPp	Print: 8.630 S / obv2zZ?qN-Rf(Apr 26 2024 C?PsB70Hc	4 MiTek lı 3NSgPq	ndustries, nL8w3ul7	, Inc. Tu TXbGK/	e May 20463:03 VrCDoi734239:1	21/2024
	 	6-6-4 6-6-4	8-6-10 13-2-1 2-0-6 4-8-4	5	<u>19-11</u> 6-8-	<u>-4</u> 5		25-5- 5-6-2	<u>6</u>		<u>31-2-0</u> 5-8-10	
7-3-12 7-3-12 7-3-12 7-2-3 0-8-0 1	3x4 ,	1. 3x4 = 15 2 <u>7-10-12</u>	4^{12} 4x4 = 5x4 = 14 3x4 = 15	3x4 = 165 11 13 3x4 =	12 4x4=	0,	6x6 =		10 4x4=	4x4= 7 17	31-2-0	3x4 II 8 9 9 5x5=
		7-10-12	7-	-8-4		7-8	5-4				7-10-12	
Plate Offsets (X, Y): [1:0)-3-13,0-1-5	, [4:0-2-0,Edge], [8:E	dge,0-2-8]									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.78 0.88 0.87	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.36 0.10	(loc) 12-14 12-14 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 148 lb	GRIP 244/190 FT = 20%
LUMBER			2) Wind: ASCE	7-16; Vult=115mp	h (3-sec	cond gust)						

LUMBER		2)	Wind: ASCE 7-16; Vult=115mph (3-second gust)	
TOP CHORE	2x4 SP No.2 *Except* 1-4:2x4 SP 1650F		Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft;	
	1.5E		Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope)	
BOT CHORI	D 2x4 SP No.2		exterior zone and C-C Exterior(2E) 0-0-0 to 5-0-0,	
WEBS	2x3 SPF No.2 *Except* 9-7:2x4 SP No.2		Interior (1) 5-0-0 to 19-11-4, Exterior(2R) 19-11-4 to	
SLIDER	Left 2x4 SP No.2 3-4-14		27-0-2, Interior (1) 27-0-2 to 31-0-12 zone; cantilever left	
BRACING			and right exposed ; end vertical left and right	
TOP CHORE	Structural wood sheathing directly applied or		exposed;C-C for members and forces & MWFRS for	
	2-2-0 oc purling except and verticals and		reactions shown; Lumber DOL=1.60 plate grip	
	2-0.0 oc purlins, except end venticals, and $2-0.0$ oc purlins ($1-10$ max): 6-8		DOL=1.60	
BOT CHORE	 Rigid ceiling directly applied or 5-11-2 oc 	3)	Provide adequate drainage to prevent water ponding.	
DOT ONOR	bracing	4)	This truss has been designed for a 10.0 psf bottom	
WEBS	1 Row at midpt 7-9		chord live load nonconcurrent with any other live loads.	
PEACTIONS	\mathbf{S} (size) $1 - \mathbf{M}$ achapical $0 - 0.5.9$	5)	Bearings are assumed to be: , Joint 9 SP No.2 crushing	
REACTIONS	$M_{2X} = Mechanical, = 0.5.6$		capacity of 565 psi.	
	$M_{\text{exc}} = \frac{1}{2} \frac{1}{2}$	6)	Refer to girder(s) for truss to truss connections.	
	Max Opilit $1=-289$ (LC 8), $9=-321$ (LC 8)	7)	Provide mechanical connection (by others) of truss to	
	Max Grav 1=1398 (LC 1), 9=1398 (LC 1)		bearing plate capable of withstanding 321 lb uplift at	
FORCES	(lb) - Maximum Compression/Maximum		joint 9 and 289 lb uplift at joint 1.	
	Tension	8)	This truss is designed in accordance with the 2018	
TOP CHORI	D 1-3=-3143/755, 3-5=-2939/737,		International Residential Code sections R502.11.1 and	
	5-6=-2140/600, 6-7=-1190/418,		R802.10.2 and referenced standard ANSI/TPI 1.	
	7-8=-144/151, 8-9=-160/88	9)	Graphical purlin representation does not depict the size	
BOT CHORI	D 1-14=-974/2867, 12-14=-819/2283,		or the orientation of the purlin along the top and/or	
	10-12=-550/1446, 9-10=-394/963		bottom chord.	A SE MIL
WEBS	6-12=-241/963, 6-10=-598/268,	LC	DAD CASE(S) Standard	BER OF MIS
	7-10=-132/744, 7-9=-1513/475,			H. A.
	3-14=-280/217, 5-14=-134/596,			A NATHANIEI
	5-12=-741/320			H 7/ HAIHAINE

NOTES

1) Unbalanced roof live loads have been considered for

this design.

FOX MACOR PE-2022042259 \boldsymbol{c} ARSSIONAL EN GÍ

May 22,2024

							Г	RELEASE FO	OR CONSTRU	ICTION
Job	Truss	Truss Type		Qty	Ply				FOR PLAN R	EVIEW
P240762	A11	Half Hip		1	1	Job Reference	(optional)	LEE'S SU	165739520 MMIT, MISSC	URI
Premier Building Supply (Sprin	nghill, KS), Spring Hills, KS - 66083,		Run: 8.63 S Apr 26 20 ID:8ybuWA25dtY9X?j)24 Print: 8.6 2yPpbv2zZ?	630 S Apr 26 qN-RfC?PsB	2024 MiTek Indust	ries, Inc. Tue 3uITXbGK Wr		1/20	24
ł	5-10-4	<u>11-10-15</u> 6-0-11	<u>17-11-4</u> 6-0-5		23-()-4	28-0-0	31-2-0	<u>0</u>	
		0011	000	4x4	=	3x8=	2	4x4=	1.5x4 ॥	
6.7-12 0-1-9		4^{12}_{4} 3 3x6 = 18 5	8x4 =	6			19 20	8	9 	6-3

Plate Offsets (X, Y): [1:Edge,0-2-5], [13:0-2-8,0-1-8]

														_	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.67	Vert(LL)	-0.17	14-16	>999	240	MT20	244/190		
TCDL	10.0	Lumber DOL	1.15		BC	0.75	Vert(CT)	-0.39	14-16	>967	180				
BCLL	0.0	Rep Stress Incr	YES		WB	0.60	Horz(CT)	0.07	10	n/a	n/a				
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 149 lb	FT = 20%		
		-	2)	Wind ASCE	7-16: \/ult=115mpl	h (3-ser	ond quet)								
	2v/ SP No 2 *Evcon	+* 1-1.2v1 SD 1650F	2)	Vasd=91mpt	TCDI = 6.00 sf BC	2DI = 60	h=35ft								
	1.5F	1-4.274 01 10001		Ke=1.00: Ca	t. II: Exp C: Enclose	ed: MW	FRS (envelo	pe)							
BOT CHORD	2x4 SP No 2 *Excen	ot* 1-15:2x4 SP 1650	F	exterior zone	and C-C Exterior(2E) 0-0	-0 to 5-0-0,	/							
	1.5E. 12-8:2x3 SPF	No.2		Interior (1) 5-	0-0 to 17-11-4, Ext	terior(21	R) 17-11-4 to								
WEBS	2x3 SPF No.2			25-0-2, Interi	or (1) 25-0-2 to 31-	0-12 zo	ne; cantileve	er left							
SLIDER	Left 2x4 SP No.2 3	3-0-7		and right exp	osed ; end vertical	left and	l right								
BRACING				exposed;C-C	for members and	forces a	& MWFRS fo	r							
TOP CHORD	Structural wood she	athing directly applie	d or	reactions sho	wn; Lumber DOL=	=1.60 pl	ate grip								
	2-7-0 oc purlins, exc	cept		DOL=1.60											
	2-0-0 oc purlins (4-1	-10 max.): 6-9.	3)	Provide adec	uate drainage to p	revent	vater pondin	g.							
BOT CHORD	Rigid ceiling directly	applied or 6-10-9 oc	4)	This truss has been designed for a 10.0 psf bottom											
	bracing.		-	chord live load nonconcurrent with any other live loads.											
WEBS	1 Row at midpt	8-10, 5-14	5)	Bearings are	assumed to be: , J	Joint 10	SP N0.2								
REACTIONS	(size) 1= Mecha	anical, 10=0-5-8	C)	Crushing cap	acity of 565 psi.		actions								
	Max Horiz 1=273 (LC	C 12)	(0) 7)	Provide med	banical connection	(by oth	ere) of truce	to							
	Max Uplift 1=-278 (L	.C 8), 10=-332 (LC 8)	')	hearing plate	canable of withsta	nding 2	78 lb unlift at	•							
	Max Grav 1=1398 (L	LC 1), 10=1398 (LC 1)	ioint 1 and 33	32 lb unlift at joint 1	0		L Contraction of the second se							
FORCES	(lb) - Maximum Com	pression/Maximum	8)	This truss is	designed in accord	ance w	ith the 2018								
	Tension		-,	International	Residential Code s	sections	R502.11.1 a	and							
TOP CHORD	1-3=-3139/721, 3-5=	-2822/604,		R802.10.2 ar	nd referenced stand	dard AN	ISI/TPI 1.								
	5-6=-1887/464, 6-7=	-1723/477,	9)	Graphical pu	rlin representation	does no	ot depict the	size							
	7-8=-934/265, 8-9=0	0/0		or the orienta	ation of the purlin a	long the	top and/or						-		
BOT CHORD	1-16=-876/2852, 14-	-16=-723/2419,		bottom chord	l.							ALEI	and the		
	13-14=-371/1370, 12	2-13=-3/24, 11-12=0/	^{'91,} LC	AD CASE(S)	Standard							B.F. OF M	11SS D		
	8-11=-208/983, 10-1	1=-264/932									6	2.0	N'S		
WEBS	6-14=0/293, 7-14=-1	1/0/54/, /-11=-5/1/1	66,								B	NATHA	NIFL XP.V		
	9-10=-75/47, 8-10=-	1589/449,									9	EOT			
	1-13=-449/200, 11-1 3-16=-260/237 5 16	13=-39//1431, S=15/163 5-11- 960	/300								79 .	IN	* ALL		
NOTEO	J-10=-200/237, J-10	J=-13/403, 3-14=-000	1009								1/1	H	1 4 8		
NULES											VI.	han			

 Unbalanced roof live loads have been considered for this design.

					RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
P240762	A12	Half Hip	1	1 Job Reference (optional	165739521 LEE'S SUMMIT, MISSOURI
Premier Building Supply	(Springhill, KS), Spring Hills, KS - 66	083, Run: ID:c8	8.63 S Apr 26 2024 Print: 8.63 39HjW3jOAg098IFW7KqSGzZ?(0 S Apr 26 2024 MiTek Industries, Inc. T qM-RfC?PsB70Hq3NSgPqnL8w3uITXbC	16 May 2048:0521/2024
	<u>8-0-14</u> 8-0-14	<u> </u>		23-5-6 7-6-2	<u>31-2-0</u> 7-8-10
			6x6=	1.5x4 u	4x6=
→ 5-11-12 → 5-10-3 5-11-12 → 5-10-3 0-1-9	3x4 = $3x4 = 2$ 1 1	41^{2} 3x4 = 4 3 15 15 15			
	6x6 II	13 1.5x4 u	12 11 10 4x4= 3x4=	9 5x10=	⊠ 3x6 ॥

Plate Offsets (X, Y): [1:0-3-13,0-1-5], [4:0-2-0,Edge], [8:Edge,0-2-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.92	Vert(LL)	-0.18	11-13	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.90	Vert(CT)	-0.36	11-13	>999	180		
BCLL	0.0	Rep Stress Incr	YES		WB	0.65	Horz(CT)	0.10	8	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 137 lb	FT = 20%
LUMBER			3)	Provide adeo	uate drainage to p	revent	water ponding	g.					
TOP CHORD	2x4 SP 1650F 1.5		4)	This truss ha	s been designed fo	or a 10.0) psf bottom						
BOT CHORD	2x4 SP No.2			chord live loa	ad nonconcurrent w	vith any	other live loa	ids.					
WEBS	2x3 SPF No.2		5)	Bearings are	assumed to be: , .	Joint 8 S	SP No.2 crus	hing					
SLIDER	Left 2x4 SP No.2 -	- 4-2-10		capacity of 5	65 psi.								
BRACING			6)	Refer to gird	er(s) for truss to tru	iss conr	nections.						
TOP CHORD	Structural wood sh	eathing directly applie	d, 7)	Provide mec	hanical connection	(by oth	ers) of truss t	O					
	except end vertica (4-6-4 max): 5-7	ls, and 2-0-0 oc purlins	3	joint 8 and 29	 capable of withsta 35 lb uplift at joint 1 	anding 3 I.	15 lb uplift at	İ					
BOT CHORD	Rigid ceiling direct	ly applied or 5-11-15 o	c 8)	This truss is International	designed in accord Residential Code	lance w sections	ith the 2018 R502.11.1 a	ind					
WERS	1 Row at midnt	7-8 3-11 5-9 7-9		R802.10.2 a	nd referenced stan	dard AN	ISI/TPI 1.						
DEACTIONS		7-0, 3-11, 3-3, 7-3	9)	Graphical pu	rlin representation	does no	ot depict the	size					
REACTIONS	(SIZE) I= Meci			or the orienta	ation of the purlin a	long the	e top and/or						
	Max Holiz 1=204 (I	$(1 \bigcirc 9)$		bottom chord	l.								
	Max Opint 1=-295	(LC 0), 0=-315 (LC 0) (LC 1) 8-1398 (LC 1)	LC	AD CASE(S)	Standard								
FORCES	(lb) Maximum Ca	(LC 1), 0=1390 (LC 1)											
FURGES	(ID) - Maximum Co	mpression/waximum											
	1-3-3113/7/7 3-4	52182/588											
	5-6-1543/497 6-1	71541/495											
	7-8=-1330/429	= 1041/400,											
BOT CHORD	1-13=-945/2845 1	1-13=-945/2845											
201 0110112	9-11=-656/1980.8	-9=-102/120											
WEBS	3-13=0/332. 3-11=	-920/311, 5-11=-31/51	6.									2000	100
	5-9=-549/201, 6-9=	-634/291, 7-9=-508/1	885									FOF M	AISC
NOTES											E	The	-00 M
1) Unbalance	ed roof live loads hav	e been considered for									B	NATHA	NIEL X
this desigr	n.										A	S/ NAILA	
2) Wind: ASC	CE 7-16; Vult=115mp	h (3-second gust)								1	20	FO2	
Vasd=91n	nph; TCDL=6.0psf; B	CDL=6.0psf; h=35ft;									W/1	HT.	
Ke=1.00; (Cat. II; Exp C; Enclos	ed; MWFRS (envelop	e)										K TH
exterior zo	one and C-C Exterior	(2E) 0-0-0 to 5-0-0,									MH	XUUAMA	SER AND
Interior (1)) 5-0-0 to 15-11-4, E>	terior(2R) 15-11-4 to									177	DE 20220	12250 18
23-0-2, Int	terior (1) 23-0-2 to 31	-0-12 zone; cantilever	left								N	FE-20220	142239 159 A
and right e	exposed ; end vertica	I left and right									Y	N.Co.	1 ANA
exposed;C	C-C for members and	torces & MWFRS for									12	SIONTA	TENS
reactions :	snown; Lumber DOL	=1.60 plate grip										ANNA	L'A

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

STONAL DI May 22,2024

Plate Offsets (X, Y): [1:0-3-0,0-1-5], [8:Edge,0-2-8]

		-											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.75	Vert(LL)	-0.18	12-13	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.89	Vert(CT)	-0.35	9-10	>999	180		
BCLL	0.0	Rep Stress Incr	YES		WB	0.97	Horz(CT)	0.11	9	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 135 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-16: Vult=115m	ph (3-sec	ond aust)						
TOP CHORD	2x4 SP No.2 *Excep	t* 1-4:2x4 SP 1650F	·	Vasd=91mpl	n; TCDL=6.0psf; E	SCDL=6.0)psf; h=35ft;						
	1.5E			Ke=1.00; Ca	t. II; Exp C; Enclo	sed; MW	FRS (envelo	pe)					
BOT CHORD	2x4 SP No.2			exterior zone	and C-C Exterior	r(2E) 0-0-	0 to 5-0-0,	,					
WEBS	2x3 SPF No.2			Interior (1) 5-	-0-0 to 13-11-4, E	xterior(2F	R) 13-11-4 to						
SLIDER	Left 2x4 SP No.2 3	3-8-5		21-0-2, Interi	ior (1) 21-0-2 to 3	1-0-12 zo	ne; cantileve	r left					
BRACING				and right exp	osed ; end vertica	al left and	l right						
TOP CHORD	Structural wood she	athing directly applie	d or	exposed;C-C	for members and	d forces &	& MWFRS for	r					
	2-4-4 oc purlins, exc	cept end verticals. a	nd	reactions sho	own; Lumber DOL	_=1.60 pla	ate grip						
	2-0-0 oc purlins (3-5	-14 max.): 4-8.		DOL=1.60									
BOT CHORD	Rigid ceiling directly	applied or 6-0-10 oc	; 3)	Provide adeo	quate drainage to	prevent v	vater ponding	g.					
	bracing.		4)	This truss ha	is been designed	for a 10.0) psf bottom						
WEBS	1 Row at midpt	7-9		chord live loa	ad nonconcurrent	with any	other live loa	ds.					
REACTIONS	(size) 1= Mecha	inical. 9=0-5-8	5)	Bearings are	assumed to be: ,	Joint 9 S	SP No.2 crush	ning					
	Max Horiz 1=232 (LC	C 11)		capacity of 5	65 psi.								
	Max Uplift 1=-297 (L	C 8), 9=-313 (LC 8)	6) 7)	Refer to gira	er(s) for truss to tr	russ conr	ections.	~					
	Max Grav 1=1398 (L	_C 1), 9=1398 (LC 1)	, ,,	boaring plate		tanding 2	07 lb uplift of	.0					
FORCES	(lb) - Maximum Com	pression/Maximum		ioint 1 and 3	13 lb unlift at joint	anuny z	97 ib upilit at						
	Tension		8)	This trues is	designed in accor	o. rdance wi	th the 2018						
TOP CHORD	1-3=-3146/773. 3-4=	-2415/638.	0)	International	Residential Code	sections	R502 11 1 a	ind					
	4-5=-2222/635, 5-7=	-1791/507, 7-8=-113	3/111,	R802 10 2 a	nd referenced star	ndard AN	ISI/TPI 1						
	8-9=-170/98	,	. 9)	Graphical pu	rlin representation	n does no	t depict the s	size					
BOT CHORD	1-13=-938/2876, 12-	-13=-938/2876,	-,	or the orienta	ation of the purlin	along the	top and/or						
	10-12=-630/2098, 9-	-10=-452/1372		bottom chord	d.							Som	APril
WEBS	4-12=-6/367, 5-10=-	607/258, 5-12=-95/1	60, L C	AD CASE(S)	Standard							B.C. OF M	AIS C
	7-10=-130/827, 7-9=	-1782/501,		(-)							E	754	N.O.
	3-12=-701/266, 3-13	3=0/273									R	NATUA	
											n		

NOTES

 Unbalanced roof live loads have been considered for this design.

May 22,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty I	Ply		AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
P240762	A14	Half Hip	1	1 _{Jo}	b Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,	24 MiTek Industries, Inc. T 70Hq3NSgPqnL8w3uITXb	e May 2048:0321/2924 SKWrCD 97 92:0721/2924			
-0-1	0-8 6-0-14	11-11-4 18-3	3-12		24-8-4	31-2-0
0-1	0-8 6-0-14	5-10-6 6-4	4-8	I.	6-4-8	6-5-12
$\begin{array}{c c} & 4-7-12 \\ \hline & 4-6-5 \\ \hline & 4-6-5 \\ \hline & 0-1-7 \\ \hline & 0-8-0 \\ \hline & 0-1-7 $	2 6x6 II	6x6= 1.5x4 4 1.5x4	13 12	6 18 x	4x4 7 11 4x4=	= 3x6= <u>19 8 9</u> <u>4</u> <u>6</u> <u>7</u> <u>10</u> <u>10</u>
	7-10-12 7-10-12	15-7-0 7-8-4		<u>23-3-4</u> 7-8-4		<u>31-2-0</u> 7-10-12

Plate Offsets (X, Y): [2:0-3-13,0-1-5],	, [9:Edge,0-2-8]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.82 0.86 0.81	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.20 -0.39 0.12	(loc) 13-15 13-15 10	l/defl >999 >949 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 138 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No.2 *Except 1.5E 2x4 SP No.2 2x3 SPF No.2 *Except Left 2x4 SP No.2 - 3- Structural wood sheat 3-1-13 oc purlins, ext 2-0-0 oc purlins (2-7 Rigid ceiling directly at bracing.	* 1-5:2x4 SP 1650F ot* 7-10:2x4 SP No.: -2-0 thing directly applie cept end verticals, a 4 max.): 5-9. applied or 6-0-0 oc	2) 2 d or and 3) 4)	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 19-0-2, Interi and right exp exposed;C-C reactions shu DOL=1.60 Provide adec All plates are	7-16; Vult=115m, 1; TCDL=6.0psf; E t. II; Exp C; Enclo 2 and C-C Exteriol 1-8 to 11-11-4, E tor (1) 19-0-2 to 3 tor (1) 19-0-2 to 3 tor (2) 19-0-2 to 3 tor (1) 19-0-2 to	ph (3-sec 3CDL=6.0 sed; MW r(2E) -0-1 xterior(2F 1-0-12 zc al left and d forces 8 _=1.60 pla prevent v s otherwi	vond gust))psf; h=35ft; FRS (envelo 0-8 to 4-1-8, R) 11-11-4 to ne; cantileve I right & MWFRS fo ate grip water ponding se indicated.	pe) r left r g.					
WEBS REACTIONS	1 Row at midpt 7 (size) 2=0-5-8, 10 Max Horiz 2=199 (LC Max Uplift 2=-340 (LC Max Grav 2=1460 (LC	7-10 D=0-5-8 9) C 8), 10=-310 (LC 8) C 1), 10=1397 (LC 1	5) 6) 1) 7)	This truss ha chord live loa All bearings capacity of 5 Provide mec bearing plate	is been designed ad nonconcurrent are assumed to b 65 psi. hanical connectio a capable of withs	for a 10.(with any e SP No. n (by oth tanding 3) psf bottom other live loa 2 crushing ers) of truss t 10 lb uplift at	ids.					
FORCES	(lb) - Maximum Comp Tension 1-2=-5/0, 2-4=-3147/7 5-6=-2532/677, 6-7=- 9-10=-189/113	pression/Maximum 782, 4-5=-2917/737, 1954/520, 7-9=-102	 bearing plate capable of withstanding 310 lb uplift at joint 10 and 340 lb uplift at joint 2. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Carabination under subconstructure data and the pairs 										
BOT CHORD	2-15=-947/2861, 13-1 11-13=-712/2524, 10-	15=-745/2409, -11=-510/1735	5)	or the orienta bottom chore	ation of the purlin	along the	top and/or	5120				Canto	ADD
WEBS	4-15=-225/220, 5-15= 6-13=-131/146, 6-11= 7-11=-78/689, 7-10=-	=-95/451, 5-13=-3/3 =-750/266, 2058/533	^{42,} LC	DAD CASE(S)	Standard						Å	THE OF A	AISSOLA
NOTES										-	B	FO	
1) Unhalance	nd roof live loads have h	neen considered for									VI A		

of live loads have been considered for this design.

MUMBER

PE-2022042259

May 22,2024

ar

OFFSSIONAL EN

					Г	RELEASE FOR C	ONSTRUCTION
Job	Truss	Truss Type	Qty	Ply		AS NOTED FOR	PLAN REVIEW
P240762	A15	Half Hip	1	1 Job R	eference (optional)	LEE'S SUMMI	739524 r, MISSOURI
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,	Run: 6 ID:0jq	3.63 S Apr 26 2024 Print: 8 PLX5ch52b0c1qBFtX4uzZ	8.630 S Apr 26 2024 Mi ?qJ-RfC?PsB70Hq3NS	iTek Industries, Inc. Tue SgPqnL8w3uITXbGKV/r(May 2048:0321/	2024
-0-1 	0-8 4-10-9	<u>9-11-4 15-</u> 5-0-11 5-	<u>1-11</u> 2-7	20-5-6 5-3-11	<u>25-9-1</u> 5-3-11	31-2-0	
	4 ¹²	4x6=	3x4= 6 18	3x4= 3 ⊠ 7	3x4= ⊠ ⊠ 8	4x4= 919	3x4 ॥ 10
3-11-12 3-10-3 3-1 3-10-3 0- 0	1.5x4= 3x6= 17 4 3 16					A A	3-10-3
	¥	15			12		11 ⊥
	4x8=	3x8=	4x6= 3x	4=	4x4 =		4x4 =
	9-10-0		16-10-12	24-0-0		31-2-0	

Plate Offsets	s (X, Y):	[2:Edge,0-2-5],	[10:Edge,0-2-8]
---------------	-----------	-----------------	-----------------

,														
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.99 0.81 0.86	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.25 -0.55 0.13	(loc) 2-15 2-15 11	l/defl >999 >682 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 132 lb	GRIP 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP 1650F 1.5E * No.2 2x3 SPF No.2 Left 2x4 SP No.2 2 Structural wood sheat except end verticals, (3-0-11 max.): 5-10. Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-5-8, 1 Max Horiz 2=167 (LC Max Uplift 2=-342 (LI Max Grav 2=1460 (L (lb) - Maximum Com Tension 1-2=-5/0, 2-4=-3090/ 5-6=-2663/697, 6-7= 7-9=-2154/535, 9-10 2-15=-949/2803, 13- 12-13=-722/2768, 11 5-15=-46/512, 4-15= 6-13=-141/135 6-15	*Except* 14-11:2x4 S 2-6-2 athing directly applied , and 2-0-0 oc purlins applied or 6-6-11 oc 9-11 11=0-5-8 C 11) C 8), 11=-309 (LC 8) .C 1), 11=1397 (LC 1) pression/Maximum /830, 4-5=-2849/707, 3021/780, ==-88/82, 10-11=-159 -15=-817/3084, 1-12=-500/1774 =-657/185.	2) ;P d, 3) 4) 5) 6)) 7) 7) 8) /95 LC	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4- Interior (1) 17 right exposed for members Lumber DOL Provide aded This truss ha chord live loa Bearings are crushing cap capacity of 5 Provide mec bearing plate joint 11 and 3 This truss is International R802.10.2 ar Graphical pu or the orienta bottom chorc DAD CASE(S)	7-16; Vult=115mph 7-16; Vult=115mph 7, TCDL=6.0psf; BC t. II; Exp C; Encloss and C-C Exterior(2 1-8 to 9-11-4, Exter- 7-0-2 to 31-0-12 zoid 1; end vertical left a and forces & MWF =1.60 plate grip DC quate drainage to p s been designed for a nonconcurrent w assumed to be: Jo acity of 565 psi, Joid 65 psi. hanical connection 1 capable of withsta 342 lb uplift at joint designed in accord Residential Code so and referenced stand- rlin representation at tion of the purlin al Standard	n (3-sec CDL=6.0 ed; MW 2E) -0-1 rior(2R) ne; can and righ rRS for DL=1.60 revent v or a 10.0 rith any int 2 SE int 11 S (by oth nding 3 2. ance w sections dard AN does no ong the	ond gust) opsf; h=35ft; FRS (envelop 0-8 to 4-1-8, 9-11-4 to 17 tilever left and t exposed;C- vater ponding 0 psf bottom other live loa 2 1650F 1.5E P No.2 crush ers) of truss t 09 lb uplift at th the 2018 R502.11.1 a SI/TPI 1. ot depict the s top and/or	be) -0-2, d C owwn; J. ds. ing o nd				STE OF M	AISSO	
	7-13=-67/358, 7-12= 9-12=-117/858, 9-11	869/279, =-2111/536									B	S NATHA	NIEL E	

NOTES

1) Unbalanced roof live loads have been considered for

this design.

May 22,2024

								RELEASE FOR (CONSTRUCTION					
Job	Truss		Truss Type		Qty	Ply								
P240762	A16		Half Hip		1	1	Job Reference (optional		739525 IT, MISSOURI					
Premier Building Supply (Sp	mier Building Supply (Springhill, KS), Spring Hills, KS - 66083, ID:UvOnZt6ESPASemc0lzOmc6zZ?ql-RfC?PsB70Hq3NSgPqnL8w3ulTXbG													
-()-10-8 <u>3-10-9</u>	7-1	1-4	13-7-11	19-5	5-6	25-3-1	31-2-0						
C	-10-8 3-10-9	4-0)-11	5-6-7	5-9-		3-9-11	5-10-15						
		12	4×6-		3×1-	3,	×4 =	4×6-	3×4					
9 12		4	ი ე 5		6 19	-	7 8	9 20	10					
T ởŦ;		1.5x4 🕿												
	3x6 =	418			\square									
	17 3			A					5-3					
ຕ່ ຕໍ່ຕໍ່ 1	2 1/								<u>́</u>					
							¥							
0	Ŕ		16		15 14	13	12		×.					
	4x8=		3x8=	N	IT18HS 3x10 = 5	x5 WB =	4x4 =		4x4 =					
					3x4=									
	L	7-10-0		15-7-5		23-	3-7	31-2-0						
	I	7-10-0	I	7-9-5	I.	7-8	3-1 '	7-10-9	I					

Plate Offsets (X, Y):	[2:Edge,0-2-5], [10:Edge,0-2-8]
-----------------------	---------------------------------

		-												
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.99	DEFL Vert(LL)	in -0.30	(loc) 14-16	l/defl >999	L/d 240	PLATES MT20	GRIP 197/144	
TCDL	10.0	Lumber DOL	1.15		BC	0.70	Vert(CT)	-0.56	14-16	>661	180	MT18HS	244/190	
BCLL	0.0	Rep Stress Incr	YES		WB	0.57	Horz(CT)	0.15	11	n/a	n/a			
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 134 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD	2x4 SP No.2 2x4 SP 1650F 1.5E 2x3 SPF No.2 *Exce 2x4 SP No.2 Left 2x4 SP No.2 1 Structural wood shea	pt* 9-11:2x4 SP No.2 1-11-13 athing directly applied	2)	Wind: ASCE Vasd=91mph Ke=1.00; Ca exterior zone Interior (1) 4- Interior (1) 14- right exposed for members	7-16; Vult=115mp i; TCDL=6.0psf; E t. II; Exp C; Enclos and C-C Exterior 1-8 to 7-11-4, Ext 5-0-2 to 31-0-12 z d; end vertical left and forces & MW =1 60 plate grip C	oh (3-sec SCDL=6.0 sed; MW (2E) -0-1 erior(2R) one; can and righ FRS for	ond gust) Opsf; h=35ft; FRS (envelop 0-8 to 4-1-8, 7-11-4 to 15 tilever left and t exposed;C- reactions sho	pe) 5-0-2, d -C own;						
BOT CHORD	except end verticals, (2-6-4 max.): 5-10. Rigid ceiling directly	, and 2-0-0 oc purlins applied or 7-5-0 oc	3) 4) 5)	Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) All plates are MT20 plates unless otherwise indicated. 5) This trues has been described for a 10 or of better										
WEBS REACTIONS	bracing. 1 Row at midpt 1 Row at midpt 2=0-5-8, 1 Max Horiz 2=135 (LC Max Uplift 2=-343 (LI Max Grav 2=1460 (L	6-16, 9-11 I1=0-5-8 C 9) C 8), 11=-307 (LC 8) _C 1), 11=1397 (LC 1	6) 7)	chord live loa All bearings capacity of 5 Provide mec bearing plate ioint 11 and 2	ad nonconcurrent are assumed to be 65 psi. hanical connection capable of withst 343 lb unlift at join	with any e SP 165 n (by othe anding 3	other live loa 0F 1.5E crus ers) of truss t 07 lb uplift at	ds. hing o						
FORCES	(lb) - Maximum Com	pression/Maximum	8)	This truss is	designed in accor	dance wi	th the 2018							
TOP CHORD	1 ension 1-2=-5/0, 2-4=-3031/ 5-6=-2841/739, 6-7= 7-9=-2828/651, 9-10	/808, 4-5=-3023/753, =-3747/917,)=-83/67, 10-11=-176	9) /107	International R802.10.2 ar Graphical pu or the orienta	Residential Code nd referenced star rlin representation ation of the purlin a	sections ndard AN n does no along the	R502.11.1 a SI/TPI 1. It depict the s top and/or	ind size						
BOT CHORD	2-16=-873/2730, 14-	-16=-933/3747, 1-12=-615/2345		bottom chord	l. Otomologia	5						ann	an an	
WEBS	5-16=-57/563, 6-14= 7-14=-33/280, 7-12= 9-11=-2582/633, 4-1	=0/153, 6-16=-1127/2 =-903/300, 9-12=-96/8 6=0/352	91, 57,	IAD CASE(S)	Standard						ł.	STATE OF N NATHA	AISSOLAN NIEL	

NOTES

 Unbalanced roof live loads have been considered for this design.

FOX

										Г	RELEA	SE FOR CO	NSTRUCTI	ON
Job	Truss		Truss Type			Qty	Ply				AS NO	TED FOR P	LAN REVIE	W
P240762	A17		Half Hip Gi	rder		1	2	Job R	eference (optional	LEE	16573 'S SUMMIT ,	MISSOURI	
Premier Building Supply (Spring	hill, KS), Spring	Hills, KS - 66083,			Run: 8.63 ID:4cE4V	3 S Apr 26 2024 Pr /gH09ixTJvgiZve2B	int: 8.630 S A 3zZ?q4-RfC?I	or 26 2024 Mi PsB70Hq3NS	iTek Industri SgPqnL8w3u	ies, Inc. Tue I IITXbGKV/rC	May 2046: Doi7J42JC	21/	202	.4
-0-1	0-8 5	5-11-4	1	2-1-7		18-5-6		21-11-4	24	-9-5	31-	2-0		
0-10)-8 5	D-11-4				6-3-15 NAILED NAILE		3-5-14					=D	
		.12 5	×10 -	NALLED	314-		1.5%	1	376-	3v8-			4x8=	
				17	4 1	8 29 20	215	22		3,0= ⊠ 23 7 ⊠	24 🖂 2	5 🖂 26	4,00=	—
$\frac{-7-12}{2-6-5}$	2	6 13												2-6-5
		1			7 4				0			1 0	9	
0	×	1	4 27	28	13	29 12 30	3111	32	33	34 10	35 3	6 37	×	
	4x6=	3	x4 u		3x8=	MT18HS 5x8	= 4x12	2=		4x8:	=		3x6 II	
		TH	JA26 NAILED	NAILED	NAILED	NAILED NAILE	D NAILED	NAILED	NAILED	NAILED N	NAILED NAI	ED NAILE	ED	
	5	5-10-0	1:	2-1-7		18-5-6		2	24-9-5		31-	2-0		
	' 5	5-10-0	' 6	-3-7	I	6-3-15	I	6	6-3-15	I	6-4	-11	I	

Plate Offsets	(X, Y): [2:Edge,0-1-10]], [3:0-5-0,0-2-0], [7: -	0-2-8,0-1-8	3], [9:Edge,0-2	-8], [10:0-2-8,0-2-0)], [13:0-	2-8,0-1-8]							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.89 0.50 0.84	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.39 -0.71 0.06	(loc) 11-13 11-13 9	l/defl >946 >524 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 307 lb	GRIP 197/144 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 *Excep 2.0E, 6-8:2x4 SP 16: 2x6 SP 2400F 2.0E 2x3 SPF No.2 *Exce Structural wood sheat 4-4-5 oc purlins, ext 2-0-0 oc purlins, ext 2-ind ceiling directly bracing.	t* 3-6:2x4 SP 2400F 50F 1.5E ppt* 8-10:2x4 SP No. athing directly applie cept end verticals, ar -15 max.): 3-8. applied or 10-0-0 oc	2) 2 3) ed or 4) c	All loads are except if note CASE(S) see provided to c unless other Unbalanced this design. Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone	considered equall ed as front (F) or b ttion. Ply to ply cor listribute only loads wise indicated. roof live loads hav 7-16; Vult=115mp n; TCDL=6.0psf; B t. II; Exp C; Enclos e and C-C Exterior	y applied ack (B) f nnection s noted a e been o h (3-sec CDL=6.0 ced; MW (2E) -0-1	d to all plies, ace in the LC s have been as (F) or (B), considered for ond gust) 0psf; h=35ft; FRS (envelop 0-8 to 4-1-8,	DAD r be)	1) De Pl Ui Ce	ead + Ro ate Incre hiform Lo Vert: 1-3 oncentra Vert: 3= (B), 4=- (B), 20= (B), 20= (B), 24= (B), 28= 32=-39	oof Live ease=1 bads (II 3=-70, ted Los -131 (I -131 (I -131 (I -131 (I -39 (B (B), 33	e (balanced): Lum .15 5/ft) 3-8=-70, 2-9=-20 ads (lb) 3), 6=-131 (B), 14 b), 21=-131 (B), 2 3), 25=-131 (B), 2 3), 25=-131 (B), 30 39 (B), 34=-39	L=-420 (B), 13=- 131 (B), 19=- -22=-131 (B), 23= -26=-131 (B), 27= -39 (B), 31=-39 (B), 35=-39 (B),	.15, 39 131 131 39 (B),
REACTIONS	(size) 2=0-5-8, 9 Max Horiz 2=102 (LC Max Uplift 2=-772 (L' Max Grav 2=2714 (L)	Interior (1) 4-1-8 to 5-11-4, Exterior(2R) 5-11-4 to 13-0-2, 36=-39 (B), 37=-39 (B) Interior (1) 13-0-2 to 31-0-12 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 Dlate grip DOL=1.60											
FORCES	(lb) - Maximum Com Tension	pression/Maximum	5)	Provide adeo	quate drainage to p	orevent v	vater ponding]. d						
TOP CHORD	1-2=0/1, 2-3=-6730/ 4-5=-9582/2700, 5-7 7-8=-6569/1847, 8-9	1916, 3-4=-9594/276 /=-9582/2700, 9=-2577/815	60, 7) 80, 81	This truss ha chord live loa	ad nonconcurrent v are assumed to be	or a 10.0 with any	other live load	ds. hina						
BOT CHORD	2-14=-1836/6209, 13 11-13=-2724/9591, 1 9-10=-83/123	3-14=-1834/6180, 10-11=-1857/6569,	9)	capacity of 8 Provide mec	05 psi. hanical connection capable of withst	i (by oth	ers) of truss to 51 lb uplift at	0						
WEBS	3-14=-36/652, 3-13= 8-10=-1875/6814, 4- 4-11=-9/62, 5-11=-8: 7-10=-1955/787	1014/3714, -13=-1014/503, 20/435, 7-11=-901/3	10 182,	joint 9 and 7) This truss is International R802.10.2 a	72 lb uplift at joint 2 designed in accord Residential Code nd referenced stan	2. dance w sections dard AN	ith the 2018 R502.11.1 a ISI/TPI 1.	nd			A	TATE OF M	AISSOLU	N
VOTES 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x3 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.			11 0 12 13	 1) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 2) Use Simpson Strong-Tie THJA26 (THJA26 on 2 ply, Right Hand Hip) or equivalent at 5-11-10 from the left end to connect truss(es) to back face of bottom chord. 3) Fill all nail holes where hanger is in contact with lumber. 										

Web connected as follows: 2x3 - 1 row at 0-9-0 oc, 2x4 -1 row at 0-9-0 oc.

es whe 14) "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails

per NDS guidelines. LOAD CASE(S) Standard OPH-SSIONAL EN May 22,2024

													RELEASE	FOR CONSTRUCTION
Job		Truss		Truss Ty	pe		Qty	Ply					AS NOTE DEVEL	D FOR PLAN REVIEW
P240762		B1		Monopi	tch Supporte	ed Gable	1	1	Jo	b Refere	nce (op	tional	LEE'S	SUMMIT, MISSOURI
Premier Building	g Supply (Spring	hill, KS), Sj	pring Hills, KS - 66083,			Run: 8.63 S Apr 26	2024 P	rint: 8.630 S	Apr 26 202	24 MiTek Ir	dustries,	Inc. T	ie May 21 45:04	21/2024
						ID:UD1 V05X5I6PRy	CARWU	502922 (qvv-	RIC (PSB/	опцзіхбуг	rqnL8w3i		KWICD0HJ420C?F	
			-0-10-8			21-6- 21-6-	-0						22-4-8	
			0-10-0			21.0	0						0-10-0 4x6 u	
													16	
	8-1-8		3x4 = 3 4 1 3 x4 u 28	5	6 7 6 2625 2625	41 ² 3x4 = 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	10	11	12		3	14	15 10 15 10 15 10 17 4x6 II	7-10-0
					3x4 =									
Scale = 1:54.1						21-6-	-0							
Plate Offsets ((X, Y): [2:0-2-	5,0-0-5],	[15:0-3-3,Edge], [17	:Edge,0-2-	8]									
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-S	0.88 0.27 0.21	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 17	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 107 lb	GRIP 244/190 FT = 20%
BCLL 0.0 Rep Stress incr YES WB 0.21 Horz(C1) 0.00 17 n/a n/a N/a BCDL 10.0 Code IRC2013/TPI2014 Marix-S Marix-S Weight: 107 Ib FT = 20% LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2:28=-148/194, 22:32=-140/91, 10:22=-140							e with the 2018 ions R502.11.1 and J ANSI/TPI 1.							
FORCES TOP CHORD	27=181 (LC 1), 28=180 (LC 1) (Ib) - Maximum Compression/Maximum Tension 2D 1-2=-5/0, 2-4=-540/299, 4-5=-458/265, 5-6=-424/255, 6-8=-387/243, 8-9=-351/231, 9-10=-315/219, 10-11=-279/207, 11-12=-242/196, 12-13=-206/184, 13-14=-171/174, 14-15=-121/129, 15-16=-22/0, 15-17=-129/184 joi				All bearings a capacity of 5 Provide mec bearing plate 17, 101 lb up uplift at joint 23, 49 lb upli uplift at joint joint 18.	Igs are assumed to be SP No.2 crushing of 565 psi. nechanical connection (by others) of truss to balte capable of withstanding 79 lb uplift at joint b uplift at joint 28, 45 lb uplift at joint 27, 50 lb bint 25, 49 lb uplift at joint 21, 52 lb bint 20, 44 lb uplift at joint 19 and 41 lb uplift at					BER 042259 Star			

May 22,2024

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x3 SPF No.2
SLIDER	Left 2x4 SP No.2 3-9-6
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	4-1-5 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 7-7-1 oc
	bracing.
WEBS	1 Row at midpt 4-10, 6-9
REACTIONS	(size) 2=0-3-8, 9=0-3-8
	Max Horiz 2=370 (LC 9)
	Max Uplift 2=-219 (LC 8), 9=-269 (LC 12)
	Max Grav 2=1024 (LC 1), 9=1032 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-5/0, 2-4=-1938/407, 4-6=-1100/264,
	6-7=-194/138, 7-8=-22/0, 7-9=-275/221
BOT CHORD	2-12=-584/1746, 10-12=-584/1746,

9-10=-372/977 WEBS 4-12=0/289, 4-10=-826/258, 6-10=-23/516, 6-9=-1192/330 NOTES

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 22-4-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

All bearings are assumed to be SP No.2 crushing 3) capacity of 565 psi.

bearing plate capable of withstanding 269 lb uplift at joint 9 and 219 lb uplift at joint 2. 5)

This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	1.00 0.61 0.75	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.19 0.36	(loc) 10-12 2-12 14	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 104 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x6 SPF No.2 Left 2x4 SP No.2 3 Structural wood shee 4-1-3 oc purlins, exc Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=306 (LC Max Uplift 2=-197 (LI Max Grav 2=1024 (L	3-9-9 athing directly applie cept end verticals. applied or 7-11-9 oc 4-10, 6-9 (4=0-4-12 C 9) C 8), 14=-291 (LC 12 C 1), 14=1024 (LC 12	3) 4) 5) d or 5 6) LC 2) 1)	Bearings are capacity of 5 of 425 psi. Bearing at jo using ANSI/T designer sho Provide mect bearing plate joint 2 and 25 This truss is International R802.10.2 ar DAD CASE(S)	assumed to be: Jo 65 psi, Joint 14 SP int(s) 14 considers PI 1 angle to grain uld verify capacity nanical connection capable of withsta 11 b uplift at joint 1 designed in accord Residential Code s nd referenced stand Standard	int 2 SF F No.2 parallel formula of beari (by oth nding 1 4. ance w sections dard AN	² No.2 crush crushing cap to grain valu a. Building ng surface. ers) of truss 97 lb uplift a ith the 2018 R502.11.1 a ISI/TPI 1.	ing vacity le to t t					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-5/0, 2-4=-1942/ 6-7=-161/14, 7-8=-30 7-13=-153/760	/292, 4-6=-1085/142, 0/0, 9-13=-153/760,	,										
BOT CHORD	2-12=-535/1749, 10- 9-10=-317/961	12=-535/1749,											
WEBS	4-12=0/296, 4-10=-8 6-9=-1136/305, 7-14	47/277, 6-10=-21/50 =-1030/316	00,									OF N	AISS
NOTES 1) Wind: ASG Vasd=91n Ke=1.00; exterior zc Interior (1) exposed; members	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCI Cat. II; Exp C; Enclose one and C-C Exterior(2) 4-1-8 to 22-4-8 zone; end vertical left and rig and forces & MWFRS	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-10-8 to 4-1-8, cantilever left and rig ght exposed;C-C for for reactions shown;	e) ght									NATHA FOI	NIEL P

Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

E

May 22,2024

SIONAL

C

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply		AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
P240762	C1	Monopitch Supported Gable	1	1	Job Reference (optional	165739530 LEE'S SUMMIT, MISSOURI
Premier Building Supply	r (Springhill, KS), Spring Hills, KS - 6608	3, Run: 8.63 S Apr 2 ID:FBLOgo?bZe2	6 2024 Print: 3NQHjakflCz	8.630 S Apr 2 zZ?qR-RfC?Ps	6 2024 MiTek Industries, Inc. T B70Hq3NSgPqnL8w3uITXbGK	IE May 2048:1021/2024
		10-4	-12			
					3x6 II	
	6-1-9 	3x4 = 2 13	2	5		

1	2-0-0	10-4-12	I
ſ	2-0-0	8-4-12	I

10

9

4x6 =

11

12

3x4 =

Scale = 1:43.7												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.53	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.18	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.17	Horiz(TL)	0.00	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 59 lb	FT = 20%

LUMBER		1)	Wind: ASCE 7-16; Vult=115mph (3-second gust)	
TOP CHORD	2x4 SP No.2		Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft;	
BOT CHORD	2x4 SP No.2		Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope)	
WEBS	2x3 SPF No.2 *Except* 13-1:2x4 SP No.2		exterior zone and C-C Corner(3E) 8-1-12 to 13-1-12,	
OTHERS	2x3 SPF No.2		Exterior(2N) 13-1-12 to 18-3-8 zone; cantilever left and	
BRACING			right exposed ; end vertical left and right exposed;C-C	
TOP CHORD	Structural wood sheathing directly applied or		for members and forces & MWFRS for reactions shown;	
	6-0-0 oc purlins, except end verticals.		Lumber DOL=1.60 plate grip DOL=1.60	
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc	2)	Truss designed for wind loads in the plane of the truss	
	bracing, Except:		only. For studs exposed to wind (normal to the face),	
	8-3-10 oc bracing: 12-13.		see Standard Industry Gable End Details as applicable,	
REACTIONS	(size) 8=10-4-12, 9=10-4-12, 10=10-4-12,		or consult qualified building designer as per ANSI/TPI 1.	
	11=10-4-12, 12=10-4-12,	3)	All plates are 1.5x4 M I 20 unless otherwise indicated.	
	13=10-4-12	4)	Gable requires continuous bottom chord bearing.	
	Max Horiz 13=260 (LC 9)	5)	I russ to be fully sheathed from one face or securely	
	Max Uplift 8=-41 (LC 9), 9=-62 (LC 8), 10=-45	2	braced against lateral movement (i.e. diagonal web).	
	(LC 12), 11=-51 (LC 8), 12=-251	6)	Gable studs spaced at 2-0-0 oc.	
	(LC 9)	7)	This truss has been designed for a 10.0 psi bottom	
	Max Grav 8=96 (LC 1), 9=200 (LC 1), 10=176	٥١	All begringe are accurred to be SD No 2 gruphing	
	(LC 1), 11=180 (LC 1), 12=188 (LC	0)	All bealings are assumed to be SP No.2 crushing	
	1), 13=275 (LC 9)	0)	Brovide mechanical connection (by others) of truce to	
FORCES	(lb) - Maximum Compression/Maximum	9)	bearing plate capable of withstanding 41 lb unlift at joint	
	Tension		8 251 lb unlift at joint 12 51 lb unlift at joint 11 45 lb	
TOP CHORD	1-2=-355/203, 2-3=-298/188, 3-4=-238/170,		uplift at joint 10 and 62 lb uplift at joint 9	
	4-5=-182/157, 5-6=-113/127, 6-7=-88/118,	10) This truss is designed in accordance with the 2018	
	7-8=-76/93, 1-13=-597/338		International Residential Code sections R502.11.1 and	
BOT CHORD	12-13=-507/367, 11-12=-120/159,		R802.10.2 and referenced standard ANSI/TPI 1.	
	10-11=-120/159, 9-10=-120/159,	ιc	AD CASE(S) Standard	
	8-9=-120/159			
WEBS	2-12=-145/172, 3-11=-140/166,			
	4-10=-138/169, 5-9=-153/194, 6-8=-148/166,			
	1-12=-395/688			
NOTES				

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

May 22,2024

						RELEASE FOR CONSTRUCTION
lob	Trues		Otv	DIV		AS NOTED FOR PLAN REVIEW
300	11035	Truss Type	Quy	i iy		DEVELOPMENT SERVICES
P240762	C2	Jack-Closed	10	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
		•				00/01/0001

5-3-3

5-3-3

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. The May 2048:0521/2024 ID:JNvmt80DKyAbgX_THHFulQzZ?qQ-RfC?PsB70Hq3NSgPqnL8w3ulTXbG WrCDord 2004:004

10-4-12 5-1-9

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.45	Vert(LL)	0.02	4-5	>999	240	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.27	Vert(CT)	-0.04	4-5	>999	180			
BCLL	0.0	Rep Stress Incr	YES	WB	0.45	Horz(CT)	-0.01	4	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 52 lb	FT = 20%	
LUMBER			LOAD CASE(S)	Standard					-				

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x3 SPF No.2 *Except* 6-1:2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 8-7-5 oc
	bracing.
REACTIONS	(size) 4= Mechanical, 6=0-3-8
	Max Horiz 6=260 (LC 9)
	Max Uplift 4=-120 (LC 12), 6=-83 (LC 8)
	Max Grav 4=457 (LC 1), 6=457 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-408/196, 2-3=-143/115, 3-4=-138/157,
	1-6=-411/270
BOT CHORD	5-6=-463/332, 4-5=-397/405
WEBS	1-5=-138/343, 2-4=-435/403, 2-5=-32/141

NOTES

Scale = 1:48.6

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 8-1-12 to 13-3-3, Interior (1) 13-3-3 to 18-3-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads. 3) Bearings are assumed to be: Joint 6 SP No.2 crushing capacity of 565 psi.
- Refer to girder(s) for truss to truss connections. 4)
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 120 lb uplift at joint 4 and 83 lb uplift at joint 6.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

May 22,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Joh	Truss	Truss Type	Otv	Plv		AS NOTED FOR PLAN REVIEW
000	11400		Guy	,		DEVELOPMENT SERVICES
P240762	CG1	Diagonal Hip Girder	3	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. The May 2048:0521/20:24

Scale = 1:37

Plate Offsets (X, Y): [2:0-4-6,Edge]

Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.94	DEFL Vert(LL)	in -0.22	(loc) 2-5	l/defl >454	L/d 240	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.53	Vert(CT)	-0.43	2-5	>227	180		
BCLL	0.0	Rep Stress Incr	NO		WB	0.00	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/	TPI2014	Matrix-P				-			Weight: 35 lb	FT = 20%
			7)	"NAILED" ind	dicates Girder: 3-1	0d (0.14	8" x 3") toe-	nails					
BOT CHORD	2x4 SF 2400F 2.0E		8)	In the LOAD	CASE(S) section	loads a	oplied to the	face					
WEBS	2x3 SPE No 2		0)	of the truss a	are noted as front ((F) or ba	ck (B).						
SLIDER	Left 2x4 SP No.2	4-1-15	LOA	D CASE(S)	Standard	. ,	()						
BRACING			1)	Dead + Roo	of Live (balanced):	Lumber	Increase=1	.15,					
TOP CHORD	Structural wood she	athing directly applie	ed or	Plate Increa	ase=1.15								
	6-0-0 oc purlins, ex	cept end verticals.		Uniform Loa	ads (lb/ft)								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	C	Vert: 1-4	=-70, 2-5=-20								
	bracing.			Concentrat	ed Loads (lb)								
REACTIONS	(size) 2=0-7-6,	5= Mechanical		Vert: 7=-	53 (F=-26, B=-26)	, 10=-19	(F=-10, B=-	10)					
	Max Horiz 2=103 (LO	C 9)											
	Max Uplift 2=-149 (L	.C 8), 5=-115 (LC 12	2)										
	Max Grav 2=484 (L0	C 1), 5=410 (LC 1)											
FORCES	(lb) - Maximum Com	pression/Maximum											
	1 2 6/0 2 4 125/	2 1 5- 215/206											
BOT CHORD	2-547/51	52, 4-5515/500											
NOTES	2 0= 47/01												
1) Wind: AS	CE 7-16: \/ult=115mph	(3-second quet)											
Vasd=91r	mph: TCDI =6 0psf: BC	DI = 6 Opsf h = 35 ft											
Ke=1.00;	Cat. II; Exp C; Enclose	ed; MWFRS (envelor	be)										
exterior z	one and C-C Corner (3) -1-2-14 to 5-10-0,	,										ATT.
Exterior(2	R) 5-10-0 to 8-2-0 zon	e; cantilever left and										OFI	MIG
right expo	osed ; end vertical left a	and right exposed;C-	С								6	Freder	ISS W
for memb	ers and forces & MWF	RS for reactions sho	own;								6	AT	NSY
2) This trues	DL=1.60 plate grip DC	r = 1.60									B	S/ NATHA	NIEL YZY
chord live	load nonconcurrent w	i a 10.0 psi bollom	de								R	FO.	X V
3) Bearings	are assumed to be . In	int 2 SP 2400F 2 0F	uo.								ax	1.1	A THE Y
crushina	capacity of 805 psi.												11 toh
4) Refer to g	pirder(s) for truss to trus	ss connections.									14	a/Unan	NON JUDA
		(h) (athere) of trues t	~								V		

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 115 lb uplift at joint 5 and 149 lb uplift at joint 2.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

May 22,2024

PE-2022042259

SIONAL EN

						RELEASE FOR CONSTRUCTION
lob	Truce		Otv	Plv		AS NOTED FOR PLAN REVIEW
305	11035	Thuss Type	Quy	I IY		DEVELOPMENT SERVICES
P240762	CG2	Diagonal Hip Girder	2	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
			•	•		

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. The May 2048:0521/20:24

5-5-5

Scale = 1:35.6

Plate Offsets (X, Y): [5:0-3-0,0-2-0]

		-											
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO	(TD)2044	CSI TC BC WB	0.62 0.37 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.09 0.00	(loc) 4-5 4-5 4	l/defl >999 >714 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC2018	/1PI2014	Matrix-P							Weight: 25 lb	FI = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce Structural wood she	pt* 5-2:2x4 SP No.2 athing directly applic	6) 7) ed or ⁸⁾	This truss is International R802.10.2 a "NAILED" in- per NDS gui In the LOAD of the truss a	designed in accor Residential Code nd referenced star dicates Girder: 3-1 delines. CASE(S) section are noted as front	dance w sections ndard AN 0d (0.14 , loads al (F) or ba	ith the 2018 R502.11.1 a ISI/TPI 1. 8" x 3") toe- oplied to the ck (B).	and nails face					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	b LO	AD CASE(S)	Standard								
REACTIONS	bracing. (size) 4= Mecha Max Horiz 5=124 (LC Max Uplift 4=-76 (LC Max Grav 4=221 (LC	unical, 5=0-7-6 C 9) C 12), 5=-130 (LC 8) C 1), 5=343 (LC 1)	1)	Plate Increa Plate Increa Uniform Lo Vert: 1-2	of Live (balanced) ase=1.15 ads (lb/ft) =-70, 2-3=-70, 4-5	5=-20	Increase=1.	15,					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	2-5=-291/370, 1-2=0 3-4=-169/226)/32, 2-3=-175/85,											
BOT CHORD	4-5=-286/134												
WEBS	2-4=-95/253												
1) Wind: AS Vasd=91r Ke=1.00; exterior z and right	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner (3 exposed ; end vertical I	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop) zone; cantilever lef left and right	be) t									TE OF M	MISSO

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom 2)

- chord live load nonconcurrent with any other live loads.
- 3) Bearings are assumed to be: Joint 5 SP No.2 crushing capacity of 565 psi.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 130 lb uplift at joint 5 and 76 lb uplift at joint 4.

May 22,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

										RELE/	ASE FOR CONSTRUCTION
Job	Truss		Truss Type			Qty	Ply			AS NO	OTED FOR PLAN REVIEW
P240762	D1		Hip Girder			1	1	Job Refere	ence (optional	LEI	E'S SUMMIT, MISSOURI
Premier Building Supply (Spring	nill, KS), Sp	pring Hills, KS - 66083	3	Run: 8. ID:4cE	63 S Apr 26 20 4VgH09ixTJvgiZ	24 Print: 8.63 2ve2B3zZ?q4	80 S Apr 26 -RfC?PsB7(2024 MiTek li 0Hq3NSgPqn	ndustries, Inc. Tu L8w3uITXbGKV	rCDoi7J	/21/2024
			-0-10-8 0-10-8	<u>3-11-4</u> 3-11-4		<u>8-0-1</u> 4-1-	2 8		<u>12-0-0</u> 3-11-4	12 0-	-10-8
				12 6 Г	NAILED	NAILE	D	NAILED			
				3x4 ≠	6x6 =			4x4 =			
2-9-10	2-7-15 2-9-10 2-7-15 0-1-11	0-	2	3	4			5	3x 6	4:	7 8
			Ř		10	12		9		Ř	
			3x8 II		Зх4 н			3x4 =		3x8 II	
					Special	NAILE	D	Special			
				3-10-0		8-2-	0		12-0-0		
Scale = 1:35.3				3-10-0	I	4-4-	0		3-10-0	I	
Plate Offsets (X, Y): [2:0-4-	9,0-1-13]	, [7:0-4-9,0-1-13]									
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15 1.15	CSI TC BC	0.5	58 Vert(Ll	L) 0.(in (loc) 03 9-10	l/defl L/d >999 240	PLATES MT20	GRIP 197/144

TCDL	10.0	Lumber DOL	1.15		BC	0.34	Vert(CT)	-0.05	9-10	>999	180			
BCLL	0.0	Rep Stress Incr	NO		WB	0.09	Horz(CT)	0.01	7	n/a	n/a			
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 57 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASK Vasd=91m Ke=1.00; exterior zc and right d exposed;(2x4 SP No.2 2x6 SPF No.2 2x3 SPF No.2 Left 2x4 SP No.2 2 2-1-4 Structural wood she 4-7-14 oc purlins, ex 2-0-0 oc purlins (4-8 Rigid ceiling directly bracing. (size) 2=0-5-8, 7 Max Horiz 2=-44 (LC Max Uplift 2=-249 (L Max Grav 2=897 (LC (lb) - Maximum Com Tension 1-2=0/0, 2-4=-1330// 5-7=-1328/506, 7-8= 2-10=-353/1092, 9-1 7-9=-350/1090 4-10=-24/293, 4-9=-1 ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I 2-C for members and for	2-1-4, Right 2x4 SP I athing directly applie coept I-9 max.): 4-5. applied or 10-0-0 oc 7=0-5-8 2 34) .C 12), 7=-249 (LC 1: C 1), 7=897 (LC 1) npression/Maximum 509, 4-5=-1079/485, =0/0 10=-352/1080, 65/62, 5-9=-26/293 been considered for I(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever I left and right orces & MWFRS for	5, 6, 7, d or 8, ; 9, 1, 3) 1, 3) 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	 All bearings a capacity of 4 Provide mecl bearing plate joint 2 and 22 This truss is a capacity of 4. Provide mecl bearing plate joint 2 and 24 This truss is a capacity of the capacity of t	are assumed to 25 psi. hanical connect capable of with 49 lb uplift at joi designed in acc Residential Co nd referenced s rlin representat ation of the purli dicates Girder: 3 delines. other connectii cient to suppol 82 lb up at 3-1 0 on bottom chi tion device(s) is CASE(S) sectii re noted as fron Standard of Live (balance ise=1.15 ads (lb/ft) =-70, 4-5=-70, f ed Loads (lb) 51 (B), 5=-51 (E 3), 12=-18 (B)	be SPF Notion (by oth histanding 2 nt 7. cordance w de sections tandard AN ion does not n along the 3-10d (0.14 on device(s t concentra 1-4, and 21 ord. The di t the respon- n, loads a nt (F) or ba d): Lumber 5-8=-70, 2- 3), 10=-210	b.2 crushing ers) of truss t 49 lb uplift at 5 R502.11.1 a SI/TPI 1. bt depict the s e top and/or 8" x 3") toe-r ated load(s) 2 0 lb down an esign/selection hated load(s) 2 0 lb down an esign/selection hated to the f ck (B). 7=-20 1 (B), 9=-210 f	nd size nails 10 d 82 on of iers. siace 15, (B),		•		STATE OF J STATE OF J NATHA	MISSOURI NIEL X	

DOL=1.60 Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) 4)́

reactions shown; Lumber DOL=1.60 plate grip

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Ś May 22,2024

PE-202200-PE-2022042259

CONTRACT

										- [RELEASE	FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply					AS NOT	ED FOR PLAN REVIEW
P240762	D2		Common		2	1					DEVEL	I65739535
Premier Building	Supply (Springhill, KS), S	pring Hills, KS - 66083,	Common	Run: 8.63 S Apr 26 2 ID:jNvmt80DKyAbgX	2024 Pr _THHF	int: 8.630 S A uIQzZ?qQ-Rf	Jol Apr 26 2024 C?PsB704	<u>b Refere</u> 4 MiTek I Hq3NSgP	ence (op ndustries, PqnL8w3u	tional , Inc. Tu ITXbG	le May 21145:05 (WrCDon 4232 Pf	21/2024
		-0-10	-8	6-0-0	I		1	2-0-0			12-10-8	
		0-10-	8	6-0-0			6	5-0-0			0-10-8	
					4x4	4 =						
	Т			6 T 10	3		11					
	ę											
	3-10		2 9						\sim	12	4	
]				X	5	
		<u>ó</u> ⊥	Ř		7							
			8x8 ≠		3x8	3 =				8	3x8 👟	
Casta 4:20.0				6-0-0 6-0-0			1	<u>2-0-0</u> 5-0-0				
Plate Offsets (X, Y): [6:0-2-12,0-2-4], [8:0-2-12,0-2-4]										
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC 00 BC 00 WB 00).48).31	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.05 0.01	(loc) 6-7 6-7	l/defl >999 >999	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S			0.01		.,, a		Weight: 54 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce Structural wood she	pt* 8-2,6-4:2x4 SP No	6) This truss is International R802.10.2 a D.2 LOAD CASE(S)	designed in accordan Residential Code sec nd referenced standar Standard	ce with tions f d ANS	n the 2018 R502.11.1 a SI/TPI 1.	and					

7-8=-304/356, 6-7=-254/356

Max Horiz 8=72 (LC 11)

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

WEBS

REACTIONS (size)

bracing.

Tension

6-0-0 oc purlins, except end verticals.

6=0-5-8, 8=0-5-8

Rigid ceiling directly applied or 10-0-0 oc

Max Uplift 6=-105 (LC 13), 8=-105 (LC 12) Max Grav 6=598 (LC 1), 8=598 (LC 1)

(lb) - Maximum Compression/Maximum

1-2=0/32, 2-3=-632/261, 3-4=-632/262,

4-5=0/32, 2-8=-546/310, 4-6=-546/310

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 6-0-0, Exterior(2R) 6-0-0 to 11-0-0, Interior (1) 11-0-0 to 12-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.

All bearings are assumed to be SP No.2 crushing 4) capacity of 565 psi.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 105 lb uplift at joint 8 and 105 lb uplift at joint 6.

OF MISSO TE NATHANIEL FOX MOMBER PE-2022042259 ARSSIONAL EN May 22,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

									RELEASE FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply			AS NOTED FOR PLAN REVIEW
P240762	D3		Common Girder		1	2	Job Refere	ence (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply	(Springhill, KS), S	pring Hills, KS - 66083	• ,	Run: 8.63 S ID:J3l3qxA	S Apr 26 2024 Pr ?1FxbMh3A5DVA	int: 8.630 S A sNzZ?qC-Rf0	pr 26 2024 MiTek I C?PsB70Hq3NSgF	Industries, Inc. Tu PqnL8w3uITXbG	e May 018 1/2024
				6-0-0 6-0-0			12-0-0 6-0-0		
					4x6 2	II			
		T		12 6 Г	6	7			
		3-10-0	5					8	
		0-10-0							3
			⊠ 9 7x8=	10	11 4 3x10	12) II	13	14 7x8	-
			LUS28	LUS28	LUS28	LUS28	LUS28	LUS28	-
				<u>6-0-0</u> 6-0-0			<u>12-0-0</u> 6-0-0		
Scale = 1:38.7 Plate Offsets (X, Y):	[1:Edge,0-4-4],	[3:Edge,0-4-4], [4:0	0-6-4,0-1-8]						
Loading	(psf)	Spacing	2-0-0	CSI	0.80	DEFL	in (loc)	l/defl L/d	PLATES GRIP

BCDL 10.0 Code LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x8 SP 2400F 2.0E 2x3 SPF No.2 WEBS Left: 2x4 SP No 2 WEDGE Right: 2x4 SP No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 4-6-12 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 1=0-5-8, 3=0-5-8 Max Horiz 1=64 (LC 12) Max Uplift 1=-886 (LC 12), 3=-1026 (LC 13) Max Grav 1=4411 (LC 1), 3=4896 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-5327/1272, 2-3=-5327/1272 BOT CHORD 1-4=-989/4538, 3-4=-989/4538 WEBS 2-4=-963/4859 NOTES 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

10.0

0.0

Lumber DOL

Rep Stress Incr

1.15

NO

IRC2018/TPI2014

TCDL

BCLL

Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-5-0 oc. Web connected as follows: 2x3 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-2-12 to 5-2-12, Interior (1) 5-2-12 to 6-0-0, Exterior(2R) 6-0-0 to 11-0-0, Interior (1) 11-0-0 to 11-9-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 This truss has been designed for a 10.0 psf bottom

0.50

0.83

Vert(CT)

Horz(CT)

-0.10

0.01

1-4

3

>999

n/a n/a

180

Weight: 123 lb

FT = 20%

BC

WB

Matrix-S

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 All bearings are assumed to be SP 2400F 2.0E crushing capacity of 805 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 886 lb uplift at joint 1 and 1026 lb uplift at joint 3.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Use Simpson Strong-Tie LUS28 (6-SD9112 Girder, 4-SD9212 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 1-4-0 from the left end to 11-4-0 to connect truss(es) to front face of bottom chord.
- 10) Fill all nail holes where hanger is in contact with lumber.
- LOAD CASE(S) Standard
- Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-2=-70, 2-3=-70, 1-3=-20
 - Concentrated Loads (lb)
 - Vert: 9=-1376 (F), 10=-1376 (F), 11=-1378 (F), 12=-1378 (F), 13=-1378 (F), 14=-1383 (F)

											RELEASE	FOR CONSTRUCTION	
Job	Truss		Truss T	уре		Qt	y Ply	,			AS NOTI DEVEL	D FOR PLAN REVIEW	
P240762	GR1		Flat Gi	rder		1	3	Jo	ob Refere	nce (optional)	LEE'S	I65739537 SUMMIT, MISSOURI	
Premier Buildir	ng Supply (Springhill, KS), S	Spring Hills, KS - 66083,			Run: 8.63	S Apr 26 2024	Print: 8.630 S	Apr 26 20	24 MiTek In	dustries, Inc. T	ue May 21 45:06	21/2024	
					ID:nGJR11	1B0023SZreiMD	(UPOazz?qB-I	RIC (PSB/)	оназизде	qnL8w3u11XbG	KWICDON-3425C?I		
		6	-11-9			<u>13-9-14</u> 6-10-5				<u>20-9-8</u> 6-11-9	———————————————————————————————————————		
		0	11.5			0 10 0				0 11 5			
		5x8=	12	3x6	11 ·	15 1	7x8= 4	4x6 = 74	18	10	5x8 =		
	Т		<u>'</u> ⊠		× I	ă r			⊲'⊂				
				•				1					
	0-0-									/			
	4								/				
	10	o 🗗 🔲	пп			пп	пп		 	пп	6		
		21	22	23 9	24 8	25	26	7	27	28	29		
		3x4 =		8x8	= 7x8=			7x8=			4x6 u		
		LUS26	LUS24	LUS24	LUS24	LUS24	LUS24	LUS24	LUS24	LUS24	LUS24		
	(0-1-12 e	-11-9	1		13-9-14			2	0-7-12	20-9-8		
Coole 4:40	- (0-1-12 6	-9-13			6-10-5			(6-9-13	0-1-12		
Plate Offsets	(X, Y): [4:0-2-8,0-2-0]], [7:0-2-8,0-4-4], [9:0-	4-0,0-4-4]										
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl L/d	PLATES	GRIP	
TCLL (roof)	25.0 10.0	Plate Grip DOL	1.15 1.15		TC BC	0.63 0.81	Vert(LL) Vert(CT)	-0.14 -0.24	7-9 7-9	>999 240 >999 180	MT20	197/144	
BCLL	0.0	Rep Stress Incr	NO		WB Motrix S	0.68	Horz(CT)	0.02	6	n/a n/a	Woight: 416 lb	ET 20%	
	10.0	Code	2)	Wind: ASCE	7 16: Vult_1	15mph (2 co			14) Han	acr(c) or othe	r connection dovi	F1 = 20%	
TOP CHORE	2x8 SPF No.2		3)	Vasd=91mpt	; TCDL=6.0	psf; BCDL=6.	0psf; h=35ft	t; lono)	provided sufficient to support concentrated load(s) 954 lb down and 259 lb up at 1-6-0, 954 lb down and 259 lb				
WEBS	2x8 SPF No.2 *Exce	ept* 10-1,5-6:2x4 SP		exterior zone	and C-C Co	orner (3) zone	; cantilever l	left	ID down and 259 lb up at 1-6-0, 954 lb down and 259 lb up at 3-6-0, 954 lb down and 259 lb up at 5-6-0, 954 lb down and 259 lb up at 7-6-0, 954 lb down and 259 lb up				
BRACING	No.2, 9-1,7-5:2x4 S	P 1650F 1.5E		exposed;C-C	for member	s and forces	& MWFRS f	for	at 9	-6-0, 954 lb d	own and 259 lb u	up at 11-6-0, 954 lb	
TOP CHORE	2-0-0 oc purlins (6-0 end verticals.	0-0 max.): 1-5, excep	t	DOL=1.60	own; Lumber	DOL=1.60 p	ate grip		up a	t 15-6-0, and	1 954 lb down and	1 259 lb up at 17-6-0,	
BOT CHORE	D Rigid ceiling directly bracing.	y applied or 10-0-0 oc	4) 5)	Provide adec This truss ha	juate drainaç s been desiç	ge to prevent ned for a 10.	water pondii 0 psf bottom	ng. n	and The	954 lb down design/select	and 259 lb up at ion of such conne	ection device(s) is the	
REACTIONS	(size) 6=0-5-8,	10=0-3-8	6)	chord live loa Bearings are	d nonconcu assumed to	rrent with any be: Joint 10	other live lo SP No.2 cru	bads. Ishing	resp LOAD C	onsibility of o ASE(S) Sta	thers. Indard		
	Max Holiz 10=139 (Max Uplift 6=-2220	(LC 9), 10=-2114 (LC	8)	capacity of 5 of 425 psi.	65 psi, Joint	6 SPF No.2 o	rushing cap	bacity	1) Dea Pla	ad + Roof Liv te Increase=	e (balanced): Lur 1.15	nber Increase=1.15,	
FORCES	(lb) - Maximum Con	npression/Maximum) 7)	Bearing at jo using ANSI/T	int(s) 6, 10 c PI 1 angle to	onsiders para o grain formul	llel to grain	value	Uni \	iform Loads(/ert: 1-5=-70	lb/ft) 6-10=-20		
TOP CHORE	Tension 0 1-10=-7083/2154, 1	I-2=-11462/3402,	8)	designer sho Provide mecl	uld verify ca nanical conn	pacity of bear ection (by oth	ing surface. iers) of truss	s to	Co	ncentrated Lo	ads (lb)	054 12- 054	
	2-4=-11462/3402, 4 5-6=-7195/2182	1-5=-11524/3422,		bearing plate joint 6 and 2 ²	capable of v 14 lb uplift a	withstanding 2 at joint 10.	2220 lb uplif	t at		14=-954, 15= 10= 054, 20=	-954, 16=-954, 17	'=-954, 18=-954, _22=_427 (P)	
BOT CHORE	9-10=-235/238, 7-9: 6-7=-111/211	=-3478/11524,	9)	This truss is	designed in a Residential	accordance w	ith the 2018 8 R502.11.1	3 and	2	23=-437 (B), 2	24=-437 (B), 25=-	-437 (B), 26=-437 (B),	
WEBS	1-9=-3739/12569, 2 4-9=-69/68, 4-7=-39	2-9=-3945/1285, 960/1310.	10	R802.10.2 ar	nd reference	d standard Al	NSI/TPI 1.	size	4	27=-437 (B), A	28=-437 (B), 29=-	441 (B)	
NOTES	5-7=-3761/12638				tion of the p	urlin along the	e top and/or				OF	MISCO	
 NOTES 3-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 2x9 - 2 row at a graggered at 0.0 0 co) Use Simpsor	Strong-Tie	LUS26 (4-10	d Girder, 3-1	10d		E	ATE	130°C	
				left end to co	nnect truss(es) to back fa	ce of bottom	า		B	S NATHA	NIEL Y	
oc, 2x8 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 2 rows) Use Simpsor	Strong-Tie	LUS24 (4-10	d Girder, 2-1	10d		a)	LA	A A * A	
staggered at 0-8-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x3 -				Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 4-0-11 from the left end to 20-0-11 to					8.	whan	J. & W.S.		
1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, 1:				connect truss(es) to back face of bottom chord. 13) Fill all nail holes where hanger is in contact with lumber.				Ø.	PE-2022	.042259			
except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been										V V	Str. Ser	GIE	
provided unless of	to distribute only loads therwise indicated.									WONA	I E		

May 22,2024

Not the state of t

						RELEASE FOR CONSTRUCTION
lob	Truss	Truss Type	Otv	Plv		AS NOTED FOR PLAN REVIEW
565	11033	Tuss Type	Quy	I IY		DEVELOPMENT SERVICES
P240762	J1	Jack-Open	3	1	Job Reference (optional)	LEE'S SUMMIT, MISSOURI
						00/01/0001

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. The May 2048:0621/2024 ID:nGJR1HBdoZ3SzreMfx0POazZ?qB-RfC?PsB70Hq3NSgPqnL8w3ulTXbC WrCDoHd4.9041

Scale = 1:31.5

Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.26 0.17	DEFL Vert(LL) Vert(CT)	in -0.01 -0.02	(loc) 4-5 4-5	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190
BCLL	0.0	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/1PI2014	Matrix-P							Weight: 18 lb	FT = 20%
LUMBER			6) This truss is	designed in accord	dance w	ith the 2018						
TOP CHORD	2x4 SP No.2		International	Residential Code s	sections	s R502.11.1 a	nd					
BOT CHORD	2x4 SP No.2		R802.10.2 a	nd referenced stan	dard AN	ISI/TPI 1.						
WEBS	2x4 SP No.2 *Excep	t* 4-2:2x3 SPF No.2	LOAD CASE(S)	Standard								
BRACING												
TOP CHORD	Structural wood shea	athing directly applied	d or									
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc										
REACTIONS	(size) 3= Mecha	nical, 4= Mechanical	,									
	Max Horiz 5-91 (LC	12)										
	Max 1 Inlift 3=-74 (I C	(12) 5=-32 (1 C 12)										
	Max Grav 3=121 (LC	C 1), 4=76 (LC 3), 5=	250									
	(LC 1)	.,,										
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORD	2-5=-212/146 1-2=0	/32 2-3=-85/46										
BOT CHORD	4-5=-191/60	.02,20 00,10										
WEBS	2-4=-61/193											
NOTES												
 Wind: ASC Vasd=91n Ke=1.00; 0 exterior zc and right e exposed;0 reactions s 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCi Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed; end vertical I -C for members and fc shown; Lumber DOL=1	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope E) zone; cantilever le eft and right orces & MWFRS for I.60 plate grip	e) ft							A	TATE OF M	MISSOL
DOL=1.60 2) This truss chord live) has been designed for load nonconcurrent wit	a 10.0 psf bottom	s							R.	S NATHA FOI	X
 Bearings a 	are assumed to be: , Jo	bint 5 SP No.2 crushi	ng							Ø	+	1 AZA
capacity o	i 565 PSI.	an connections								14	Whank	ER HOU

4) Refer to girder(s) for truss to truss connections.

Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 32 lb uplift at joint 5 and 74 lb uplift at joint 3.

PE-2022042259

SSIONAL ET

						RELEASE FOR CONSTRUCTION
lob	Truce		Otv	Plv		AS NOTED FOR PLAN REVIEW
305	11035	Truss Type	Quy	l' 'y		DEVELOPMENT SERVICES
P240762	J2	Jack-Open	4	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

1-10-3

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. The May 2048:0621/2024

-0-10-8

Scale = 1:31.6

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.08	Vert(LL)	0.00	4-5	>999	240	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	0.00	4-5	>999	180		
BCLL		0.0	Rep Stress Incr	YES		WB	0.03	Horz(CT)	0.00	3	n/a	n/a		
BCDL		10.0	Code	IRC201	8/TPI2014	Matrix-P							Weight: 9 lb	FT = 20%
LUMBER				6)	This truss is	designed in acco	rdance wi	ith the 2018						
TOP CHORD	2x4 SP No	.2		- /	International	Residential Code	e sections	R502.11.1 a	and					
BOT CHORD	2x4 SP No	.2			R802.10.2 a	nd referenced sta	Indard AN	ISI/TPI 1.						
WEBS	2x4 SP No	.2 *Excep	t* 4-2:2x3 SPF No.2	L L	DAD CASE(S)	Standard								
BRACING		-												
TOP CHORD	Structural 1-10-3 oc p	wood shea ourlins, ex	athing directly applie cept end verticals.	ed or										
BOT CHORD	Rigid ceilin bracing.	g directly	applied or 10-0-0 o	0										
REACTIONS	(size)	3= Mecha 5=0-5-8	nical, 4= Mechanica	al,										
	Max Horiz	5=47 (LC	12)											
	Max Uplift	3=-25 (LC	12), 4=-8 (LC 12),	5=-26										
		(LC 12)	,, ,, ,,											
	Max Grav	3=38 (LC (LC 1)	1), 4=34 (LC 3), 5=	169										
FORCES	(lb) - Maxir Tension	num Com	pression/Maximum											
TOP CHORD	2-5=-152/1	10, 1-2=0	/32, 2-3=-36/22											
BOT CHORD	4-5=-113/2	9												
WEBS	2-4=-31/12	0												
NOTES														
 Wind: AS Vasd=91r Ke=1.00; exterior z and right exposed; reactions 	CE 7-16; Vult mph; TCDL=6 Cat. II; Exp C one and C-C exposed ; end C-C for memb shown: Lumb	=115mph .0psf; BCl ; Enclose Exterior(2 d vertical le pers and for per DOI =1	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever l eft and right prces & MWFRS for 60 plate grip.	oe) eft								A	STATE OF J	MISSOLAN

- DOL=1.60 2) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 3) Bearings are assumed to be: , Joint 5 SP No.2 crushing capacity of 565 psi.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 26 lb uplift at joint 5, 8 lb uplift at joint 4 and 25 lb uplift at joint 3.

FOX

UT BER

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
lob	Trues		Otv	Plv		AS NOTED FOR PLAN REVIEW
300	11035	Thuss Type	Quy	i iy		DEVELOPMENT SERVICES
P240762	J3	Jack-Open	28	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
						00/01/0001

Scale = 1:28.9

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MITek Industries, Inc. The May 2048:0621/20:24 ID:FStpEcCFZsBJb_DYDeYexozZ?qA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDorredSucet

	5-11-4	
1-8 0-0-51		

Plate Offsets	(X, Y): [2:0)-1-8,0-0-5]											
Loading		(psf)	Spacing	2-0-0	CSI	0.70	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		0.78	Vert(LL)	-0.07	2-5	>987	240	M120	244/190
TCDL		10.0	Lumber DOL	1.15 VEC	BC	0.44		-0.14	2-5	>493	180		
BCLL BCDL		10.0	Code	IRC2018/TPI2014	Matrix-P	0.00		-0.02	4	n/a	n/a	Weight: 24 lb	FT = 20%
			•	6) This truss i	s designed in ac	cordance wi	ith the 2018						
TOP CHORD	2x4 SP N	No.2		Internation	al Residential Co	de sections	R502.11.1 a	and					
BOT CHORD	2x4 SP N	10.2		R802.10.2	and referenced s	standard AN	ISI/TPI 1.						
SLIDER	Left 2x4	SP No.2 3	3-1-13	LOAD CASE(S) Standard								
BRACING				·	,								
TOP CHORD	Structura	al wood she	athing directly applie	ed or									
BOT CHORD	5-11-4 0 Rigid cei bracing.	c purlins. iling directly	applied or 10-0-0 o	с									
REACTIONS	(size) Max Horiz Max Uplift Max Grav	2=0-5-8, 4 Mechanic 2=99 (LC 2=-81 (LC 2=330 (LC (LC 3)	4= Mechanical, 5= al 12) 2 8), 4=-111 (LC 12) 2 1), 4=201 (LC 1), 5	5=118									
FORCES	(lb) - Ma Tension	ximum Corr	pression/Maximum										
TOP CHORD BOT CHORD	1-2=-5/0 2-5=0/0	, 2-4=-105/5	50										
NOTES													
 Wind: AS Vasd=91r Ke=1.00; exterior z Interior (1 exposed ; members Lumber D This truss 	CE 7-16; Vi mph; TCDL: Cat. II; Exp one and C-1) 4-1-8 to 5 ; end vertica and forces OOL=1.60 pl s has been of	ult=115mph =6.0psf; BC C; Enclose C Exterior(2 -10-8 zone; al left and rig & MWFRS late grip DC designed fo	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-10-8 to 4-1-8, cantilever left and r ght exposed;C-C for for reactions shown DL=1.60 r a 10.0 psf bottom	pe) ight ;								STATE OF J	MISSOLINIEL

chord live load nonconcurrent with any other live loads.3) Bearings are assumed to be: , Joint 2 SP No.2 crushing capacity of 565 psi.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 111 lb uplift at joint 4 and 81 lb uplift at joint 2.

May 22,2024

						RELEASE FOR CONSTRUCTION
lob	Trues		Otv	Plv		AS NOTED FOR PLAN REVIEW
366	11035	Thuss Type	Quy	I IY		DEVELOPMENT SERVICES
P240762	J4	Jack-Open	4	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
			-			

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. The May 2048:0621/2024

3-10-3	l
	l

Scale = 1:27.4 Plate Offsets (X, Y): [2:0-1-8.0-0-5]

	[2.0-1-0,0-0-5]												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.32	Vert(LL)	-0.01	2-5	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.17	Vert(CT)	-0.02	2-5	>999	180			
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	4	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 16 lb	FT = 20%	
			C) This trues in			ith the 2010							

LOWIDER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
SLIDER	Left 2x4 S	SP No.2 2-0-10
BRACING		
TOP CHORD	Structura	I wood sheathing directly applied or
	3-10-3 oc	purlins.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	2=0-5-8, 4= Mechanical, 5=
		Mechanical
	Max Horiz	2=68 (LC 12)
	Max Uplift	2=-67 (LC 8), 4=-73 (LC 12)
	Max Grav	2=239 (LC 1), 4=125 (LC 1), 5=76
		(LC 3)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-5/0,	2-4=-76/31
BOT CHORD	2-5=0/0	

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.

3) Bearings are assumed to be: , Joint 2 SP No.2 crushing capacity of 565 psi.

- Refer to girder(s) for truss to truss connections. 4)
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 73 lb uplift at joint 4 and 67 lb uplift at joint 2.

This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
loh	Trues		Otv	DIV		AS NOTED FOR PLAN REVIEW
566	11035	Truss Type	Quy	I IY		DEVELOPMENT SERVICES
P240762	J5	Jack-Open	4	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
			-			

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. The May 2048:0621/2024

1-10-3

Scale = 1:26.8 Plate Offsets (X, Y): [2:0-1-8,0-5-5]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	0.00	2-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	0.00	2-5	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 9 lb	FT = 20%
		•	6) This truck is	designed in accord	danco w	ith the 2019						
	2V4 CD No 2		Internations	l Residential Code	sections	R502 11 1 a	and					
	2X4 SF NU.2		R802 10 2	and referenced star	A hard	ISI/TPI 1						
	284 OF INU.2	1 5 0		Stondard								
SLIDER	Leit 2x4 SP INU.2	1-5-0	LOAD CASE(S	Stanuaru								
BRACING	Other strengtheres and a											
TOP CHORD	Structural wood s	neathing directly appl	lied or									
	1-10-3 oc purlins.	the applied at 10.0.0										
BOLCHORD	Rigid celling direc	tiy applied or 10-0-0	DC									
	bracing.											
REACTIONS	(SIZE) 2=0-5-	3, 4= Mechanical, 5=										
	Mov Horiz 2-40 (
	Max Holiz 2=40 (I	LC 12)										
	Max Opint 2=-57	(1 C 1), 4 = -35 (1 C 12)	- 27									
		(LC 1), 4=50 (LC 1), 3	5=37									
FORCES	(lb) - Maximum C	ompression/Maximun	า									
	Tension											
TOP CHORD	1-2=-5/0, 2-4=-43	/16										
BOT CHORD	2-5=0/0											
NOTES												
1) Wind: ASC	CE 7-16: Vult=115m	ph (3-second aust)										
Vasd=91n	nph; TCDL=6.0psf;	3CDL=6.0psf; h=35ft;										
Ke=1.00; (Cat. II; Exp C; Enclo	sed; MWFRS (envelo	ope)									
exterior zo	one and C-C Exterio	r(2E) zone; cantilever	left								A TE	and the second
and right e	exposed ; end vertic	al left and right									F. OF I	VIISS W
exposed;C	C-C for members an	d forces & MWFRS fo	or							6		N'S
reactions	shown; Lumber DO	.=1.60 plate grip								B	NATHA	NIEL YP
DOL=1.60)									B	FO	
This truss	has been designed	for a 10.0 psf bottom								W A	10.	
chord live	load nonconcurrent	with any other live lo	ads.							WT	LA	1 4 8
3) Bearings a	are assumed to be:	Joint 2 SP No.2 crus	sning							N.	Tthey	11 N L
(1) Defer to a	irdor(c) for trucc to	ruce connections								VV	KY YMD	ER ASSA
5) Provide m	echanical connection	n (by others) of truce	to							N	O PE-2022	042259
bearing pl	ate canable of with	tanding 57 lb unlift at	ioint							N	M	12A
2 and 35	h uplift at joint 4		Jourt							X	h Ser	NO A
2 414 00 1	~ ~p.int at joint 4.										UNA ONA	LEFA
											Un in	

Contract May 22,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
lob	Trues	Trues Type	Otv	Phy		AS NOTED FOR PLAN REVIEW
300	11055	Truss Type	Qly	гу		DEVELOPMENT SERVICES
P240762	J6	Jack-Open	2	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
	•					00/01/0001

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. The May 2048:0721/20:24

1-10-15

Scale = 1:26.7 Plate Offsets (X, Y): [2:0-1-8,0-0-5]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	0.00	2-5	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	0.00	2-5	>999	180			
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 10 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2	s designed in ac al Residential Co and referenced s) Standard	cordance w ode sections standard AN	ith the 2018 \$ R502.11.1 a NSI/TPI 1.	and								

BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	2=0-5-8, 4= Mechanical, 5=
		Mechanical
	Max Horiz	2=41 (LC 12)
	Max Uplift	2=-57 (LC 8), 4=-36 (LC 12)
	Max Grav	2=161 (LC 1), 4=52 (LC 1), 5=38
		(LC 3)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-5/0,	2-4=-44/17
BOT CHORD	2-5=0/0	

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.

3) Bearings are assumed to be: , Joint 2 SP No.2 crushing capacity of 565 psi.

- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 57 lb uplift at joint 2 and 36 lb uplift at joint 4.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
lob	Truss		Otv	Plv		AS NOTED FOR PLAN REVIEW
500	11035	Truss Type	Qty	I IY		DEVELOPMENT SERVICES
P240762	J7	Jack-Open	2	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
	00/01/0001					

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. The May 2048:0721/20:24

3-10-15

Scale = 1:27.4 Plate Offsets (X, Y): [2:0-1-8,0-0-5]

,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.34 0.18 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.03 -0.01	(loc) 2-5 2-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD SLIDER BRACING	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 2	2-1-0	6) This truss i Internation R802.10.2 LOAD CASE(S	s designed in acco al Residential Code and referenced sta i) Standard	ordance wi e sections andard AN	th the 2018 R502.11.1 a ISI/TPI 1.	and					
BOT CHORD	3-10-15 oc purlins. Rigid ceiling directly bracing.	applied or 10-0-0 oc										
REACTIONS	(size) 2=0-5-8, 4 Mechanic Max Horiz 2=69 (LC Max Uplift 2=-67 (LC Max Grav 2=241 (LC (LC 3) (lb) - Maximum Com	4= Mechanical, 5= al 12) : 8), 4=-74 (LC 12) C 1), 4=128 (LC 1), 5	5=77									
TOP CHORD BOT CHORD	Tension 1-2=-5/0, 2-4=-75/32 2-5=0/0											
NOTES												
 Wind: ASC Vasd=91nr Ke=1.00; (exterior zo: and right e exposed;C reactions s DOL=1.60 This truss Chord live Bearings a 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical 1 -C for members and f shown; Lumber DOL= has been designed foi load nonconcurrent wi re assumed to be:	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever I eft and right orces & MWFRS for I.60 plate grip • a 10.0 psf bottom th any other live load	be) eft ds.						(h	STATE OF I	MISSOURI NIEL X
capacity of 4) Refer to gi	f 565 psi. irder(s) for truss to tru	ss connections.								AL.	PE-2022	BER 0 100

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 74 lb uplift at joint 4 and 67 lb uplift at joint 2.

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qtv	Plv		AS NOTED FOR PLAN REVIEW
			ς.,	,		DEVELOPMENT SERVICES 165739545
P240762	LG1	Lay-In Gable	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
			-			00/01/0001

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. The May 2048:0721/20:24

3-10-10

Scale = 1:26.5

-

Loading	(ps) Spacing	2	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.	0 Plate Grip	DOL 1	.15		TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.	0 Lumber D)L 1	.15		BC	0.03	Vert(TL)	n/a	-	n/a	999		
BCLL	0.	0 Rep Stress	Incr Y	/ES		WB	0.01	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.	0 Code		RC2018	3/TPI2014	Matrix-P							Weight: 15 lb	FT = 20%
LUMBER				7)	All bearings	are assumed to be	e SP No.	2 crushina						
TOP CHORD	2x4 SP No.2			,	capacity of 5	65 psi.		5						
BOT CHORD	2x4 SP No.2			8)	Provide mec	hanical connection	n (by oth	ers) of truss t	0					
OTHERS	2x3 SPF No.2				bearing plate	capable of withst	tanding 2	8 lb uplift at j	oint					
BRACING					1 and 24 lb u	plift at joint 3.								
TOP CHORD	Structural wood	sheathing direct	v applied o	9)	This truss is	designed in accor	dance w	th the 2018						
	3-11-2 oc purlin	3.) applied e	•	International	Residential Code	sections	R502.11.1 a	nd					
BOT CHORD	Rigid ceiling dire	ectly applied or 1	0-0-0 oc		R802.10.2 a	nd referenced star	ndard AN	ISI/TPI 1.						
	bracing.			LO	AD CASE(S)	Standard								
REACTIONS	(size) 1=3-1	0-10, 3=3-10-10	4=3-10-10)										
	Max Horiz 1=53	(LC 9)												
	Max Uplift 1=-28	(LC 13), 3=-24	LC 13)											
	Max Grav 1=97 (LC 1	(LC 1), 3=97 (LC)	1), 4=101											
FORCES	(lb) - Maximum	Compression/Ma	ximum											
	Tension													
TOP CHORD	1-2=-77/39, 2-3=	-70/33												
BOT CHORD	1-4=-17/39, 3-4=	-17/39												
WEBS	2-4=-60/17													
NOTES														
1) Unbalance	ed roof live loads h	ave been consid	ered for											
this desig	ın.													
2) Wind: AS	CE 7-16; Vult=115	mph (3-second g												
Vasd=91	mph; TCDL=6.0psf	BCDL=6.0psf; h	=35ft;										The	
Ke=1.00;	Cat. II; Exp C; End	losed; MWFRS (envelope)									A	and	
exterior z	one and C-C Exter	or(2E) zone; car	tilever left									B.F. OF I	11SS W	
and right	exposed ; end vert	cal left and right										1	7.50	- CON

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

May 22,2024

NATHANIEL

FOX

WHEER

PE-2022042259

SSIONAL EN

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

															RELEA	SE FOR C	ONSTRUC	ΓΙΟΝ
Job		Truss		Truss Ty	/pe			Qt	/	Ply							PLAN REV	IEW ES
P240762		LG2		Lay-In	Gable			1		1	Job R	leferer	nce (opti	onal	LEE	165 SUMMI	739546 T, <mark>MISSOU</mark>	RI
Premier Building	g Supply (Sprii	nghill, KS), S	pring Hills, KS - 66083,	•			Run: 8.63 S	Apr 26 2024	Print: 8.6	630 S Apr 20	6 2024 M	liTek In	dustries,	Inc. T	ie May 21 45:	21	2®	24
							ID:BZ18500	Jr5FIRInZgr_m	/qdzZ?	qP-RfC?PsE	370Hq3N	ISgPqn	L8w3u11	GGK	VrCDoi/342JG?1			
	⊢		5-10-15	-						25-1-2							_	
			5-10-15							19-2-3							I	
				6x6 🅢	_			_							3x4 =		3x4 u	
—				4	5 	D	<u>م</u> ک		1			10		11		14 ⊲	15 	—
6-3-0	12 12.65 ┌ 1 4	2	3													ľ		6-3-0
⊥	- 🥳										~~~~~							\bot
0	3	××××××××××××××××××××××××××××××××××××××	28	27	26	<u>××××</u> 25	24	23	<u>×××××</u> 22	<u>×××××××××</u> 21	******	20		<u>~~~~</u> 19	18	17	<u>≪≪×</u> 3x4 ∎	
						3x4 =												
	L							25-1-2										
Scale = 1:46.3	(X_X); [4:0		[45.5dma 0 0 0] [40		01												I	
	(X, Y): [4:0-	z-9,Eugej,	[15:Edge,0-2-8], [16	Edge,0-2-	8]	- T				-								
Loading TCLL (roof) TCDL BCLL		(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES			CSI TC BC WB	0.46 0.15 0.18	DEFL Vert(I Vert(Horiz	- _L) TL) (TL) 0	in (n/a n/a 1.00	loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIF 244/ [/]	9 190	
BCDL		10.0	Code	IRC2018	3/TPI2014		Matrix-S			() 0					Weight: 133	b FT=	20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x3 SPF 1 2x3 SPF 1 Structural 6-0-0 oc p 2-0-0 oc p Rigid ceili bracing. (size)	0.2 0.2 No	TO d or BC id -2, 1-2, WE 1-2, WE 1-2,	P CHORE	$\begin{array}{c} 0 & 1 \\ 4 \\ - \\ 7 \\ - \\ 10 \\ 10 \\ 13 \\ 15 \\ 27 \\ 24 \\ 22 \\ 20 \\ 18 \\ 16 \\ 2 \\ - \\ 10 \\ 13 \end{array}$	2=-402/398, 5=-121/131, 8=-121/132, 1-14=-121/13 1-14=-121/13 1-14=-121/13 1-28=-121/13 1-28=-121/13 1-28=-121/13 1-29=-121/13 1-19=-121/13 1-19=-121/13 1-19=-121/13 29=-176/15 23=-140/64, 0-20=-140/63 1-18=-146/66	2-3=-299/30 5-6=-121/13 8-9=-121/13 32, 11-13=-1 32, 14-15=-1 2, 28-29=-12 32, 26-27=-1 32, 23-24=-1 32, 21-22=-1 32, 17-18=-1 32 5, 5-26=-1500 8-22=-140/6 3, 11-19=-13 5, 14-17=-14	3, 3-4= 2, 6-7= 2, 9-1(21/132 21/132 21/132 21/132 21/132 21/132 21/132 21/132 21/132 (170, (71, 6-2 3, 9-21 9/63, 4/91	179/192, 121/132,)=-121/132, , , , , , , , , , , , , , , , , , ,	8) 2, 9) 10] 4, LC	All be capa Prov beari 1, 14 uplift 26, 4 uplift 20, 4 up	earings : city of 5 ide mec ing plate lb uplift at joint 0 lb upli at joint 1 lb upli at joint 1 lb upli at joint truss is national 2.10.2 au hhical pu e orienta MSE(S)	are as 65 ps hanic e capa a tojoi 28, 99 ft at ju 22, 39 ft at ju 22, 39 ft at ju 22, 39 ft at ju 22, 39 ft at ju 22, 30 ft at ju 35 ft at ju 22, 30 ft at ju 35 ft at ju	ssumed to be \$ ii. al connection (able of withstar int 16, 137 lb u 5 lb uplift at join oint 24, 40 lb u 9 lb uplift at join oint 19, 47 lb u ned in accorda dential Code so erenced stand spresentation c of the purlin alcondard	SP No.2 c by others ding 86 I plift at joint 27, 47 plift at joint 21, 40 plift at joint	of truss to b uplift at ji nt 29, 144 lb uplift at ji nt 23, 39 lb lb uplift at ji nt 18 and 4 the 2018 502.11.1 a (TPI 1. lepict the s p and/or	o pint b oint oint i4 Ib nd ize	
FORCES	17=-44 (LC 8), 18=-47 (LC 9), 13 19=-41 (LC 8), 20=-40 (LC 9), 1) 21=-39 (LC 8), 22=-39 (LC 9), 23=-40 (LC 9), 27=-95 (LC 9), 28=-144 (LC 12), 29=-137 (LC 12) Max Grav 1=193 (LC 9), 16=29 (LC 1), 17=147 (LC 1), 18=188 (LC 1), 19=179 (LC 1), 20=180 (LC 1), 21=180 (LC 1), 22=180 (LC 1), 23=180 (LC 1), 24=178 (LC 1), 26=190 (LC 1), 27=167 (LC 19), 28=216 (LC 19), 29=206 (LC 19) 0RCES (lb) - Maximum Compression/Maximum Tension 4) 6) 7)						S ind: ASCE 7-16; Vult=115mph (3-second gust) isd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; >=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) terior zone and C-C Exterior(2E) 0-4-1 to 5-4-1, erior (1) 5-4-1 to 5-11-2; Exterior(2R) 5-11-2 to 13-0-0, erior (1) 13-0-0 to 25-0-2 zone; cantilever left and ht exposed; end vertical left and right exposed;C-C ' members and forces & MWFRS for reactions shown; imber DOL=1.60 plate grip DOL=1.60 russ designed for wind loads in the plane of the truss IIy. For studs exposed to wind (normal to the face), e Standard Industry Gable End Details as applicable, consult qualified building designer as per ANSI/TPI 1. ovide adequate drainage to prevent water ponding. I plates are 1.5x4 MT20 unless otherwise indicated. able requires continuous bottom chord bearing. able studs spaced at 0-0-0 c. his truss has been designed for a 10.0 psf bottom for live load nonconcurrent with any other live loads.								PE-202	MISO MISO ANIEL OX		

> **iTek**[°] 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

May 22,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qtv	Plv		AS NOTED FOR PLAN REVIEW
	11400		ς.,	,		DEVELOPMENT SERVICES 165739547
P240762	LG3	Lay-In Gable	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. The May 2048:0721/2024 ID:BZT85U0r5FIRIhZgr_m7qdzZ?qP-RfC?PsB70Hq3NSgPqnL8w3uITXbGK vrCDoi702001

_

SSIONAL ET tone

May 22,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Scale = 1:54.1

Plate Offsets (X, Y): [5:0-1-7,Edge], [11:Edge,0-1-8], [12:Edge,0-1-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.53 0.26 0.32	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 117 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ep 2-0-0 oc purlins (6-0	eathing directly applied cept end verticals, an 0-0 max.): 5-11.	B W dor d	OT CHORD 1 1 1 /EBS 2 4 7 1	-20=-160/175, 19-2 8-19=-160/175, 17- 6-17=-160/175, 15- 4-15=-160/175, 13- 2-13=-160/175 -20=-255/213, 3-19 -18=-259/199, 6-17 -16=-142/79, 8-15= 0-13=-180/113	0=-16(18=-16 16=-16 14=-16 =-189/ =-199/ -140/6	0/175, 50/175, 50/175, 50/175, 159, 133, 5, 9-14=-141/	/71,	10) Prov bea joint lb uj joint lb uj 11) This Inte R80	vide mee ring plat 1, 21 lb plift at jo 17, 54 plift at jo truss is rnationa 2.10.2 a	chanica e capa uplift int 19, lb upliff int 14 desig I Resid und ref	al connection (by able of withstandir at joint 12, 192 lb 103 lb uplift at jo it at joint 16, 41 lb and 50 lb uplift at ned in accordanc dential Code secti erenced standarc	others) of truss to ng 101 lb uplift at uplift at joint 20, 133 int 18, 90 lb uplift at uplift at joint 15, 47 joint 13. e with the 2018 ions R502.11.1 and ANS/JTPI 1.	
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	N 1	OTES) Unbalanced I	oof live loads have	been o	considered for	r	or th	ne orient	ation	of the purlin along	the top and/or	
WEBS	1 Row at midpt	11-12, 6-17, 7-16, 8- 9-14, 10-13	15, 2	this design. Wind: ASCE	7-16; Vult=115mph	(3-sec	ond gust)		LOAD C	om cnor CASE(S)	a. Stai	ndard		
REACTIONS	(size) 1=19-1-2 14=19-1- 17=19-1- 20=19-1- Max Uplift 1=-101 (I 13=-50 (I 15=-41 (I 17=-90 (I 19=-133) Max Grav 1=258 (L 13=186 (15=180 (17=+80 (19=175 (())))	, 12=19-1-2, 13=19-1- 2, 15=19-1-2, 16=19-7 2, 18=19-1-2, 19=19-7 2 C 9) .C 10), 12=-21 (LC 9), .C 8), 14=-47 (LC 9), .C 8), 16=-54 (LC 8), .C 9), 18=-103 (LC 9), (LC 12), 20=-192 (LC 0 9), 12=71 (LC 1), LC 26), 14=181 (LC 1 LC 1), 16=182 (LC 26 LC 1), 18=221 (LC 19), LC 19), 20=296 (LC 11)	2, 1-2, 1-2, 1-2, 3), 3), 3 9) 6	Vasd=91mph Ke=1.00; Cat exterior zone Interior (1) 5- 15-1-6, Interin left and right exposed;C-C reactions sho DOL=1.60 Truss desigr only. For stu see Standarc or consult qu Provide adeq All plates are Gable require	Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-1 to 5-1-6, Interior (1) 5-1-6 to 8-0-10, Exterior(2R) 8-0-10 to 15-1-6, Interior (1) 15-1-6 to 18-11-10 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Provide adequate drainage to prevent water ponding. All plates are 1.5x4 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing. Gable studs spaced at 0-0 oc. This truss has been designed for a 10.0 psf bottom								MISSOURIAN	
F ORCES TOP CHORD	(lb) - Maximum Con Tension 1-2=-546/545, 2-3= 4-5=-182/181, 5-6= 7-8=-160/174, 8-9= 10-11=-160/174, 11	npression/Maximum -388/388, 3-4=-292/30 -160/174, 6-7=-160/17 -160/174, 9-10=-160/1 -12=-121/105	09, 8 7 7 99, 8 74, 9	 Gable require Gable studs s This truss has chord live loa All bearings a capacity of 56 	s continuous bollof spaced at 0-0-0 oc. s been designed for d nonconcurrent wi are assumed to be S 55 psi.	a 10.0 th any SP No.) psf bottom other live load 2 crushing	ds.				PE-20220	SER 042259	

														RELEAS	E FOR CONSTRUCTION	
Job		Truss		Truss T	уре		Qty		Ply					AS NOT	ED FOR PLAN REVIEW	
P240762		LG4		Lay-In	Gable		1		1	Job	Refere	nce (on	tional	LEE'S	I65739548 SUMMIT, MISSOURI	
Premier Building	g Supply (Spring	hill, KS), S	Spring Hills, KS - 66083,	1		Run: 8.63 S Apr 2	26 2024 F	rint: 8.6	630 S Apr	26 2024	MiTek Ir	ndustries,	Inc. T	ue May 21 453:07	21/2924	
						ID:BZT85U0r5FIR	IhZgr_m7	/qdzZ?	qP-RfC?F	PsB70Hq	3NSgPqr	nL8w3ulT	XbGK	VrCDoi7342JS?1		
					7	'-11-8				15-7-1	2		15-11	-0		
				I	7	-11-8				7-8-4			0-3-4	4		
							4x4	-								
$ \begin{bmatrix} 5 \\ 7 \\ 7 \\ 9 \\ 9 \\ 9 \\ 12.65 \\ 12 \\ 12.65 \\ 12 \\ 12.65 \\ 12 \\ 14 \\ 16 \\ 15 \\ 14 \\ 13 \\ 12 \\ 11 \\ 10 \\ 3x4_{*} \end{bmatrix} $												9				
				3x4	, ¹⁶	15 14	13		12	11		10	^{3x4} 🗞			
Scale - 1:51 6				 			15-11	0								
		(ncf)	Spacing	200		CSI		DEEI		in	(loc)	l/dofl	L/d		GPIP	-
TCLL (roof)		(psi) 25.0	Plate Grip DOL	1.15		TC	0.07	Vert(I	- LL)	n/a	(100)	n/a	999	MT20	244/190	
TCDL BCLL		10.0 0.0	Lumber DOL Rep Stress Incr	1.15 YES		BC WB	0.05 0.24	Vert(Horiz	TL) (TL)	n/a 0.01	- 9	n/a n/a	999 n/a			
BCDL		10.0	Code	IRC2018	8/TPI2014	Matrix-S			· · ·					Weight: 81 lb	FT = 20%	-
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No. 2x4 SP No. 2x3 SPF No Structural v 6-0-0 oc pu Rigid ceilin, bracing. (size) 1 1 Max Horiz 1 Max Uplift 1 1 Max Grav 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2	Wind: ASCE Vasd=91mph Ke=1.00; Ca exterior zone Interior (1) 5- 12-11-12, Int left and right exposed;C-C reactions she DOL=1.60 Truss design only. For stu see Standard or consult qu All plates are Gable requiri Gable studs This truss ha chord live loa All bearings a capacity of 5 Provide mec	7-16; Vult=115mph n; TCDL=6.0psf; BC t. II; Exp C; Enclose and C-C Exterior(2 4-1 to 7-11-12, Ext terior (1) 12-11-12 to exposed; end vertic for members and for bown; Lumber DOL= ned for wind loads in ids exposed to wind d Industry Gable En- ialified building desis a 1.5x4 MT20 unless es continuous botto spaced at 2-0-0 oc. Is been designed for ad nonconcurrent w are assumed to be 65 psi. hanical connection e capable of withstai	n (3-sec CDL=6.0 ed; MWI 22:) 0-4- erior(2F o 15-7-7 ical left forces & 1.60 pla n the pla d (norma d Detai gner as s otherv m choro SP No.2 (by othe nding 9	ond gupsf; h= FRS (¢ 1 to 5- 1) 7-11 7 zone and riç MWF tte grip ane of al to th Is as a per A yise in- use in the per A beari 2 crust ers) of 2 lb up	ust) =35ft; envelope 4-1, -12 to ; cantile- ght RS for b the trus e face), pplicabl NSI/TPI dicated. ing. bttom ive loads hing truss to blift at ioi	e) ver s e, 1. s.								
FORCES	1 (Ib) - Maxin)	16=209 (L num Com	LC 19) pression/Maximum		1, 58 lb uplift	at joint 9, 137 lb up	olift at jo	int 14,	139 lb							
TOP CHORD	Tension 1-2=-309/1 4-5=-162/1	90, 2-3=- 58, 5-6=-	183/140, 3-4=-143/10 162/150, 6-7=-107/58	00, 3, 40	joint 12, 140	Ib uplift at joint 11 a	and 137	Ib upli	ift at join	t				F OF	MISS	
BOT CHORD	7-8=-155/9 1-16=-146/2 14-15=-147 12-13=-147 10-11=-146	3, 8-9=-2 219, 15-1 7/219, 13- 7/219, 11- 5/219, 9-1	78/190 6=-146/219, -14=-147/219, -12=-147/219, 0=-146/219	Inis truss is International R802.10.2 a DAD CASE(S)	Residential Code s Residential Code s nd referenced stand Standard	ance wi ections dard AN	R502. SI/TPI	∠∪18 .11.1 an∉ 1.	d				ST NATH	ANIEL		

WEBS 5-13=-153/104, 4-14=-187/160, 3-15=-195/164, 2-16=-185/154, 6-12=-187/158, 7-11=-195/165, 8-10=-185/154

NOTES

1) Unbalanced roof live loads have been considered for

this design.

LOAD CASE(S) Standard ANSI/TPL1. LOAD CASE(S) Standard 219 60, 54, 65, onsidered for

Plate Offsets (X, Y): [4:0-2-9,Edge], [13:0-2-9,Edge], [24:0-2-8,0-3-0]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.03	Vert(TL)	n/a	-	n/a	999			
BCLL		0.0	Rep Stress Incr	YES		WB	0.14	Horiz(TL)	0.01	16	n/a	n/a			
BCDL		10.0	Code	IRC20)18/TPI2014	Matrix-S							Weight: 140 lb	FT = 20%	
LUMBER					TOP CHORD	1-2=-203/160, 2-3=	=-138/11	3, 3-4=-135/1	51,	7) Ga	ole studs	spac	ed at 2-0-0 oc.		
TOP CHORD	2x4 SP N	0.2				4-5=-113/124, 5-6=	=-113/12	4, 6-7=-113/1	24, 8	B) Thi	s truss h	as bee	en designed for	a 10.0 psf bottom	I
BOT CHORD	2x4 SP N	0.2				7-8=-115/124, 8-9=	=-115/12	4, 9-10=-115/	124,	cho	rd live lo	oad no	nconcurrent with	any other live lo	ads.
OTHERS	2x3 SPF	No.2				10-12=-115/124, 1	2-13=-1	15/124,	1	9) All	bearings	are a	ssumed to be S	P No.2 crushing	
BRACING						13-14=-136/126, 1	4-15=-8	6/44,		cap	acity of	565 ps	si.		
TOP CHORD	Structura	I wood she	athing directly applie	ed or		15-16=-158/96				10) Prc	vide me	chanic	al connection (b	y others) of truss	to
	6-0-0 oc	purlins, exc	ept		BOT CHORD	1-29=-80/137, 28-2	29=-80/1	37,		bea	ring plat	te capa	able of withstand	ling 70 lb uplift at	joint
	2-0-0 oc	purlins (6-0	-0 max.): 4-13.			27-28=-80/137, 26	-27=-80/	136,		1, 2	3 lb upli	ft at jo	int 16, 45 lb upli	it at joint 20, 40 lb)
BOT CHORD	Rigid ceil	ing directly	applied or 10-0-0 oc	;		25-26=-80/136, 23	-25=-80/	136,		upi 22	π at join	t 21,4 Jift ot i	o in uplift at join	1 22, 39 ID UPIIIT at	t joint
	bracing.					22-23=-78/135, 21	-22=-70/	135,		23,	ft at ioin	+ 26 3	0 lb uplift at join	t 27 1/0 lb unlift	u at
REACTIONS	(size)	1=27-11-0	0, 16=27-11-0,			18-19=-78/135 17	-18=-78	/135		ioir	t 28 14) lb un	lift at joint 29 14	16 lb uplift at joint	18
		17=27-11	-0, 18=27-11-0,			16-17=-78/135		,		and	135 lb i	uplift a	it joint 17.	io io apint at joint	
		19=27-11	-0, 20=27-11-0,	,	WEBS	13-19=-106/5, 12-2	20=-149/	69,		11) Thi	s truss is	desid	ned in accordar	nce with the 2018	
		21=27-11	-0, 22=27-11-0, 0, 24=27, 11, 0			10-21=-139/64, 9-2	22=-140/	63, 8-23=-140	0/63,	Ínte	rnationa	l Resi	dential Code se	ctions R502.11.1	and
		25-27-11	-0, 24=27-11-0,			7-24=-140/63, 6-25	5=-138/6	3, 5-26=-154/	68,	R8	02.10.2 a	and re	ferenced standa	rd ANSI/TPI 1.	
		27=27-11	-0 28=27-11-0			4-27=-123/54, 3-28	3=-180/1	66,		12) Gra	phical p	urlin re	epresentation do	es not depict the	size
		29=27-11	-0			2-29=-177/158, 14	-18=-18	B/171,		or t	he orien	tation	of the purlin alor	ng the top and/or	
	Max Horiz	1=-168 (L	C 8)			15-17=-171/153				bot	tom choi	rd.			
	Max Uplift	1=-70 (LC	(LC 11), 16=-23 (LC 11),	NOTES				l	LOAD	CASE(S) Sta	indard		
	·	17=-135 (LC 13), 18=-146 (LC	313),	1) Unbalanced	roof live loads hav	e been o	considered for							
		20=-45 (L	C 9), 21=-40 (LC 8),		this design.										
		22=-40 (L	C 9), 23=-39 (LC 9),		2) Wind: ASCE	: 7-16; Vult=115mp	on (3-sec	cond gust)							
		24=-39 (L	C 8), 25=-40 (LC 8),		Vasa=91mp	n; ICDL=6.0pst; B	CDL=6.0	Jpst; n=35tt;	(o)				200	alle	
		26=-44 (L	C 8), 27=-30 (LC 9),		exterior zon	e and C-C Exterior	(2E) 0-4	-1 to 5-4-1	e)				A OF	MISO	
	May 0	28=-140 (LC 12), 29=-140 (LC	; 12)	Interior (1) 5	-4-1 to 5-11-2 Ext	erior(2R) 5-11-2 to 13	-0-0				950	1,00 m	
	Max Grav	1=142 (LC	21), 16=115 (LC 2	2), 20)	Interior (1) 1	3-0-0 to 22-0-5. Ex	terior(2	E) 22-0-5 to	00,			A	NATH		0
		17=204 (L	C 20), 18=218 (LC 2 C 26) 20-190 (LC 2	20), 25)	27-7-7 zone	: cantilever left and	I riaht ex	posed : end				4	S/ NATH	AINIEL V	N _
		21=179 (L	(1020), $20=100$ (1 C 2)	23), 6)	vertical left a	and right exposed;	C-Č for n	nembers and				YN.	11.	IX J	A Contraction
		23=181 (L	_C 25), 24=180 (LC 2	26).	forces & MV	VFRS for reactions	shown;	Lumber				NP	1.1	1 7	78
		25=176 (L	_C 1), 26=194 (LC 20	6),	DOL=1.60 p	late grip DOL=1.60)					W .		\mathcal{M}	11
		27=163 (L	_C 22), 28=212 (LC	19),	Truss desig	ned for wind loads	in the p	lane of the tru	SS		/	M		KAR /A	
		29=211 (L	_C 19)		only. For st	uds exposed to wir	nd (norm	al to the face)				N	O PE-202	2042259	4
FORCES	(lb) - Max	imum Com	pression/Maximum		see Standar	a Industry Gable E	nd Deta	ils as applicat	ole,			N	The second		4
	Tension				or consult q	uaimed building des	signer as	s per ANSI/TH	ч I.			Y	Nº50	JON B	C
					 Flovide ade All plotop or 	quate trainage to p		water ponding	•				WON.	AL EN	

I plates are 1.5x4 MT20 unless otherw

6) Gable requires continuous bottom chord bearing.

May 22,2024

Anne

Scolo -	1.20.2
Succest =	1.67.6

		9-11-0		
				-

Loading		(psf)	Spacing	2-0-0		CSI	0.04	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (root)		25.0	Plate Grip DOL	1.15			0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.19	Vert(IL)	n/a	-	n/a	999		
BCLL		0.0	Rep Stress Incr	YES		WB	0.06	Horiz(TL)	0.00	3	n/a	n/a		
BCDL		10.0	Code	IRC2	018/TPI2014	Matrix-S							Weight: 31 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No 2x4 SP No 2x3 SPF N Structural v 6-0-0 oc pu Rigid ceilin	.2 .2 o.2 wood shea urlins. g directly	athing directly applie applied or 10-0-0 oc	d or	 All bearings capacity of 5 Provide mec bearing plate 1, 51 lb uplifi This truss is International R802.10.2 a 	are assumed to I 65 psi. hanical connecti capable of with: at joint 3 and 33 designed in acco Residential Cod nd referenced st	be SP No.: on (by othe standing 4 B lb uplift a ordance wi e sections andard AN	2 crushing ers) of truss t 4 lb uplift at j t joint 4. th the 2018 R502.11.1 a SI/TPI 1.	o oint Ind					
	bracing.				LOAD CASE(S)	Standard								
REACTIONS	(size) Max Horiz Max Uplift Max Grav	1=9-11-0, 1=-41 (LC 1=-44 (LC 4=-33 (LC 1=185 (LC 4=417 (LC	3=9-11-0, 4=9-11-0 13) 12), 3=-51 (LC 13), 12) 225), 3=185 (LC 26) 21)	١,										
FORCES	(lb) - Maxir Tension	num Com	pression/Maximum											
TOP CHORD	1-2=-113/7	1 2-3=-1	13/79											
BOT CHORD	1-4=-3/48	3-4=-3/48	3											
WEBS	2-4=-285/2	04												
NOTES	2 . 200/2	•••												
1) Unbalance	ed roof live lo	ads have	been considered for											

- this design.
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

oodio = m2 m													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.20	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.09	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.04	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-P							Weight: 22 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood shea 6-0-0 oc purlins.	athing directly applied	7) 8) or ⁹⁾	All bearings capacity of Provide me bearing plat 1, 42 lb upli This truss is Internationa	are assumed t 565 psi. chanical conne e capable of wi ft at joint 3 and designed in ac I Residential C	to be SP No. ction (by oth ithstanding 3 9 lb uplift at ccordance w ode section	2 crushing ers) of truss 7 lb uplift at j joint 4. ith the 2018 s R502.11.1 a	to joint and					
BOT CHORD	Rigid ceiling directly a bracing.	applied or 10-0-0 oc	LC	CAD CASE(S)	Standard	stanuard An	101/1111.						

bracing **REACTIONS** (size) 1=7-3-0, 3=7-3-0, 4=7-3-0 1=-29 (LC 17) Max Horiz 1=-37 (LC 12), 3=-42 (LC 13), 4=-9 Max Uplift (LC 12) 1=143 (LC 1), 3=143 (LC 1), 4=261 Max Grav (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-69/53, 2-3=-69/60 BOT CHORD 1-4=-1/31, 3-4=-1/31 2-4=-185/154 WEBS

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- Gable studs spaced at 4-0-0 oc. 5)
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) May 22,2024

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.14	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0	Rep Stress Incr	YES		WB	0.00	Horiz(TL)	0.00	3	n/a	n/a			
BCDL	10.0	Code	IRC2018	/TPI2014	Matrix-P							Weight: 13 lb	FT = 20%	
			0)	Drovido moo	hanical connection	hu oth	ora) of truco	to						
	2v4 CD No 2		0)	bearing plate	canable of withst	anding 2	P3 lb unlift at	ioint						
	2x4 SP No.2			1 and 23 lb i	plift at joint 3			joint						
	274 01 110.2		9)	This truss is	designed in accord	dance w	ith the 2018							
	Structural wood s	heathing directly appli	, d or	International	Residential Code	sections	R502.11.1 a	and						
	4-8-0 oc purlins			R802.10.2 a	nd referenced star	ndard AN	ISI/TPI 1.							
BOT CHORD	Rigid ceiling direc	tly applied or 10-0-0 o	c LO.	AD CASE(S)	Standard									
	bracing.													
REACTIONS	(size) 1=4-7-0), 3=4-7-0												
	Max Horiz 1=16 (L	-C 16)												
	Max Uplift 1=-23 (LC 12), 3=-23 (LC 13)												
	Max Grav 1=153	(LC 1), 3=153 (LC 1)												
FORCES	(lb) - Maximum Co	ompression/Maximum												
	Tension	454/440												
	1-2=-104/137, 2-3	=-154/146												
	1-3=-94/110													
	od roof live loode be	ve been considered fo												
this design	n		ſ											
2) Wind: AS(CE 7-16: Vult=115m	ph (3-second aust)												
Vasd=91n	nph; TCDL=6.0psf; I	BCDL=6.0psf; h=35ft;												
Ke=1.00; (Cat. II; Exp C; Enclo	sed; MWFRS (envelop	be)											
exterior zo	one and C-C Exterio	r(2E) zone; cantilever	left									000	all	
and right e	exposed ; end vertic	al left and right										A OF	MIG	
exposed;C	C-C for members and	d forces & MWFRS for									9	BIE	1000	
	Shown; Lumber DOL	_= 1.60 plate grip									a	S		1
3) Truss des	, signed for wind load	s in the plane of the tru	221								H	S/ NATHA	ANIEL YC	0
only. For	studs exposed to wi	nd (normal to the face)).								the second	A FO	X	ťλ
see Stand	lard Industry Gable I	End Details as applical	ole,								RM	1.14:	10 9 *	CN -
or consult	qualified building de	signer as per ANSI/TF	ข 1.								1	ALL W	1 12	J.
Gable req	uires continuous bot	tom chord bearing.									MU	XYMUL	BER / DA	N
5) Gable stud	ds spaced at 4-0-0 c	IC.									177	PE-2022	042259	U
6) This truss	has been designed	for a 10.0 psf bottom	-I-								N	11-2022	A L	1
chord live	load nonconcurrent	with any other live loa	ds.								Y	1ºSa	G'B	19
capacity o	ys are assumed to b	e of NU.2 Clushing										ONA	LEFS	
capacity 0	n 000 pai.											and	The second	
												Ma	v 22 2024	
												ivia	y <u></u> , <u>-</u> 0 <u>-</u> -	

										RELEASE	FOR CONSTRUCTION	
Job		Truss		Truss Type		Qty	Ply			AS NOTE DEVEL	D FOR PLAN REVIEW	
P240762		V4		Valley		1	1	Job Refere	ence (optional	LEE'S	I65739553 SUMMIT, MISSOURI	
Premier Buil	ding Supply (Springh	ill, KS), S	Spring Hills, KS - 66083,		Run: 8.63 \$ ID:vaB3.II F	S Apr 26 2024 Pr 504UPEPEmI2VE	int: 8.630 S Apr Jel IzEE7u-RfC	26 2024 MiTek I ?PsB70Ha3NSa	ndustries, Inc. T Panl 8w3uITXb0	ie May 21 45:08 KWrCD07:14-002f	21/2024	•
					10.9400021		3602E170-100	in abronquiveg		1000000000000		
				<u> </u>		5-1-7						
				I					I			
									1.5x4 u			
									2			
	—								-			
				4	12 Г				-0			
	8-12									8-12		
	,				1					÷		
			4	/	<u></u>	/			3			
			0									
					*****	******	*****	******	****			
					3x4 =				1.5x4 🛚			
				I		E 4 7			I			
Scale = 1:2	0					5-1-7						
Loading	-	(psf)	Spacing	2-0-0	CSI		DEFL	in (loc)	l/defl L/d	PLATES	GRIP	
TCLL (roof)	25.0 10.0	Plate Grip DOL	1.15 1.15	TC BC	0.38	Vert(LL) Vert(TL)	n/a -	n/a 999 n/a 999	MT20	244/190	
BCLL		0.0	Rep Stress Incr	YES	WB Matrix P	0.00	Horiz(TL)	0.00 3	n/a n/a	Woight: 15 lb	ET - 20%	
		10.0	Code	8) This	truss is designed in a	accordance with	the 2018			Weight. 15 lb	11 - 2078	_
TOP CHOP	RD 2x4 SP No.2			Inter R80	rnational Residential (2.10.2 and referenced	Code sections F	R502.11.1 and	t				
WEBS	2x3 SPF No.	2		LOAD	ASE(S) Standard							
TOP CHOP	RD Structural wo	od she	athing directly applied	lor								
BOT CHOP	Rigid ceiling	directly	applied or 10-0-0 oc									
REACTION	IS (size) 1=	5-1-7, 3	3=5-1-7									
	Max Holiz 1= Max Uplift 1=	-36 (LC	5) 5 8), 3=-46 (LC 12)									
FORCES	(lb) - Maximu	im Com	pression/Maximum									
TOP CHOP	Tension RD 1-2=-93/57, 2	2-3=-14	5/189									
BOT CHOF	RD 1-3=-29/31											
1) Wind: A Vasd=9	ASCE 7-16; Vult=1 91mph; TCDL=6.0	15mph psf; BC	(3-second gust) DL=6.0psf; h=35ft;									
Ke=1.0 exterio	0; Cat. II; Exp C; I r zone and C-C Ex	Enclose	d; MWFRS (envelope E) zone; cantilever le	e) ft								
and rig expose	ht exposed ; end \ ed;C-C for member	vertical I	eft and right orces & MWFRS for								~	
reaction DOL=1	ns shown; Lumbei .60	DOL=	1.60 plate grip							OF N	AISS	
2) Truss only. F	designed for wind or studs exposed	loads ir to wind	n the plane of the trus (normal to the face),	S					A	AND	N 30c	
see Sta or cons	andard Industry Ga sult qualified buildi	able En ng desi	d Details as applicabl gner as per ANSI/TPI	e, 1.					E.	S NATHA	NIEL X	
 Gable (Gable (requires continuou studs spaced at 4-	is bottoi 0-0 oc.	m chord bearing.						ar a	the	A A	
 This tru chord li 	uss has been desig ive load nonconcu	gned foi rrent wi	r a 10.0 psf bottom th any other live load	3.					X6	avan	BER	
 All bea capacit 	rings are assumed y of 565 psi.	to be S	SP No.2 crushing						Ø	O PE-2022	042259	
7) Provide bearing	e mechanical conn plate capable of	ection (withstar	(by others) of truss to nding 36 lb uplift at joi	nt					2	SSIONA	L ENG.	
1 and 4	16 lb uplift at joint 3	3.								an	555	

May 22,2024

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply		AS NOTED FOR PLAN REVIEW
P240762	V5	Valley		1	1	Job Reference (optional	DEVELOPMENT SERVICES 165739554 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,	•	Run: 8.63 S Apr 26 2 ID:yqB3JLEo4UPEPE	2024 Print: 8. Eml2VPJeUz	630 S Apr 26 EF7u-RfC?P	5 2024 MiTek Industries, Inc. T sB70Hq3NSgPqnL8w3uITXb0	ие Мау 2048:0 ⁶ 21/2 ¹ 924
				3-1-7			

1-0-12

1.5x4 u

3x4 🚅

Scale = 1:17.4												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 9 lb	FT = 20%

International Residential Code sections R502.11.1 and

8) This truss is designed in accordance with the 2018

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x3 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 3-2-3 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 1=3-1-7, 3=3-1-7 Max Horiz 1=35 (LC 9)

Max Uplift 1=-18 (LC 8), 3=-24 (LC 12) Max Grav 1=96 (LC 1), 3=96 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-49/30, 2-3=-75/98

BOT CHORD 1-3=-15/16

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3) Gable studs spaced at 4-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing 6)

capacity of 565 psi. 7) Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 18 lb uplift at joint 1 and 24 lb uplift at joint 3.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

