

RE: P240543-01 - Roof - HM Lot 148

Site Information:

Project Customer: Clayton Properties Project Name: Woodbridge - Prairie Lot/Block: 148 Subdivision: Highland Meadows Model:

Address: 2774 SW 12th St

Mean Roof Height (feet): 35

City: Lee's Summit

State: MO

.J9

.110

J11

J13

J16

J18

LG5

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Wind Speed: 115 mph Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.6 Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16 Floor Load: N/A psf

MiTek, Inc.

314.434.1200

16023 Swingley Ridge Rd.

Chesterfield, MO 63017

Exposure Category: C

Truss Name Date

No. 12345678901123456789011223456789	Seal# 165783130 165783132 165783133 165783133 165783133 165783136 165783138 165783138 165783140 165783140 165783141 165783143 165783143 165783144 165783145 165783149 165783151 165783151 165783152 165783153	Truss Name A1 A2 A3 A4 A5 A6 A7 A8 A7 A8 A10 A11 A12 A10 A11 A12 A13 A14 A15 A16 B1 CG2 CG3 CG4 CG5 E1 H1	5/23/24 5/23/24 5/23/24 5/23/24 5/23/24 5/23/24 5/23/24 5/23/24 5/23/24 5/23/24 5/23/24 5/23/24 5/23/24 5/23/24 5/23/24 5/23/24 5/23/24 5/23/24 5/23/24	No. $356789012344567890123455555556$	Seal# 165783164 165783165 165783167 165783169 165783170 165783170 165783172 165783173 165783173 165783174 165783175 165783175 165783176 165783177 165783177 165783179 165783180 165783181 165783182 165783182 165783183 165783183 165783183 165783184 165783184 165783185 1657
19 20 212 23 24 25 267 28 29 312 332 332 333 34	l65783149 l65783150 l65783151	CG3 CG4 CG5	5/23/24 5/23/24 5/23/24 5/23/24 5/23/24 5/23/24 5/23/24 5/23/24 5/23/24 5/23/24 5/23/24 5/23/24 5/23/24 5/23/24 5/23/24 5/23/24 5/23/24	53 54 55	l65783182 l65783183 l65783184

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters

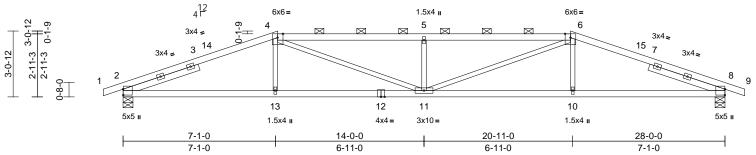
provided by Premier Building Supply (Springhill, KS)20300 W 207th Street.

Truss Design Engineer's Name: Johnson, Andrew

My license renewal date for the state of Missouri is December 31, 2025.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Johnson, Andrew


5/23/24

Spec Trues Trues <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>RELE</th><th>ASE FOR CO</th><th>NSTRUCTION</th></th<>													RELE	ASE FOR CO	NSTRUCTION
P20643-01 Alt P40 Grider 1 2 Doe Reteneous concerns Life a summ, memory Prover Rundag Skepty (Bongen) Life), genes Mits. No KKERA Mark Rundag Skepty (Bongen) Life), genes Mits. No KKERA Mark Rundag Skepty (Bongen) Life), genes Mits. No KKERA Mark Rundag Skepty (Bongen) Life), genes Mits. No KKERA Mark Rundag Skepty (Bongen) Life), genes Mits. No KKERA Mark Rundag Skepty (Bongen) Life), genes Mits. No KKERA Mark Rundag Skepty (Bongen) Life), genes Mits. No KKERA Mark Rundag Skepty (Bongen) Life), genes Mits. No KKERA Mark Rundag Skepty (Bongen) Life), genes Mits. No KKERA Mark Rundag Skepty (Bongen) Life), genes Mits. No KKERA P1 0 10 5-24 110-0. 10 10 22-0-12 28-0.0. 29-11-0. P1 0	Job	Truss		Truss Ty	rpe		Qty	F	Ply	Roof - HM	Lot 148				
Premer building Stagely (Springel M, K3) spring MB, K3 + 40003 Premer Building Stagely (Springel M, K3) spring MB, K3 + 40003	P240543-01	A1		Hip Gird	der		1		2	Job Refere	once (ontic	naľ			
Image: Section of the sectio	Premier Building Supply (S	pringhill, KS), Sp	oring Hills, KS - 66083,												2024
Image: Special of the specia			5-2-4		5-9-15		5-1 <i>1</i>	-11 NAILED		t NAILED	5-9-15	DI			
Some = 153.9 Plate Offsets (X, Y): [2:0-1:1,0-2:0]. [8:0-1:1,0-2:0]. [13:0-2:8,0-2:0] Loading TCDL (root) Specing (root) Specing (root) 2:0-0 CSI (root) DEFL (root) in (root) (root) (root) <th(root)< th=""> <th(root)< th=""> <th(roo< td=""><td>4-12 -3-3 -4 -3-3 0-</td><td></td><td>9 </td><td>3 • • 14 3x4 µ</td><td>25 26</td><td>$\begin{array}{c} 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\$</td><td>2 27 6=</td><td>20.5</td><td>21 6 11 4x1</td><td>22</td><td>30</td><td>D</td><td>7 24 10 3x4 II</td><td></td><td>9</td></th(roo<></th(root)<></th(root)<>	4-12 -3-3 -4 -3-3 0-		9 	3 • • 14 3x4 µ	25 26	$\begin{array}{c} 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\$	2 27 6=	20.5	21 6 11 4x1	22	30	D	7 24 10 3x4 II		9
Plate Offsets (X, Y): [2:0-1-1.0-2-0], [8:0-1-1.0-2-0], [1:3:0-2-8,0-2-0] Loading TCLL (root) (pot) Spacing Lumber DOL 2:0-0 1.1:5 CSI TC 0.79 WB DEFL 0.057 in Vert(L) (loc) Ideft Ld BCLL 0.0 Rep Stress Incr NO Code III.3 Stress GRIP LUMBER TOP CHORD 2:4 SP No.2 Except 3-5.57:2x4 SP 1650F 2:0-0 CSI Deft III.3 Stress Code III.3 Stress Stress Code III.3 Stress Stress Stress Stress Stress Stress Stress Stress Stress Stress </td <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td>16-1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							16-1								
TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.79 Vert(LL) -0.35 11-13 >932 240 MT20 197/144 BCL 0.0 Lumber DOL 1.15 BC 0.97 Vert(LL) -0.35 11-13 >932 240 MT20 197/144 BCDL 0.0 Lumber DOL 1.15 BC 0.97 Vert(LL) -0.35 11-13 >932 240 Mt20 197/144 LUMBER Code iRC2018/TPI2014 Matrix-S Matrix-S Matrix-S Standard NocaSE(S) Standard DFO CHORD Structural wood sheathing directly applied or 10-0-0 or parting (4-414 max); 3-7. Standard Dead Areof Live (balanced): Lumber Increase=1.15 Unbalanced or 10 ive loads have been considered for this design. Unbalanced or 10 ive loads have been considered for this design. Dead Areof Live (balanced): Lumber Increase=1.15 Dead Areof Live (balanced): Lumber Increase=1.15 Dead Areof Live (balanced): Lumber Increase=1.15 Unbalanced): Lumber Increase=1.15 Dead Areof Live (balanced): Lumber Increase=1.15 Dead Areof Live (balanced): Lumber Increase=1.15 Dead Areof Live (balanced): Lumber Increased)<		:0-1-1,0-2-0], [[8:0-1-1,0-2-0], [13:	0-2-8,0-2-0]										
 LUMBER TOP CHORD 2x4 SP No.2 *Except 3-5,5-7:2x4 SP 1650F 1.5E BOT CHORD 2x5 SPF No.2 2) All loads are considered equally applied to all plies, except if noted as fort (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B). 3) Unbalanced rof live loads have been considered for this design. 4) Unit: ASCE 7-16; Vult=115mph (3-second gust) 2-0-0 oc purins (4-414 max.): 3-7. BOT CHORD Rigid celling directly applied to 10-0 oc bracing. REACTIONS (size) 2-0-5-8, 8-0-5-8 Max Grav 2-2266 (LC 1), 8-2266 (LC 1) Max Vorit 2-3-37 (LC 34) Max Upit 2-647 (LC 8), 8-647 (LC 9) Max Grav 2-2266 (LC 1), 8-2266 (LC 1) TOP CHORD 12-20/2, 2-3-5479/1592, 3-4-80912234, 4-8-8038/2366, 67-8-00422369, 7-8-5490/1592, 8-9-02 BOT CHORD C 12-0-18/531, 3-14-10/551, 11-14-1405/5051 BOT CHORD 2-14+-1410/5041, 13-141409/5015, 11-13-2-2868/8087 1.0-11=-1415/5024, 8-10=-1415/5051 WEBS 3-14-10/531, 3-14=-855/434, 4-11=-100/49, 6-11==844/445 MOTES MOTES	TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	T	-C 3C	0.97	Vert(LL) Vert(CT) -0.0	35 11-13 64 11-13	>932 2 >519 ⁻	240 180			4
 bc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Web connected as follows: 2x3 - 1 row at 0-9-0 oc. 12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 303 lb down and 76 lb up at 22-9-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 	TOP CHORD 2x4 SP 1.5E 1.5E BOT CHORD 2x6 SP BERACING 2x3 SP TOP CHORD Structur 5-1-15 2-0-0 o BOT CHORD Rigid c BOT CHORD Rigid c BOT CHORD size) Max Hor Max Upl Max Gra FORCES FOR CES (b) - M TOP CHORD 1-2=0/2 4-6=-8(7-8=-5 BOT CHORD 2-14=7 11-13= 8-10=-7 WEBS 3-14=-7 3-13=-5 2-14=-7 11-13= 8-10=-7 WEBS 3-14=-7 3-13=-5 2-14=-7 MOTES 1) 1) 2-ply truss to be co (0.131"x3") nails as Top chords connec oc. Bottom chords connec oc. Bottom chords connec	F No.2 F No.2 F No.2 ral wood shea oc purlins, exc c purlins (4-4- eiling directly a 2=0-5-8, 8- iz 2=-37 (LC ift 2=-647 (LC v 2=2266 (LC aximum Comp n 2, 2-3=-5479/1: 038/2366, 6-7= 490/1592, 8-9= 1410/5041, 13 2285/8087, 10 1415/5051 10/519, 7-10=- 226/3312, 7-11 355/434, 4-11= nnected togeth follows: ted as follows: nected as follows:	thing directly applie cept 14 max.): 3-7. applied or 10-0-0 or =0-5-8 34) 2 8), 8=-647 (LC 9) C 1), 8=2266 (LC 1) oression/Maximum 592, 3-4=-8091/23 =-8042/2369, =0/2 -14=-1409/5015, 0-11=-1415/5024, 18/531, 1=-907/3252, =-100/49, 6-11=-844 her with 10d 2x4 - 1 row at 0-9- ws: 2x6 - 2 rows	3) ad or 4) 5 6) 7) 8) 9) 4/445 9) 10) 0 11)	except if noted CASE(S) sectic provided to dist unless otherwis Unbalanced root this design. Wind: ASCE 7- Vasd=91mph; Ke=1.00; Cat. I exterior zone al Interior (1) 4-1- Interior (1) 12-3 28-11-0 zone; c vertical left and forces & MWFF DOL=1.60 plate Provide adequa This truss has I chord live load All bearings are capacity of 425 Provide mecha bearing plate ca joint 2 and 647 This truss is de International Re R802.10.2 and Graphical purlir or the orientatic bottom chord. "NAILED" indic per NDS guidel Hanger(s) or ot provided suffici Ib down and 76 Ib up at 22-9-0	as front (F) or n. Ply to ply cc ribute only load is indicated. of live loads ha 16; Vult=115m TCDL=6.0psf; If CCL=6.0psf; If 1; Exp C; Enclo nd C-C Exterio 0 to 5-2-4, Extt -2 to 22-9-12, -antilever left a right exposed; 25 for reactions e grip DOL=1.6 ate drainage to been designed nonconcurrent assumed to b psi. nical connection apable of withs Ib uplift at joint signed in acco esidential Code referenced stan n representation on of the purlin ates Girder: 3- ines. her connection ent to support Ib up at 5-2-4 on bottom chc	back (B) fa onnections ds noted a ve been c ph (3-secc 3cOL=6.0 ssed; MWF r(2E) -0-1 rrior(2R) 5 Exterior(2 nd right es C-C for m s shown; L 0 prevent w for a 10.0 with any c e SPF No n (by othet tanding 64 8. rd acce wit s sections n does not along the 10d (0.14£ concentral , and 303 rd. The d	ace in the have be s (F) or onsidere ond gust post; h=3: RS (env. I-0 to 4- -2-4 to 1 E) 22-9- posed ; embers umber ater pon psf botth ther live 2 crushi rs) of tru F lb upli h the 20 RS02.11 SI/TPI 1. depict t top and/ " x 3") t shall be ed load(lb down esign/se	e LOAD een (B), d for) 5ft; velope) 1-0, 12-3-2, 12 to end and ding. om eloads. ing uss to ift at 18 .1 and he size or s) 303 and 76 election	1) De Pla Ur Cc	ead + Rool ate Increas ilform Loa Vert: 1-3= noncentrate Vert: 3=-1 (B), 7=-10 16=-104 (22=-104 (27=-31 (B	f Live se=1. -70, ; d Loao 04 (E B), 1: B), 23:), 28:	(balanced): 15 /ft) 3-7=-70, 7-9= ads (lb) 3), 14=-303 (lb), 7=-104 (B), 1 3=-104 (B), 2 =-31 (B), 29= 7, 17E AN TH JOI	F MISS F MISS E MISS	B), 13=-31 6=-104 (B), 20=-104 (B), 5=-31 (B), -31 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Tek° 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

								RELEASE FOR	CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply Ro	of - HM Lot 148		R PLAN REVIEW
P240543-01	A2		Hip		1	1 Jo	b Reference (optional	1 5510 01111	ENT SERVICES 5783131 AIT, MISSOURI
Premier Building Supply	(Springhill, KS), Spring	Hills, KS - 66083,		Run: 8.63 S Ap ID:amL0vgFTCç	r 26 2024 Print: 8 g9NeGbXq0IxEiz	8.630 S Apr 26 202 2DuZ6-RfC?PsB70H	4 MiTek Industries, Inc. 1 Iq3NSgPqnL8w3uITXbG	1u May 23 18:09:2205 WrCDoil 9425C?f	5/2024
	-0-11-0	7-2-4	I	14-0-0	I	20-9-1	2 1	28-0-0	28-11-0
	0-11-0	7-2-4	l	6-9-12	1	6-9-12	2	7-2-4	0-11-0
		4 L	6x6=		1.5x4 I		6x6=		
9 12		1.	ത മ		5		6		

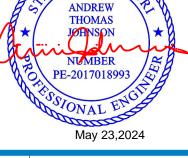
Scale = 1:53.6

Plate Offsets (X, Y): [2:0-3-5,0-0-1],	[8:0-3-5 0-0-1]										
Loading (psf) ICLL (roof) 25.0 ICDL 10.0 3CLL 0.0 3CDL 10.0	Spacing2-0Plate Grip DOL1.1Lumber DOL1.1Rep Stress IncrYE	5 5	BC	0.85 0.75 0.40	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.25 -0.47 0.12	(loc) 11 11-13 8	l/defl >999 >710 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 116 lb	GRIP 197/144 FT = 20%
3-8-6 BRACING OP CHORD Structural wood she 2-2-0 oc purlins, exc 2-0-0 oc purlins (2-9 OT CHORD Rigid ceiling directly bracing. EACTIONS (size) 2=0-5-8, 8 Max Horiz 2=-50 (L Max Grav 2=1324 (L ORCES (Ib) - Maximum Com Tension OP CHORD 1-2=-4/0, 2-4=-2782 5-6=-3475/951, 6-8= OT CHORD 2-13=-577/2537, 11: 10-11=-588/2531, 8-	I-3 max.): 4-6. applied or 7-7-12 oc 3=0-5-8 (217) C 8), 8=-303 (LC 9) LC 1), 8=1324 (LC 1) apression/Maximum /720, 4-5=-3475/951, 2782/720, 8-9=-4/0 -13=-581/2531, -10=-585/2537 278/1167, 5-11=-625/276, 10=0/290 been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope) E) -0-11-0 to 4-1-0,	 4) This truss ha chord live los 5) All bearings capacity of 5 6) Provide mec bearing plate joint 2 and 3 7) This truss is International R802.10.2 a 8) Graphical pu 	hanical connection (b capable of withstand 03 lb uplift at joint 8. designed in accordar Residential Code sen dr referenced standa rin representation dc ation of the purlin alor 1.	a 10.0 h any P No.2 by othe ding 3 nce wi ctions ard AN bes no	psf bottom other live loa 2 crushing ers) of truss t 03 lb uplift at th the 2018 R502.11.1 a SI/TPI 1. t depict the s	ds. co				STATE OF M STATE OF M ANDR THOM	

Interior (1) 14-0-0 to 20-9-12, Exterior(2R) 20-9-12 to 28-0-0, Interior (1) 28-0-0 to 28-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

May 23,2024

SSIONAL ET


						RELEASE FOR CO	NSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 148	AS NOTED FOR F DEVELOPMENT 1657	
P240543-01	A3	Hip	1	1	Job Reference (optional)	LEE'S SUMMIT	
Premier Building Supply	(Springhill, KS), Spring Hills, K	S - 66083,			or 26 2024 MiTek Industries, Inc. Tr PsB70Hq3NSgPqnL8w3uITXbGK		2024
	-0-11-0 4-6-1	9-2-4	14-0-0	18-9-		28-0-0	28-11-0
	0-11-0 4-6-1	4-8-3	4-9-12	4-9-	12 4-8-3	4-6-1	Ó-11-Ó
		12	4x6= 3x		4x6=		
			5 15 6	⊠ 16			
0-1- 8- 		1.5x4≈ 9		\sim		1.5x4 🚅	
3 3 3	3x6 =	4				8 3x6 ≥	
3-8-12 3-7-3 3-7-3	3					9	
	1 2						10 11
0	ă 🛛		14 13		12		
	6x6 II		3x8 = 4x6 =		3x8=		6x6 II
	L	9-1-0	18-1			28-0-0	
	I	9-1-0	9-10	-0	I	9-1-0	I

Scale = 1:53.7

Plate Offsets ((X, Y): [2:0-3-13,0-1-5]	, [10:0-3-13,0-1-5]											
oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.84	Vert(LL)	-0.21	12-14	>999	240	MT20	197/144
CDL	10.0	Lumber DOL	1.15		BC	0.67	Vert(CT)	-0.46	12-14	>728	180		
CLL	0.0	Rep Stress Incr	YES		WB	0.45	Horz(CT)	0.11	10	n/a	n/a		
CDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 117 lb	FT = 20%
JMBER			2)	Wind: ASCE	7-16; Vult=11	5mph (3-sec	cond gust)						
OP CHORD	2x4 SP No.2			Vasd=91mp	h; TCDL=6.0ps	f; BCDL=6.0	Opsf; h=35ft;						
OT CHORD	2x4 SP 1650F 1.5E				at. II; Exp C; En								
'EBS	2x3 SPF No.2				e and C-C Exte								
LIDER	Left 2x4 SP No.2 2	2-3-12, Right 2x4 SP)		-3-9 to 9-2-4, E								
	No.2 2-3-12				6-3-2 to 18-9-1			i0					
RACING					terior (1) 25-10								
OP CHORD	Structural wood shea	athing directly applie	ed or		ft and right exp								
	2-2-0 oc purlins, exce				d;C-C for mem			3					
	2-0-0 oc purlins (3-6-	-6 max.): 5-7.		DOL=1.60	shown; Lumbe	er DOL=1.60	plate grip						
T CHORD	Rigid ceiling directly	applied or 8-5-2 oc	3)		quate drainage	to provent	votor popdin	a					
	bracing.		3) 4)		as been design			y.					
ACTIONS	(size) 2=0-5-8, 1	0=0-5-8	4)		ad nonconcurre			ade					
	Max Horiz 2=-62 (LC	17)	5)		are assumed to								
	Max Uplift 2=-294 (LC	C 8), 10=-294 (LC 9)	capacity of 5				Jining					
	Max Grav 2=1324 (L	.C 1), 10=1324 (LC ⁻	1) 6)		hanical connec	tion (by oth	ers) of truss	to					
RCES	(lb) - Maximum Com	pression/Maximum	0)		e capable of wi								
	Tension	•			94 lb uplift at jo								
OP CHORD	1-2=-4/0, 2-4=-2735/	823, 4-5=-2530/690), 7)		designed in ac		ith the 2018						
	5-6=-2365/687, 6-7=-	-2365/687,	,	International	Residential Co	de sections	R502.11.1 a	and					
	7-8=-2530/690, 8-10	=-2735/823, 10-11=	-4/0	R802.10.2 a	nd referenced	standard AN	ISI/TPI 1.						
OT CHORD	2-14=-712/2470, 12-	14=-680/2669,	8)	Graphical pu	urlin representa	tion does no	ot depict the	size					
	10-12=-710/2470		,	or the orient	ation of the pur	lin along the	top and/or						The
EBS	5-14=-50/437, 7-12=		/202,	bottom chor	d.	-						A	Di
	6-12=-510/202, 4-14	=-135/219,	LC	DAD CASE(S)	Standard							ATE OF M	ALSS T
	8-12=-135/219			(-)							1	9 52	N'ON
OTEC											D	AV/	NO.Y

NOTES

1) Unbalanced roof live loads have been considered for this design.

						[RELEASE	FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lo	it 148		D FOR PLAN REVIEW
P240543-01	A4	Hip	1	1	Job Reference	e (optional)	LEE'S S	DPMENT SERVICES 165783133 SUMMIT, MISSOURI
Premier Building Supply (S	pringhill, KS), Spring Hills, K	S - 66083,	Run: 8.63 S Apr 26 2024 Print ID:mh5Swt0Mcjya4oKRS1QTIr)5/2024
								22 44 2
	<u> </u>	<u> </u>	<u> </u>		22-3-10 5-5-14		28-0-0 5-8-6	28-11-0
	000	0011	6x6=	4x6=	0011		000	Ö-11-Ö
+4-12 +4-12 +4-3-3 +4-12 +-1-9 -8-0	^{3x6} = 1 2 1			5		3x4 z 6	17 ^{3x6} ≈ 7	
	5x5 II	14 1.5х4 и	13 12 3x4 = 3x4 =	11 3x8=		10 1.5x4 ॥		⊠ 5x5 ॥
	5-8-6	11-1-0	16-11-0		22-3-10	1	28-0-0	1
	5-8-6	5-4-10	5-10-0		5-4-10		5-8-6	

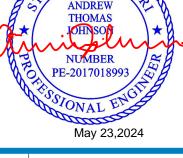
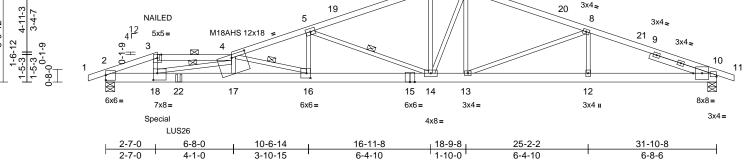

Scale = 1:54.4

Plate Offsets (X, Y): [1:0-2-8,0-0-1], [8:0-3-5,0-0-1]

oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	(psi) 25.0	Plate Grip DOL	2-0-0 1.15		TC	0.82	Vert(LL)	-0.17	· · ·	>999	240	MT20	244/190
CDL (1001)	10.0	Lumber DOL	1.15		BC	0.82	Vert(CT)	-0.32	11-13	>999	180	101120	244/190
	0.0	Rep Stress Incr	YES		WB	0.40	Horz(CT)	0.02	8	 n/a	n/a		
CDL	10.0	1 '		8/TPI2014	Matrix-S	0.10	11012(01)	0.11	0	11/4	n/a	Weight: 120 lb	FT = 20%
UMBER			2)	Wind: ASCE	7-16; Vult=115m	ph (3-sec	cond gust)						
OP CHORD	2x4 SP No.2		,	Vasd=91mpl	n; TCDL=6.0psf; E	BCDL=6.	Opsf; h=35ft;						
OT CHORD	2x4 SP No.2				t. II; Exp C; Enclo			ce)					
VEBS	2x3 SPF No.2				and C-C Exterio								
LIDER		2-11-10, Right 2x4 SP			-0-0 to 11-2-4, Ex			•					
	No.2 2-11-10				erior(2R) 16-9-12 28-11-0 zone; car			1)					
RACING					id vertical left and		0						
OP CHORD		athing directly applied	or		d forces & MWFR								
	2-2-0 oc purlins, exe 2-0-0 oc purlins (3-0				=1.60 plate grip [,					
OT CHORD	Rigid ceiling directly		3)	Provide adeo	quate drainage to	prevent	water ponding	j .					
	bracing.	applied of 7-1-5 oc	4)	This truss ha	s been designed	for a 10.0) psf bottom						
EACTIONS	0	anical, 8=0-5-8			ad nonconcurrent	,							
	Max Horiz 1=77 (LC	,	5)		assumed to be: ,	, Joint 8 S	SP No.2 crush	ning					
	Max Uplift 1=-240 (L	,		capacity of 5									
	Max Grav 1=1259 (I	,, ()	6) 7)		er(s) for truss to to hanical connectio			~					
ORCES	(lb) - Maximum Com	npression/Maximum	')		capable of withs		,						
	Tension				B3 lb uplift at joint								
OP CHORD	1-3=-2806/783, 3-4=	-2308/701,	8)		designed in acco		ith the 2018						
	4-5=-2137/719, 5-6=		,	International	Residential Code	e sections	R502.11.1 a	nd					
	6-8=-2795/801, 8-9=				nd referenced sta								
OT CHORD	1-14=-661/2543, 13		9)		rlin representation			size					
	11-13=-505/2138, 1 8-10=-686/2533	0-11=-686/2533,			ation of the purlin	along the	e top and/or					000	and
VEBS		473/196, 4-13=-10/336		bottom chore								A OF M	ALC. DIN
VLD0	,	1=-12/336, 6-11=-463/	· L\	DAD CASE(S)	Standard						0	STATE OF M	A OSCILL
	6-10=0/212	- 12/000, 0-11-400/	т ,								6	AN	NSY
	0.0-0/212										a	GY ANDR	EW YZW


NOTES

 Unbalanced roof live loads have been considered for this design.

						RELEASE FOR CONSTRUC	TION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 148	AS NOTED FOR PLAN REV DEVELOPMENT SERVIC 165783134	
P240543-01	A5	Roof Special Girder	1	1	Job Reference (optional		
Premier Building Supply	(Springhill, KS), Spring Hills, KS - 66083				6 2024 MiTek Industries, Inc. T ?PsB70Hq3NSgPqnL8w3uITXb		24
	-0-11-0 2-8-4 6-6-12 0-11-0 2-8-4 3-10-8	<u> </u>	17-0-12 6-5-14	18-8-4 1-7-8	<u>25-2-2</u> 6-5-14	31-10-8	-9-8 11-0
			4x	6= 6x6=			
$\begin{array}{c c} & & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$	NAILED 4^{12} 5x5= 9, 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	4x6 = 19 5 M18AHS 12x18 =	6- H 6	7		x4z 8 3x4z 21 9 3x4z 10	11

Scale = 1:60.1

Plate Offsets ((X, Y): [2:Edge,0-3-2],	[4:0-9-0,0-2-0], [10:0)-1-9,0-4	-0], [10:Edge,0-	2-2], [16:0-2-8,	0-3-0], [18:0	-2-8,0-4-4]						
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC20 ⁷	18/TPI2014	CSI TC BC WB Matrix-S	0.89 0.84 0.87	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.41 -0.73 0.11	(loc) 16-17 16-17 10	l/defl >921 >515 n/a	L/d 240 180 n/a	PLATES MT20 M18AHS Weight: 156 lb	GRIP 197/144 142/136 FT = 20%
		Except 15-10:2x6 \$ - 3-3-13 athing directly applie comtained by the sept -0 max.): 3-4, 6-7. applied or 7-3-4 oc 4-16, 5-14, 4-18 10=0-5-8 2 (7) C (8), 10=-314 (LC 9) C (1), 10=1541 (LC 10) C (1), 10=1541 (LC 10) (LC	SPF dor 34 5 6 7 7 7, 8 7, 8 1	 Vasd=91mp Ke=1.00; Ca exterior zom Interior (1) 6 18-8-4, Exterior zonv vertical left a forces & MW DOL=1.60 p Provide ade All plates are chord live lo Bearings are crushing cap Provide med bearing plate joint 2 and 3 This truss is International R802.10.2 a Graphical puor the orient bottom chor Use Simpson Truss, Single 		f; BCDL=6.(closed; MW rior(2E) -0-1 2, Exterior(2 to 23-8-4, li eft and right ed;C-C for n ons shown; 1.60 to prevent v unless other ed for a 10.0 d for a 10.0 d for a 10.1 si, Joint 10 S i. tion (by oth thstanding 5 bint 10. cordance wi ode sections standard AN tion does not lin along the JS26 (4-10d equivalent i)psf; h=35ft; FRS (envelop 1-0 to 6-6-12 E) 17-0-12 to thereior (1) 23- exposed ; env- embers and Lumber vater ponding wise indicater 0 psf bottom 0 psf bottom 0 psf bottom 0 psf bottom 2 2400F 2.0E PF No.2 ers) of truss to 26 lb uplift at th the 2018 R502.11.1 at (SI/TPI 1. ot depict the s top and/or Girder, 3-10o at 3-9-12 from	g, 8-4 d d. ds. o nd ize d	pro dov des res 14) In t of t LOAD (1) Do Pl Uh	vided su wn and 1 sign/sele ponsibili he LOAL he truss CASE(S ead + Rc ate Incre- niform Lu- Vert: 1-: 2-10=-2 oncentra Vert: 3=	fficient 28 lb u ction o 0 CAS are no 0 CAS A C AS A AS A C AS AS A AS AS	IP at 2-8-4 on bo f such connection hers. E(S) section, load ted as front (F) o ndard e (balanced): Lun .15 b/ft) 3-4=-70, 4-6=-70 ads (lb)), 18=-60 (B), 22= CATE OF M ANDR THOM	entrated load(s) 75 lb ttom chord. The n device(s) is the ds applied to the face r back (B). aber Increase=1.15, aber Increase=1.
NOTES 1) Unbalance this design	8-13=-624/232, 8-12 ed roof live loads have n.		813 1	2) "NAILED" in per NDS gui		3-10d (0.14	8" x 3") toe-n	nails			AN A	NUMI PE-2017	BER 018993

E Cours May 23,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

								RELEASE FOR C	ONSTRUCTION
Job	Truss	Truss Ty)e	Qty	Ply	Roof - HM Lot 1	48	AS NOTED FOR	
P240543-01	A6	Roof Sp	ecial	1	1	Job Reference	optional	DEVELOPMEN 1657 LEE'S SUMMIT	/83135 [, MISSOURI
Premier Building Supply	/ (Springhill, KS), Spring Hills	, KS - 66083,		3 S Apr 26 2024 Print: 8 vJVm61hI1uHjtts?rjzDuo		26 2024 MiTek Indust	ies, Inc. T <mark>hu May</mark>		2024
	-0-11-0 4-8-4 0-11-0 4-8-4	<u>8-6-12</u> 3-10-8	<u>13-2-0</u> 4-7-5	17-10-8		22-6-15 4-8-7	<u>27-1-10</u> 4-6-11	<u>31-10-8</u> 4-8-14	
					4x4 I				
-					7				
0 #	12			4x6 =		3x4			
3-1-4	12 4	4-0		o TR			_	1.5x4 🍫	
	3x6 = م	4x8=	5x10=	× //				⁹ 21 ^{3x6})=
	3 6	204		\mathbf{A}				10	-
$\begin{array}{c} 5-4-\\ 5-2-12\\ 2-1-3\\ 2-1-3\\ 2-1-3\\ 2-1-9\\ -1-9\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1$	1 192								11 12
				T			¥		
	⊠ 6x6 ∎	18	17 16	15	14		13		⊠ 6x6 ∎
	4.7.0	1.5x4 u	3x8= 4x4=	4x6=	4x8=	04.0.4	3x4 =	04 40 0	
	4-7-0	<u>8-8-0</u> 4-1-0	2-3-12	<u>17-10-8</u> 6-10-12	<u> </u>	<u>24-9-4</u> 6-10-12		<u>31-10-8</u> 7-1-4	

Scale = 1:60.2

LL (rónt) 25.0 DL 100 LL 000 LL 0000 LL 000 LL 00				-			-							
DL 10.0 Lumber DOL 1.15 BC 0.01 Ver(CT) 0.66 14-16 5578 180 MER PC Code Code No.2 Inc. 2018/TPI2014 Matrix-S No.2 No.2 Vincit ASCE 7-16; Vulcit 115mph (3-second guist) Vasde-91 mph; T.100-60 pst BCDU-16.0 pst BCDU-16.0 pst BCDU-16.0 pst BCDU-16.0 pst BCDU-16.0 pst BCDU-11.0 to 4-10, Interior (1) 8-1-12.24 SP Vincit ASCE 7-16; Vulcit 115mph (3-second guist) Vasde-91 mph; T.100-60 pst BCDU-10-60 pst BCDU-10-60 pst BCDU-10-60 pst BCDU-10-60 pst BCDU-10-60 pst BCDU-10-60 pst BCDU-10-10 pst 4-10, Interior (1) 8-1-12 to 17-10-8, Extenior (22) 4-8-40 to 8-4-12, Interior (1) 22-4-15 to 12-29-8 zone; Interior (21) 4-7-10 to 4-10, Interior (1) 8-4-12 to 17-10-8, Extenior (22) 4-8-40 to 8-40 second guist) Vasde-91 mph; T.100-0 to 4-10, Interior (1) 8-1-10 to 4-10, Interior (1) 8-1-21 to 17-10-8, Extenior (22) 4-8-40 to 8-40, Interior (1) 8-4-10, Interior (1) 22-4-15 to 12-29-8 zone; Interior (21) 4-8-40 to 4-8-40, IS-10 max); 4-5. Vincit ASCE (1) 1-100-10-100, Pst BCDU-10-100 Vincit ASCE (1) 1-100-10-100 V	ading	,		2-0-0		CSI	4.00	DEFL		. ,	l/defl			GRIP
LL 0.0 Rep Stress Incr YEs We Mark 0.6 Hor2(CT) 0.16 11 n/a n/a 0.0 10.0 Code IRC2018/TPI2014 Mark Mark Mark Weight: 138 lb FT = 20% WBER PCHORD 2x4 SP 1650F 1.5E Except 4.5,57.2x4 SP No.2 Vind: ASCE 7.16; VulL=115mph (3-second gust) Vind: ASCE 7.16; VulL=115mph (2-second gust) Vind: ASCE 7.16; VulL 115mph (2-second gust) Vin	· · ·							· · ·					M120	197/144
DL 10.0 Code IRC2018/TP12014 Matrix S Weight: 138 lb FT = 20% MBER PC HORD No.2 2x4 SP 1650F 1.5E "Except 14.5.5-7:2x4 SP No.2 (Wind: ASCE 7-16; Vull=115mph (3-second guist) Vasd=911mpk; TDCL=60.96; BCDL=6.0.95; h=35ft; Ke=1.00; Cat. II: Exp. C: Enclosed; MWRS is for exclore 2.0 and C-C Exterior(22): 0-11-01 to 4-1-0, Interior (1) 4-10 to 4-8-4, Exterior(22): 0-11-01 to 4-1-0, Interior (1) 4-10 to 12-4-4, Exterior(22): 0-11-01 to 4-1-0, Interior (1) 4-10 to 4-8-4, Exterior(22): 0-11-01 to 4-1-0, Interior (1) 4-10 to 4-8-4, Exterior(22): 1-01-10 to 4-10, Interior (1) 4-10 to 4-8-4, Exterior(22): 1-01-10 to 4-10, Interior (1) 4-10 to 4-8-4, Exterior(22): 1-01-10 to 10-10, 2-2-6-15, Interior (1) 2-2-6-15 to 22-9.2 core, calliever 1-3-11 or pullins, except 2-0-0 or pullins (2-0-3 max); 4-5. Provide adequate drainage to prevent water proding. 10 CHORD 10 -10 -11 -10 co 10-11 -10 -10 -10 -10 -10 -10 -10 -10 -						-								
 MBER PC CHORD 2x4 SP 1650F 1.5E "Except' 4-5.5-7:2x4 SP No.2 Vind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0pst; BCDL=6.0pst; H=35t; exterior 20ne and C-C Exterior(2E) -0-11 to 4-10, interior (1) 4-10 to 4-8.4, Exterior(2E) -0-11 to 4-10, interior (1) 28-6-15 to 23-98 zone; cantilever = -2.5-7 Vind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0pst; BCDL=6.0pst; H=35t; exterior zone and C-C Exterior(2E) -0-11 to 4-10, interior (1) 28-6-15 to 23-98 zone; cantilever = -2.5-7 Vind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0pst; BCDL=6.0pst; BCDL=6.0pst; BCDL=6.0pst; exterior zone and C-C Exterior(2E) -0-11 to 4-10, interior (1) 28-6-15 to 10 to 4-10, interior (1) 28-6-15 to 10 to 4-10, interior (1) 28-6-15 to 10 core; and variable of the 2-24 second; poster, C-CHORD Right (C-1), 11-1498 (LC1) PCHORD 12-40, 24-3306(827, 4-5s-4823/1243, 5-6s-4045/1006, 6-7z-242053, 7-8s-24444648, 28-493031/720, g-11-3-3880/77, 11-128-400, f-16-7271057, 5-16s-1280/422, g-14-4989223, 4-173-86422063, 7-48-2444649, 23-83-301/720, g-11-3-3880/77, 11-128-400, g-11-34894776, 11-138-67422063, 7-48-2444648, 28-3401720, g-11-34894776, 11-138-67422063, 7-48-2444649, 23-83-1340, g-14-24902214, 11-33-66442803, r14-24-2891214, 6-14-11822060, g-14-24921214, 6-14-11822060, g-14-24921214, 6-14-11822060, g-14-24921214, 6-14-11822060, g-14-24921224, 6-14-11822060, g-14-24992234, 6-14-11822060, g-14-24992234, 6-14-11822060, g-14-24992234, 6-14-11822060, g-14-2492234, 6-14-11822060, g-14-24992234, 6-14-11822060, g-14-2492124, 6-14-11822060, g-14-2491224, 6-14-11822060, g-14-2491224, 6-14-11822060, g-14-2491224, 6-14-11822060, g-14-2491224, 6-14-11822060, g-14-2491224,							0.69	HOIZ(CT)	0.16	11	n/a	n/a		
 B'CHORD 2/4 SP 1650F 1.5E *Except* 4-5,5-7:2/4 SP No.2 TCHORD 2/4 SP 1650F 1.5E *Except* 15-11:2/4 SP No.2 ZX SPF No.2 Left 2/4 SP No.2 - 2-4-9, Right 2/4 SP No.2 Left 2/4 SP No.2 - 2-4-9, Right 2/4 SP No.2 - 2-5-7 ACIMG 7 PCHORD Structural wood sheathing directly applied or 1-9-110 c purlins, except 2-5-7 PCHORD Rigid celling directly applied or 1-9-110 c purlins, except 2-0-00 purlins (2-0-3 max), 14-5. TC HORD Rigid celling directly applied or 2-2-0 corbitaging directly appli	,DL	10.0	Code	IRC201	18/1P12014	Matrix-S					-		vveight: 138 lb	FT = 20%
 4) This truss has been designed for a 1.0.0 psf bottom chord live loads. 4) This truss has been designed for a 1.0.0 psf bottom chord live loads. 4) This truss has been designed for a 1.0.0 psf bottom chord live loads. 4) This truss has been designed for a 1.0.0 psf bottom chord. 4) This truss has been designed for a 1.0.0 psf bottom chord. 4) This truss has been designed for a 1.0.0 psf bottom chord. 4) This truss has been designed for a 1.0.0 psf bottom chord. 4) This truss has been designed for a 1.0.0 psf bottom chord. 4) This truss has been designed for a 1.0.0 psf bottom chord. 4) This truss has been designed for a 1.0.0 psf bottom chord. 4) This truss has been designed for a 1.0.0 psf bottom chord. 4) This truss has been designed for a 1.0.0 psf bottom chord. 4) This truss has been designed for a 1.0.0 psf bottom chord. 4) This truss has been designed for a 1.0.0 psf bottom chord. 4) This truss has been designed for a 1.0.0 psf bottom chord. 4) This truss has been designed for a 1.0.0 psf bottom chord. 4) This truss has been designed for a 1.0.0 psf bottom chord. 4) This truss has been designed for a 1.0.0 psf bottom chord. 4) This truss has been designed for this design. 4) This truss has been designed for a 1.0.0 psf bottom chord. 4) This truss has been designed for this design. 4) This truss has been designed for the purinal psi bottom chord. 4) This truss has been designed for this bear designed for this design. 4) This truss has been designed for this design. 4) This truss has been designed for this bear designed for this design. 4) This truss has been designed for this bear designed for this design. 4) This truss has been designed for this design. 4) This truss has been designed for this design. 4) This truss has been designed for this design	MBER PP CHORD DT CHORD EBS IDER RACING PP CHORD	No.2 2x4 SP 1650F 1.5E No.2 2x3 SPF No.2 Left 2x4 SP No.2 2 2-5-7 Structural wood shea 1-9-11 oc purlins, ex	*Except* 15-11:2x4 \$ 2-4-9, Right 2x4 SP f athing directly applie cept	4 SP SP No.2 ed or	Vasd=91mp Ke=1.00; Ca exterior zone Interior (1) 4 Interior (1) 8 22-6-15, Inte left and right exposed;C-(reactions sh DOL=1.60	h; TCDL=6.0psf; t. II; Exp C; Enc e and C-C Exteri 1-0 to 4-8-4, Ex -6-12 to 17-10-8 prior (1) 22-6-15 exposed ; end v C for members a pown; Lumber DC	BCDL=6. losed; MW or(2E) -0-1 tterior(2E) - , Exterior(2 to 32-9-8 vertical left nd forces { DL=1.60 pla	Dpsf; h=35ft; FRS (envelop 1-0 to 4-1-0, 4-8-4 to 8-6-1 2R) 17-10-8 tt cone; cantilev and right & MWFRS for ate grip	2, 5 er					
 I Row at midpt 6-14 ACTIONS (size) 2-0-5-8, 11-0-5-8 Max Horiz 2-308 (LC 8), 11=-277 (LC 9) Max Grav 2=1498 (LC 1), 11=1498 (LC 1) IRCES (b) - Maximum Compression/Maximum Tension IP CHORD 1-2=-440, 2-4=-3306/847, 4-5=-4823/1243, 5-6=-4045/1006, 6-7=242/e553, 7-8=-2444/645, 8-9=-3031/720, 9-11=-3189/777, 11-12=-4/0 IT CHORD 2-18=-728/3016, 17-18=-731/3013, 16-17=-1139/4776, 14-16=-705/3214, 13-14=-594/2752, 11-13=-654/2866, 6-16=-217/1057, 5-16=-1260/402, 8-14=-c49/223, 8-13=-114/147 Unbalanced roof live loads have been considered for this design. EB and pixel and pix	T CHORD	Rigid ceiling directly	,	4) This truss ha	s been designe	d for a 10.0) psf bottom						
 Carlinows (size) 2=0-9.4 (LC 13) Max Horiz 2=-9.4 (LC 13) Max Grav 2=1498 (LC 1), 11=498 (LC 1) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 308 lb uplift at joint 2 and 277 lb uplift at joint 11. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 308 lb uplift at joint 2 and 277 lb uplift at joint 11. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Graphical puttin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard Unbalanced roof live loads have been considered for this design. 	EBS	0	6-14	5)	, 0									
 Max Holit Z=-94 (LC 13) Max Uplift Z=-308 (LC 1), 11=277 (LC 9) Max Grav 2=1498 (LC 1), 11=1498 (LC 1) RCES (lb) - Maximum Compression/Maximum Tension P CHORD 1-2=-40, 2-4=-3306/847, 4-5=-4823/1243, 5-6=-4045/1006, 6-7=-2442/653, 7-8=-2444/645, 8-9=-3031/720, 9-11=-3189/777, 11-12=-40 P CHORD 2-18=-728/3016, 17-18=-731/3013, 16-17=-1139/4776, 14-16=-705/3214, 13-14=-594/2752, 11-13=-654/2886 EBS 4-18=0/173, 4-17=-464/2000, 5-17=-838/226, 7-14=-258/1214, 6-14=-1182/360, 6-16=-217/1057, 5-16=-1260/402, 8-14=-649/223, 8-13=0/268, 9-13=-114/147 Drbalanced roof live loads have been considered for this design. 	ACTIONS	(size) 2=0-5-8, 1	1=0-5-8				Joint 11 S	P No.2 crush	ing					
Max Uplift 2=-308 (LC 8), 11=-277 (LC 9) Max Grav 2=1498 (LC 1), 11=1498 (LC 1) RCES (b) - Maximum Compression/Maximum Tension P CHORD 1-2=-4/0, 2-4=-3306/847, 4-5=-4823/1243, 5-6=-4045/1006, 6-7=-2442/653, 7-8=-2444/645, 8-9=-3031/720, 9-11=-3189/777, 11-12=-4/0 OF CHORD 2-18=-728/3016, 17-18=-731/3013, 16-17=-1139/4776, 14-16=-705/3214, 13-14=-594/2752, 11-13=-654/2886 EBS 4-18=0/173, 4-17=-464/2000, 5-17=-838/226, 7-14=-258/1214, 6-14=-1182/300, 6-16=-217/1057, 5-16=-1260/402, 8-14=-649/223, 8-13=0/268, 9-13=-114/147 VTES Unbalanced roof live loads have been considered for this design.		()		6			ion (hu oth	oro) of truco t	•					
 Max Grav 2=1498 (LC 1), 11=1498 (LC 1) precession precessio		Max Uplift 2=-308 (L	C 8), 11=-277 (LC 9))										
 IRCES (Ib) - Maximum Compression/Maximum Tension IP CHORD 1-2=-4/0, 2-4=-3306/847, 4-5=-4823/1243, 5-6=-4045/1006, 6-7=-2442/653, 7-8=-2444/645, 8-9=-30317/20, 9-11=-3189/777, 11-12=-4/0 IT CHORD 2-18=-728/3016, 17-18=-731/3013, 16-17=-1139/4776, 14-16=-705/3214, 13-14=-594/2752, 11-13=-654/2886 IEBS 4-18=-0173, 4-17=-64/2000, 5-17=-838/226, 7-14=-258/1214, 6-14=-1182/360, 6-16=-217/1057, 5-16=-1260/402, 8-14=-649/223, 8-13=-0/268, 9-13=-114/147 ID Dalanced roof live loads have been considered for this design. 		Max Grav 2=1498 (L	.C 1), 11=1498 (LC	1)				oo in upiin at						
Tension PP CHORD 1-2=-4/0, 2-4=-3306/847, 4-5=-4823/1243, 5-6=-4045/1006, 6-7=-2442/653, 7-8=-2444/645, 8-9=-3031/720, 9-11=-3189/777, 11-12=-4/0 DT CHORD 2-18=-728/3016, 17-18=-731/3013, 16-17=-1139/4776, 14-16=-705/3214, 13-14=-594/2752, 11-13=-654/2886 EBS 4-18=0/173, 4-17=-464/2000, 5-17=-838/226, 7-14=-258/1214, 6-14=-1182/360, 6-16=-217/1057, 5-16=-1260/402, 8-14=-649/223, 8-13=-0/268, 9-13=-114/147 DTES Unbalanced roof live loads have been considered for this design.	RCES	(lb) - Maximum Com	pression/Maximum	7				ith the 2018						
 5-6=-4045/1006, 6-7=-2442/653, 7-8=-2444/645, 8-9=-3031/720, 9-11=-3189/777, 11-12=-4/0 b) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard EBS 4-18=0/173, 4-17=-464/2000, 5-17=-838/226, 7-14=-258/1214, 6-14=-1182/360, 6-16=-217/1057, 5-16=-1260/402, 8-14=-649/223, 8-13=0/268, 9-13=-114/147 DTES Unbalanced roof live loads have been considered for this design. B) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard Coaplication of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard Coaplication of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard Coaplication of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard Coaplication of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard Coaplication of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard Coaplication of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard Coaplication of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard Coaplication of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard Coaplication of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard Coaplication of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard Coaplication of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard Coaplication of the purlin chord of the pu		Tension		- ,					nd					
13-14=-594/2752, 11-13=-654/2886 EBS 4-18=0/173, 4-17=-464/2000, 5-17=-838/226, 7-14=-258/1214, 6-14=-1182/360, 6-16=-217/1057, 5-16=-1260/402, 8-14=-649/223, 8-13=0/268, 9-13=-114/147 DTES Unbalanced roof live loads have been considered for this design.	P CHORD	5-6=-4045/1006, 6-7	=-2442/653,	,) Graphical pu	Irlin representati	on does no	ot depict the s	ize				55000	an
13-14=-594/2752, 11-13=-654/2886 EBS 4-18=0/173, 4-17=-464/2000, 5-17=-838/226, 7-14=-258/1214, 6-14=-1182/360, 6-16=-217/1057, 5-16=-1260/402, 8-14=-649/223, 8-13=0/268, 9-13=-114/147 DTES Unbalanced roof live loads have been considered for this design.		9-11=-3189/777, 11-	12=-4/0		bottom chore	d	0						A OF I	AIS C
13-14=-594/2752, 11-13=-654/2886 EBS 4-18=0/173, 4-17=-464/2000, 5-17=-838/226, 7-14=-258/1214, 6-14=-1182/360, 6-16=-217/1057, 5-16=-1260/402, 8-14=-649/223, 8-13=0/268, 9-13=-114/147 DTES Unbalanced roof live loads have been considered for this design.	T CHORD			L	OAD CASE(S)	Standard						4	9.51	NOS-
EBS 4-18=0/173, 4-17=-464/2000, 5-17=-838/226, 7-14=-258/1214, 6-14=-1182/360, 6-16=-217/1057, 5-16=-1260/402, 8-14=-649/223, 8-13=0/268, 9-13=-114/147 VIDBalanced roof live loads have been considered for Unbalanced roof live loads have been considered for FILS OF THE SOLUTION STATE												B	ANDR	FW XP.V
CONAL EN	EBS	4-18=0/173, 4-17=-4 7-14=-258/1214, 6-1 6-16=-217/1057, 5-1	64/2000, 5-17=-838 4=-1182/360, 6=-1260/402,	,							l	ti	THOM	IAS SON +
			been considered for	r								SAC		NOB
													and and	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

lek 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

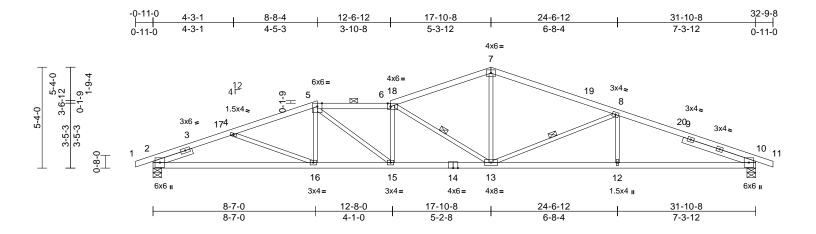
						RELEASE FOR CO	ONSTRUCTION
Job	Truss	Truss Type	Qty	Ply Roo	f - HM Lot 148	AS NOTED FOR F DEVELOPMENT 1657	
P240543-01	A7	Roof Special	1	1 _{Job}	Reference (optional)		
Premier Building Supply	r (Springhill, KS), Spring Hills, KS - 66083,		•		MiTek Industries, Inc. T NSgPqnL8w3uITXbGK		2024
	-0-11-0 6-8-4		7-10-8		25-1-0	31-10-8	32-9-8
	0-11-0 6-8-4	3-10-8	7-3-12		7-2-8	6-9-8	0-11-0
				4x8=			
\top \top			<u></u>	6			
5-4-0 2 2-5-4	4 ¹²	ovo 5.40 18			19 3x	4=	
أماره	3x4 ₌ ∽	6x6= 5x10=				7	4=
5-4-0 2-9-32-10-12 2-9-3 0-1-9 0	3x4 = 3 17 0					20 ^{3x4} ≈	
<u>9-37</u>	16		R		A	0 7/5	
	1 2				_		9 10
		15 14		12	t	1	
	6x6 II	15 14 1.5x4 II 3x6=	MT18HS 3x10 =			т 5х4 п	6x6 II
				4x8=			
	6-7-0		17-10-8		25-1-0	31-10-8	
	6-7-0	4-1-0	7-2-8	I	7-2-8	6-9-8	I

Scale = 1:59.8

Plate Offsets (2	X, Y): [2:0-3-13,0-1-5]], [5:0-4-12,Edge], [9	:0-3-13,0-	1-5], [14:0-2-8,	.0-1-8]								
Loading ICLL (roof) ICDL ICDL ICDL ICDL ICDL ICDE	(psf) 25.0 10.0 0.0 10.0 2x4 SP 1650F 1.5E No.2 2x4 SP 1650F 1.5E	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code *Except* 4-5:2x4 SP	2-0-0 1.15 1.15 YES IRC201	8/TPI2014 Wind: ASCE Vasd=91mpi Ke=1.00; Ca exterior zone	0-1-8] TC BC WB Matrix-S 7-16; Vult=115 n; TCDL=6.0ps t. II; Exp C; Enn e and C-C Extel 1-0 to 6-8-4. E	f; BCDL=6.0 closed; MW rior(2E) -0-1)psf; h=35ft; FRS (enveloj 1-0 to 4-1-0,	-0.60 0.16	(loc) 12-14 12-14 9	l/defl >999 >634 n/a	L/d 240 180 n/a		GRIP 197/144 244/190 FT = 20%
	2x3 SPF No.2 *Exce Left 2x4 SP No.2 - 3 3-6-9 Structural wood sheat except 2-0-0 oc purlins (2-6 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-5-8, 9 Max Horiz 2=-94 (LC Max Uplift 2=-308 (L Max Grav 2=1498 (L	-5-5-4, Right 2x4 SP I athing directly applie -11 max.): 4-5. applied or 7-5-4 oc 5-12, 7-12)=0-5-8 13) C 8), 9=-276 (LC 9)	No.2 d, 3) 4) 5) 6) 7)	Interior (1) 11 22-10-8, Inter left and right exposed;C-C reactions sho DOL=1.60 Provide adec All plates are This truss ha chord live loa All bearings capacity of 5 Provide mec	0-6-12 to 17-10 rior (1) 22-10-8 exposed ; end c for members a pown; Lumber D quate drainage MT20 plates u is been designe ad nonconcurre are assumed to 65 psi. hanical connect	I-8, Exterior to 32-9-8 z vertical left and forces & OL=1.60 pla to prevent v inless other ed for a 10.0 ont with any b be SP 165 tion (by other	(2R) 17-10-8 one; cantilev and right & MWFRS for ate grip vater ponding wise indicate) psf bottom other live loa OF 1.5E cruss t	to ver r d. ds. hing xo					
FORCES	(lb) - Maximum Com Tension 1-2=-4/0, 2-4=-3268/	pression/Maximum	8)	joint 2 and 2 This truss is	e capable of wit 76 lb uplift at jo designed in ac Residential Co	int 9. cordance wi	th the 2018						
SOT CHORD	5-6=-2508/664, 6-7= 7-9=-3250/775, 9-10 2-15=-696/2982, 14- 12-14=-939/4039, 11 9-11=-658/2969	=-4/0 15=-699/2977, 1-12=-658/2969,	9) /2000 LC	R802.10.2 ar Graphical pu	nd referenced s Irlin representat ation of the purl d.	standard AN	SI/TPI 1. of depict the s				A	STATE OF M	AISSOL
'EBS OTES Unbalance	4-15=0/205, 4-14=-2 5-12=-1842/522, 6-1 7-12=-818/270, 7-11 ed roof live loads have	2=-164/1020, =0/273								(*	ANDR THOM JOHNS	

this design.

PE-201, PE-201 CL


May 23,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

lek[®]

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW
300	11035	Thuss Type		I IV		DEVELOPMENT SERVICES 165783137
P240543-01	A8	Roof Special	1	1	Job Reference (optional)	
	-	·				

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May **30879** ADD S Apr 26 2024 MiTek Industries, Inc. Thu May **30879** ADD S Apr 26 2024 MiTek Industries, Inc. Thu May **30879** ADD S Apr 26 2024 MiTek Industries, Inc. Thu May **30879** ADD S Apr 26 2024 MiTek Industries, Inc. Thu May **30879** ADD S Apr 26 2024 MiTek Industries, Inc. Thu May **30879** ADD S Apr 26 2024 MiTek Industries, Inc. Thu May **30879** ADD S Apr 26 2024 MiTek Industries, Inc. Thu May **30879** ADD S Apr 26 2024 MiTek Industries, Inc. Thu May **30879** ADD S Apr 26 2024 MiTek Industries, Inc. Thu May **30879** ADD S Apr 26 2024 MiTek Industries, Inc. Thu May **30879** ADD S Apr 26 2024 MiTek Industries, Inc. Thu May **30879** ADD S Apr 26 2024 MiTek Industries, Inc. Thu May **30879** ADD S Apr 26 2024 MiTek Industries, Inc. Thu May **30879** ADD S Apr 26 2024 MiTek Industries, Inc. Thu May **30879** ADD S Apr 26 2024 MiTek Industries, Inc. Thu May **30879** ADD S Apr 26 2024 MiTek Industries, Inc. Thu May **30879** ADD S Apr 36 ADD

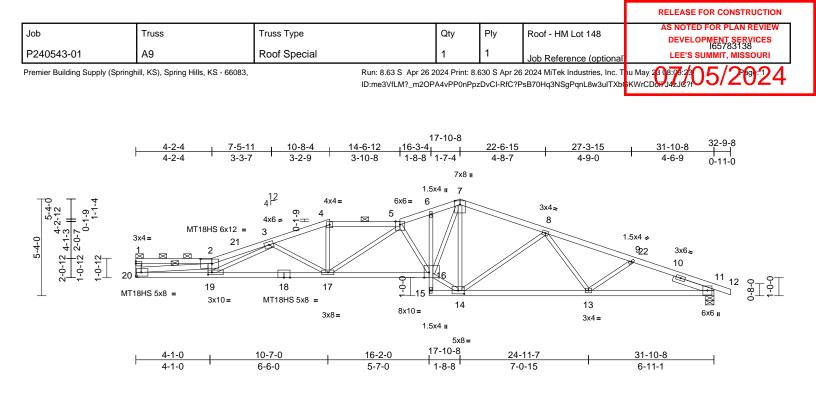

Scale = 1:60.9

Plate Offsets ((X, Y): [2:0-3-13,0-1-5], [6:0-1-12,0-2-0], [1	0:0-3-13,0)-1-5]									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.70 0.93 0.50	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.27 -0.50 0.16	(loc) 13-15 13-15 10	l/defl >999 >766 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 139 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2x4 SP 1650F 1.5E No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 2 4-0-8 Structural wood shea 2-10-11 oc purlins, e 2-0-0 oc purlins (2-1	2-2-2, Right 2x4 SP N athing directly applie except	lo.2	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 Interior (1) 1. 22-10-8, Inte left and right exposed;C-C reactions shu DOL=1.60	7-16; Vult=115n n; TCDL=6.0psf; t. II; Exp C; Encl e and C-C Exterior -0-9 to 8-8-4, Ext 2-6-12 to 17-10-8 rior (1) 22-10-8 t exposed ; end v C for members ar bwn; Lumber DC	BCDL=6.0 osed; MW or(2E) -0-1 terior(2E) 8 8, Exterior to 32-9-8 z ertical left and forces 8 0L=1.60 pla	Desf; h=35ft; FRS (envelo 1-0 to 4-0-9, 3-8-4 to 12-6 (2R) 17-10-8 one; cantilev and right MWFRS for ate grip	-12, to ver r					
BOT CHORD WEBS REACTIONS	Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-5-8, 1 Max Horiz 2=-94 (LC Max Uplift 2=-308 (L Max Grav 2=1498 (L	6-13, 8-13 10=0-5-8 : 13) C 8), 10=-274 (LC 9)		This truss ha chord live loa All bearings capacity of 5 Provide mec bearing plate	quate drainage to is been designed ad nonconcurren are assumed to l 65 psi. hanical connectii capable of with 74 lb uplift at join	t for a 10.0 t with any be SP No.3 on (by othe standing 3) psf bottom other live loa 2 crushing ers) of truss t	ads. to					
FORCES	(lb) - Maximum Com Tension 1-2=-4/0, 2-4=-3144/ 5-6=-3426/938, 6-7= 7-8=-2475/666, 8-10	/864, 4-5=-3052/788, ⊷2464/680,)=-3221/778, 10-11=-	8)	This truss is International R802.10.2 a Graphical pu or the orienta	designed in acco Residential Cod nd referenced sta rlin representatio ation of the purlin	ordance wi le sections andard AN on does no	R502.11.1 a SI/TPI 1. t depict the s						The second se
BOT CHORD WEBS NOTES 1) Unbalance this design	2-16=-746/2842, 15- 13-15=-785/3413, 12 10-12=-656/2944 5-16=0/251, 5-15=-2 7-13=-217/1105, 6-1 8-13=-806/258, 8-12 ed roof live loads have h.	2-13=-656/2944, 207/708, 6-15=-395/1 3=-1325/394, =0/288, 4-16=-36/16	69,	bottom chord						l		STATE OF M ANDR THOM JOHNS	ANN THE

NUMBER PE-2017018993 SIONAL EL May 23,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)


```
Scale = 1:63.5
```

Plate Offsets (X, Y): [2:0-7-8,0-3-0], [11:0-3-13,0-1-5], [14:0-4-0,0-2-4], [16:0-3-4,Edge], [19:0-2-8,0-1-8]													
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.98 0.90 0.87	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 17-19 17-19 11	l/defl >754 >407 n/a	L/d 240 180 n/a	PLATES MT18HS MT20	GRIP 244/190 244/190
BCDL	10.0	Code	IRC2018	B/TPI2014	Matrix-S							Weight: 145 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	1.5E 2x4 SP 2400F 2.0E No.2, 15-11:2x4 SP 1650F 1.5E 2x3 SPF No.2 *Exce No.2 Right 2x4 SP No.2	*Except* 6-15:2x3 SF No.2, 18-16:2x4 SP pt* 20-1,20-2:2x4 SF	2) PF	this design. Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 14-6-12, Inte 17-10-8 to 22 cantilever lef right exposed	roof live loads h 7-16; Vult=115 n; TCDL=6.0psf t. II; Exp C; Enc and C-C Exter 2-4 to 10-8-4, E rior (1) 14-6-12 2-6-15, Interior (t and right expo d;C-C for memb	mph (3-sec ; BCDL=6. losed; MW ior(2E) 0-1 Exterior(2E) to 17-10-8 (1) 22-6-15 sed ; end v ers and for	ond gust) psf; h=35ft; FRS (envelo 12 to 4-2-4, 10-8-4 to Exterior(2R to 32-9-8 zo ertical left ar ces & MWFF	pe)) ne; nd					
BOT CHORD		, and 2-0-0 oc purlins 5.	3)	DOL=1.60 Provide adeo	shown; Lumber	o prevent v	vater ponding						
		LC 9), 20=-265 (LC 8 (LC 1), 20=1427 (LC	3) ´ 1)	The Fabricat This truss ha chord live loa Bearings are crushing cap Refer to gird Provide mec	MT20 plates u ion Tolerance a is been designe ad nonconcurren assumed to be acity of 565 psi er(s) for truss to hanical connect e capable of witt	t joint 16 = d for a 10.0 nt with any : , Joint 11 o truss conr ion (by oth	12%) psf bottom other live loa SP No.2 ections. ers) of truss	ads. to					
TOP CHORD BOT CHORD	1-20=-222/108, 1-2= 2-3=-6419/1604, 3-4 4-5=-3553/939, 5-6= 6-7=-3347/919, 7-8= 8-9=-3022/741, 9-11 19-20=-1367/5947,	!=-3799/974, 3450/927, 2429/676, =-3172/784, 11-12=- 17-19=-1009/4340,	4/0	joint 20 and 2) This truss is International R802.10.2 an) Graphical pu	274 lb uplift at jo designed in acc Residential Coo nd referenced s rlin representati ation of the purli	oint 11. cordance w de sections tandard AN ion does no	th the 2018 R502.11.1 a SI/TPI 1. t depict the s	and			ł	ANDR	
WEBS	16-17=-887/3898, 11 6-16=-34/137, 14-15 13-14=-623/2740, 1: 2-20=-5560/1348, 4: 5-16=-1356/417, 7-1 7-14=-826/195, 14-1 8-14=-647/223, 8-13 5-17=-425/150, 2-19 3-17=-861/309, 3-19	5=-48/119, 1-13=-667/2870 17=-158/883, 6=-600/2536, 6=-472/2509, 5=0/275, 9-13=-109/1 0=-1076/349,		bottom chord						(* A Physic	NUMI PE-2017	BER 018993

May 23,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

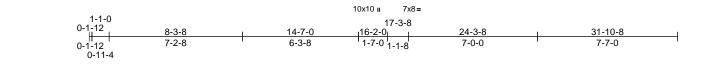
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 165783139
P240543-01	A10	Roof Special	1	1	Job Reference (optional	
Premier Building Supply	(Springhill, KS), Spring Hills, KS - 66083,				r 26 2024 MiTek Industries, Inc. 1 PsB70Hq3NSgPqnL8w3uITXbGł	
	<u>3-2-14</u> 6-2-4 3-2-14 2-11-6		17-10-8 <u>3-3-4</u> 16-6-12 -7-0 0-3-8 1-3-12 3x4= 4x4 =	1	25-7-0 7-8-9	31-10-8 6-3-7 32-9-8 -1 0-11-0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3x4 II MT18HS 5x8 = 12×203 $19 \times 4x8 = 18$ 4x8 = 3x10	3 17 = 5x10=	3x4= 7 ⁶⁵ ⁶ ⁶ ⁶ ⁶ ⁶ ⁶ ⁶ ⁶	4x8= 8 14 5x8=	22 3x4= 9 13 1.5x4 µ	3x4≥ 23 10 11 12 0 6x6 ⊪
	0-1-12 <u>6-3-8</u> 6 -1-12 <u>6</u> -1-12		<u>-2-0 19-6-6</u> 7-0 3-4-6	- 	25-7-0 6-0-10	<u>31-10-8</u> 6-3-7

Scale = 1:63.5

	, i): [0:0 0 12,Edge	, [1.0 £ 0,Edg0], [0.		0], [11:0 0 10,0	, 1 0], [10:0 2 0,0	, , , , , , , , , , , , , , , , , , , ,	0 1 0,0 2 0]						
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.92 0.93 0.98	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 17-18 17-18 11	l/defl >976 >526 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 147 lb	GRIP 244/190 197/144 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS	Right 2x4 SP No.2 - Structural wood she except end verticals (2-3-6 max.): 1-3, 4- Rigid ceiling directly bracing. 1 Row at midpt (size) 11=0-5-8, Max Horiz 19=-122 (Max Uplift 11=-271 (Max Grav 11=1493 (lb) - Maximum Com Tension 1-19=-132/70, 1-2=- 3-4=-3366/880, 4-5= 5-6=-3209/905, 6-8= 7-8=-204/47, 8-9=-2 9-11=-3235/791, 11: 18-19=-691/2949, 1 16-17=-710/3223, 1: 5-16=-350/133, 14-1 13-18=-871/301, 3-17 4-17=-96/683, 5-17= 14-16=-539/2466, 8 2-18=-517/2388, 2-1 9-14=-619/206, 9-13	*Except* 5-15:2x3 Si No.2 spt* 19-1:2x4 SP No. - 3-3-6 athing directly applie , and 2-0-0 oc purlins 8. applied or 2-2-0 oc 3-17 , 19= Mechanical (LC 1), 19=1427 (LC 1) (LC 9), 19=-266 (LC 1) (LC 1), 19=1427 (LC 1) (LC 1), 19=-266 (LC 1) (LC 1), 19=-266 (LC 1) (LC 2), 19=-26	PF 2 d, 3 4 5 5 6 6 7 5 6 7 7 276, 9 7 7/26, 10 10 10 11 11 11 11 11 11 11	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5 16-6-12, Inte 17-10-8 to 2: cantilever lef right expose for reactions DOL=1.60 Provide aded This truss ha chord live loa Bearings are crushing cap Refer to gird Provide mec bearing plate joint 11 and 3 This truss is International R802.10.2 a		BCDL=6. based; MW bor(2E) 0-1 Exterior(2I o 17-10-8 I) 22-10-8 ed; end v ars and for DOL=1.6(b prevent v less other I for a 10. t with any , Joint 11 truss conro n (by oth standing 2 nt 19. or dance w e sections andard AM on does no	Dipsf; h=35ft; FRS (envelo -12 to 5-1-12 E) 12-8-4 to , Exterior(2R to 32-9-8 zo rertical left ar ccs & MWFF) plate grip water pondin- wise indicate) psf bottom other live loa SP No.2 mections. erers) of truss i 71 lb uplift ar ith the 2018 R502.11.1 a (SI/TP1 1. th depict the si	, , , , , , , , , , , , , , , , , , ,		(STATE OF M ANDR THOM JUFFINS NUME PE-20170	AS BER D18993

NONAL EL

May 23,2024


16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

[| k

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Plate Offsets (X, Y): [3:0-3-12,Edge], [7:0-2-0,Edge], [8:0-6-4,0-2-0], [11:0-3-13,0-1-5], [18:0-2-8,0-1-8], [19:0-4-8,0-2-0]

$\begin{array}{c c c c c c c c c c c c c c c c c c c $							RELEASE FOR CONSTRUCTION
P240543-01A11Roof Special11Job Reference (optional)LEE'S SUMMIT, MISSOURIPremier Building Supply (Springhill, KS), Spring Hills, KS - 66083.Rur: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MTek Industries, Inc. The May 40.80440 D5/2024Internet and the second secon	Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 148	
$D_{2.}\mu FmmYPVKN77V662Y96xF2DV74.FRC?PsB70Hq3NSgPqnL8w3uTXb} FKWrCDwfJ4zJe?DV74C2C24$	P240543-01	A11	Roof Special	1	1	Job Reference (optional	
$\frac{1+2-4}{1-2-4} + \frac{4\cdot8\cdot4}{3\cdot6\cdot0} + \frac{8\cdot2\cdot4}{3\cdot6\cdot0} + \frac{14\cdot8\cdot4}{6\cdot6\cdot0} + \frac{16\cdot3\cdot4}{1-7\cdot0} + \frac{22\cdot1\cdot9}{4\cdot11\cdot5} + \frac{26\cdot6\cdot3}{4\cdot4\cdot10} + \frac{31\cdot10\cdot8}{5\cdot4\cdot5} + \frac{32\cdot9\cdot8}{0\cdot11\cdot0}$	Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,					
8x8 = $4x6 = 3x4 =$ $4x6 = 3x4 =$ $4x6 = 3x4 =$ $5x10 =$ $3x4x =$ $8x8 =$ $3x4x =$ $9 = 1.5x4 *$ $9 = 1.5x4 *$ $9 = 1.5x4 *$ $9 = 1.5x4 *$ $10 = 24$ $11 = 12$ $12 = 13$ $9 = 1.5x4 *$ $9 = 1.5x4 *$ $9 = 1.5x4 *$ $9 = 1.5x4 *$ $10 = 24$ $11 = 12$ $12 = 13$ $9 = 1.5x4 *$ $10 = 24$ $11 = 12$ $12 = 13$ $9 = 1.5x4 *$ $10 = 24$ $11 = 12$ $12 = 13$ $9 = 1.5x4 *$ $10 = 24$ $11 = 12$ $12 = 13$ $10 = 12$ $12 = 13$ $10 = 12$ $12 = 13$ $10 = 12$ $12 = 13$ $10 = 12$ $12 = 13$ $10 = 12$ $12 = 13$ $10 = 12$ $12 = 13$ $10 = 12$ $12 = 13$ $10 = 12$ $12 = 13$ $10 = 12$ $12 = 13$ $10 = 12$ $12 = 13$ $10 = 12$ $12 = 13$ $10 = 12$ $12 = 13$ $10 = 12$ $12 = 13$ $10 = 12$ $12 = 13$ $10 = 12$ $12 = 13$ $10 = 12$ $12 = 13$ $10 = 12$ $12 = 13$ $10 = 12$ $12 = 13$ $10 = 12$ $10 =$		4-0-4 0-2-4		<u> 16-3-4</u> -7-0			51-10-0
$ \begin{array}{c} \overset{N}{\overset{O}}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}}{\overset{O}{\\{\bullet}}{\overset{O}{\overset{O}{\\{\bullet}}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{{\bullet}}{\overset{O}{\\{\bullet}}{\\{\bullet}}{\overset{O}{\overset{O}{{\bullet}}{\overset{O}{\\{\bullet}}{\overset{O}{\\{\bullet}}{\overset{O}{\\{\bullet}}{\overset{O}{\overset{O}{{}}}{\overset{O}{\\{\bullet}{\circ{O}}{\\{\bullet}}{\overset{\bullet}{\\{O}}{\\{\bullet}}{\overset{\bullet{O}}{\overset{\bullet{O}}{{}}{\\{\bullet}}{{}}}{\overset{\bullet}{{}}}{{}}}{{}}{{}}}{\overset{\circ{O}}{{}}}{\\{}}}{{}}}{{}}}}}}}}}}}}}}}}$				8x8=			
	5-6-12 3-3-4-12 3-3-3 # 5-5-6- 2-3-3 # 2-0-7 2-0-0 0-1-9 0-1-9	4x4 = $6x6 =$ $4x6 =$ 21 20 $4x6 =$ 22 $3x$ 22 $3x$ 22 20	5x10=	5 6 7 0 18 16		8 3x4 z 9 1.5x4 10	24 ^{3x6} ≈ 11 12 13 0 0

Scale = 1:62.4

ale Olisels (X, Y): [4:0-4-12,Edge], [1.0-4-12,0-1-0], [12]	.0-3-13,0	5-1-5], [17.0-5-	0,0-0-0], [19:0-2	-0,0-1-0], [∠ 1.0-4-0,0-1- I	oj					-
bading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0		1.15		TC	0.85	· · ·		17-18	>999	240	MT20	197/144
CDL	10.0		1.15		BC	0.89	Vert(CT)		18-19	>604	180		
CLL	0.0	1 '	YES		WB	0.86	Horz(CT)	0.23	12	n/a	n/a		
DL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 151 lb	FT = 20%
IMBER			N	OTES									
OP CHORD	2x4 SP No.2 *Excep 1.5E	ot* 4-5:2x4 SP 1650F	1)	Unbalanced this design.	roof live loads h	ave been	considered fo	or					
OT CHORD	2x4 SP 1650F 1.5E	*Except* 6-16:2x3 SPI	= 2)	Wind: ASCE	7-16; Vult=115 h; TCDL=6.0psf								
EBS	No.2, 16-12:2x4 SP 2x3 SPF No.2 *Exce	pt* 15-17,21-1:2x4 SF	,		at. II; Exp C; Enc			pe)					
	No.2	•		exterior zone	e and C-C Exteri	ior(2E) 4-1	-12 to 5-2-4,						
IDER	Right 2x4 SP No.2	- 2-9-7			5-2-4 to 10-2-4,								
RACING					rior(2E) 18-8-4 t								
P CHORD	Structural wood shea	athing directly applied	or		-1-9, Interior (1)								
		cept end verticals, and			ft and right expo								
	2-0-0 oc purlins (2-7				d;C-C for memb shown; Lumber			10					
T CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc		DOL=1.60									
BS	1 Row at midpt	4-18, 7-15, 3-20	3)		quate drainage t			g.					
ACTIONS	(size) 12=0-5-8,	21= Mechanical	4)		as been designe								
	Max Horiz 21=-127 (LC 13)	C \		ad nonconcurrer assumed to be			ids.					
	Max Uplift 12=-300 (LC 9), 21=-263 (LC 8)	5)		acity of 565 psi.		5P N0.2						
	Max Grav 12=1493 ((LC 1), 21=1427 (LC 1) 6)		ler(s) for truss to		ections						
RCES	(lb) - Maximum Com	pression/Maximum	7)		hanical connect			o					
	Tension		• • •		e capable of with		,						
P CHORD	1-2=-744/181, 2-3=-				263 lb uplift at jo								
	3-4=-4291/1043, 4-5		8)	This truss is	designed in acc	ordance w	ith the 2018						The
	5-6=-2733/758, 6-7=			International	Residential Co	de sections	s R502.11.1 a	nd				O OF M	AL AL
	7-8=-2382/662, 8-10				nd referenced st							TATE OF M	IISS W
	10-12=-3182/785, 12 1-21=-1483/317	2-13=-4/0,	9)		Irlin representati			size			A		NS
DT CHORD	20-21=-57/142, 19-2	20501/2705			ation of the purli	n along the	e top and/or				A	ANDR	EW P
	18-19=-903/4252, 17			bottom chore							U	THOM	
	16-17=-117/0, 6-17=	,	L	DAD CASE(S)	Standard						A 🔺	JOAN	
	15-16=-38/179, 14-1	,								- 1			
	12-14=-658/2883	,									\mathcal{M}	m	ann
EBS	2-20=0/102, 4-19=-7	711/274, 4-18=-1576/3	93,								3		
	5-18=-55/504, 6-18=	,									N	O PE-2017	018993
	15-17=-645/3320, 7-										V	NUMI PE-2017	ISA
	7-15=-2053/452, 1-2	,										Nh Nh	ENO'S
	3-19=-376/1703, 3-2 8-15=-643/220, 8-14	20=-2374/659, I=-6/296, 10-14=-134/ [.]	153									ESSIONA	LEY
	2.5 0.0,220,011											and the second s	23,2024
												iviay	20,2024

6023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 165783141
P240543-01	A12	Roof Special	1	1	Job Reference (optional	
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,				s 2024 MiTek Industries, Inc. T sB70Hq3NSgPqnL8w3uITXb(
		4x4= 3 20 4 17 5x8= 7x8=	5 <u>22</u>		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

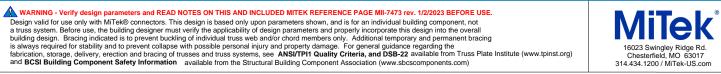
Scale = 1:64.2

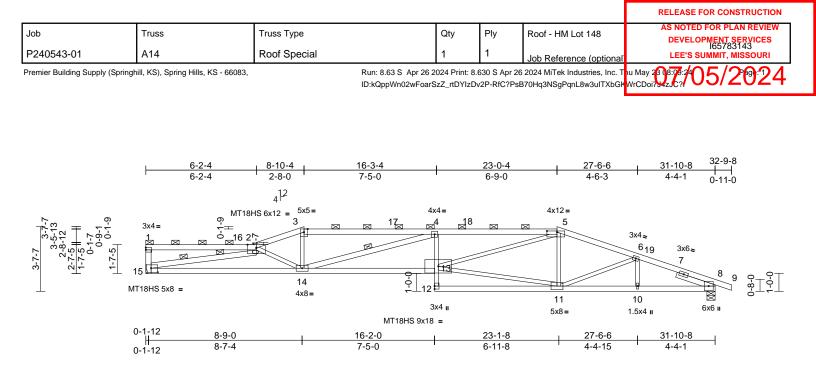
Plate Offsets (X, Y): [11:0-3-13,0-1-5], [16:0-2-12,Edge], [19:0-4-8,0-1-8]

Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.99 0.86 0.87	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.29 -0.54 0.15	(loc) 16-17 16-17 11	l/defl >999 >707 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S	-						Weight: 146 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2x3 SPF No.2 *Exce Right 2x4 SP No.2 Structural wood she	athing directly applied, , and 2-0-0 oc purlins	2)	Vasd=91mp Ke=1.00; Ca exterior zone Exterior(2R) 16-9-4, Exte to 23-1-3, Ex 28-1-3 to 36	7-16; Vult=115n 1; TCDL=6.0psf; t. II; Exp C; Encl and C-C Exterior 7-1-4 to 12-1-4, rior(2R) 16-9-4 tr tterior(2R) 23-1-2 9-8 zone; cantile eft and right exp	BCDL=6.0 osed; MW or(2E) 4-1 Interior (1 o 21-9-4, I 3 to 28-1-3 ever left ar	Dpsf; h=35ft; FRS (envelo -12 to 7-1-4,) 12-1-4 to nterior (1) 21 9, Interior (1) nd right expos	-9-4 sed ;					
BOT CHORD	Rigid ceiling directly bracing.	applied or 7-0-12 oc	3)	DOL=1.60 p	FRS for reaction ate grip DOL=1. quate drainage to	60		q.					
REACTIONS	(size) 11=0-5-8, Max Horiz 19=-115 (Max Uplift 11=-310 (Max Grav 11=1493	LC 9), 19=-276 (LC 8)		This truss ha chord live lo Bearings are	ad nonconcurren assumed to be: acity of 565 psi.	d for a 10.0 t with any) psf bottom other live loa						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	6) 7)	Refer to gird	er(s) for truss to hanical connecti			to					
TOP CHORD	1-2=-1534/400, 2-3= 3-4=-3691/973, 4-5= 5-6=-3242/920, 6-7= 7-8=-2585/738, 8-9=	3850/1033, 3226/918,	8)	bearing plate joint 11 and This truss is International	capable of with 276 lb uplift at jo designed in acco Residential Cod nd referenced sta	standing 3 int 19. ordance w e sections	10 lb uplift at ith the 2018 R502.11.1 a	t					
BOT CHORD	18-19=-58/127, 17-1 16-17=-667/3041, 18 6-16=-339/161, 14-1 13-14=-670/2801, 1	8=-642/2812, 5-16=0/32, 5=-33/73,	9)	Graphical pu or the orient bottom chore	rlin representation ation of the purlir 1.	on does no	ot depict the	size				TATE OF M	AISSO
WEBS NOTES	2-18=-15/265, 4-17= 14-16=-520/2481, 7- 7-14=-430/117, 1-18 3-17=-215/1081, 3-1	1318/384, -16=-305/1290, 3=-422/1649, 8=-1713/501, =0/220, 9-13=-8/159, 6=-108/451	L	OAD CASE(S)	Standard					(*	THOM	AAS SOUTHAND

1) Unbalanced roof live loads have been considered for this design.

GIN May 23,202


May 23,2024


						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qt	y Ply	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 165783142
P240543-01	A13	Roof Special	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply (S	pringhill, KS), Spring Hills, KS - 66				26 2024 MiTek Industries, Inc. T B70Hq3NSgPqnL8w3uITXbGKW	
	1-2-4 4-8-4 	8-2-4 10-10-4 3-6-0 2-8-0	16-3-4 5-5-0	<u>21-0-4</u> 4-9-0	25-9-12 4-9-8	31-10-8 32-9-8 6-0-12 0-11-0
	412					
N	4x4=	5x10= 4x6=	3x4=		6x6=	
4-3-7 4-1-13 2-3-3 2-3-3 0-9-1 0-9-1 0-1-6	6x6 = 4x	20 4			7 3x4 <i>z</i> 8	3x4≈ 22 3x4≈ 9 10 11 9⊤9⊤
	18	17 16				
	3x8=	3x8= 3x8=	3х4 ш		13 12	6x6 II
	7x8=		MT18HS 6x12 =		4x12= 1.5x4 u	0X0
	1-1-0 0-1-12 8-3 ╟		16-2-0 5-5-0	<u>21-1-8</u> 4-11-8	25-9-12 4-8-4	<u>31-10-8</u> 6-0-12

Scale = 1:64.6

00010 = 1.04.0			-				-						
Plate Offsets (2	X, Y): [4:0-4-12,Edge	e], [10:0-3-13,0-1-5],	[13:0-5-12	2,0-2-4], [15:0-8	3-4,0-3-8], [17:0-	2-8,0-1-8],	[19:0-4-8,0-1	1-8]					
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.88 0.82 0.94	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 15-16 15-16 10	l/defl >986 >534 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS	GRIP 197/144 197/144
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 145 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2-0-0 oc purlins (2-2Rigid ceiling directly bracing.1 Row at midpt	No.2 spt* 19-1:2x4 SP No. - 3-2-9 athing directly applie cept end verticals, ar 2-0 max.): 2-4, 5-7.	.2 ed or nd	Vasd=91mp Ke=1.00; Ca exterior zonn Exterior(2R) 14-10-4, Ext 19-10-4 to 2 Interior (1) 2 right expose for members Lumber DOI Provide ade All plates ar	E 7-16; Vult=115 h, TCDL=6.0psf at. II; Exp C; Enc e and C-C Exter 5-2-4 to $10-2-4$, terior(2R) 14-10- 5-0-4, Exterior(2 99-12 to $36-9-8$ id; end vertical I s and forces & M L=1.60 plate grip quate drainage f e MT20 plates u as been designe	; BCDL=6.6 losed; MW ior(2E) 4-1 , Interior (1 4 to 19-10 R) 25-0-4 3 zone; can eft and righ WFRS for b DDL=1.60 to prevent \ nless other d for a 10.0	Dpsf; h=35ft; FRS (envelo :12 to 5-2-4,) 10-2-4 to 4, Interior (1] to 29-9-12, tilever left an tt exposed;C reactions sho) water ponding water ponding water indicate D psf bottom) -C own; g. ed.					
	Max Horiz 19=-103 (Max Uplift 10=-323 (Max Grav 10=1493 (lb) - Maximum Com	(LC 13) (LC 9), 19=-286 (LC (LC 1), 19=1427 (LC	,	 Bearings are crushing cap Refer to gird 	ad nonconcurrent e assumed to be bacity of 565 psi. der(s) for truss to chanical connect	: , Joint 10 o truss conr	SP No.2 lections.						
TOP CHORD	Tension 1-2=-742/176, 2-3=- 3-4=-4242/1040, 4-5 5-6=-3497/910, 6-7= 7-8=-2799/737, 8-10 1-19=-1485/315	5=-3730/947, =-4207/1095,	9)	bearing plat joint 10 and This truss is Internationa R802.10.2 a	e capable of with 286 lb uplift at jo designed in acc I Residential Coo and referenced s	nstanding 3 bint 19. cordance w de sections tandard AN	23 lb uplift at ith the 2018 R502.11.1 a ISI/TPI 1.	ind					all the
1-19=-1485/315 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. BOT CHORD 18-19=-57/138, 17-18=-613/2806, 16-17=-890/4202, 15-16=-930/4201, 15-16=-930/4201, 15-16=-930/4201, 15-16=-930/4201, 15-16=-930/4201, 15-16=-930/4201, 15-16=-930/4201, 15-16=-930/4201, 12-13=-673/2924 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard									AISSOLD				
WEBS NOTES	2-18=0/107, 4-17=-7 5-16=-166/910, 6-16 13-15=-541/2584, 7 7-13=-386/134, 8-13 1-18=-307/1443, 3-1 3-18=-2391/686	723/233, 4-16=-862/2 6=-991/245, -15=-417/1806, 3=-360/176, 8-12=0/2	,							(THOM JOHNS KUMI PE-2017	SON * 1 BER 018993
 Unbalance this design 	ed roof live loads have n.	been considered for	r								6	RessionA	

May 23,2024

Scale = 1:64.5

Plate Offsets (X, Y): [5:0-6-12,0-0-12], [8:0-3-13,0-1-5], [15:0-4-8,0-2-12]

	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1) [
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014 Wind: ASCE	CSI TC BC WB Matrix-S	0.98 0.84 0.98	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.60 -1.10 0.25	l/defl >637 >346 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 147 lb	GRIP 244/190 197/144 FT = 20%
TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2.0E 2x4 SP 2400F 2.0E No.2, 12-8:2x4 SP N 2x3 SPF No.2 *Exce SP No.2 Right 2x4 SP No.2	*Except* 4-12:2x3 S lo.2 ept* 15-1,15-2,14-4:2 - 2-3-1	, PF x4	Vasd=91mp Ke=1.00; Ca exterior zone Interior (1) 5 13-10-4, Inte 23-0-4 to 28 cantilever lei right expose	t, TCDL=6.0psf; ht. II; Exp C; Encle and C-C Exterior -1-12 to 8-10-4, E prior (1) 13-10-4 t -0-4, Interior (1) 2 ft and right exposs d;C-C for membe shown; Lumber	BCDL=6. osed; MW or(2E) 0-1 Exterior(2I to 23-0-4, 28-0-4 to 3 sed; end y ers and fo	Opsf; h=35ft; FRS (envelo -12 to 5-1-12 R) 8-10-4 to Exterior(2R) 32-9-8 zone; vertical left ar rces & MWFF	, nd				
BOT CHORD WEBS WEBS REACTIONS	except end verticals (2-2-0 max.): 1-2, 3- Rigid ceiling directly bracing. 1 Row at midpt 2 Rows at 1/3 pts	, and 2-0-0 oc purlin: 5. applied or 7-1-14 oc 4-14 2-15 15= Mechanical C 13) C 9), 15=-294 (LC 8	s 3) s 4) 5) 6) 7) 8)	DOL=1.60 Provide ade All plates are This truss ha chord live loo Bearings are capacity of 5 Refer to gird Provide med bearing plate	quate drainage to e MT20 plates un as been designed ad nonconcurren e assumed to be:	o prevent f less other d for a 10. t with any , Joint 8 \$ truss conr on (by oth standing 3	water ponding wise indicate 0 psf bottom other live loa SP No.2 crust nections. ers) of truss	ed. ads. hing to				
FORCES	(lb) - Maximum Com Tension 1-15=-241/138, 1-2= 2-3=-4375/1048, 3-4 4-5=-5587/1396, 5-6 6-8=-3165/782, 8-9=	216/62, 4=-4064/997, 5=-3025/760,	9) 10	This truss is International R802.10.2 a) Graphical pu	designed in acco Residential Cod nd referenced sta Irlin representation ation of the purlin	ordance w e sections andard AN on does no	R502.11.1 a SI/TPI 1. ot depict the s				TATE OF I	MISSO
BOT CHORD WEBS		13-14=-1271/5679, -220/168, 11-12=-41, -10=-672/2863 -14=-1267/429, 14=-1837/484, -13=-675/2844,	/222,	DAD CASE(S)							ANDE THOM JOHN NUMI PE-2017	AAS SDN BER

NOTES

1) Unbalanced roof live loads have been considered for this design.

SSIONAL E May 23,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 165783144
P240543-01	A15	Roof Special	1	2	Job Reference (optional	I65783144 LEE'S SUMMIT, MISSOURI
Premier Building Supply	(Springhill, KS), Spring Hills, KS - 66083,				5 2024 MiTek Industries, Inc. T B70Hq3NSgPqnL8w3uITXbGi	
	4-2-4 6-10-4 4-2-4 2-8-0	+ 11-6-12 + 16-3-12 4-8-8 + 4-9-0	<u>20-7-</u> 4-4-(25-0-4 28-6 4-4-8 3-6	
$\begin{array}{c} \begin{array}{c} -2 \\ -2 \\ 2 \\ -2 \\ -2 \\ -2 \\ -12 \\ -12 \\ -12 \\ -12 \\ 1 \\ -0 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 $		19 18 1.5x4 u 10 10 10 10 10 10 10 10 10 10		4= 4x4= 5 22 7 15	6x6= 8 14	3x4z 23 9 3x4z 10 11 12 0 0 0 11 13
	0-1-12 4 1 0 6 0 0	5x10= 1.5x		5x8=	3x4=	1.5x4 II 4x4 II
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>11-6-12</u> <u>16-2-0</u> 4-9-12 4-7-4	<u>20-7-1</u> 4-5-1		25-1-8 28-6 4-5-12 3-4-	

Scale = 1:63

bading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.45	Vert(LL)		17-18	>786	240	MT20	244/190
CDL	10.0	Lumber DOL	1.15		BC	0.72	Vert(CT)		17-18	>435	180		,
CLL	0.0	Rep Stress Incr	YES		WB	0.45	Horz(CT)	0.16	11	n/a	n/a	1	
CDL	10.0	Code		8/TPI2014	Matrix-S	0.10	1012(01)	0.10		n/a	n/a	Weight: 291 lb	FT = 20%
JMBER			1)	2-plv truss to	be connected t	ogether wi	h 10d		11) Gra	phical p	urlin re	presentation doe	s not depict the siz
	2x4 SP No.2		,		nails as follows:	J						of the purlin along	
		ept* 21-17:2x4 SP 165	OF	Top chords	connected as fol	lows: 2x4 -	1 row at 0-9	-0		om chor			
	1.5E		•	oc.					LOAD	CASE(S)) Sta	ndard	
'EBS	2x3 SPF No.2 *Ex	cept*		Bottom chor	ds connected as	follows: 2	4 - 1 row at				,		
	21-1,21-2,17-7,17-			0-9-0 oc.									
LIDER	Right 2x4 SP No.2	1-8-11		Web connec	ted as follows: 2	2x4 - 1 row	at 0-9-0 oc, 2	2x3 -					
RACING				1 row at 0-9-									
OP CHORD	Structural wood sh	eathing directly applie	d or 2)		considered equ								
		except end verticals,			ed as front (F) o			DAD					
	2-0-0 oc purlins (4	-2-5 max.): 1-2, 3-8.			ction. Ply to ply								
OT CHORD	Rigid ceiling direct	ly applied or 10-0-0 or	>		distribute only lo	ads noted a	as (F) or (B),						
	bracing.		2		wise indicated.			-					
EACTIONS ((size) 11=0-5-	8, 21= Mechanical	3)	this design.	roof live loads h	ave been o	considered to	ſ					
1	Max Horiz 21=-74	(LC 13)	4)		7-16; Vult=115	mnh (3-sec	ond quet)						
1	Max Uplift 11=-343	8 (LC 9), 21=-301 (LC	8) 7/		h; TCDL=6.0psf								
1	Max Grav 11=149	3 (LC 1), 21=1427 (LC	; 1)		at. II; Exp C; Enc			ce)					
ORCES	(lb) - Maximum Co	mpression/Maximum			e and C-C Exteri			,					
	Tension				-2-4 to 6-10-4, E								
OP CHORD	1-21=-217/107, 1-2	2=-470/120,		11-6-12, Inte	erior (1) 11-6-12	to 25-0-4,	Exterior(2R)						
	2-3=-5102/1228, 3	-4=-4799/1175,		25-0-4 to 30	-0-4, Interior (1)	30-0-4 to 3	2-9-8 zone;						
	4-5=-7378/1690, 5				ft and right expo								
	7-8=-4139/1028, 8				d;C-C for memb			S					The second
	9-11=-3037/748, 1				shown; Lumber	DOL=1.60	plate grip					O OF 1	AP
OT CHORD		, 19-20=-1365/5950,		DOL=1.60								RE OF M	IISS D
		, 17-18=-1498/6823,	(500 5)		quate drainage t			j .			4	TATE OF A	NUS
	,	-278/132, 15-16=-123	/566, 6)		as been designe						H	S ANDR	EW YP.V
	14-15=-650/2995, 11-13=-635/2729	13-14=-035/2729,	-		ad nonconcurrer			ds.			B	THOM	
'EBS	2-21=-5548/1347,	2-191120/310	7)		e assumed to be		5P N0.2						
LDO	3-19=-231/1226, 8	,	0)		pacity of 565 psi. ler(s) for truss to		actiona			/			
	,	19=-2237/503, 4-18=0	/191, <u>8</u>)		chanical connect			~			\mathbf{R}	mel	m
	7-15=-1444/398, 7		,, 9)		e capable of with					U	13	NUME	BER /×
	8-15=-313/1400, 1				301 lb uplift at jo						N3	O PE-20170	18993 /54
		14=-78/436, 9-13=-16/	/80 1/		designed in acc		th the 2018				N	The second	BER 018993
OTES	,-		I.	,	Residential Co			nd			Y	[©] SSIONA	JO'B
				momanona	1.0010011101 000			1.0				Nh Wite	
UIES				R802.10 2 a	nd referenced st	tandard AN	SI/TPI 1.					NONA	LECA

May 23,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.12007 MiTek-US.com

													RELEA	SE FOR CON	ISTRUCTION
Job	Truss			Truss Typ	be			Qty	Ply	Roof - HM	Lot 148			DTED FOR PL ELOPMENT (16578)	
P240543-01	A16			Hip Gird	er			1	2	Job Refere	ence (opt	ional		16578 SUMMIT, I	
Premier Building Supply	y (Springhill, KS),	Spring Hills, KS	S - 66083,					or 26 2024 Print: KKW?1gn8Gkl9zI							2024
								0							
	-0-11-0														22.0.0
	-0-11-0	5-0-0		10-4-			15-11-4		21-5-12			-10-8		31-10-8	32-9-8
	0-11-0	5-0-0	•	5-4-1		•	5-6-8	•	5-6-8	•		4-12		5-0-0	0-11-0
			NAILED	NAILED	NAILED	NAILED	NAILED	NAILED NAIL	ED NAILED	NAILED	NAILED	NAILED	NAILED		
		4 ¹²	4x8=			3x4=		3x4=	4x4 =	1.5x4	u .		4x8=		
+ 4 = + o o			16 3	궔	18	4 19	20 21	22 5 23		24 25 7	26	27	8 2	8	
0-10-10		6								P					
$\frac{2-4-0}{2-2-7^2}$, 2	/									/				9 10
			•	П		₴ऺ,	П		П			П	•		
o-			15	29	30	14 31	32	33 13 34	1 35	36 12	37	38	11		_₩ `
	4x6 =		3x4 u			3x8=		7x8=		4x12	=		Зх4 п		4x6=
			Special	NAILED	NAILED	NAILED	NAILED	NAILED NAIL	ED NAILED	NAILED	NAILED	NAILED	Special		
		4-10-12	1	10-4-	12	i.	15-11-4		21-5-12	1	26-	-11-12	1	31-10-8	1
		4-10-12		5-6-			5-6-8		5-6-8			6-0		4-10-12	

Scale = 1:59.8

Plate Offsets (X, Y): [2:Edge,0-1-10]], [3:0-4-4,0-0-12], [6	6:0-2-0,Ed	ge], [8:0-4-0,0-	0-12], [9:Edge,0-1	-10], [13	:0-4-0,0-4-12	, [14:0-	2-8,0-1-8	3]			
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.77 0.45 0.70	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.50 -0.90 0.08	(loc) 12-13 12-13 9	l/defl >748 >417 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 300 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES	2x4 SP No.2 *Excep 1.5E 2x6 SP 2400F 2.0E 2x3 SPF No.2 Structural wood shee 4-10-7 oc purlins, ex 2-0-0 oc purlins (3-1 Rigid ceiling directly bracing. (size) 2=0-5-8, S Max Horiz 2=-36 (LC Max Uplift 2=-709 (L: Max Grav 2=2508 (L (lb) - Maximum Com Tension	athing directly applie tcept 1-4 max.): 3-8. applied or 10-0-0 or 9=0-5-8 13) C 8), 9=-709 (LC 9) .C 1), 9=2509 (LC 1	2) 3550F 3) ed or 4)	All loads are except if not CASE(S) se provided to unless other Unbalanced this design. Wind: ASCE Vasd=91mp Ke=1.00; Cz exterior zon Interior (1) 4 Interior (1) 1 32-9-8 zone vertical left a forces & MW DOL=1.60 p	e considered equal ed as front (F) or b ction. Ply to ply co distribute only load wise indicated. roof live loads hav 7-16; Vult=115mp h; TCDL=6.0psf; B at. II; Exp C; Enclose e and C-C Exterior -1-0 to 5-0-0, Exte 2-0-14 to 26-10-8, ; cantilever left and and right exposed; VFRS for reactions late grip DOL=1.60 quate drainage to	back (B) nnection ls noted ve been bh (3-see 3CDL=6. 3ced; MW (2E) -0- rior(2R) Exterior d right ex C-C for r s shown; 0	face in the LC s have been as (F) or (B), considered fo ops; h=35ft; FRS (envelog 11-0 to 4-1-0, 5-0-0 to 12-0- (2E) 26-10-8 posed ; end nembers and Lumber	r De) 14, to	1) De Pl Ui Ce	ate Incre niform Lo Vert: 1 oncentra Vert: 3= 8=-97 (I 21=-97 26=-97 31=-29	bof Live ease=1 bads (I 3=-70, ited Lo 97 (F F), 17= (F), 22 (F), 27 (F), 32	ndard e (balanced): Lur .15 b/ft) 3-8=-70, 8-10=-7 ads (lb)	nber Increase=1.15, '0, 2-9=-20 286 (F), 11=-286 (F), F), 19=-97 (F), (F), 25=-97 (F), (F), 30=-29 (F), (F), 34=-29 (F),
TOP CHORD	1-2=0/2, 2-3=-6132/ 4-5=-10733/3052, 5- 7-8=-9339/2698, 8-9 2-15=-1560/5645, 14 12-14=-2957/10740,	7=-9335/2696,)=-6155/1758, 9-10= 4-15=-1559/5617,	:0/2 7)	chord live lo All bearings capacity of 8 Provide med	hanical connection	with any e SP 240 n (by oth	other live loa 00F 2.0E crus ers) of truss t	hing o					
(0.131"x3" Top chord oc. Bottom ch staggered	9-11=-1570/5666 3-15=-22/505, 8-11= 3-14=-1132/4086, 8- 4-14=-1238/518, 4-1 5-13=-208/224, 5-12 7-12=-781/408 to be connected toget) nails as follows: s connected as follows ords connected as follows ords connected as follows at 0-9-0 oc. ected as follows: 2x3 -	12=-1100/3978, 3=-396/1421, 2=-1515/426, ther with 10d 5: 2x4 - 1 row at 0-9- pws: 2x6 - 2 rows	11 0	joint 2 and 7 This truss is International R802.10.2 a Graphical pu or the orient bottom chor) "NAILED" in per NDS gui 2) Hanger(s) o provided sul Ib down and Ib up at 26-	dicates Girder: 3-1	9. dance w sections ndard AN does nu along the 0d (0.14 device(s concentra , and 286 ord. The	ith the 2018 s R502.11.1 a s SI/TPI 1. ot depict the s top and/or 8" x 3") toe-r s) shall be ated load(s) 2 b lb down and d design/selec	nd ize nails 86 66		-	6	ANDE STATE OF I ANDE THOM JOHN PE-2017 HSSIONA May	AAS SIN AAS BER 018993

TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.65 Vert(LL) -0.15 7 >999 240 MT20 197/144													RELEASE	FOR CONSTRUCTION	
P240543-01 B1 Hip Girder 1 3 Job. Reference Logical LEE'S SUMMT, MISSOURI Premier Building Supply (Springhill, KS). Spring Hills, KS - 66083. Rur. 86.3 S. Apr 26 2024 Mint & Max 20 2024 Mints. Inc. The May 20 20 AUTACE Mucloaver. Inc. The Max 20 AUTACE Mucloaver. Inc. Auta 20 AUTACE Mucloaver. Inc.	Job	Truss		Truss Type			Qty	P	Ply	Roof - HM	Lot 148	3			
Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083. Run: 8.83 S Apr 26 2024 Print: 8.803 S Apr 26 2024 Millek industries, Inc. The Master State	P240543-01	B1		Hip Girder			1		2		,		LEE'S	I65783146	
$\frac{3.7.4}{3.7.4} + \frac{7.2.0}{3.6.12} + \frac{10.8.12}{3.6.12} + \frac{14.4.0}{3.7.4}$ $NAILED$ $NAILE$						Buni 9.62 C. Anr									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fremier Building Supply (3	springrill, KS), Spring	niiis, no - 00003,											J5/ZUZ4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				3-7-4											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				3-7-4		3-6-12	1		3-6-12		3	8-7-4	I		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										NAILED					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					NAILED	NAILED	NAILE	D	NAILED						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.12	5x5 =		1.5x4	4 u		5x5 =					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				4 🗆	2	8	3		⊳ 10	4					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		\top		_					4						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0-7	1					_	\square				<u> </u>		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		- o-		7				$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		e	_				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-0-	LĘ	ŢШ	ΠΨ										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			É	11		12			13	6		14			
HUS26 Special HHUS26-2 Special HUS26 NAILED HUS26 HUS26 HUS26 HUS26 HUS26 HUS26 HUS26 Scale = 1:39 10-10-0 14-4-0 Scale = 1:39 3-6-0 3-8-0 3-8-0 3-8-0 Plate Offsets (X, Y): [1:0-4-0,0-1-12], [5:0-4-0,0-1-12] CSI DEFL in (loc) I/defl L/d PLATES GRIP Vert(Lt) 0.0 Lumber DOL 1.15 BC 0.97 Vert(CT) -0.27 7 >615 180 BCLL 0.0 Rep Stress Incr NO WB 0.39 Horz(CT) 0.04 5 n/a n/a			4	x8 =	3x12 🛛		4x8	=		3x12	н		4x8 ≈		
Special HUS26 NAILED HUS26 HUS26 HUS26 HUS26 Scale = 1:39 3-6-0 Plate Offsets (X, Y): [1:0-4-0,0-1-12], [5:0-4-0,0-1-12] Image: Comparison of the point of the				1111000		NAILEI		IAILED		On a sist					
HUS26 HUS26 <th colsp<="" td=""><td></td><td></td><td></td><td>HU526</td><td>Special</td><td>HUS26</td><td></td><td></td><td></td><td></td><td></td><td>HHU52</td><td>26-2</td><td></td></th>	<td></td> <td></td> <td></td> <td>HU526</td> <td>Special</td> <td>HUS26</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>HHU52</td> <td>26-2</td> <td></td>				HU526	Special	HUS26						HHU52	26-2	
HUS26 3-6-0 7-2-0 10-10-0 14-4-0 3-6-0 3-8-0 3-8-0 3-6-0 Scale = 1:39 Spacing 2-0-0 CSI DEFL in (loc) //defl L/d PLATES GRIP Plate Offsets (X, Y): [1:0-4-0,0-1-12], [5:0-4-0,0-1-12] TC 0.65 Vert(LL) -0.15 7 >999 240 MT20 197/144 TCDL 10.0 Lumber DOL 1.15 BC 0.97 Vert(CT) -0.27 7 >615 180 BCLL 0.0 Rep Stress Incr NO WB 0.39 Horz(CT) 0.04 5 n/a n/a						110020			10.022.0	HUS	26				
3-6-0 7-2-0 10-10-0 14-4-0 Scale = 1:39 3-6-0 3-8-0 3-8-0 3-8-0 Plate Offsets (X, Y): [1:0-4-0,0-1-12], [5:0-4-0,0-1-12] Example Ex					HU320		F	10526							
Scale = 1:39 3-6-0 3-8-0 3-8-0 3-8-0 3-6-0 Plate Offsets (X, Y): [1:0-4-0,0-1-12], [5:0-4-0,0-1-12] Image: Spacing of the second sec															
Scale = 1:39 Plate Offsets (X, Y): [1:0-4-0,0-1-12], [5:0-4-0,0-1-12] Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) I/defl L/d PLATES GRIP TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.65 Vert(LL) -0.15 7 >999 240 MT20 197/144 TCDL 10.0 Lumber DOL 1.15 BC 0.97 Vert(CT) -0.27 7 >615 180 BCLL 0.0 Rep Stress Incr NO WB 0.39 Horz(CT) 0.04 5 n/a n/a			-					1							
Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) I/defl L/d PLATES GRIP TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.65 Vert(LL) -0.15 7 >999 240 MT20 197/144 TCDL 10.0 Lumber DOL 1.15 BC 0.97 Vert(CT) -0.27 7 >615 180 BCLL 0.0 Rep Stress Incr NO WB 0.39 Horz(CT) 0.04 5 n/a n/a	Scale = 1:39			3-6-0		3-8-0			3-8-0	•		3-0-0	Į.		
TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.65 Vert(LL) -0.15 7 >999 240 MT20 197/144 TCDL 10.0 Lumber DOL 1.15 BC 0.97 Vert(CT) -0.27 7 >615 180 BCLL 0.0 Rep Stress Incr NO WB 0.39 Horz(CT) 0.04 5 n/a n/a	Plate Offsets (X, Y): [1	1:0-4-0,0-1-12], [5:0	-4-0,0-1-12]												
TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.65 Vert(LL) -0.15 7 >999 240 MT20 197/144 TCDL 10.0 Lumber DOL 1.15 BC 0.97 Vert(CT) -0.27 7 >615 180 BCLL 0.0 Rep Stress Incr NO WB 0.39 Horz(CT) 0.04 5 n/a n/a	Loading	(psf) Spa	acing	2-0-0		SI		DEFL		in (loc)	l/defl	L/d	PLATES	GRIP	
BCLL 0.0 Rep Stress Incr NO WB 0.39 Horz(CT) 0.04 5 n/a n/a	TCLL (roof)	25.0 Pla	te Grip DOL	1.15	г	C	0.65	Vert(LL)	-0.1	15 7	>999	240	-		
	TCDL								,						
							0.39	HOLZ(C)	i) 0.0	J4 5	n/a	n/a	Weight: 193 lb	FT = 20%	

LUMBER TOP CHORD 2x4 SP No.2 2x8 SPF No.2 BOT CHORD 2x3 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins (5-2-0 max.): 2-4. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 1=0-5-8, 5=0-5-8 Max Horiz 1=-27 (LC 13) Max Uplift 1=-1258 (LC 8), 5=-1307 (LC 9) Max Grav 1=5888 (LC 1), 5=5875 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension 1-2=-12212/2846, 2-3=-14096/3350, TOP CHORD 3-4=-14096/3350, 4-5=-12255/2924 BOT CHORD 1-8=-2568/11233, 7-8=-2525/11006, 6-7=-2593/11044, 5-6=-2640/11273 WEBS 2-8=-583/3093, 4-6=-640/3124, 4-7=-707/3332, 3-7=-207/206, 2-7=-780/3373 NOTES 3-ply truss to be connected together with 10d 1) (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x8 - 3 rows staggered at 0-5-0 oc. Web connected as follows: 2x3 - 1 row at 0-9-0 oc.

- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.

- 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.7) All bearings are assumed to be SPF No.2 crushing
- capacity of 425 psi.8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1258 lb uplift at joint 1 and 1307 lb uplift at joint 5.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 11) Use Simpson Strong-Tie HUS26 (14-10d Girder, 4-10d Truss) or equivalent spaced at 3-10-0 oc max. starting at 1-3-0 from the left end to 11-1-0 to connect truss(es) to back face of bottom chord.
- 12) Use Simpson Strong-Tie HUS26 (14-10d Girder, 4-10d Truss) or equivalent at 7-2-0 from the left end to connect truss(es) to back face of bottom chord, skewed 0.0 deg.to the left, sloping 0.0 deg. down.
- Use Simpson Strong-Tie HHUS26-2 (14-10d Girder, 4-10d Truss) or equivalent at 13-0-3 from the left end to connect truss(es) to back face of bottom chord.

14) N/A

- 15) "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails per NDS guidelines.
- 16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 194 lb down and 56 lb up at 3-7-4, and 194 lb down and 56 lb up at 10-8-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

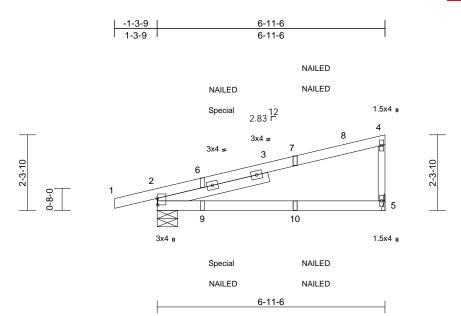
LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft) Vert: 1-2=-70, 2-4=-70, 4-5=-70, 1-5=-20 Concentrated Loads (lb)

16023 Swingley Ridge Rd. Chesterfield MO 63017

314.434.1200 / MiTek-US.com

Continued on page 2


						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
P240543-01	B1	Hip Girder	1	3	Job Reference (optional	DEVELOPMENT SERVICES 165783146 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Apr 26 2 ID:Bb5QVthVwWM4L	024 Print: 8.0 JIIMJaEo8lzD	630 S Apr 26 9s?t-RfC?PsE	2024 MiTek Industries, Inc. T 370Hq3NSgPqnL8w3uITXbGk	u May 28 18:29:2505/290:24

 $\begin{array}{l} \mbox{Vert: 4=-46 (F), 8=-1601 (F=-194, B=-1407), 6=-1601 (F=-194, B=-1407), 3=-46 (F), 7=-1422 (F=-15, B=-1407), 2=-46 (F), 9=-46 (F), 10=-46 (F), 11=-1407 (B), 12=-1422 (F=-15, B=-1407), 13=-1422 (F=-15, B=-1407), 13=-1422 (F=-15, B=-1407), 14=-1407 (B) \end{array}$

Job Truss Truss Type Qty Ply Roof - HM Lot 148 AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES INFORMATION P240543-01 CG1 Diagonal Hip Girder 2 1 Job Reference (optional) LEE'S SUMMIT, MISSOURI							RELEASE FOR CONSTRUCTION
	Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
	P240543-01	CG1	Diagonal Hip Girder	2	1	Job Reference (optional	

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 20 3025 at ID:7F6Nn7n8gozSiFFLify9fuzDuzY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKW CDoi7J4acCf

Scale = 1:35.1

Plate Offsets (X, Y): [2:0-2-6,0-0-3]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.71	Vert(LL)	-0.13	2-5	>622	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.68	Vert(CT)	-0.26	2-5	>311	180		
BCLL	0.0	Rep Stress Incr	NO		WB	0.00	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018	/TPI2014	Matrix-P							Weight: 30 lb	FT = 20%
LUMBER			7)	N/A									
TOP CHORD	2x4 SP 1650F 1.5E		8)	"NAILED" in	dicates Girder: 3-1	0d (0.14	8" x 3") toe-	nails					
BOT CHORD	2x4 SP No.2		- /	per NDS gui		- (-	,						
WEBS	2x3 SPF No.2		9)	In the LOAD	CASE(S) section,	, loads a	oplied to the	face					
SLIDER	Left 2x4 SP No.2 3	3-5-12		of the truss a	are noted as front	(F) or ba	ck (B).						
BRACING			LO	AD CASE(S)	Standard								
TOP CHORD	Structural wood she		ed or 1)		of Live (balanced):	: Lumber	Increase=1.	.15,					
	6-0-0 oc purlins, ex			Plate Increa									
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	С	Uniform Lo	()								
	bracing.				=-70, 2-5=-20								
	· · · ·	5= Mechanical			ed Loads (lb)	0.0/5							
	Max Horiz 2=89 (LC	,		Vert: 6=	71 (F=36, B=36), 1	0=0 (F=	0, B=0)						
	Max Uplift 2=-80 (LC	,, , ,											
ORCES	Max Grav 2=350 (LC (lb) - Maximum Com												
FURGES	Tension	pression/maximum											
TOP CHORD	1-2=-5/0, 2-4=-188/7	75. 4-5=-216/231											
BOT CHORD	2-5=-41/44	-,											
NOTES													
1) Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)											
Vasd=91m	nph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;											
	Cat. II; Exp C; Enclose		be)										
	ne and C-C Corner (3											an	ADD
(R) 5-9-5 to 6-10-2 zon	,										8 OF	MISS
right expos	sed ; end vertical left a	nd right exposed;C-	·C									AR	- Sow

Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.

for members and forces & MWFRS for reactions shown;

- 3) Bearings are assumed to be: Joint 2 SP No.2 crushing capacity of 565 psi.
- Refer to girder(s) for truss to truss connections. 4)
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 67 lb uplift at joint 5 and 80 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

)5/2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

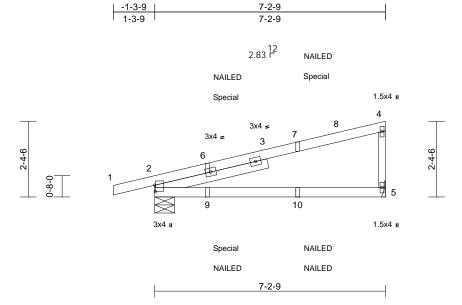
Chesterfield MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 165783148
P240543-01	CG2	Detail Girder	1	1	Job Reference (optional	
Premier Building Supply ((Springhill, KS), Spring Hills, KS - 66083,				^r 26 2024 MiTek Industries, Inc. T PsB70Hq3NSgPqnL8w3uITXbG	
		-1-3-9 1-3-9	<u>3-8-2</u> 3-8-2			
			12 2.83 Г		1.5x4 II	
			3x4 =		4	
	1-6-6 0-8-0		3		5 5	φ φ -
		3x4 II			1.5x4 u	
Scale = 1:23.3			3-8-2			

00010 = 1.20.0	
Plate Offsets (X, Y):	[2:0-2-6,0-0-3]

	x, i). [2.0-2-0,0-0-3]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.26 0.12 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 0.00	(loc) 2-5 2-5 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 17 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m Ke=1.00; C exterior zo and right e exposed;C reactions s	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 Structural wood she 3-8-2 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-7-6, f Max Horiz 2=120 (Li Max Grav 2=156 (Li (lb) - Maximum Con Tension 1-2=-5/0, 2-4=-50/2 2-5=-25/27 E 7-16; Vult=115mpf ph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ne and C-C Corner (3 xposed ; end vertical -C for members and f shown; Lumber DOL=	1-9-9 eathing directly applie cept end verticals. / applied or 10-0-0 oc 5= Mechanical C 11) C 10), 5=-83 (LC 16 C 1), 5=-83 (LC 10 C 1), 5=-82 (LC 1) npression/Maximum 4, 4-5=-60/104 h (3-second gust) CDL=6.0psf; h=35ft; ad; MWFRS (envelop 3) zone; cantilever lef left and right forces & MWFRS for	7) In the LO/ of the trus LOAD CASE(1) Dead + I Plate Inc Uniform d or Vert: 7 3=-31 B=10)	AD CASE(S) section s are noted as front	: (F) or ba): Lumber -3=-31 (F -64 (F=3,	ck (B). Increase=1.1 =20, B=20),	15,				Weight: 17 lb	
 chord live l Bearings a capacity of Refer to gi Provide me bearing pla 5 and 158 This truss Internation 	has been designed fo load nonconcurrent w ire assumed to be: Jo	ith any other live load int 2 SP No.2 crushin ss connections. (by others) of truss to nding 83 lb uplift at jo ance with the 2018 sections R502.11.1 at	ng D Dint						l		NUM PE-2017	

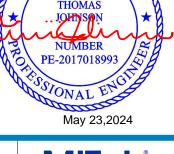
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


[ek 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

May 23,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW
			,	Ĺ		DEVELOPMENT SERVICES 165783149
P240543-01	CG3	Diagonal Hip Girder	2	1	Job Reference (optional	

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May **408**,795,405/29:24 ID:?1NRHKtWxEcYJa3i?Tdk2YzDuRs-RfC?PsB70Hq3NSgPqnL8w3uITXbGkWrCDorw4z9C+f

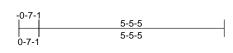


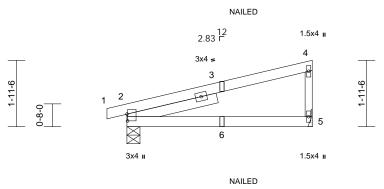
Scale = 1:36

Plate Offsets (X, Y): [2:0-2-6,0-0-3]

	,,,,), [<u>2</u> ,0 <u>2</u> 0,0 0 0]	-											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TP	12014	CSI TC BC WB Matrix-P	0.77 0.77 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.32 0.00	(loc) 2-5 2-5 5	l/defl >535 >267 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 31 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2x4 SP 1650F 1.5E 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 3 Structural wood she 6-0-0 oc purlins, ex	3-7-6 athing directly applicept end verticals.	7) N/, 8) "N pe 9) In of LOAD ed or 1) D	A AILED" inc r NDS guid the LOAD the truss a CASE(S) Dead + Roc Plate Increa	dicates Girder: 3-10 delines. CASE(S) section, re noted as front (I Standard of Live (balanced): use=1.15	loads a F) or ba	pplied to the ck (B).	face				Weight. of h	112070
	BOT CHORD Rigid ceiling directly applied or 10-0-0 oc Uniform Loads (lb/ft) bracing. Vert: 1-4=-70, 2-5=-20												
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=-5/0, 2-4=-183/7 2-5=-42/46												
NOTES 1) Wind: ASC Vasd=91n Ke=1.00; (exterior 22 exposed ; members Lumber D	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner (3 R) 5-9-5 to 7-1-5 zone end vertical left and rig and forces & MWFRS OL=1.60 plate grip DC has been designed fo	DL=6.0psf; h=35ft; d; MWFRS (envelop) -1-3-9 to 5-9-5, ; cantilever left and ght exposed;C-C for for reactions shown DL=1.60	right									STATE OF I	MISSOLUTION

- 2 chord live load nonconcurrent with any other live loads. Bearings are assumed to be: Joint 2 SP No.2 crushing 3) capacity of 565 psi.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 78 lb uplift at joint 5 and 102 lb uplift at joint 2.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.




 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW
305	11035	Truss Type	Qly	ту	ROOF - THE LOL 148	DEVELOPMENT SERVICES 165783150
P240543-01	CG4	Diagonal Hip Girder	1	1	Job Reference (optional	

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 29 06:09:24 ID:ooUezWRZa6vloaWaKNfvITzZIs?-RfC?PsB70Hq3NSgPqnL8w3uITXbGK VrCDoi7042.0?#

NAILED

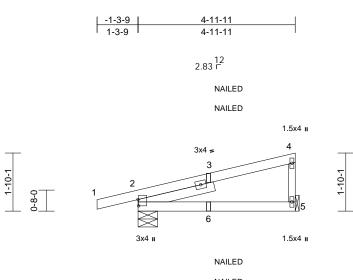
NAILED

Scale = 1:33.9

Plate Offsets (X, Y): [2:0-2-6,0-0-3]

Loading (psf) TCLL (roof) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.74	DEFL Vert(LL)	in -0.05	(loc) 2-5	l/defl >999	L/d 240	PLATES MT20	GRIP 197/144
TCDL 10.0	Lumber DOL	1.15		0.39	Vert(CT)	-0.10	2-5	>657	180	-	
BCLL 0.0	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	5	n/a	n/a		
BCDL 10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 23 lb	FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x3 SPF No.2 SLIDER Left 2x4 SP No.2: BRACING TOP CHORD Structural wood she 5-5-5 oc purlins, ex BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 2=0-4-9, 4 Max Horiz 2=69 (LC Max Uplift 2=-76 (LC Max Grav 2=284 (LC	athing directly applie cept end verticals. applied or 10-0-0 or 5= Mechanical 28) : 8), 5=-57 (LC 12)	per NDS gui 8) In the LOAD of the truss 3 LOAD CASE(S) 1) Dead + Ro Plate Incre Uniform Lo	CASE(S) section, lo are noted as front (F) Standard of Live (balanced): L ase=1.15	oads a) or ba	oplied to the f ck (B).	face					
FORCES (lb) - Maximum Com Tension TOP CHORD 1-2=-15/0, 2-4=-98/6	pression/Maximum										
BOT CHORD 2-5=-34/36											
NOTES											
 Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BC Ke=1.00; Cat. II; Exp C; Enclose exterior zone and C-C Corner (3 and right exposed; end vertical exposed;C-C for members and f reactions shown; Lumber DOL= DOL=1.60 This truss has been designed fo chord live load nonconcurrent wi Bearings are assumed to be: Joi capacity of 565 psi. Refer to girder(s) for truss to trus provide mechanical connection i bearing plate capable of withstan 	DL=6.0psf; h=35ft; d; MWFRS (envelop)) zone; cantilever lef left and right orces & MWFRS for 1.60 plate grip r a 10.0 psf bottom th any other live load nt 2 SP No.2 crushin as connections. (by others) of truss to	t ds. 19						(STATE OF J ANDI THOM JURN NUM PE-2017	EW MAS SDN BER

- 2 3
- 4
- 5
- ıg 5 and 76 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



5/2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW
500	11055	Truss Type	Qly	гу		DEVELOPMENT SERVICES 165783151
P240543-01	CG5	Diagonal Hip Girder	2	1	Job Reference (optional)	
				-		

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 308.78.74 05/29:24 ID:Bb5QVthVwWM4UIIMJaEo8lzDs?t-RfC?PsB70Hq3NSgPqnL8w3uITXbGr WrCDoi734zJC?

NAILED

4-11-11

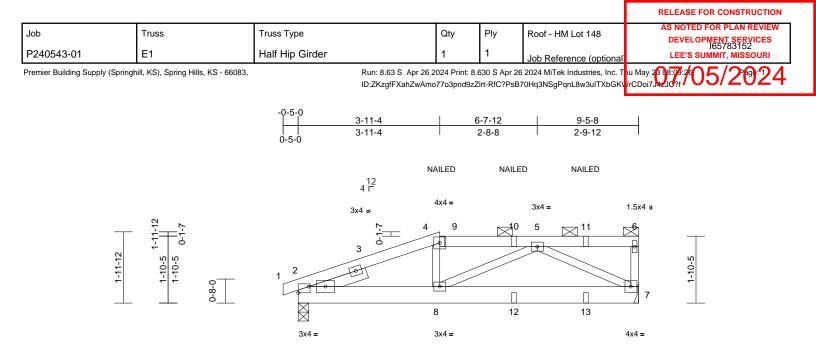
Scale = 1:36.4

Plate Offsets (X, Y): [2:0-2-6,0-0-3]

- 1000 0110010 ((,,,); [2:0 2 0;0 0 0]											
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.53	Vert(LL)	-0.03	2-5	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.32	Vert(CT)	-0.07	2-5	>867	180		
BCLL	0.0	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 22 lb	FT = 20%
LUMBER			7) "NAILEI	D" indicates Girder: 3	3-10d (0.14	8" x 3") toe-	nails					
TOP CHORD	2x4 SP No.2			S guidelines.								
BOT CHORD	2x4 SP No.2			DAD CASE(S) sectio			face					
WEBS	2x3 SPF No.2			uss are noted as fron	nt (F) or ba	ск (В).						
SLIDER	Left 2x4 SP No.2 2	2-5-9		E(S) Standard								
BRACING	o , , , , , , ,		, .	 Roof Live (balanced hcrease=1.15 	a): Lumbe	Increase=1.	15,					
TOP CHORD	Structural wood she		cu oi	n Loads (lb/ft)								
BOT CHORD	4-11-11 oc purlins, Rigid ceiling directly			: 1-4=-70, 2-5=-20								
BOT CHORD	bracing.											
REACTIONS	U	5= Mechanical										
	Max Horiz 2=68 (LC											
	Max Uplift 2=-111 (L	.C 8), 5=-49 (LC 12))									
	Max Grav 2=322 (L0	C 1), 5=207 (LC 1)										
FORCES	(lb) - Maximum Corr	pression/Maximum										
	Tension											
TOP CHORD	1-2=-5/0, 2-4=-89/56	6, 4-5=-158/206										
BOT CHORD	2-5=-31/34											
NOTES												
	CE 7-16; Vult=115mph											
	nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose		20)									
	one and C-C Corner (3											~
	exposed ; end vertical										TATE OF	and
	C-C for members and f		r								A.F. OF	MISSON
	shown; Lumber DOL=	1.60 plate grip								4	- AL	N.S.
DOL=1.60										A	S AND	REW Y
	has been designed fo									H	7 THO	
	load nonconcurrent wi										THON I	ISON +
 Bearings a capacity o 	are assumed to be: Joi	III 2 5P NO.2 CIUSNI	ing						/	-		JAAA LAN
	irder(s) for truss to tru	ss connections							- (M	NUM	
	echanical connection		to						<u> </u>	2		DER A
	ate capable of withstar									N.	PE-2017	7018993
										N	112	

5 5 and 111 lb uplift at joint 2.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


&SSIONAL E

true

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

May 23,2024

Scale = 1:32

Plate Offsets (X, Y)):	[2:0-2-9,0-2-0], [2:Edge,0-2-2]
----------------------	----	---------------------------------

Plate Offsets	(X, Y): [2:0-2-9,0-2-0],	, [2:Edge,0-2-2]										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI20	CSI TC BC WB 4 Matrix-S	0.34 0.28 0.27	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.01	(loc) 7-8 7-8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 41 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x6 SPF No.2 2x3 SPF No.2 Left 2x4 SP No.2 Structural wood she 5-1-2 oc purlins, ex 2-0-0 oc purlins (5-6 Rigid ceiling directly bracing. 	1-7-13 athing directly applie cept end verticals, ar -0 max.): 4-6. ' applied or 10-0-0 oc 7= Mechanical 11) .C 8), 7=-185 (LC 8)	7) Provic bearin joint 7 8) This tu Intern R802. d or 9) Graph or the botton 10) "NAIL per NI 11) Hange provid lb dow	e mechanical connect g plate capable of wit and 195 lb uplift at jo uss is designed in ac ational Residential Cc 10.2 and referenced s ical purlin representa orientation of the purl o chord. ED" indicates Girder: DS guidelines. r(s) or other connecti ed sufficient to suppo n and 63 lb up at 3-1 /selection of such co	thistanding 1 int 2. cordance w ode sections standard AN tion does n lin along the 3-10d (0.14 ion device(s rt concentra 1-4 on bott	85 Ib uplift a ith the 2018 is R502.11.1 a ISI/TPI 1. ot depict the a top and/or 8" x 3") toe-) shall be ated load(s) 2 om chord. T	t and size nails 228 he					
FORCES	(lb) - Maximum Com Tension		12) In the	isibility of others. LOAD CASE(S) secti			face					
TOP CHORD BOT CHORD WEBS	0 1-2=-10/0, 2-4=-124 5-6=-46/40, 6-7=-10	-470/870	^{8,} LOAD CA 1) Dead Plate	truss are noted as fro SE(S) Standard + Roof Live (balance Increase=1.15 rm Loads (lb/ft)	. ,	. ,	15,					
this desig			Ve Cono Ve	rt: 1-4=-70, 4-6=-70, entrated Loads (lb) rt: 4=-64 (F), 8=-228		(F), 11=-64	(F),				OF	MISSO
Vasd=91 Ke=1.00; exterior z and right exposed; reactions DOL=1.6	SCE 7-16; Vult=115mph mph; TCDL=6.0psf; BC ; Cat. II; Exp C; Enclose cone and C-C Exterior(2 exposed ; end vertical I ;C-C for members and fi s shown; Lumber DOL= ;0 adequate drainage to pr	DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le left and right orces & MWFRS for 1.60 plate grip	e) eft	=-19 (F), 13=-19 (F)					L		ST ANDI THOI JOHN	REW CEL
4) This truss	s has been designed for e load nonconcurrent wi	r a 10.0 psf bottom								Ø	PE-2017	BER 018993
5) Bearings	are assumed to be: Joi of 425 psi.									8	ANONA	L ENO
	girder(s) for truss to trus	ss connections.									UNA	The

- hord live load nonconcurrent with any 5) Bearings are assumed to be: Joint 2 SPF No.2 crushing capacity of 425 psi.
- 6) Refer to girder(s) for truss to truss connections.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

May 23,2024

										RELEASE		CTION
Job	Ti	russ	Tru	uss Type		Qty	Ply	Roof - H	M Lot 148			
P240543-0 ²	1 Н	1	Hi	p Girder		1	2	Job Ref	erence (optional	LEE'S	OPMENT SERVIC 165783153 SUMMIT, MISSOL	JRI
Premier Building	J Supply (Springhill, I	<s), hills,="" i<="" spring="" td=""><td>KS - 66083,</td><td></td><td></td><td></td><td>Print: 8.630 S</td><td>Apr 26 2024 MiTe</td><td>k Industries, Inc. T</td><td>nu May 23 08:09:26</td><td>75/20</td><td>24</td></s),>	KS - 66083,				Print: 8.630 S	Apr 26 2024 MiTe	k Industries, Inc. T	nu May 23 08:09:26	75/20	24
					ID:AzlpT5V	VBxvlisrVjqL4vn	NZzWRWC-R	C?PsB70Hq3NS	gPqnL8w3uITXbGł	WrCDoi794zJC?i	00/20/	<u> </u>
		-0-11-0	5	5-11-4	1	10-0-0	1	14-0-12	I	20-0-0)	I
		0-11-0	5	5-11-4	I	4-0-12	I	4-0-12	ſ	5-11-4	1	
					NAILED	NAILED	NAILED	NAILED	NAILED			
				1 <u>2</u> 4 Г	4x4 =		3x4 =		4x4 =			
□ 12 12				ი 10	3 11			13 I III	14 5	15		
2-7	6			6 10				\sim				
2-7-12 2-6-3	2-6-3	2		\bigcirc								
'n 'n		1	\leq									6 ज
	0-8-0					8	Π	Π				5
		4x4	-		9	8	16	17	7			4x4 =
					3x4 =	4x6 =			3x4 =			
					Special	NAILED	NAILED	NAILED	Special			
				<u>-10-0</u> -10-0			<u>14-2-0</u> 8-4-0			<u>20-0-</u> 5-10-		
Scale = 1:40												
Loading	(ps)-0	CSI		DEFL	in (loc	,	PLATES	GRIP	
TCLL (roof) TCDL	25 10		•		TC BC	0.68 0.70	Vert(LL) Vert(CT)	-0.10 7- -0.21 7-		MT20	197/144	
BCLL		.0 Rep Stre	ess Incr NC		WB	0.18	Horz(CT)		6 n/a n/a	Waight: 157 lb	ET - 20%	
BCDL	10	.0 Code				45				Weight: 157 lb	FT = 20%	(5)
LUMBER TOP CHORD				Vasd	: ASCE 7-16; Vult=1 =91mph; TCDL=6.0p	osf; BCDL=6.0)psf; h=35ft;		7=-425 (F), 4	(F), 5=-131 (F), 8= =-131 (F), 12=-13		
BOT CHORD WEBS	2x6 SPF No.2 2x3 SPF No.2			exter	.00; Cat. II; Exp C; E ior zone and C-C Ext	terior(2E) -0-1	1-0 to 4-1-0	,	16=-39 (F), 1	7=-39 (F)		
	Converting	l oh o othio a divo			or (1) 4-1-0 to 5-11-4 or (1) 13-0-2 to 14-0-	, , ,		,				
TOP CHORD	5-4-12 oc purlir	is, except		19-11	I-4 zone; cantilever lead to a continue of the content of the cont	eft and right e	xposed ; en	d				
BOT CHORD	2-0-0 oc purlins Rigid ceiling dir bracing.			force	s & MWFRS for reac =1.60 plate grip DOL	tions shown;						
REACTIONS	(size) 2=0-	5-8, 6= Mechan	nical	5) Provi	de adequate drainag truss has been desig	ge to prevent v						
	Max Horiz 2=42 Max Uplift 2=-5		54 (LC 9)	chord	I live load nonconcur	rrent with any	other live lo	ads.				
FORCES	Max Grav 2=17	87 (LC 1), 6=16	689 (LC 1)	capa	city of 425 psi.			siniy				
FORCES	(lb) - Maximum Tension				r to girder(s) for truss de mechanical conne			to				
TOP CHORD	1-2=0/2, 2-3=-4 4-5=-3827/1266				ng plate capable of v 6 and 513 lb uplift at		54 lb uplift a	it				
BOT CHORD	2-9=-1112/3805 6-7=-1147/3870	5, 7-9=-1471/44		10) This t	truss is designed in a national Residential (accordance w		and				
WEBS	3-9=-179/1044, 4-9=-898/425, 4	5-7=-152/1016	6 ,	R802	10.2 and referenced	d standard AN	SI/TPI 1.					
NOTES	+-3=-030/423, 2	+- <i>ı</i> =-033/382		or the	hical purlin represent e orientation of the pu			size				
 2-ply truss 	to be connected	together with 1	0d	botto	m chord.							

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0

oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

- Web connected as follows: 2x3 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.

- bottom chord.
- 12) "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails per NDS guidelines.
- 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 425 lb down and 110 lb up at 5-11-4, and 425 lb down and 110 lb up at 14-0-0 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others.
- LOAD CASE(S) Standard
- Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15 Uniform Loads (lb/ft)
 - Vert: 1-3=-70, 3-5=-70, 5-6=-70, 2-6=-20 Concentrated Loads (lb)

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

lek 16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

											FOR CONSTRUCTION
Job	Truss	Truss	Гуре		Q	y P	'ly Roo	of - HM Lo	ot 148		D FOR PLAN REVIEW OPMENT SERVICES 165783154
P240543-01	H2	Hip G	irder		1	2		Referen	ce (optional)	LEE'S	I65783154 SUMMIT, MISSOURI
Premier Building Supply (Spri	nghill, KS), Spring Hills, K	S - 66083,								u May 23 08:09:27 WrCDoi794zJC?1	05/2024
	-0-10-8 0-10-8	<u>5-11-4</u> 5-11-4		<u>11-4-0</u> 5-4-12			<u>16-8-1</u> 5-4-12			<u>22-8-0</u> 5-11-4	23-6-8
	0-10-0					AILED					0-10-0
			NAILED	NAILED	NAILED		ALED NA	AILED	NAILED		
		4 [4x8 u			1.5x4 ॥			4x8 II		
2-7-12 0-1-9		°- 	3		1415 I	4	1617	18	5	19	
2-7-12 	1		•						•		6 7
⊥⊥⊥ ڼ⊥	X		11	20 10	21	9	11	23	8		
	4x4 =		3x4 I	4x6=	-	3x8 =			Зх4 п		4x4 =
			Special	NAILED	NAILED	NA	ALED NA	AILED	Special		
					1	NAILED					
		<u>5-10-0</u> 5-10-0		<u>11-4-0</u> 5-6-0			<u>16-10-</u> 5-6-0			<u>22-8-0</u> 5-10-0	
Scale = 1:45.2		0 10 0		000			000	,		0.10.0	
Loading TCLL (roof) TCDL	(psf) Spacing 25.0 Plate Grip 10.0 Lumber D			CSI TC BC	0.81 0.83	DEFL Vert(LL) Vert(CT) 9 :	l/defl L/d >999 240 >882 180	PLATES MT20	GRIP 197/144

BC	DL		10.0	Code	IRC2018	3/TPI2014
TO BC	MBER P CHORD T CHORD BS	2x4 SP N 2x6 SPF 2x3 SPF	No.2		4)	Wind: AS Vasd=91 Ke=1.00; exterior z
		200 01 1	10.2			Interior (1
	P CHORD	5-1-13 oc	purlins, ex	athing directly applied cept -5 max.): 3-5.	d or	Interior (1 23-6-8 zc vertical le
BC	T CHORD			applied or 10-0-0 oc	_`	forces & I DOL=1.6
RE	ACTIONS	(size) Max Horiz	2=0-3-8, 6 2=42 (LC		5) 6)	Provide a This truss chord live
				C 8), 6=-572 (LC 9) .C 1), 6=2030 (LC 1)	7)	All bearin
FO	RCES	(lb) - Max Tension	imum Com	pression/Maximum	8)	Provide n bearing p
то	P CHORD			1460, 3-4=-5952/183 =-4904/1465, 6-7=0/		joint 2 an This truss
BC	T CHORD		,	11=-1278/4487, =-1291/4515	- /	Internatio R802.10.
WE	BS		/605, 3-9=-4 0/531, 5-9=	486/1691, -486/1691, 5-8=-40/6		Graphica (
NC	TES					bottom ch
1)	(0.131"x3	") nails as fo	ollows:	her with 10d	,	NAILED per NDS Hanger(s
	I OD ChOrc	is connected	a as tollows	: 2x4 - 1 row at 0-9-0	12	

0.0

Rep Stress Incr

NO

BCLL

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows

staggered at 0-9-0 oc. Web connected as follows: 2x3 - 1 row at 0-9-0 oc.

- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 5-11-4, Exterior(2R) 5-11-4 to 13-0-2, Interior (1) 13-0-2 to 16-8-12, Exterior(2E) 16-8-12 to 23-6-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

0.29 Horz(CT)

0.05

6

n/a n/a

WB

Matrix-S

- 5) Provide adequate drainage to prevent water ponding.
 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.7) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 572 lb uplift at joint 2 and 572 lb uplift at joint 6.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

- 11) "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails per NDS guidelines.
- 12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 396 lb down and 94 lb up at 5-11-4, and 396 lb down and 94 lb up at 16-8-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)
 - Vert: 1-3=-70, 3-5=-70, 5-7=-70, 2-6=-20 Concentrated Loads (lb)

Vert: 3=-131 (F), 5=-131 (F), 11=-396 (F), 9=-39 (F), 4=-131 (F), 8=-396 (F), 13=-131 (F), 15=-131 (F), 16=-131 (F), 18=-131 (F), 20=-39 (F), 21=-39 (F), 22=-39 (F), 23=-39 (F)

Weight: 184 lb FT = 20%

								FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - HM Lot 148		D FOR PLAN REVIEW DPMENT SERVICES 165783155
P240543-01	H3	Hip		1	1	Job Reference (optional	1 5 5 10 0	SUMMIT, MISSOURI
Premier Building Supply (S	pringhill, KS), Spring Hills, KS	· 66083,	Run: 8.63 S Apr 2 ID:wImwVP5ntIDq	6 2024 Print: 8 8046wYQ8TO:	3.630 S Apr 26 zWQKZ-RfC?	5 2024 MiTek Industries, Inc. ⊺ PsB70Hq3NSgPqnL8w3uITXI	hu May 23 08:09:27 GKWrCDoi7J4zJC?)5/2024
	-0-10-8				2			23-6-8
	0-10-8	7-11-4 7-11-4		<u>14-8-12</u> 6-9-8			22-8-0 7-11-4	0-10-8
01		12 4 Г	6x6 =			4x6 =		
0-1-9		3x4 =				5	3x4 ≈	
9 9 9 9	3	313 Jx4 =					146 3	3x4 ≈
3-3-12 3-2-3 3-2-3	2 12	Et C						15 _

11

1.5x4 🛚

•

10

3x4 =

9

3x4 =

		1	7-10-0		14-10-0	1		22-8-0	I
			7-10-0		7-0-0			7-10-0	
Scale = 1:45.3	3								
Plate Offsets	(X, Y): [2:0-4-5,Edge],	[7:0-4-5,Edge]							
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC 0.78 BC 0.70 WB 0.31	Vert(CT) -0.		l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S			ind ind	Weight: 94 lb	FT = 20%
LUMBER 4) This truss has been designed for a 10.0 psf bottom TOP CHORD 2x4 SP No.2 *Except* 4-5:2x4 SP 1650F 4) This truss has been designed for a 10.0 psf bottom SUBS 2x4 SP No.2 5) All bearings are assumed to be SP No.2 crushing WEBS 2x3 SPF No.2 6) Provide mechanical connection (by others) of truss to SLIDER Left 2x4 SP No.2 4-1-2, Right 2x4 SP No.2 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 242 lb uplift at joint 7. joint 2 and 242 lb uplift at joint 7.									
4-1-2 4-1-2 BRACING 4-1-2 TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except 2-0-0 oc purlins (3-7-5 max.): 4-5. 7) BOT CHORD Rigid ceiling directly applied or 8-0-1 oc bracing. 7)									
REACTIONS	5	12) C 8), 7=-242 (LC 9)	LOAD CASE(S)	Standard					
FORCES	(lb) - Maximum Com Tension	pression/Maximum							
TOP CHORD BOT CHORD	1-2=-5/0, 2-4=-2060 5-7=-2060/665, 7-8=	-5/0							
WEDO	7-9=-529/1857								an
	4-11=0/305, 4-9=-22	2/223, 5-9=0/305						OF	MISS
BOT CHORD 2-11=-503/1857, 9-11=-506/1851, 7-9=-529/1857 WEBS 4-11=0/305, 4-9=-222/223, 5-9=0/305 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 7-11-4, Exterior(2E) 7-11-4 to 14-8-12, Exterior(2R) 14-8-12 to 21-9-10, Interior (1) 21-9-10 to 23-6-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOI = 1.60 plate grip DOI = 1.60; Kender Hold State St									
3) Provide a	adequate drainage to pr	event water ponding.						all all	23 2024

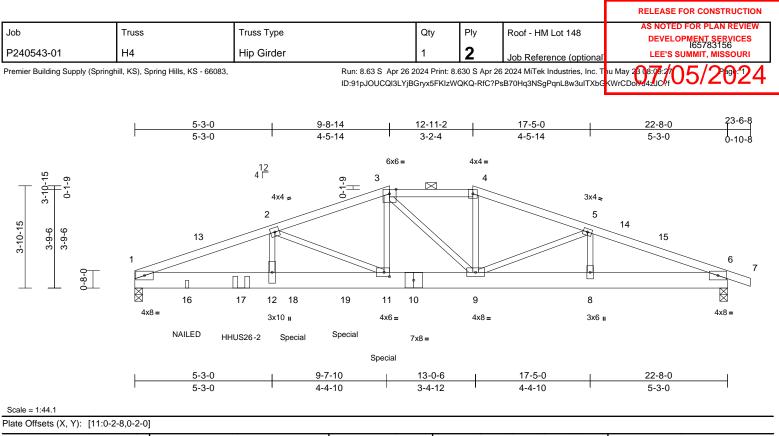
2

4x6 🛛

P

May 23,2024

7

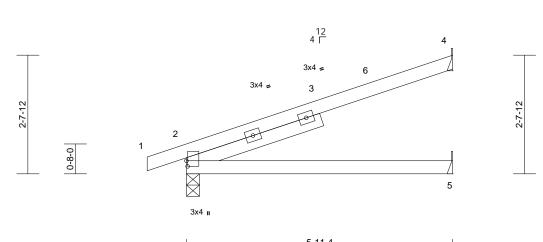

Ø

4x6 II

8

to-

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.53	Vert(LL)	-0.11	11-12	>999	240	MT20	197/14	44
TCDL	10.0	Lumber DOL	1.15		BC	0.94	Vert(CT)	-0.19	11-12	>999	180			
BCLL	0.0	Rep Stress Incr	NO		WB	0.35	Horz(CT)	0.04	6	n/a	n/a			
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		, , , , , , , , , , , , , , , , , , ,					Weight: 217	lb FT = 2	20%
LUMBER			3)	Unbalanced	roof live loads hav	ve been	considered fo	r	14) Har	nger(s) o	r othe	r connection d	evice(s) sh	all be
TOP CHORD	2x4 SP No.2		0,	this design.		to boom						to support co		
BOT CHORD			4)	0	7-16; Vult=115m	ph (3-sec	cond aust)							down and 57
WEBS	2x3 SPF No.2		•,		n; TCDL=6.0psf; E							nd 228 lb dow		
	2X3 3FF NU.2				t. II; Exp C; Enclo			ne)				The design/se		
BRACING	Other and the second se	a the income line a the same line			and C-C Exterior			,				(s) is the resp		
TOP CHORD			ed or		3-0 to 9-8-14, Ex					CASE(S				
	4-4-9 oc purlins, exc				erior(2R) 12-11-2							e (balanced): I	umber Inc	1 15
BOT CHORD	2-0-0 oc purlins (6-0		-		6-8 zone; cantile			sed ;		ate Incre				10030-1.13,
BUICHURD		applied of 10-0-0 of	5		eft and right expo					niform Lo				
	bracing.			forces & MW	FRS for reactions	shown;	Lumber					3-4=-70, 4-7=	-70 1-62	20
REACTIONS				DOL=1.60 pl	ate grip DOL=1.6	0				oncentra			70, 10=2	-0
	Max Horiz 1=-67 (LC		5)	Provide adeo	uate drainage to	prevent	water ponding	j .				(B), 16=-150 ((B) 1716	69 (B)
	Max Uplift 1=-715 (L			This truss ha	s been designed	for a 10.	0 psf bottom					9=-228 (B)	<u>_</u>), 17 = 100	юз (D),
	Max Grav 1=2966 (I)	chord live loa	ad nonconcurrent	with any	other live loa	ds.		10= 220	, (D), T	3= 220 (D)		
FORCES	(lb) - Maximum Corr	npression/Maximum	7)	All bearings a	are assumed to b	e SPF N	o.2 crushing							
	Tension			capacity of 4										
TOP CHORD			8)		hanical connectio									
	3-4=-3159/991, 4-5=				capable of withs		'15 lb uplift at							
	5-6=-3629/1052, 6-7				30 lb uplift at joint									
BOT CHORD			9)		designed in accor									
	9-11=-941/3686, 8-9	9=-927/3327,			Residential Code			nd						
	6-8=-927/3327	044/007			nd referenced star									
WEBS	3-11=-363/1486, 3-9	,	1(rlin representation			size					an	6)
	4-9=-176/765, 2-11= 2-12=-402/1767, 5-9		/100		tion of the purlin	along the	e top and/or					ANT	MIG	D
	2-12=-402/1707, 5-8	5=-220/235, 5-6=-23/		bottom chord		000 0 /4	4 40 - 0					A SE	MISS	AV.
NOTES			1.		Strong-Tie HHU or equivalent at 4						6	TATE OF	1	N.S.
	s to be connected toge	ther with 10d			s(es) to back face			0 10			R	S AN	DREW	NEN
	") nails as follows:		0 11	2) N/A	s(es) to back lace		n chora.				U	7 тн	OMAS	1. 8
	is connected as follows	s: 2x4 - 1 row at 0-9-	0 12	.) IN/A							1 +		INSON	1+12
OC.	anda as a satad as fall											- · · · · · · · · · · · · · · · · · · ·	111.	a la la
	ords connected as foll at 0-5-0 oc.	0WS: 2X8 - 2 10WS	13	NAILED" inc	licates Girder: 3-1	10d (0 14	8" x 3") toe-	naile		(\mathbf{N}	mo	100	y y y
	nected as follows: 2x3 -	1 row at 0.0.0 cc		per NDS qui		100 (0.14		iano		<u> </u>	33	NU NU	MBER	1 ZA
	are considered equally			por rubo gui	2011100.						N	O PE-20	17018993	3/57
	noted as front (F) or ba										N	PE-20		12A
	section. Ply to ply conr										X	NY'AN		C'A
	to distribute only loads											NOIS'SION	IAT EF	A
	nerwise indicated.											-	AL	9
011055 011	ioimioo maioatoa.												sus-	


CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

May 23,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW
P240543-01	J1	Jack-Open	12	1	Job Reference (optional	DEVELOPMENT SERVICES 165783157 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springhill, KS), Spring Hills, K	S - 66083, Run: ID:9F	8.63 S Apr 26 2024 Print: tizLT5sxS0XndvBrCTxOMz	8.630 S Apr WRWk-RfC	r 26 2024 MiTek Industries, Inc. T C?PsB70Hq3NSgPqnL8w3uITXb(nu May 28 18:79:2705/219:24 KWrCD077142J0?1
		-0-10-8 0-10-8	<u>5-11-4</u> 5-11-4			

5-11-4	

Plate Offsets (X, Y): [2:0-1-8,0-0-5]

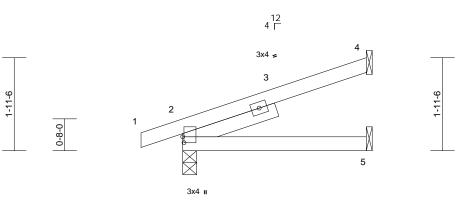
Scale = 1:25.7

	(X, T): [2:0 T 0,0 0 0]											
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.78	Vert(LL)	-0.07	2-5	>987	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.44	Vert(CT)	-0.14	2-5	>493	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.02	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 24 lb	FT = 20%
LUMBER			6) This truss	s designed in acc	ordance w	ith the 2018						
TOP CHORD	2x4 SP No.2			al Residential Cod			and					
BOT CHORD				and referenced st	andard AN	ISI/TPI 1.						
SLIDER	Left 2x4 SP No.2 3	3-1-13	LOAD CASE(S	 Standard 								
BRACING												
TOP CHORD		athing directly appli	ed or									
	5-11-4 oc purlins.											
BOT CHORD	0 0 /	applied or 10-0-0 d	00									
DEACTIONS	bracing.	1 Machanical C										
REACTIONS	(SIZE) Z=0-3-8, 2 Mechanic	4= Mechanical, 5=										
	Max Horiz 2=99 (LC											
	Max Uplift 2=-81 (LC	,)									
	Max Grav 2=330 (L0	,, , , ,										
	(LC 3)	,, , , ,										
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD		50										
BOT CHORD	0 2-5=0/0											
NOTES												
	SCE 7-16; Vult=115mph											
	mph; TCDL=6.0psf; BC											
	; Cat. II; Exp C; Enclose zone and C-C Exterior(2										STATE OF	and
	1) 4-1-8 to 5-10-8 zone;										OF.	MISCO
	; end vertical left and right									1	950	
	s and forces & MWFRS									R	AND	DEW X
Lumber D	DOL=1.60 plate grip DO	L=1.60								R	S AND	KEW /Y
	s has been designed for								1	91	THO	
	e load nonconcurrent wi									4	JØH	
	are assumed to be: , Jo	oint 2 SP No.2 crus	hing						U	\mathbf{N}	m	anny
	of 565 psi.									83	NUM	BER

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 111 lb uplift at joint 4 and 81 lb uplift at joint 2.

May 23,2024


PE-2017018993

SSIONAL ET

time

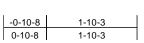
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW
P240543-01	J2	Jack-Open	6	1	Job Reference (optional	DEVELOPMENT SERVICES 165783158 LEE'S SUMMIT, MISSOURI
Deseries Duildise Cursh. (Casia sh		Burn 0.02.0. Arr 20.2		000 0 0 0 0 00	2004 MiTely laduatrice, las, T	

3-10-3

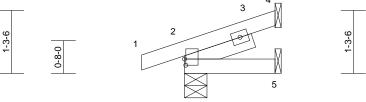
Scale = 1:24.2	
Plate Offsets (X, Y):	[2:0-1-8,0-0-5]

	A, T). [2.0-1-6,0-0-5]											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.32	Vert(LL)	-0.01	2-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.17	Vert(CT)	-0.02	2-5	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 16 lb	FT = 20%
LUMBER				s designed in acc								
TOP CHORD	2x4 SP No.2			al Residential Coo			and					
BOT CHORD	2x4 SP No.2		R802.10.2 a	and referenced st	andard AN	ISI/TPI 1.						
SLIDER	Left 2x4 SP No.2 2	2-0-10	LOAD CASE(S) Standard								
BRACING												
TOP CHORD	Structural wood she	athing directly applie	ed or									
	3-10-3 oc purlins.											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	С									
	bracing.											
REACTIONS		4= Mechanical, 5=										
	Mechanic											
	Max Horiz 2=68 (LC	,										
	Max Uplift 2=-67 (LC	,, (,										
	Max Grav 2=239 (L0	C 1), 4=125 (LC 1),	5=76									
	(LC 3)											
FORCES	(lb) - Maximum Corr Tension	pression/Maximum										
TOP CHORD	1-2=-5/0, 2-4=-76/3	1										
BOT CHORD	2-5=0/0											
NOTES												
1) Wind: ASC	CE 7-16; Vult=115mph	(3-second aust)										
,	nph; TCDL=6.0psf; BC	· · · · ·										
Ke=1.00; 0	Cat. II; Exp C; Enclose	d; MWFRS (envelo	pe)									The second second
exterior zo	ne and C-C Exterior(2	E) zone; cantilever	left								O OF 1	ALL ALL
	exposed ; end vertical									6	ATE OF I	NISS D
	C-C for members and f		r							A	T.N.	N.S.
reactions	howny Lymbor DOL -	1 60 ploto arip								4	A'/	

- reactions shown; Lumber DOL=1.60 plate grip DOL=1.602) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.Bearings are assumed to be: , Joint 2 SP No.2 crushing capacity of 565 psi.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 73 lb uplift at joint 4 and 67 lb uplift at joint 2.



May 23,2024


						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW
P240543-01	J3	Jack-Open	6	1	Job Reference (optional	DEVELOPMENT SERVICES 165783159 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Spri	nghill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Apr 26 ID:LHLh4Q15McGC	2024 Print: 8 3iR1UyMX85	.630 S Apr 26 zWRWq-RfC	5 2024 MiTek Industries, Inc. T ?PsB70Hq3NSgPqnL8w3uITX	hu May 23 8:79:2705/29:24

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 29 8:79:37 ID:LHLh4Q15McGO3iR1UyMX85zWRWq-RfC?PsB70Hq3NSgPqnL8w3uITxpGKWrC9bi794zUCW

3x4 🛛

1-10-3

Scale = 1:23.5 Plate Offsets (X, Y): [2:0-1-8,0-0-5]

	(X, T). [2.0-1-0,0-0-3]										-	
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	0.00	2-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	0.00	2-5	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 9 lb	FT = 20%
LUMBER			6) This truss is	s designed in acco	ordance w	ith the 2018						
TOP CHORD	2x4 SP No.2		Internationa	al Residential Code	e sections	R502.11.1 a	and					
BOT CHORD	2x4 SP No.2		R802.10.2	and referenced sta	andard AN	ISI/TPI 1.						
SLIDER	Left 2x4 SP No.2 7	1-5-8	LOAD CASE(S) Standard								
BRACING												
TOP CHORD		athing directly applie	ed or									
BOT CHORD	1-10-3 oc purlins. D Rigid ceiling directly	applied or 10-0-0 o	C									
BOTCHORL	bracing.	applied of 10-0-0 0	C									
REACTIONS	0	4= Mechanical, 5=										
	Mechanic											
	Max Horiz 2=40 (LC	12)										
	Max Uplift 2=-57 (LC	2 8), 4=-35 (LC 12)										
	Max Grav 2=158 (L0 (LC 3)	C 1), 4=50 (LC 1), 5	=37									
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD		5										
BOT CHORD												
NOTES												
	SCE 7-16; Vult=115mph	(3-second gust)										
	mph; TCDL=6.0psf; BC											
	; Cat. II; Exp C; Enclose											an
	zone and C-C Exterior(2		left								OF	MIG
	exposed ; end vertical l									6	TATE OF	MISS W
	;C-C for members and f									6	A.M.	N.S/
DOL=1.6	s shown; Lumber DOL=	1.60 plate grip								R	S AND	REW
	s has been designed for	r a 10.0 psf bottom								R	/ THO	
,	e load nonconcurrent wi		ds.						/	12 🖈	JOH	NSDN +
	are assumed to be: , Jo								- 1	K T	traih	tel 1 h
	of 565 psi.		-						U		NUM	BER A
	girder(s) for truss to tru									47		BER 7018993
Frovide r	mechanical connection ((by others) of truss t	0							N	O PE-201	1010993 200

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 57 lb uplift at joint 2 and 35 lb uplift at joint 4.

> 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

SIONAL ET

May 23,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 165783160
P240543-01	J4	Jack-Closed	3	1	Job Reference (optional	
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,				3 2024 MiTek Industries, Inc. T 370Hq3NSgPqnL8w3uITXbGK	
		5-	7-8			
					1.5x4 u	
		4	1 <u>2</u>		3	
		0.1			5	\top
		3x4 = 2	_		ľ	
	φ					ŵ
	2-6-8	1	Í			2-6-8
	0-8-0				4	
		\bigotimes				
		3x4 u			1.5x4 u	
		5-	7-8			
Scale = 1:23.2						

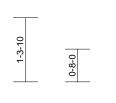
Plate Offsets (X, Y): [1:0-1-8,0-5-5]												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.74	Vert(LL)	-0.06	1-4	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.39	Vert(CT)	-0.11	1-4	>594	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 23 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2		LOAD CASE(S) Standard								

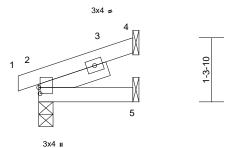
TOP CHORD	2x4 SP No.2						
BOT CHORD	2x4 SP No.2						
WEBS	2x3 SPF No.2						
SLIDER	Left 2x4 SP No.2 2-10-8						
BRACING							
TOP CHORD	Structural wood sheathing directly applied or						
	5-7-8 oc purlins, except end verticals.						
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc						
	bracing.						
REACTIONS	(size) 1=0-3-8, 4= Mechanical						
	Max Horiz 1=105 (LC 9)						
	Max Uplift 1=-45 (LC 8), 4=-64 (LC 12)						
	Max Grav 1=248 (LC 1), 4=248 (LC 1)						
FORCES	(lb) - Maximum Compression/Maximum						
	Tension						
TOP CHORD	1-3=-135/83, 3-4=-193/263						
BOT CHORD	1-4=-45/49						

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 5-0-0, Interior (1) 5-0-0 to 5-6-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads. Bearings are assumed to be: Joint 1 SP No.2 crushing 3)
- capacity of 565 psi.
- Refer to girder(s) for truss to truss connections. 4)
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 45 lb uplift at joint 1 and 64 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)




						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW
000	11000		Guy	,		DEVELOPMENT SERVICES 165783161
P240543-01	J5	Jack-Open	2	1	Job Reference (optional	
Premier Building Supply (Spring	nill, KS), Spring Hills, KS - 66083,				5 2024 MiTek Industries, Inc. T 370Hq3NSqPqnL8w3uITXbGK	

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 23 08:09:27 ID:v0F888O3WtPtKyDp5Xbz8dzZls3-RfC?PsB70Hq3NSgPqnL8w3uITXbGK VrCDoi7.42Jc?

1-10-15

Scale = 1:23.4

Plate Offsets (X, Y): [2:0-1-8,0-0-5]

	7, 1). [2.0 1 0,0 0 0]											
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.07	Vert(LL)	0.00	2-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	0.00	2-5	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 9 lb	FT = 20%
LUMBER			6) This truss is	s designed in acco	ordance wi	ith the 2018						
TOP CHORD	2x4 SP No.2		Internationa	al Residential Code	e sections	R502.11.1 a	and					
BOT CHORD	2x4 SP No.2		R802.10.2	and referenced sta	andard AN	ISI/TPI 1.						
SLIDER	Left 2x4 SP No.2 1	1-5-8	LOAD CASE(S) Standard								
BRACING												
TOP CHORD	Structural wood she	athing directly appli	ed or									
	1-10-15 oc purlins.											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	с									
	bracing.											
REACTIONS	EACTIONS (size) 2=0-3-8, 4= Mechanical, 5=											
	Mechanic											
	Max Horiz 2=35 (LC	,										
	Max Uplift 2=-29 (LC Max Grav 2=118 (LC	// // //	20									
	(LC 3)	5 1), 4=03 (LC 1), 5	=30									
FORCES	(lb) - Maximum Com	prossion/Maximum										
TORCES	Tension	pression/maximum										
TOP CHORD	1-2=-14/0, 2-4=-51/1	17										
BOT CHORD	2-5=0/0											
NOTES												
	CE 7-16; Vult=115mph	(3-second gust)										
	nph; TCDL=6.0psf; BC											
	Cat. II; Exp C; Enclose		pe)									m
exterior zo	one and C-C Exterior(2	E) zone; cantilever	left								STATE OF	Mr. Ch
	exposed ; end vertical I									-	A E OF	MISS OF
	C-C for members and for		r							A		N.S.
	shown; Lumber DOL=1	1.60 plate grip								A	S AND	REW
DOL=1.60		a 10.0 pol hott								A	/ THO	MAS Y
	has been designed for		do							1 +		ISON X
capacity of		0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mig							XA	his	inno
	irder(s) for truss to trus	ss connections.							<u> </u>	17	NON	IBER

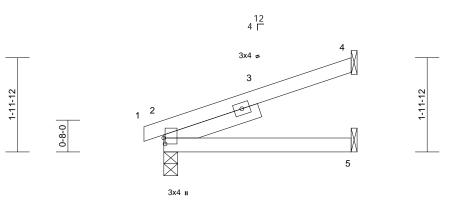
4) Refer to girder(s) for truss to truss connections 5) Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 29 lb uplift at joint 2 and 40 lb uplift at joint 4.

May 23,2024

PE-2017018993

SIONAL ET


						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW
000	11035		Guy	l' 'y		DEVELOPMENT SERVICES 165783162
P240543-01	J6	Jack-Open	3	1	Job Reference (optional	

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 2013;06:27 ID:58PIRvWyxFoJ8fZwELHY5xzZIru-RfC?PsB70Hq3NSgPqnL8w3uITXbGK VrCDoi7342JC?r

DUCTION

J5/2024

3-11-4

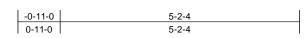
Scal	e = 1:24			

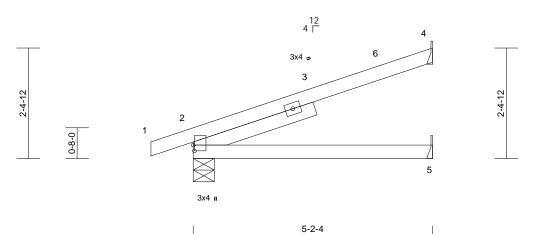
Plate Offsets (X,	Y):	[2:0-1-8,0-0-5]
-------------------	-----	-----------------

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.37	Vert(LL)	-0.01	2-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.18	Vert(CT)	-0.03	2-5	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P			-				Weight: 16 lb	FT = 20%
LUMBER				is designed in acc								
TOP CHORE				al Residential Coc			and					
BOT CHORE				and referenced st	andard AN	NSI/TPI 1.						
SLIDER	Left 2x4 SP No.2 2	2-1-3	LOAD CASE(5) Standard								
BRACING												
TOP CHORE		athing directly appli	ed or									
BOT CHORE	 3-11-4 oc purlins. D Rigid ceiling directly 	applied or 10-0-0 o	ic.									
Bor onone	bracing.											
REACTIONS	0	4= Mechanical, 5=										
	Mechanic											
	Max Horiz 2=64 (LC											
	Max Uplift 2=-43 (LC	// // /										
	Max Grav 2=205 (L0 (LC 3)	C 1), 4=134 (LC 1),	5=77									
FORCES	(lb) - Maximum Com Tension	npression/Maximum										
TOP CHORE		33										
BOT CHORE	D 2-5=0/0											
NOTES												
1) Wind: AS	SCE 7-16; Vult=115mph	(3-second gust)										
	1mph; TCDL=6.0psf; BC											
	; Cat. II; Exp C; Enclose										000	an
	zone and C-C Exterior(2		left								TATE OF	MICON
	t exposed ; end vertical l;C-C for members and f		r								A TE	-050,0
	s shown; Lumber DOL=		<u>.</u>							A	AS INT	New York
DOL=1.6										4		
	s has been designed fo									× .	THO	
	e load nonconcurrent w									M *	r JOHD	SON X
	s are assumed to be: , J	oint 2 SP No.2 crus	hing						(1A	mint	mp
	of 565 psi. girder(s) for truss to tru	les connections								13	NUM	BER
	yinder(3) ior thuss to thu	133 5011165110115.									DE AOIE	Internet IN

4) Refer to girder(s) for truss to truss connections 5) Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 76 lb uplift at joint 4 and 43 lb uplift at joint 2.




May 23,2024

PE-2017018993

SIONAL ET

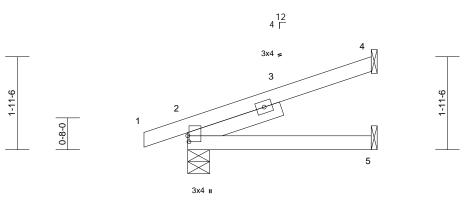
Job Truss Truss Type Qty Ply Roof - HM Lot 148 AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 165783163 P240543-01 J7 Jack-Open 10 1 Job Reference (optional) LEE'S SUMMIT, MISSOURI Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083, ID:26Cqk1RxPA4f_2Jnuv_layzDuSQ-RfC?PsB70Hq3NSgPqnL8w3ulTxb6K Tu May 23 08:06:40 05/29024								RELEASE FOR CONSTRUCTION
P240543-01 J7 Jack-Open 10 1 Job Reference (optional) DEVELOPMENT SERVICES 165783163 Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083, Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 2019 (Company) Development Services 165783163	lah	Truco	Truce Ture		011	DIV	Deef UNL at 140	AS NOTED FOR PLAN REVIEW
P240543-01 J7 Jack-Open 10 1 Job Reference (optional) LEE'S SUMMIT, MISSOURI Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083, Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 20 30 30 - 7 / 2 Pop 2 / 1 Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 20 30 - 7 / 2 Pop 2 / 1	100	TTUSS	Truss Type	ľ	Qty Ply Root - HM Lot 1		ROOI - HIVI LOU 148	DEVELOPMENT
Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083, Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 2013 37 37 37 37 37 37 37 37 37 37 37 37 37	P240543-01	J7	Jack-Open	·	10	1	Job Reference (optional	
	Premier Building Supply (S	Springhill, KS), Spring Hills	s, KS - 66083,	Run: 8.63 S Apr 26 202 ID:26Cqk1RxPA4f_2Jnu	24 Print: uv_layzD	8.630 S Apr 2 uSQ-RfC?Ps	26 2024 MiTek Industries, Inc. T	u May 2 18 79:24 15/ 구위: 14

Scale = 1:25	5
--------------	---

Plate Offsets (X, Y): [2:0-1-8,0-0-5]

Loading	(psf)	Spacing	2-0-0	CSI	0.00	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC	0.60 0.33	Vert(LL) Vert(CT)	-0.04 -0.08	2-5 2-5	>999 >743	240 180	MT20	244/190
BCLL	0.0	Rep Stress Incr	YES	WB	0.33	Horz(CT)	-0.08	2-5 4	>/43 n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P	0.00	11012(01)	0.01	-	n/a	n/a	Weight: 22 lb	FT = 20%
LUMBER			6) This truss i	s designed in acc	cordance w	ith the 2018						
TOP CHORD	2x4 SP No.2			al Residential Co			and					
BOT CHORD	2x4 SP No.2		R802.10.2 and referenced standard ANSI/TPI 1.									
SLIDER	Left 2x4 SP No.2 2-9-1		LOAD CASE(S	 Standard 								
BRACING												
TOP CHORD Structural wood sheathing directly applied or												
5-2-4 oc purlins.												
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	с									
REACTIONS	0	4= Mechanical, 5=										
REACTIONS	(Size) Z=0-5-0, Mechanic	,										
	Max Horiz 2=88 (LC											
	Max Uplift 2=-78 (LC	,										
Max Grav 2=301 (LC 1), 4=174 (LC 1), 5=102												
	(LC 3)											
FORCES	(lb) - Maximum Con Tension	pression/Maximum										
TOP CHORD	1-2=-4/0, 2-4=-93/43	3										
BOT CHORD	2-5=0/0											
NOTES												
1) Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)										
Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft;												
,	Cat. II; Exp C; Enclose	· · · ·	pe)								000	and
exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 5-1-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for										MICON		
										6	BIE	1.020
exposed; end vertical left and right exposed;C-C for										6	181	N.S.


- members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.3) Bearings are assumed to be: , Joint 2 SP No.2 crushing capacity of 565 psi.
- Refer to girder(s) for truss to truss connections. 4)
- 5)
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 97 lb uplift at joint 4 and 78 lb uplift at joint 2.



May 23,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 165783164
P240543-01	J8	Jack-Open	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springh	ill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Apr 26 2 ID:NDoWLUOhHBXk	024 Print: 8. x60?fF6Chrz	630 S Apr 26 Zls2-RfC?Ps	2024 MiTek Industries, Inc. T B70Hq3NSgPqnL8w3uITXbG	uu May 2018:79:2405/219:24

3-10-3

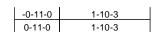
Scale = 1:24.2			
Plate Offsets (X, Y): [2:0-1-8,0-0-5]			

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.32	Vert(LL)	-0.01	2-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.17	Vert(CT)	-0.02	2-5	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 16 lb	FT = 20%
LUMBER			6) This trus	is designed in accor	danco w	ith the 2019						
TOP CHORD	2x4 SP No.2			nal Residential Code			and					
BOT CHORD				2 and referenced star			unu					
SLIDER	Left 2x4 SP No.2 2	2-0-10		(S) Standard								
BRACING		2010										
TOP CHORD	Structural wood she	athing directly appli	ed or									
	3-10-3 oc purlins.	at my arootly appro-										
BOT CHORD		applied or 10-0-0 o	C									
	bracing.											
REACTIONS	(size) 2=0-5-8, 4	4= Mechanical, 5=										
	Mechanic											
	Max Horiz 2=69 (LC	,										
	Max Uplift 2=-69 (LC											
	Max Grav 2=242 (L0	C 1), 4=125 (LC 1),	5=76									
	(LC 3)											
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension 1-2=-4/0, 2-4=-75/3											
TOP CHORD BOT CHORD	,	I										
	2-5=0/0											
NOTES		(2 accord quat)										
	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC											
	Cat. II; Exp C; Enclose		ne)									~
	one and C-C Exterior(2										TATE OF	Jon Jon
	exposed ; end vertical										B. OF	MISS
	C-C for members and f		r							4	9.20	N'OC
	shown; Lumber DOL=	1.60 plate grip								B	AND	REW XP.V
DOL=1.60										B	THO	
	has been designed fo											
	load nonconcurrent wi								/			
 Bearings capacity c 	are assumed to be: , Jo	UITL 2 SP NO.2 Crust	ning						- 1	K/	my	emp
	airder(s) for truss to tru	es connections							C	27	NUM	BER /
	nechanical connection		to							N	O PE-2017	018993
	late capable of withstar									V	100	18A
	lb uplift at joint 2.										PE-2017	BER 018993

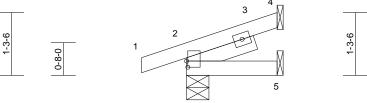
5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 72 lb uplift at joint 4 and 69 lb uplift at joint 2.

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com


May 23,2024

SSIONAL ET

T


						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW
						DEVELOPMENT SERVICES I65783165
P240543-01	J9	Jack-Open	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 2018:09:28 ID:NDoWLUOhHBXkx60?fF6ChrzZls2-RfC?PsB70Hq3NSgPqnL8w3ulTXbG{WrCDoin42sCff

3x4 🛛

1-10-3

Scale = 1:23.5 Plate Offsets (X, Y): [2:0-1-8.0-0-5]

												-
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	0.00	2-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	0.00	2-5	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 9 lb	FT = 20%
LUMBER 6) This truss is designed in accordance with the 2018												

International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

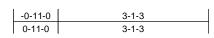
TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD Left 2x4 SP No.2 -- 1-5-8 SLIDER BRACING TOP CHORD Structural wood sheathing directly applied or 1-10-3 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 2=0-5-8, 4= Mechanical, 5= Mechanical Max Horiz 2=40 (LC 12) Max Uplift 2=-60 (LC 8), 4=-35 (LC 12) Max Grav 2=163 (LC 1), 4=48 (LC 1), 5=37 (LC 3) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-4/0, 2-4=-43/16 BOT CHORD 2-5=0/0

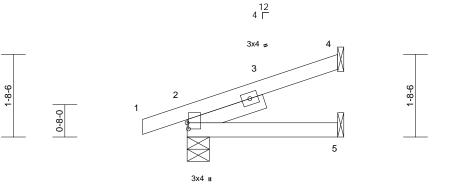
NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.

3) Bearings are assumed to be: , Joint 2 SP No.2 crushing capacity of 565 psi.

- Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 60 lb uplift at joint 2 and 35 lb uplift at joint 4.


OF MISSO ANDREW THOMAS JOINSON NUMBER PE-2017018993 SSIONAL E


May 23,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW
300	11055	Truss Type	Qly	гіу		DEVELOPMENT SERVICES 165783166
P240543-01	J10	Jack-Open	4	1	Job Reference (optional	

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 20 375, 20 5/20 24 ID:LS7TCQWKmKyfK7L7otcxMQzDuSJ-RfC?PsB70Hq3NSgPqnL8w3uITXb3KWrCDwrJazJc?

3-1-3

Scale = 1:23.7		
Plate Offsets (X, Y): [2:0-1-8,0-0-5]		

				-								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.19	Vert(LL)	-0.01	2-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(CT)	-0.01	2-5	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 14 lb	FT = 20%
LUMBER			6) This truss	is designed in acc	ordance w	ith the 2018						
TOP CHORD	2x4 SP No.2			nal Residential Coc			and					
BOT CHORD	2x4 SP No.2		R802.10.2	and referenced st	andard AN	ISI/TPI 1.						
SLIDER	Left 2x4 SP No.2	1-7-14	LOAD CASE(Standard								
BRACING												
TOP CHORD	Structural wood she	athing directly appli	ed or									
	3-1-3 oc purlins.											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	C									
	bracing.											
REACTIONS	()	4= Mechanical, 5=										
	Mechanic											
	Max Horiz 2=58 (LC	,										
	Max Uplift 2=-65 (LC	,, , ,										
	Max Grav 2=210 (L	C 1), 4=97 (LC 1), 5	=61									
	(LC 3)											
FORCES	(lb) - Maximum Con	pression/Maximum										
TOP CHORD	Tension	-										
BOT CHORD	,	0										
	2-3=0/0											
NOTES		(2 accord such)										
	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC											
	Cat. II; Exp C; Enclose		ne)									
	cone and C-C Exterior(2										an	Jan
	exposed ; end vertical		ion								A OF	MISC
	C-C for members and f		r							1	750	N.O.
	shown; Lumber DOL=									B	STATE OF	New Yest
DOL=1.6										R	>/ AND	AND AND
	s has been designed fo									\mathcal{A}	/ IHU	VLAS VY
	e load nonconcurrent w								/	*	JOHN	SON X
	are assumed to be: , J	oint 2 SP No.2 crus	hing						- 1	h	In	uni
capacity of	of 565 psi.									10 -	NILT	DED INN

City of 565 psi. 4) Refer to girder(s) for truss to truss connections.

Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 58 lb uplift at joint 4 and 65 lb uplift at joint 2.

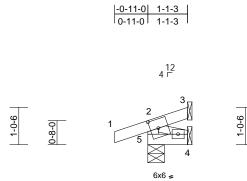
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 165783167
P240543-01	J11	Jack-Open	1	1	Job Reference (optional	
Premier Building Supply	(Springhill, KS), Spring Hills, KS - 66083,				26 2024 MiTek Industries, Inc. T PsB70Hq3NSgPqnL8w3uITXbG	
			3-10-3		—	
			12 4 ┌			
		3	^{3x4} =		3 —	
	116	1			ے بر بر در	
	φ 8- 0	-			M	

3-10-3

3x4 u

Scale = 1:21.4 Plate Offsets (X, Y): [1:0-1-8,0-0-5]

Plate Offsets	(X, Y): [1:0-1-8,0-0-5]										-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.36 0.17 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 -0.01	(loc) 1-4 1-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 Left 2x4 SP No.2 2 Structural wood she 3-10-3 oc purlins. Rigid ceiling directly bracing.	athing directly applie applied or 10-0-0 or 3= Mechanical, 4= al 8) 2 8), 3=-75 (LC 8)	Internationa R802.10.2 a LOAD CASE(S) ed or c	designed in accor I Residential Code Ind referenced star Standard	sections	R502.11.1 a	and					
Vasd=91r Ke=1.00; exterior zc and right exposed; reactions DOL=1.60 (2) This truss chord live 3) Bearings capacity c 4) Refer to 5) Provide m bearing pl	1-4=0/0 CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and f shown; Lumber DOL=' 0 s has been designed for load nonconcurrent wi are assumed to be: , Jo	(3-second gust) :DL=6.0psf; h=35ft; :d; MWFRS (envelop :E) zone; cantilever l left and right orces & MWFRS for 1.60 plate grip r a 10.0 psf bottom ith any other live loa oint 1 SP No.2 crush ss connections. (by others) of truss t	left ds. ing o						Ĺ	-	STATE OF I ANDE THOM JOIN PE-2017	MAS NON


May 23,2024

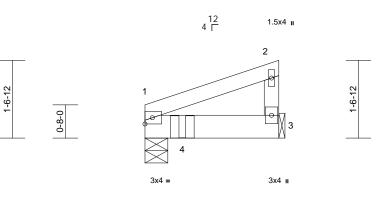
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW
				,		DEVELOPMENT SERVICES 165783168
P240543-01	J12	Jack-Open	4	1	Job Reference (optional	

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 20 305, 2005/2024 ID:WZIdVAfDAiL59phFyhJWJIzDuS8-RfC?PsB70Hq3NSgPqnL8w3uITXbGK/vrCDoi7942/0?

3x4 =

Scale = 1:31.9

Plate Offsets (X, Y): [5:0-2-11,0-3-0]


Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	BC	0.09 0.01 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 5 5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 6 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep Structural wood she 1-1-3 oc purlins, exi Rigid ceiling directly bracing.	athing directly applied cept end verticals. applied or 10-0-0 oc nical, 4= Mechanical 11)	International R802.10.2 ar LOAD CASE(S)	designed in accorda Residential Code se nd referenced standa Standard	ections	R502.11.1 and	d					
FORCES TOP CHORD BOT CHORD	8) Max Grav 3=14 (LC (LC 1) (lb) - Maximum Com Tension 2-5=-149/176, 1-2=0 4-5=-59/10	8), 4=19 (LC 3), 5=1 pression/Maximum	·									
Vasd=91n Ke=1.00; (exterior zc and right e exposed;C reactions s DOL=1.60 2) This truss chord live 3) Bearings a capacity o 4) Refer to g 5) Provide m bearing pl	has been designed for load nonconcurrent wi are assumed to be: , Jo	DL=6.0psf; h=35ft; d; MWFRS (envelope E) zone; cantilever le left and right orces & MWFRS for 1.60 plate grip r a 10.0 psf bottom th any other live load bint 5 SP No.2 crushil ss connections. (by others) of truss to hding 75 lb uplift at joi	ít s. ng						(ANDI THOM JOHN NUM PE-2017	south the second

						KELEA
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 148	AS NO DEV
P240543-01	J13	Jack-Closed Girder	1	1	Job Reference (optional	LEE

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 2018;29:205/2024 ID:IF2X84tDX90jfxwFsa?tDgzDusz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKW CDoi7J4z4Cff

2-8-4

HUS26

2-8-4

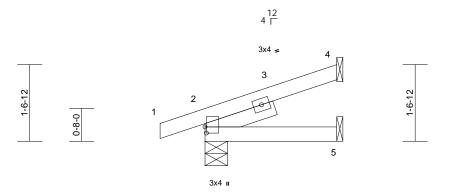
Scale = 1:23.1

66886 = 1.26.1													
Loading TCLL (roof) TCDL BCLL BCDL	25.0 Pl 10.0 Lu 0.0 R	pacing Plate Grip DOL umber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	8/TPI2014	CSI TC BC WB Matrix-P	0.50 0.32 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 1-3 1-3 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
2-8-4 oc pur Rigid ceiling bracing. REACTIONS (size) 1: Max Horiz 1: Max Uplift 1: Max Grav 1:	DF 2.0E 2 ood sheathi dins, except g directly app =0-5-8, 3= N =54 (LC 9) =-210 (LC 8 =1068 (LC 1 um Compre- 2-3=-81/123 115mph (3 0psf; BCDL= Enclosed; N xterior(2E) z vertical left a ers and force or DOL=1.60 igned for a 1 urrent with a	 a), 3=-85 (LC 12) 1), 3=384 (LC 1) assion/Maximum assecond gust) assecond gust)<!--</td--><td>8) I or 9) LC 1)</td><td>Truss, Single left end to co chord. N/A In the LOAD of the truss a DAD CASE(S) Dead + Roo Plate Increa Uniform Lo Vert: 1-2</td><td>of Live (balanced) ase=1.15 ads (lb/ft) =-70, 1-3=-20 ed Loads (lb)</td><td>uivalent back fac , loads aj (F) or ba</td><td>at 0-9-0 from e of bottom oplied to the ck (B).</td><td>the</td><td></td><td></td><td>H</td><td>STATE OF I</td><td>MISSOLA</td>	8) I or 9) LC 1)	Truss, Single left end to co chord. N/A In the LOAD of the truss a DAD CASE(S) Dead + Roo Plate Increa Uniform Lo Vert: 1-2	of Live (balanced) ase=1.15 ads (lb/ft) =-70, 1-3=-20 ed Loads (lb)	uivalent back fac , loads aj (F) or ba	at 0-9-0 from e of bottom oplied to the ck (B).	the			H	STATE OF I	MISSOLA

- 3) Bearings are assumed to be: Joint 1 SP 2400F 2.0E crushing capacity of 805 psi.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 210 lb uplift at joint 1 and 85 lb uplift at joint 3. This truss is designed in accordance with the 2018
- 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

THOMAS JOHNSOI NUMBER

PE-2017018993


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW
005	11035		Quy	i iy		DEVELOPMENT SERVICES 165783170
P240543-01	J14	Jack-Open	1	1	Job Reference (optional)	
Premier Building Supply (Spring	nill, KS), Spring Hills, KS - 66083,			•	5 2024 MiTek Industries, Inc. T 70Hq3NSqPqnL8w3uITXbGK\	

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 26 18:09:28 ID:Evhj8a672?P1RstvU4rKUgzDusg-RfC?PsB70Hq3NSgPqnL8w3uITXbGK VrCDoi7.92.10??

2-8-4

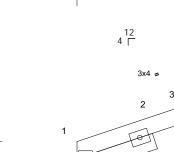
Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	l/defl	L/d	PLATES	GR
Plate Offsets (X, Y):	[2:0-1-8,0-0-5]										
Scale = 1:23.5	-										

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.14 0.08 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 2-5 2-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2	athing directly applie	Internationa R802.10.2 LOAD CASE(S	s designed in accorda I Residential Code s and referenced stanc) Standard	ections	8 R502.11.1 a	nd					
ī	(size) 2=0-5-8, 4 Mechanic Max Horiz 2=52 (LC Max Uplift 2=-63 (LC Max Grav 2=193 (LC (LC 3)	12) 8), 4=-50 (LC 12)	-52									
FORCES	(lb) - Maximum Com Tension											
	1-2=-4/0, 2-4=-54/22 2-5=0/0	2										
NOTES												
Vasd=91mj Ke=1.00; C exterior zor and right ex exposed;C- reactions s1 DOL=1.60 2) This truss h	E 7-16; Vult=115mph ph; TCDL=6.0psf; BC iat. II; Exp C; Enclose ne and C-C Exterior(2 xposed ; end vertical I -C for members and fi hown; Lumber DOL= mas been designed for pad nonconcurrent with	DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever lieft and right orces & MWFRS for 1.60 plate grip r a 10.0 psf bottom	eft								STATE OF MANDR	$AAS \langle Y \rangle$

chord live load nonconcurrent with any other live loads. 3) Bearings are assumed to be: , Joint 2 SP No.2 crushing capacity of 565 psi.

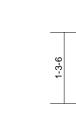
Refer to girder(s) for truss to truss connections. 4)

Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 50 lb uplift at joint 4 and 63 lb uplift at joint 2.


						RELEASE FOR CONSTRUCT
lob	Truss	Truss Type	Qty	Plv	Roof - HM Lot 148	AS NOTED FOR PLAN REVIE
Job	11055	Truss Type	Qly	гіу		DEVELOPMENT SERVICES 165783171
P240543-01	J15	Jack-Open	1	1	Job Reference (optional	

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 23 8:78:78 ID:NDoWLUOhHBXkx6o?fF6ChrzZls2-RfC?PsB70Hq3NSgPqnL8w3uITXbG WrCDoh+425C ff

4


5/

3x4 II

1-10-3

1-10-3

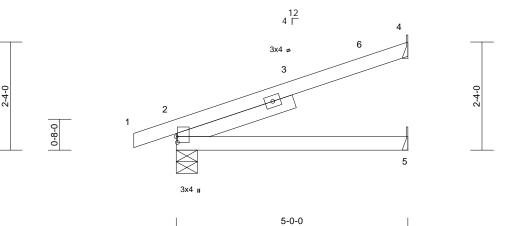
Scale = 1:20.8			
Plate Offsets (X, Y):	[1:0-1-8,0-0-5]		

1-3-6

0-8-0

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	0.00	1-4	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	0.00	1-4	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 8 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD SLIDER BRACING		1-5-8	Internatio	is designed in acco nal Residential Code and referenced sta S) Standard	e sections	R502.11.1 a	and					
TOP CHORD		athing directly appli	ed or									
BOT CHORD	 1-10-3 oc purlins. Rigid ceiling directly bracing. 	applied or 10-0-0 o	с									
REACTIONS	(size) 1=0-5-8, 3 Mechanic Max Horiz 1=43 (LC Max Uplift 1=-7 (LC Max Grav 1=83 (LC (LC 3)	8) 8), 3=-40 (LC 8)	37									
FORCES	(Ib) - Maximum Com	pression/Maximum										
TOP CHORD BOT CHORD												
NOTES												
Vasd=91 Ke=1.00; exterior z and right exposed;	SCE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose cone and C-C Exterior(2 exposed ; end vertical I C-C for members and fi s shown; Lumber DOL= 0	DL=6.0psf; h=35ft; d; MWFRS (envelog E) zone; cantilever left and right orces & MWFRS for	left							E.	STATE OF	KEW YYY
 2) This truss chord live 3) Bearings capacity 4) Refer to g 	s has been designed for e load nonconcurrent wi are assumed to be: , Jo of 565 psi. girder(s) for truss to tru	th any other live loa oint 1 SP No.2 crush ss connections.	ning						(THO JOHA NUM PE-201	BER E
Provide r	mechanical connection ((by others) of truss t	0							N.	1E-201	7018993

5) bearing plate capable of withstanding 7 lb uplift at joint 1 and 40 lb uplift at joint 3.


Course May 23,2024

ESSIONAL ET

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW
005	11035		Giy	i iy		DEVELOPMENT SERVICES 165783172
P240543-01	J16	Jack-Open	12	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springl	hill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Apr 26 ID:TxNrG0ecV6T9DF	2024 Print: 8. PK1?8kLAMz	630 S Apr 20 Duzk-RfC?P	5 2024 MiTek Industries, Inc. T sB70Hq3NSgPqnL8w3uITXbQ	u May 26 8:79:2605/29:24

Scale = 1:24.9

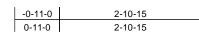
Plate Offsets (X, Y): [2:0-1-8,0-0-5]

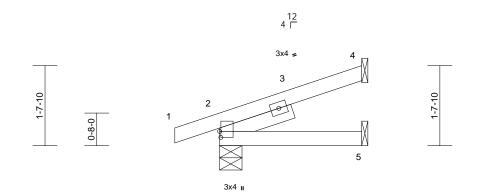
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.56	Vert(LL)	-0.04	2-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.30	Vert(CT)	-0.07	2-5	>831	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 21 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 Structural wood she 5-0-0 oc purlins.		Internationa R802.10.2 LOAD CASE(S	s designed in ac al Residential Co and referenced s) Standard	de sections	R502.11.1						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	С									

BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
DELOTIONO	0	
REACTIONS	(size)	2=0-5-8, 4= Mechanical, 5=
		Mechanical
	Max Horiz	2=86 (LC 12)
	Max Uplift	2=-77 (LC 8), 4=-94 (LC 12)
	Max Grav	2=292 (LC 1), 4=167 (LC 1), 5=99 (LC 3)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-4/0,	2-4=-90/41
BOT CHORD	2-5=0/0	

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 4-11-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Bearings are assumed to be: , Joint 2 SP No.2 crushing capacity of 565 psi.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 94 lb uplift at joint 4 and 77 lb uplift at joint 2.


ANDREW THOMAS JOHNSON NUMBER PE-2017018993


May 23,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 165783173
P240543-01	J17	Jack-Open	4	1	Job Reference (optional	
Premier Building Supply (Spi	ringhill, KS), Spring Hills, KS - 66083,				5 2024 MiTek Industries, Inc. T 0Ha3NSaPanL8w3uITXbGKW	

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 20 8:05:75 ID:7F6Nn7n8gozSfFFLify9fuzDuzY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKW CDoi7J4+Cff

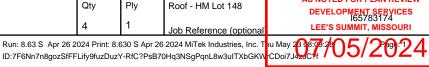
2-10-15

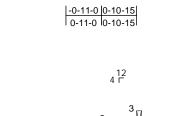
•	

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.17	Vert(LL)	0.00	2-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	-0.01	2-5	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P	0.00	11012(01)	0.00		n/a	n/a	Weight: 13 lb	FT = 20%
LUMBER			6) This truss is	designed in acco	rdance w	ith the 2018						
TOP CHORD	2x4 SP No.2			I Residential Code			and					
BOT CHORD			R802.10.2 a	and referenced sta	Indard AN	ISI/TPI 1.						
SLIDER	Left 2x4 SP No.2 1	1-6-11	LOAD CASE(S	Standard								
BRACING				olandara								
TOP CHORD	Structural wood she	athing directly applie	ad or									
TOF CHORD	2-10-15 oc purlins.	atting unectly applie										
BOT CHORD		applied or 10-0-0 or	^									
BOT ONORD	bracing.		0									
REACTIONS	0	4= Mechanical, 5=										
	Mechanic											
	Max Horiz 2=55 (LC	12)										
	Max Uplift 2=-64 (LC	,										
	Max Grav 2=203 (L0		=57									
	(LC 3)	.,,	0.									
FORCES	(lb) - Maximum Corr Tension	pression/Maximum										
TOP CHORD		1										
BOT CHORD	, .	ŧ										
	2-3=0/0											
NOTES												
	CE 7-16; Vult=115mph											
	mph; TCDL=6.0psf; BC											
	Cat. II; Exp C; Enclose										000	100
	one and C-C Exterior(2		eft								AOFI	MIG
	exposed ; end vertical										BAR	Jos W
• • •	C-C for members and f									6	AT	N.S.
DOL=1.6	shown; Lumber DOL=	1.60 plate grip								B	STATE OF I	EW / 2 V
	s has been designed fo	r a 10.0 psf bottom								R	/ THOM	AAS \ X
	e load nonconcurrent wi		ds							1 🖈	JOAN	SAN \★Ÿ
	are assumed to be:								/	8		

3) Bearings are assumed to be: , Joint 2 SP No.2 crushing capacity of 565 psi.

Refer to girder(s) for truss to truss connections. 4)


Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 55 lb uplift at joint 4 and 64 lb uplift at joint 2.



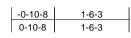
May 23,2024

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty Ply Roof - HM Lot 148		Poof HM Lot 149	AS NOTED FOR PLAN REVIEW
505	11035	Truss Type	Truss Type		i iy		DEVELOPMENT SERVICES 165783174
P240543-01	J18	Jack-Open		4	1	Job Reference (optional)	
Premier Building Supply (S	pringhill, KS), Spring Hills, KS - 66083	, ,	Run: 8.63 S Apr 26	2024 Print: 8	3.630 S Apr 20	5 2024 MiTek Industries, Inc. T	hu May 28 18:28:28 5/29:02

0-11-10

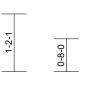
0-8-0

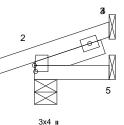
Scale = 1:29.8


Plate Offsets (X, Y): [5:0-2-0,0-2-4]

	(), []											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.09 0.01 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 5 5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 5 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep Structural wood she 0-10-15 oc purlins, Rigid ceiling directly bracing.	C 1), 4=-10 (LC 8), 5=	d or	designed in accor I Residential Code nd referenced star Standard	sections	8 R502.11.1 a	nd					
Vasd=91n Ke=1.00; i exterior zc and right e exposed;(reactions : DOL=1.6C 2) This truss chord live 3) Bearings a capacity o 4) Refer to g 5) Provide m bearing pl	4-5=-53/8 2-4=-9/61 CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical C-C for members and f shown; Lumber DOL=) has been designed fo load nonconcurrent wi are assumed to be: , Ju))/24, 2-3=-25/14 (3-second gust) :DL=6.0psf; h=35ft; :d; MWFRS (envelope :E) zone; cantilever le left and right forces & MWFRS for 1.60 plate grip r a 10.0 psf bottom ith any other live load oint 5 SP No.2 crushi lss connections. (by others) of truss to nding 79 lb uplift at jo	ŕt s. ng						l	4	AND THO JOHN PE-2017 Ma	MAS BOU

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW
P240543-01	J19	Jack-Open	2	1	Job Reference (optional	DEVELOPMENT SERVICES 165783175 LEE'S SUMMIT, MISSOURI


Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May **306:05**/2024 ID:n0PHtrfddb_VdH0neRg5W7zDs?w-RfC?PsB70Hq3NSgPqnL8w3uITXbGI<mark>WrCDoiA42</mark>3C7

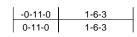


1-2,

1-6-3

Plate Offsets (X, Y): [2:0-1-8,0-0-5]

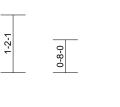
Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) I/defl L/d PLATES GR	GRIP
TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.06 Vert(LL) 0.00 2-5 >999 240 MT20 244	244/190
TCDL 10.0 Lumber DOL 1.15 BC 0.02 Vert(CT) 0.00 2-5 >999 180	
BCLL 0.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 3 n/a n/a	
BCDL 10.0 Code IRC2018/TPI2014 Matrix-P Weight: 8 lb FT	FT = 20%
LUMBER 6) This truss is designed in accordance with the 2018	
TOP CHORD 2x4 SP No.2 International Residential Code sections R502.11.1 and	
BOT CHORD 2x4 SP No.2 R802.10.2 and referenced standard ANSI/TPI 1.	
SLIDER Left 2x4 SP No.2 1-5-5 LOAD CASE(S) Standard	
BRACING	
TOP CHORD Structural wood sheathing directly applied or	
1-6-3 oc purlins.	
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc	
bracing.	
REACTIONS (size) 2=0-5-8, 3= Mechanical, 5=	
Mechanical	
Max Horiz 2=35 (LC 12)	
Max Uplift 2=-56 (LC 8), 3=-28 (LC 12)	
Max Grav 2=147 (LC 1), 3=35 (LC 1), 5=30	
(LC 3)	
FORCES (lb) - Maximum Compression/Maximum Tension	
TOP CHORD 1-2=-5/0, 2-3=-41/22, 3-4=0/0	
BOT CHORD 2-5=0/0	
NOTES	
1) Wind: ASCE 7-16; Vult=115mph (3-second gust)	
Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft;	
Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope)	The second se
exterior zone and C-C Exterior(2E) zone; cantilever left	A all
and right exposed; end vertical left and right	1550
exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip	N.S.Y
reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 ANDREW	W VEN
2) This truss has been designed for a 10.0 psf bottom	IS YY
chord live load nonconcurrent with any other live loads.	λ π \★γ)
3) Bearings are assumed to be: Joint 2 SP No.2 crushing	1 A A A A A
capacity of 565 psi.	Ter I
4) Refer to girder(s) for truss to truss connections.	8993 E
5) Provide mechanical connection (by others) of truss to	A PA CORES
bearing plate capable of withstanding 56 lb uplift at joint	1.SA
 b) Defining the absting to both your 2 of the provide mechanical connections. c) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 56 lb uplift at joint 2 and 28 lb uplift at joint 3. 	ENS
WAL .	A

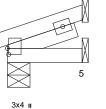

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Cours May 23,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW
				Ľ		DEVELOPMENT SERVICES 165783176
P240543-01	J20	Jack-Open	2	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tu May 20878: 405/2024 ID:n0PHtrfddb_VdH0neRg5W7zDs?w-RfC?PsB70Hq3NSgPqnL8w3ulTXbGi WrCDoi/w4zJC7


2


1

,

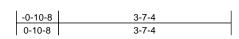
1-6-3

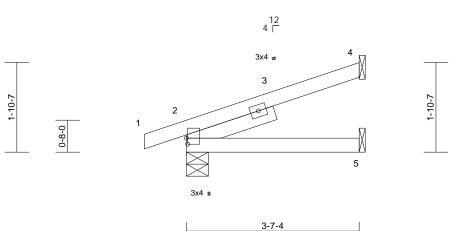
Scale = 1	:23.4
-----------	-------

Plate Offsets (X, Y): [2:0-1-8,0-0-5]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC	0.06 0.02	Vert(LL) Vert(CT)	0.00 0.00	2-5 2-5	>999 >999	240 180	MT20	244/190
BCLL	0.0	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	2-5	>999 n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P	0.00	11012(01)	0.00	5	n/a	Π/a	Weight: 8 lb	FT = 20%
LUMBER			6) This truss i	s designed in acc	ordance w	ith the 2018						
TOP CHORD	2x4 SP No.2			al Residential Coo			and					
BOT CHORD				and referenced st	tandard AN	ISI/TPI 1.						
SLIDER	Left 2x4 SP No.2 7	1-5-5	LOAD CASE(S	 Standard 								
BRACING	.											
TOP CHORD		athing directly applie	ed or									
BOT CHORD	 1-6-3 oc purlins. Rigid ceiling directly 	applied or 10-0-0 o	C									
BOTCHORD	bracing.	applied of 10-0-0 0	C									
REACTIONS	0	3= Mechanical, 5=										
	Mechanic											
	Max Horiz 2=36 (LC	,										
	Max Uplift 2=-59 (LC	,, , ,										
	Max Grav 2=151 (L0	C 1), 3=33 (LC 1), 5	=30									
505050	(LC 3)											
FORCES	(lb) - Maximum Com Tension	pression/iviaximum										
TOP CHORD		2 3-4=0/0										
BOT CHORD	, .	-, 0 . 0,0										
NOTES												
	CE 7-16; Vult=115mph	(3-second gust)										
	mph; TCDL=6.0psf; BC											
	Cat. II; Exp C; Enclose										000	100
	one and C-C Exterior(2		left								TATE OF	MICON
	exposed ; end vertical l C-C for members and f										8 TE	10'SO
	shown; Lumber DOL=									A	Nº INT	New
DOL=1.6		nee plate grip								A	2/ AND	
	s has been designed for									И.	THO	
	e load nonconcurrent wi								/		, JOHN	DOT X
	are assumed to be: , Jo	oint 2 SP No.2 crush	ning						- 1	K A	m	
	of 565 psi. girder(s) for truss to tru	ss connections							C	173	NUM	BER SA
Refer to g		ss connections.								- W 7	DE COM	1010000 INN

4) Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to 5)


bearing plate capable of withstanding 59 lb uplift at joint 2 and 28 lb uplift at joint 3.


PE-2017018993 SIONAL ET May 23,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW
305	11033		Giy	i iy		DEVELOPMENT SERVICES 165783177
P240543-01	J21	Jack-Open	5	1	Job Reference (optional	
	-				• • • • • • • • • • • • • • • • • • • •	

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 20379: 05/2024 ID:Bb5QVthVwWM4UIIMJaEo8IzDs?t-RfC?PsB70Hq3NSgPqnL8w3uITXbGr WrCDor74zJc?

Scale = 1:24

Plate Offsets (X, Y): [2:0-1-8,0-0-5]

					-							
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	-0.01	2-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.15	Vert(CT)	-0.02	2-5	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 15 lb	FT = 20%
LUMBER			This truss is	s designed in acco	ordance w	ith the 2018						
TOP CHORD	2x4 SP No.2			al Residential Cod			and					
BOT CHORD	2x4 SP No.2		R802.10.2 a	and referenced sta	andard AN	ISI/TPI 1.						
SLIDER	Left 2x4 SP No.2 7	1-11-1	LOAD CASE(S) Standard								
BRACING												
TOP CHORD												
	3-7-4 oc purlins.											
BOT CHORD		applied or 10-0-0 o	C									
REACTIONS	bracing.	A Machanical C										
REACTIONS	()	4= Mechanical, 5=										
	Mechanical Max Horiz 2=65 (LC 12)											
	Max Uplift 2=-65 (LC	,										
	Max Grav 2=228 (L0		5=71									
	(LC 3)	- ,,										
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=-5/0, 2-4=-71/29	9										
BOT CHORD	2-5=0/0											
NOTES												
1) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)										
	mph; TCDL=6.0psf; BC											
,	Cat. II; Exp C; Enclose	, , , ,	/								000	an
	one and C-C Exterior(2		eft								8. OF	MICON
	Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60											
	shown; Lumber DOL=									6	N	N SY
DOL=1.6		1.00 plate grip								H	S/ ANDI	KEW / C V
	s has been designed fo	r a 10.0 psf bottom								K.		
	chord live load nonconcurrent with any other live loads.											
3) Rearings	are assumed to be: I	nint 2 SP No 2 crush	ning							M		A A A A A

 Bearings are assumed to be: , Joint 2 SP No.2 crushing capacity of 565 psi.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 68 lb uplift at joint 4 and 65 lb uplift at joint 2.

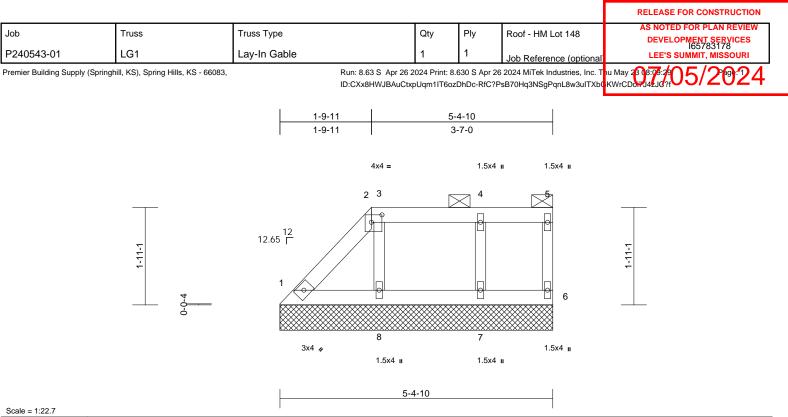
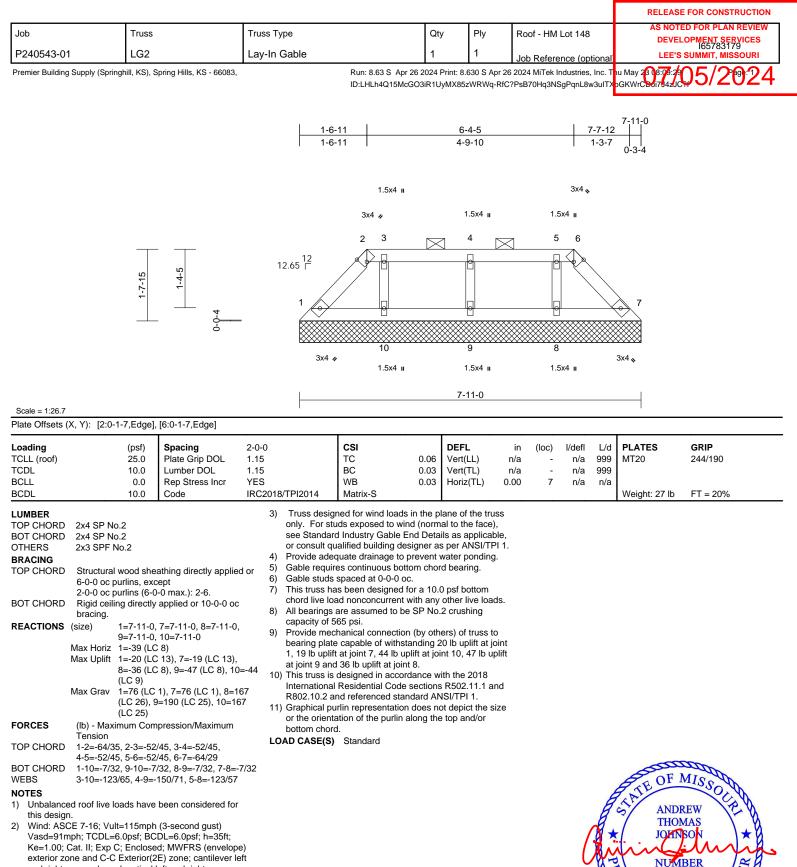



Plate Offsets (X, Y): [2:0-2-8,0-1-12]

	(X, T). [2.0-2-0,0-1-12]				-							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.05 0.03 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
LUMBER		•	4)) Gable require	es continuous bo	ottom chor	d bearing.						
TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 5-4-14 oc purlins, e 2-0-0 oc purlins: 2-5	xcept end verticals,	5) 6) 7) ed or 8) and	 Gable studs This truss ha chord live loa All bearings a capacity of 5 Provide mech bearing plate 	spaced at 0-0-0 s been designed ad nonconcurren are assumed to 65 psi. hanical connecti capable of with at joint 6, 63 lb	oc. d for a 10. it with any be SP No. on (by oth standing 2	D psf bottom other live load 2 crushing ers) of truss to 1 b uplift at joir)					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	9)) This truss is	designed in acco								
REACTIONS	(size) 1=5-4-10, 6=5-4-10, 7=5-4-10, 8=5-4-10 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Max Horiz 1=69 (LC 9) Gravita (LC 8), 6=-11 (LC 9), 7=-46 (LC 8), 8=-63 (LC 9) Max Grav 1=73 (LC 20), 6=42 (LC 1), 7=166 (LC 1), 8=180 (LC 1) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.												
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-90/95, 2-3=-35 4-5=-35/37, 5-6=-34												
BOT CHORD WEBS	1-8=-32/36, 7-8=-32 3-8=-182/127, 4-7=-											Sam	all
NOTES 1) Wind: AS Vasd=91r Ke=1.00; exterior z and right exposed; reactions DOL=1.6(2) Truss de only. For see Stanc or consult	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and f shown; Lumber DOL=	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever I left and right orcces & MWFRS for 1.60 plate grip the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF	eft ss , ole, vl 1.							(ANDI THOM JOIN PE-2017	MAS SON BER 018993

May 23,2024

exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

E

May 23,2024

PE-2017018993

FRSSIONAL

C

Job P240543-01 Premier Building Supply (Spring	Truss LG3 hill, KS), Spring Hills, KS - 66083,				Roof - HM Lot 148 Job Reference (optio 5 2024 MiTek Industries, In sB70Hq3NSgPqnL8w3ul	
		3-11-11 3-11-11	6-7-6 2-7-11 1.5x4 ॥		<u>10-3-12</u> 10-7 3-8-7 0-3-	
	-0-4	$6x6 \neq 3$ 1.5x4 = 1 12.65 = 12 12.65 = 12 12.55 = 12 12.55 = 12 1.554 = 1.554 1.554 = 1.554	4 	6x6 \$ 5 7 9 1.5x4 µ	1.5x4 II 6 8 3x4 1.5x4 II	

Scale = 1:40.6	
Plate Offsets (X, Y):	[3:0-2-9,Edge], [5:0-2-9,Edge]

						-						
Loading (if) Spacing 2-	-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 2	.0 Plate Grip DOL 1	.15		TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL 1	.0 Lumber DOL 1.	.15		BC	0.03	Vert(TL)	n/a	-	n/a	999		
BCLL	.0 Rep Stress Incr Y	ΈS		WB	0.04	Horiz(TL)	0.00	7	n/a	n/a		
BCDL 1	.0 Code IF	RC2018	/TPI2014	Matrix-S							Weight: 47 lb	FT = 20%
6-0-0 oc purlir 2-0-0 oc purlir BOT CHORD Rigid ceiling d bracing. REACTIONS (size) 9=1 12= Max Horiz 1=- Max Uplift 1=- (LC 9), Max Grav 1=1	(6-0-0 max.): 3-5. ectly applied or 10-0-0 oc -7-0, 7=10-7-0, 8=10-7-0, -7-0, 10=10-7-0, 11=10-7-0, 0-7-0	3) 4) 5) (9 6) 7) 8)	Vasd=91mpf Ke=1.00; Ca exterior zone and right exp exposed;C-C reactions sho DOL=1.60 Truss design only. For stu see Standard or consult qu Provide adec All plates are Gable requirir Gable studs This truss ha chord live loa	7-16; Vult=115mpl r; TCDL=6.0psf; BC t. II; Exp C; Encloss and C-C Exterior(: osed ; end vertical for members and own; Lumber DOL= med for wind loads in ds exposed to wind l Industry Gable Er alified building des juate drainage to p 1.5x4 MT20 unles es continuous botto spaced at 0-0-0 oc s been designed for ad nonconcurrent ware are assumed to be	CDL=6.0 ed; MW 2E) zon left and forces & 1.60 pla n the pl d (norm nd Deta igner as revent v s othen or chor or a 10.0 rith any	Dpsf; h=35ft; FRS (envelop e; cantilever l I right & MWFRS for ate grip ane of the tru al to the face ils as applicat s per ANSI/TF water ponding wise indicated d bearing. D psf bottom other live loa	left ,), ole, Pl 1. J. J.					

1.5x4 u 10-7-0

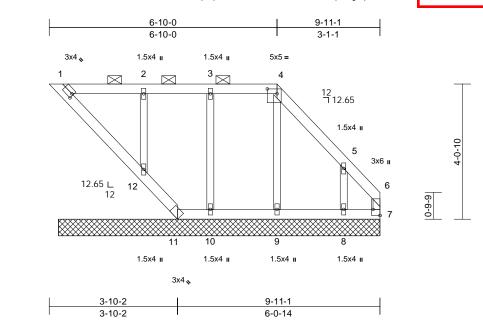
8=223 (LC 20), 9=122 (LC 26), 10=115 (LC 25), 11=122 (LC 25), 12=223 (LC 19) FORCES (lb) - Maximum Compression/Maximum Tension 1-2=-113/97, 2-3=-109/97, 3-4=-101/97, 4-5=-101/97, 5-6=-109/90, 6-7=-96/62 TOP CHORD BOT CHORD 1-12=-46/84, 11-12=-46/84, 10-11=-46/84, 9-10=-46/84, 8-9=-46/84, 7-8=-46/84 2-12=-210/169, 3-11=-88/45, 4-10=-93/43,

WEBS 5-9=-88/22, 6-8=-210/169 NOTES

Unbalanced roof live loads have been considered for 1) this design.

- 9) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 37 lb uplift at joint 1, 12 b uplift at joint 7, 150 b uplift at joint 12, 23 b uplift at joint 11, 30 b uplift at joint 10, 1 b uplift at joint 9 and 149 lb uplift at joint 8.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)


							RELEASE FOR CONSTRUCTION
Г	Job	Truss	Truss Type	Qty	Plv	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW
	300	11055	Truss Type	Quy	гіу	ROOI - HIVI LOU 140	DEVELOPMENT SERVICES 165783181
	P240543-01	LG4	Lay-In Gable	2	1	Job Reference (optional	

4-0-10

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 23 18:09:2 ID:uxhN?Nmqt3cp7NrGvD0_3IzDhGv-RfC?PsB70Hq3NSgPqnL8w3uITXbGł WrCDoi/942JC?

......

5/

Plate Offsets (X, Y): [1:0-0-10,0-1-8], [4:0-3-8,0-1-12], [6:Edge,0-2-8]

	(A, T). [1.0-0-10,0-1-0], [∓.0-0-0,0-1-12], [0 I	.cuye,0-	- 0]	1		· · ·						
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.05	Horiz(TL)	0.00	7	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S							Weight: 43 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she: 6-0-0 oc purlins, exi 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 1-1	cept end verticals, ar -0 max.): 1-4. applied or 10-0-0 oc 12.	nd 3	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5 zone; cantile and right exp MWFRS for grip DOL=1.) Truss desig only. For st see Standard	ned for wind loads uds exposed to wind Industry Gable E	SCDL=6. sed; MW r(2E) 0-4 terior(2E exposed mbers ar Lumber 1 s in the p nd (norm End Deta	Opsf; h=35ft; FRS (envelop -1 to 5-4-1,) 6-10-0 to 9- ; end vertical d forces & DOL=1.60 pla lane of the tru al to the face ils as applical	9-13 left ate uss), ble,					
	0-0-0 oc bracing. 1-12.												
FORCES	(lb) - Maximum Com Tension	()/	.,	1, 21 lb uplif	e capable of withst t at joint 11, 38 lb	uplift at j						an	an
TOP CHORD	1-2=-116/121, 2-3=- 4-5=-127/122, 5-6=-4	,	· 1	0) N/A	nd 148 lb uplift at j		ith the 2010				6	STATE OF	MISSO
BOT CHORD	1-12=-65/65, 11-12= 9-10=-29/37, 8-9=-29	-40/63, 10-11=-29/3	7, 1	International	designed in accor Residential Code	sections	8 R502.11.1 a	ind			A	AND	REW CEN
WEBS	4-9=-121/7, 3-10=-13 5-8=-191/158		R802.10.2 and referenced standard ANSI/TPI 1. 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or										
NOTES				bottom chore		along the				/	8.1		TAAA A
	ed roof live loads have n.	been considered for	OAD CASE(S)						L		NUM PE-2017		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

May 23,2024

ONAL ET

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
P240543-01	LG5	Lay-In Gable	1	1	Job Reference (optional	DEVELOPMENT SERVICES 165783182 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Sprin	ghill, KS), Spring Hills, KS - 66083,			•	5 2024 MiTek Industries, Inc. T B70Hq3NSqPqnL8w3uITXbG	

LEE'S Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 23 8:09-24 ID:Za2BhzU8LjZRPkiXKALmIWzDuoJ-RfC?PsB70Hq3NSgPqnL8w3uITXbG WrCDoir04z5C7f 0-4-13 0-4-13 -0-2-9 0-2-9 0-4-13 12.65 14-9-10 11-11-3 3x4 🥠 3x4 II 6x6、 34 5 × 12-6-0-<u>-1</u>0-10-5-7-2 Æ 20 19 18 3x4、 11-8-6 1-4-14 11-8-6 17 12.65∟ 1216 10 15 1413 12 3x4、 3x4 14-9-10 2-0-8 11-1-3 9-0-11 3-8-8

Scale = 1:86.2

Plate Offsets (X, Y): [3:0-1-7,Edge], [5:0-2-9,Edge], [11:0-2-1,0-1-8]

12-6-14

					•									
Loading		(psf)	Spacing	2-0-0)	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		тс	0.19	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.15	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0	Rep Stress Incr	YES		WB	0.06	Horz(CT)	0.01	11	n/a	n/a		
BCDL		10.0	Code	IRC2	018/TPI2014	Matrix-S		- (-)					Weight: 75 lb	FT = 20%
	-	-	•		WEBS	5 49 040/440	4 00 050	// 22		40) This				
LUMBER TOP CHORD	0.4 00 1	- 0				5-18=-216/113, 6-17=-201/168,								nce with the 2018 ctions R502.11.1 and
						8-15=-192/160,							ferenced standa	
BOT CHORD	2x4 SP N					10-12=-185/154		101,						bes not depict the size
OTHERS	2x3 SPF	N0.2				10-12-103/13-	•							ng the top and/or
BRACING	-				NOTES						om cho			ig the top and/or
TOP CHORD			eathing directly applie	ed or	1) Unbalanced	roof live loads	have been	considered to	r	LOAD			ndard	
		purlins, ex			this design.	7 40. 14.14 445				LUAD	SASE(S) Sla	nuaru	
			0-0 max.): 3-5.		2) Wind: ASCE	: 7-16; Vuit=115 h; TCDL=6.0ps								
BOT CHORD			/ applied or 10-0-0 oc)		at. II; Exp C; End			20)					
	bracing,	bracing: 2-	20 19 20			e and C-C Exter			pe)					
		0	,			3-1-1 to 10-1-1								
REACTIONS	(size)		, 11=14-4-9, 12=14-4 9, 14=14-4-9, 15=14-											
			9, 14=14-4-9, 15=14- 9, 17=14-4-9, 18=14-			14-8-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and								
		20=14-4-		-4-9,		VFRS for reaction								
	Max Horiz					late grip DOL=1								
		(LC 13), 11=-44 (LC 1 ²	1)	3) Truss desig	ned for wind loa	ads in the p	lane of the tru	JSS					
	Max Opint		(LC 13), 13=-275 (LC		only. For st	uds exposed to	wind (norm	al to the face),					
			LC 13), 15=-135 (LC 1		see Standar	d Industry Gabl	e End Deta	ils as applical	ble,					
			(LC 13), 17=-142 (LC			ualified building								
			LC 11), 20=-150 (LC			quate drainage								
	Max Grav	2=63 (LC	11), 11=194 (LC 13)), ́		e 1.5x4 MT20 u		wise indicated	d.					
		12=207 (LC 20), 13=105 (LC 1	11),		spaced at 2-0-0								
		14=193 (LC 20), 15=207 (LC 2	20),	7) This truss ha								000	alle
			LC 20), 17=216 (LC 2			ad nonconcurre			ds.				8 OF	MISCH
		18=247 (LC 22), 20=406 (LC 1	13)	8) All bearings		be SP No.	2 crushing				9	4 TE	
FORCES	(lb) - Max	kimum Con	npression/Maximum		capacity of t			llal ta anain w				A	TATE OF	New M
	Tension				9) Bearing at jo	TPI 1 angle to g			aiue			B	S/ AND	
TOP CHORD			331, 3-4=-262/313,			ould verify capa						A	/ THO	MAS \
			-344/399, 6-7=-227/2		10) Provide med				0			1 🖌 🖈		ISON 🖌 🛨 🗸
		,	-61/42, 9-10=-160/13	2,		e capable of wit					/	2		Linha
	10-11=-2					plift at joint 2, 27						N	my	
BOT CHORD			20=-279/337,			18, 150 lb uplif						23		
			6-17=-275/333,			Ib uplift at joint						N.	OX PE-201	7018993
		,	-15=-274/333,		95 lb uplift at joint 14 and 138 lb uplift at joint 12.					158				
	13-14=-2	,	2-13=-178/222,		11) N/A							8	NºSIG-	ENOS
	11-12=-1	10/222			-								SSION A	AL D.
													an	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

May 23,2024

							Г	RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type)	Qty	Ply	Roof - HM	Lot 148	AS NOTED FOR PLAN REVIEW
P240543-01	LG6	Lay-In Ga	able	1	1	Job Refere	ence (optional	DEVELOPMENT SERVICES 165783183 LEE'S SUMMIT, MISSOURI
Premier Building Supply	(Springhill, KS), Spring Hills,	May 20 18:00: 20 05/2024						
		L	8-8-8		1	7-1-12	17-5-0	
			8-8-8	Ι		8-5-4	0-3-4	
				3x4=				
				6				
	T	T		5 7				
			/					

8

14

15

17-5-0

9

13

10

12

11

3x4、

-

17

16

4

3

 ∞ 19 18

3x4=

2

3x4 🥠

20

12 12.65 F

1

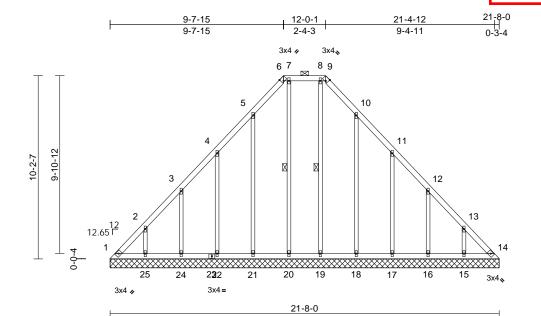
0-0-4

Scale = 1:57

Plate Offsets (X, Y): [6:Edge,0-3-0]

8-10-12 9-2-7

						-							
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.06	Vert(TL)	n/a	-	n/a	999	-	
BCLL	0.0	Rep Stress Incr	YES		WB	0.20	Horiz(TL)	0.01	11	n/a	n/a		
BCDL	10.0	Code	IRC2018/	/TPI2014	Matrix-S							Weight: 93 lb	FT = 20%
						-						Ŭ	
LUMBER			WE		2-20=-184/156, 3-								
TOP CHORD					4-17=-210/180, 5-)1/12,					
BOT CHORD					8-14=-210/183, 9-	-13=-185	/158,						
OTHERS	2x3 SPF No.2				10-12=-184/156								
BRACING				TES									
TOP CHORD		athing directly applie	dor 1)		roof live loads ha	ve been	considered fo	or					
	6-0-0 oc purlins.			this design.									
BOT CHORD		applied or 10-0-0 oc	2)		7-16; Vult=115m		0 ,						
	bracing.				h; TCDL=6.0psf; E			20)					
REACTIONS	· · /	, 11=17-5-0, 12=17-5			t. II; Exp C; Enclo and C-C Exterio			he)					
		0, 14=17-5-0, 15=17-	,		-4-1 to 8-8-12, Ex	. ,							
		0, 17=17-5-0, 18=17- 	5-0,		erior (1) 13-5-12 to			/er					
	20=17-5-(Max Horiz 1=-251 (L				exposed ; end ve			0.					
	Max Uplift 1=-201 (L	,	1)		for members and			r					
		(LC 13), 13=-133 (LC		reactions she	own; Lumber DOL	L=1.60 pl	ate grip						
		(LC 13), 16=-23 (LC 1		DOL=1.60									
	,	(LC 12), 18=-133 (LC	· · · · ·		ned for wind loads								
	20=-138 (/,		uds exposed to wi								
	Max Grav 1=273 (LC		3),		d Industry Gable I								
		LC 20), 13=204 (LC 2	20).		alified building de								
		LC 20), 15=135 (LC 2			e 1.5x4 MT20 unle			d.					
	16=159 (l	LC 19), 17=215 (LC '			es continuous bot		d bearing.						
	18=204 (l	LC 19), 20=209 (LC 1			spaced at 0-0-0 c							San	alle
FORCES	(lb) - Maximum Corr	npression/Maximum	7)		is been designed							TATE OF	MISCO
	Tension		0)		ad nonconcurrent			ias.				450	~0.V
TOP CHORD		267/169, 3-4=-139/1	11, ⁸⁾	capacity of 5	are assumed to b	e SP NO.	2 crushing				A	15/ 110	New Y
	4-5=-111/104, 5-6=-		9)		hanical connectio	n (hy oth	ers) of truss	to			U	S AND	
		20/73, 9-10=-241/169	, 3)		e capable of withs						d.	/ THO	
	10-11=-369/273				uplift at joint 11, 1					/	A-*	JOHN	SON X
BOT CHORD	,				nt 18, 156 lb uplif						X A	mil	min
	17-18=-203/281, 16	,			Ib uplift at joint 14					l	Mr	NUM	
	15-16=-203/281, 14 13-14=-203/281, 12				plift at joint 12.						47	PE-2017	
	11-12=-203/281	10-200/201,	10)		designed in acco						N	PE-2017	018993
					Residential Code			and			Y	h to	1 A
				R802.10.2 a	nd referenced sta	ndard AN	ISI/TPI 1.				0	SI SI ONLA	TENS
			LO	AD CASE(S)	Standard							C'SSIONA	
												-	122 2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

May 23,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

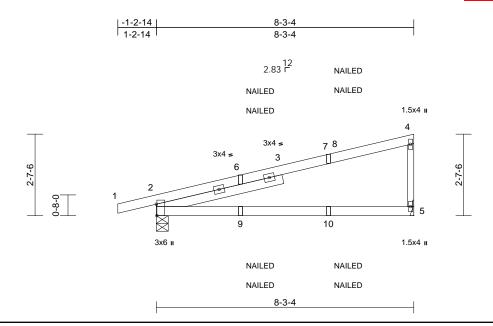
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW
000	11033	Thuss Type	Quy	i iy		DEVELOPMENT SERVICES 165783184
P240543-01	LG7	Lay-In Gable	1	1	Job Reference (optional	

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May **208**, 79:30 D5/29:24 ID:eH40YuMhUzCf3ojUfMRsA7zDv5q-RfC?PsB70Hq3NSgPqnL8w3uITXbG WrCDonwdz9C/f

Scale = 1:64.1

Plate Offsets (X, Y): [6:0-1-7,Edge], [9:0-1-7,Edge]

	(A, T). [0.0-T	- <i>i</i> ,Eugej,	[9.0-1-7,Euge]			1	-						1	
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0	Rep Stress Incr	YES		WB	0.26	Horiz(TL)	0.01	14	n/a	n/a		FT 000/
BCDL		10.0	Code	IRC20	18/TPI2014	Matrix-S	-						Weight: 122 lb	FI = 20%
LUMBER				В	OT CHORD	1-25=-159/256, 2								others) of truss to
TOP CHORD	2x4 SP No.					22-24=-159/256,								ng 135 lb uplift at
BOT CHORD						20-21=-159/256,								o uplift at joint 25, 134
OTHERS	2x3 SPF No	0.2				18-19=-159/256,		,						oint 22, 119 lb uplift at
BRACING						16-17=-159/256,	15-16=-1	59/256,						Ib uplift at joint 18,
TOP CHORD	Structural v	wood shea	athing directly applie	d or		14-15=-159/256	04 400	400					it 17, 134 ib uplin	at joint 16 and 138 lb
	6-0-0 oc pu			v	VEBS	2-25=-179/155, 3		,			ft at join		ned in accordance	
			-0 max.): 6-9.			4-22=-192/168, 5		,						tions R502.11.1 and
BOT CHORD		g directly	applied or 10-0-0 or	>		7-20=-145/61, 8-1 10-18=-162/140,		,					ferenced standar	
	bracing.					12-16=-182/160,								es not depict the size
WEBS	1 Row at m		7-20, 8-19		OTEO	12 10= 102/100,	10 10- 1	13/130					of the purlin along	
REACTIONS			14=21-8-0, 15=21-8	s-0,	IOTES				_		tom cho			
), 17=21-8-0, 18=21	00,	,	d roof live loads ha	ive been	considered to	r	LOAD			ndard	
			0, 20=21-8-0, 21=21		this design.		mh (2 aa	(10.00 m. 10.00		LOAD) 01a	nuaru	
), 24=21-8-0, 25=21	-8-0 2		E 7-16; Vult=115m ph; TCDL=6.0psf;								
	Max Horiz 1					at. II; Exp C; Enclo			ne)					
			C 10), 14=-84 (LC 1			ne and C-C Exterio			50)					
			LC 13), 16=-134 (LC			5-4-1 to 9-8-2, Extend			-5					
			LC 13), 18=-115 (LC						σ,					
			C 11), 21=-119 (LC		Exterior(2R) 12-0-5 to 19-1-3, Interior (1) 19-1-3 to 21-4-6 zone; cantilever left and right exposed ; end									
			LC 12), 24=-134 (LC	<i>,</i> 12),		and right exposed								
	25=-138 (LC 12) Max Grav 1=262 (LC 12), 14=228 (LC 13),			2)	forces & MWFRS for reactions shown; Lumber									
			_C 20), 16=206 (LC 1		DOL=1.60	plate grip DOL=1.6	50							The second
			_C 20), 10=200 (LC 1) Truss desi	gned for wind load	s in the p	lane of the tru	ISS				POFI	ALC AL
			_C 21), 20=182 (LC 1		only. For s	tuds exposed to w	ind (norm	al to the face),				TATE OF I	NISS D
			_C 19), 22=207 (LC		see Standa	ard Industry Gable	End Deta	ils as applica	ble,			4		NUS
			_C 19), 25=209 (LC		or consult of	qualified building de	esigner a	s per ANSI/TI	기 1.			H	S ANDI	EW YPY
FORCES			pression/Maximum	4		equate drainage to						B	THO	
TORCES	Tension		pression/maximum	5) All plates a	re 1.5x4 MT20 unl	ess other	wise indicated	d.			No	JØAN	
TOP CHORD		47 2-3=-	252/199, 3-4=-179/1	49 6		ires continuous bo		d bearing.			/		John John	
			222/223, 6-7=-176/1	7 7		s spaced at 0-0-0 o						X	m	m
			176/177, 9-10=-222/			nas been designed					, C	10-	NUM	BER $/ \approx 0$
			-12=-126/78,			oad nonconcurrent			ds.			N7	PE-2017	BER 018993
		,	-14=-332/211	9		s are assumed to b	e SP No	2 crushing				XX		58
		, , o			capacity of	565 psi.						Y	199	I GNB
													UNIONIA	TENA
													PE-2017	LEI


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

May 23,2024

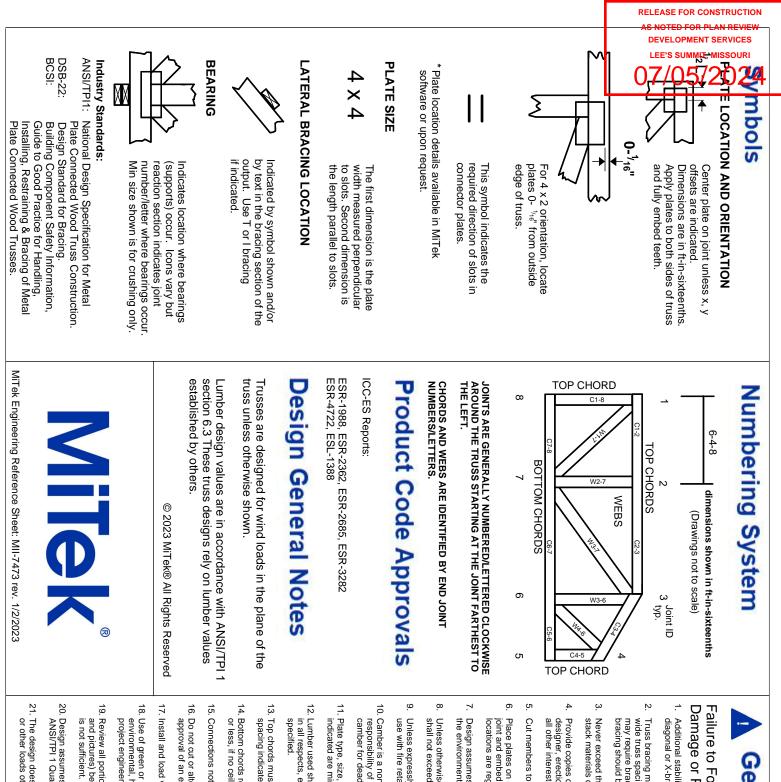
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 148	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
P240543-01	TG2	Diagonal Hip Girder	4	1	Job Reference (optional)	DEVELOPMENT SERVICES 165783185 LEE'S SUMMIT, MISSOURI

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 208.09.50 5/2024 ID:9RizLT5sxS0XndvBrCTxOMzWRWk-RfC?PsB70Hq3NSgPqnL8w3ulTXbgKWrCD0-742J0?

|--|

Plate Offsets (X, Y): [2:0-4-6,Edge]

	(, .). [=											
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.96	DEFL Vert(LL)	in -0.22	(loc) 2-5	l/defl >454	L/d 240	PLATES MT20	GRIP 197/144
TCDL BCLL	10.0 0.0	Lumber DOL Rep Stress Incr	1.15 NO	BC WB	0.53 0.00	Vert(CT) Horz(CT)	-0.43 0.00	2-5 5	>227 n/a	180 n/a		
BCDL	10.0	Code	IRC2018/TPI201		0.00		0.00	5	n/a	n/a	Weight: 35 lb	FT = 20%
											J	
LUMBER TOP CHORD				D" indicates Girder: 3- S guidelines.	-10d (0.14	8" x 3") toe-	nails					
BOT CHORD				OAD CASE(S) section	n loads a	polied to the	face					
WEBS	2x3 SPF No.2			uss are noted as front								
SLIDER	Left 2x4 SP No.2 4	4-1-15	LOAD CAS	E(S) Standard								
BRACING			1) Dead	+ Roof Live (balanced	l): Lumbe	Increase=1.	15,					
TOP CHORD				ncrease=1.15								
	6-0-0 oc purlins, ex			m Loads (lb/ft)								
BOT CHORD	0 0 7	applied or 10-0-0 o	•	:: 1-4=-70, 2-5=-20 ntrated Loads (lb)								
REACTIONS	bracing. (size) 2=0-4-9, 5	5= Mechanical		:: 7=-60 (F=-34, B=-26	5) 10=-19	(F=-10 B=-*	10)					
REACTIONS	Max Horiz 2=103 (L0				-,,	(, _	,					
	Max Uplift 2=-150 (L	,	2)									
	Max Grav 2=486 (LC	C 1), 5=415 (LC 1)	,									
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD	,	32, 4-5=-320/305										
BOT CHORD	2-5=-47/51											
NOTES	CE 7-16; Vult=115mph	(2 accord such)										
	nph; TCDL=6.0psf; BC											
	Cat. II; Exp C; Enclose		pe)									
	one and C-C Corner (3										000	an
	R) 5-10-0 to 8-2-0 zon										STATE OF	MISCH
	ers and forces & MWF									9	9 JE	-05°
	OL=1.60 plate grip DO		Jwi1,							A	AS INT	New York
	has been designed for									R	THO	KEW /Y
	load nonconcurrent wi									A.		
	are assumed to be: Joi	nt 2 SP 2400F 2.0E							/			
	capacity of 805 psi. jirder(s) for truss to trus	e connections							L C	N	my	unpp
	nechanical connection (0							13	NUM	
,	late capable of withstar									N.	O PE-2017	1018993


- 5 bearing plate capable of withstanding 117 lb uplift at joint 5 and 150 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

May 23,2024

EL

IONAL

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- . Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.