

RE: P240541-01 - Roof - HM Lot 172

Site Information:

Project Customer: Clayton Properties Project Name: Sunflower - Farmhouse Lot/Block: 172 Subdivision: Highland Meadows Model:

Address: 2778 SW 11th Terr

Mean Roof Height (feet): 35

City: Lee's Summit

State: MO

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Wind Speed: 115 mph Roof Load: 45.0 psf Design Program: MiTek 20/20 8.6 Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16 Floor Load: N/A psf

Exposure Category: C

No.	Seal#	Truss Name	Date
1 2	l65719426 l65719427	A1 A2	5/22/24 5/22/24
3 4	l65719428 l65719429	B1 B2	5/22/24 5/22/24 5/22/24
5 6	l65719430 l65719431	B3 B4	5/22/24
12345678910	l65719432 l65719433	C1 C2	5/22/24 5/22/24
9 10	l65719434 l65719435	D1 D2 G1	5/22/24 5/22/24 5/22/24
11 12	l65719436 l65719437 l65719438	G2 H1	5/22/24 5/22/24 5/22/24
12 13 14 15 16 17	I65719439 I65719440	H2 H3	5/22/24 5/22/24 5/22/24
16 17	l65719441 l65719442	H4 H5	5/22/24 5/22/24 5/22/24
18 19	l65719443 l65719444	l1 l2 K1	5/22/24
20 21 22 23 24	l65719445 l65719446	K2	5/22/24
22 23	l65719447 l65719448	VI1 VI2	5/22/24 5/22/24 5/22/24
24 25	l65719449 l65719450	VI3 VI4	5/22/24
25 26 27 28 29	l65719451 l65719452	VI5 VK1	5/22/24 5/22/24
28 29 30	165719453 165719454	VK2 VK3	5/22/24 5/22/24
30	165719455	VK4	5/22/24

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Premier Building Supply (Springhill, KS)20300 W 207th Street.

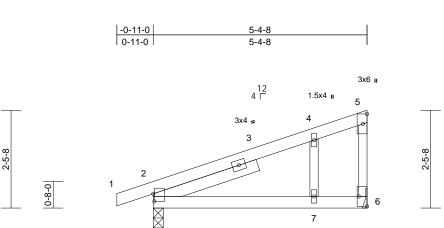
Truss Design Engineer's Name: Nathan Fox

My license renewal date for the state of Missouri is December 31, 2024.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172	
P240541-01	A1	Monopitch Structural Gable	1	1	Job Reference (optional)	165719426


Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:51 ID:fcworfFbFrA2uqCWnSFerQzw3Wn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1.5x4 🛚

3x6 🛛

T

Page: 1

5-4-8

Scale = 1:29	
Plate Offsets (X, Y): [2:0-2-5,0-0-5], [6:Edge,0-2-8]	

3x4 🛛

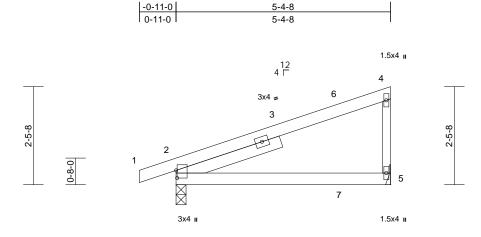
1

	(X, T). [2.0-2-3,0-0-3],	[0.Luge,0-2-0]			-							
Loading	(psf)	Spacing	1-11-4	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.55	Vert(LL)	0.11	2-7	>581	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.43	Vert(CT)	0.09	2-7	>686	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 25 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	TOP CHORD 2x4 SP No.2 capacity of 565 psi. BOT CHORD 2x4 SP No.2 6) Refer to girder(s) for truss to truss connections. WEBS 2x3 SPF No.2 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2. SLIDER Left 2x4 SP No.2 2-8-15 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 118 lb uplift at joint 6 and 130 lb uplift at joint 2. TOP CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. REACTIONS (size) 2=0-3-0, 6= Mechanical Max Horiz 2=88 (LC 12) Max Uplift 2=-130 (LC 8), 6=-118 (LC 8) Max Grav 2=297 (LC 1), 6=224 (LC 1) Standard FORCES (b) - Maximum Compression/Maximum Standard											
FORCES	``	,, , ,										
TOP CHORD		27, 4-5=-40/33,										
BOT CHORD WEBS	2-7=-113/49, 6-7=-1 4-7=-103/87	13/49										
Vasd=91r Ke=1.00; exterior z: Interior (1 exposed : exposed; reactions DOL=1.6(2) Truss de only. For	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 I) 4-0-8 to 5-3-4 zone; c ; end vertical left expos C-C for members and fr shown; Lumber DOL= ² 0 signed for wind loads ir studs exposed to wind dard Industry Gable Enc	DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-11-0 to 4-0-8, antilever left and rig ed; porch left and rig ed; porch left and rig forces & MWFRS for I.60 plate grip n the plane of the tru (normal to the face)	ht ht ss								STATE OF STATE	

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
3) Gable studs spaced at 1-4-0 oc.

 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


May 22,2024

SSIONAL E

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172	
P240541-01	A2	Monopitch	8	1	Job Reference (optional)	165719427

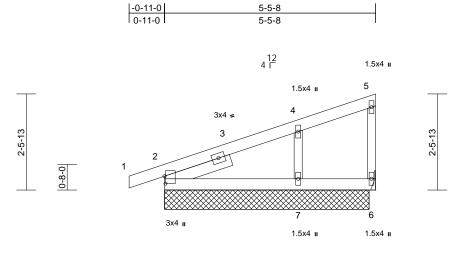
Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:52 ID:YSG0yH6mIzFqXujL?aXXmczw3Vf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	5-4-8	
Scale = 1:28.9		
Plate Offsets (X, Y): [2:0-2-5,0-0-5]		

Plate Olisets ((X, Y): [2:0-2-5,0-0-5]											
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.67	Vert(LL)	0.17	2-5	>363	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.65	Vert(CT)	0.15	2-5	>431	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	n/a	-	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 24 lb	FT = 20%
LUMBER			This truss is	designed in acco	ordance w	ith the 2018						
TOP CHORD	2x4 SP No.2			I Residential Code			Ind					
BOT CHORD	2x4 SP No.2		R802.10.2 a	and referenced sta	andard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2		LOAD CASE(S	Standard								
SLIDER	Left 2x4 SP No.2 2	2-8-15										
BRACING												
TOP CHORD			ed or									
BOT CHORD	5-4-8 oc purlins, ex Rigid ceiling directly		•									
BUICHURD	bracing.	applied of 10-0-0 0	C									
REACTIONS	0	5= Mechanical										
	Max Horiz 2=90 (LC											
	Max Uplift 2=-134 (L											
	Max Grav 2=307 (LC											
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD	,	14, 4-5=-179/258										
BOT CHORD	2-5=0/0											
NOTES												
	CE 7-16; Vult=115mph											
	nph; TCDL=6.0psf; BC		a a \									
	Cat. II; Exp C; Enclose one and C-C Exterior(2		be)									~
) 4-1-0 to 5-3-4 zone; c		tht								Son	Jan
	end vertical left expos										TE OF	MISSO
	C-C for members and f									4	2 Miles	NJO
	shown; Lumber DOL="	1.60 plate grip								H	S NATHA	NIEL CR
DOL=1.60	•									U	FO EO	
	has been designed for		da							A	1 JA	1 1+1
	 load nonconcurrent wi are assumed to be: Joi 									K /		
capacity o		111 2 OF 110.2 UIUSIII	ing							W	Mand	
	pirder(s) for truss to trus	s connections.								10.9		BEK
	nechanical connection (0							N.	PE-2022	042259
	late capable of withstar									V V	100	128

- bearing plate capable of withstanding 121 lb uplift at joint 5 and 134 lb uplift at joint 2.

SIONAL E May 22,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172	
P240541-01	B1	Monopitch Supported Gable	1	1	Job Reference (optional)	165719428

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:52 ID:ZGslfjkIHegb9k69UnyUKMzw3Us-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-5-8

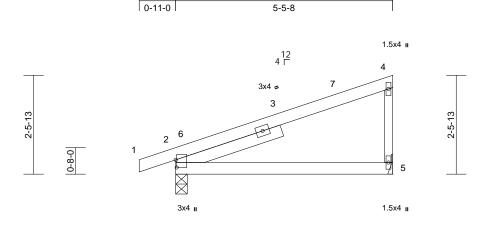
Plate Offsets (X, Y): [2:0-2-5,0-0-5]

Plate Offsets ((X, Y): [2:0-2-5,0-0-5]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.23 0.09 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 n/a	(loc) 2-7 2-7 -	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 23 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Left 2x4 SP No.2 Structural wood she 5-5-8 oc purlins. Rigid ceiling directly bracing.	athing directly applie applied or 10-0-0 oc 3=5-3-8, 7=5-3-8 12) : 8), 6=-11 (LC 8), 7= C 1), 6=40 (LC 1), 7=	capacity 6) Provide bearing 2, 11 lb 7) This trus Internation R802.10 LOAD CASE	are assumed to be: of 565 psi. mechanical connectio late capable of withs uplift at joint 6 and 89 is designed in acco unal Residential Code 2 and referenced sta (S) Standard	on (by oth standing 4 Ib uplift a rdance w e sections	ers) of truss to 7 lb uplift at jo t joint 7. ith the 2018 5 R502.11.1 a	o pint					
TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASG Vasd=91n Ke=1.00; (exterior 20 Exterior(21 exposed; and forces DOL=1.60 2) Truss des only. For see Stand or consult 3) Gable stuu 4) This truss	Tension 1-2=-4/0, 2-4=-162/5	55, 4-5=-30/7 33/45 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-11-0 to 4-1-0, cantilever left and ri ed;C-C for members ns shown; Lumber In the plane of the true (normal to the face) d Details as applicab gner as per ANSI/TP T a 10.0 psf bottom	ight ss , lle, 11.								PE-2022	BER DO42259

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172	
P240541-01	B2	Monopitch	7	1	Job Reference (optional)	165719429

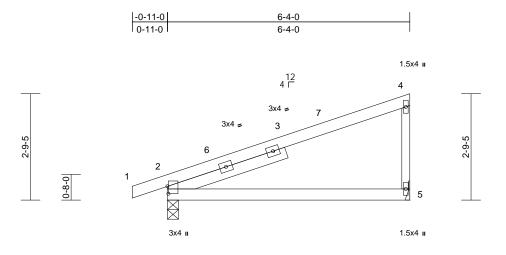
5-5-8


-0-11-0

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:52 ID:_0IrqFQxYLBtK5Es7Uy4Tgzw3Sh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1


	5-5-8	
Scale = 1:29		
Plate Offsets (X, Y): [2:0-2-5,0-0-5]		

	Λ, Τ). [2.0-2-3,0-0-3]											
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15			DEFL Vert(LL) Vert(CT)	in -0.05 -0.10	(loc) 2-5 2-5	l/defl >999 >652	L/d 240 180	PLATES MT20	GRIP 197/144
BCLL BCDL	0.0 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB 0. Matrix-P	0.00	Horz(CT)	n/a	-	n/a	n/a	Weight: 24 lb	FT = 20%
-	10.0	oode										11 - 2070
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m Ke=1.00; C exterior zo Interior (1) exposed ; and forces DOL=1.60 2) This truss chord live I 3) Bearings a capacity of 4) Refer to gi 5) Provide m bearing pla	2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 2 Structural wood she 5-5-8 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-8, § Max Horiz 2=92 (LC Max Uplift 2=-80 (LC Max Uplift 2=-80 (LC Max Grav 2=311 (LC (Ib) - Maximum Com Tension 1-2=-4/0, 2-4=-104/4 2-5=0/0 Cat. II; Exp C; Enclose ine and C-C Exterior(2 4-1-0 to 5-4-4 zone; c end vertical left expos & MWFRS for reaction plate grip DOL=1.60 has been designed for has been designed for bas med to be: Joi	athing directly applie cept end verticals. applied or 10-0-0 oc 5= Mechanical 12) 2 8), 5=-69 (LC 12) C 1), 5=235 (LC 1) pression/Maximum 45, 4-5=-182/261 4 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E)-0-11-0 to 4-1-0, cantilever left and rigi ed;C-C for members ons shown; Lumber r a 10.0 psf bottom ith any other live load int 2 SP No.2 crushin ss connections. (by others) of truss to	e) ht Ig	Standard							STATE OF M STATE OF M NATHA FO: PE-20220	A Hos
6) This truss Internation	is designed in accordanal Residential Code so and referenced stand	ections R502.11.1 ar	nd							X	C'SSIONA	222
											iviay	22,2024
Design va a truss sy building d is always fabricatior	alid for use only with MiTek® stem. Before use, the buildin lesign. Bracing indicated is required for stability and to n, storage, delivery, erection	connectors. This design i ng designer must verify the to prevent buckling of indiv prevent collapse with poss and bracing of trusses an	N THIS AND INCLUDED MITEK s based only upon parameters s e applicability of design paramet idual truss web and/or chord m lible personal injury and propert d truss systems, see ANS/TPI e from the Structural Building C	shown, and is for an individua ters and properly incorporate embers only. Additional tem y damage. For general guida 1 Quality Criteria, and DSE	ual build e this d nporary dance re B-22 av	ding component lesign into the o y and permanen egarding the vailable from Tru	, not verall t bracing uss Plate In	stitute (w	ww.tpinst.c	org)		CREASTRUCTION ON FLANS REVIEW MENT SERVICES MMITSOURI
											06/12/2	024 10:57:35

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172	
P240541-01	B3	Monopitch	2	1	Job Reference (optional)	165719430

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:52 ID:_0IrqFQxYLBtK5Es7Uy4Tgzw3Sh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

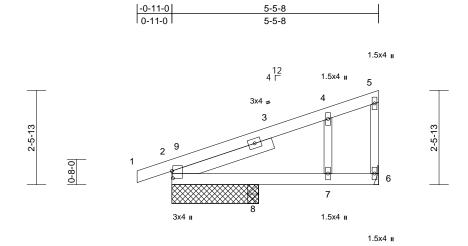
Page: 1

Scale = 1:30.1				 	6-4-	-0					
Plate Offsets (X, Y):	[2:0-2-5,0-0-5]										
Loading	(psf) 25.0	Spacing Plate Grip DOI	2-0-0	CSI		DEFL	in -0.09	(loc) 2-5	l/defl >828	PLATES	GRIP 197/144

LUMBER			LOAD CASE(S)	Standard									
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 28 lb	FT = 20%	
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	n/a	-	n/a	n/a			
TCDL	10.0	Lumber DOL	1.15	BC	0.50	Vert(CT)	-0.18	2-5	>414	180			
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.92	Vert(LL)	-0.09	2-5	>828	240	MT20	197/144	

LUWIDER		
TOP CHORD	2x4 SP No.2	
BOT CHORD	2x4 SP No.2	
WEBS	2x3 SPF No.2	
SLIDER	Left 2x4 SP No.2 3-3-0	
BRACING		
TOP CHORD	Structural wood sheathing directly applied or	
	2-2-0 oc purlins, except end verticals.	
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc	
	bracing.	
REACTIONS	(size) 2=0-3-8, 5= Mechanical	
	Max Horiz 2=104 (LC 12)	
	Max Uplift 2=-86 (LC 8), 5=-80 (LC 12)	
	Max Grav 2=349 (LC 1), 5=276 (LC 1)	
FORCES	(lb) - Maximum Compression/Maximum	
	Tension	
TOP CHORD	1-2=-4/0, 2-4=-115/53, 4-5=-213/290	
BOT CHORD	2-5=0/0	
NOTES		
1) Wind: AS	CE 7-16; Vult=115mph (3-second gust)	
Vasd-01n	nnh: TCDI -6 Onst: BCDI -6 Onst: h-35ft:	

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 6-2-12 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads. 3) Bearings are assumed to be: Joint 2 SP No.2 crushing
- capacity of 565 psi. 4)
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 80 lb uplift at joint 5 and 86 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172	
P240541-01	B4	Monopitch Structural Gable	1	1	Job Reference (optional)	165719431

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:52 ID:chPq0_r0D5WMx_6VPB2D63zw3PY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:30.4

Plate Offsets (X, Y): [2:0-2-5,0-0-5]

	(X; 1): [2:0 2 0;0 0 0]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-P	0.33 0.32 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.02 n/a	(loc) 7-8 7-8 -	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 25 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Left 2x4 SP No.2 2 Structural wood she 5-5-8 oc purlins, ex Rigid ceiling directly bracing. 	eathing directly applie cept end verticals. ⁷ applied or 10-0-0 or 6= Mechanical, 8=0- 12) 2 8), 6=-56 (LC 12), 8	7) ed or 8) C LO. 3-8 8=-34	capacity of 5 565 psi. Refer to gird Provide mec bearing plate 6, 60 lb uplift This truss is International	assumed to be: J 65 psi, Joint 8 SP er(s) for truss to tru hanical connection e capable of withst at joint 2 and 34 II designed in accord Residential Code nd referenced stan Standard	No.2 cru uss conr (by oth anding 5 b uplift a dance w sections	ushing capac nections. ers) of truss i6 lb uplift at j it joint 8. ith the 2018 is R502.11.1 a	ity of to joint					
FORCES TOP CHORD BOT CHORD WEBS	,	48, 4-5=-16/8, 5-6=-3	34/29										
Vasd=91r Ke=1.00; exterior z: Interior (1 exposed ; and force: DOL=1.60 2) Truss de: only. For see Stanc or consult 3) Gable stu 4) This truss	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose cone and C-C Exterior(2 I) 4-1-8 to 5-4-4 zone; c ; end vertical left expos s & MWFRS for reactio 0 plate grip DOL=1.60 signed for wind loads in r studs exposed to wind dard Industry Gable En- t qualified building desi dds spaced at 1-4-0 oc. s has been designed for a load nonconcurrent wi	EDL=6.0psf; h=35ft; ad; MWFRS (envelop E) -0-11-0 to 4-1-8, cantilever left and rig sed;C-C for members ons shown; Lumber n the plane of the tru d (normal to the face) d Details as applicat gner as per ANSI/TF r a 10.0 psf bottom	ht s iss), ole, ole, 1.									PE-2022	BER 0042259

May 22,2024

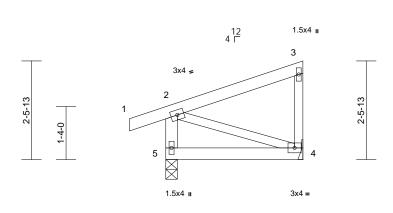
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172	
P240541-01	C1	Monopitch	5	1	Job Reference (optional)	165719432

3-5-8

3-5-8

-0-11-0


0-11-0

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:52 ID:FXADgiPtNEIqT3dL5st?_mzw3Oq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale	- '	1.20.1	

3-5-8

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.17	Vert(LL)	-0.01	4-5	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	-0.01	4-5	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 17 lb	FT = 20%

BOT CHORD	2x4 SP N	0.2
WEBS	2x3 SPF I	No.2 *Except* 5-2:2x4 SP No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	5-5-8 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	4= Mechanical, 5=0-3-8
	Max Horiz	5=65 (LC 9)
	Max Uplift	4=-52 (LC 12), 5=-63 (LC 8)
	Max Grav	4=132 (LC 1), 5=231 (LC 1)

FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/24, 2-3=-56/26, 3-4=-100/138,
	2-5=-199/198
BOT CHORD	4-5=-160/46
WEBS	2-4=-49/169

WEBS

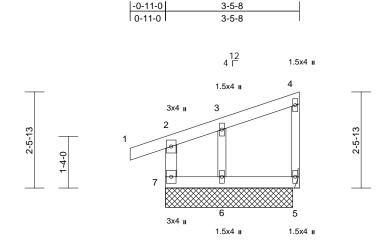
NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) Bearings are assumed to be: Joint 5 SP No.2 crushing capacity of 565 psi.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 52 lb uplift at joint 4 and 63 lb uplift at joint 5.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

May 22,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172	
P240541-01	C2	Monopitch Supported Gable	1	1	Job Reference (optional)	165719433

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:52 ID:rm4Mk7_4_D0RIZvxkGwuzw3O4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

i age

Scale = 1:29.8

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.19 0.13 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 n/a	(loc) 6-7 6-7 -	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
	Max Horiz 7=65 (LC Max Uplift 5=-16 (LC (LC 8) Max Grav 5=73 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 5=3-3-8, 7=3-3-8 9) : 8), 6=-89 (LC 12), 7	8) ed or 9) c L(7=-14	chord live lo Bearings are capacity of 5 Provide mec bearing plate 7, 16 lb uplif This truss is International	chanical connect capable of wit t at joint 5 and designed in ac Residential Co nd referenced	ent with any e: Joint 6 Sf ction (by oth thstanding 1 89 lb uplift a ccordance w ode sections	other live loa P No.2 crushi ers) of truss t 4 lb uplift at j t joint 6. th the 2018 R502.11.1 a	ing to joint					
FORCES	(LC 1) (Ib) - Maximum Com Tension 2-7=-133/126, 1-2=0												

3-5-8

- BOT CHORD WEBS
- NOTES
- Unbalanced roof live loads have been considered for this design.

3-6=-138/283, 4-5=-57/84

3-4=-34/14

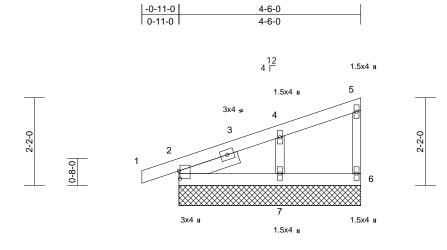
6-7=0/0, 5-6=0/0

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) zone; cantilever left and right exposed; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 2-0-0 oc.

NATHANIEL FOX PE-2022042259

May 22,2024

DEVELOPMENT SERVICES LEES SUMMIT, MISSOURI 06/12/2024 10:57:36


TION

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172	
P240541-01	D1	Monopitch Supported Gable	2	1	Job Reference (optional)	165719434

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:52 ID:tL7dTR?oUBQjoZd1ul8GQCzw3F0-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

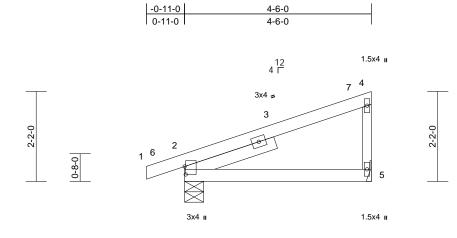
4-6-0

Scale :	= 1:28.	5					

Plate Offsets (X, Y): [2:0-2-5,0-0-	5]
-------------------------------------	---	---

Plate Olisets	(X, Y): [2:0-2-5,0-0-5]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/T	FPI2014	CSI TC BC WB Matrix-P	0.10 0.05 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a n/a	(loc) - - -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 20 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Left 2x4 SP No.2 1 Structural wood sheat 4-6-0 oc purlins, exit Rigid ceiling directly bracing. (size) 2=4-6-0, 6 	athing directly applie cept end verticals. applied or 10-0-0 oc i=4-6-0, 7=4-6-0	c) 6) A 7) F b 6 6 6 8) T 10 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 8 7 8 7 8 8 7 8 7 8 7 8 7 8 8 7 8 7 8 8 8 7 8 7 8 7 8 8 7 8 8 7 8 7 8 7 8	chord live loa All bearings a capacity of 5 Provide mecl bearing plate 5, 43 lb uplift This truss is nternational	nanical connection capable of withsta at joint 2 and 70 lb designed in accord Residential Code s ad referenced stand	vith any SP No. (by oth anding 1 o uplift a lance w sections	other live loads 2 crushing ers) of truss to 6 lb uplift at join t joint 7. ith the 2018 \$ R502.11.1 and	nt					
	Max Horiz 2=75 (LC Max Uplift 2=-43 (LC (LC 12) Max Grav 2=165 (LC (LC 1)	8), 6=-16 (LC 8), 7=											
FORCES	(lb) - Maximum Com Tension	-											
TOP CHORD	5-6=-48/72	7, 4-5=-30/11,											
WEBS	4-7=-166/304												an .
Vasd=91 Ke=1.00; exterior z Exterior z right expo members Lumber I 2) Truss de only. For see Stan or consul 3) Gable red	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BCI Cat. II; Exp C; Enclose tone and C-C Corner(3E 2N) 4-1-0 to 4-4-12 zone sed; end vertical left e and forces & MWFRS oDL=1.60 plate grip DO signed for wind loads in r studs exposed to wind dard Industry Gable End t qualified building desig quires continuous bottor ids spaced at 2-0-0 oc.	DL=6.0psf; h=35ft; d; MWFRS (envelop): -0-11-0 to 4-1-0, e; cantilever left and xposed;C-C for for reactions shown; L=1.60 the plane of the tru (normal to the face) d Details as applicab gner as per ANSI/TP	ss , ple,								AL.	PE-2022	X DER 042259

May 22,2024

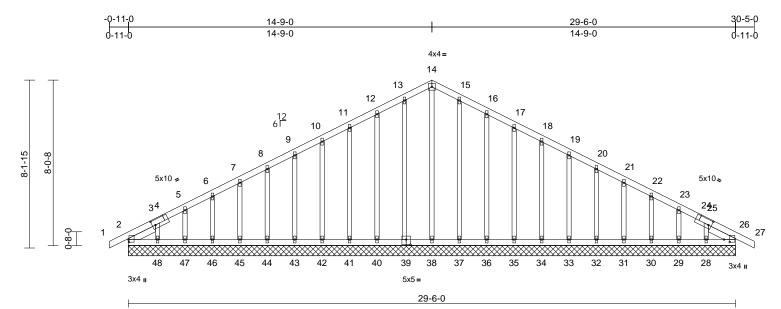

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

TION 'IEW DEVELOPMENT SERVICES LEE'S' SUMMIT'S MISSOURI 06/12/2024 10:57:36

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172	
P240541-01	D2	Monopitch	7	1	Job Reference (optional)	165719435

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:53 ID:6LiSwKJ6MAi1wZd1PCcMUgzw3Ec-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

LEE'S'SUMWIT, MISSOURI 06/12/2024 10:57:36



		4-6	6-0	4	
Scale = 1:27.8					
Plate Offsets (X, Y): [2:0-2-5,0-0-5]					

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC (0.46	Vert(LL)	-0.02	2-5	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC (0.24	Vert(CT)	-0.04	2-5	>999	180		
BCLL	0.0	Rep Stress Incr	YES		0.00	Horz(CT)	n/a	-	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 20 lb	FT = 20%
LUMBER		-	LOAD CASE(S)	Standard								
TOP CHORD	2x4 SP No.2											
BOT CHORD	2x4 SP No.2											
WEBS	2x3 SPF No.2											
SLIDER	Left 2x4 SP No.2 2	2-3-6										
BRACING												
TOP CHORD			ed or									
	4-6-0 oc purlins, ex											
BOT CHORD	0 0 ,	applied or 10-0-0 oc	;									
	bracing.											
REACTIONS		5= Mechanical										
	Max Horiz 2=78 (LC											
	Max Uplift 2=-73 (LC											
	Max Grav 2=269 (L0											
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORD	Tension 1-2=-4/0, 2-4=-85/40) 1-51/7/218										
BOT CHORD	,	5, 4-5=-147/210										
NOTES	2-3-0/0											
	CE 7-16; Vult=115mph	(2 cocond quet)										
	nph; TCDL=6.0psf; BC											
	Cat. II; Exp C; Enclose		e)									
	one and C-C Exterior(2		-)									The
) 4-1-0 to 4-4-12 zone;		ght								OF N	ALCON .
	end vertical left expos		;							0	AFEULT	AISSO
	s & MWFRS for reaction	ons shown; Lumber								A	A. M.	1.5
) plate grip DOL=1.60	100 (1 //								R	S NATHA	NIEL VE V
	has been designed for									4	FO	x
	load nonconcurrent wi are assumed to be: Joi									ØA	110	
capacity o		Int 2 OF NO.2 Clushi	ig							W T	ATT	
	irder(s) for truss to trus	ss connections.								ALA	Kanil	BER
, 0	echanical connection ()							W.	5 V WINNI	
	ate capable of withstar									N.	ON PE-2022	042259
5 and 73 II	b uplift at joint 2.	. . ,								Y	130	154
	is designed in accorda									6	SIONA	LEN
	nal Residential Code s		nd								UNA	
R802.10.2	2 and referenced stand	lard ANSI/TPI 1.									na	
											Мау	/ 22,2024
A WAR			N THIS AND INCLUDED MITEK		1472	4/2/2022 BEEC				-		
			is based only upon parameters									
a truss sy	ystem. Before use, the buildir	ng designer must verify the	e applicability of design paramet	ers and properly incorpora	ate this	design into the o	verall					UNE DIRUCTION
building d	design. Bracing indicated is the required for stability and to a	to prevent buckling of indiv prevent collapse with poss	vidual truss web and/or chord m sible personal injury and property	empers only. Additional ter damage. For general qui	emporar iidance	y and permanen regarding the	nt bracing					
fabricatio	on, storage, delivery, erection	and bracing of trusses an	d truss systems, see ANSI/TPI	1 Quality Criteria, and DS	SB-22 a	available from Tr		nstitute (w	ww.tpinst.	org)	DEVELO	RMENT SERVICES
and BCS	BI Building Component Safe	ety Information availabl	e from the Structural Building C	omponent Association (ww	vw.sbcs	components.cor	n)				LEE'S'S	MMIT'SMISSOURI
·											• • •	

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172	
P240541-01	G1	Common Supported Gable	1	1	Job Reference (optional)	165719436

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:53 ID:X0UIqcAee_eyxTYg3cO0sfzw3DV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:56

Plate Offsets (X, Y): [2:0-1-8,0-0-5], [4:0-1-12,0-3-0], [24:0-1-12,0-3-0], [26:0-1-8,0-3-5], [39:0-2-8,0-3-0]

	, , .	-,1,		· /· · ·]/[· ·	- /									
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014		CSI TC BC WB Matrix-S	0.03 0.22		in n/a n/a 0.01	26	- n/a - n/a 6 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 169 lb	GRIP 197/144 FT = 20%
	2x4 SP N 2x3 SPF Left 2x4 S No.2 1- Structura 6-0-0 oc Rigid ceil bracing. (size)	lo.2 No.2 SP No.2 5-14 I wood she purlins. ing directly 2=29-6-0, 29=29-6-0 32=29-6-0 32=29-6-0 33=29-6-0 33=29-6-0 41=29-6-0 (LC 13), 3 (LC 13), 3 (LC 13), 3 (LC 12), 4 (LC 12), 4 (LC 12), 4	1-5-14, Right 2x4 SF athing directly applie applied or 10-0-0 oc 26=29-6-0, 28=29-6 0, 30=29-6-0, 31=29 0, 33=29-6-0, 34=29 0, 33=29-6-0, 37=29 0, 39=29-6-0, 43=29 0, 45=29-6-0, 43=29 1, 45=29-6-0, 45=29 1, 45=29-6-0, 45=291, 45=29 1, 45=29-6, 45=291, 45=29 1, 45=29-6, 45=291, 45=29 1, 45=291,	ed or 6-0, 6-0, 6-0, 6-0, 6-0, 6-0, 6-0, 6-0, 6-0, 6-0, 8=-67 39 39 47 BOT CHOR 24 40 39 40		30=116 32=116 34=116 36=118 38=143 40=119 42=116 44=116 46=116	(LC 26) (LC 1), ; (LC 1), ; (LC 1), ; (LC 1), ; (LC 25) (LC 25) (LC 25) (LC 25) (LC 25) (LC 25) (LC 1), ; (LC 1), ; (LC 1), ; (LC 1), ; (LC 25) pompressi /68, 3-5= -90/83, 7 =-49/132 2-13=-84 4-15=-92 2-13=-84 4-15=-92 2-13=-84 4-15=-92 3-14=-42 3-44=-42 3-44=-42 3-44=-42 3-44=-42 3-44=-43 3-37=-43 3-37=-43 3-31=-43 3-3	29=117 (LC : 31=116 (LC 2) 33=116 (LC 2) 33=116 (LC 2) 33=118 (LC 1) 37=119 (LC : 39=118 (LC 4) 41=116 (LC 2) 43=116 (LC 2) 47=117 (LC 2) on/Maximum 150/66, 8=-72/100, 5, 10-11=-58/1 (280, (199, 	226), 6), 6), 226), 25), 25), 5), 5), 5), (65, /26,	2) W 2) W V K E 19 le ex re	ES nbalanced is design. /ind: ASC asd=91m e=1.00; C xterior zor xterior(2N 9-9-0, Ext ff and rigk xposed;C-	11-41 8-44= 5-47= 16-36 19-33 22-30 d roof li E 7-16(, bh; TCI at. II; E ee and) 4-1-0 erior(2I) t expo C for n nown; I	=-90/62, 10-42=-5 -90/62, 7-45=-90 -92/100, 3-48=-74 =-92/72, 17-35=-5 =-90/62, 20-32=-5 =-90/78, 23-29=-5 ive loads have be ; Vult=115mph (3 DL=6.0psf; BCDL Exp C; Enclosed; C-C Corner(3E) to 14-9-0, Corner (N) 19-9-0 to 30-5- sed ; end vertical	8/124, 15-37=-93/36, 90/62, 18-34=-90/62, 90/62, 21-31=-90/62, 92/100, 25-28=-79/120 en considered for -second gust) =6.0psf; h=35ft; MWFRS (envelope) 0-11-0 to 4-1-0, r(3R) 14-9-0 to -0 zone; cantilever left and right tes & MWFRS for 0 plate grip

26-28=-43/165

May 22,2024

SIONAL ET

Continued on page 2 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Page: 1

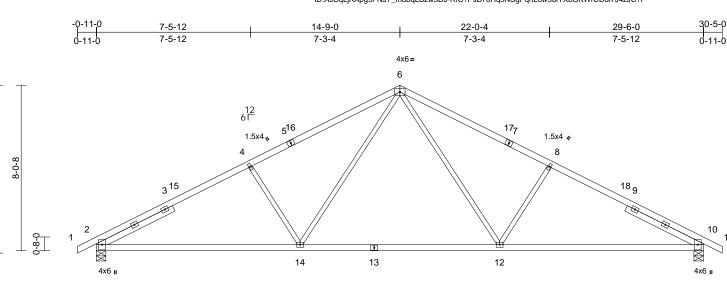
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172	
P240541-01	G1	Common Supported Gable	1	1	Job Reference (optional)	165719436

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 1.5x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

- 6) Gable studs spaced at 1-4-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 30 lb uplift at joint 2, 24 lb uplift at joint 39, 44 lb uplift at joint 40, 40 lb uplift at joint 41, 39 lb uplift at joint 42, 39 lb uplift at joint 43, 39 lb uplift at joint 44, 40 lb uplift at joint 45, 39 lb uplift at joint 46, 41 lb uplift at joint 47, 80 lb uplift at joint 48, 17 lb uplift at joint 37, 47 lb uplift at joint 36, 40 lb uplift at joint 33, 39 lb uplift at joint 32, 40 lb uplift at joint 31, 39 lb uplift at joint 32, 40 lb uplift at joint 31, 39 lb uplift at joint 32, 40 lb uplift at joint 31, 39 lb uplift at joint 30, 41 lb uplift at joint 29, 67 lb uplift at joint 28 and 1 lb uplift 26.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:53 ID:X0UlqcAee_eyxTYg3cO0sfzw3DV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172		
P240541-01	G2	Common	8	1	Job Reference (optional)	165719437	

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:53 ID:AJCqLjKApg9FNJT_m8bqLBzw3DJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	9-10-13	19-7-3	29-6-0	_
	9-10-13	9-8-5	9-10-13	Т
Scale = 1:56				

Plate Offsets (X, Y): [2:0-3-9,0-1-5], [10:0-3-9,0-1-5]

8-1-15

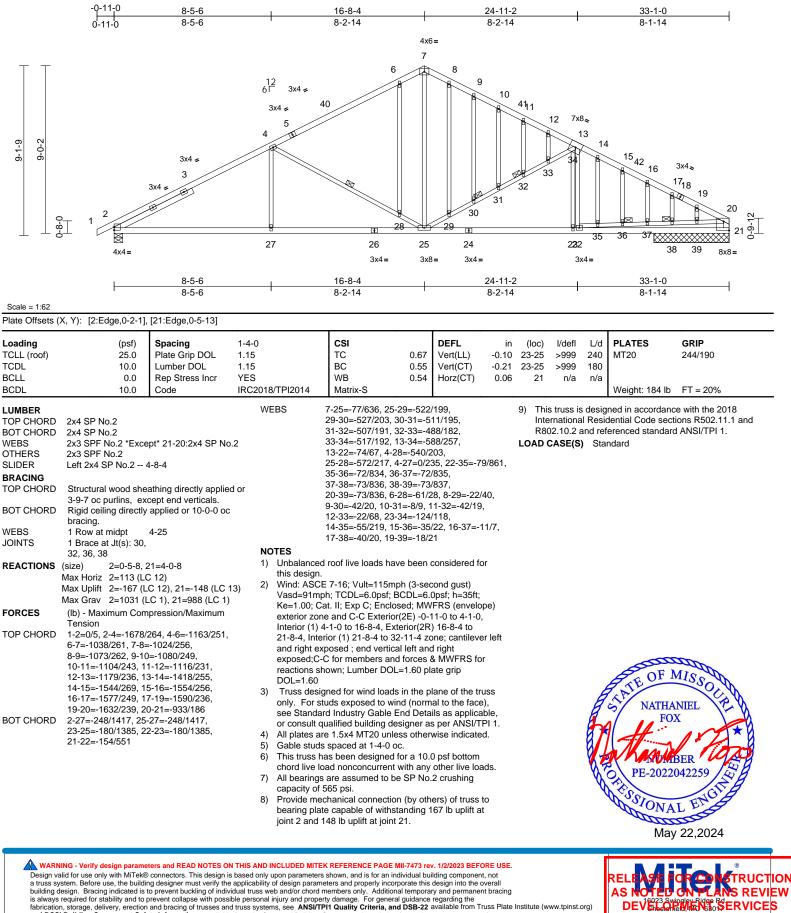
Plate Offsets (X, Y): [2:0-3-9,0-1-5],	[10:0-3-9,0-1-5]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TF	PI2014	CSI TC BC WB Matrix-S	0.77 1.00 0.34	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.23 -0.49 0.08	(loc) 2-14 2-14 10	l/defl >999 >728 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 131 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 4 No.2 4-1-13 Structural wood she 2-2-0 oc purlins. Rigid ceiling directly bracing.	4-1-13, Right 2x4 SF athing directly applie applied or 2-2-0 oc	4 SP ch 5) Al ca 6) Pr be joi 7) Th ad or In	nord live loa I bearings a apacity of 50 rovide mech earing plate int 2 and 22 his truss is ternational	hanical connection capable of withst 25 lb uplift at joint designed in accor Residential Code nd referenced star	with any e SP No. n (by oth anding 2 10. dance w sections	other live load 2 crushing ers) of truss to 225 lb uplift at ith the 2018 5 R502.11.1 at	D					
	REACTIONS (size) 2=0-5-8, 10=0-5-8 Max Horiz 2=-148 (LC 17) Max Uplift 2=-225 (LC 12), 10=-225 (LC 13) Max Grav 2=1392 (LC 1), 10=1392 (LC 1)												
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=0/7, 2-4=-2209// 6-8=-1951/411, 8-10 2-14=-345/1864, 12- 10-12=-249/1864 6-12=-166/708, 8-12 6-14=-166/708, 4-14	390, 4-6=-1951/411,)=-2209/390, 10-11= ∙14=-96/1278, 2=-463/307,											ALL ALL
this design 2) Wind: ASC Vasd=91m Ke=1.00; (exterior zo Interior (1) 19-9-0, Int and right e exposed;C reactions s DOL=1.60	ed roof live loads have CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 4-1-0 to 14-9-0, Exter terior (1) 19-9-0 to 30-5 exposed ; end vertical I >C for members and fi shown; Lumber DOL=	been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-11-0 to 4-1-0, ior(2R) 14-9-0 to 5-0 zone; cantilever I left and right orces & MWFRS for 1.60 plate grip	e)									S NATHA FOI	BER 042259

May 22,2024

Page: 1

11

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

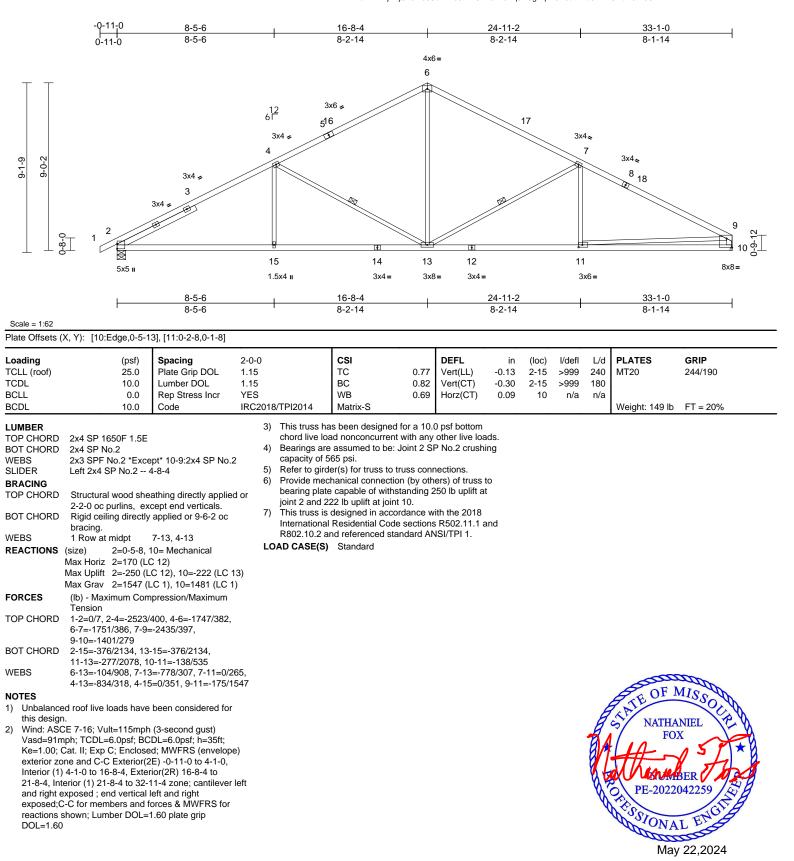

RELEASE OR CONSTRUCTION AS NOTED ON LANS REVIEW DEVELORIMENT SERVICES LEE'S SUMMIT'S MISSOURI 06/12/2024 10:57:36

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172	
P240541-01	H1	Common Structural Gable	1	1	Job Reference (optional)	165719438

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:53 ID:gg_d5Z_6YmQpJNRJIPZyP4zw3BA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

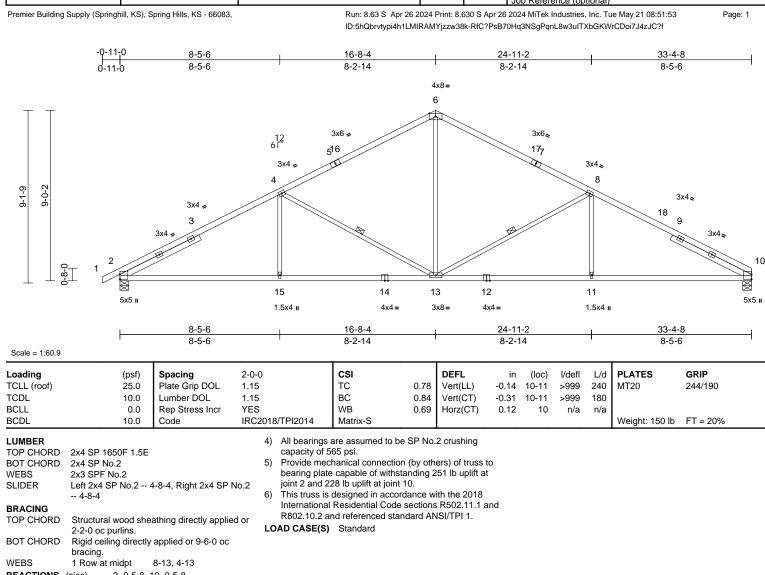
LEE'S'SUMMIT'SMISSOURI 06/12/2024 10:57:36



and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172	
P240541-01	H2	Common	12	1	Job Reference (optional)	165719439

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:53 ID:EuznFT4ljw7jUTsTf68SeZzw35t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172		
P240541-01	НЗ	Common	2	1	Job Reference (optional)	165719440	

BOT CHORD	Rigid ceiling directly applied or 9-6-0 oc
	bracing.
WEBS	1 Row at midpt 8-13, 4-13
REACTIONS	(size) 2=0-5-8, 10=0-5-8
	Max Horiz 2=168 (LC 12)
	Max Uplift 2=-251 (LC 12), 10=-228 (LC 13)
	Max Grav 2=1567 (LC 1), 10=1501 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/7, 2-4=-2564/405, 4-6=-1788/388,
	6-8=-1789/391, 8-10=-2567/414
BOT CHORD	2-15=-377/2169, 13-15=-377/2169,
	11-13=-254/2174, 10-11=-254/2174
WEBS	6-13=-108/933, 8-13=-837/320, 8-11=0/354,
	4-13=-832/318, 4-15=0/352

NOTES

 Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 16-8-4, Exterior(2R) 16-8-4 to 21-8-4, Interior (1) 21-8-4 to 33-4-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. SINTE OF MISSO NATHANIEL FOX PE-2022042259

May 22,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172	
P240541-01	H4	Common	1	1	Job Reference (optional)	165719441

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:54 ID:GjT2tPBCEBumhaVLbiqAvyzw39d-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

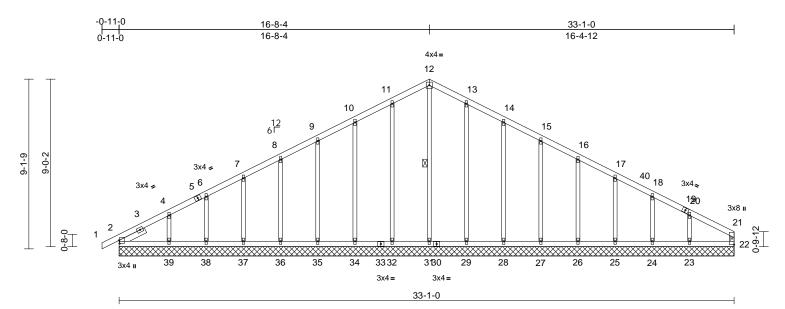
Page: 1

34-3-8 8-5-6 16-8-4 24-11-2 33-4-8 0-11-0 8-5-6 8-2-14 8-2-14 8-5-6 4x8= 6 3x6 🧔 3x6 👟 12 61 ₅17 187 3x4 3x4 🚽 4 8 9-0-2 9-1-9 3x4 👟 3x4 🖌 3 9 3x4 10 0-8-0 11 ኞ ॺ 16 15 14 13 12 5x5 I 5x5 II 1.5x4 **I** 4x4 =3x8= 4x4 =1.5x4 u 8-5-6 16-8-4 33-4-8 24-11-2 8-5-6 8-2-14 8-2-14 8-5-6 Scale = 1:62.1 Loading 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) Spacing (loc) TCLL (roof) 25.0 Plate Grip DOL 1.15 тс 0.77 Vert(LL) -0.13 10-12 >999 240 MT20 244/190 TCDI 10.0 1 15 BC Lumber DOL 0.83 Vert(CT) -0.30 10-12 >999 180 BCLL 0.0 Rep Stress Incr YES WB 0.68 Horz(CT) 0.12 10 n/a n/a IRC2018/TPI2014 BCDL 10.0 Code Matrix-S Weight: 151 lb FT = 20% LUMBER All bearings are assumed to be SP No.2 crushing 4) 2x4 SP 1650F 1.5E capacity of 565 psi. TOP CHORD 2x4 SP No.2 Provide mechanical connection (by others) of truss to BOT CHORD 5) bearing plate capable of withstanding 251 lb uplift at 2x3 SPF No.2 WEBS joint 2 and 251 lb uplift at joint 10. SLIDER Left 2x4 SP No.2 -- 4-8-4, Right 2x4 SP No.2 This truss is designed in accordance with the 2018 6) -- 4-8-4 International Residential Code sections R502.11.1 and BRACING R802.10.2 and referenced standard ANSI/TPI 1. TOP CHORD Structural wood sheathing directly applied or LOAD CASE(S) Standard 2-2-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 9-6-6 oc bracing. WFBS 1 Row at midpt 8-14 4-14 REACTIONS (size) 2=0-5-8, 10=0-5-8 Max Horiz 2=-166 (LC 13) Max Uplift 2=-251 (LC 12), 10=-251 (LC 13) Max Grav 2=1566 (LC 1), 10=1566 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/7, 2-4=-2562/405, 4-6=-1787/387, 6-8=-1787/387, 8-10=-2562/405, 10-11=0/7 BOT CHORD 2-16=-375/2168. 14-16=-375/2168. 12-14=-250/2168, 10-12=-250/2168 WEBS 6-14=-103/931, 8-14=-832/318, 8-12=0/352, 4-14=-832/318, 4-16=0/352 NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 16-8-4, Exterior(2R) 16-8-4 to 21-8-4, Interior (1) 21-8-4 to 34-3-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


OF MISSO NATHANIEL FOX BER PE-2022042259 SSIONAL E May 22,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

TION **DEVELOPMEN** SERVICES LEE'S'SUMMIT'SMISSOURI 06/12/2024 10:57:36

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172	
P240541-01	H5	Common Supported Gable	1	1	Job Reference (optional)	165719442

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:54 ID:c0?4rhoBWFuiv87ZQDAWsIzw33g-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

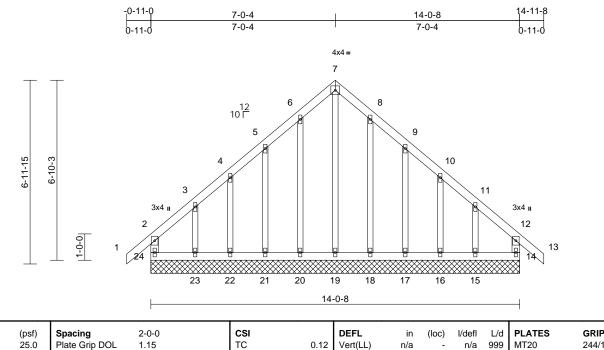
Scale = 1:62

Plate Offsets (X, Y): [2:0-2-1,0-0-5]

Loading	(psf)	Spacing	1-11-4	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.09	Vert(LL)	n/a	-		999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.21	Horz(CT)	0.00	22	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 166 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Left 2x4 SP No.2 Structural wood sh 6-0-0 cc purlins, e Rigid ceiling directl bracing. 1 Row at midpt (size) 2=33-1-(24=33-1 27=33-1 31=33-1 31=33-1 38=33-1 Max Horiz 2=164 (L 24=-44 (26=-59 (28=-65 (32=-54 (1-6-6 eathing directly applied xcept end verticals. y applied or 10-0-0 oc 12-31 0, 22=33-1-0, 23=33-1- 0, 25=33-1-0, 26=33- -0, 32=33-1-0, 29=33- -0, 36=33-1-0, 37=33- -0, 39=33-1-0	TOP CHORD d or BOT CHORD 0, 1-0, 1-0, 1-0, 0, 1-0, 1	1-2=0/7, 2-4=-190/ 6-7=-105/135, 7-8= 9-10=-101/237, 10 11-12=-136/338, 1: 13-14=-120/293, 1: 15-16=-83/186, 16 17-18=-56/80, 18-2 21-22=-80/4 2-39=-32/97, 38-35 36-37=-32/97, 37-3 32-34=-32/97, 37-3 32-34=-32/97, 27-2 25-26=-32/97, 27-2 25-26=-32/97, 27-2 22-23=-32/97 12-31=-215/41, 11 10-34=-135/101, 93 4-39=-165/198, 13 14-28=-135/93, 17 18-24=-129/121, 22 ed roof live loads hav	91/162 -11=-12 2-13=-1 4-15=-1 -17=-64 20=-67/2 9=-32/97 332=-32/9 28=-32/9 28=-32/9 28=-32/9 28=-32/9 29=-14 -35=-13 7=-137/9 -29=-14 5-27=-1 -25=-13 0-23=-1 e been f	 k. 8-9=-83/189 b)/293, b)/293, b)/293, b)/233, b)/237, b)/237, b)/237, b)/237, c)/237, c)/237, c)/237, c)/237, c)/237, c)/237, c)/24=-32/ c)/27, <lic) 27,<="" li=""> c)/27, c)/27, c)/27, <lic) 27,<="" li=""> c)/27, c)/27, <lic) 27,<="" li=""> c)/27, <lic) 27,<="" li=""> <lic) 27,<="" li=""> c)/27, <lic) 27,<="" li=""> <lic) 27,<="" li=""> c)/27, <lic) 27,<="" li=""> <lic) 2<="" th=""><th>, 7, 97, 97, 97, 97, 97, 94,</th><th> 6) Ga 7) Th ch ch all ca 9) Pri be 2, up 37 up 27 up 10) Th Int R8 </th><th>able studs is truss h ord live lc bearings pacity of ovide me aring plat 54 lb upli lift at join , 46 lb up lift at join , 59 lb up lift at join is truss is ernationa</th><th>s spac aas bee aad no s are a 565 ps chanic te cap ff at jo 565 ps chanic te cap ff at jo t 32, 5 565 ps chanic te cap ff at jo t 32, 5 t 22, 6 bilift at j t 23, 5 bilift at j t 22, 6 bilift at j t 22, 6 bilift at j t 22, 6 bilift at j t 23, 5 bilift at j t 23, 5 bilift at j t 24, 6 bilift at j t 24, 6 bilift at j t 24, 6 bilift at j t 24, 6 bilift at j t 22, 6 bilift at j t 24 c as c c as c c as c c as c c as c c as c c as c c as c c as c c as c c as c c as c c c c</th><th>ntinuous bottom ed at 2-0-0 oc. en designed for a nconcurrent with ssumed to be SP si. cal connection (by able of withstandi int 32, 63 lb uplift 9 lb uplift at joint joint 38, 111 lb up 5 lb uplift at joint joint 26, 63 lb uplift at joint 26, 63 lb uplift at gned in accordand dential Code sec ferenced standar undard</th><th>chord bearing. 10.0 psf bottom any other live loads. No.2 crushing vothers) of truss to ing 46 lb uplift at joint at joint 34, 59 lb 36, 62 lb uplift at joint Jift at joint 39, 50 lb 28, 58 lb uplift at joint ff at joint 25, 44 lb joint 23. ce with the 2018 tions R502.11.1 and d ANSI/TPI 1.</th></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)></lic)>	, 7, 97, 97, 97, 97, 97, 94,	 6) Ga 7) Th ch ch all ca 9) Pri be 2, up 37 up 27 up 10) Th Int R8 	able studs is truss h ord live lc bearings pacity of ovide me aring plat 54 lb upli lift at join , 46 lb up lift at join , 59 lb up lift at join is truss is ernationa	s spac aas bee aad no s are a 565 ps chanic te cap ff at jo 565 ps chanic te cap ff at jo t 32, 5 565 ps chanic te cap ff at jo t 32, 5 t 22, 6 bilift at j t 23, 5 bilift at j t 22, 6 bilift at j t 22, 6 bilift at j t 22, 6 bilift at j t 23, 5 bilift at j t 23, 5 bilift at j t 24, 6 bilift at j t 24, 6 bilift at j t 24, 6 bilift at j t 24, 6 bilift at j t 22, 6 bilift at j t 24 c as c c as c c as c c as c c as c c as c c as c c as c c as c c as c c as c c as c c c c	ntinuous bottom ed at 2-0-0 oc. en designed for a nconcurrent with ssumed to be SP si. cal connection (by able of withstandi int 32, 63 lb uplift 9 lb uplift at joint joint 38, 111 lb up 5 lb uplift at joint joint 26, 63 lb uplift at joint 26, 63 lb uplift at gned in accordand dential Code sec ferenced standar undard	chord bearing. 10.0 psf bottom any other live loads. No.2 crushing vothers) of truss to ing 46 lb uplift at joint at joint 34, 59 lb 36, 62 lb uplift at joint Jift at joint 39, 50 lb 28, 58 lb uplift at joint ff at joint 25, 44 lb joint 23. ce with the 2018 tions R502.11.1 and d ANSI/TPI 1.
FORCES	37=-62 (39=-111 Max Grav 2=188 (L 23=209 25=177 27=175 29=182 35=175 37=178 39=219 (Ib) - Maximum Con Tension	Ke=1.00; 0 exterior zo Exterior(21) , 21-8-4, Ex , left and rig 2), exposed;C 5), reactions s DOL=1.60 only. For s see Stand or consult	ph; TCDL=6.0psf; B Cat. II; Exp C; Enclos nne and C-C Corner(3 V) 4-1-0 to 16-8-4, C terior(2N) 21-8-4 to 3 ht exposed ; end ver C-C for members and shown; Lumber DOL- igned for wind loads studs exposed to wina rad Industry Gable E qualified building des are 1.5x4 MT20 unles	ed; MW 3E) -0-1 orner(3F 32-11-12 tical left forces a =1.60 pl in the p in the p id (norm nd Deta signer as	FRS (envelop 1-0 to 4-1-0, 3) 16-8-4 to 2 zone; cantile and right & MWFRS for ate grip lane of the tru: al to the face) ils as applicat s per ANSI/TP	ver ss , ple, 11.			The second second	A THATHA	HILEL X D42259	

May 22,2024

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

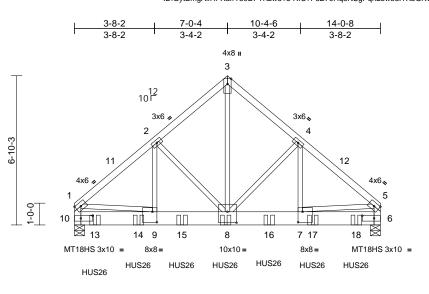
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172	
P240541-01	11	Common Supported Gable	1	1	Job Reference (optional)	165719443

Scale = 1:43.9

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:54 ID:N5Xzf2IXd9BlxbLet1wNZ9zw330-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-R	0.12 0.08 0.32	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 82 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 14=14-0-4 23=14-0-4 23=14-0-4 23=14-0-4 23=14-0-1 23=14-0-1 (Max Uplift 14=-76 (L 18=-39 (L 21=-82 (L 23=-146 (I 18=132 (I 18=132 (I 20=134 (I	applied or 6-0-0 oc 8, 15=14-0-8, 16=14-(8, 18=14-0-8, 19=14-(8, 21=14-0-8, 22=14-(8, 24=14-0-8 _C 11) C 9), 15=-139 (LC 13 C 13), 20=-41 (LC 12 (LC 12), 22=-44 (LC 12 (LC 12), 24=-102 (LC _C 19), 15=178 (LC 22 _C 20), 19=206 (LC 12 _C 20), 21=134 (LC 12 _C 25), 23=190 (LC 12) _C 25), 25=100 (LC 12) _C 25], 25=100 (LC 12) _C 25], 25=100 (LC 12) _C 25], 25=100 (LC 12) _C 25=100 (LC 12) _C 25=100 (LC 12) _C 25=100 (LC 12) _C 25=100 (LC 12)	NC i or 1) 2) 2-8, ->-9, ->-9,	5 3 9 9 1 DTES Unbalanced it this design. Wind: ASCE Vasd=91mph Ke=1.00; Cat exterior zone Exterior(2N) / Exterior(2N) / Exterior(2N) / Exterior(2N) / Exterior(2N) / ight exposed for members Lumber DOL Truss design only. For stu see Standard or consult qu All plates are Gable require Truss to be ft braced again Gable studs s	7-19=-311/103, 6 5-21=-104/136, 4 3-23=-128/149, 8 9-17=-105/136, 11 11-15=-122/149 roof live loads ha 7-16; Vult=115m in; TCDL=6.0psf; If t. II; Exp C; Enclo and C-C Corner 4-4-4 to 7-0-4, C; 12-0-4 to 14-11 12-0-4 to 14-11 4, end vertical lef and forces & MV =1.60 plate grip I red for wind load: ds exposed to wid lndustry Gable I alified building de 1.5x4 MT20 unle es continuous bo ully sheathed fror st lateral movem spaced at 1-4-0 c	22=-97/1 18=-106 0-16=-99 we been of BCDL=6. ssed; MW (3E) -0-1 orner(3R) 3 zone; cc t and righ VFRS for DOL=1.60 s in the p nd (norm End Deta sess other tom chor n one fac ent (i.e. c) oc.	25, (61, (125, (125, considered fo cond gust) Opsf; h=35ft; FRS (envelop 1-0 to 4-4-4, 7-0-4 to 12-(antilever left a tt exposed;C- reactions sho () ane of the tru, al to the face () is as applical is as applicated bearing. the or securely iagonal web)	De))-4, ind C Dwn; Jss), ble, PI 1. J.					
FORCES TOP CHORD BOT CHORD	6-7=-146/319, 7-8=- 9-10=-78/179, 10-11	0/48, 2-3=-138/131, 0/179, 5-6=-121/268, 146/319, 8-9=-121/26 1=-68/105, -13=0/48, 12-14=-151 -23=-102/115, -21=-102/115, -19=-102/115,	,9, 10 /97 11	chord live loa All bearings a capacity of 50 Provide mech bearing plate joint 24, 76 lb lb uplift at join joint 23, 39 lb lb uplift at join) This truss is o International	hanical connection capable of withs o uplift at joint 14, ht 21, 44 lb uplift at joint 18, ht 16 and 139 lb designed in acco Residential Code and referenced sta	with any e SP No. n (by oth tanding 1 41 lb upl at joint 22 82 lb upl uplift at jo rdance w e sections	other live loa 2 crushing ers) of truss t 02 lb uplift at ift at joint 20, 2, 146 lb uplift ift at joint 17, int 15. ith the 2018 : R502.11.1 a	o 82 t at 46		-		PE-2022	NIEL YE BER 042259 K

May 22,2024



RELEASE FOR STRUCTION AS NOTED ON PLANS REVIEW DEVELORMENT SERVICES LEE'S'SUMMIT'S MISSOURI 06/12/2024 10:57:36

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172	
P240541-01	12	Common Girder	1	2	Job Reference (optional)	165719444

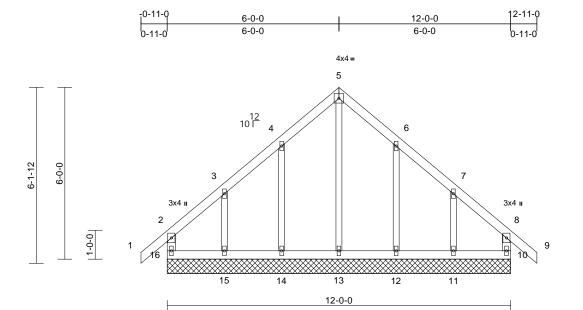
Scale = 1:52.9

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:54 ID:GytBmgAifHFXafrT59DFTKzw31u-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

0-1-12 U	3-8-2	7-0-4	10-4-6	13-10-12 ¹⁴⁻⁰⁻⁸
0-1-12	3-6-6	3-4-2	3-4-2	3-6-6 0-1-12

Plate Offsets (X, Y):	[6:0-6-8,0-1-8]	, [7:0-2-8,0-5-12], [8:0-5-0,0-6-0],	, [9:0-2-8,0-5-12], [10:0-6-8,0-1-8]
-----------------------	-----------------	--------------------------------------	--------------------------------------

	(,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	[7.0-2-0,0-3-12], [0.	0-5-0,0-0-	0], [9.0-2-0,0-5	-12], [10.0-0-0,0-	-1-0]						-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO	8/TPI2014	CSI TC BC WB Matrix-S	0.74 0.58 0.86	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.10 0.01	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	MT18HS	GRIP 197/144 197/144 FT = 20%
BCDL	10.0	Code	IRC201	8/1912014	Matrix-5	-	-					Weight: 170 lb	FI = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x8 SPF No.2 2x3 SPF No.2 *Exce Structural wood she 5-2-9 oc purlins, ex Rigid ceiling directly bracing. (size) 6=0-5-8, * Max Horiz 10=-186 (Max Uplift 6=-887 (L Max Grav 6=5681 (L (lb) - Maximum Com Tension 1-2=-5560/951, 2-3= 3-4=-4201/815, 4-5= 1-10=-4208/731, 5-6	athing directly applie cept end verticals. applied or 10-0-0 or 10=0-5-8 LC 8) C 13), 10=-903 (LC -C 1), 10=5788 (LC pression/Maximum -4201/815, -5595/956, 3=-4235/736 =-704/4191, -213/1091 -478/3176, -1473/362,	4) No.2 ed or 5 12) 5) 1) 7) 8) 9)	this design. Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5: Interior (1) 15: Interior (1) 17: right exposed for members Lumber DOL All plates are This truss ha chord live loa All bearings capacity of 5 Bearing at jo using ANSI/7 designer sho Provide mec bearing plate joint 10 and i)) This truss is International	roof live loads ha 7-16; Vult=115n ,; TCDL=6.0psf; and C-C Exteric 1-12 to 7-0-4, E 2-0-4 to 13-10-12 d; end vertical and forces & M =1.60 plate grip MT20 plates ur is been designed mare assumed to l 65 psi. int(s) 10, 6 cons rFI 1 angle to gri uld verify capaci hanical connecti a capable of with 887 Ib uplift at jor designed in accord nd referenced st	nph (3-sec BCDL=6.1 osed; MW or(2E) 0-1 xterior(2R 2 zone; ca aft and rig! WFRS for DOL=1.60 less other d for a 10.1 iders para ain formuli- ity of bear on (by oth standing S int 6. ordance w le sections	cond gust) Opsf; h=35ft; FRS (envelo 12 to 5-1-12) 7-0-4 to 12- ntilever left a ti exposed;C reactions shu) psf bottom other live loa 2 crushing Illel to grain v a. Building ng surface. ers) of truss i 03 lb uplift ar ith the 2018 R502.11.1 a	pe) ,-0-4, ,nd -C own; ed. ads. alue to t					
(0.131"x3 Top chord oc. Bottom ch staggered Web conr 2) All loads a except if r CASE(S) provided t	s to be connected toge ") nails as follows: ds connected as follows hords connected as follows d at 0-7-0 oc. nected as follows: 2x3 - are considered equally noted as front (F) or ba section. Ply to ply conr to distribute only loads herwise indicated.	s: 2x4 - 1 row at 0-9- ows: 2x8 - 3 rows - 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LC tections have been	0 12 L4 1)	Truss) or equ 0-11-4 from i to back face 2) Fill all nail ho DAD CASE(S) Dead + Roo Plate Increa Uniform Loo Vert: 13- Vert: 8=-	of Live (balanced ase=1.15 ads (lb/ft) =-70, 3-5=-70, 6 ed Loads (lb) 1461 (B), 13=-14 1 (B), 16=-1461 (at 2-0-0 oc 2-11-4 to c er is in cor d): Lumber -10=-20 463 (B), 14	e max. startin connect truss(itact with lum Increase=1.	g at (es) iber.			THE REAL PROPERTY AND ADDRESS OF ADDRES	PE-2022	LENGT


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE OR DESTRUCTION AS NOTED ON LANS REVIEW DEVELOR MENT SERVICES LEE'S SUMMIT'S MISSOURI 06/12/2024 10:57:36

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172	
P240541-01	K1	Common Supported Gable	1	1	Job Reference (optional)	165719445

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:54 ID:sZdmRCWqNhSB6Mj5xpFbHyzw32k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

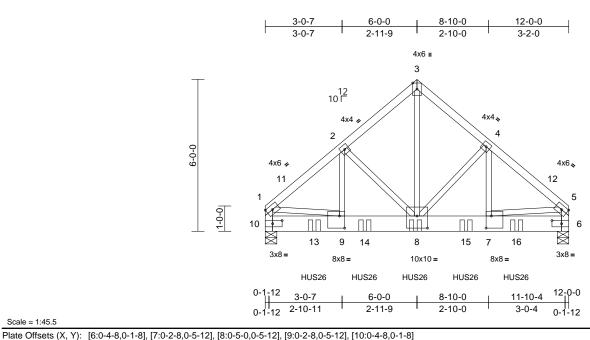
Scale =	= 1:40.2

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.12 0.07 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC201	B/TPI2014	Matrix-R							Weight: 61 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 10=12-0-0	applied or 10-0-0 oc 0, 11=12-0-0, 12=12-0	3))-0,	Vasd=91mpl Ke=1.00; Ca exterior zone Exterior(2N) Exterior(2N) right expose for members Lumber DOL Truss desig only. For stu	7-16; Vult=115m h; TCDL=6.0psf; f t. II; Exp C; Enclo and C-C Corner 4-0-0 to 6-0-0, CC 11-0-0 to 12-11-C d; end vertical lef and forces & MW =1.60 plate grip D ned for wind load; ds exposed to wi d Industry Gable I	3CDL=6.0 (3E) -0-1 orner(3R)) zone; ca it and righ VFRS for DOL=1.60 s in the p nd (norm	Opsf; h=35ft; FRS (envelop 1-0 to 4-0-0, 0 6-0-0 to 11-(antilever left a nt exposed;C- reactions sho 0 lane of the tru al to the face)-0, nd C own; iss),					
	16=12-0-0 Max Horiz 16=-193 (Max Uplift 10=-58 (L 12=-90 (L 12=-90 (L Max Grav 10=178 (L 12=200 (L 12=200 (L	LC 10) .C 9), 11=-141 (LC 13 .C 13), 14=-90 (LC 12 (LC 12), 16=-74 (LC 8 .C 19), 11=215 (LC 2 .C 20), 13=207 (LC 2 .C 19), 15=221 (LC 1	4)), 5)), 6)), 7) 0), 8) 2), 8)	or consult qu All plates are Gable requir Truss to be f braced again Gable studs This truss ha chord live loa	ualified building de e 1.5x4 MT20 unle es continuous bot jully sheathed fror nst lateral movem spaced at 2-0-0 c as been designed ad nonconcurrent are assumed to b	esigner as ess other ttom chor n one fac ent (i.e. d bc. for a 10.0 with any	s per ANSI/TF wise indicated d bearing. e or securely liagonal web) 0 psf bottom other live loa	인 1. 네.					
FORCES	(lb) - Maximum Com Tension 2-16=-157/139, 1-2= 3-4=-85/185, 4-5=-1 6-7=-87/185, 7-8=-1	=0/48, 2-3=-117/110, 47/306, 5-6=-147/306) Provide mec bearing plate 16, 58 lb upl uplift at joint	hanical connectio e capable of withs ift at joint 10, 90 lt 15, 90 lb uplift at	tanding 7 o uplift at	'4 lb uplift at j joint 14, 145	oint Ib				The second se	aller
BOT CHORD	8-10=-149/139 15-16=-90/101, 14-1 13-14=-90/101, 12-1 11-12=-90/101, 10-1	15=-90/101, 13=-90/101,		International R802.10.2 a	designed in accor Residential Code nd referenced sta	e sections	s R502.11.1 a	nd			H	STATE OF I	THEF IN N
WEBS	5-13=-287/77, 4-14= 3-15=-161/218, 6-12 7-11=-158/218		LC	DAD CASE(S)	Standard						Ø	the set	
NOTES 1) Unbalance	ed roof live loads have	been considered for									N.	O. PE-2022	BER 4

this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

TION IEW DEVELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI 06/12/2024 10:57:36


May 22,2024

SSIONAL EN

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172	
P240541-01	К2	Common Girder	1	2	Job Reference (optional)	165719446

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:55 ID:iyJ9V03ZwCvOIdmSEw0qoEzw3?S-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

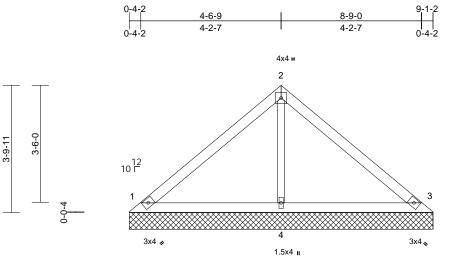
Page: 1

Scale = 1:45.5

	X, Y): [6:0-4-8,0-1-8],	[7:0-2-8,0-5-12], [8:0	J-5-0,0-5-	12], [9:0-2-8,0-	5-12], [10:0-4-8,0·	-1-8]							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.49 0.49 0.71	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.07 0.01	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 145 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x8 SPF No.2 2x3 SPF No.2 *Exce Structural wood shea 5-11-6 oc purlins, e: Rigid ceiling directly bracing. (size) 6=0-5-8, 1 Max Horiz 10=162 (L Max Grav 6=4149 (L (lb) - Maximum Com Tension 1-2=-4454/793, 2-3= 3-4=-3464/709, 4-5= 5-6=-3467/631, 1-10 9-10=-244/733, 8-9= 7-8=-560/3335, 6-7= 5-7=-410/2640, 2-9= 2-8=-1033/292, 3-8=	ept* 6-5,10-1:2x4 SP athing directly applie xcept end verticals. applied or 10-0-0 oc 10=0-5-8 .C 9) C 13), 10=-655 (LC - .C 1), 10=4211 (LC 1 pression/Maximum -3468/706, -4437/790,)=-3507/636 -589/3350, -5159/751 -185/1227, -784/4122,	3) 4) No.2 d or : 12) 5) 1) 6) 7)	Unbalanced this design. Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5 Interior (1) 1 right expose for members Lumber DOL This truss ha chord live loa All bearings capacity of 5 Bearing at jo using ANSI/ designer sho Provide meo bearing platte joint 10 and This truss is International	roof live loads have 7-16; Vult=115m, n; TCDL=6.0psf; E t. II; Exp C; Enclo and C-C Exterion 1-12 to 6-0-0, Ex 1-0-0 to 11-10-4 z d; end vertical lef and forces & MW =1.60 plate grip I is been designed ad nonconcurrent are assumed to b 65 psi. int(s) 10, 6 consic (PI) 1 angle to gra- nuld verify capacity hanical connectios e capable of withso 645 lb uplift at itso 645 lb uplift at code Residential Code	ph (3-sec 3CDL=6. 3CDL=6. Wr(2E) 0-1 terior(2R tone; can t and rigi /FRS for DOL=1.6 for a 10. with any e SP No. ders para in formul y of bear n (by oth tanding 6 td 6. rdance w	ond gust) Opsf; h=35ft; FRS (envelo 12 to 5-1-12 0 6-0-0 to 11- tilever left and t exposed;C reactions shu 0 psf bottom other live loa 2 crushing llel to grain v a. Building ng surface. ers) of truss : 55 lb uplift ar ith the 2018 R502.11.1 a	pe) , 0-0, d -C cown; dds. alue					
 (0.131"x3" Top chord oc. Bottom ch staggered Web conn All loads a except if n CASE(S) s provided to 	4-8=-1054/296, 4-7= 1-9=-419/2679 to be connected toget) nails as follows: s connected as follows ords connected as follows ords connected as follows at 0-8-0 oc. ected as follows: 2x3 - ire considered equally oted as forot (F) or bas section. Ply to ply conr o distribute only loads erwise indicated.	ther with 10d s: 2x4 - 1 row at 0-9-0 ows: 2x8 - 3 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO nections have been	0 11 L(1)	 Use Simpson Truss) or equi- 1-11-4 from back face of Fill all nail ho DAD CASE(S) Dead + Rog Plate Increa Uniform Loo Vert: 1-3 Concentrat Vert: 8=- 	of Live (balanced) ase=1.15	26 (14-1) t 2-0-0 od 1-4 to co r is in cor : Lumber 10=-20 61 (B), 14)d Girder, 4- max. startin nnect truss(e ttact with lum Increase=1.	g at s) to ber.			Ŕ	PE-2022	NULL NER 042259

May 22,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type Qty Ply Roof - HM Lot 172				
P240541-01	VI1	Valley	1	1	Job Reference (optional)	165719447

Run: 8,63 S Apr 26 2024 Print: 8,630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:55 ID:bvxr_5SCoZsP_h9qvb39AWzw3Xp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

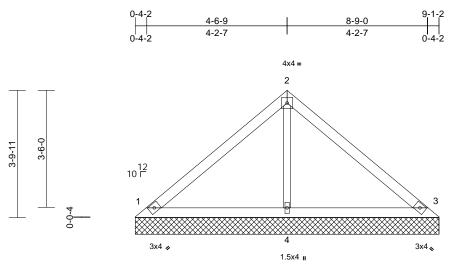
9-1-2

Scale = 1:34.5

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.29	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.18	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.06	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2	018/TPI2014	Matrix-S							Weight: 32 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	Max Horiz 1=-97 (LC	applied or 10-0-0 or 3=9-1-2, 4=9-1-2 3 8)	C	bearing plate 1, 52 lb uplif 9) This truss is International	i65 psi. hanical conne capable of w t at joint 3 and designed in a Residential C nd referenced	to be SP No. ection (by oth vithstanding 4 d 15 lb uplift a accordance w code sections d standard AN	ers) of truss 1 lb uplift at t joint 4. ith the 2018 R502.11.1 a	joint					
	Max Uplift 1=-41 (LC 4=-15 (LC Max Grav 1=209 (LC (LC 1)	2 12)											
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-175/88, 2-3=-1	72/97											
BOT CHORD	1-4=-22/82, 3-4=-22												
WEBS													
NOTES													
	1) Unbalanced roof live loads have been considered for												
,	this design.												

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



ΤΙΟΝ DEVELORMENTSERVICES LEE'S'SUMMIT'SMISSOURI 06/12/2024 10:57:37

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172	
P240541-01	VI2	Valley	1	1	Job Reference (optional)	165719448

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:55 ID:bvxr_5SCoZsP_h9qvb39AWzw3Xp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:34.5

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d		GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.29	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.18	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.06	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S							Weight: 32 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.		8 ed or ^g c	 capacity of 5 Provide mec bearing plate 1, 52 lb uplif This truss is International 	hanical connect capable of wit at joint 3 and designed in ac Residential Co nd referenced	ction (by oth thstanding 4 15 lb uplift a ccordance w ode sections	ers) of truss 1 lb uplift at t joint 4. ith the 2018 5 R502.11.1 a	joint					
	(size) 1=9-1-2, 3 Max Horiz 1=-97 (LC Max Uplift 1=-41 (LC 4=-15 (LC Max Grav 1=209 (LC (LC 1)	2 12), 3=-52 (LC 13) 2 12)											
FORCES	(lb) - Maximum Com Tension	pression/Maximum											

9-1-2

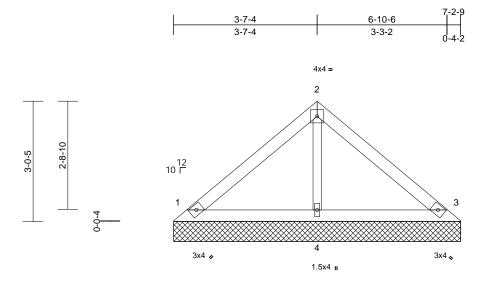
TOP CHORD 1-2=-175/88, 2-3=-172/97 BOT CHORD 1-4=-22/82, 3-4=-22/82 2-4=-204/103 WEBS

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- Gable studs spaced at 4-0-0 oc. 5)
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172	
P240541-01	VI3	Valley	1	1	Job Reference (optional)	165719449

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:55 ID:AKFiM3PJVeUr7ERFETWSYtzw3Xs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-2-9

Scale	- 1	1.28	0

Scale = 1.20.9													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-P	0.25 0.11 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	Max Horiz 1=-75 (LC Max Uplift 1=-42 (LC Max Grav 1=175 (LC	applied or 10-0-0 oc 3=7-2-9, 4=7-2-9 2 8) 2 12), 3=-50 (LC 13)	ed or ^g	 capacity of 5 Provide mechanism bearing plate 1 and 50 lb u This truss is International 	hanical connection capable of withs uplift at joint 3. designed in acco Residential Code and referenced sta	on (by oth standing 4 rdance w e sections	ers) of truss t 2 lb uplift at j ith the 2018 5 R502.11.1 a	oint					
FORCES	(LC 1) (Ib) - Maximum Compression/Maximum Tension												

TOP CHORD 1-2=-124/73, 2-3=-117/80 1-4=-18/59, 3-4=-18/59

BOT CHORD WFBS 2-4=-150/85

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)

5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

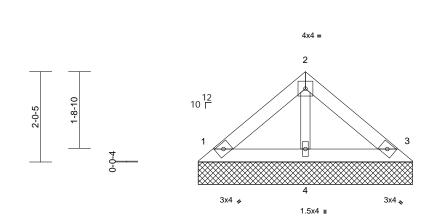
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172	
P240541-01	VI4	Valley	1	1	Job Reference (optional)	165719450

2-4-14

2-4-14

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:55 ID:Ey7yxOO3z1E7twHs72T_TSzw3Xu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


4-5-10

2-0-12

4-9-12

4-9-12

Scale = 1:25.8

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.04	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	0/TDI0044	WB Matrix D	0.02	Horiz(TL)	0.00	3	n/a	n/a	Maight 10 lb	FT 200/
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-P			i				Weight: 16 lb	FT = 20%
LUMBER			7	All bearings	are assumed to	be SP No.	2 crushing						
TOP CHORD	2x4 SP No.2			capacity of 5	i65 psi.		0						
BOT CHORD	2x4 SP No.2		8)	Provide med	hanical connect	tion (by oth	ers) of truss	to					
OTHERS													
BRACING					uplift at joint 3.								
TOP CHORD	Structural wood she	athing directly appli	ed or 9		designed in acc			I					
	4-10-5 oc purlins.												
BOT CHORD													
	bracing. LOAD CASE(S) Standard												
REACTIONS	()	, 3=4-9-12, 4=4-9-12	2										
	Max Horiz 1=-47 (LC	/											
	Max Uplift 1=-26 (LC	,, , , , , , , , , , , , , , , , , , , ,											
	Max Grav 1=110 (LC (LC 1)	C 1), 3=110 (LC 1),	4=145										
FORCES	(lb) - Maximum Corr	pression/Maximum											
	Tension												
TOP CHORD	1-2=-78/52, 2-3=-74	/57											
BOT CHORD	1-4=-11/37, 3-4=-11	/37											
WEBS	2-4=-94/62												
NOTES													
1) Unbalance	1) Unbalanced roof live loads have been considered for												
this desigr	۱.												
2) Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)											
Vasd=91m	Vasd=91mph; TCDI =6 0psf; BCDI =6 0psf; b=35ft;												

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)

5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

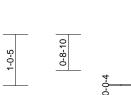
 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

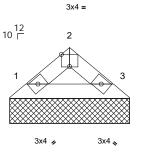
Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172	
P240541-01	VI5	Valley	1	1	Job Reference (optional)	165719451

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:55 ID:qNSpJMLBg6sY0TYIRvwHrqzw3Xx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

 2-4-15

 1-2-7
 2-0-13


 1-2-7
 0-10-5


Page: 1

OR CONSTRUCTION ON PLANS REVIEW

DEVELOPMENT: SERVICES LEE'S SUMMIT: MISSOURI 06/12/2024 10:57:37

Fag

2-4-15

Scale = 1:23.2

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading (psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 25.0	Plate Grip DOL	1.15	TC	0.02	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.03	Vert(TL)	n/a	-	n/a	999		
BCLL 0.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL 10.0	Code	IRC2018/TPI2014	Matrix-P	-						Weight: 7 lb	FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING TOP CHORD Structural wood sher 2-5-9 oc purlins. BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 1=2-4-15, Max Horiz 1=-19 (LC Max Uplift 1=-10 (LC Max Grav 1=74 (LC FORCES (lb) - Maximum Com Tension TOP CHORD 1-2=-60/46, 2-3=-60, BOT CHORD 1-3=-9/36 NOTES	applied or 10-0-0 oc 3=2-4-15 8) 12), 3=-10 (LC 13) 1), 3=-74 (LC 1) pression/Maximum	bearing pla 1 and 10 ll 9) This truss d or Internation R802.10.2	echanical connection ate capable of withs ouplift at joint 3. is designed in acco al Residential Cod and referenced sta 5) Standard	standing 1 ordance w e sections	0 lb uplift at ith the 2018 8 R502.11.1 a	joint				-	
 Unbalanced roof live loads have this design. Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BC Ke=1.00; Cat. II; Exp C; Enclose exterior zone and C-C Exterior(2 and right exposed ; end vertical I exposed; C-C for members and for reactions shown; Lumber DOL=1 DOL=1.60 Truss designed for wind loads ir only. For studs exposed to wind see Standard Industry Gable Env or consult qualified building desig 4) Gable requires continuous bottor 5) Gable studs spaced at 4-0-0 oc. This truss has been designed for chord live load nonconcurrent wi All bearings are assumed to be S capacity of 565 psi. 	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le eft and right prces & MWFRS for .60 plate grip the plane of the tru: (normal to the face) d Details as applicab gner as per ANSI/TP n chord bearing. a 10.0 psf bottom th any other live load	e) eft ss , le, I 1.								PE-202	DX BER 2042259

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172	
P240541-01	VK1	Valley	1	1	Job Reference (optional)	165719452

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:55 ID:xbCJT_lgdtL6YrFWC4rLh_zw3Y?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1.22 6

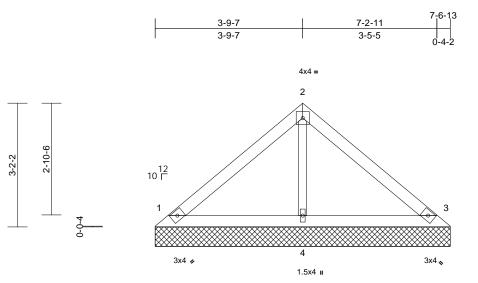
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.35 0.22 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x3 SPF No.2 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing.	applied or 10-0-0 or 0, 3=9-11-10, 4=9-1 C 8) 12), 3=-58 (LC 13), 12)	8) ed or 9) 2 LC	capacity of 5 Provide mec bearing plate 1, 58 lb uplift This truss is International	hanical connect capable of wit at joint 3 and designed in ac Residential Co nd referenced s	ction (by oth thstanding 4 17 lb uplift a cordance w ode sections	ers) of truss 5 lb uplift at t joint 4. ith the 2018 5 R502.11.1 a	joint					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-193/95, 2-3=-19 1-4=-25/91, 3-4=-25/ 2-4=-225/107	90/103											

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4) 5)
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172	
P240541-01	VK2	Valley	1	1	Job Reference (optional)	165719453

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:55 ID:?D5Y2JHQ5G5OIX585fptcZzw3Y1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

bGKWrCDoi7J4zJC?f

7-6-13

Scale	- 1	1.20	6
Scale	=	1.29	.o

Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.27 0.12	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCLL	0.0	Rep Stress Incr	YES		WB	0.04	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-P							Weight: 27 lb	FT = 20%
	Max Horiz 1=79 (LC Max Uplift 1=-44 (LC Max Grav 1=185 (LC (LC 1)	applied or 10-0-0 or 3=7-6-13, 4=7-6-13 9) 12), 3=-53 (LC 13) 2 1), 3=185 (LC 1), 4	ed or ^S C I	 capacity of 5 Provide mec bearing plate 1 and 53 lb u This truss is International 	hanical connec capable of wit uplift at joint 3. designed in acc Residential Co nd referenced s	tion (by oth hstanding 4 cordance w de sections	ers) of truss 14 lb uplift at ith the 2018 5 R502.11.1 a	joint					
FORCES	(lb) - Maximum Com Tension	•											
TOP CHORD	1-2=-131/75, 2-3=-12												
BOT CHORD WEBS	1-4=-18/63, 3-4=-18/ 2-4=-158/87	163											
NOTES 1) Unbalance this design	ed roof live loads have	been considered fo	r										

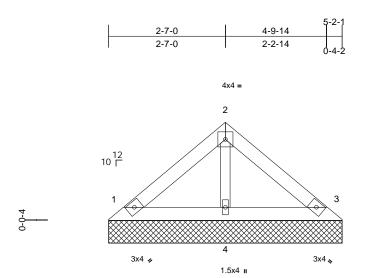
- 2) Wind: AŠCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. ALTE OF MISSOL NATHANIEL FOX PE-2022042259 FE-SSIONAL ENGINE May 22,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172	
P240541-01	VK3	Valley	1	1	Job Reference (optional)	165719454

1-10-6

2-2-2

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:55 ID:3qzoddF9Zerh3ExIzEnPX8zw3Y3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-2-1

Scale = 1:25.5

00010 - 1.20.0												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.02	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/T	PI2014 Matrix-P							Weight: 18 lb	FT = 20%
CUMBER TOP CHORD OT CHORD OTHERS BRACING TOP CHORD 30T CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 5-2-10 oc purlins. Rigid ceiling directly	0 7 11	ed or c c c c c c c c c c c c c c c c c c c	Il bearings are assumed to apacity of 565 psi. rovide mechanical connect earing plate capable of with and 34 lb uplift at joint 3. his truss is designed in acc iternational Residential Coo 802.10.2 and referenced st	ion (by oth istanding 2 ordance w de sections	ers) of truss t 8 lb uplift at j ith the 2018 5 R502.11.1 a	oint					
EACTIONS	bracing. (size) 1=5-2-1, 3	3=5-2-1, 4=5-2-1	LOAL	D CASE(S) Standard								
	Max Horiz 1=-51 (LC Max Uplift 1=-28 (LC Max Grav 1=120 (LC (LC 1)	C 12), 3=-34 (LC 13) C 1), 3=120 (LC 1), 4										
ORCES	(lb) - Maximum Corr Tension	pression/Maximum										
OP CHORD	1-2=-85/57, 2-3=-80	/61										
BOT CHORD WEBS	1-4=-12/40, 3-4=-12 2-4=-103/67	/40										
NOTES												
 Unbalance this design Wind: ASC Vasd=91m 	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose	(3-second gust) DL=6.0psf; h=35ft;									- STATE	all
exterior zo and right e	one and C-C Exterior(2 exposed ; end vertical	E) zone; cantilever	left							4	ATE OF	MISSO

- and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face),
- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)

5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

DEVELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI 06/12/2024 10:57:37

ΤΙΟΝ

ΊFW

Page: 1

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HM Lot 172	
P240541-01	VK4	Valley	1	1	Job Reference (optional)	165719455

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue May 21 08:51:55 ID:eFHf?bDHGjT6CmDAI6DivVzw3Y6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

 2-9-4

 1-4-10
 2-5-2

 1-4-10
 1-0-8

3x4 =

3

3x4 💊

2

2-9-4

12 10 ∟

-0-4 3x4 🧀

0-10-6

1-2-2

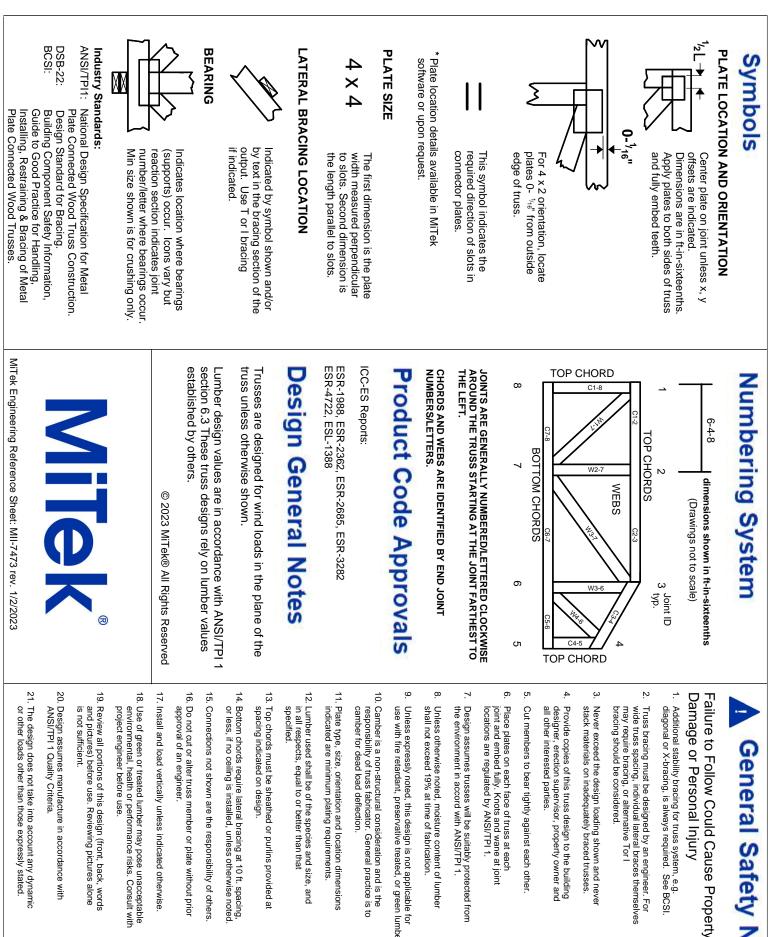

Scale = 1:24.7

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading (psf) TCLL (roof) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC 0.03		in (loc) n/a -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
TCDL 10.0	Lumber DOL	1.15	BC 0.05	- ()	n/a -	n/a	999		
BCLL 0.0	Rep Stress Incr	YES	WB 0.00	Horiz(TL)	0.00 3	n/a	n/a		
BCDL 10.0	Code	IRC2018/TPI2014	Matrix-P					Weight: 8 lb	FT = 20%
2-9-13 oc purlins.	 8) 12), 3=-12 (LC 13) 1), 3=91 (LC 1) ppression/Maximum /59 been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope E) zone; cantilever le left and right orces & MWFRS for 1.60 plate grip n the plane of the trus i (normal to the face), d Details as applicabl gner as per ANSI/TPI m chord bearing. r a 10.0 psf bottom the nike like like like like like like like l	e, 1. bearing plat 1 and 12 lb 9) This truss is Internationa R802.10.2 a LOAD CASE(S) 10 This 1 and 12 lb 10 R802.10.2 a LOAD CASE(S) 10 10 10 10 10 10 10 10 10 10	chanical connection (by ot e capable of withstanding uplift at joint 3. designed in accordance + I Residential Code section and referenced standard A) Standard	12 lb uplift at join with the 2018 is R502.11.1 and				NATHL FC Amore PE-2022	BER 2042259

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

General Safety Notes ASE FOR CONST OTED ON PLANS VELOPMENT SER LEE'S SUMMIT, MISSOURI

10:57:37

 Additional stability bracing for truss system, e.g diagonal or X-bracing, is always required. See BCSI

06/12/2024

- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and
- Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at
- . Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with
- 19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.