

RE: P240539-01 Roof - Osage Lot 79 MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Site Information: Customer: Clayton Properties Project Name: P240539-01 Lot/Block: 79 Model: Address: 3716/3718 SW Knoxville Ct OS LSO to State: MO

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.6 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 17 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	161197917	A1	10/6/2023
2	161197918	A2	10/6/2023
3	161197919	A3	10/6/2023
4	161197920	A4	10/6/2023
5	l61197921	B1	10/6/2023
6	l61197922	B2	10/6/2023
7	l61197923	C1	10/6/2023
8	l61197924	C2	10/6/2023
9	l61197925	C3	10/6/2023
10	l61197926	C4	10/6/2023
11	l61197927	E1	10/6/2023
12	l61197928	E2	10/6/2023
13	l61197929	G1A	10/6/2023
14	l61197930	G2A	10/6/2023
15	l61197931	V5	10/6/2023
16	l61197932	V6	10/6/2023
17	l61197933	V7	10/6/2023

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision based on the parameters provided by . Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2025. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 79	
P240539-01	A1	Roof Special Structural Gable	1	1	Job Reference (optional)	l61197917

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Oct 04 10:09:24 ID:1FL_5cO5javKO0N85pK5gdz_bwQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:87.8

Plate Offsets (X, Y): [2:0-0-14,Edge], [6:0-3-5,0-3-4], [14:0-2-2,0-2-0], [16:0-4-0,0-1-12], [18:Edge,0-3-12], [19:0-4-0,0-2-12]												
Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing 2-C Plate Grip DOL 1.1 Lumber DOL 1.1 Rep Stress Incr YE Code IRC	5 5 S	3/TPI2014	CSI TC BC WB Matrix-S	0.60 0.50 0.81	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.45 -0.73 0.15	(loc) 19-21 19-21 18	l/defl >999 >794 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 319 lb	GRIP 244/190 197/144 FT = 20%
LUMBER TOP CHORD 2x6 SP 2400F 2.0E SPF No.2 BOT CHORD 2x6 SP 2400F 2.0E WEBS 2x3 SPF No.2 *Exc 18-16,21-5,23-3,18- OTHERS 2x3 SPF No.2 BRACING TOP CHORD Structural wood she 3-7-12 oc purlins, e BOT CHORD Rigid ceiling directly bracing. WEBS 2 Rows at 1/3 pts JOINTS 1 Brace at Jt(s): 26, 27, 29, 30 REACTIONS (size) 2=0-3-8, Max Horiz 2=184 (LI Max Grav 2=2348 (FORCES (lb) - Maximum Con Tension	*Except* 6-14,14-17:2x6 ept* 15:2x4 SP No.2 eathing directly applied or except end verticals. / applied or 10-0-0 oc 3-23 5-21, 15-18 18=0-3-8 C 12) C 8), 18=-328 (LC 13) LC 2), 18=2366 (LC 2) npression/Maximum 1/1164, 3-5=-4575/983, =-3091/796, =-3164/773, -11=-3748/840, 2-13=-3795/802, 5-16=-460/213, -480/303 3-25=-1036/5472,	WI NC 1) 2) 3) 4) 5) 6) 7) 8)	EBS Unbalanced this design. Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 33-5-10, Inte left and right exposed;C-C reactions shi DOL=1.60 Truss desig only. For stu see Standari or consult qu All plates are Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar	6-21=-276/1706, 3- 5-21=-1669/450, 3- 5-23=-18/828, 19-3 21-26=-705/282, 26 27-28=-679/268, 10 15-18=-3502/610, 1 19-29=-26/423, 7-2 9-28=-65/155, 11-2 13-30=0/10 roof live loads have 7-16; Vult=115mpt h; TCDL=6.0psf; BC tt. II; Exp C; Enclose e and C-C Exterior(2 -1-0 to 28-5-10, Ext erior (1) 33-5-10 to 4 t exposed ; end verti C for members and 1 own; Lumber DOL= ned for wind loads i uds exposed to wind d Industry Gable En alified building desis e MT20 plates unless e 3x4 MT20 unless of spaced at 2-0-0 oc. as been designed fo ad nonconcurrent w has been designed for m chord in all areas by 2-00-00 wide will ny other members, and the other members, and by 2-00-00 wide will ny other members, and the other	23=-13($3-27=-63$) -27=-63($-27=-63$) -28=-79($-28=-79$) -0.29=-3 -28=-79($-28=-79$) -0.29=-3 -20($-13=-34/c$) -35=-20($-13=-34/c$) -3	25/354, $3, 15\cdot30=0/33$ 32/274, 31/274, 31/274, $5, 8\cdot27=\cdot25/1$ $5, 8\cdot27=\cdot25/1$ $10 to 4\cdot1\cdot0$, $3, 28\cdot5-10 to$ 5, 10 to 5, 10 to	2, (61, 	bea join 11) Thi Inte R80	aring plat It 18 and Is truss is Prnationa	e capa 449 lt l Resident l Resident) Sta	al connection (by able of withstandin o uplift at joint 2. Ined in accordance dential Code sect ferenced standard	others) of truss to ng 328 lb uplift at e with the 2018 ions R502.11.1 and ANSI/TPI 1.

October 6,2023

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 79	
P240539-01	A2	Roof Special	2	1	Job Reference (optional)	l61197918

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Oct 04 10:09:26 ID:QF_s_JP9cHCCgLmFn8Tnnyz_c3R-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

49-7-0 <u>9-10-8</u> 1<u>8-10-10</u> 28-5-10 35-3-11 41-9-2 48-8-0 9-10-8 9-0-2 9-7-0 6-10-1 6-5-7 6-10-14 0-11-0 6x6 = 6 21 4x4≈ 12 4 4x4 🚅 22 7 12 15 5 5x10≈ 4x6 = 4x6**≈** 4 89 4x4 = 3 D 23 20

Scale = 1:87.8

		1											-
oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.59	Vert(LL)		13-15	>999	240	MT20	244/190
CDL	10.0	Lumber DOL	1.15		BC	0.49	Vert(CT)		17-19	>833	180	MT18HS	197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.81	Horz(CT)	0.15	12	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 303 lb	FT = 20%
UMBER			2)		7-16; Vult=115m								
OP CHORD	2x6 SP 2400F 2.0E SPF No.2	*Except* 8-11,8-6:2x	6		n; TCDL=6.0psf; t. II; Exp C; Enclo			ne)					
BOT CHORD	2x6 SP 2400F 2.0E	*Except* 0-0:2x6 SPI	F		and C-C Exterio			50)					
	No.2				1-0 to 28-5-10, E								
VEBS	2x3 SPF No.2 *Exce				rior (1) 33-5-10 to			er					
	12-10,15-5,17-3,12-9	9:2x4 SP No.2			exposed ; end ve								
BRACING					for members an			r					
OP CHORD	Structural wood she	d or		own; Lumber DO	L=1.60 pla	ate grip							
	3-6-2 oc purlins, ex		2	DOL=1.60			uice indicete	لم					
BOT CHORD		applied or 10-0-0 oc	3) 4)		MT20 plates un			a.					
	bracing.	4)		s been designed ad nonconcurrent			de						
VEBS		3-17, 7-15	5)		as been designe								
VEBS	2 Rows at 1/3 pts		5)		n chord in all area			pai					
	(size) 2=0-3-8, 1				y 2-00-00 wide v			om					
	Max Horiz 2=184 (LC				y other members								
	Max Uplift 2=-449 (L		, D		are assumed to b								
ļ	Max Grav 2=2348 (L	_C 2), 12=2366 (LC 2	2)	capacity of 8				5					
ORCES	(lb) - Maximum Com	pression/Maximum	7)		hanical connection	n (by oth	ers) of truss t	0					
	Tension		,	bearing plate	capable of withs	tanding 4	49 Ib uplift at						
OP CHORD	1-2=0/11, 2-3=-5857		4,	joint 2 and 3	28 lb uplift at join	12.	•						
	5-6=-3135/775, 6-7=	-3198/796,	8)	This truss is	designed in acco	rdance w	th the 2018						
)=-456/207, 10-11=0/	′29, [′]	International	Residential Code	e sections	R502.11.1 a	ind					Th
	10-12=-475/299			R802.10.2 a	nd referenced sta	ndard AN	ISI/TPI 1.					A	De
BOT CHORD	2-19=-1035/5468, 17		L	DAD CASE(S)	Standard							TATE OF M	ISS
	15-17=-756/4263, 13	5-10=-000/3334,									A	7.0	NSY
VEBS	12-13=-630/3313	283/1724, 9-13=0/317	7								H	SCOTI	M. YP.W
VEDO	,	=0/390, 5-15=-1677/4	,								8.	SEVI	
	3-17=-1299/352, 7-1		54,								RJ		
	9-12=-3497/622	10 = 112/201,									10 -	7	X
	5 12- 5-51/022										И		
OTES	ed roof live loads have										N	CALINA	Arnen

Unbalanced roof live loads have been considered for 1) this design.

October 6,2023

EZ

PE-2001018

SSIONAL

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 79	
P240539-01	A3	Roof Special	5	1	Job Reference (optional)	161197919

9-<u>10-8</u>

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Oct 04 10:09:27

Page: 1 ID:m_P9pcXgCxbN3mpg9BHX8Rz_bfT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 49-7-0 48-8-0 28-5-10 35-3-11 18-10-10 38-6-14 41-9-2 46-10-4 9-7-0 6-10-1 3-3-3 3-2-4 5-1-2

Scale =	1:87.8
---------	--------

Loading (pst) Spacing 2-0-0 CSI DEFL in (loc) I/del PLATES GRIP TCLL 0.0' 25.0 Plate Grip DOL 1.15 BC 0.96 Vert(C1) -0.37 21-23 >989 240 MT20 244/190 BCL 0.0' Rep Stress Incr YES BC 0.96 Vert(C1) -0.68 21-23 >984 800 LUMBER 10.0' Unblanced roof live loads have been considered for this design. 1) Unblanced roof live loads have been considered for this design. Vind: ASCE 7-16; Vult=115mph (3-second gust) Vind: ASCE 7-16; Vult=115mph (3-second g	Plate Offsets ((X, Y): [2:0-1-2,Edge],	, [6:0-3-1,0-3-4], [12:0	0-2-12,0-2	2-8], [16:0-3-4,0	0-4-12], [17:0-2-8	3,Edge]							
TOP CHORD D 2x6 SP 2400F 2.0E *Except* 18-8:1 1/2" x 9 1/4"this design.BOT CHORD D 2x6 SPF No.2Yac SPF No.2 *Except* 18-8:1 1/2" x 9 1/4"202.0E Microllam® LVL, 11-15:2x4 SP No.2, 15-14.20-22,22-2,02.018:2x6 SP 2400F 2.0Ethis design.WEBS TOP CHORDStructural wood sheathing directly applied or 14-12,21-3,19-5,16-10,12-16:2x4 SP No.2this design.BRACING TOP CHORDStructural wood sheathing directly applied or 3-4-6 oc purlins, except end verticals.ather ind right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60BTC CHORD TOP CHORDStructural wood sheathing directly applied or 10-0-0 oc bracing, Except: 2-2-0 oc bracing: 16-17.All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.FORCES(lb) - Maximum Compression/Maximum Tension7CP CHORD1-2-0111, 2-3-5793/1162, 3-5=4529/885.	TCLL (roof) TCDL BCLL	25.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	8/TPI2014	TC BC WB	0.96	Vert(LL) Vert(CT)	-0.37 -0.68	21-23 21-23	>999 >848	240 180	MT20 MT18HS	244/190 244/190
10-11=-4016/931, 11-12=-3727/811, 12-13=0/29, 12-14=-2224/556 R802.10.2 and referenced standard ANSI/TPL1. BOT CHORD 17:18=0/189, 8-17=0/117, 16-17=-828/4190, 15-16=0/21, 11-16=-191/158, 14-15=-77/186, 2-23=-1033/5408, 21-23=-1033/5408, 19-21=-757/4218, 18-19=-367/2037 Standard WEBS 3-21=-728/1678, 3-21=-1285/352, 5-21=-17/836, 5-19=-1689/455, 10-17=-242/161, 7-19=-800/309, 10-16=-619/152, 7-17=-72/519, 14-16=-133/94, 12-16=-700/3324, 17-19=-232/1318 NOTES	LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD	2x6 SP 2400F 2.0E SPF No.2 2x6 SPF No.2 *Exce 2.0E Microllam® LVI 15-14,20-22,22-2,20 2x3 SPF No.2 *Exce 14-12,21-3,19-5,16- Structural wood she 3-4-6 oc purlins, exi Rigid ceiling directly bracing, Except: 2-2-0 oc bracing: 16 1 Row at midpt 2 Rows at 1/3 pts (size) 2=0-3-8, 1 Max Horiz 2=184 (LC Max Uplift 2=-449 (L Max Grav 2=2331 (L (lb) - Maximum Com Tension 1-2=0/11, 2-3=-5793 5-6=-3073/774, 6-7= 7-8=-3888/912, 8-10 10-11=-4016/931, 1* 12-13=0/29, 12-14=- 15-16=0/21, 11-16=- 2-23=-1033/5408, 2* 19-21=-757/4218, 18 3-23=0/418, 6-19=-2 3-21=-1285/352, 5-2 5-19=-1689/455, 10- 7-19=-800/309, 10-1	*Except* 9-13,9-6:2x pt* 18-8:1 1/2" x 9 1, L, 11-15:2x4 SP No.: -18:2x6 SP 2400F 2 pt* 10,12-16:2x4 SP No. athing directly applie cept end verticals. applied or 10-0-0 oc -17. 3-21, 7-19 5-19 14=0-3-8 C 12) C 2), 14=2322 (LC 2 pression/Maximum 3/1162, 3-5=-4529/98 -3143/795,)=-4450/969, 1-12=-3727/811, -2224/556 0/117, 16-17=-828/4 -191/158, 14-15=-77, 1-23=-103/5408, 8-19=-367/2037 278/1678, 21=-17/836, -17=-242/161, 16=-619/152,	(6 2) /4" 2, .0E .0E .2 2 3) 4) 5) 3) 6) 7) 35, 8) 190, Li	 Unbalanced this design. Wind: ASCE Vasd=91mp Ke=1.00; Ca exterior zon- Interior (1) 4 33-5-10, Intt left and righ exposed; C-(- reactions sh DOL=1.60 All plates ar This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a All bearing capacity of 8 Provide med bearing plat joint 2 and 3 This truss is Internationa R802.10.2 a 	roof live loads h FOR live loads h FOR LIVE CONTRESS AND FOR LIVE	mph (3-sec BCDL=6. losed; MW or(2E)-0-1 Exterior(2I to 49-7-0 z vertical left nof forces & DL=1.60 pli hless other d for a 10. th with any ed for a live eas where will fit betv rs, with BC be SP 240 ion (by oth standing 4 nt 14. ordance w de sections	cond gust) ops; h=35ft; FRS (envelo 1-0 to 4-1-0. R) 28-5-10 to cone; cantilev and right & MWFRS fo ate grip wise indicate 0 psf bottom other live load e load of 20. a rectangle veen the bott DL = 10.0ps 0F 2.0E cruss 49 lb uplift a sth the 2018 R502.11.1 a	pe) ver r ed. ads. Opsf f. shing to t		2	Se	STATE OF M SCOT SEVI SCOT SEVI NUM PE-2001	MISSOUR T.M. ER DIB807

October 6,2023

-

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 79	
P240539-01	A4	Roof Special Supported Gable	1	1	Job Reference (optional)	l61197920

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Oct 04 10:09:27 ID:9CS9baXEWIG0D9YvLzpIp8z_bgI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:86.4

Plate Offsets (X, Y): [16:	0-3-0,0-0-1	15], [28:Edge,0-2-8], [3	36:0-3-0,0-1-4]									
Loading		(psf)	Spacing	2-0-0	cs	l	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15	ТС	0.10	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES	WE	0.21	Horz(CT)	0.00	28	n/a	n/a		
BCDL		10.0	Code	IRC2018/TPI2014	Ма	trix-S						Weight: 275 I	b FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS DTHERS	2x6 SPF 2x6 SPF 2x3 SPF 2x3 SPF	No.2 No.2			Max G	rav 2=240 (LC 1), 2 29=203 (LC 26 31=184 (LC 26 33=172 (LC 26 36=176 (LC 26 38=183 (LC 1),), 30=171 (LC), 32=189 (LC), 34=183 (LC), 37=186 (LC	C 1), C 1), C 1), C 1), C 26),	WEBS		14-42 12-44 10-46 6-50=		3=-140/74, 5=-140/73, =-144/75, 7-49=-149/7 -149/77, 4-52=-84/47,
BRACING						40=184 (LC 1),						'=-143/105, 19-	
TOP CHORD			eathing directly applied	l or		43=180 (LC 25						=-140/78, 21-3	,
BOT CHORD	Rigid ceil bracing.	ing directly	ccept end verticals. v applied or 10-0-0 oc			45=180 (LC 25 47=184 (LC 1), 50=169 (LC 25), 46=174 (LC 49=189 (LC	C 25), 1),			22-32	e=-149/84, 24-3 =-132/93, 26-2	1=-143/80,
WEBS	1 Row at	midpt	16-39, 15-40, 14-42,			50=169 (LC 25)			NOTES				been considered for
17-38 REACTIONS (size) 2=48-8-0, 28=48-8-0, 29=48-8-0,		• FORCES	(lb) -	Maximum Compress	```	,	/ -	s design		ive loads have	been considered for		
	Max Horiz	$\begin{array}{c} 30 = 48 \cdot 8 \cdot \\ 33 = 48 \cdot 8 \cdot \\ 37 = 48 \cdot 8 \cdot \\ 40 = 48 \cdot 8 \cdot \\ 44 = 48 \cdot 8 \cdot \\ 47 = 48 \cdot 8 \cdot \\ 2 = 192 \ (L1 \\ 2 = -44 \ (LC \\ 30 = -43 \ (L \\ 30 = -43 \ (L \\ 30 = -43 \ (L \\ 30 = -53 \ (L \\ 32 = -59 \ (L \\ 33 = -50 \ (L \\ 43 = -50 \ (L \\ 43 = -50 \ (L \\ 43 = -50 \ (L \\ 45 = -45 \ (L \\ 50 = -45 \ (L \ (L \\ 50 = -45 \ (L \ (L \\ 50 = -45 \ (L \ ($	0, 31=48-8-0, 32=48- 0, 34=48-8-0, 36=48- 0, 38=48-8-0, 39=48- 0, 42=48-8-0, 43=48- 0, 45=48-8-0, 46=48- 0, 49=48-8-0, 50=48- 0, 52=48-8-0, 53=48-	3-0, 3-0,	4-5=- 7-9=- 11-12 13-14 15-11 17-18 19-20 21-22 24-28 27-28	on //1, 2-3=-194/131, 1 124/159, 5-6=-102/1 84/211, 9-10=-96/22 =-119/263, 12-13=- =-143/317, 14-15=- =-161/365, 16-17=- =-157/334, 18-19=- 125/245, 20-21=- =-96/173, 22-24=-7 =-63/96, 25-26=-50, =-66/22 35/58, 45-46=-35, =-35/58, 42-43=-35, =-35/58, 38-39=-35, =-35/58, 34-36=-35, =-35/58, 34-36=-35, =-35/58, 34-36=-35, =-35/58, 34-36=-35, =-35/58, 31-32=-35, =-35/58, 28-29=-35, =-35/58, 38-39=-35, =-35/58, 38-39=-35, =-3	76, 6-7=-81/ ⁴ 9, 10-11=-10 131/287, 156/348, 165/367, 140/285, 109/209, 3/134, 62, 26-27=-5 8, 51-52=-35 58, 47-49=-3 58, 47-49=-3 58, 44-45=-3 58, 47-49=-3 58, 37-38=-3 58, 37-38=-3 58, 30-31=-3	193, 17/246, 15/34, 1/58, 15/58, 15/58, 15/58, 15/58, 15/58, 15/58,	2) Wir Vas Kei ext Inte 33- left exp rea	nd: AŠC sd=91m =1.00; C erior zon erior (1) 5-10, In and rigl posed;C	E 7-16 ph; TC cat. II; E he and 4-1-0 to terior (ht expo -C for r hown;	DL=6.0psf; BCI Exp C; Enclose: C-C Exterior(2 o 28-5-10, Exter 1) 33-5-10 to 44 issed ; end vertic nembers and fo Lumber DOL=1	

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

PE-200101880

E

October 6,2023

SSIONAL

OFF

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 79	
P240539-01	A4	Roof Special Supported Gable	1	1	Job Reference (optional)	l61197920

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 3x4 MT20 unless otherwise indicated. 4)
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 9) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 44 lb uplift at joint 2, 26 lb uplift at joint 40, 57 lb uplift at joint 42, 50 lb uplift at joint 43, 49 lb uplift at joint 44, 49 lb uplift at joint 45, 46 lb uplift at joint 46, 51 lb uplift at joint 47, 54 lb uplift at joint 49, 45 lb uplift at joint 50, 52 lb uplift at joint 51, 30 lb uplift at joint 52, 111 lb uplift at joint 53, 20 lb uplift at joint 38, 64 lb uplift at joint 37, 58 lb uplift at joint 36, 53 lb uplift at joint 34, 51 lb uplift at joint 33, 59 lb uplift at joint 32, 58 lb uplift at joint 31, 43 lb uplift at joint 30 and 94 lb uplift at joint 29.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Oct 04 10:09:27 ID:9CS9baXEWIG0D9YvLzpIp8z_bgI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 79	
P240539-01	B1	Roof Special Structural Gable	2	1	Job Reference (optional)	161197921

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Oct 04 10:09:28 ID:?AVNLbq4WBVV5137XnfsuHz_dHf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = '	1:86.7
-----------	--------

Plate Offsets ((X, Y): [2:0-3-0,Edge],	, [7:0-2-13,0-4-4], [18	:0-1-12,0-0-10], [24:0-	4-0,0-4-8]								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.81 0.98 0.88	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 28-30 28-30 22	>999 >825	L/d 240 180 n/a	PLATES MT20 Weight: 286 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD WEBS JOINTS REACTIONS	2x6 SPF No.2 *Exce 2.0E 2x3 SPF No.2 *Exce 2x3 SPF No.2 *Exce 2x3 SPF No.2 Structural wood she 2-2-5 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 31, 32, 33, 34, 36 (size) 2=0-3-8,	- spt* -5:2x4 SP No.2 eathing directly applie v applied or 2-2-0 oc 3-28, 11-36, 5-31 18=7-7-8, 20=7-7-8,	WEBS	2-30=-716/3855 26-28=-406/266 23-25=-104/105 21-22=-1129/30 18-20=-1129/30 3-30=0/413, 5-2 7-26=-130/772, 15-37=-325/185 35-36=-2075/39 5-31=-1421/356 26-32=-136/740 33-34=-130/702 6-31=-104/35, 8 10-34=0/127, 22 12-36=0/32, 13- 17-20=-224/148	0, 25-26=- 4, 22-23=- 9, 20-21=- 9 8=-12/805, 23-37=-29 8, 11-35=- 6, 23-36=- 1, 26-31=-1. , 32-33=-1: 1, 11-34=-1: 5-34=01/178 37=-15/98,	104/1054, 1129/309, 1129/309, 3/1901, 2005/399, 487/379, 27/695, 38/757, 8, 9-33=-22/12, , 24-35=-6/85, 16-21=-115/6	32, 1,	on 3-(ch 8) Be ca ca 2 9) Pr be joi lb 10) Th Int R8	the botto of 00 tall ord and a earings ar pacity of pacity of pacity of ovide me aring pla nt 18, 36 uplift at jo is truss is cernationa	om cho by 2-0 any oth re assu 425 ps 805 ps chanic te capa 5 lb up bint 20 s desig al Resi and rel	ord in all areas wh y0-00 wide will fit her members, with si, Joint 22 SP 24 si, Joint 22 SP 24 si, Joint 22 SP 24 si, and connection (b) able of withstand lift at joint 2, 180 and 384 lb uplift yned in accordan dential Code sec ferenced standar	between the bottom h BCDL = 10.0psf. 2 SPF No.2 crushing .00F 2.0E cru
	Max Horiz 2=-169 (L Max Uplift 2=-365 (L 20=-94 (L 22=-384 (Max Grav 2=1783 (I 22=2808 (Ib) - Maximum Corr Tension	LC 8), 18=-431 (LC 2' LC 13), 21=-180 (LC 2' (LC 8) LC 2), 18=102 (LC 12 LC 2), 21=42 (LC 12) (LC 2) apression/Maximum 9/818, 3-5=-2887/650 e-1629/518, e-1698/510, -11=-1798/462, 13=-139/282, -16=-200/1265,	 7), this design 7), 2) Wind: ASC Vasd=31nr 8), exterior zo 9, reactions of DOL=1.60 3) Truss des only. For see Stand or consult 4) All plates a 5) Gable stud 6) This truss 	E 7-16; Vult=115 hph; TCDL=6.0psf Cat. II; Exp C; Enc ne and C-C Exter 4-1-0 to 26-9-3, E erior (1) 31-9-3 to xposed ; end vert -C for members a shown; Lumber D0	mph (3-sec ; BCDL=6.1 closed; MW ior(2E) -0-7 Exterior(2R 48-11-0 zc ical left and nd forces a DL=1.60 pl ds in the p wind (norm $a \equiv$ End Deta designer as $a \equiv s$ otherwi $a \equiv s$ oc. d for a 10.1	cond gust) Opsf; h=35ft; IFRS (envelope 11-0 to 4-1-0,) 26-9-3 to one; cantilever d right & MWFRS for ate grip lane of the trus al to the face), ils as applicabl s per ANSI/TPI se indicated. O psf bottom	, left le, ∣1.				STATE OF J SCOT SEV OF PE-2001	ter *

chord live load nonconcurrent with any other live loads.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Page: 1

Job	Truss	Truss Type	Qty	Ply Roof - Osage Lot 79		
P240539-01	B2	Roof Special	4	1	Job Reference (optional)	l61197922

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Oct 04 10:09:28 ID:TM3IYxriHVdLiBeK5VA5RVz_dHe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:86.7

Plate Offsets (X, Y): [2:0-0-6,0-1-5], [6:0-3-1,0-3-0]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.82	Vert(LL)	-0.57	12-14	>997	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.85	Vert(CT)	-0.99	12-14	>579	180	MT18HS	244/190
BCLL	0.0*	Rep Stress Incr	YES		WB	0.87	Horz(CT)	0.17	10	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 262 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS	2x6 SPF No.2 2x6 SP 2400F 2.0E No.2			Vasd=91mp Ke=1.00; Ca exterior zone	7-16; Vult=115mp h; TCDL=6.0psf; E it. II; Exp C; Enclos e and C-C Exterior -1-0 to 26-9-3, Ext	8CDL=6.4 sed; MW (2E) -0-1	Dpsf; h=35ft; FRS (envelop 1-0 to 4-1-0,	be)					
WEB5	2x3 SPF No.2 *Exce No.2	pt 14-5,16-3:2x4 SF			ior (1) 31-9-3 to 48			r left					
BRACING	110.2				oosed ; end vertica								
TOP CHORD	Structural wood she 2-2-0 oc purlins.	athing directly applied	d or	reactions sh	C for members and own; Lumber DOL								
BOT CHORD	Rigid ceiling directly	applied or 9-0-8 oc		DOL=1.60									
	bracing.		3) 4)	 All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom 									
WEBS		7-14, 5-14, 3-16	4)	chord live load nonconcurrent with any other live loads.									
	(size) 2=0-3-8, 1		5)		has been designed								
	Max Horiz 2=-174 (L	,	- /		m chord in all area			,po.					
	Max Uplift 2=-437 (L Max Grav 2=2311 (L			3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.									
FORCES	(lb) - Maximum Com	pression/Maximum	6)		are assumed to be								
TODOLODD	Tension			capacity of 8									
TOP CHORD	1-2=0/11, 2-3=-5737 5-6=-3224/808, 6-7=		4, 7)		hanical connection								
	7-9=-4720/933, 9-10	,	1/12		e capable of withst 437 lb uplift at join		39 ID UPIIIT at						
BOT CHORD	2-18=-950/5331, 16-		8)		designed in accor		ith the 2018						
	14-16=-661/4121, 12	2-14=-648/3781,	- /		Residential Code			nd					The second
	10-12=-789/4440		054		nd referenced star	ndard AN	ISI/TPI 1.					OFA	ALC AL
WEBS	3-18=0/433, 6-14=-3 5-16=-16/820, 7-14=	,	201, L(DAD CASE(S)	Standard							STATE OF M	155
	7-12=-20/912, 5-14=	,									6	AN.	NSY
	3-16=-1307/345										B	SCOTT	M. YEY
NOTES											Ba	SEVI	ER

1) Unbalanced roof live loads have been considered for this design.

Page: 1

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 79	
P240539-01	C1	Roof Special Structural Gable	1	1	Job Reference (optional)	l61197923

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Oct 04 10:09:29 ID:QwsMJ9UGunpD_Jran7lpT1z_WWI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:86.6

							-						
oading	(psf)	Spacing	2-0-0		CSI	0.40	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.49 0.50	Vert(LL) Vert(CT)	-0.37 -0.67	24-26 24-26	>999 >851	240	MT20 MT18HS	244/190 197/144
	10.0 0.0*	Rep Stress Incr	YES		WB	0.50	Horz(CT)	-0.67	24-26 18	>851 n/a	180 n/a	WI 18H5	197/144
CDL	10.0	Code		8/TPI2014	Matrix-S	0.35	11012(01)	0.14	10	n/a	Π/a	Weight: 317 lb	FT = 20%
UMBER			N	/EBS	3-26=0/421, 6-2	2=-260/162	26, 10-30=-9	/336,	10) Pro	vide me	chanic	al connection (by	others) of truss to
OP CHORD	2x6 SP 2400F 2.0E SPF No.2	*Except* 14-17,14-6	:2x6		20-30=-11/314, 20-31=-12/672,							able of withstandir puplift at joint 2.	ng 292 lb uplift at
OT CHORD	2x6 SP 2400F 2.0E	*Except* 0-0:2x6 SF	۶F		3-24=-1298/352, 22-27=-612/265, 11) This truss is designed in acco					ned in accordanc			
VEBS	No.2 2x3 SPF No.2 *Exce	NO+* 10 17:0VC ODE I			27-28=-600/258 10-29=-686/297							ential Code sect	
VEDS	24-3,22-5:2x4 SP No				32-33=-2595/47		,		LOAD				
	2.0E	0.2, 10 10.2X101 2	1001		5-22=-1675/452			5/11,	LOAD		, 014	ndard	
THERS	2x3 SPF No.2				9-29=-61/138, 1								
RACING					13-31=-1/56, 19	-32=-350/8	0, 16-33=-27	7/275					
OP CHORD	Structural wood she	athing directly applie	edor N	OTES									
	3-9-9 oc purlins, ex			·	d roof live loads h	ave been o	considered for	or					
OT CHORD	Rigid ceiling directly	applied or 10-0-0 o		this design.									
	bracing.		2)	2) Wind: ASCE 7-16; Vult=115mph (3-second gust)									
VEBS		3-24, 15-18		Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope)									
/EBS OINTS	2 Rows at 1/3 pts				ne and C-C Exteri								
JINTS	1 Brace at Jt(s): 27, 28, 30, 31				4-1-0 to 28-5-10,								
EACTIONS	(size) 2=0-3-8, 2	10 0 2 0			terior (1) 33-5-10								
	Max Horiz 2=0-3-6,				nt exposed ; end								
	Max Uplift 2=-445 (L		3)	exposed;C-	C for members a	nd forces a	& MWFRS fo	r					
	Max Grav 2=2313 (L			reactions sl	hown; Lumber DO	DL=1.60 pl	ate grip						
ORCES	(lb) - Maximum Com		~)	DOL=1.60									
OKCES	Tension	ipression/iviaximum	3)		gned for wind loa							000	TOP
OP CHORD	1-2=0/11, 2-3=-5747	7/1140 3-5=-4472/9	64		tuds exposed to v							THE OF M	Ale D
	5-6=-3029/755, 6-7=		0 1,		rd Industry Gable							BIE	0.0
	7-8=-3017/767, 8-9=				ualified building						6	AN IN	NSY
	9-10=-3119/763, 10-	,	4) 5)		re MT20 plates u re 3x4 MT20 unle						B	S/ SCOT	$M. \qquad \forall \mathcal{A}$
	11-12=-3527/798, 12	2-13=-3526/761,	6		s spaced at 2-0-0		se muicaleu.				R	/ SEVI	ER \ Y
	13-15=-3584/752, 1	5-16=-784/259,	7		as been designe) nef hottom				20		
	16-17=-928/249, 17-				bad nonconcurrer			she				the the	Andel
OT CHORD	2-26=-1070/5365, 24	,	8		has been design							NUMI	ED OT
	22-24=-793/4163, 20	,	-,		om chord in all ar						27	DE 2001	10007 AN
	19-20=-586/2823, 18	8-19=-586/2823		3-06-00 tall	by 2-00-00 wide	will fit betv	veen the bott				N	PE-2001	BER 018807
				chord and a	any other membe	rs, with BC	DL = 10.0ps	f.			Y	1 Por	1 SA
			9)		s are assumed to	be SP 240	0F 2.0E crus	shing			0	C'SSIONA	TENS
				capacity of	805 psi.							CONA	L

October 6,2023

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 79	
P240539-01	C2	Roof Special	2	1	Job Reference (optional)	161197924

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Oct 04 10:09:29 ID:4EauqFdo3SKWQ9muUfydzZz_WW6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:85.4

Plate Offsets (X, Y): [2:0-1-2,Edge], [6:0-2-13,0-3-4]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.47	Vert(LL)		12-14	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.48	Vert(CT)	-0.68	16-18	>847	180	MT18HS	244/190	
BCLL	0.0*	Rep Stress Incr	YES		WB	0.88	Horz(CT)	0.15	11	n/a	n/a			
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 297 lb	FT = 20%	
LUMBER			2)	Wind: ASCE	7-16; Vult=115m	nph (3-sec	cond gust)							
TOP CHORD	2x6 SP 2400F 2.0E SPF No.2	*Except* 8-10,8-6:2x	(6		h; TCDL=6.0psf; it. II; Exp C; Enclo		• • •	pe)						
BOT CHORD	2x6 SP 2400F 2.0E				and C-C Exterio									
WEBS	2x3 SPF No.2 *Exce	ot* 11-10 [.] 2x4 SPF N	10.3		-1-0 to 28-5-10, E									
	14-5,16-3,11-9:2x4 \$		10.0,	33-5-10, Inte	erior (1) 33-5-10 t	o 47-10-4	zone; cantile	ever						
BRACING	RACING left and right exposed ; end vertical left and right													
TOP CHORD	Structural wood she	athing directly applie	d or	exposed;C-0	c for members an	nd forces a	& MWFRS fo	r						
	3-7-11 oc purlips except end verticals reactions shown; Lumber DOL=1.60 plate grip													
BOT CHORD	P Rigid ceiling directly applied or 10-0-0 oc DOL=1.60													
	bracing. 3) All plates are MT20 plates unless otherwise indicated.													
WEBS	1 Row at midpt	3-16, 7-14, 9-11	4)	4) This truss has been designed for a 10.0 psf bottom										
WEBS	2 Rows at 1/3 pts 5-14 chord live load nonconcurrent with any other live loads.													
REACTIONS	(size) 2=0-3-8, 1	11= Mechanical	5)					Opsf						
	Max Horiz 2=193 (LC	C 16)			n chord in all are									
	Max Uplift 2=-446 (L		3)		oy 2-00-00 wide v									
	Max Grav 2=2317 (L				ny other members assumed to be:									
FORCES	(lb) - Maximum Com		, 0)		acity of 805 psi.	JUIII 2 SI	2400F 2.0E							
1 ONOLO	Tension		7)		er(s) for truss to t	truce conr	actions							
TOP CHORD	1-2=0/11, 2-3=-5764	1/1144 3-5=-4482/96			hanical connection			0						
	5-6=-3039/756, 6-7=		, 0)		e capable of withs									
	7-9=-3586/778, 9-10	,			93 lb uplift at join			•						
	10-11=-275/165		9)		designed in acco		ith the 2018							
BOT CHORD	2-18=-1071/5380, 16	6-18=-1071/5380,	0,		Residential Code			and				an	JOIN	
	14-16=-793/4173, 12				nd referenced sta							A OF I	AISO	
	11-12=-631/2987		1.0	DAD CASE(S)							1	750	-00 M	
WEBS	3-18=0/423, 6-14=-2	270/1656, 9-12=0/43	9,	0,02 0,02(0)	Canadia						A	STATE OF M	Ner	
	5-16=-17/828, 7-12=	-27/287,									U	S/ SCOT	IM. YAY	
	5-14=-1678/454, 3-1										9	SEVI	ER \ X	
	7-14=-631/272, 9-11	=-3430/682												
NOTES											8	حلب ا	· Luta	
1) Unbalance	ed roof live loads have	been considered for									KA	hotto	Servis	

1) Unbalanced roof live loads have been considered for this design.

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

October 6,2023

E

VUMB

PE-200101880

SSIONAL

OF

Job	Truss	Truss Type Qty Ply Roof - Osage Lot 79		Roof - Osage Lot 79		
P240539-01	C3	Roof Special	5	1	Job Reference (optional)	161197925

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Oct 04 10:09:30 ID:Sb0KJjJkHtSHkuN7kDNnkhz_WMA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1	:86.2
-----------	-------

Plate Offsets (2	X, Y): [2:0-1-2,Edge]	, [6:0-2-9,0-3-4], [13: -	Edge,0-4-	0], [15:0-3-8,0	-4-8J, [16:0-2-8,E	dge]							
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.36	Vert(LL)	-0.34	20-22	>999	240	MT20	244/190
CDL	10.0	Lumber DOL	1.15		BC	0.87	Vert(CT)	-0.63		>903	180	MT18HS	197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.92	Horz(CT)	0.21	13	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S			-				Weight: 320 lb	FT = 20%
UMBER			1)	·	roof live loads ha	ave been	considered fo	or					
OP CHORD	2x6 SP 2400F 2.0E	*Except* 9-12,9-6:2:		this design.	7 40. 1/1.14 445-	amh (2 agu							
	SPF No.2		2		7-16; Vult=115n h; TCDL=6.0psf;								
OT CHORD	2x6 SPF No.2 *Exce 2.0E, 11-14:2x4 SP		100F		at. II; Exp C; Encl		· · · ·	ne)					
	21-2,19-17,19-21:2x	,			e and C-C Exteri								
/EBS	2x3 SPF No.2 *Exce		No 3		-1-0 to 28-5-10,								
200	20-3,15-10,18-5:2x4		,		erior (1) 33-5-10								
RACING	,,			left and righ	t exposed ; end v	ertical left	and right						
OP CHORD	Structural wood she	athing directly applie	ed or		C for members a			r					
	3-6-8 oc purlins, ex				own; Lumber DC	L=1.60 pl	ate grip						
OT CHORD	Rigid ceiling directly		0	DOL=1.60									
	bracing, Except:		3		e MT20 plates ur			ed.					
	8-1-1 oc bracing: 15	5-16. 3-20, 7-18	4)		as been designed ad nonconcurren			de					
EBS	1 Row at midpt		e load of 20.0										
EBS	2 Rows at 1/3 pts		5)		m chord in all are			opai					
	· · · ·	13= Mechanical			by 2-00-00 wide			om					
	Max Horiz 2=193 (LO		•		ny other member								
	Max Uplift 2=-446 (L) Bearings ar	e assumed to be:	Joint 2 SI	2400F 2.0E						
	Max Grav 2=2300 (I		2)	crushing ca	pacity of 805 psi.								
ORCES	(lb) - Maximum Com	npression/Maximum	7)		ler(s) for truss to								
	Tension		8)		chanical connecti								
OP CHORD	1-2=0/11, 2-3=-5692	,	65,		e capable of with		93 lb uplift at	t				000	TO
	5-6=-2989/751, 6-7= 7-8=-3633/879, 8-10				446 lb uplift at jo							OFM	ALC D
	10-11=-2716/705, 1		9)		designed in according to the sidential Code of the sidential Code			nd				BAR	W Sein
	12-13=-2126/475	1 12- 2001/002,			ind referenced st			inu			6	TATE OF M	No/
OT CHORD	16-17=0/176, 8-16=	0/95, 15-16=-834/37	75,	OAD CASE(S)							B	SCOT	ГМ. \72 УД
	14-15=0/7, 11-15=-3	319/242, 13-14=-67/	119,	UAD CASE(S	Stanuaru						R	/ SEVI	ER V
	2-22=-1072/5313, 2	0-22=-1072/5313,									GOA		
	18-20=-792/4134, 1											LATS .	Ander
EBS		19/832, 3-20=-1273/	356,									NUM	Serving
	6-18=-262/1617, 7-1										27		
	10-16=-86/151, 10-1	,									N.	PE-2001	10001 24
	7-18=-715/299, 5-18 13-15=-135/112, 12										Y	N. Pa	1.SA
	16-18=-242/1271	-15=-000/2397,										SION	LENS
OTES	10 10- 272/12/1											ESSIONA	L
1120													
													er 6,2023

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 79	
P240539-01	C4	Roof Special Supported Gable	1	1	Job Reference (optional)	161197926

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Oct 04 10:09:30 ID:IDEkMeSePsGXytVpYj8zJQz_WR9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:86.2	
----------------	--

Plate Offsets	(X. Y)	: [16:0-3-0).0-0-15].	[28:Edge.0-2-8]

			5], [28:Edge,0-2-8]			-			· · · ·						
Loading		(psf)	Spacing	2-0-0		CSI			DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC		0.10	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC		0.06	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB		0.21	Horz(CT)	0.00	28	n/a	n/a		
BCDL		10.0	Code	IRC2	018/TPI2014	Matri	x-S							Weight: 273 lb	FT = 20%
LUMBER						Max Gra	v 2=239 (L	.C 1), 2	8=58 (LC 22)	,	WEBS		16-39	=-164/21, 15-40=	=-144/57,
TOP CHORD	2x6 SPF	No.2							30=179 (LC				14-41	=-143/97, 13-42=	=-140/74,
BOT CHORD	2x6 SPF								32=189 (LC					=-140/73, 11-44=	
WEBS	2x3 SPF								34=181 (LC						144/75, 7-48=-149/
OTHERS	2x3 SPF	No.2							, 36=183 (LC					,	49/77, 4-51=-84/47
BRACING									39=204 (LC 2					⊧-286/172, 17-38= i=-143/105, 19-35	
TOP CHORD			athing directly applie	ed or					41=183 (LC 2 , 43=180 (LC					=-143/105, 19-35 =-140/78, 21-33=	,
	6-0-0 oc purlins, except end verticals.								45=175 (LC					=-149/84, 24-31=	
BOT CHORD	0	ing directly	applied or 10-0-0 oc)					48=189 (LC 1					=-138/105, 26-29	
	bracing.		40.00 45 40 44 44						50=198 (LC		NOTES		20 00	100,100,20 20	
WEBS	1 Row at		16-39, 15-40, 14-41 17-38	,					52=393 (LC 2				d roof li	ive loads have he	een considered for
REACTIONS	(0:70)		, 28=48-0-0, 29=48-0		FORCES	(lb) - M	aximum Cor	mpressi	on/Maximum			s desian.			
REACTIONS	(SIZE)		, 20=40-0-0, 29=40-0 0, 31=48-0-0, 32=48·			Tensio	า							; Vult=115mph (3	second gust)
			0, 31=48-0-0, 32=48 0, 34=48-0-0, 35=48		TOP CHORD	1-2=0/1	1, 2-3=-195	5/129, 3·	-4=-145/143,		์ Va	sd=91m	ph; TC	DL=6.0psf; BCDL	_=6.0psf; h=35ft;
			0, 38=48-0-0, 39=48·						/5, 6-7=-82/19		Ke	=1.00; C	at. II; E	Exp C; Enclosed;	MWFRS (envelope
			0, 41=48-0-0, 42=48-						28, 10-11=-11	1/245,					-0-11-0 to 4-1-0,
		43=48-0-0	0, 44=48-0-0, 45=48-	-0-0,			-123/264, 12		,						or(2R) 28-5-10 to
			0, 48=48-0-0, 49=48-				-147/323, 14 -165/371, 16								10-12 zone; cantilev
			0, 51=48-0-0, 52=48	-0-0			-161/340, 18							sed ; end vertical	
	Max Horiz						-129/251, 20		,					Lumber DOL=1.6	ces & MWFRS for
	Max Uplift		C 13), 29=-81 (LC 13				-100/179, 22					L=1.60	nown, i		o plate grip
			-C 13), 31=-57 (LC 1						/66, 26-27=-4	15/36.	DC	L=1.00		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
			-C 13), 33=-50 (LC 1			27-28=				,				A	and
			.C 13), 35=-56 (LC 1 .C 13), 38=-20 (LC 1		BOT CHORD	2-52=-3	88/53, 51-52	=-38/53	8, 50-51=-38/	53,				TATE OF I	MISS W
			C 12), 41=-57 (LC 8			49-50=	-38/53, 48-4	9=-38/5	3, 47-48=-38	3/53,			6	9.24	NSO
			C 8), 43=-49 (LC 12						53, 43-44=-38				H	S SCOT	TM YPN
			C 12), 45=-46 (LC 8				,		53, 40-41=-38	,			B	SEV	
			C 8), 48=-54 (LC 12				,		3, 36-38=-38	,			SH a		
		49=-45 (L	C 8), 50=-52 (LC 12),			,		3, 33-34=-38	,			80	1 st	
		51=-30 (L	C 8), 52=-111 (LC 1	2)			-38/53, 31-3 -38/53, 28-2		3, 30-31=-38	5/53,				Call	Jene
						29-30=	-30/33, 28-2	.9=-36/5	55				5	NUM	
													N	PE-2001	018807 / 5 8
													V	12	ENGI
														Session of	NO'A

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

SSIONAL EN

October 6,2023

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 79	
P240539-01	C4	Roof Special Supported Gable	1	1	Job Reference (optional)	161197926

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 3x4 MT20 unless otherwise indicated. 4)
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 9) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 44 lb uplift at joint 2, 26 lb uplift at joint 40, 57 lb uplift at joint 41, 50 lb uplift at joint 42, 49 lb uplift at joint 43, 49 lb uplift at joint 44, 46 lb uplift at joint 45, 51 lb uplift at joint 47, 54 lb uplift at joint 48, 45 lb uplift at joint 49, 52 lb uplift at joint 50, 30 lb uplift at joint 51, 111 lb uplift at joint 52, 20 lb uplift at joint 38, 65 lb uplift at joint 36, 56 lb uplift at joint 35, 54 lb uplift at joint 34, 50 lb uplift at joint 33, 59 lb uplift at joint 32, 57 lb uplift at joint 31, 49 lb uplift at joint 30 and 81 lb uplift at joint 29.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Oct 04 10:09:30 ID:IDEkMeSePsGXytVpYj8zJQz_WR9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 79	
P240539-01	E1	Roof Special Supported Gable	2	1	Job Reference (optional)	161197927

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Oct 04 10:09:31 ID:_3koBpIF41zm?y3f9Y6MyBz_WS3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

40-8-0 4

Page: 1

Scale = 1:75.3

oading		(psf)	Spacing	1-11-	-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
FCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.04	Vert(LL)	n/a	-	n/a	999	MT20	197/144
FCDL		10.0	Lumber DOL	1.15		BC	0.02	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.18	Horz(CT)	0.01	24	n/a	n/a		
BCDL		10.0	Code	IRC2	018/TPI2014	Matrix-S		-					Weight: 213 lb	FT = 20%
UMBER					FORCES	(lb) - Maximum C	ompressi	on/Maximum					Vult=115mph (3	
TOP CHORD	2x6 SPF				TOP CHORD	Tension 1-2=0/11, 2-3=-17	1/60 2 /	107/72					DL=6.0psf; BCDL	.=6.0psf; n=35ff; MWFRS (envelope
BOT CHORD	2x6 SPF				TOP CHORD	4-5=-100/82, 5-7=	,	,					C-C Exterior(2E)	
DTHERS	2x3 SPF I	N0.2				8-9=-50/129, 9-10			163				22-8-4, Exterior	
BRACING						11-12=-76/180, 12		,	105,					zone; cantilever le
TOP CHORD			athing directly applie	ed or		13-14=-97/230, 14		,					; end vertical left	
	6-0-0 oc p		applied or 10-0-0 oc	_		15-16=-88/207, 10								es & MWFRS for
BOT CHORD	bracing.	ing directly	applied or 10-0-0 oc	;		17-18=-57/133, 1		,	4/61,				umber DOL=1.6	
REACTIONS	0	2 40 9 0	24-40.9.0.26.40.9			20-21=-53/28, 21	-23=-72/1	8, 23-24=-11	4/39,		DL=1.60			
REACTIONS	(SIZE)		24=40-8-0, 26=40-8), 28=40-8-0, 29=40-			24-25=0/11				3) Tr	uss desi	gned fo	or wind loads in th	ne plane of the trus
), 31=40-8-0, 32=40-	,	BOT CHORD	2-45=-35/125, 44		,						ormal to the face),
), 34=40-8-0, 35=40·	,		43-44=-35/125, 42								Details as applicable
), 37=40-8-0, 39=40·	,		41-42=-35/125, 4		,						er as per ANSI/TPI
), 41=40-8-0, 42=40-	,		39-40=-35/125, 3							MT20 unless othe	
		43=40-8-0), 44=40-8-0, 45=40-	-8-0		36-37=-35/125, 3 34-35=-35/125, 3							ntinuous bottom o ed at 2-0-0 oc.	chord bearing.
	Max Horiz					31-32=-35/125, 3							en designed for a	10.0 pef bottom
	Max Uplift		: 13), 24=-14 (LC 9),			29-30=-35/125, 28								any other live loads
			C 13), 27=-58 (LC 1			27-28=-35/125, 2								a live load of 20.0p
			C 13), 29=-53 (LC 1			24-26=-35/125		,					rd in all areas wh	
			C 13), 31=-54 (LC 1		WEBS	14-34=-127/0, 13-	-35=-139	67,						between the botton
			C 13), 33=-39 (LC 1) C 12), 36=-54 (LC 8)			12-36=-138/92, 1	1-37=-13	5/71,		ch	ord and a	any oth	er members.	
			C 8), 39=-48 (LC 12)			10-39=-136/71, 9-								The
		(C 8), 41=-44 (LC 12)	, ·		7-42=-139/72, 5-4			/64,				OFA	ALC D
			C 8), 43=-53 (LC 12			3-45=-169/116, 1		,					ACE	AISSO
			C 8), 45=-69 (LC 12			16-32=-138/98, 1 18-30=-136/76, 1		,				6	STATE OF A	N.S.
	Max Grav	2=178 (LC	C 1), 24=155 (LC 1),			20-28=-128/72, 2						R	SCOT	ГМ. VEN
		26=170 (L	C 26), 27=184 (LC 2	26),		23-26=-130/103	1-27 =- 14	5/57,				4	SEVI	ER \V
			.C 1), 29=175 (LC 26		NOTES	20 20- 100, 100						12 *	1	1+1
			.C 1), 31=173 (LC 1)			d roof live loads ha	vo boon i	onsidered fo				86	2 . 1	0
			C 26), 33=169 (LC		this design.		ve been		1			22	hotes i	Noin IA A A
			.C 22), 35=177 (LC ⁻ .C 25), 37=177 (LC ⁻		the design.							12 7	STOR STOR	
			.C 1), 40=174 (LC 2									N.	O PE-2001	018807
			.C 25), 42=177 (LC 2									Y	PE-2001	018807
			C 1), 44=151 (LC 2										Nº Or	NUB
		45=226 (L		- ,,									*SSIONA	L
		· - (-	/											
													Octobe	er 6,2023

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 79	
P240539-01	E1	Roof Special Supported Gable	2	1	Job Reference (optional)	l61197927

- All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 20 lb uplift at joint 2, 34 lb uplift at joint 35, 54 lb uplift at joint 36, 46 lb uplift at joint 37, 48 lb uplift at joint 30, 48 lb uplift at joint 40, 44 lb uplift at joint 41, 49 lb uplift at joint 42, 53 lb uplift at joint 43, 42 lb uplift at joint 44, 69 lb uplift at joint 45, 39 lb uplift at joint 33, 57 lb uplift at joint 32, 54 lb uplift at joint 31, 52 lb uplift at joint 30, 53 lb uplift at joint 29, 49 lb uplift at joint 28, 58 lb uplift at joint 27, 62 lb uplift at joint 26 and 14 lb uplift at joint 24.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Oct 04 10:09:31 ID:_3koBplF41zm?y3f9Y6MyBz_WS3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 79	
P240539-01	E2	Roof Special	4	1	Job Reference (optional)	l61197928

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Oct 04 10:09:31 ID:H8704Oe_QziBoQIkZRw0Y4z_WSD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

41-7-0

0-11-0

40-8-0

3-8-15

9-10-8 18-10-10 22-8-4 30-2-14 36-11-1 9-10-8 9-0-2 3-9-11 7-6-10 6-8-3 6x6 = 6 412 41 4x4 🚅 12 15 5 19 4x8 = 20 4x4 👟 4x4 7 4x8 👟 Λ 3 8

Scale = 1:75.3

Plate Offsets (X, Y): [2:0-3-0,Edge], [6:0-2-13,0-3-8], [10:0-0-13,0-2-0]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.92	Vert(LL)	-0.26	. ,	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.96	Vert(CT)	-0.55	15-17	>874	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.98	Horz(CT)	0.15	10	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S					-		Weight: 206 lb	FT = 20%
UMBER OP CHORD OT CHORD VEBS	2x6 SPF No.2 2x6 SPF No.2 2x3 SPF No.2 *Exce No.2	ept* 14-5,15-3:2x4 SP	2)	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4	7-16; Vult=115mp n; TCDL=6.0psf; B t. II; Exp C; Enclos and C-C Exterior(1-0 to 22-8-4, Exte	CDL=6.0 ed; MW 2E) -0-1 erior(2R	Dpsf; h=35ft; FRS (envelop 1-0 to 4-1-0,) 22-8-4 to						
					or (1) 27-8-4 to 41 losed ; end vertica			left					
OP CHORD	Structural wood she 2-2-0 oc purlins.	or	exposed;C-C	for members and	forces a	& MWFRS for							
BOT CHORD	Rigid ceiling directly bracing.		DOL=1.60	own; Lumber DOL	=1.60 pl	ate grip							
VEBS		3-15, 7-14	3)	This truss ha	s been designed f	or a 10.0) psf bottom						
	(size) 2=0-3-8, 2	,			ad nonconcurrent v								
	Max Horiz 2=-149 (L		4)		as been designed			Opsf					
	Max Uplift 2=-377 (L	.C 8), 10=-291 (LC 13)		on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom									
		_C 1), 10=1891 (LC 1)		chord and ar	y other members.								
ORCES	(lb) - Maximum Com	pression/Maximum	5)		are assumed to be	SPF No	o.2 crushing						
	Tension	0004 0 5 0400/740		capacity of 4									
OP CHORD	1-2=0/11, 2-3=-4410 5-6=-2570/697, 6-7=)/924, 3-5=-3163/749,	6)		hanical connection								
	,	=-2707/087,)=-3910/910, 10-11=0,	/12		capable of withsta 31 lb uplift at joint		in uplift at						
BOT CHORD	2-17=-758/4059, 15-				designed in accord		ith the 2018						
	14-15=-466/2902, 12	,	.,		Residential Code			nd					
	10-12=-762/3488			R802.10.2 a	nd referenced stan	dard AN	ISI/TPI 1.					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~
VEBS		333/1488, 9-12=-212/2		DAD CASE(S)	Standard							A DE	and
	,	=0/484, 5-14=-1045/30)5,	.,								TEOFT	AISSO
	3-15=-1256/348, 7-1	4=-885/362									A	T. N.	N.S.
IOTES											A	SCOT	ГМ. VEN
Inhalance	d root live loads have	been considered for									U	1	\F V

1)

Unbalanced roof live loads have been considered for this design.

October 6,2023

E

SEVIER

NUMBER

PE-2001018807

SSIONAL

OFF

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 79	
P240539-01	G1A	Common Supported Gable	1	1	Job Reference (optional)	161197929

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Oct 04 10:09:32 ID:P?23fvqSL42HZUnaJ1h?Xkz_WQh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

<u> </u>	
Scale :	= 1:39.8

			l l			i							l .	
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	:	25.0	Plate Grip DOL	1.15		TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.06	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.14	Horz(CT)	0.00	11	n/a	n/a		
BCDL		10.0	Code	IRC20	18/TPI2014	Matrix-R							Weight: 69 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	DP CHORD 2x4 SP No.2 DT CHORD 2x4 SP No.2 EBS 2x4 SP No.2 *Except* 10-11:2x3 SPF No.2 THERS 2x3 SPF No.2 RACING DP CHORD DP CHORD Structural wood sheathing directly applied or 6-0-0 cc purlins, except end verticals. DT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. EACTIONS (size) 11=14-10-4, 12=14-10-4, 13=14-10-4, 14=14-10-4, 15=14-10-4, 18=14-10-4, 17=14-10-4, 18=14-10-4, 19=14+10-4 Max Horiz 19=178 (LC 9) Max Uplift 11=-44 (LC 9), 12=-109 (LC 13), 16=-80 (LC 12), 17=-74 (LC 12), 18=-120 (LC 12), 19=-97 (LC 8) Max Grav 11=84 (LC 19), 12=202 (LC 20), 13=187 (LC 20), 14=198 (LC 20), 15=191 (LC 22), 16=199 (LC 19), 15=191 (LC 22), 16=199 (LC 19), 17=188 (LC 19), 18=189 (LC 19), 19=197 (LC 20)			2 1 or), (),), (),	 this design. Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Exterior(2N) Exterior(2N) Exterior(2N) Exterior(2N) Truss design only. For stu- see Standard or consult qu All plates are of Gable require Gable require Gable studs This truss ha chord live los non the bottor 3-06-00 tall b 	7-16; Vult=115mp 7; TCDL=6.0psf; Bd t. II; Exp C; Enclos e and C-C Corner(3 4-1-0 to 7-5-2, Cor 12-5-2 to 14-9-0 z d; end vertical left and forces & MWI =1.60 plate grip Di- ned for wind loads ids exposed to win d Industry Gable El alified building des es continuous botto ully sheathed from ist lateral movement spaced at 2-0-0 oc s been designed fad nonconcurrent v aas been designed n chord in all areas by 2-00-00 wide wild	h (3-sec CDL=6. CDL=6. ed; MW BE) -0-1 mer(3R) one; car and righ FRS for OL=1.60 in the p d (norm nd Deta signer as so other om chor one fac nt (i.e. d bor a 10.0 with any for a 110 so where	ond gust) opsf; h=35ft; FRS (envelo I-0 to 4-1-0, 7-5-2 to 12 titlever left ar treactions shu) ane of the tru ane of the tru is as applicate d bearing. e or securely iagonal web)) psf bottom other live load a rectangle	pe) 5-2, nd -C own; wss e), ibile, PI 1. d. /).					
FORCES	(lb) - Maximu	,	,		chord and ar 0) All bearings	y other members. are assumed to be			OIII				OF I	MISS
TOP CHORD	3-4=-96/96, 4	-5=-89/ 2, 7-8=-8)/41, 2-3=-130/119, /170, 5-6=-129/251, 88/169, 8-9=-63/81, 60/34		bearing plate 19, 44 lb upli	hanical connection capable of withsta ft at joint 11, 80 lb	anding 9 uplift at	7 lb uplift at j joint 16, 74 l	joint b				STATE OF A	$M. \qquad \forall \checkmark \forall \lambda$
BOT CHORD	HORD 18-19=-66/71, 17-18=-66/71, 16-17=-66/71, 16-17=-66/71, 15-16=-66/71, 14-15=-66/71, 13-14=-66/71, 12. Joint 14, 76 lb uplift at joint 13 and 109 lb uplift at joint							Servier						
WEBS	12-13=-66/71, 11-12=-66/7112) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.0-15=-188/42, 5-16=-159/123, 4-17=-151/160, 3-18=-133/129, 7-14=-157/133, 8-13=-149/164, 9-12=-149/15612) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.0-12=-149/15612) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.													
NOTES		-											NA	LE

October 6,2023

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 79				
P240539-01	G2A	Common Girder	1	3	Job Reference (optional)	161197930			

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Oct 04 10:09:32

Page: 1

4-3-10	7-5-2	10-6-10	14-10-4	L
4-3-10	3-1-8	3-1-8	4-3-10	٦

Plate Offsets (X, Y): [6:0-7-0,0-1-8], [7:0-6-8,0-3-0], [8:0-7-0,0-1-8]

Scale = 1:46.3

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/	/TPI2014	CSI TC BC WB Matrix-S	0.22 0.24 0.90	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.09 0.02	(loc) 6-7 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	MT20	GRIP 197/144 FT = 20%
	2x10 SP 2400F 2.01 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, Max Horiz 1=-146 (I Max Uplift 1=-1105 Max Grav 1=7954 ((Ib) - Maximum Con	eathing directly applied v applied or 10-0-0 oc 5=0-3-8 _C 10) (LC 12), 5=-1212 (LC	d or 5) 13) ⁶⁾	Vasd=91mph Ke=1.00; Cate exterior zone Interior (1) 5- Interior (1) 12 right exposed for members Lumber DOL This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an	7-16; Vult=115m ; TCDL=6.0psf; E : II; Exp C; Enclo and C-C Exterior 1-12 to 7-5-2, Exi 2-5-2 to 14-8-8 zo 4; end vertical lef and forces & MW =1.60 plate grip E s been designed d nonconcurrent as been designed n chord in all area y 2-00-00 wide w y other members	SCDL=6.0 sed; MW r(2E) 0-1 terior(2R ne; canti t and righ /FRS for DOL=1.60 for a 10.0 with any d for a liv us where ill fit betv	Dpsf; h=35ft; FRS (envelop -12 to 5-1-12,) 7-5-2 to 12 lever left and tt exposed;C- reactions sho) p psf bottom other live loa e load of 20.0 a rectangle veen the bottom	5-2, C own; ds. Opsf om			26 (B),	6 (B), 12=-2126 () 15=-2126 (B), 16	B), 13 - -2126 (B), =-2126 (B),
TOP CHORD			,	capacity of 8				0					
BOT CHORD	3-4=-7508/1164, 4-5 1-8=-1108/7790, 7-8 6-7=-1074/7850, 5-0	8=-1111/7813,	,	bearing plate	nanical connectio capable of withs	tanding 1							
WEBS	2-8=-416/3290, 3-7 2-7=-2163/406, 4-6 4-7=-2214/416	=-1166/7827,	9)	This truss is International	212 lb uplift at joir designed in accor Residential Code nd referenced sta	rdance w sections	R502.11.1 a	nd					
(0.131"x3" Top chord staggered Bottom ch staggered	to be connected toge) nails as follows: s connected as follow at 0-9-0 oc. ords connected as fol at 0-7-0 oc. ected as follows: 2x3	s: 2x6 - 2 rows Iows: 2x10 - 5 rows	10) 11)	Use Simpsor Truss) or equ 1-9-8 from th back face of Use Simpsor Truss, Single oc max. start connect truss	Strong-Tie HUS ivalent spaced at e left end to 13-9- bottom chord. a Strong-Tie HUS Ply Girder) or eq ing at 3-9-8 from c(es) to back face	28 (22-10 t 12-0-0 c -8 to con 28 (22-10 juivalent the left e of bottor	Od Girder, 4-1 oc max. startii nect truss(es) 6d Girder, 4-1 spaced at 2-0 nd to 11-9-8 t n chord.	ng at) to 6d)-0 to		S		STATE OF M	I IVI.
 All loads a except if n CASE(S) s provided to unless oth 	re considered equally oted as front (F) or ba section. Ply to ply con o distribute only loads erwise indicated. ad roof live loads have	applied to all plies, ack (B) face in the LOA nections have been noted as (F) or (B),	12)	Fill all nail ho AD CASE(S) Dead + Roc Plate Increa Uniform Loa Vert: 1-3=	les where hanger Standard If Live (balanced) se=1.15	r is in cor : Lumber	tact with lum			-	A A A A A A A A A A A A A A A A A A A	PE-2001	LENGT

October 6,2023

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 79	
P240539-01	V5	Valley	1	1	Job Reference (optional)	l61197931

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Oct 04 10:09:32 ID:tyIEz_eIEbE7?C0qx_G0ijymfrJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

October 6,2023

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Scale	=	1:29.6	

Plate Offsets (X, Y): [3:0-2-0,Edge], [4:0-1-15,0-0-12]

	A, T). [3.0-2-0,Euge],	[4.0-1-10,0-0-12]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES	8/TPI2014	CSI TC BC WB Matrix-S	0.07 0.11 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%
BCDL	10.0	Code	IRC201	8/1912014	Watrix-S							weight: 31 lb	F1 = 20%
	2x4 SP No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=9-5-5, 5 Max Horiz 1=-80 (LC Max Uplift 1=-5 (LC	applied or 10-0-0 oc 5=9-5-5, 6=9-5-5, 7= 5 8) 13), 5=-4 (LC 12), 6= 7=-83 (LC 12)	7) ed or 8) c 9) 9-5-5 =-82 10	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings capacity of 5 Provide mec bearing plate 1, 4 lb uplift a uplift at joint)) This truss is International	hanical connection capable of withsta at joint 5, 83 lb upli 6. designed in accord Residential Code	with any for a liv s where Il fit betw SP No. a (by oth anding 5 ft at join dance w sections	other live loa e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t i lb uplift at joi t 7 and 82 lb ith the 2018 s R502.11.1 a	Opsf om o int					
		'=257 (LC 19)		R802.10.2 a DAD CASE(S)	nd referenced stan	dard AN	ISI/TPI 1.						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	Ľ	JAD CASE(S)	Standard								
TOP CHORD	1-2=-151/26, 2-3=-1 4-5=-149/23	59/76, 3-4=-159/76,											
BOT CHORD WEBS		,											
 this design Wind: ASC Vasd=91m Ke=1.00; (exterior zo and right exposed; C reactions s DOL=1.60 Truss des only. For s see Stand or consult Gable requ 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I 2-C for members and fr shown; Lumber DOL= ²	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le eft and right orces & MWFRS for 1.60 plate grip n the plane of the true (normal to the face) d Details as applicab gner as per ANSI/TP	be) eft ss ,								ß	CHILE OF L SCOT SEV. CHILE OF PE-2001 PE-2001	er 018807

- or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 79	
P240539-01	V6	Valley	1	1	Job Reference (optional)	161197932

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Oct 04 10:09:33 ID:A1hStZW1bXzXofFvMu5flcymfrT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-11-5

Page: 1

Scale = 1:26.2

Scale = 1:26.2													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-P	0.20 0.09 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=6-11-5; Max Horiz 1=-56 (LC Max Grav 1=153 (LC Max Grav 1=153 (LC (LC 1)	y applied or 10-0-0 oc , 3=6-11-5, 4=6-11-5 C 10) C 12), 3=-46 (LC 13)	9) : 10	on the bottor 3-06-00 tall b chord and ar All bearings a capacity of 5 Provide mec bearing plate 1 and 46 lb u 1) This truss is International	hanical connection capable of withs uplift at joint 3. designed in accoor Residential Code and referenced sta	as where will fit betw s. De SP No. Dn (by oth standing 3 ordance w e sections	a rectangle veen the both 2 crushing ers) of truss t 9 lb uplift at j ith the 2018 5 R502.11.1 a	om to joint					
this design 2) Wind: ASC Vasd=91m Ke=1.00; 0	(lb) - Maximum Corr Tension 1-2=-96/61, 2-3=-91 1-4=-12/45, 3-4=-12 2-4=-162/92 ed roof live loads have b. CE 7-16; Vult=115mph CDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2	, /45 been considered for (3-second gust) DL=6.0psf; h=35ft; cd; MWFRS (envelop	e)									5-F OF J	MISSO

and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing. 4)

Gable studs spaced at 4-0-0 oc. 5)

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

50 SCOTT M. SEVIER OFF PE-2001018807 SSIONAL E October 6,2023

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 79	
P240539-01	V7	Valley	1	1	Job Reference (optional)	161197933

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Oct 04 10:09:33 ID:SZ1peW_Ry0QnXvtSnfILWKymfs9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-7-15

1-7-15

2-0-0

2-0-0

Page: 1

4-0-0

Scale = 1:23.7													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.05	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.03	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.01	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-P							Weight: 13 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she	athing directly applie	7) 8) d or	on the botto 3-06-00 tall chord and a	has been desig m chord in all a by 2-00-00 wide ny other membe are assumed to 565 psi.	reas where e will fit betv ers.	a rectangle veen the bott	•					
	4-6-1 oc purlins.	0 7 11	9)		hanical connect capable of wit								

BOT CHORD directly applied or 10-0-0 oc bracing. REACTIONS (size) 1=4-5-5, 3=4-5-5, 4=4-5-5 Max Horiz 1=33 (LC 9) Max Uplift 1=-21 (LC 12), 3=-25 (LC 13) Max Grav 1=83 (LC 1), 3=83 (LC 1), 4=120 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-56/38, 2-3=-53/38 BOT CHORD 1-4=-7/26, 3-4=-7/26

WEBS 2-4=-81/51

NOTES

Unbalanced roof live loads have been considered for 1) this design

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)

5) Gable studs spaced at 4-0-0 oc.

This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.

- 1 and 25 lb uplift at joint 3.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- LOAD CASE(S) Standard

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor1 bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.