

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Re: MSA2406 1404 NE ERNEST WAY, LEE'S SUMMIT

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Quality Truss LLC.

Pages or sheets covered by this seal: I65166543 thru I65166577

My license renewal date for the state of Missouri is December 31, 2025.

Missouri COA: Engineering 001193

April 26,2024

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	1404 NE ERNEST WAY	AS NOTED FOR PLAN REVIEW LEE'S SUMMIT DEVELOPMENT SERVICES
MSA2406	CJ2	Jack-Open	4	1	Job Reference (optional	I65166543 LEE'S SUMMIT, MISSOURI
Quality Truss LLC (Smithville, Mo	D), Smithville, MO - 64089,	Run: 8.73 S Apr 3 2	024 Print: 8.7	730 S Apr 32	2024 MiTek Industries, Inc. Th	

ID:Lgv6Q7lkpQskQM?jGGw1mqzQ88G-RfC?PsB70Hq3NSgPqnL8w3uITXbcKWrCD6wJ4zge?2

2x4 =

2-7-6

Scale = 1:22.9	

Plate Offsets (X, Y): [2:0-0-2,0-0-0]

,													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 00 BC 00 WB 00 Matrix-MP	0.18 0.06 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 0.00 0.00	(loc) 4-7 4-7 3 4-7	l/defl >999 >999 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 0%	_
BCDL LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS (FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m II; Exp B; E cantilever la right expose 2) TCLL: ASC Plate DOL DOL=1.15) Cs=1.00; C Cs=1.00; C 3) Unbalanced design. 4) This truss h chord live la Coverhangs 5) This truss h chord live to Bearings au 7) Refer to gir	10.0 2x4 SP No.2 2x4 SP No.2 Structural wood sheat 2-7-6 oc purlins. Rigid ceiling directly bracing. (size) 2=0-4-9, 3 Mechanici (size) 2=0-4-9, 3 Mechanici 2=40 (LC Max Uplift 2=-18 (LC Max Uplift 2=-18 (LC Max Grav 2=319 (LC (LC 7) (lb) - Maximum Com Tension 1-2=0/50, 2-3=-41/48 2-4=-53/18 E 7-16; Vult=115mph ph; TCDL=6.0psf; BC inclosed; MWFRS (en inclosed; MWFRS (en inclosed; MWFRS (en ft and right exposed ed; Lumber DOL=1.60 E 7-16; Pr=25.0 psf (Li ; Is=1.0; Rough Cat B it=1.10 d snow loads have be has been designed for to psf or 1.00 times flat non-concurrent with o has been designed for to paf or nuce flat non-concurrent with o has been designed for to ad nonconcurrent with o has been designed for to ad nonconcurrent with o has been designed for to ad nonconcurrent with o has been designed for the assumed to be: , Jo der(s) for truss to trus	athing directly applied applied or 10-0-0 oc 3= Mechanical, 4= al 12) 8), 3=-15 (LC 12) 2 19), 3=93 (LC 19), 4 pression/Maximum 3 (3-second gust) DL=6.0psf; h=20ft; C: velope) exterior zone; end vertical left and 0 plate grip DOL=1.60 roof LL: Lum DOL=1.15 Plate ; Fully Exp.; Ce=0.9; en considered for this roof load of 25.0 psf ther live loads. a 10.0 psf bottom th any other live load bint 2 SP No.2. ss connections.	 8) Provide mechoearing plate 3 and 18 lb u 9) This truss is International R802.10.2 ar LOAD CASE(S) 4=43 at. a; 0 15 s ive on s. 	hanical connection (by capable of withstand plift at joint 2. designed in accordan Residential Code sec nd referenced standar Standard	y othe ing 1 ce wi titons d AN	ers) of truss to 5 lb uplift at jo ith the 2018 R502.11.1 an ISI/TPI 1.	nd				Weight: 10 lb	FT = 0%	
											April	26,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Scale = 1:68.3

Plate Offsets ((X, Y): [2:0-1-0,0-0-1],	[4:0-3-4,0-2-4], [10:	0-3-4,0-2-4	4], [14:0-3-0,0-3	3-12], [20:0-3-0,0-	3-12]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	8/TPI2014	CSI TC BC WB Matrix-MR	0.62 0.45 0.60	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.52 -0.75 0.14 0.16	(loc) 16-18 16-18 12 16-18	l/defl >876 >609 n/a >999	L/d 240 180 n/a 360	PLATES MT20 MT20HS Weight: 461 lb	GRIP 244/190 187/143 FT = 0%
LUMBER TOP CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2 *Except 2.0E 2x6 SP 2400F 2.0E 2x4 SP No.2 Structural wood shea 3-7-13 oc purlins, ex 2-0-0 oc purlins (4-2- Rigid ceiling directly bracing. (size) 2=0-3-8, 1 Max Horiz 2=69 (LC Max Uplift 2=-180 (LC Max Grav 2=4631 (L (lb) - Maximum Comp Tension 1-2=0/56, 2-3=-8416, 4-5=-11256/415, 5-6 6-7=-13407/487, 7-9 9-10==11295/417, 10	* 4-8,8-10:2x4 SP 2 athing directly applie cept -1 max.): 4-10. applied or 10-0-0 or 2=0-3-8 11) C 12), 12=-180 (LC C 36), 12=4630 (LC pression/Maximum /321, 3-4=-8378/32 =-11256/415, =-13407/487,)-11=-8368/319, >-13=0766	1) 2400F 2) 2 3) 13) 36) 4) 1, 5)	2-ply truss to (0.148"x3") n Top chords of oc. Bottom chord staggered at Web connect All loads are except if note CASE(S) sed provided to d unless other Unbalanced this design. Wind: ASCE Vasd=91mpH II; Exp B; En- cantilever lef right exposed TCLL: ASCE Plate DOL=1 DOL=1.15); I CC=1 00; Ct	be connected tog nails as follows: connected as follow ds connected as follow ds connected as follow ted as follows: 2x4 considered equal ed as front (F) or b tion. Ply to ply co- tistribute only load wise indicated. roof live loads hav 7-16; Vult=115mp r; TCDL=6.0psf; E closed; MWFRS (t and right expose d; Lumber DOL=1 7-16; Pr=25.0 psf ls=1.0; Rough Cat	yether wi ws: 2x4 - bllows: 2 4 - 1 row ly applie- pack (B) nnection ls noted /e been of bh (3-sec 3CDL=6.1 envelope d; end v. 60 plate f (roof LL (Lum DC t B; Fully	th 10d 1 row at 0-9 x6 - 2 rows at 0-9-0 oc. d to all plies, face in the LC s have been as (F) or (B), considered for cond gust) Dpsf; h=20ft; 4 e) exterior zor rertical left an grip DOL=1. :: Lum DOL=: DL=1.15 Plate Exp.; Ce=0.5	-0 DAD r Cat. ne; d 60 1.15	13) This Inte R8(14) Gra or ti bott	s truss is irnationa)2.10.2 a phical p he orient iom chor	desig I Resid and ref urlin re sation o d.	ned in accordanc dential Code sect erenced standard presentation doe of the purlin along	e with the 2018 ions R502.11.1 and d ANSI/TPI 1. is not depict the size g the top and/or
BOT CHORD	2-20=-272/7248, 19- 18-19=-496/13479, 1 15-16=-378/11295, 1 12-14=-224/7242	20=-270/7225, 6-18=-496/13479, 4-15=-206/7216,	6) 7)	Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live									
WEBS NOTES	3-20=-274/72, 4-20= 5-19=-1078/188, 6-1 6-18=0/426, 6-16=-1 9-16=-117/2521, 9-1 10-15=-221/4913, 10 11-14=-279/71	0/948, 4-19=-216/4 9=-2654/126, 35/58, 7-16=-1062/ 5=-2476/253,)-14=0/923,	355, 8) 181, 9) 10 11 12	overhans n Provide adec All plates are) This truss ha chord live loa) All bearings a) Provide mecl bearing plate 2 and 180 lb	on-concurrent with quate drainage to MT20 plates unle is been designed ad nonconcurrent are assumed to be hanical connection e capable of withst uplift at joint 12.	n other liv prevent v ess other for a 10.0 with any e SP 240 n (by oth canding 1	ve loads. water ponding wise indicate 0 psf bottom other live loa i0F 2.0E . ers) of truss t 80 lb uplift at	g. d. ds. o joint				SCOT SEVI PE-2001 PE-2001	ER 1 M. ER 1 EN 1 EN

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

April 26,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	1404 NE ERNEST WAY	AS NOTED FOR PLAN REVIEW LEE'S SUMMIT DEVELOPMENT SERVICES
MSA2406	GR1	Hip Girder	1	2	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Quality Truss LLC (Smith	hville, MO), Smithville, MO - 64	089,	Run: 8.73 S Apr 3 2024 Pr ID:BvN4yRC8O9BEIkfxboF	int: 8.730 S Ap OmRzQ876-Rf	r 3 2024 MiTek Industries, Inc. Th C?PsB70Hg3NSgPgnL8w3uITXb0	1 Apr 25 00639/27/2924

15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 251 Ib down and 55 lb up at 5-11-4, 251 lb down and 54 lb up at 8-0-0, 251 lb down and 54 lb up at 10-0-0, 251 lb down and 54 lb up at 12-0-0, 251 lb down and 54 lb up at 14-0-0, 251 lb down and 54 lb up at 16-0-0, 251 lb down and 54 lb up at 18-0-0, 251 lb down and 54 lb up at 20-0-0, 251 lb down and 54 lb up at 22-0-0, 251 lb down and 54 lb up at 24-0-0, 251 lb down and 54 lb up at 26-0-0, 251 lb down and 54 lb up at 28-0-0, and 251 Ib down and 54 lb up at 30-0-0, and 251 lb down and 55 Ib up at 32-0-12 on top chord, and 374 lb down and 21 Ib up at 2-0-0, 274 lb down and 16 lb up at 4-0-0, 82 lb down at 6-0-0, 82 lb down at 8-0-0, 82 lb down at 10-0-0, 82 lb down at 12-0-0, 82 lb down at 14-0-0, 82 Ib down at 16-0-0, 82 Ib down at 18-0-0, 82 Ib down at 20-0-0, 82 lb down at 22-0-0, 82 lb down at 24-0-0, 82 Ib down at 26-0-0, 82 Ib down at 28-0-0, 82 Ib down at 30-0-0, 82 lb down at 32-0-0, and 274 lb down and 16 lb up at 34-0-0, and 374 lb down and 21 lb up at 36-0-0 on bottom chord. The design/selection of such

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-4=-70, 4-10=-70, 10-13=-70, 2-12=-20 Concentrated Loads (lb)

connection device(s) is the responsibility of others.

Vert: 8=-216 (B), 17=-82 (B), 20=-82 (B), 4=-216 (B), 10=-216 (B), 14=-82 (B), 25=-216 (B), 26=-216 (B), 27=-216 (B), 29=-216 (B), 30=-216 (B), 31=-216 (B), 33=-216 (B), 34=-216 (B), 36=-216 (B), 37=-216 (B), 38=-216 (B), 39=-374 (B), 40=-274 (B), 41=-82 (B), 42=-82 (B), 43=-82 (B), 44=-82 (B), 45=-82 (B), 46=-82 (B), 47=-82 (B), 48=-82 (B), 49=-82 (B),

50=-82 (B), 51=-82 (B), 52=-274 (B), 53=-374 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FO	R CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply 1	404 NE ERNEST WAY	AS NOTED F LEE'S SUMMIT DEVELOPI	OR PLAN REVIEW
MSA2406	GR1A	Hip Girder	1	2 J	ob Reference (optional	LEE'S SUM	I65166545 IMIT, MISSOURI
Quality Truss LLC (Smithvill	e, MO), Smithville, MO - 64089,	Run: 8.73 ID:REWda	E Nov 16 2023 Print: aBPIM5jFC99P3KD8LI	8.730 E Nov 16 2 <zq8is-kwqokupł< td=""><td>023 MiTek Industries, Inc. I nwqDVayozAcDe4HMbXnZ</td><td>iri Apr 2611:6826 2 m9ysDqograzzMsti</td><td>7/2024</td></zq8is-kwqokupł<>	023 MiTek Industries, Inc. I nwqDVayozAcDe4HMbXnZ	iri Apr 2611:6826 2 m9ysDqograzzMsti	7/2024
-0- - 0-	9-4 6-1-12 8 9-4 6-1-12 1-	1-8 11-11-4 16-6-11 1-12 3-9-12 4-7-7	<u>21-5-5</u> 4-10-11	<u>26-0</u> 4-7	-12 29-10-8 -7 3-9-12	<u>33-3-12</u> 3-5-4	<u>38-0-0</u> 4-8-4
4 O		5x5=	3x4=	1.5x4 I	5x5=		
7-9-0 	7 ¹² 4x5 25					3x5 x 9 3x5 x 10	29
	4x5= 20	19 18	17 16	15	14	13 12	⊠ 4x5=
	2x4 8 6-0-0 6-1-12 6-0-0 0-1-12 1-	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4x4= 4x8= <u>21-5-5</u> 4-10-11	4x8 =	4x4 = 2-8 29-10-8 3-3 3-8-0	4x4= 2x4 II <u>33-3-12</u> <u>3-5-4</u>	<u>- 38-0-0</u> 4-8-4

Scale = 1:67.9

Plate Offsets (X, Y): [2:0-2-8,0-1-7], [5:0-2-8,0-2-0], [8:0-2-8,0-2-0]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.91	Vert(LL)	-0.07	15	>999	240	MT20	244/190
Snow (Pf)	25.0	Lumber DOL	1.15		BC	0.16	Vert(CT)	-0.10	14-15	>999	180		
TCDL	10.0	Rep Stress Incr	NO		WB	0.32	Horz(CT)	0.02	11	n/a	n/a		
BCLL	0.0	Code	IRC2018	3/TPI2014	Matrix-MR		Wind(LL)	0.03	14-15	>999	360		
BCDL	10.0								_			Weight: 551 lb	FT = 0%
			1)	2-plv truss to	be connected tog	ether wi	th 10d		12) Loa	d case(s	s) 1, 2	has/have been	modified. Building
TOP CHORD	2x4 SP No 2		.,	(0.148"x3") n	ails as follows:				des	ianer mi	ust rev	iew loads to ver	ifv that they are correct
BOT CHORD	2x6 SP 2400F 2.0E			Top chords c	onnected as follow	vs: 2x4 -	1 row at 0-9-	-0	for	the inten	ded u	se of this truss.	,
WEBS	2x4 SP No.2			oc.					13) Gra	phical p	urlin re	epresentation do	es not depict the size
BRACING				Bottom chord	is connected as fo	llows: 2	x6 - 2 rows		or t	he orient	ation	of the purlin alor	ig the top and/or
TOP CHORD	Structural wood she	athing directly applie	od or	staggered at	0-9-0 oc.				bot	tom chor	d.		
	6-0-0 oc purlins exc	cent		Web connect	ed as follows: 2x4	- 1 row	at 0-9-0 oc.		14) Har	nger(s) o	r othe	r connection dev	/ice(s) shall be
	2-0-0 oc purlins (6-0)-0 max.): 5-8.	2)	All loads are	considered equal	y applie	d to all plies,		pro	vided su	fficien	t to support cond	centrated load(s) 1094
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc		except if note	ed as front (F) or b	ack (B) t	face in the LC	DAD	lb d	lown and	I 699 I	b up at 11-11-4	on bottom chord. The
	bracing.			CASE(S) sec	tion. Ply to ply cor	nnection	s have been		des	ign/sele	ction c	of such connection	on device(s) is the
REACTIONS	(lb/size) 11=1476/	/0-3-8, 20=3492/0-3-8	8	provided to d	istribute only load	s noted	as (F) or (B),		res	ponsibili	y of o	thers.	
	Max Horiz 20=124 (LC 11)	2)	uniess otnerv	vise indicated.		a a sa a i da sa a da a	_	LOAD	CASE(S) Sta	ndard	
	Max Uplift 11=-224	(LC 13), 20=-90 (LC	12) ³⁾	Unbalanced	roof live loads hav	e been d	considered to	r	1) De	ead + Sn	ow (b	alanced): Lumbe	er Increase=1.15, Plate
	Max Grav 11=1779	(LC 37), 20=4001 (L	C 37) 📣	Wind ASCE	7 16: \/ult_115mn	b (2 coc	ond quet)		In	crease=	1.15	1 (6)	
FORCES	(lb) - Max Comp /M	lax Ten - All forces	250 250	Vasd-91mph	TCDI -6 Opsf: B	CDI -6 (Inst: h-20ft: (Cat	Ur	niform Lo	bads (I	b/ft)	70 0 44 00
	(lb) or less except w	hen shown.	200	II: Exp B: En	n, TODE=0.00031, D		a) exterior zor		~	Vert: 1-	s=-70,	5-8=-70, 8-11=-	70, 2-11=-20
TOP CHORD	1-2=0/481, 2-25=0/2	2521. 3-25=0/2671.		cantilever left	and right expose	d · end v	vertical left an	d	Co	oncentra	ted Lo	ads (Ib)	
	3-4=-309/1364, 4-5=	=-1730/965,		right exposed	: Lumber DOL=1.	60 plate	arip DOL=1.0	- 60		Vert: 1=	-400,	18=-1094 (F)	
	5-6=-2159/704, 6-26	6=-2305/575,	5)	TCLL: ASCE	7-16: Pr=25.0 psf	(roof LL	: Lum DOL=1	1.15	2) De	ead + Ro	Of LIV	e (balanced): Lu	mber Increase=1.15,
	26-27=-2305/575, 2	7-28=-2305/575,	- /	Plate DOL=1	.15); Pf=25.0 psf (Lum DC	L=1.15 Plate		PI U	ate incre	ase=1	1.15 h/#+)	
	7-28=-2305/575, 7-8	8=-2308/576,		DOL=1.15); I	s=1.0; Rough Cat	B; Fully	Exp.; Ce=0.9);	01		aus (i	D/IL)	
	8-9=-2283/500, 9-10	0=-2525/478,		Cs=1.00; Ct=	1.10	-							m
	10-29=-2952/456, 1	1-29=-3078/444	6)	Unbalanced :	snow loads have b	been cor	nsidered for th	nis				O OF	MIL
BOT CHORD	2-20=-2232/0, 19-20	0=-2232/0,		design.								AF OF	MISS
	18-19=-1174/224, 1	7-18=-826/1514,	7)	This truss ha	s been designed f	or greate	er of min roof	live			4		1.5
	16-17=-660/2156, 1	5-16=-660/2156,		load of 12.0 p	osf or 1.00 times fl	at roof lo	bad of 25.0 ps	sf on			a	SCOT	M NON
	14-15=-270/1975, 1	3-14=-303/2109,	•	overhangs no	on-concurrent with	other liv	/e loads.				B	SEL	TER V
WEDO	12-13=-342/2008, 1 5 19 1000 6 17	1-12=-342/2008 007/0 5 17 0/1100	8)	Provide adec	luate drainage to p	orevent v	water ponding	j .			R_		
WEDS	7 15-629/92 9 14	-0/676 9 15- 257/50	9, 9) 01	I his truss ha	s been designed f	or a 10.0) psf bottom	-I-			81		8
	9-13-0/407 9-14-	-0/070,0-13507/5 719/54 10-13597/F	50 40	Chord live loa	a nonconcurrent v	with any	other live load	as.				and	XXXXXXX
	6-15=0/683 3-20=-	3554/21 4-19=-2495	/0	booring plate	capable of withst	n (by our anding 2	24 lb uplift at	u ioint			113	NUM	IBER A
	3-19=0/2592, 4-18=	-5/2080	,	11 and 90 lb	unlift at joint 20		24 in upint at	John			N	O PE-200	1018807
NOTES	1 11 1.2002, 1 10		11	This truse is a	designed in accord	dance w	ith the 2018				N V	The second	12A
NOTED				International	Residential Code	sections	R502.11.1 a	nd			1	A Ser	O'A
				R802.10.2 ar	nd referenced stan	dard AN	ISI/TPI 1.	-				VON/	AL EN

April 26,2024

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, reaction and tracing of trusses and truss systems, see AMSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	1404 NE ERNEST WAY	AS NOTED FOR PLAN REVIEW LEE'S SUMMIT DEVELOPMENT SERVICES
MSA2406	GR1A	Hip Girder	1	2	Job Reference (optional	I65166545 LEE'S SUMMIT, MISSOURI
Quality Truss LLC (Smithville, Mo	ri Apr 2611;827/260:24					

Vert: 1-5=-70, 5-8=-70, 8-11=-70, 2-11=-20 Concentrated Loads (lb)

Vert: 1=-900, 18=110 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

													- I	REL	EASE FOR	CONSTRU	JCTION
Job		Truss		٦	Fruss Typ	e			Qty	Ply	1404 N	IE ERNEST	- WAY	LEE'S SUN	NOTED FOI	R PLAN R	EVIEW ICES
MSA240)6	GR1B		F	Roof Spe	ecial Giro	der		1	2	Job Re	ference (op	otional	L	16 EE'S SUMN	5166546 IIT, MISSO	DURI
Quality Trus	ss LLC (Smithville, M	O), Smithville	e, MO - 64089,				Run: 8.73 ID:qNoFE	S Apr 32 SrJOgJhhE	024 Print: 8 OE29PNG3	.730 S Apr 3zPqnO-Rf0	3 2024 MiTe C?PsB70Hq3	ek Industries, 3NSgPqnL8w3	Inc. Thu 3ulTXb	Apr 25 1106 KWrCD67 J4	3/27	/20	24
	5-7	7-0	I	10-9-5		1	15-11-9	1	21-1-1	4	1	26-2-6	1	28-7-0	31-10-	10	
	5-7	7-0	I	5-2-4		I	5-2-4	Ţ	5-2-4	Ļ	I	5-0-8	1	2-4-10	3-3-1	0	
	5x6=		1.5x4 ॥		3	3x8=		5x5=			3x4=		5x	5=	10		
		18	219 🖂	_ <u>2</u> 0	⊠21	3 🖂 22	⊠ ²³ ⊠	4	24 25	26	^{5 27} ⊠	28	296	6	۲ ₇		
-8-2			8								1			1.1	5x4 ≠ 7		
'n	0			/		P										8	-4-5 ⊥
	30	31	1 3 2	33	34 <i>·</i>	12 35	36	11	37	38	10 39	40	41 9	9 42	43	Ø	
	2x4 II		5x10=		2	2x4 I		7x8=			4x4 =		3	3x4 =		4x5 =	
	5-7	7-0	1	<u>10-9</u> -5		1	15-11-9		21-1-1	4		26-4-2		31	-10-10	J	
	5-7	7-0		5-2-4			5-2-4	1	5-2-4			5-2-4			5-6-8		

Scale = 1:54.9

Plate Offsets (X, Y): [4:0-2-8,0-3-0], [6:0-3-0,0-2-4], [11:0-4-0,0-4-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.91	Vert(LL)	-0.35	10-11	>999	240	MT20	244/190
Snow (Pf)	25.0	Lumber DOL	1.15		BC	0.34	Vert(CT)	-0.50	10-11	>757	180		
TCDL	10.0	Rep Stress Incr	NO		WB	0.81	Horz(CT)	0.08	8	n/a	n/a		
BCLL	0.0	Code	IRC2018	3/TPI2014	Matrix-MR		Wind(LL)	0.11	10-11	>999	360		
BCDL	10.0											Weight: 392 lb	FT = 0%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.2 *Except 2x6 SP 2400F 2.0E 2x4 SP No.2	t* 1-4:2x4 SP No.1	2)	All loads are except if note CASE(S) sec provided to d	considered equal ed as front (F) or b tion. Ply to ply co istribute only load	ly applied back (B) t nnection Is noted a	d to all plies, face in the LC s have been as (F) or (B),	DAD	14) Har prov Ib d up a	nger(s) c vided su own and at 3-10-	r other fficient 52 lb 10, 238	r connection dev to support conc up at 1-10-10, 2 8 lb down and 52	ice(s) shall be entrated load(s) 238 238 lb down and 52 lb 2 lb up at 5-10-10,
BRACING				unless otherv	vise indicated.				238	lb dowr	n and 5	52 lb up at 7-10-	10, 238 lb down and
TOP CHORD	Structural wood shea 4-2-9 oc purlins, exc 2-0-0 oc purlins (2-1	athing directly applied ept 1-1 max.): 1-6.	dor ³⁾ 4)	 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) 52 Ib up at 9-10-10, 238 Ib down and 52 Ib up at 13-10-10 60 wind and 52 Ib up at 15-10-10, 238 Ib down and 52 Ib up at 15-10-10, 238 Ib down and 52 Ib up at 15-10-10 									and 52 lb up at p at 13-10-10, 238 lb 38 lb down and 52 lb
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc		II; Exp B; End	closed; MWFRS (envelope	e) exterior zor	bat. ne;	238	lb dowr	n and 5	52 lb up at 21-10)-10, and 238 lb down
REACTIONS	(size) 8=0-3-8, 1 Max Horiz 14=-90 (L0 Max Uplift 8=-151 (L0 Max Grav 8=3749 (L	4=0-2-2 C 13) C 8), 14=-161 (LC 8) .C 32), 14=3977 (LC	5) 32)	 cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 5) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate and 52 lb up at 23-10-10, and 227 lb down and 53 l at 25-10-10 on top chord, and 78 lb down at 1-10-1 78 lb down at 3-10-10, 78 lb down at 5-10-10, 78 lb down at 9-10-10, 78 lb down at 9-1									
FORCES	(lb) - Maximum Com	pression/Maximum		Cs=1.00; Ct=	, 78 lb down at								
TOP CHORD	1-2=-5677/232, 2-3= 3-5=-9777/408, 5-6= 6-76730/295, 7-8-	-5677/232, -8762/373, -6759/279	6) 7)	Unbalanced design. Provide adeq	uate drainage to	prevent v	vater ponding	nis J.	23-10-10, 78 lb down at 25-10-10, 76 lb down at 45 lb up at 27-10-10, and 346 lb down and 45 lb up at 29-10-10 op bottom chord. The design/selection of such				
BOT CHORD	13-14=-32/90, 12-13 10-12=-337/8809, 9- 8-9=-218/5820	=-337/8809, 10=-218/5808,	9) 10	chord live loa All bearings a	are assumed to be	with any e SP 240	other live loa 0F 2.0E .	ds.	connection device(s) is the responsibility of others. LOAD CASE(S) Standard				
WEBS	2-13=-1182/200, 1-1 3-12=0/394, 3-13=-3 4-11=-1019/173, 5-1 6-10=-147/3531, 7-9 5-11=-61/1202, 3-11 1-14=-3829/200	3=-271/6640, 712/158, 0=-1694/212, 6-9=0/ =-260/80, =-51/1147,	952, 11	 10) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 14. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 151 lb uplift at joint 8 and 161 lb uplift at joint 14. 12) This truss is designed in accordance with the 2018 SEVIER 									MISSOLAL T.M. TER
NOTES				R802.10.2 ar	nd referenced star	ndard AN	ISI/TPI 1.	10			in*		
 2-ply truss (0.148"x3" Top chord oc. Bottom ch staggered Web conn 	to be connected toget ') nails as follows: 's connected as follows ords connected as follow at 0-9-0 oc. ected as follows: 2x4 -	13) Graphical pu or the orienta bottom chord	rlin representation tion of the purlin a	n does no along the	ot depict the s top and/or	ize		•		NUM PE-2001	018807	

Com April 26,2024

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses and truss systems, see AMS/IPTI Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	1404 NE ERNEST WAY	AS NOTED FOR PLAN REVIEW LEE'S SUMMIT DEVELOPMENT SERVICES
MSA2406	GR1B	Roof Special Girder	1	2	Job Reference (optional	I65166546 LEE'S SUMMIT, MISSOURI
Quality Truss LLC (Smithville, M	O), Smithville, MO - 64089,	Run: 8.73 S ID:qNoFESrJ	Apr 3 2024 Print: 8.7 IOgJhhEOE29PNG3z	730 S Apr 3 zPqnO-RfC?l	2024 MiTek Industries, Inc. Th PsB70Hq3NSgPqnL8w3uITXb	Apr 25 0060/27/2924

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-6=-70, 6-8=-70, 8-14=-20

Concentrated Loads (lb)

Vert: 4=-203 (F), 11=-78 (F), 17=-203 (F), 18=-203

Vert: 4=-203 (F), 11=-78 (F), 17=-203 (F), 18=-203 (F), 19=-203 (F), 20=-203 (F), 21=-203 (F), 22=-203 (F), 23=-203 (F), 24=-203 (F), 26=-203 (F), 27=-203 (F), 29=-203 (F), 30=-78 (F), 31=-78 (F), 32=-78 (F), 33=-78 (F), 34=-78 (F), 35=-78 (F), 36=-78 (F), 36=-78 (F), 36=-78 (F), 40=-78 (F), 41=-78 (F), 42=-346 (F), 43=-346 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

[a] = O[a] = [a] (a, 1). $[z, 0, 0, 1] = [a], [10, 0, 2, 4, 0, 4, 0]$												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.92	Vert(LL)	-0.02	9-10	>999	240	MT20	244/190
Snow (Pf)	25.0	Lumber DOL	1.15	BC	0.25	Vert(CT)	-0.03	9-10	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.52	Horz(CT)	-0.01	9	n/a	n/a		
BCLL	0.0	Code	IRC2018/TPI2014	Matrix-MR		Wind(LL)	0.01	9-10	>999	360		
BCDL	10.0										Weight: 226 lb	FT = 0%

LU	MBER		
то	P CHORD	2x4 SP N	o.1
BO	T CHORD	2x6 SP 24	400F 2.0E
WE	BS	2x4 SP N	0.2
BR	ACING		
то	P CHORD	Structura	I wood sheathing directly applied or
		6-0-0 oc	ourlins.
BO	T CHORD	Rigid ceil	ing directly applied or 6-0-0 oc
		bracing,	Except:
		10-0-0 oc	bracing: 8-9.
RE	ACTIONS	(lb/size)	9=930/ Mechanical,
			11=5393/0-4-15
		Max Horiz	11=168 (LC 12)
		Max Uplift	9=-682 (LC 14)
		Max Grav	9=1076 (LC 19), 11=5484 (LC 19)
FO	RCES	(lb) - Max	. Comp./Max. Ten All forces 250
		(lb) or les	s except when shown.
то	P CHORD	1-2=0/372	2, 2-15=0/3699, 3-15=0/3789,
		3-16=0/38	865, 16-17=0/3970, 4-17=0/3979,
		4-18=-46	1/513, 18-19=-403/535,
		5-19=-35	3/583
BO	T CHORD	2-20=-34	59/0, 12-20=-3459/0,
		12-21=-3	459/0, 21-22=-3459/0,
		11-22=-3	459/0, 11-23=-3627/0,
		10-23=-3	627/0, 10-24=-520/373,
	-	9-24=-52	0/373
WE	BS	3-11=-57	0/275, 4-11=-4468/0, 4-10=0/4262,
		5-10=-11	09/407, 5-9=-594/828
NO	TES		
1)	2-ply truss	s to be conn	ected together with 10d
	(0.148"x3	') nails as fo	ollows:
	Top chord	ls connected	d as follows: 2x4 - 1 row at 0-3-0

Bottom chords connected as follows: 2x6 - 2 rows

Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 3) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II: Exp B: Enclosed: MWFRS (envelope) exterior zone: cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 4) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this desian.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads. 7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. Refer to girder(s) for truss to truss connections. 8)
- Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 682 lb uplift at joint
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Load case(s) 1, 2 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 45 lb down and 29 lb up at 2-6-15, 45 lb down and 29 lb up at 2-6-15, 148 lb down and 47 lb up at 5-4-14, 148 lb down and 47 lb up at 5-4-14, 77 lb down and 36 lb up at 8-2-13, 67 lb down and 33 lb up at 8-2-13, and 26 lb down and 15 lb up at 11-0-12, and 900 lb down at -1-1-1 on top chord, and 40 lb down at 2-6-15, 40 lb down at 2-6-15, 73 lb down at 5-4-14, 73 lb down at 5-4-14, 289 lb down and 26 lb up at 8-2-13, 57 lb up at 11-0-12, 1996 lb down and 57 lb up at 11-3-12, and 128 Ib up at 13-10-11, and 1789 Ib down and 52 Ib up at 14-1-11 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

- Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft) Vert: 1-7=-70, 2-8=-20

Concentrated Loads (lb)

16023 Swingley Ridge Rd. Chesterfield MO 63017

314.434.1200 / MiTek-US.com

ontinued on page 2

staggered at 0-6-0 oc.

OC

WARN Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	1404 NE ERNEST WAY	AS NOTED FOR PLAN REVIEW LEE'S SUMMIT DEVELOPMENT SERVICES
MSA2406	GR1C	Diagonal Hip Girder		1	2	Job Reference (optional	I65166547 LEE'S SUMMIT, MISSOURI
Quality Truss LLC (Smithville, M	O), Smithville, MO - 64089,	Run ID:o	n: 8.73 E Nov 16 2 04Jykn41AuWEpQ	2023 Print: 8. MdeNP?99z	.730 E Nov 1 PqOZ-vdg5g	6 2023 MiTek Industries, Inc. I hzTd7_VF6sf_YTwfEx_nQKd	ri Apr 26 11 684 27/269 24

Vert: 1=-400 (F), 16=-197 (F=-99, B=-99), 17=-44 (F=-27, B=-17), 20=-60 (F=-30, B=-30), 21=-133 (F=-67, B=-67), 22=-289 (B), 23=-1956 (F=-1996, B=40), 24=-1670 (F=-1789, B=119)

2) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-6=-70, 6-7=-20, 2-8=-20

Concentrated Loads (lb)

Vert: 1=-900 (F), 16=-57 (F=-29, B=-29), 20=-37 (F=-18, B=-18), 21=-90 (F=-45, B=-45), 22=-198 (B), 23=-1264 (F=-1304, B=40), 24=-1095 (F=-1214, B=119)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR	
Job	Truss	Truss Type	Qty	Ply	1404 NE ERNEST WAY	AS NOTED FO	OR PLAN REVIEW
MSA2406	GR2	Hip Girder	1	2	Job Reference (optional	LEE'S SUM	65166548 IMIT, MISSOURI
Quality Truss LLC (Smithvill	le, MO), Smithville, MO - 64089,	R	un: 8.73 S Apr 3 2024 Print: 8 :KrProBCGIA5hDFLrKfEJVRz(.730 S Apr 3 20 Q84W-RfC?PsB	24 MiTek Industries, Inc. Th 70Hq3NSgPqnL8w3uITXbG	Apr 25 1061/2	7/2024
-(0-10-12 <u>3-5-14 5-11-</u> D-10-12 3-5-14 2-5-6	4 <u>11-3-3</u> 5 5-3-15	<u> </u>		22-0-12 5-3-15	24-6-2 28- 2-5-6 3-5	- <u>0-0</u> 28-10-12 5-140-10-12
	12	5x5=	1.5x4 II	3x4 =	5x	.5 =	
-4-5 0-4-5 14 0-4-5	$7 \stackrel{ }{\models} 1.5x4_{\diamond}$ 3 2 2 29 30 $4x5 =$	4 20 21 15 31 32 6x6=	5 22 232425 14 33 13 3x10= 5x6=	26 6 34 12 3x4=	27 28 7 35 36 1	7 1.5x4 * 8 1.5x4 * 1.5x4 * 8 1.5x4 * 8 1.5x4 * 8 5x5 =	9 10 3x6=

16-8-13

5-5-11

22-2-8

5-5-11

28-0-0

5-9-8

11-3-3

5-5-11

Scale = 1:52.9

5-9-8

5-9-8

Plate Offsets (2	X, Y): [4:0-3-0,0-2-4],	[7:0-3-0,0-2-4], [9:0-6	8-4,0-1-11], [11	:0-2-8,0-3	3-8], [15:0-3-0,0-3	3-12]						-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI:	2014	CSI TC BC WB Matrix-MR	0.77 0.33 0.31	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.22 -0.32 0.06 0.07	(loc) 12-14 12-14 9 12-14	l/defl >999 >999 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 333 II	GRIP 244/190 b FT = 0%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x6 SP 2400F 2.0E 2x4 SP No.2 Structural wood she 4-7-1 oc purlins, exc 2-0-0 oc purlins (3-9 Rigid ceiling directly bracing. (size) 2=0-3-8, § Max Horiz 2=69 (LC Max Uplift 2=-132 (L Max Grav 2=3508 (L	athing directly applied sept I-8 max.): 4-7. applied or 10-0-0 oc 9=0-3-8 11) C 12), 9=-132 (LC 13 _C 37), 9=3508 (LC 3	2) All I exc CA3 pro unk dor 3) Unt this 4) Wir Vas 4) Wir Vas 11; E can righ 5) TCI 7) Plat 7) DO	oads are ept if note SE(S) sec vided to d sss otherv balanced r design. d: ASCE d=91mph xp B; Enc tilever left t exposec _L: ASCE te DOL=1 L=1.15); I:	considered equa d as front (F) or l tion. Ply to ply cc istribute only load vise indicated. oof live loads ha 7-16; Vult=115m ; TCDL=6.0psf; E losed; MWFRS (and right expose l; Lumber DOL=1 7-16; Pr=25.0 psf s=1.0; Rough Ca	Ily applie back (B) onnection ds noted ve been of BCDL=6.1 (envelope ed; end v 1.60 plate sf (roof LL (Lum DC	d to all plies, face in the LC s have been as (F) or (B), considered fo cond gust) Opps; h=20ft; (c) exterior zor vertical left an grip DOL=1. :: Lum DOL=: Lum DOL= Exp.; Ce=0.5	DAD r Cat. ne; d 60 I.15 ;	14) Har provide dow dow at dow up a on t 274 82 l at 82 l at 374	nger(s) c vided su own and at 8-0-0 vn and 5 14-0-0, 2 vn and 5 at 20-0- top chore b down 12-0-0, 8 b down 22-0-0, a l b dowr	or other fficient 55 lb , 251 ll 4 lb up 251 lb up 251 lb up 0, and 1 a and 1 a and 1 a and 1 a and 2 a 1 a 1 a 1 a 2 a 2 a 1 a 2 a 3 a 2 a	r connection de t to support con up at 5-11-4, 2 b down and 54 down and 54 lb o at 12-0-0, 257 down and 54 lb o at 18-0-0, and 251 lb down ar 374 lb down ar 6 lb up at 4-0- -0, 82 lb down a own at 14-0-0, 0-0, 82 lb down ad 4 lb down and 1 21 lb up at 26-0	vice(s) shall be centrated load(s) 251 (51 lb down and 54 lb lb up at 10-0-0, 251 lb lb lb down and 53 lb up up at 16-0-0, 251 lb d 251 lb down and 54 lb d 55 lb up at 22-0-12 d 21 lb up at 22-0-0, 0, 82 lb down at 6-0-0, at 10-0-0, 82 lb down 82 lb down at 16-0-0, at 20-0-0, 82 lb down (61 bu up at 24-0-0, and 0-0 on bottom chord.
FORCES	(lb) - Maximum Com Tension 1-2=0/56, 2-3=-5782 4-5=-7060/261, 5-6= 6-7=-7098/263, 7-8=	pression/Maximum 2/224, 3-4=-5735/226 7060/261, 5726/224	Cs= 6) Unb des 7) This	=1.00; Ct= palanced s ign. s truss has	1.10 snow loads have s been designed	been cor for great	nsidered for the	live	The resp LOAD (1) De	e design/ consibili CASE(S ead + Sr	selecti ty of ot Station tow (ba	ion of such con hers. ndard alanced): Lumb	nection device(s) is the er Increase=1.15, Plate
BOT CHORD	8-9=-5780/223, 9-10 2-15=-189/4970, 14- 12-14=-220/7098, 1 9-11=-141/4965)=0/56 -15=-174/4952, 1-12=-112/4943,	ove 8) Pro 9) This cho	rhangs no vide adeq s truss has rd live loa	on-concurrent wit uate drainage to s been designed d nonconcurrent	h other liv prevent for a 10.0 with any	ve loads. water ponding) psf bottom other live loa	j. ds.	Ur	crease= hiform Lo Vert: 1-4	1.15 bads (ll 4=-70,	b/ft) 4-7=-70, 7-10=	-70, 2-9=-20
WEBS	3-15=-274/70, 4-15= 5-14=-1124/193, 6-1 6-12=-1112/205, 7-1 7-11=0/910, 8-11=-2	=0/934, 4-14=-126/25 4=-116/46, 2=-130/2567, 280/69	10, 10) All I 11) Pro bea 2 ar	bearings a vide mech ring plate nd 132 lb	are assumed to b nanical connectio capable of withs uplift at joint 9.	e SP 240 in (by oth tanding 1	0F 2.0E . ers) of truss t 32 lb uplift at	o joint			Å	STATE OF	MISSOLA
NOTES 1) 2-ply truss (0.148"x3" Top chords oc. Bottom cho staggered Web conne	to be connected toget) nails as follows: s connected as follows ords connected as follow at 0-9-0 oc. ected as follows: 2x4 -	ther with 10d s: 2x4 - 1 row at 0-9-0 ows: 2x6 - 2 rows · 1 row at 0-9-0 oc.	12) This Inte R8() 13) Gra or ti bott	s truss is o rnational 02.10.2 an phical pur he orienta com chord	designed in acco Residential Code Id referenced sta Iin representatio tion of the purlin	rdance w sections ndard AN n does no along the	ith the 2018 R502.11.1 a ISI/TPI 1. of depict the s top and/or	nd ize		Ę		PE-200	AL ENGINE

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses and truss systems, see AMS/IPTI Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 26,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	1404 NE ERNEST WAY	AS NOTED FOR PLAN REVIEW LEE'S SUMMIT DEVELOPMENT SERVICES
MSA2406	GR2	Hip Girder	1	2	Job Reference (optional	I65166548 LEE'S SUMMIT, MISSOURI
Quality Truss LLC (Smithville, M	O), Smithville, MO - 64089,	Run: 8.73 S Apr 3 2 ID:KrProBCGIA5hDF	024 Print: 8.7 LrKfEJVRzQ	730 S Apr 32 84W-RfC?Ps	2024 MiTek Industries, Inc. Th B70Hq3NSgPqnL8w3uITXbG	Apr 25 1061/27/2024

Concentrated Loads (lb)

Soncentrated Loads (ib) Vert: 7=-216 (B), 13=-82 (B), 15=-82 (B), 4=-216 (B), 11=-82 (B), 20=-216 (B), 21=-216 (B), 22=-216 (B), 24=-216 (B), 26=-216 (B), 27=-216 (B), 28=-216 (B), 29=-374 (B), 30=-274 (B), 31=-82 (B), 32=-82 (B), 33=-82 (B), 34=-82 (B), 35=-82 (B), 36=-82 (B), 37=-274 (B), 38=-374 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION					
Job Tru	ISS	Truss Type	Qt	y Ply	1404 NE ERNEST WA	AS NOTED FOR PLAN REVIEW Y LEE'S SUMMIT DEVELOPMENT SERVICES					
MSA2406 H1	А	Hip	1	1	Job Reference (option	LEE'S SUMMIT, MISSOURI					
Quality Truss LLC (Smithville, MO), Sr	mithville, MO - 64089,		Run: 8.73 S Apr 3 2024	Print: 8.730 S Apr 3	2024 MiTek Industries, Inc. 1	Thu Apr 25 0061/27/2024					
			ID:rA?t8VAnUU6eeEZni4	-HCezQ8rd-RtC?PSB	370Hq3NSgPqnL8w3uTXbG						
-0-10-12	6-3-7	12-1-6	<u>17-11-4</u> 20-0-	12 25-10-1	0 31-8-9	38-0-0 38-10-12					
0-10-12	0-3-7	5-9-14	5-9-14 2-1- 5x5=	5x5=	5-9-14	0-3-7 0-10-12					
11-3-14 10-8-2 10-8-2 10-8-2 10-9-14 0-1-12	1.5x4 23 23	3x4 \$ 3x6 \$ 71 ² 4 \$ 24		7	3x6 3x4 278 9 28	1.5x4 <i>*</i> 10 29					
		16	15	14	13						
4x5=	0.07	3x4=	5x8=	3x4=	3x4=	4x5=					
⊢	9-2-7		- 7-9-8 20-2 -7-1 2-5-	-8 0	8-7-1	9-2-7					
Scale = 1:70.4 Plate Offsets (X, Y): [7:0-2-4.0-2	2-0]. [15:0-2-0.0-3-4]										
		2-0-0	CSI	DEEL	in (loc) l/defl l/	d PLATES GRIP					
TCLL (roof) 25.0 Snow (Pf) 25.1 TCDL 10.0 BCLL 0.0 BCDL 10.0	0 Plate Grip DOL 0 Lumber DOL 0 Rep Stress Incr 0 Code	1.15 1.15 YES IRC2018/TPI2014	TC 0.94 BC 0.80 WB 0.41 Matrix-MR	Vert(LL) -0. Vert(CT) -0. Horz(CT) 0. Wind(LL) 0.		0 MT20 244/190 0 a 0 Weight: 232 lb FT = 0%					
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.1 WEBS 2x4 SP No.2 BRACING TOP CHORD Structural wood except 2-0-0 oc purlins (BOT CHORD Rigid ceiling dire bracing. WEBS 1 Row at midpt REACTIONS (size) 2=0-3 Max Horiz 2=188 Max Grav 2=242 FORCES (b) - Maximum C Tension TOP CHORD 1-2=0/32, 23=-4 5-6=-2801/47, 6 8-10=-3887/16, 2 BOT CHORD 2-16=-47/3567 WEBS 3-16=-569/122, 4 6-15=-17/911, 7.	Loading TCLL (roof) (psf) 25.0 Spacing (ref) 25.0 Spacing (ref) 25.0 Partes (ref) 25.0 Spacing (ref) 25.0 Partes (ref) 25.0 GRIP Snow (Pf) 25.0 Lumber DOL 1.15 BC 0.80 Vert(CT) -0.47 13.14 >963 180 TCDL 10.0 Rep Stress Incr YES WB 0.41 Hor2(CT) 0.17 11 n'n n'n BCLL 0.0 Code IRC2018/TPI2014 Matrix-MR Wind(LL) 0.08 16.19 >99 360 Weight: 232 lb FT = 0% LUMBER 10.0 2x4 SP No.2 5 This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads. -										
 8-14=-1068/118, NOTES 1) Unbalanced roof live loads ha this design. 2) Wind: ASCE 7-16; Vult=115n Vasd=91mph; TCDL=6.0psf; II; Exp B; Enclosed; MWFRS cantilever left and right exposer right exposed; Lumber DOL= 3) TCLL: ASCE 7-16; Pr=25.0 ps Plate DOL=1.15); Pf=25.0 ps DOL=1.15); Is=1.0; Rough C Cs=1.00; Ct=1.10 	8-13=0/685, 10-13=-567, ave been considered for mph (3-second gust) BCDL=6.0psf; h=20ft; Ca c (envelope) exterior zone sed ; end vertical left and e1.60 plate grip DOL=1.60 ssf (roof LL: Lum DOL=1.15 f (Lum DOL=1.15 Plate at B; Fully Exp.; Ce=0.9;	(122 at. ;) 15				SCOTT M. SEVIER CONTRUMER OF PE-2001018807					

April 26,2024

Active Ac

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPP1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

									RELEASE	FOR CONS	TRUCTION
Job	Truss		Truss Type		Qty	Ply	1404 NE E	ERNEST WA	Y LEE'S SUMMIT	D FOR PLAN	N REVIEW
MSA2406	H1B		Hip		1	1	Job Refer	ence (option	al LEE'S	SUMMIT, MI	SSOURI
Quality Truss LLC (S	Smithville, MO), Smith	ville, MO - 64089,		Run: 8.73 S Ap ID:o6AGiocM?Y	r 3 2024 Pr fXzmJipe_j4	int: 8.730 S Apr 4EzQ8r3-RfC?P	3 2024 MiTek Ir sB70Hq3NSgPq	dustries, Inc. hL8w3uITXbG	hu Apr 25 1106-22 (WrCDoi7J42JC-1	27/2	024
	-0-10-12 	<u>8-2-7</u> 8-2-7	<u> </u>		<u>22-0-12</u> 6-1-8	2	<u>29-9-</u> 7-8-1	9	<u>38-0-</u> 8-2-	- <u>0</u> 7	38-10-12
				MT20HS 6>	(12 =	MT20HS 7:	(10 =				
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$									7 8 3x6=		
		8-2-7	7-7-1		6-5-0		/-/-		8-2-	/	
Scale = $1:70.1$ Plate Offsets (X, Y	Y): [2:0-6-0,0-0-6],	[4:0-8-8,0-2-0], [5:0-	6-8,0-2-0], [7:0-6-0,0-0-0	6]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MR	0.87 0.91 0.46	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.21 13-16 -0.36 13-16 0.16 7 0.09 13-16	l/defl L/ >999 24 >999 18 n/a n/ >999 36	d PLATES 0 MT20HS 0 MT20 a 0 Weight: 206 lb	GRIP 187/143 244/190 FT = 0%	
LUMBER TOP CHORD 25 BOT CHORD 25 WEBS 25 BRACING TOP CHORD S 3- 22 BOT CHORD R WEBS 1	x4 SP 2400F 2.0E o.2 x4 SP No.1 x4 SP No.2 tructural wood she -0-3 oc purlins, exc -0-0 oc purlins (2-4 tigid ceiling directly racing. Row at midpt	*Except* 4-5:2x4 SP athing directly applied rept -8 max.): 4-5. applied or 10-0-0 oc 3-12, 4-10, 6-10	snow loads have as been designed psf or 1.00 times i ion-concurrent witi quate drainage to e MT20 plates unli- as been designed ad nonconcurrent are assumed to b designed in accoi I Residential Code nd referenced sta	been cons for greate flat roof loc h other live prevent w ess otherv for a 10.0 with any c e SP No.1 rdance wit e sections ndard ANS	sidered for this r of min roof li ad of 25.0 psf e loads. ater ponding. vise indicated. psf bottom ther live loads h the 2018 R502.11.1 an SJ/TPI 1.	; ve on s.					

11) Graphical purlin representation does not depict the size

or the orientation of the purlin along the top and/or

- REACTIONS (size) 2=0-3-8, 7=0-3-8 Max Horiz 2=-168 (LC 10) Max Grav 2=2354 (LC 37), 7=2354 (LC 37) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/32, 2-3=-3959/0, 3-4=-2884/33, 4-5=-2259/66, 5-6=-2885/33, 6-7=-3959/0, 7-8=0/32BOT CHORD 2-13=-39/3294, 12-13=-13/3294, 10-12=0/2258, 9-10=0/3293, 7-9=0/3293
- WEBS 3-13=0/342, 3-12=-1213/113, 4-12=0/779, 4-10=-291/293, 5-10=0/779, 6-10=-1211/114, 6-9=0/341

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

OF MISSOL ATE SCOTT M. SEVIER V/M PE-2001018807 SSIONAL ET

April 26,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

bottom chord.

LOAD CASE(S) Standard

									RELE	ASE FOR CONST	RUCTION			
Job	Truss		Truss Typ	pe		Qty	/ Ply	/	1404 NE E	RNEST	WAY	LEE'S SUMA	OTED FOR PLAN	
MSA2406	H1BE	3	Hip			1	1		Job Refere	ence (op	tional	LE	16516655 E'S SUMMIT, MIS	2 Souri
Quality Truss LLC (Smithville	e, MO), Smith	wille, MO - 64089,			Run: 8.73 S Apr	3 2024 P	rint: 8.730 S	Apr 320)24 MiTek In 20Ha3NSaE	dustries, I	nc. Th		27/20	924
					1D.5_axixiiii11311	GSZabii	ILBO2Q044	-KIC ! F 30	or on igoinogr	qiiLow3u	ITADG	(WICD01-042 0	<u> </u>	
-0-	10-12	6-1-12	11-1-3		15-11-4	22-0)-12	1	29-	9-9		l	38-0-0	1
0- ¹	0-12	6-1-12	4-11-7	1	4-10-1	6-1	-8	I	7-8	-13		ļ	8-2-7	1
4 2					5x5= ℃ 5	2	3	5x5= 6						
					5-22				24					
			_12	3x5 🞜						_				
		1.5x4	/ ·	Ţ		//				\searrow		3x5		
-14 3-2 3-2			21	$// \mathbb{N}$	M		\ \				\searrow	7 ₂₅		
9-6		3				```					/			
		20							¢				26	
	2	X										8		≥s ⁸
	3x5=	× 13			12 3x4=	11 3x6=		10 3x8=				9 1.5x4 u		
	i.	3×4= 6-0-0 6-1-12		15-9-8		22-	2-8	0,0 -	29-	9-9			38-0-0	3x6=
		6-0-0 0-1-12		9-7-12		6-5	5-0		7-7	7-1			8-2-7	
Scale = 1:68.5														
	0-2-8,0-2-0]	, [8:0-3-3,0-1-8]	-											
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		TC	0.89	DEFL Vert(LL)	i -0.1	n (loc) 8 9-16	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190	
Snow (Pf) TCDL	25.0 10.0	Lumber DOL Rep Stress Incr	1.15 YES		BC WB	0.82 0.76	Vert(CT) Horz(CT)	-0.3 0.0	5 12-13 8 8	>999 n/a	180 n/a			
BCLL	0.0 10.0	Code	IRC2018/	TPI2014	Matrix-MSH		Wind(LL)	0.0	8 9-16	>999	360	Weight: 213	lb FT = 0%	
		1	3)	TCLL: ASCE	7-16; Pr=25.0 psf	(roof LL	: Lum DOL	_=1.15				Troigini 210		
TOP CHORD 2x4 SP 2	2400F 2.0E	*Except* 1-5:2x4 SP	,	Plate DOL=1 DOL=1.15):	I.15); Pf=25.0 psf (Is=1.0: Rough Cat	Lum DC B: Fullv	L=1.15 Pla Exp.: Ce=	ate 0.9:						
BOT CHORD 2x4 SP I WEBS 2x4 SP I	lo.2 *Excep	ot* 11-8:2x4 SP No.1	4)	Cs=1.00; Ct= Unbalanced	=1.10 snow loads have b	een cor	sidered for	r this						
BRACING	•••••	- dhùa a - Nac - dhu - an - Nac	, 	design. This truss ha	as been designed f	or greate	er of min ro	of live						
2-2-0 oc	purlins, exe	cept	ior -/	load of 12.0	psf or 1.00 times fl	at roof lo	ad of 25.0	psf on						
BOT CHORD Rigid ce	ling directly	/ applied or 10-0-0 oc	6) 7)	Provide adeo	quate drainage to p	prevent v	vater pond	ling. m						
6-0-0 oc	bracing: 2-	13.	8)	chord live loa	ad nonconcurrent v	vith any	other live l	oads.						
REACTIONS (size)	8=0-3-8,	5-12, 7-10, 4-13 13=0-3-8	9)	SP No.1 . Provide med	hanical connection	(by oth	ers) of trus	s to						
Max Horiz Max Uplif	13=165 (8=-6 (LC	LC 11) 13)	0)	bearing plate	e capable of withsta	anding 6	Ib uplift at	joint 8.						
Max Grav FORCES (lb) - Ma	8=1836 (ximum Con	LC 37), 13=2808 (LC	37) 10)	This truss is	designed in accord	dance wi	th the 2018	8 1 and						
TOP CHORD 1-2=0/32 4-5=-149	2, 2-3=-56/7 96/61, 5-6≕	72, 3-4=0/731, -1477/96, 6-7=-1982/7	11) '1,	R802.10.2 a Graphical pu or the orient:	nd referenced stan Irlin representation ation of the purlin a	dard AN does no	ISI/TPI 1.	e size r						
7-8=-30 BOT CHORD 2-13=-50	79/35)7/95, 12-1:	3=-16/929, 10-12=0/1	162, LO	bottom chore	l. Standard	5						6555	ADDE	
9-10=0/2 WEBS 5-12=-24	2537, 8-9=- 4/97, 5-10	13/2537 =-62/565, 6-10=0/322	LOP		Glandard							TEO	MISSO	<i>b</i>
7-10=-12 4-12=0/5	251/118, 7-9 06, 4-13=-2	9=0/349, 3-13=-692/1 2374/0	38,								B	ST SC	отт м.	N.
NOTES											Ba	SI SI	EVIER	+8
this design.	loads have											att	And	ia
2) Wind: ASCE 7-16; V Vasd=91mph; TCDL	=6.0psf; BC	n (3-second gust) CDL=6.0psf; h=20ft; C	at.								NF	PF-20	MBER 01018807	Ē
II; Exp B; Enclosed; cantilever left and rig	vivvFRS (ei ht exposed	nvelope) exterior zone ; end vertical left and	;								Q	TRO		A
right exposed; Lumb	er DOL=1.6	60 plate grip DOL=1.60)									SION OF	VAL EN	7
												A	pril 26.2024	
												,,	0,_0_ /	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toules bible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

					RELEASE FOR CONSTRU	CTION
Job	Truss	Truss Type	Qty Ply	1404 NE ERNEST WAY	AS NOTED FOR PLAN RE LEE'S SUMMIT DEVELOPMENT SERVIC	EVIEW CES
MSA2406	H1C	Нір	1 1	Job Reference (optional	I65166553 LEE'S SUMMIT, MISSO	URI
Quality Truss LLC (Smithville, M	O), Smithville, MO - 64089,	Run: 8.73 S Apr 3 2 ID:wV8APxC9w5Hoo	024 Print: 8.730 S Apr 3 2P3YMMgQ4zQ8p?-RfC	2024 MiTek Industries, Inc. Th ?PsB70Hq3NSgPqnL8w3uITX	u Apr 25 106 2/27/20 GKWrC 50175 2007	24
-0-10-1 	2 7-1-3 2 7-1-3	13-11-4 19-0-0 6-10-1 5-0-12 5x5= N 4 24	24-0-12 5-0-12 1.5x4 II	30-10-13 6-10-1 5x5=	<u>38-0-0</u> 38- 7-1-30-	-10-12
11-14 3-4-2 8-5-1 3-4-2 0-1-1	7 2 3xt 23				3x5 . 7 26	
	22			•	27	8 9
	15	14 13	12	11 2×1-	10 [⊠]	, \
3>	:6=	TII 374= 380	- 3x8=	5.4-	3xt	ð=
F	7-1-3 7-1-3	<u>13-9-8</u> <u>19-0-0</u> 6-8-5 5-2-8	<u>24-2-8</u> 5-2-8	<u>30-10-13</u> 6-8-5	<u>38-0-0</u> 7-1-3	

Scale = 1:69.8

Plate Offsets ((X, Y): [2:0-6-0,0-0-6],	[4:0-2-8,0-2-0], [6:0	-2-8,0-2-0]	, [8:0-6-0,0-0-6	6]								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.77 0.82 0.86	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.18 -0.29 0.15 0.06	(loc) 11-12 11-12 8 12-14	l/defl >999 >999 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 219 lb	GRIP 244/190 FT = 0%
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	CHORD 2x4 SP 2400F 2.0E *Except* 4-6:2x4 SP No.2 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); IF=25.0 psf (Lum DOL=1.15); IF												
2-0-0 oc purlins (3-2-2 max.): 4-6. 6 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 3-14, 4-12, 6-12, 7-11 REACTIONS (size) 2-0-3-8, 8=0-3-8 Max Horiz 2=148 (LC 11) Max Grav 2=2284 (LC 37), 8=2284 (LC 37)													
FORCES	(lb) - Maximum Com Tension 1-2=0/32, 2-3=-3805 4-5=-2297/20, 5-6=-2 7-8=-3805/0, 8-9=0/2	pression/Maximum /0, 3-4=-2803/31, 2297/20, 6-7=-2803/ 32	/31,	 International R802.10.2 at) Graphical pu or the orienta bottom chore 	Residential Code nd referenced sta rlin representatio ation of the purlin	e sections indard AN n does no along the	SR502.11.1 a ISI/TPI 1. ot depict the top and/or	and size					
BOT CHORD	2-15=-30/3150, 14-1 12-14=0/2211, 11-12 8-10=0/3150 3-15=0/293, 3-14=-1 4-12=-89/498, 5-12= 6-11=0/690, 7-11=-1	5=-14/3150, 2=0/2211, 10-11=0/3 093/103, 4-14=0/69 -754/89, 6-12=-89/4 093/104 7-10=0/29	LG 3150, 10, 198, 13	DAD CASE(S)	Standard						A	STATE OF M	AISSOUR
NOTES 1) Unbalance this design 2) Wind: ASG Vasd=91m II; Exp B; cantilever right expo	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en left and right exposed sed; Lumber DOL=1.60	been considered for (3-second gust) DL=6.0psf; h=20ft; (velope) exterior zon ; end vertical left an) plate grip DOL=1.6	r Cat. ne; d 60									PE-20010	ER D18807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 26,2024

									RELEAS	E FOR CONSTR	UCTION
Job	Tru	ssu	Truss Type		Qty	Ply	1404 NE E	RNEST WAY	LEE'S SUMMIT	ED FOR PLAN F	EVIEW
MSA2406	H1	ICC	Hip		1	1	Job Refere	ence (optional)	LEE'S	165166554 SUMMIT, MISS	OURI
Quality Truss LLC	C (Smithville, MO), Si	mithville, MO - 64089,		Run: 8.73 S Apr 32	2024 Print: 8.7	30 S Apr 32	2024 MiTek Ind	dustries, Inc. Th	Apr 25 106-2	27/20)24
				ID:XIIIgb2IPqVKQOL	ICK2Q9ICI2Q8	SOK-RIC (PSB	70Hq3NSgPq	nlow3ul1XbGK	WICD0173-230-11		
	0 10 12										
	0-10-12	7-0-6	<u>13-11-4</u> 6-10-14	<u> </u>		24-0-12 5-0-12		<u>30-9-9</u> 6-8-13		<u>38-0-0</u> 7-2-7	—
	0.00.12			5x5=	1.5x4 I		5x5=				
- <u>+</u> =4 12 12 14					5	∞ 24	6 ————————————————————————————————————				
8 0		_1	2		5	,					
		3:	x6 #						3x5		
<u>5</u> 5 4		3							7		
8-4 8-4		22				1		/	2	5	
ω								Ø			
	21				\mathbb{N}						26
-4-E		<u></u>									<u>}</u>
± 0	3x5=	14		13 3x4=	12 11 3x6=		10 3x4=		9 1.5×4 u		
		2x4 u		0	3x8=		0				3x6=
	 	<u>6-0-0</u> 6-1-13	13-9-8	19-0-0		24-2-8		30-9-9		38-0-0	
		6-0-0 0-1-13	7-7-11	5-2-8		5-2-8		0-7-1		1-2-1	
Scale = 1:68.3	()(), [4:0 0 0 0 0		2040								
	(, Y): [4:0-2-8,0-2	2-0], [6:0-2-8,0-2-0], [8:0-3	3-3,0-1-8]								
Loading TCLL (roof)	(psf 25.0	f) Spacing 0 Plate Grip DOL	2-0-0 1.15	CSI TC	0.98 Vert(_ LL) -0.	in (loc) 17 9-17	l/defl L/d >999 240	PLATES MT20	GRIP 244/190	
Snow (Pf)	25.0	0 Lumber DOL	1.15	BC (0.82 Vert(CT) -0.	26 9-17	>999 180			
BCLL	0.0	0 Rep Stress Incr 0 Code	IRC2018/TPI2014	Matrix-MSH	Wind	(LL) 0.	06 9-17	>999 360			
BCDL	10.0	0							Weight: 218 lb	FT = 0%	
LUMBER TOP CHORD	2x4 SP 2400F 2.	.0E *Except* 4-6:2x4 SP	 TCLL: ASCE Plate DOL=1 	7-16; Pr=25.0 psf (ro .15); Pf=25.0 psf (Lu	oof LL: Lum m DOL=1.1	DOL=1.15 5 Plate					
	No.2, 6-8:2x4 SF	P No.1 (cent* 12-8:2x4 SP No.1	DOL=1.15); Cs=1.00; Ct=	s=1.0; Rough Cat B; 1.10	Fully Exp.;	Ce=0.9;					
WEBS	2x4 SP No.2	(copt 12 0.2x+ 01 10.1	4) Unbalanced	snow loads have bee	en considere	d for this					
BRACING TOP CHORD	Structural wood	sheathing directly applied	, 5) This truss ha	s been designed for	greater of m	in roof live					
	except 2-0-0 oc purlins	(3-11-13 max.): 4-6.	overhangs n	on-concurrent with ot	her live load	25.0 pst on ls.					
BOT CHORD	Rigid ceiling dire	ectly applied or 5-2-13 oc	 6) Provide adec 7) This truss ha 	uate drainage to pre s been designed for a	vent water p a 10.0 psf b	onding. ottom					
WEBS	1 Row at midpt	6-11, 7-10	chord live loa 8) Bearings are	d nonconcurrent with assumed to be: Join	h any other l it 14 SP No.	ive loads. 2 . Joint 8					
REACTIONS	(size) 8=0-3 Max Horiz 14=14	-8, 14=0-3-8 45 (LC 11)	SP No.1 . 9) Provide med	nanical connection (h	ov others) of	truss to					
	Max Uplift 8=-10 Max Grav 8=178) (LC 13), 14=-1 (LC 12) 32 (LC 37), 14=2722 (LC 3	bearing plate	capable of withstand	ding 10 lb up	olift at joint					
FORCES	(lb) - Maximum (Compression/Maximum	10) This truss is	designed in accordar	nce with the	2018					
TOP CHORD	1-2=0/32, 2-3=-5 4-5=-1503/66, 5-	52/1010, 3-4=-1286/41, -6=-1503/67, 6-7=-1934/7	International R802.10.2 ai 0, 11) Graphical pu	Residential Code sen nd referenced standa rlin representation do	rd ANSI/TP	11.1 and 1. ct the size					
BOT CHORD	2-14=-659/94, 13 11-13=0/1056, 1	3-14=-155/145, 0-11=0/1458, 9-10=0/240	bottom chorc bottom chorc	ltion of the puriin alor Standard	ng the top a	nd/or			OF	MIG	
WEBS	4-13=-498/52, 4- 6-11=-365/150, 6	-11=-39/835, 5-11=-745/9 6-10=0/703, 7-10=-1113/ -0/1161, 3, 14-, 2565/80	1, 104,					Ħ	STATE SCOT	T M.	Ø
NOTES	1-3-0/301, 3-13	-0/1101, 3-14=-2000/60						I.A.	SEV	IER	N.
 Unbalance this design 	d roof live loads h	ave been considered for						S	1+15	5h. 1	
2) Wind: ASC	E 7-16; Vult=115r	mph (3-second gust)	at						NUM	BER	S. D
II; Exp B; E	inclosed; MWFRS	6 (envelope) exterior zone	41. 7					Ø	PE-2001	018807	A
right expos	en and right exposed; Lumber DOL=	sed ; end vertical left and =1.60 plate grip DOL=1.60)					Y	1285 JUNI	I ENGL	7
									A DOWA	and a state	
									Apr	il 26,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

iTek° 16023 Swingley Ridge Rd. Chesterfield, MO 63017

314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	1404 NE ERNEST WAY	AS NOTED FOR PLAN REVIEW LEE'S SUMMIT DEVELOPMENT SERVICES
MSA2406	H1D	Hip	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Quality Truss LLC (Smithville, MC	D), Smithville, MO - 64089,	Run: 8.73 S Apr 3 20 ID:cpdxlK8Kn1pWxdu)24 Print: 8.7 I_D?JlvUzQ8	30 S Apr 32	2024 MiTek Industries, Inc. Th 70Hq3NSgPqnL8w3uITXbGK\	Apr 25 110 2/27/2024

Scale = 1:69.5

late Offsets (X, Y): [2:0-6-0,0-0-6], [4:0-7-0,Edge], [6:0-7-0,Edge], [8:0-6-0,0-0-6]											
Loading(psf)SpacingFCLL (roof)25.0Plate Grip DOLSnow (Pf)25.0Lumber DOLFCDL10.0Rep Stress Incl3CLL0.0Code3CDL10.0	2-0-0 1.15 1.15 r YES IRC2018/TPI20	CSI TC 0.9 BC 0.7 WB 0.4 2014 Matrix-MR	91 Vert(LL) - 76 Vert(CT) - 84 Horz(CT) Wind(LL)	in (loc) 0.19 12 0.34 11-12 0.14 8 0.07 12-14	l/defl L >999 24 >999 18 n/a n >999 36	Ad PLATES 40 MT20HS 80 MT20 40 MT20 40 Weight: 209 lb	GRIP 187/143 244/190 FT = 0%				
JUMBER "OP CHORD 2x4 SP No.2 *Except* 4-6:2x4 SP 24(2.0E 3OT CHORD 2x4 SP No.1 WEBS 2x4 SP No.2 3RACING [OP CHORD [OP CHORD Structural wood sheathing directly ap except 2-0-0 oc purlins (4-1-5 max.): 4-6. 3OT CHORD Rigid ceiling directly applied or 10-0-0 bracing. REACTIONS (size) 2=0-3-8, 8=0-3-8 Max Horiz 2=-128 (LC 10) Max Horiz 2=-128 (LC 10) Max Grav 2=2206 (LC 37), 8=2206 (L FORCES (lb) - Maximum Compression/Maximu Tension IOP CHORD 1-2=0/56, 2-3=-3528/2, 3-4=-2741/29 4-5=-2941/0, 5-6=-2941/0, 6-7=-2741 7-8=-3528/2, 8-9=0/56 3OT CHORD 2-15=-22/2911, 14-15=-10/2911, 12-14=0/2349, 11-12=0/2349, 10-11= 8-10=0/2911 WEBS 3-15=0/236, 3-14=-865/81, 4-14=0/58 4-12=-86/825, 5-12=-1008/121, 6-12=-86/825, 6-11=0/593, 7-11=-86/ 7-10=0/236 NOTES 1) Unbalanced roof live loads have been considered this design. 0. Wind: ASCE 7 16: Vult=115mph (2 cocond curf)	3) TCLL Plate DOL= Cs=1 4) Unba desig plied, 5) This t load (overh 5) This t chore 9) All be 10) Provi (C 37) bearli Im and 3 11) This t Interr /29, R802 12) Grapl or the =0/2911, bottoo 33, 5/81,	LL: ASCE 7-16; Pr=25.0 psf (roo te DOL=1.15); Pf=25.0 psf (Lum L=1.15); Is=1.0; Rough Cat B; F =1.00; Ct=1.10 palanced snow loads have been ign. is truss has been designed for gr d of 12.0 psf or 1.00 times flat ro rhangs non-concurrent with othe vide adequate drainage to preve plates are MT20 plates unless of is truss has been designed for a rd live load nonconcurrent with a bearings are assumed to be SP vide mechanical connection (by ring plate capable of withstandir 13 lb uplift at joint 8. is truss is designed in accordance rmational Residential Code secti 12.10.2 and referenced standard phical purlin representation does the orientation of the purlin along tom chord. CASE(S) Standard	f LL: Lum DOL=1.1 DOL=1.15 Plate ully Exp.; Ce=0.9; considered for this eater of min roof liv of load of 25.0 psf of r live loads. ent water ponding. therwise indicated. 10.0 psf bottom any other live loads No.1. others) of truss to others) of truss to others) of truss to others of truss to ons R502.11.1 and ANSI/TPI 1. s not depict the size the top and/or	5 e on 2		STATE OF M SCOTT	MISSOUR I M. ER				

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

E

April 26,2024

PE-200101880

SSIONAL

ROF

					RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty Ply	1404 NE ERNEST WAY	AS NOTED FOR PLAN REVIEW LEE'S SUMMIT DEVELOPMENT SERVICES
MSA2406	H1DD	Half Hip	1 1	Job Reference (optional)	I65166556 LEE'S SUMMIT, MISSOURI
Quality Truss LLC (Smithville, I	<i>I</i> O), Smithville, MO - 64089,	Run: 8.73 S Apr 3 ID:2H_2M2cr2WB	3 2024 Print: 8.730 S CaNDRNdVMsCzQ80	Apr 3 2024 MiTek Industries, Inc. Th Gv-RfC?PsB70Hq3NSgPqnL8w3uIT>	Apr 25 0063/27/2024
	<u> 6-1-1</u> 6-1-1	<u>12-0-5</u> 5-11-5	<u>17-9-14</u> 5-9-9	<u>22-4-7</u> 4-6-9	<u> </u>
	5x6 =	3x4= 1.5x4 u		5x5 =	
11				4 ¹ / ₁	
	3x5=	10 9 4x5= 5x8=		8 7 3x4= 1.5x4 u	⊠ U 3x4=
	<u>6-1-1</u> 6-1-1	12-0-5 5-11-5	<u>17-11-10</u> 5-11-5	<u>22-4-7</u> 4-4-13	<u> </u>

Scale = 1:54.4

Plate Offsets (X, Y): [4:0-2-8,0-2-0], [6:0-2-1,0-0-12], [9:0-4-0,0-3-0]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.89	Vert(LL)	-0.12	9	>999	240	MT20	244/190
Snow (Pf)	25.0	Lumber DOL	1.15		BC	0.81	Vert(CT)	-0.20	8-9	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.75	Horz(CT)	0.06	6	n/a	n/a		
BCLL	0.0	Code	IRC201	8/TPI2014	Matrix-MR		Wind(LL)	0.04	9	>999	360		
BCDL	10.0											Weight: 164 lb	FT = 0%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2-0-0 oc purlins, e 2-0-0 oc purlins (3-0 Rigid ceiling directly bracing. 1 Row at midpt (size) 6=0-3-8, 1 Max Horiz 11=-149 (I Max Uplift 11=-35 (L0	athing directly applie except end verticals, 7 max.): 1-4. applied or 10-0-0 oc 1-11, 4-9 1= Mechanical _C 10) C 8)	4) 5) 6) and 8) 9) 10 11	Unbalanced : design. Provide adec This truss ha chord live loa Bearings are Refer to girdt Provide mecl bearing plate 11.) This truss is of International R802.10.2 ar) Graphical pu	snow loads have juate drainage to s been designed d nonconcurrent assumed to be: , er(s) for truss to tr nanical connectio capable of withsi designed in accor Residential Code nd referenced star rlin representation	been cor prevent v for a 10.0 with any Joint 6 S uss conr n (by oth tanding 3 rdance wi sections ndard AN n does no along the	vater ponding oper bottom other live loa per live loa pections. ers) of truss t 5 lb uplift at j ith the 2018 R502.11.1 a ISI/TPI 1. to bo pad/or	his g. kds. to ioint and size					
	Max Grav 6=1477 (L	C 33), 11=1818 (LC	32)	bottom chord.									
FORCES	(lb) - Maximum Com Tension	pression/Maximum	LC	DAD CASE(S)	Standard								
TOP CHORD	1-11=-1748/62, 1-2= 3-4=-2088/8, 4-5=-20	-1521/11, 2-3=-2081)24/0, 5-6=-2392/0	/7,										
BOT CHORD	10-11=-67/119, 8-10 6-7=0/1952	=-24/1739, 7-8=0/19	52,										
WEBS	4-9=-181/487, 4-8=0 2-10=-1306/109, 1-1 2-9=-12/779, 3-9=-76	/521, 5-8=-728/77, 0=-39/2037, 62/95, 5-7=0/195										G OF M	AISS
NOTES											1	7 54	N.O.
1) Unbalanc this desig	ed roof live loads have	been considered for									B	SCOTI	FR.
 Wind: AS Vasd=91r II; Exp B; cantilever right expc TCLL: AS Plate DOI DOL=1.1 Cs=1.00; 	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BCI Enclosed; MWFRS (en left and right exposed : used; Lumber DOL=1.6(CE 7-16; Pr=25.0 psf (L L=1.15); Pf=25.0 psf (L 5); Is=1.0; Rough Cat B Ct=1.10	(3-second gust) DL=6.0psf; h=20ft; C velope) exterior zone ; end vertical left and) plate grip DOL=1.6 oof LL: Lum DOL=1. um DOL=1.15 Plate ; Fully Exp.; Ce=0.9;	e; e; 1 0 .15							2		PE-2001	L ENGL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 26,2024

							RELEASE FOR CO	STRUCTION
Job	Truss	Truss	Туре	Qty	Ply 1404 N	E ERNEST WAY LEE	AS NOTED FOR PL E'S SUMMIT DEVELOPMENT	AN REVIEW
MSA2406	H1E	Hip		1	1 Job Ref	erence (optional	LEE'S SUMMIT,	6557 MISSOURI
Quality Truss LLC (S	Smithville, MO), Smithville, M	ИО - 64089,	Run ID:s	: 8.73 S Apr 3 2024 Print: 8. MFcLrsyfTN?8rUWkbOpL8zC	730 S Apr 3 2024 MiTel 08Ht-RfC?PsB70Hq3NS	k Industries, Inc. Thu Apr gPqnL8w3uITXbGkWrCI	25 0063/27/2	2024
	-0-10-12 5-7-9	9-11-4	15-11-3	22-0-13	28-0-12	32-4-7	38-0-0	38-10-12
	0-10-12 5-7-9	4-3-11	5-11-15	6-1-11	5-11-15	4-3-11	5-7-9	0-10-12
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	7 ¹² 3x5 * 3 17	6x6= 4 × × 16	3x4= 5 24 25 26 5 24 25 26 15 14	1.5x4 II 6 🖂 🖂 13	6x6=	3x5 s 8 11	9 10
	3x5=	1.5x4 u 3	3x4 =	3x5= MT18HS 3x8 =	3x10=	3x4=	1.5x4 u	3x6=
	5-7-9	9-9-8	15-11-3	22-0-13	28-2-8	32-4-7	38-0-0	

Scale = 1:69.3

Plate Offsets (X, Y): [9:0-6-0,0-0-6]

Loading TCLL (roof) Snow (Pf)	(psf) 25.0 25.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.76 0.95	DEFL Vert(LL) Vert(CT)	in -0.30 -0.48	(loc) 13-15 13-15	l/defl >999 >956	L/d 240 180	PLATES MT20 MT18HS	GRIP 244/190 244/190
TCDL BCLL	10.0 0.0	Rep Stress Incr Code	YES IRC2018	/TPI2014	WB Matrix-MR	0.46	Horz(CT) Wind(LL)	0.18 0.09	9 13-15	n/a >999	n/a 360		FT 00/
BODL	10.0											Weight. 213 lb	FT = 076
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 *Except 2x4 SP No.2 2x4 SP No.2 Structural wood shea 2-2-0 oc purlins, exc 2-0-0 oc purlins (2-4-	t* 4-7:2x4 SP No.1 athing directly applie ept -8 max.): 4-7.	3) 4) d or 5)	TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 p	7-16; Pr=25.0 psf 15); Pf=25.0 psf (s=1.0; Rough Cat 1.10 snow loads have b s been designed for sf or 1.00 times fl	(roof LL Lum DC B; Fully been cor or greate at roof k	: Lum DOL= DL=1.15 Plate Exp.; Ce=0. asidered for t er of min roo bad of 25.0 p	:1.15 e 9; his f live osf on					
BOT CHORD WEBS REACTIONS	Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 9 Max Horiz 2=-108 (LC Max Uplift 2=-6 (LC 1 Max Grav 2=2030 (L	applied or 2-2-0 oc 5-13 I=0-3-8 C 10) I2), 9=-6 (LC 13) C 37), 9=2030 (LC 3	6) 7) 8) 9) 10)	overhangs no Provide adec All plates are This truss ha chord live loa All bearings a Provide mecl bearing plate	on-concurrent with uate drainage to p MT20 plates unle s been designed fi d nonconcurrent v are assumed to be nanical connection capable of withst;	other In prevent vess other or a 10.0 with any e SP No. o (by oth anding 6	ve loads. water pondin wise indicate) psf bottom other live loa 2. ers) of truss	g. ed. ads. to bint 2					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	11)	and 6 lb uplif	t at joint 9. designed in accord	dance w	ith the 2018						
TOP CHORD	1-2=0/56, 2-3=-3358 4-5=-3716/0, 5-6=-37 7-8=-3175/29, 8-9=-3	/5, 3-4=-3175/29, 711/0, 6-7=-3715/0, 3358/5, 9-10=0/56	12)	International R802.10.2 ar Graphical pu	Residential Code ad referenced stan rlin representation	sections idard AN does no	R502.11.1 a ISI/TPI 1.	and size					
BOT CHORD	2-17=-16/2857, 16-1 15-16=0/2747, 13-15 11-12=0/2857, 9-11=	7=-4/2857, 5=0/3712, 12-13=0/2 =0/2857	747, LO	or the orienta bottom chord	tion of the purlin a Standard	along the	top and/or						don -
WEBS	3-16=-683/67, 4-16= 7-13=-72/1339, 7-12 5-15=-805/126, 5-13 6-13=-805/97, 3-17=	0/522, 4-15=-72/134 =0/522, 8-12=-683/6 =-138/138, 0/188, 8-11=0/188	0, 7,								A	STATE OF N SCOTT	M.
NOTES											4	SEVI	
1) Unbalance this design	ed roof live loads have n.	been considered for									81	1 m	· R
2) Wind: AS	CE 7-16: Vult=115mph	(3-second gust)									124		ET MARTIN

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 26,2024

G

OF BSSIONAL EN

								RELEASE FOR	CONSTRUCTION
Job	Truss	Truss Type	9	Qty	Ply	1404 NE I	ERNEST WAY	AS NOTED FO LEE'S SUMMIT DEVELOPME	R PLAN REVIEW
MSA2406	H1EE	Half Hip		1	1	Job Refer	ence (optional	IC LEE'S SUMM	5166558 AIT, MISSOURI
Quality Truss LLC (Smithvill	le, MO), Smithville, MO - 6408	9,	Run: 8.7 ID:APR)	3 S Apr 3 2024 Print: 8 (VM?_zrgut2WXcG3K0	8.730 S Apr 3 TzQ8F6-RfC?	3 2024 MiTek Ir PsB70Hq3NS	ndustries, Inc. Th gPqnL8w3uITXb0	Apr 25 1063/27	/2024
	<u>5-7-4</u> 5-7-4	115	D-11 5-8	<u>16-6-3</u> 5-5-8	<u>2</u> 2 5	1-9-14 i-3-12	25-2-4 3-4-6	4 <u>29-9-2</u> 4-6-14	
			3x4=						
5 4	4x6 =	3x5=	1.5x4 u 3 /	3× 18	(4 =		5x5 =	10	
┬ ╪ ╤ ┬					, 🖂			12 17	
4-11-14 4-10-2 4- 4-10-2 0 4-10-2 0								1.5x4 ¢ 7 19	8 10
		13	12	111	0		9		
N	111883388 1	4x6=	3x10=	MT18H	S 3x8 =		3x4=		4x4 =
				:	3x4 =				
	5-7-4	11-	<u>D-11</u>	16-6-3	21	1-11-10		29-9-2	
	0-1-4	J	, 0	0-0-0		0.0-0		1-3-0	

Scale = 1:55.7

Plate Offsets (X, Y): [6:0-2-8,0-2-0], [8:0-0-9,Edge]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.81	Vert(LL)	-0.22	10-12	>999	240	MT18HS	244/190
Snow (Pf)	25.0	Lumber DOL	1.15		BC	0.82	Vert(CT)	-0.33	10-12	>999	180	MT20	244/190
TCDL	10.0	Rep Stress Incr	YES		WB	0.63	Horz(CT)	0.09	8	n/a	n/a		
BCLL	0.0	Code	IRC2018	3/TPI2014	Matrix-MR		Wind(LL)	0.06	10-12	>999	360		
BCDL	10.0											Weight: 168 lb	FT = 0%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 3-2-3 oc purlins, exi 2-0-0 oc purlins (2-6 Rigid ceiling directly bracing. 1 Row at midpt (size) 8=0-3-8, 1 Max Horiz 14=-119 (I Max Uplift 14=-40 (Li	athing directly applie cept end verticals, ar -8 max.): 1-6. applied or 10-0-0 oc 1-14 4= Mechanical LC 10) C 8)	3) d or 5) nd 5) : 7) : 8) 9) 10)	TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. Provide adec All plates are This truss ha chord live loa Bearings are Refer to girdd) Provide mec bearing plate	7-16; Pr=25.0 psf .15); Pf=25.0 psf s=1.0; Rough Cat 1.10 snow loads have b ute drainage to p MT20 plates unle s been designed f d nonconcurrent assumed to be: , er(s) for truss to tr hanical connectior capable of withst	f (roof LL (Lum DC B; Fully been cor prevent to ess other for a 10.0 with any Joint 8 S uss conr a (by oth anding 4	: Lum DOL= IL=1.15 Plate Exp.; Ce=0. asidered for t water pondin wise indicate 0 psf bottom other live loa other live loa P No.2 . ections. ers) of truss 0 lb uplift at	e1.15 e9; his g. ed. ads. to joint					
FORCES	Max Grav 8=1513 (L (lb) - Maximum Com Tension	.C 32), 14=2024 (LC pression/Maximum	32) 11)) This truss is International R802 10 2 a	designed in accord Residential Code	dance w sections	ith the 2018 R502.11.1 a	and					
TOP CHORD	1-14=-1958/66, 1-2= 3-5=-3051/34, 5-6=-3 7-8=-2707/0	-2035/33, 2-3=-3051 3147/37, 6-7=-2630/	l/34, 12) 0,) Graphical pu or the orienta	rlin representation ation of the purlin a	does no	ot depict the set top and/or	size					
BOT CHORD	13-14=-50/105, 12-1 10-12=0/3144, 9-10=	3=-43/2035, =0/2287, 8-9=0/2314	LO	AD CASE(S)	Standard								5
WEBS	2-13=-1551/106, 1-1 2-12=-24/1323, 3-12 6-10=-88/1134, 6-9= 7-9=-472/85	3=-51/2568, =-657/80, 5-12=-248 0/451, 5-10=-645/11	8/12, 6,								Å	TATE OF M	AISSOLUS
NOTES											A	S SCOTT	INT. IN N
1) Unbalanc	ed roof live loads have	been considered for									Ha	/ SEVI	
this desig	n.										90	1 de	0
2) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)									N.	Ant C	in let
Vasd=91r	nph; TCDL=6.0psf; BC	DL=6.0psf; h=20ft; C	Cat.							_		NUM	

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 26,2024

OF TSSIONAL EN

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	1404 NE ERNEST WAY	AS NOTED FOR PLAN REVIEW
MSA2406	H1F	Нір	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Quality Truss LLC (Smithville, MC	D), Smithville, MO - 64089,	Run: 8.73 S Apr 3 2 ID:pMXxAP7B9QUFc	024 Print: 8.7 cqRVqRFCZ3	30 S Apr 3 2 zQ8GF-RfC?	2024 MiTek Industries, Inc. Th ?PsB70Hq3NSgPqnL8w3uITX	I Apr 25 1063/27/2924

Scale = 1:69.2

Plate Offsets (X, Y): [2:	0-2-3,0-1-8], [10:0-6-0,0-0-6]
---------------------------	--------------------------------

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD	(psf) 25.0 25.0 10.0 0.0 10.0 2x4 SP No.2 *Excep	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018 3) 00F	3/TPI2014 TCLL: ASCE Plate DOL=1	CSI TC BC WB Matrix-MSH 7-16; Pr=25.0 psf .15); Pf=25.0 psf (0.84 0.90 0.77 (roof LL Lum DC	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL) : Lum DOL= L=1.15 Plate	in -0.44 -0.68 0.22 0.12 1.15	(loc) 13-15 13-15 10 13-15	l/defl >999 >671 n/a >999	L/d 240 180 n/a 360	PLATES MT20 MT20HS Weight: 195 lb	GRIP 244/190 187/143 FT = 0%	
BOT CHORD WEBS BRACING TOP CHORD	2.0E 2x4 SP No.1 2x4 SP No.2 Structural wood shea 2-4-2 oc purlins, exc 2-0-0 oc purlins (2-1)	athing directly applie ept 0-9 max): 4-8	4) d or 5)	DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n	Is=1.0; Rough Cat =1.10 snow loads have b is been designed f psf or 1.00 times fl on-concurrent with	B; Fully been cor or greate at roof lo other liv	Exp.; Ce=0. sidered for t er of min root oad of 25.0 p re loads.	9; his Iive sf on						
BOT CHORD WEBS REACTIONS	Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=-7 (LC Max Uplift 2=-7 (LC Max Grav 2=2050 (L	applied or 10-0-0 oc 5-16, 5-13, 7-12 0=0-3-8 11) 12), 10=-7 (LC 13) (C 36), 10=2050 (LC	; 6) 7) 8) 9) 10 36)	Provide adeo All plates are This truss ha chord live loa All bearings) Provide mec bearing plate	quate drainage to p MT20 plates unle is been designed f ad nonconcurrent v are assumed to be hanical connection e capable of withsta t of ising 10	orevent v ss other or a 10.0 with any sP No. c (by othe anding 7	vater pondin wise indicate) psf bottom other live loa 1. ers) of truss Ib uplift at jo	g. Id. Ids. Io int 2						
FORCES	(lb) - Maximum Com Tension 1-2=0/56, 2-3=-3697 4-5=-3129/31, 5-7=-4 8-9=-3632/13, 9-10=	pression/Maximum //21, 3-4=-3632/13, 4988/6, 7-8=-3129/3 3697/22, 10-11=0/5	11 1, 12 56	 This truss is International R802.10.2 at Graphical pu or the orienta 	designed in accord Residential Code nd referenced stan rlin representation ation of the purlin a	dance wi sections dard AN does no long the	th the 2018 R502.11.1 a SI/TPI 1. ot depict the s top and/or	and size						
BOT CHORD WEBS	2-16=-14/3155, 15-1 13-15=-13/4987, 12- 10-12=0/3155 4-16=0/1285, 5-16=- 5_13=-162/165, 7-13	6=-13/4987, 13=0/4988, 2179/94, 5-15=0/294 -0/295, 7-12-2182	LC 4, /02	bottom choro DAD CASE(S)	d. Standard	J. J. J.					B	ATE OF M	AISSOL	
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp B; I cantilever right expos	8-12=0/1286, 3-16=- ed roof live loads have CE 7-16; Vult=115mph ph; TCDL=6.0psf; BCI Enclosed; MWFRS (en left and right exposed sed; Lumber DOL=1.6(440/78, 9-12=-441/7 been considered for (3-second gust) DL=6.0psf; h=20ft; C velope) exterior zon; ; end vertical left and 0 plate grip DOL=1.6	28 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20							2		SCOTT SEVI SEVI PE-20010 PE-20010	M. P. V. ER DI8807	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 26,2024

												RELEASE F	OR CONSTRUCTION
Job	Truss		Truss T	/pe		Qty	/	Ply	1404 NE E	RNEST	WAY	AS NOTED LEE'S SUMMIT DEVELOF	FOR PLAN REVIEW
MSA2406	H2		Hip			1		1	Job Refere	ence (opt	tional	LEE'S SU	I65166560 IMMIT, MISSOURI
Quality Truss LLC (Smithville, M	IO), Smith	ville, MO - 64089,			Run: 8.73 S Apr	3 2024 P	rint: 8.73	30 S Apr 3	2024 MiTek In	dustries, I	nc. Thu	Apr 25 1106-13	7/2024
					ID:BUYEmcqeyIF	E1VIDDYI	HGnozQ	8E2-RfC?F	sB70Hq3NSgl	-durram3n		KWrCDoryJ4250?f	.,_0
	L	6-2-1		11-10-8		16-1-	8	-	21-9-15			28-0-0	28-10-12
	1	6-2-1	I	5-8-7	I	4-3-0)	I	5-8-7		I	6-2-1	0-10-12
					5x5=			5x5=					
÷ =°, ⊤						21		4					
r ó			1 <u>2</u>						\sim				
			3x5 -	20						22	3x5 .		
			2 /			$\langle \rangle$				\searrow	5		
<u>9-7</u> -1-11		10									R	22	
		19		\searrow		/			/	//		23	
													<
1				Ì			//						6
			8			•		\d . £∕					7
<u> </u>			12		11 2×1-	10	_	9			8		
	3x5 =		1.584	•	384=	384	-	3x0=			1.384	• 11	3x5 =
		6-2-1		<u>11-8-12</u> 5-6-11		16-3-4	4		21-9-15		_	28-0-0	
Scale = 1:52.8		021		5011		400	,		5011			021	
Plate Offsets (X, Y): [1:0-2	-5,0-1-8],	[3:0-2-8,0-2-0]											
Loading	(psf)	Spacing	2-0-0		CSI	0.00	DEFL		in (loc)	l/defl	L/d	PLATES (GRIP
Snow (Pf)	25.0 25.0	Lumber DOL	1.15		BC	0.92	Vert(L	L) -0 CT) -0).13 9-11).20 12-15	>999 >999	240 180	WI120 2	244/190
TCDL BCLL	10.0 0.0	Rep Stress Incr Code	YES IRC2018	3/TPI2014	WB Matrix-MR	0.69	Horz(Wind(CT) (LL) ().09 6).04 12-15	n/a >999	n/a 360		
BCDL	10.0						- (, .				Weight: 151 lb	FT = 0%
	2		5)	This truss ha	s been designed fo	or greate	er of mi	n roof live	e n				
BOT CHORD 2x4 SP No.	1		6)	overhangs no	on-concurrent with	other liv	e loads	S. S.					
BRACING	2		7)	This truss ha	s been designed fo	or a 10.0) psf bo	ttom					
TOP CHORD Structural v 2-2-0 oc pu	vood shearlins, exc	athing directly applied ept	or 8)	All bearings a	a nonconcurrent ware assumed to be	SP No.	otner in 1.	ve loads.					
2-0-0 oc pu BOT CHORD Rigid ceilin	rlins (3-1 a directly	1-1 max.): 3-4.	9)	Provide mech bearing plate	nanical connection capable of withsta	by othe 1 nding	ers) of t Ib uplif	russ to t at joint 6	б.				
bracing.			10) This truss is	designed in accord	lance wi	th the 2	2018					
Max Horiz 1	=0-3-8, 6 =-124 (L	C 8)		International R802.10.2 ar	Residential Code s	sections dard AN	R502. ² ISI/TPI	11.1 and 1.					
Max Uplift Max Grav 1	5=-1 (LC ⁻ =1814 (L	13) .C 37), 6=1927 (LC 37	7) 11) Graphical pu	lin representation	does no	top an	t the size					
FORCES (lb) - Maxim	num Com	pression/Maximum		bottom chord	Oten dend	iong ino	top un	u/01					
TOP CHORD 1-2=-3003/ 4-52152/), 2-3=-2 [°]	152/26, 3-4=-1689/50 2992/0_6-7=0/56	, LC	IAD CASE(S)	Standard								
BOT CHORD 1-12=-31/2	463, 11-1	2=-8/2463, 9-11=0/16	688,										
WEBS 2-12=0/2451	, 0-8=0/2 , 2-11=-9	451 12/84, 3-11=0/586,											
3-9=-219/2 5-8=0/254	22, 4-9=0	/583, 5-9=-896/83,										STATE M	ADD.
NOTES 1) Unbalanced roof live loa	ads have	been considered for									1	TE OF M	ISSO
this design.	-115mpb	(2 socond quet)									8	SCOTT	M. TEN
Vasd=91mph; TCDL=6.	0psf; BC	DL=6.0psf; h=20ft; Ca	at.								8	SEVIE	R +
ii; Exp B; Enclosed; MV cantilever left and right	exposed	; end vertical left and	,								8	1	Pr. 12
right exposed; Lumber 3) TCLL: ASCE 7-16; Pr=2	DOL=1.60 25.0 psf (1	D plate grip DOL=1.60 roof LL: Lum DOL=1.1) 15								K7	DE 200101	Server S
Plate DOL=1.15); Pf=25 DOL=1.15); Is=1.0; Rou	5.0 psf (Li igh Cat B	um DOL=1.15 Plate ; Fully Exp.; Ce=0.9:									Ø	PE-200101	A A A A A A A A A A A A A A A A A A A
Cs=1.00; Ct=1.10 4) Unbalanced snow loads	- s have be	en considered for this	;									SIONAL	ENO
design.													6 2024
												April 2	20,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						REL	LEASE FOR CO	ONSTRUCTION
Job	Truss	Truss Type		Qty Ply	1404 NE ERNE	ST WAY LEE'S SU	NOTED FOR F	PLAN REVIEW
MSA2406	H2A	Hip		1 1	Job Reference	optional	LEE'S SUMMIT	66561 , MISSOURI
Quality Truss LLC (Smith	ville, MO), Smithville, MO - 64089,		Run: 8.73 S Apr ID:pbx33f6hbWr	[•] 3 2024 Print: 8.730 S Aj 0VvmeKueH7SzQ88W-R	pr 32024 MiTek Industrie fC?PsB70Hq3NSgPqnL8	es, Inc. Thu Apr 25 (1) w3ulTXbCKWrCDob 34	§/27/	2024
	-0-10-12 <u>5-7-9</u> 0-10-12 5-7-9	9-11-4 4-3-11	<u>14-0-</u> 4-0-1	0 18-0-1 2 4-0-1	1 <u>2 22-4</u> 2 4-3-	-7 11	<u>28-0-0</u> 5-7-9	28-10-12 0-10-12
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	21 1	7 ¹² 3x5 ≠ 3 14	5x5= 4 22 4 22 13 3x8=	3x4= 5 0 12 3x4=	5x5= 23 6 11 3%=	3x5 s 7 10	24	8 9
	3x5 = 5-7-9 5-7-9	9-9-8 4-1-15		<u>18-2-8</u> 8-5-0	<u> </u>	7 15	28-0-0 5-7-9	3x5 =
Scale = 1:54								
Loading TCLL (roof)	(psf) Spacing 25.0 Plate Grip DC	2-0-0 L 1.15	CSI TC	0.67 Vert(LL)	in (loc) l/de -0.14 11-13 >99	fl L/d PLATES 9 240 MT20	GRIP 244/1	90

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.67	Vert(LL)	-0.14	11-13	>999	240	MT20	244/190
Snow (Pf)	25.0	Lumber DOL	1.15		BC	0.85	Vert(CT)	-0.32	11-13	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.33	Horz(CT)	0.09	8	n/a	n/a		
BCLL	0.0	Code	IRC201	8/TPI2014	Matrix-MR		Wind(LL)	0.04	11-13	>999	360		
BCDL	10.0		-									Weight: 152 lb	FT = 0%
LUMBER			5)	This truss ha	is been designed	d for great	er of min roo	f live					
TOP CHORD	2x4 SP No.2			load of 12.0	psf or 1.00 times	s flat roof lo	oad of 25.0 p	osf on					
BOT CHORD	2x4 SP No.2			overhangs n	on-concurrent wi	ith other liv	ve loads.						
WEBS	2x4 SP No.2		6)	Provide ade	quate drainage to	o prevent v	water pondin	ıg.					
BRACING			7)	This truss ha	is been designed	d for a 10.0	0 psf bottom						
TOP CHORD	Structural wood shea	athing directly applie	d or	chord live loa	ad nonconcurren	it with any	other live loa	ads.					
	2-7-11 oc purlins, ex	cept	8)	All bearings	are assumed to	be SP No.	2.						
	2-0-0 oc purlins (4-4-	-14 max.): 4-6.	9)	Provide med	nanical connecti	on (by oth	ers) of truss	tO vint 2					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc		and 4 lb unli	t at joint 9	stanuing 4	rib upilit at jo	Jint 2					
	bracing.		10	anu 4 ib upii N This truss is	designed in acco	ordance w	ith the 2018						
REACTIONS	(size) 2=0-3-8, 8	=0-3-8		International	Residential Cod	le sections	R502 11 1	and					
	Max Horiz 2=-108 (LC	C 10)		R802.10.2 a	nd referenced sta	andard AN	ISI/TPI 1.						
	Max Uplift 2=-4 (LC 1	12), 8=-4 (LC 13)	. 11) Graphical pu	rlin representation	on does no	ot depict the	size					
	Max Grav 2=1755 (L	C 37), 8=1755 (LC 3	37)	or the orient	ation of the purlir	n along the	top and/or						
FORCES	(lb) - Maximum Com	pression/Maximum		bottom chore	l.	-	-						
	Tension		LC	DAD CASE(S)	Standard								
TOP CHORD	1-2=0/56, 2-3=-2674	/4, 3-4=-2043/18,											
	4-5=-1632/36, 5-6=-1	1632/36, 6-7=-2043/	18,										
	7-8=-2074/5, 8-9=0/5	00 A - 2/2495											
BOT CHORD	2-14=-15/2165, 15-14	4=-3/2103, -0/2185 8-10-0/21	85										
WEBS	3-13-688/80 4-13-	0/629 5-13360/94	1										
112B0	5-11=-360/94, 6-11=	0/629. 7-11=-688/80).										
	3-14=0/160, 7-10=0/	160	,									and	TO
NOTES	,											S OF M	Alson
1) Unbalanc	ed roof live loads have l	been considered for										A IL	-050 M
this desig	n.										a	N.	New
2) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)									H	SCOTT	M. YOY
Vasd=91r	nph; TCDL=6.0psf; BCI	DL=6.0psf; h=20ft; C	Cat.								B	SEVI	ER V V
II; Exp B;	Enclosed; MWFRS (en	velope) exterior zone	e;								0.0		
cantilever	left and right exposed ;	end vertical left and	t e								W	トーファン	Server7
right expo	sed; Lumber DOL=1.60) plate grip DOL=1.6	50							-		NIIM	RER AL
3) TCLL: AS	CE 7-16; Pr=25.0 pst (r	OOF LL: LUM DOL=1	.15								47	DE 20010	10007 149
	= 1.15), $P = 25.0$ pSI (LU S): $I_{S} = 1.0$; Pough Cot P	: Fully Exp : Co-0 0									N.	FE-20010	1000/1201
$C_{s=1.00}$	Ct=1 10	, i uliy Exp., Ce=0.9,	,								Y	1 Ce	IS B
4) Unbalance	ed snow loads have be	en considered for thi	is									UNIONIA	TENA
design.			-									QUA	A
0												Anril	26 2024

April 26,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

					RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty Ply	1404 NE ERNEST WAY LEE	AS NOTED FOR PLAN REVIEW S SUMMIT DEVELOPMENT SERVICES
MSA2406	H2B	Нір	1 1	Job Reference (optional	I65166562 LEE'S SUMMIT, MISSOURI
Quality Truss LLC (Smithville	, MO), Smithville, MO - 64089,	Run: 8.73 S Ap ID:BI7WT2RdxF	r 3 2024 Print: 8.730 S Apr g?fL6P4miELZzQ8DF-RfC?	3 2024 MiTek Industries, Inc. Thu Apr 2 PsB70Hq3NSgPqnL8w3uITXbG (WrCI	2500424/27/2024
	-0-10-12 <u>4-2-11</u> 0-10-12 <u>4-2-11</u>	7-11-4 14-0-0 3-8-9 6-0-12	20-	0-12 23-9-5)-12 3-8-9	<u>28-0-0</u> 4-2-11 0-10-12
.		5x5=	3x8=	5x5 =	
5-5-14 4-10-2 4-10-2 0-1-12	7 ¹² 1.5× 3			6	1.5x4 ¢
	1	12	<u>11</u>	10	8 9 8 9
	3x4 =	3x8=	5x5=	3x8=	3x4=

14-0-0

6-2-8

20-2-8

6-2-8

Scale = 1:53.8

Plate Offsets (X, Y): [11:0-2-8,0-3-0]

7-9-8

7-9-8

	()) E	1											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.81	Vert(LL)	-0.15	11	>999	240	MT20	244/190
Snow (Pf)	25.0	Lumber DOL	1.15		BC	0.76	Vert(CT)	-0.24	11-12	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.86	Horz(CT)	0.10	8	n/a	n/a		
BCLL	0.0	Code	IRC2018/1	TPI2014	Matrix-MSH		Wind(LL)	0.05	11	>999	360		
BCDL	10.0											Weight: 144 lb	FT = 0%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 *Excep 2x4 SP No.2 2x4 SP No.2 Structural wood shea 3-5-6 oc purlins, exc 2-0-0 oc purlins (3-5 Rigid ceiling directly bracing. (size) 2=0-3-8, 8 Max Horiz 2=88 (LC Max Uplift 2=-6 (LC)	t* 4-6:2x4 SP No.1 athing directly applie rept -13 max.): 4-6. applied or 10-0-0 oc 3=0-3-8 11) 12), 8=-6 (LC 13)	5) - 6) 7) - d or 8) / 9) 10) -	This truss ha load of 12.0 µ overhangs no Provide adeo This truss ha chord live loa All bearings a Provide mecl bearing plate and 6 lb uplif This truss is International R802.10.2 ar Graphical pu	s been designed osf or 1.00 times 1 on-concurrent witil quate drainage to s been designed ad nonconcurrent are assumed to b hanical connectio capable of withsi t at joint 8. designed in accor Residential Code d referenced stai rlin representation	for greate flat roof lo h other lin prevent V. for a 10.0 with any e SP No. in (by other tanding 6 rodance with e sections ndard AN n does no	er of min rool pad of 25.0 p re loads. vater pondin:) psf bottom other live loa 2. ers) of truss i lb uplift at jo th the 2018 R502.11.1 a R502.11.1 a	f live sf on g. ads. to pint 2 and size					
FORCES	Max Grav 2=1579 (LC 37), 8=1579 (LC 37) or the orientation of the purlin along the top and/or												
FURGES	(ID) - Maximum Com	Tension Deta Construction Doctor Chora Construction											
TOP CHORD BOT CHORD WEBS	1-2=0/56, 2-3=-2379 4-5=-1898/30, 5-6=- 7-8=-2379/23, 8-9=0 2-12=-19/1998, 10-1 4-12=0/690, 5-12=-8 5-10=-851/77, 6-10=	//23, 3-4=-2220/9, 1898/30, 6-7=-2220/ //56 2=0/2581, 8-10=0/19 /51/78, 5-11=0/221, 60/690, 3-12=-488/80	LOA 10, 998),	ID CASE(S)	Standard							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	7-10=-488/81											OFA	ALC AL
 NUTES Unbalance this design Wind: ASC Vasd=91n II; Exp B; cantilever right expo TCLL: AS Plate DOL DOL=1.15 Cs=1.00; Unbalance design. 	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en left and right exposed sed; Lumber DOL=1.6 CE 7-16; Pr=25.0 psf (L =1.15); Pf=25.0 psf (L i); Is=1.0; Rough Cat B Ct=1.10 ed snow loads have be	been considered for (3-second gust) DL=6.0psf; h=20ft; C velope) exterior zon; ; end vertical left and o plate grip DOL=1.6 oof LL: Lum DOL=1 um DOL=1.15 Plate ;; Fully Exp.; Ce=0.9; een considered for thi	Cat. e; d 00 .15 ;									State Scott Sevi PE-20010 PE-20010 April	M. ER 900000000000000000000000000000000000

28-0-0

7-9-8

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	1404 NE ERNEST WAY	AS NOTED FOR PLAN REVIEW LEE'S SUMMIT DEVELOPMENT SERVICES
MSA2406	J1	Jack-Open	8	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Quality Truss LLC (Smithville, M	Run: 8.73 S Apr 3 2	024 Print: 8.7	/30 S Apr 3 2	2024 MiTek Industries, Inc. Th		

ID:4cQtR2vT?5ScCA0illN8tZzQ8Cf-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zdCiv/2//20124

2x4 =

1-11-4

Scale = 1:22.7

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2	014 C	CSI TC BC WB Matrix-MP	0.10 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 0.00 0.00	(loc) 4-7 4-7 3 4-7	l/defl >999 >999 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 0%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No Structural 1-11-4 oc Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	0.2 wood shea purlins. ng directly 2=0-3-8, 3 Mechanic 2=42 (LC 2=-7 (LC 2=233 (LC (LC 7)	athing directly applied applied or 10-0-0 oc i= Mechanical, 4= al 12), 3=-15 (LC 12) 219), 3=71 (LC 19),	8) Prov bear and 9) This d or Inter R802 LOAD C	ide mechau ing plate ca 15 lb uplift truss is der national Re 2.10.2 and ASE(S) S	nical connection (apable of withstar at joint 3. signed in accorda esidential Code se referenced stand Standard	by oth iding 7 ince w ections ard AN	ers) of truss to Ib uplift at joi th the 2018 R502.11.1 a SI/TPI 1.	o nt 2 nd						
FORCES	(lb) - Maxi Tension 1-2=0/47,	(LC 7) imum Com 2-3=-40/28	pression/Maximum												
BOT CHORD	2-4=-22/6														
 Wind: ASC Vasd=91n II; Exp B; I cantilever right expo: TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; (Unbalance design. This truss load of 12 overhangs This truss chord live Bearings a Refer to gi 	CE 7-16; Vul mph; TCDL= Enclosed; M left and righ sed; Lumber CC 7-16; Pr= =1.15;) Pf= 5; Is=1.0; Rc Ct=1.10 ed snow load has been de 0.0 psf or 1.00 s non-concul load noncor are assumed irder(s) for t	It=115mph 6.0psf; BC IWFRS (en t exposed r DOL=1.6(=25.0 psf (Li bugh Cat B ds have be esigned for 0 times flat rrent with c esigned for 0 times flat rrent with c esigned for 0 times to trus	(3-second gust) DL=6.0psf; h=20ft; C velope) exterior zone; end vertical left and plate grip DDL=1.6 roof LL: Lum DDL=1. m DDL=1.15 Plate ; Fully Exp.; Ce=0.9; en considered for thi greater of min roof I roof load of 25.0 psf ther live loads. a 10.0 psf bottom th any other live load bint 2 SP No.2. ss connections.	rat. e; 1 0 .15 is f on Is.							~		NUM PE-20010	MISSOLIE F.M. ER DI8807 L ENGINE	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 26,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	1404 NE ERNEST WAY	AS NOTED FOR PLAN REVIEW LEE'S SUMMIT DEVELOPMENT SERVICES
MSA2406	J1A	Jack-Closed	2	1	Job Reference (optional)	I65166564 LEE'S SUMMIT, MISSOURI
Quality Truss LLC (Smithville, MO), Smithville, MO - 64089, Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, I						

ID:ZGAAwzB?n??4enRV13qvXozPrFx-RfC?PsB70Hq3NSgPqnL8w3uITXbG{WrCDoHd42gC#124

2x4 =

1-9-2

Scal	ما	_ `	1.2	1	6	

Scale = 1.21.0												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.14 0.12 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 -0.01 0.00 0.00	(loc) 8 8 5 8	l/defl >999 >999 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 7 lb	GRIP 244/190 FT = 0%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she 1-9-2 oc purlins. Rigid ceiling directly bracing. (size) 2= Mechanic (size) 2= Mechanic Max Horiz 2=39 (LC Max Uplift 4=-15 (LC Max Grav 2=168 (LC	athing directly appli applied or 10-0-0 o inical, 4= Mechanica al 12) 5 12) 5 19), 4=90 (LC 19)	8) This truss is Internationa R802.10.2 LOAD CASE(S ed or ic al, 5=	s designed in acco al Residential Code and referenced sta) Standard	ordance wi e sections andard AN	ith the 2018 ; R502.11.1 a ISI/TPI 1.	and					
 FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m II; Exp B; I cantilever right expos 2) TCLL: ASC Plate DOL 21.15 Cs=1.00; (3) Unbalance design. 4) This truss chord live 5) Refer to gi 6) Refer to gi 7) Provide m bearing pla 4. 	(b) - Maximum Com Tension 1-2=0/8, 2-3=-73/0, : 3-5=-9/110 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en left and right exposed sed; Lumber DOL=1.6 CE 7-16; Pr=25.0 psf (L =1.15); Pf=25.0 psf (L =1.15); Pf=25.0 psf (L ct=1.10 ed snow loads have be has been designed for load nonconcurrent wi irder(s) for truss to trus irder(s) for truss to trus echanical connection (ate capable of withstar	(3-second gust) DL=6.0psf; h=20ft; ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1. roof LL: Lum DOL= um DOL=1.15 Plate 8; Fully Exp.; Ce=0.5 even considered for th r a 10.0 psf bottom th any other live loa se connections. ss connections. (by others) of truss t ading 15 lb uplift at j	Cat. ne; dd 60 1.15 9; his ids. to joint								STATE OF J SCOT SEV NUM PE-2001	MISSOLUE T M. IER BER 018807

April 26,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	1404 NE ERNEST WAY	AS NOTED FOR PLAN REVIEW LEE'S SUMMIT DEVELOPMENT SERVICES
MSA2406	J3	Jack-Closed	2	1	Job Reference (optional	I65166565 LEE'S SUMMIT, MISSOURI
Quality Truss LLC (Smithville, Mo	D), Smithville, MO - 64089,	Run: 8.73 S Apr 3 20	024 Print: 8.7	/30 S Apr 3 2	2024 MiTek Industries, Inc. Th	

ID:?OnHbm1Xw_hYQr2PhPMj1XzPr?M-RfC?PsB70Hq3NSgPqnL8w3uITXbsKWrCDbwJ3z3c?2

3x4 =

Scale =	1:24.1
---------	--------

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.43 0.51 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.05 -0.08 0.02 0.02	(loc) 4-7 4-7 4 4-7	l/defl >999 >701 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 0%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 Structural wood she 3-9-2 oc purlins. Rigid ceiling directly bracing.	athing directly appli applied or 10-0-0 c	8) This truss Internatio R802.10. LOAD CASE ed or	is designed in acco nal Residential Cod 2 and referenced sta S) Standard	ordance w e sections andard AN	ith the 2018 5 R502.11.1 ISI/TPI 1.	and					
REACTIONS	(size) 1= Mechanic Max Horiz 1=69 (LC Max Uplift 3=-34 (LC Max Grav 1=301 (LC 4=95 (LC	nical, 3= Mechanic al 12) : 12) C 19), 3=198 (LC 19 19)	al, 4= 9),									
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD BOT CHORD	1-2=-147/0, 2-3=-28 2-4=-29/303	1/81										
NOTES												
 Wind: ASt Vasd=91r II; Exp B; cantilever right expo TCLL: AS Plate DOI DOL=1.15 Cs=1.00: 	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed ssed; Lumber DOL=1.6 GCE 7-16; Pr=25.0 psf (L L=1.15); Pf=25.0 psf (L 5); Is=1.0; Rough Cat E Ct=1.10	(3-second gust) DL=6.0psf; h=20ft; ivelope) exterior zoi; ; end vertical left ar 0 plate grip DOL=1. roof LL: Lum DOL= um DOL=1.15 Plate 8; Fully Exp.; Ce=0.	Cat. ne; nd 60 1.15 9;							A	STATE OF J	MISSOLLE
 Unbalance design. 	ed snow loads have be	en considered for t	his							l.	SEV	IER
 This truss chord live 	s has been designed fo load nonconcurrent wi	r a 10.0 psf bottom th any other live loa	ids.							88	att.	Sorren
5) Refer to g	girder(s) for truss to trus	s connections.							-	27	NUM	DEK
 Refer to g Drawid 	girder(s) for truss to tru	ss connections.	ha.							N.	Q PE-2001	018807
() Provide m	nechanical connection i	ny others) of trues	0							N L	T 7'2	

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at joint 3.

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	1404 NE ERNEST WAY	AS NOTED FOR PLAN REVIEW LEE'S SUMMIT DEVELOPMENT SERVICES
MSA2406	J5	Jack-Open	23	1	Job Reference (optional	I65166566 LEE'S SUMMIT, MISSOURI
Quality Truss LLC (Smithville, Mo	2024 MiTek Industries, Inc. Th					

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. The Apr 25 10634/27/2024 ID:oLcxFvekdq8y1YARN2zSsRzQ8Bi-RfC?PsB70Hq3NSgPqnL8w3ulTXbGr WrCDoi794204

5-11-4

Plate Offsets (X, Y): [2:0-0-9,Edge]

													_
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.97 0.71 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.12 -0.20 0.01 0.05	(loc) 4-7 4-7 2 4-7	l/defl >565 >358 n/a >999	L/d 240 180 n/a 360	PLATES MT20	GRIP 244/190	
LUMBER TOP CHORE BOT CHORE BRACING TOP CHORE BOT CHORE	 2x4 SP No.2 2x4 SP No.2 3x4 SP No.2 Structural wood she Rigid ceiling directly bracing. 	Athing directly applie applied or 10-0-0 oc	8) Provide r bearing p 3. 9) This trus d. Internatic R802.10. LOAD CASE	nechanical connect late capable of with s is designed in acc nal Residential Coo 2 and referenced si (S) Standard	tion (by othe nstanding 5 cordance wi de sections tandard AN	ers) of truss 4 lb uplift at th the 2018 R502.11.1 a SI/TPI 1.	to joint and					PT = 0%	-
REACTIONS	2=0-3-8, 3 Mechanic Max Horiz 2=104 (LC Max Uplift 3=-54 (LC Max Grav 2=441 (LC 4=110 (LC	B= Mechanical, 4= al (2 12) (2 12) (2 19), 3=286 (LC 19) (2 7)),										
FORCES TOP CHORE BOT CHORE	(lb) - Maximum Com Tension 0 1-2=0/32, 2-3=-167/ 0 2-4=-25/104	pression/Maximum											
1) Wind: AS Vasd=91 II; Exp B cantileve right exp	SCE 7-16; Vult=115mph mph; TCDL=6.0psf; BC ; Enclosed; MWFRS (er r left and right exposed osed; Lumber DOL=1.6	(3-second gust) DL=6.0psf; h=20ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6	Cat. le; d 50								OF I		
2) TOLE: A Plate DO DOL=1.1 Cs=1.00 3) Unbalan design.	DL= 1.15); Pf=25.0 psf (L 5); Is=1.0; Rough Cat B ; Ct=1.10 ccd snow loads have be	um DOL=1.15 Plate s; Fully Exp.; Ce=0.9 een considered for th	; ; is								STATE SCOT SEVI	ER *	
 This trus load of 1 overhang 	s has been designed for 2.0 psf or 1.00 times flat gs non-concurrent with c	r greater of min roof t roof load of 25.0 ps other live loads.	live of on							K	PE-2001	18807	

- This truss has been designed for a 10.0 psf bottom 5)
- chord live load nonconcurrent with any other live loads.6) Bearings are assumed to be: , Joint 2 SP No.2 .
- 7) Refer to girder(s) for truss to truss connections.

314.434.1200 / MiTek-US.com

E

ONAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	1404 NE ERNEST WAY	AS NOTED FOR PLAN REVIEW LEE'S SUMMIT DEVELOPMENT SERVICES
MSA2406	J5A	Half Hip	4	1	Job Reference (optional)	LEE'S SUMMIT, MISSOURI
Quality Truss LLC (Smithville, MC	u Apr 25 064/27/2024					
		-0-10-12				
		3-	11-4		5-11-4	
		0-10-12 3-	11-4		2-0-0	

0-4-5

Scale = 1:28.7

Scale = 1.2	.0.7												
Loading TCLL (roo Snow (Pf) TCDL BCLL BCLL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.38 0.37 0.08	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.02 -0.03 0.00 0.01	(loc) 6-9 6-9 2 6-9	l/defl >999 >999 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 30 lb	GRIP 244/190 FT = 0%	
LUMBER TOP CHO BOT CHO WEBS BRACING TOP CHO BOT CHO REACTIO	 RD 2x4 SP No.2 RD 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 RD Structural wood she 5-11-4 oc purlins, e 2-0-0 oc purlins: 3-/ RD Rigid ceiling directly bracing. NS (size) 2=0-3-8, Max Horiz 2=63 (LC Max Uplift 2=-10 (LC Max Grav 2=507 (L) 	eathing directly applie except end verticals, 4. 7 applied or 10-0-0 or 5= Mechanical 11) C 12), 5=-4 (LC 9) C 34), 5=294 (LC 33	7) This truss chord live 8) Bearings 9) Refer to g 10) Provide m ed or and 10 lb 11) This truss c Internatio R802.10.7 12) Graphical or the orie bottom ch	has been designed load nonconcurrent are assumed to be: irder(s) for truss to t echanical connection ate capable of withs uplifit at joint 2. is designed in acco hal Residential Code 2 and referenced sta purlin representation intation of the purlin ord. S) Standard	I for a 10.0 t with any Joint 2 SF truss conr on (by oth- standing 4 ordance wi e sections andard AN on does no along the) psf bottom other live loa P No.2 . ections. ers) of truss Ib uplift at jo th the 2018 R502.11.1 a ISI/TPI 1. t depict the top and/or	ads. to pint 5 and size						
FORCES	(lb) - Maximum Con Tension	npression/Maximum											
TOP CHO	RD 1-2=0/56, 2-3=-359/ 4-5=-289/11	/0, 3-4=-219/17,											
BOT CHO WEBS	RD 2-6=-11/212, 5-6=-2 3-6=-100/33, 4-6=-3	21/16 3/327											
NOTES													
1) Unbala	anced roof live loads have	e been considered fo	r										
this de 2) Wind: Vasd= II; Exp cantile right e 3) TCLL:	isign. ASCE 7-16; Vult=115mpt 91mph; TCDL=6.0psf; BC B; Enclosed; MWFRS (ei ver left and right exposed xposed; Lumber DOL=1.6 ASCE 7-16; Pr=25.0 psf	n (3-second gust) CDL=6.0psf; h=20ft; (nvelope) exterior zor l; end vertical left an 0 plate grip DOL=1.((roof LL: Lum DOL=1	Cat. ne; d 60 1.15								STATE OF I	MISSOLIE T.M. ER	à
Plate I	DOL=1.15); Pf=25.0 psf (L	um DOL=1.15 Plate	·								1		8

- DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
 Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.

MiTok

April 26,2024

NUMBER

PE-2001018807

ESSIONAL EN

0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

											REL	EASE FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	14	04 NE E	RNEST	WAY	LEE'S SU	NOTED FOR PLAN REVIEW
MSA2406	J5B		Half Hip Girder		4	1	Jo	b Refere	nce (opt	tional	L	I65166568 EE'S SUMMIT, MISSOURI
Quality Truss LLC (Smithvill	e, MO), Smithv	ille, MO - 64089,		Run: 8.73 S Apr ID:mW6gczYG6a	3 2024 P NvqRXZF	rint: 8.730 S /	Apr 3 2024 y-RfC?PsB	MiTek In 70Hq3NS	dustries, I gPqnL8w3	nc. Thu 3ulTXt	Apr 25 10 GKWrCDer75	3/27/2024
			-0-10-12 0-10-12	<u>1-11-4</u> 1-11-4			<u>5-11-</u> 4-0-0	1				
				1 <u>2</u> 7 Г	5x5 =					1.5x4	4 u	
1-1-1 4-1-4	1-5-14		1		3		19				5	1-5-14
			2] x4 =	.5x4 u					3x4 =		
Scolo - 1:22 9			-	1-9-8 1-9-8			<u>5-11-4</u> 4-1-12					
Plate Offsets (X, Y): [3:0	0-2-8,0-2-1]											
Loading TCLL (roof) Snow (Pf)	(psf) 25.0 25.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.66 0.21	DEFL Vert(LL) Vert(CT)	in -0.01 -0.02	(loc) 5-6 5-6	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190

TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.66	Vert(LL)	-0.01	5-6	>999	240	MT20	244/190
Snow (Pf)	25.0	Lumber DOL	1.15	BC	0.21	Vert(CT)	-0.02	5-6	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.12	Horz(CT)	0.00	5	n/a	n/a		
BCLL	0.0	Code	IRC2018/TPI2014	Matrix-MP		Wind(LL)	0.00	5-6	>999	360		FT 00/
BCDL	10.0				_	-					Weight: 28 lb	FI = 0%
LUMBER			Bearings and	e assumed to be	e: Joint 2 SP	P No.2 .						
TOP CHORD	2x4 SP No.2		Refer to gir	der(s) for truss to	o truss conr	ections.						
BOT CHORD	2x4 SP No.2		Provide me	chanical connec	tion (by oth	ers) of truss	to					
WEBS	2x4 SP No.2		bearing pla	te capable of wit	hstanding 1	6 lb uplift at j	joint					
BRACING			2 and 9 lb t	iplift at joint 5.								
TOP CHORD	Structural wood she	eathing directly applie	ed or 10) This truss is	s designed in act	cordance w	th the 2018	nd					
	5-11-4 oc purlins, e	except end verticals, a	and Internationa P802 10 2	a Residential Co	tandard AN	ROUZ.11.12	and					
DOTOLODD	2-0-0 oc purlins: 3-4	1.	11) Graphical r	urlin renresentat	ion does no	of depict the	size					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	or the orien	tation of the purl	in along the	top and/or	5120					
DEADTIONO		5 Mashaulasi	bottom cho	rd.								
REACTIONS	(SIZE) 2=0-3-8,		12) Hanger(s)	or other connecti	on device(s) shall be						
	Max Honz 2=37 (LC	(11)	provided su	fficient to suppo	rt concentra	ted load(s) 9	94 lb					
	Max Gray $2=447$ (LC	C 34) 5-394 (LC 9)	down and 4	9 lb up at 1-11-	4, and 52 lb	down and 2	1 lb					
FORCES		C 34), 3-334 (LC 33)	up at 4-0-0	on top chord, a	nd 18 lb dov	vn and 14 lb	up					
FURGES	(ib) - Maximum Con	npression/maximum	at 1-11-4,	and 10 lb down a	ind 6 lb up	at 4-0-0 on	4:00					
	1-2-0/56 2-3469/	/0 3-411/9 4-52	37/29 dovice (c) is	the reenensibilit		such connec	lion					
BOT CHORD	2-6=-5/389 5-6=-5/	378	13) In the I OA	CASE(S) secti	y ur urrers. on loade ar	onlied to the	face					
WEBS	3-6=0/161 3-5=-390	6/0	of the truss	are noted as fro	nt (F) or ha	ck (B)	lace					
NOTES			LOAD CASE(S	Standard		on (D).						
1) Wind ASC	CF 7-16: Vult=115mph	(3-second aust)	1) Dead + Si	ow (balanced):	Lumber Inc	rease=1.15.	Plate					
Vasd=91m	nph: TCDL=6.0psf: BC	DL=6.0psf: h=20ft: C	Cat. Increase=	1.15		,						The
II; Exp B; I	Enclosed; MWFRS (er	nvelope) exterior zon	e; Uniform L	bads (lb/ft)							OFI	MIG
cantilever	left and right exposed	; end vertical left and	d Vert: 1-	3=-70, 3-4=-70,	5-7=-20						AFEDTI	MIS'S
right expos	sed; Lumber DOL=1.6	60 plate grip DOL=1.6	60 Concentra	ted Loads (lb)						A		N.S
2) TCLL: AS	CE 7-16; Pr=25.0 psf ((roof LL: Lum DOL=1	.15 Vert: 6=	-17 (F), 3=-5 (F)	, 10=-5 (F),	11=-8 (F)				A	SCOT	TM.
Plate DOL	.=1.15); Pf=25.0 psf (L	um DOL=1.15 Plate								U	7 SEV	IER \ V
DOL=1.15); Is=1.0; Rough Cat E	B; Fully Exp.; Ce=0.9	;							KA	-1	
Cs=1.00; (Ct=1.10									X	412	
3) Unbalance	ed snow loads have be	een considered for th	IS							X		Server
4) This trues	has been designed fo	r areater of min roof	livo						-	1	S/ NUM	BER
load of 12	0 nsf or 1 00 times fla	at roof load of 25.0 ps	fon							N.	OX PE-2001	018807
overhands	non-concurrent with	other live loads.								V V	AT !!	158
5) Provide ad	dequate drainage to pi	revent water ponding									NºSIO-	ENUS
6) This truss	has been designed fo	or a 10.0 psf bottom									WNA	L
chord live	load nonconcurrent w	ith any other live load	ds.								la	202

April 26,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	1404 NE ERNEST WAY	AS NOTED FOR PLAN REVIEW LEE'S SUMMIT DEVELOPMENT SERVICES
MSA2406	J5C	Jack-Open	13	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Quality Truss LLC (Smithville, MC	Apr 25 11065/27/2024					

3x4 =

Scale = 1:28.7						1						
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.87	Vert(LL)	-0.11	4-7	>642	240	MT20	244/190
Snow (Pf)	25.0	Lumber DOL	1.15	BC	0.65	Vert(CT)	-0.17	4-7	>408	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0	Code	IRC2018/TPI2014	Matrix-MP		Wind(LL)	0.04	4-7	>999	360		
BCDL	10.0										Weight: 20 lb	FT = 0%

LUMBER									
TOP CHORD	2x4 SP N	0.2							
BOT CHORD	2x4 SP N	0.2							
BRACING									
TOP CHORD	Structura	wood sheathing directly applied.							
BOT CHORD	Rigid ceili bracing.	Rigid ceiling directly applied or 10-0-0 oc bracing.							
REACTIONS	(size)	2=0-3-8, 3= Mechanical, 4=							
		Mechanical							
	Max Horiz	2=100 (LC 12)							
	Max Uplift	3=-52 (LC 12)							
	Max Grav	2=425 (LC 19), 3=273 (LC 19),							
		4=105 (LC 7)							
FORCES	(lb) - Max Tension	imum Compression/Maximum							
TOP CHORD	1-2=0/32,	2-3=-159/108							
BOT CHORD	2-4=-23/9	7							
NOTES									
1) Wind: ASC	CE 7-16; Vu	It=115mph (3-second gust)							

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 3) design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.
- 6) Bearings are assumed to be: , Joint 2 SP No.2 .
- 7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 52 lb uplift at joint

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	1404 NE ERNEST WAY	AS NOTED FOR PLAN REVIEW LEE'S SUMMIT DEVELOPMENT SERVICES
MSA2406	J5D	Jack-Closed	2	1	Job Reference (optional	I65166570 LEE'S SUMMIT, MISSOURI
Quality Truss LLC (Smithville, M	D), Smithville, MO - 64089.	Run: 8.73 S Apr 3.2	024 Print: 8.7	730 S Apr 3 2	2024 MiTek Industries, Inc. Th	

Industries, Inc. The Apr 25 11 (1975) Apr 3 2024 Milliek Industries, Inc. The Apr 25 11 (1975) Apr 25 (1796) 24 ID:UOwxWXf9gzEAgq0PjJIw8VzPr_Y-RfC?PsB70Hq3NSgPqnL8w3uITXbGrWrCDoi79423 A

Casla	-04	4
Scale	 · • •	4
	 	_

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.85	Vert(LL)	-0.10	4-7	>663	240	MT20	244/190
Snow (Pf)	25.0	Lumber DOL	1.15	BC	0.64	Vert(CT)	-0.16	4-7	>424	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0	Code	IRC2018/TPI2014	Matrix-MP		Wind(LL)	0.04	4-7	>999	360		
BCDL	10.0										Weight: 25 lb	FT = 0%
LUMBER			8) Provide med	chanical connectior	n (bv oth	ers) of truss	to					
TOP CHORD	2x4 SP No.2		bearing plate	e capable of withst	anding 3	3 lb uplift at	joint					
BOT CHORD	2x4 SP No.2		4.									
WEBS	2x4 SP No.2		This truss is	designed in accord	dance w	ith the 2018						
BRACING			Internationa	Residential Code	sections	R502.11.1 a	and					
TOP CHORD	Structural wood she	athing directly applie	ed or R802.10.2 a	nd referenced star	ndard AN	ISI/TPI 1.						
	3-1-0 oc purlins.		LOAD CASE(S)	Standard								
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 of	0									
REACTIONS	(size) 2=0-3-8.4	4= Mechanical										
	Max Horiz 2=99 (LC	12)										
	Max Uplift 4=-33 (LC	C 12)										
	Max Grav 2=439 (L0	C 19), 4=366 (LC 19)									
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=0/32, 2-3=-156/	107										
BOT CHORD	2-4=-23/99											
WEBS	3-4=-269/51											
NOTES												
1) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)										
Vasd=91r	mph; TCDL=6.0psf; BC	DL=6.0psf; h=20ft; 0	Cat.									
II; Exp B;	Enclosed; MWFRS (er	nvelope) exterior zor	ie;									
cantilever	left and right exposed	; end vertical left an	d									an
right expo	osed; Lumber DOL=1.6	0 plate grip DOL=1.0	60 L 4 5								OFI	MIG DI
2) TULL: AS	CE 7-16; Pr=25.0 psr (1.15								Fre	ISS W
	L=1.10), F1=20.0 PSI (L 5): Is=1 0: Rough Cat F	S Fully Exp · Ce-0 0								6	AN .	NSY
Cs=1 00	Ct=1 10	5, i uliy ∟∧p., Ce=0.8	',							B	SCOT	TM. YZY
2) Unholono		on considered for th	vio.							2	ef SEV	ER \V

- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Bearings are assumed to be: Joint 2 SP No.2.
- 7) Refer to girder(s) for truss to truss connections.

April 26,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Afficial Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	C	Qty	Ply	1404 NE ERNEST WAY	AS NOTED FOR PLAN REVIEW LEE'S SUMMIT DEVELOPMENT SERVICES
MSA2406	J5E	Jack-Closed	1	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Quality Truss LLC (Smithville, MC	D), Smithville, MO - 64089,	Run: 8.73 ID:?oc7na	3 E Nov 16 202 aP1MPdYh4_lh	23 Print: 8.7 heKr0AzPq	730 E Nov 16 uQ-VEPhKD	5 2023 MiTek Industries, Inc. I KbLXBAnokHqCVFSririfsNov	ri Apr 260164/27/21024
		-0-9-4 3-0 0-9-4 3-0	1-15 1-15	-	5-9-2 2-8-3		

5-9-2

00010 - 1.00.0	,												
Loading TCLL (roof) Snow (Pf) TCDL	(psf) 25.0 25.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	8/TDI2014	CSI TC BC WB Matrix-MP	0.52 0.35 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.10 0.03 0.02	(loc) 5-8 5-8 5	l/defl >999 >777 n/a	L/d 240 180 n/a 360	PLATES MT20	GRIP 244/190
BCDL	10.0		11(0201)	0/11/2014	I VIGUIX-IVII		VVIIIG(LL)	0.02	5-0	2000	500	Weight: 29 lb	FT = 0%
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 5-9-2 oc purlins. Bioid could cardly 	athing directly applie	7) 8) ed or 9)	Provide mec bearing plate 4 and 10 lb u This truss is International R802.10.2 a Gap betwee diagonal or v	hanical connection capable of withs uplift at joint 5. designed in acco Residential Cod nd referenced sta n inside of top ch vertical web shall	on (by oth standing 2 ordance w le sections andard AN ord bearir not excee	ers) of truss 27 lb uplift at 3 R502.11.1 a NSI/TPI 1. ng and first ed 0.500in.	to joint and					
BOT CHORE	bracing.	applied of 10-0-0 0	ິ LC	DAD CASE(S)	Standard								
REACTIONS	(lb/size) 1=296/ M Mechanic Mechanic Max Horiz 1=99 (LC Max Uplift 4=-27 (LC Max Grav 1=388 (LC 5=326 (LC	echanical, 4=54/ cal, 5=233/ Mechanic 12) C 12), 5=-10 (LC 12) C 19), 4=95 (LC 19), C 19)	cal										
FORCES	(lb) - Max. Comp./M (lb) or less except w	ax. Ten All forces hen shown.	250										
TOP CHORD BOT CHORD WEBS	2-3=-540/0 2-5=-52/463 3-5=-480/62												
NOTES													
 Wind: AS Vasd=91 II; Exp B; cantileve right expr TCLL: AS Plate DO DOL=1.1 	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er r left and right exposed osed; Lumber DOL=1.6 GCE 7-16; Pr=25.0 psf (L L=1.15); Pf=25.0 psf (L 5); Is=1.0; Rough Cat E	(3-second gust) iDL=6.0psf; h=20ff; 6 ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1. ;roof LL: Lum DOL=: um DOL=1.15 Plate 3; Fully Exp.; Ce=0.5	Cat. ne; d 60 1.15 e									STATE OF I	MISSOLUT

DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for a 10.0 psf bottom 4)
- chord live load nonconcurrent with any other live loads.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Refer to girder(s) for truss to truss connections.

April 26,2024

NUN SE

PE-2001018807

OFFESSIONAL ET

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	1404 NE ERNEST WAY	AS NOTED FOR PLAN REVIEW LEE'S SUMMIT DEVELOPMENT SERVICES
MSA2406	J5F	Jack-Closed	1	1	Job Reference (optional	I65166572 LEE'S SUMMIT, MISSOURI
Quality Truss LLC (Smithville, MC	D), Smithville, MO - 64089,	Run: 8.73 S Apr 3 2 ID:jdvushzy_2tEguLX	024 Print: 8.7 (IE85INzPqsF	730 S Apr 32 P-RfC?PsB70	2024 MiTek Industries, Inc. Th)Hq3NSgPqnL8w3ulTXbGKW	I Apr 25 0065/27/2924
		-0-9-41 3-0-15	I	5-9-2		
		0-9-4 3-0-15		2-8-3	—	
					3x5 II	

Scale = 1:31.5

Plate Offsets (X, Y): [2:0-5-0,0-0-6]

Plate Olisets ((X, Y): [2:0-5-0,0-0-6]											-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.74 0.26 0.07	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.03 -0.05 0.00 0.00	(loc) 5-8 5-8 5 5-8	l/defl >999 >999 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 0%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS(Vasd=91n II; Exp B1; cantilever right expo 2) TCLL: AS Plate DOL DOL=1.15 Cs=1.00; 3) Unbalance design. 4) This truss load of 12 overhangs 5) This truss chord live	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she: 5-9-2 oc purlins. Rigid ceiling directly bracing. (size) 2=5-9-2, 4 6=5-9-2 Max Uplift 4=-21 (LC Max Grav 2=708 (LC 5=231 (LC (lb) - Maximum Com Tension 1-2=0/204, 2-3=-388 2-5=-273/287 4-5=0/0, 3-5=-343/90 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en Enclosed; MWFRS (en Enclosed; ILIMber DOL=1.66 CE 7-16; Pr=25.0 psf (LI :=1.15); Is=1.0; Rough Cat B Ct=1.10 ed snow loads have be has been designed for .0 psf or 1.00 times flat s non-concurrent with c has been designed for load nonconcurrent with	athing directly applied applied or 10-0-0 oc 4= Mechanical, 5=5-9 (12), 6=99 (LC 12) (12), 5=-33 (LC 12) (12), 5=-33 (LC 12) (12), 4=120 (LC 19), (13), 6=708 (LC 2) (14), 6=708 (LC 2) (15), 6=708 (LC 2)	6) 7) 8) d or 9) 10, -2, 11, 12, 13, 12, 13, 13, 10 1) at. 2) s s ive s.	Bearings are Refer to gird Provide mec bearing plate 4 and 33 lb i This truss is International R802.10.2 a) Load case(s designer mu of the intend) Gap betwee diagonal or v) Hanger(s) or provided suff lb down at - such connect) In the LOAD of the truss a PAD CASE(S) Dead + Smi Increase=1 Uniform Lo Vert: 1-4 Concentrat Vert: 1=- Dead + Ron Plate Increa Uniform Lo Vert: 1-4	e assumed to be: , er(s) for truss to t hanical connectio e capable of withsi polifit at joint 5. designed in accor Residential Code nd referenced stat) 1, 2 has/have be st review loads to ded use of this true n inside of top chor vertical web shall r other connection ficient to support co- 0-9-4 on top chort tion device(s) is th CASE(S) section are noted as front Standard bow (balanced): Lu .15 ads (lb/ft) =-70, 5-6=-20 ed Loads (lb) 150 (F) of Live (balanced) ase=1.15 ads (lb/ft) =-70, 5-6=-20 ed Loads (lb) 350 (F)	Joint 2 S russ con n (by oth tanding 2 rdance w sections ndard AN een modi verify th ss. ord bearin not excer device(s concentra 1. The d he respon, loads a (F) or ba mber Inc	SP No.2 . nections. ers) of truss 1 lb uplift at R502.11.1 a ISI/TPI 1. fied. Building at they are con ag and first ad 0.500in.) shall be ated load(s) 2 esign/selection sibility of oth pplied to the ck (B). rease=1.15,	to joint and prrect 350 on of face Plate 15,				STATE OF J STATE OF J SEV SEV PE-2001	MISSOLUTION T.M. ER BER 018807
												Apr	1 26.2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	1404 NE ERNEST WAY	AS NOTED FOR PLAN REVIEW LEE'S SUMMIT DEVELOPMENT SERVICES
MSA2406	J7	Jack-Closed	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
						00/07/000/

Quality Truss LLC (Smithville, MO), Smithville, MO - 64089,

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. The Apr 25 1165/27/20:24

Scale = 1:45.8

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.46 0.37 0.08	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.05 -0.10 0.03 0.03	(loc) 7-10 7-10 6 7-10	l/defl >999 >830 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 42 lb	GRIP 244/190 FT = 0%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing	athing directly applied	7) 8) ^{d or} 9) LC	Provide mecl bearing plate 72 lb uplift at This truss is of International R802.10.2 ar Gap betweer diagonal or v	hanical connection capable of withst joint 6 and 28 lb u designed in accorr Residential Code nd referenced star n inside of top cho ertical web shall n Standard	n (by oth anding 7 uplift at jo dance w sections indard AN rd bearir ot excee	ers) of truss t ' lb uplift at joi bint 7. ith the 2018 is R502.11.1 a ISI/TPI 1. ng and first ed 0.500in.	o int 5, nd					
REACTIONS	(size) 1= Mechanic Max Horiz 1=124 (LC Max Uplift 5=-7 (LC 12) Max Grav 1=345 (LC (LC 12).7	nical, 5= Mechanical al, 7=0-3-8 2 12) 14), 6=-72 (LC 19), 7 2 19), 5=58 (LC 19), 6 =668 (LC 19)	, 6= =-28 6=-7										
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-170/0, 2-3=-442 4-5=-55/21	2/0, 3-4=-92/45,											
BOT CHORD WEBS	2-7=-61/404, 6-7=0/0 5-6=0/0, 3-7=-396/6) 7, 4-7=-198/37											
NOTES 1) Wind: ASC Vasd=91m II; Exp B; E cantilever	CE 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (en left and right exposed	(3-second gust) DL=6.0psf; h=20ft; C- velope) exterior zone : end vertical left and	at. >;								B	ATE OF M	MISSOL

- right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Bearings are assumed to be: , Joint 7 SP No.2 .
- 6) Refer to girder(s) for truss to truss connections.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	1404 NE ERNEST WAY	AS NOTED FOR PLAN REVIEW LEE'S SUMMIT DEVELOPMENT SERVICES
MSA2406	J9	Jack-Closed	1	1	Job Reference (optional	I65166574 LEE'S SUMMIT, MISSOURI

Quality Truss LLC (Smithville, MO), Smithville, MO - 64089,

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. The Apr 25 10 85/27/29:24 ID:YvUA3Y4Y7vzZCpTu4OuMNAzPqyj-RfC?PsB70Hq3NSgPqnL8w3uITXbd KWrCDorrd 2007

Scale =	1:44.9
---------	--------

Plate Offsets (X, Y): [2:0-3-9,Edge]

L oading TCLL (roof) Snow (Pf)	(psf) 25.0 25.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.31 0.25	DEFL Vert(LL) Vert(CT)	in -0.03 -0.08	(loc) 7-10 7-10	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190	
TCDL	10.0	Rep Stress Incr	YES		WB	0.18	Horz(CT)	0.01	7	n/a	n/a			
BCLL	0.0	Code	IRC2018	3/TPI2014	Matrix-MR		Wind(LL)	0.02	7-10	>999	360			
BCDL	10.0											Weight: 57 lb	FT = 0%	
LUMBER FOP CHORD 3OT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2		7) 8)	Provide mec bearing plate 7 and 157 lb This truss is	hanical connectio capable of withs uplift at joint 6. designed in accor	n (by oth tanding 2 rdance w	ers) of truss 7 lb uplift at ith the 2018	to joint						
BRACING				R802 10 2 a	nd referenced sta	ndard AN	ISI/TPI 1	anu						
I OP CHORD	Structural wood she	athing directly applie	ed or	AD CASE(S)	Standard	nuara / ir								
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc			Clandard									
REACTIONS	(size) 1= Mecha 7=0-3-8	nical, 6= Mechanica	al,											
	Max Horiz 1=154 (LC	C 9)												
	Max Uplift 6=-157 (L	C 1), 7=-27 (LC 12)												
	Max Grav 1=174 (LC	C 19), 6=5 (LC 12),												
	(lb) Maximum Com	orossion/Maximum												
ONCES	Tension													
TOP CHORD	1-2=-187/85, 2-3=-1 4-5=-119/81, 5-6=-1	78/214, 3-4=-61/354 78/23	4,											
BOT CHORD	2-7=-110/151, 6-7=-	260/23												
WEBS	3-7=-271/64, 4-7=-7	58/35, 4-6=0/384												
NOTES												000	TIC	
1) Wind: AS(Vasd=91n II; Exp B; cantilever	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en left and right exposed	(3-second gust) DL=6.0psf; h=20ft; (velope) exterior zor ; end vertical left an	Cat. ne; id								H.	STATE OF M	MISSOUR	
2) TCLL: AS Plate DOL DOL=1.15	CE 7-16; Pr=25.0 psf (_=1.15); Pf=25.0 psf (L i); Is=1.0; Rough Cat B ct=1 10	roof LL: Lum DOL=1 um DOL=1.15 Plate ; Fully Exp.; Ce=0.9	1.15 9;									sevi	Berrick	כ
3) Unbalance	ed snow loads have be	en considered for th	nis								87	S NUM	BER /SA	
dooign											XX'	$O \setminus PE-2001$	018807 / ASH	

- 3) design.
- This truss has been designed for a 10.0 psf bottom 4) chord live load nonconcurrent with any other live loads.
- 5) Bearings are assumed to be: , Joint 7 SP No.2 .
- 6) Refer to girder(s) for truss to truss connections.

April 26,2024

SIONAL EN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

									RELEASE	FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	1404 NE E	RNEST WAY	LEE'S SUMMIT	D FOR PLAN REVIEW
MSA2406	T1		Common		2	1	Job Refere	ence (optional	LEE'S	I65166575 SUMMIT, MISSOURI
Quality Truss LLC (Smithville, M	O), Smithville, MO -	64089,		Run: 8.73 S A	pr 3 2024 Prin DncPiUOFozsi	t: 8.730 S Apr zQ8tr-RfC?PsI	3 2024 MiTek In B70Ha3NSaPanl	dustries, Inc. Th _8w3uITXbGKW	I Apr 25 1106-15 CDoi7,14-00	27/2024
-0-'	10-12 0.0		10.0.0	40.0.0	21101 30 01 020	05 0 40	an de logi du		00.0.0	38-10-12
-0- 0-1	0-12 6-6-1	11	<u>12-9-6</u> 6-2-11	6-2-10		<u>25-2-10</u> 6-2-10		<u>31-5-5</u> 6-2-10	6-6-11	0-10-12
Scale = 1:74.7 Plate Offsets (X, Y): [2:0-2- Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	2 3x5=	3x 3 3 15 1.5x 11 11 10 0-0-0], [4:0-2 3 0-0-0], [4:0-2 10 10 10 10 10 10 10 10 10 10 10 10 10	6-2-11 7 ¹² 5 = 6-2-11 	6-2-10 5x5 = 4 22 4 14 3x4= 19-0-0 6-2-10 0-3-4], [8:0-2-7,0-1-4 CSI TC BC WB Matrix-MR	5x5= 5 5 13 12 3x6= 3x8= 1 0.74 0.74 V V V V V V V V V V V	6-2-10 25-2-10 6-2-10 DEFL lert(LL) lorz(CT) Vind(LL)	5x5 23 6 11 3x4= in (loc) -0.16 11-12 -0.32 11-12 0.14 8 0.08 12-14	6-2-10 31-5-5 6-2-10 //defl L/d >999 240 >999 180 n/a n/a >999 360	ах5 7 7 10 1.5х4 ш 10 1.5х4 ш 1.5х4 ш 1.5	0-10-12
LUMBER TOP CHORD 2x4 SP No.: BOT CHORD 2x4 SP No.: BRACING TOP CHORD Structural w 2-5-14 oc p BOT CHORD Rigid ceiling bracing. WEBS 1 Row at m REACTIONS (size) 2 Max Horiz 2 Max Grav 2 FORCES (lb) - Maxim Tension TOP CHORD 1-2=0/32, 2 S-7=-2386// BOT CHORD 1-2=0/32, 2 5-7=-2386// BOT CHORD 1-2=0/32, 2 5-7=-2386// BOT CHORD 2-15=-38/2 12-14=0/19 8-10=0/247 WEBS 5-12=0/129 6-11=0/456 7-11=-602/8 NOTES 1) Unbalanced roof live loa this design. 2) Wind: ASCE 7-16; Vult= Vasd=91mph; TCDL=6. I; Exp B; Enclosed; MW cantilever left and right right exposed; Lumber [3) TCLL: ASCE 7-16; Pr=22 Plate DOL=1.15); PI=22 DOL=1.15); Is=1.0; Rou Cs=1.00; Ct=1.10 4) Unbalanced snow loads design.	2 2 2 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	rectly applied or 10-0-0 oc 12 1773 (LC 1) h/Maximum -2386/67, 8-9=0/32 473, 9, 10-11=0/24 12=-858/108 7-10=0/267, , 3-15=0/267 insidered for nd gust) isf; h=20ft; C. exterior zone rtical left and irip DOL=1.6 Lum DOL=1. =1.15 Plate ixp.; Ce=0.9; idered for this	5) This tru load of overha 6) This tru chord li 8) This tru Interna R802.1 LOAD CAS	ss has been designe 12.0 psf or 1.00 time: ngs non-concurrent w ss has been designe ve load nonconcurrer ings are assumed to oss is designed in acc ional Residential Coo 0.2 and referenced st E(S) Standard	d for greater a flat roof load ith other live d for a 10.0 p tt with any ott be SP No.2 . ordance with le sections R andard ANSI	of min roof lin d of 25.0 psf loads. sf bottom her live loads the 2018 502.11.1 and /TPI 1.	ve on s. d		STATE OF M SCOTT SEVI OF PE-2001 PE-2001 Apri	MISSOCIAL ER DI8807 L ENGINE 26,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeW® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS//TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

									RELEASE FOR CONSTRUCTIO	л
Job	Truss		Truss Type		Qty	Ply	1404 NE ERNES	ST WAY	AS NOTED FOR PLAN REVIEV LEE'S SUMMIT DEVELOPMENT SERVICES	N
MSA2406	T1A		Common		4	1	Job Reference (optional	I65166576 LEE'S SUMMIT, MISSOURI	
Quality Truss LLC (Smithville, MO), Smithville, MO - 64089, Quality Truss LLC (Smithville, MO), Smithville, MO - 64089, ID:?JM7CJ2NwPxcXB6yO6B?UX2Q8uN-RfC?PsB70Hq3NSqPanL8w3ulTXt GKWrCDer/19JC27/2024									4	
-0	10-12	660	12.0.6	10.0.0	, 	2 10	21 5 5		28 0 0 38-10-12	
0-	10-12	6-6-9	6-2-13	6-2-10	+ 23	-2-10	6-2-10)	6-6-11 0-10-12	
11-11-5 04-5 1 1-5-5 1	2 2 3x5=	3: 3 1 15 1.5*	57 4 7 12 4 5 5 - - - - - - - - - - - - - - - - -	5 = 22 13 = 3x6=	5x5= 5 12 3x8=	A	5x5s 23 6 11 3x4=	1	3x5 7 7 8 9 10 1.5x4 II 3x5=	
Scale = 1:74.7	 	6-0-0 6-1-12 6-0-0 0-1-12	2 <u>12-9-6</u> 26-7-10	<u>19-0-0</u> 6-2-10	+ <u>2</u> 8 6	5-2-10 -2-10	31-5-5 6-2-10	; 	<u>38-0-0</u> 6-6-11	
Plate Offsets (X, Y): [4:0-2	2-8,0-3-4],	[6:0-2-8,0-3-4]		•					-	_
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0 BC 0 WB 0 Matrix-MR	.74 Vert(.76 Vert(.56 Horz Winc	L LL) -0. CT) -0. (CT) 0. I(LL) 0.	in (loc) l/def 09 11 >999 18 10-21 >999 06 8 n/a 05 10-21 >999	I L/d 9 240 9 180 a n/a 9 360	PLATES GRIP MT20 244/190 Weight: 223 lb FT = 0%	
TOP CHORD 2x4 SP No.2 Dor CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BACING overhangs non-concurrent with other live loads. TOP CHORD Structural wood sheathing directly applied or 2.11-4 oc purins. BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing. BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing. BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing. WEBS 1 Row at midpt 4-12, 6-12 REACTIONS Structural wood sheathing directly applied or 6-0-0 oc bracing. WEBS 1 Row at midpt 4-12, 6-12 Max Horiz 15-200 (LC 11) Max Grav 8=1484 (LC 20), 15=2114 (LC 1) Max Grav 8=1484 (LC 20), 15=2114 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension Tension 1-2=0/32, 2-3=-46/701, 3-5=-1151/102, 5-7=-1321/83, 1-6-00/38, 5-12=-19/615, 6-12=-80/108, 6-11=-04/38, 7-11=-60/38, 5-12=-19/615, 6-12=-80/108, 6-11=-04/38, 7-11=-60/38, 5-12=-19/615, 6-12=-80/108, 6-11=-04/38, 7-11=-60/38, 5-12=-19/615, 6-12=-80/108, 6-11=-04/38, 7-11=-60/38, 5-12=-19/615, 6-12=-80/108, 6-11=-04/38, 7-11=-60/38, 5-12=-19/615, 6-12=-80/108, 6-11=-04/38, 7-11=-60/38, 5-12=-19/615, 6-12=-80/108, 6-11=-04/38, 7-11=-60/38, 5-12=-19/615, 6-12=-80/108, 6-11=-04/38, 7-11=-60/38, 5-12=-19/615, 6-12=-80/10										
 Plate DOL=1.15); Pl=2 DOL=1.15); Is=1.0; Ro Cs=1.00; Ct=1.10 4) Unbalanced snow load design. 	s have be	en considered for th	is					Ø	April 26,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com) 31:

									RELEAS	E FOR CO	NSTRUCTION	
Job	Truss		Truss Type		Qty	Ply	1404 NE ERN	IEST WAY	LEE'S SUMMU	ED FOR P	LAN REVIEW SERVICES	
MSA2406	T1B		Common		5	1	Job Referenc	e (optional	LEE'S	16516 SUMMIT ,	66577 MISSOURI	
Quality Truss LLC (Smithville, MO), Smithville, MO - 64089, Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. TI ID::efr/HOb/V/B IV/0716/2C/cz/08eM.PfC/2e870Hr3N/SeParal 8w3/JTXbCk								tries, Inc. Th	Apr 25 1106-16	27/	2024	
	0 40 40			10.joidingbi 1153 vo h	SIT CK2Q08	SWI-INIC ! F 3D7	on igonogranizo	W3UITADGRU	1000173-4230-11-			
	0-10-12	<u>6-6-9</u> 6-6-9	<u> 12-9-6</u> 6-2-13	+ <u>19-0-0</u> 6-2-10		<u>25-2-10</u> 6-2-10		<u>1-5-5</u> -2-10	<u>38-0</u> 6-6-	<u>)-0</u> ·11		
					5x5=							
Scale = 1:74.7		3 3 4 14 6-0-0 6-1- 6-0-0 0-1-	71^{2} 71^{2} 3x5 = -2 x4 = -3 12 = 12 - 9 - 6 12 = 6 - 7 - 10	5x5 = 21 21 13 12 x4= 3x6 19-0-0 6-2-10	5 11 = 3x8=	<u>₽</u> <u>25-2-10</u> <u>6-2-10</u>	5x5 s 22 6 10 3x4 =	<u>1-5-5</u> -2-10	3x5 x 7 9 1.5x4 II 6-6-	<u>)-0</u> -11	8 3x5=	_
Plate Offsets ()	X, Y): [4:0-2-8,0-3-4],	[6:0-2-8,0-3-4]										-
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0. BC 0. WB 0. Matrix-MR	74 Vert(79 Vert(57 Horz Wind	_ LL) -0.1 CT) -0. (CT) 0.1 (LL) 0.1	in (loc) // 09 9-20 > 18 9-20 > 06 8 06 9-20 >	defl L/d 999 240 999 180 n/a n/a 999 360	PLATES MT20 Weight: 221 lb	GRIP 244/19 FT = 0	0	-
LUMBER > </td												
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp B; E cantilever I right expos 3) TCLL: ASC Plate DOL= DOL=1.15) Cs=1.00; C 4) Unbalance design.	d roof live loads have E 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (en eft and right exposed sed; Lumber DOL=1.6 CE 7-16; Pr=25.0 psf (L =1.15); Pf=25.0 psf (L =1.15); Pf=25.0 psf (L t=1.10 d snow loads have be	been considered for (3-second gust) DL=6.0psf; h=20ft; C ivelope) exterior zone ; end vertical left and 0 plate grip DOL=1.6 roof LL: Lum DOL=1 um DOL=1.15 Plate 8; Fully Exp.; Ce=0.9; een considered for thi	at. ;; 0 15 s						STATE OF SCOT SEV DE LAUM PE-2001	MISS T M. IER 1018807	A LAND	

April 26,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

