

RE: P240463-01 Roof - HR Lot 161

Site Information:

Customer: Clayton Properties Project Name: P240463-01 Lot/Block: 204 Model: Address: 1612 SW Buckthorn St. City: Lee's Summit

Subdivision: Hawthorne Ridge State: MO

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

No.

21

22

23

164148499

164148500

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.6 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 23 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	164148478	V05	3/12/2024
2	164148479	V04	3/12/2024
3	164148480	V03	3/12/2024
4	164148481	V02	3/12/2024
5	164148482	V01	3/12/2024
6	164148483	LG01	3/12/2024
7	164148484	J02	3/12/2024
8	164148485	J01	3/12/2024
9	164148486	CJ01	3/12/2024
10	164148487	C09	3/12/2024
11	164148488	C08	3/12/2024
12	164148489	C07	3/12/2024
13	164148490	C06	3/12/2024
14	164148491	C05	3/12/2024
15	164148492	C04	3/12/2024
16	164148493	C03	3/12/2024
17	164148494	C02	3/12/2024
18	164148495	C01	3/12/2024
19	164148496	B01	3/12/2024
20	l64148497	A04	3/12/2024

Seal#	Truss Name
164148498	A03

A02

A01

Date 3/12/2024 3/12/2024 3/12/2024

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision based on the parameters provided by . Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2025. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Sevier, Scott

March 12, 2024
RELEASE FOR CONSTRUCTION
AS NOTED ON PLANS REVIEW
DEVELOPMENT SERVICES
LEE'S SUMMIT, MISSOURI
06/07/2024 4:05:05

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

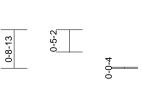
Job	Truss	Truss Type		Ply	Roof - HR Lot 161				
P240463-01	V05	Valley	1	1	Job Reference (optional)	164148478			

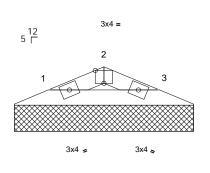
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 08:14:34 ID:6ru7F9CpA2ag5pbhdMPJqdzkXVF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-8-10

1-8-10

2-8-14


1-0-4


3-5-3

0-8-6

Page: 1

3-5-3

Scale = 1:22.1

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.03	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-P							Weight: 8 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2		7)	on the bottor 3-06-00 tall b	nas been designed m chord in all area by 2-00-00 wide w	is where	a rectangle						
BRACING			0)		ny other members		0 ann a b in a						
TOP CHORD	Structural wood she 3-6-6 oc purlins.	athing directly appli		capacity of 5			-						
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	c 9)	bearing plate	hanical connection capable of withst								
	(size) 1=3-5-3, 3 Max Horiz 1=-8 (LC Max Uplift 1=-14 (LC Max Grav 1=91 (LC	13) 5 12), 3=-14 (LC 13)) This truss is International	uplift at joint 3. designed in accor Residential Code nd referenced star Standard	sections	s R502.11.1 a	and					
FORCES	(lb) - Maximum Com	pression/Maximum		///D 0///02(0)	Otandara								
	Tension												
TOP CHORD	1-2=-101/94, 2-3=-1	01/98											
BOT CHORD	1-3=-72/83												
NOTES													
	ed roof live loads have	been considered to	r										
this design	CE 7-16; Vult=115mph	(3-second quet)											
	nph; TCDL=6.0psf; BC												
	Cat. II; Exp C; Enclose		oe)										
	one and C-C Exterior(2												m
	exposed ; end vertical l											OF	MIG
exposed;C	C-C for members and f	orces & MWFRS for	r									AFUT	N.S.C.

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
3) Truss designed for wind loads in the plane of the truss

3) This designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

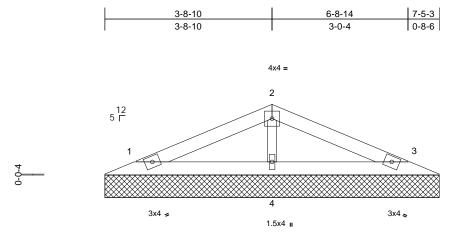
4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEVELORMENT SERVICES LEE'S'SUMWIT MISSOURI 06/07/2024 4:05:05


Job	Truss	Truss Type		Ply	Roof - HR Lot 161				
P240463-01	V04	Valley	1	1	Job Reference (optional)	164148479			

1-3-2

1-6-13

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 08:14:34 ID:6ru7F9CpA2ag5pbhdMPJqdzkXVF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

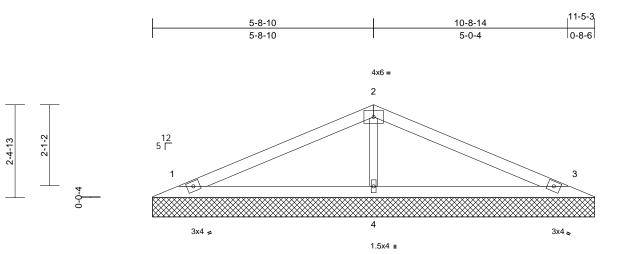
7-5-3

Scale = 1:25.6	

00010 - 1.20.0												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.19 0.09 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins. Rigid ceiling directly bracing.	2 12), 3=-40 (LC 13), 2 12)	on the botto 3-06-00 tall chord and a 8) All bearings capacity of § 9) Provide med bearing plat 1, 40 lb uplif 10) This truss is Internationa R802.10.2 a LOAD CASE(S)	chanical connection (e capable of withstar ft at joint 3 and 13 lb designed in accorda I Residential Code se and referenced stand	where fit betw SP No. by oth ding 3 uplift a unce w ections	a rectangle veen the botto 2 crushing ers) of truss t 36 lb uplift at ju ti joint 4. ith the 2018 \$ R502.11.1 a	o o oint					
this design	(lb) - Maximum Com Tension 1-2=-55/43, 2-3=-55 1-4=-1/24, 3-4=-1/24 2-4=-193/164 d roof live loads have E 7-16; Vult=115mph	, /48 4 been considered for										

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.
- 4)
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

March 12,2024



TION DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI 06/07/2024 4:05:05

Job	Truss	Truss Type		Ply	Roof - HR Lot 161	
P240463-01	V03	Valley	1	1	Job Reference (optional)	164148480

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 08:14:34 ID:6ru7F9CpA2ag5pbhdMPJqdzkXVF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

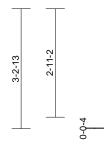
11-5-3

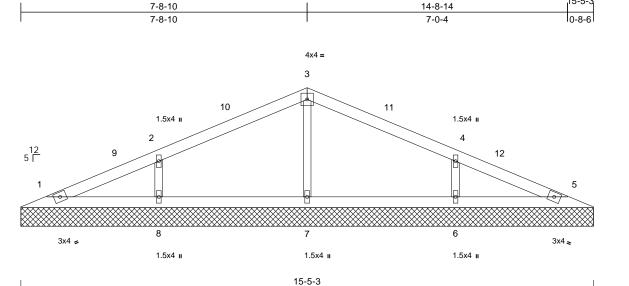
Scale - 1.29.8

Scale = 1:29.8			-										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.42 0.25 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 35 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	6-0-0 oc purlins. Rigid ceiling direc bracing. (size) 1=11-5 Max Horiz 1=-40 Max Uplift 1=-49 4=-43 Max Grav 1=207 4=496	LC 12), 3=-56 (LC 13 LC 12) (LC 25), 3=207 (LC 20 (LC 1) ompression/Maximum =-106/70	8 ied or g bc 3 1), L 6),	on the bottor 3-06-00 tall b chord and ar 3) All bearings capacity of 5 9) Provide mec bearing plate 1, 56 lb upliff 0) This truss is International	hanical connect capable of with at joint 3 and 4 designed in acc Residential Co nd referenced s	reas where e will fit betw ers. b be SP No. tion (by oth hstanding 4 43 lb uplift a cordance w de sections	a rectangle veen the both 2 crushing ers) of truss t 9 lb uplift at j it joint 4. ith the 2018 \$ R502.11.1 a	om to joint					
NOTES 1) Unbalance this design		ve been considered fo	or										

- this design Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- Gable studs spaced at 4-0-0 oc. 5)
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

March 12,2024


ΤΙΟΝ ΊFW DEVELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI 06/07/2024 4:05:05


Job	Truss	russ Truss Type Qty Ply Roof - HR Lot 161		Roof - HR Lot 161		
P240463-01	V02	Valley	1	1	Job Reference (optional)	164148481

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 08:14:34 ID:6ru7F9CpA2ag5pbhdMPJqdzkXVF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

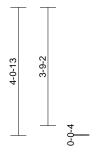
15-5-3

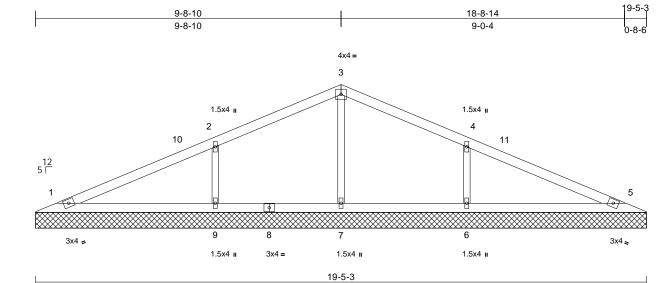
Scale = 1:31.1

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d		GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.22	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.11	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.06	Horiz(TL)	0.00	5	n/a	n/a		
BCDL		10.0	Code	IRC20)18/TPI2014	Matrix-S							Weight: 49 lb	FT = 20%
LUMBER					4) Gable requir	es continuous bo	ottom chor	d bearing.						
TOP CHORD	2x4 SP N	lo.2		:	5) Gable studs	spaced at 4-0-0	oc.							
BOT CHORD	2x4 SP N	lo.2			This truss has	s been designed	d for a 10.	0 psf bottom						
OTHERS	2x3 SPF	No.2			chord live loa	ad nonconcurren	it with any	other live loa	ds.					
BRACING						nas been design			Opsf					
TOP CHORD	Structura	I wood she	athing directly applied	d or		n chord in all are								
	6-0-0 oc	purlins.	• • • •			oy 2-00-00 wide		veen the botto	om					
BOT CHORD	Rigid ceil	ing directly	applied or 10-0-0 oc			ny other member		o I.						
	bracing.					are assumed to	be SP No.	2 crushing						
REACTIONS	(size)		, 5=15-5-3, 6=15-5-3,		capacity of 5 9) Provide mec	hanical connecti	on (by oth	ers) of trues t	0					
			, 8=15-5-3			e capable of with								
	Max Horiz					t at joint 5, 120 lb								
	Max Uplift		C 13), 5=-10 (LC 13),		uplift at joint									
	May Cray		C 13), 8=-120 (LC 12		10) This truss is	designed in acco	ordance w	ith the 2018						
	Max Grav		C 1), 5=106 (LC 1), 6= 7=315 (LC 1), 8=375 (International	Residential Cod	le sections	s R502.11.1 a	ind					
		(LC 26), 1 25)	7=315 (LC 1), 8=375 (LC	R802.10.2 a	nd referenced st	andard AN	ISI/TPI 1.						
FORCES	(lb) Mox	,	pression/Maximum		LOAD CASE(S)	Standard								
FUNCES	Tension		ipression/maximum											
TOP CHORD		16 2-387	/104, 3-4=-87/98,											
	4-5=-53/3	,	/104, 3-4=-07/30,											
BOT CHORD			3. 6-7=-4/43. 5-6=-4/4	3										
WEBS	3-7=-235	/88, 2-8=-2	95/222, 4-6=-295/222	2										
NOTES														
1) Unbalance this design		loads have	been considered for										TATE OF I	MISCH
		ult=115mph	(3-second gust)										A IL	0.0
Vasd=91r	nph; TCDL=	=6.0psf; BC	DL=6.0psf; h=35ft;									A	AV acom	New Y

- Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-9-1 to 5-9-1, Interior (1) 5-9-1 to 7-9-3, Exterior(2R) 7-9-3 to 12-9-3, Interior (1) 12-9-3 to 14-9-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

SCOTT M. SEVIER UMBER PE-2001018807 SIONAL E March 12,2024


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



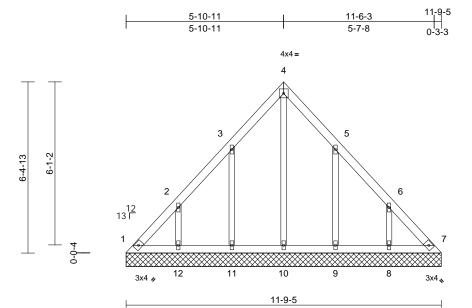
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 161	
P240463-01	V01	Valley	1	1	Job Reference (optional)	164148482

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 08:14:33 ID:6ru7F9CpA2ag5pbhdMPJqdzkXVF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:36.6

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.37 BC 0.20 WB 0.08 Matrix-S	DEFLiiVert(LL)n/-Vert(TL)n/-Horiz(TL)0.00	a - a -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 64 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=19-5-3, 7=19-5-3, Max Horiz 1=-71 (LC Max Uplift 1=-19 (LC 6=-154 (L Max Grav 1=189 (LC	C 13) C 12), 5=-31 (LC 13), .C 13), 9=-154 (LC 12	 5) Gable studs 6) This truss h chord live lo 7) * This truss on the botto 3-06-00 tall chord and a 8) All bearings 9) Provide me bearing plat 1, 31 lb upli uplift at join 2) 10) This truss is internationa R802.10.2 a 	chanical connection (by oth te capable of withstanding 1 ft at joint 5, 154 lb uplift at ju t 6. s designed in accordance w al Residential Code sections and referenced standard AN	0 psf bottom other live loads. re load of 20.0psf a rectangle ween the bottom .2 crushing uers) of truss to 19 lb uplift at joint oint 9 and 154 lb ith the 2018 s R502.11.1 and					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	LOAD CASE(S) Standard						
TOP CHORD		/118, 3-4=-90/114,								
BOT CHORD	1-9=-11/56, 7-9=-11 5-6=-11/56	/56, 6-7=-11/56,								
this design 2) Wind: AS0 Vasd=91n Ke=1.00; exterior zo	ed roof live loads have	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope E) 0-9-1 to 5-9-3,	e)						STATE OF SCOT	MISSOLUTIER

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-9-1 to 5-9-3, Interior (1) 5-9-3 to 9-9-3, Exterior(2R) 9-9-3 to 14-9-3, Interior (1) 14-9-3 to 18-9-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.


PE-2001018807 March 12,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE FOR ON TRUCTION AS NOTED ON PLANS REVIEW DEVELORIMENTS SERVICES LEE'S'SUMWITT, MISSOURI 06/07/2024 4:05:05

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 161	
P240463-01	LG01	Lay-In Gable	1	1	Job Reference (optional)	164148483

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 08:14:33 ID:LJP6aQ6o2aap8a_99hFRWxzkXVN-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:43.1

Loading TCLL (roof) TCDL BCLL	2	psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.07 0.04 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL		10.0	Code)18/TPI2014	Matrix-S	0.09	TION2(TE)	0.00	1	n/a	n/a	Weight: 55 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	6-0-0 oc purlir	od shea ns.	athing directly applied	d or	Ke=1.00; Ca exterior zone Interior (1) 5 10-10-14, Ini cantilever lef right expose	7-16; Vult=115r n; TCDL=6.0psf; t. II; Exp C; Encl e and C-C Exterin -4-0 to 5-10-14, l terior (1) 10-10-1 t and right exposed; C-C for member shown; Lumber	BCDL=6. losed; MW or(2E) 0-4 Exterior(2 4 to 11-5- sed; end v ers and fo	Dpsf; h=35ft; FRS (envelo -0 to 5-4-0, R) 5-10-14 to 13 zone; /ertical left ar rces & MWFF	nd					
REACTIONS	9=1 12= Max Horiz 1=- Max Uplift 1=- 8=- 11= Max Grav 1=- 8=2 10=	11-9-5, =11-9-5 ·173 (LC ·145 (LC ·145 (L =-143 (L 148 (LC 210 (LC	C 8) 10), 7=-33 (LC 11), C 13), 9=-142 (LC 13 LC 12), 12=-144 (LC 21), 7=136 (LC 22), 20), 9=214 (LC 20), C 22), 11=216 (LC 1	-5, 3), 12)	 Truss desig only. For stu see Standarn or consult qu All plates are Gable requir Gable studs This truss ha chord live loz * This truss h 	spaced at 0-0-0 is been designed ad nonconcurren nas been designe	vind (norm End Deta lesigner as less other ottom chor oc. d for a 10. t with any ed for a liv	al to the face ils as applica s per ANSI/T wise indicate d bearing. 0 psf bottom other live loa re load of 20.	e), ble, PI 1. d. ads.					
FORCES		`	pression/Maximum		3-06-00 tall b	n chord in all are by 2-00-00 wide	will fit betw	0	om					
TOP CHORD	1-2=-218/139		137/89, 3-4=-130/119 111/55, 6-7=-196/135		9) All bearings			2 crushing						
BOT CHORD	1-12=-108/16 10-11=-109/1 8-9=-109/161	, 1, 11-1 61, 9-1	2=-109/161, 0=-109/161,				standing 5	58 lb uplift at j	joint				E OF I	MISSOL
WEBS	2-12=-199/16 4-10=-102/62		=-201/168, 201/167, 6-8=-199/16	63		11, 142 lb uplift						A	STATE OF I	1 CAN
NOTES 1) Unbalance this design		s have	been considered for			designed in acco Residential Cod nd referenced st	le sections	s R502.11.1 a	and			R	SEV	

LOAD CASE(S) Standard

March 12,2024

E

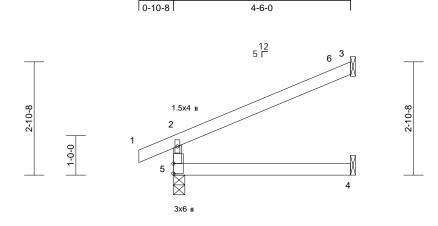
PE-200101880

ONAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 161	
P240463-01	J02	Jack-Open	7	1	Job Reference (optional)	l64148484

4-6-0


4-6-0

-0-10-8

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 08:14:33 ID:TY9bk33I?M3NfzhOwrBVL5zkXVR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale	- 1.20	93

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.36	Vert(LL)	0.02	4-5	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.24	Vert(CT)	-0.04	4-5	>999	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.00	Horz(CT)	-0.03	3	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-R							Weight: 16 lb	FT = 20%
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she		7)	5 and 82 lb This truss is Internationa	e capable of wit uplift at joint 3. designed in ac l Residential Co and referenced s	cordance w de sections	th the 2018 R502.11.1 a						

REACTIONS	(Size)	3= Mechanical, 4= Mechanical,
		5=0-3-8
	Max Horiz	5=83 (LC 12)
	Max Uplift	3=-82 (LC 12), 5=-39 (LC 12)
	Max Grav	3=138 (LC 1), 4=83 (LC 3), 5=271
		(LC 1)

FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 2-5=-234/193, 1-2=0/26, 2-3=-80/45

BOT CHORD 4-5=0/0

NOTES

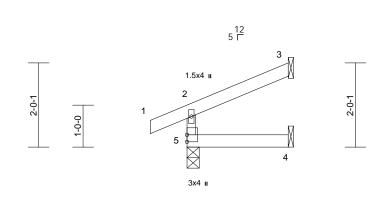
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 4-5-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: , Joint 5 SP No.2 crushing 4) capacity of 565 psi.
- Refer to girder(s) for truss to truss connections. 5)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 161	
P240463-01	J01	Jack-Open	4	1	Job Reference (optional)	164148485

2-4-15

2-4-15


-0-10-8

0-10-8

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 08:14:33 ID:2zUS610PiRhpoVypFidojTzkXVU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale

Scale = 1:27.4												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.15	Vert(LL)	0.00	4-5	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	0.00	4-5	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 9 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS	6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 2x4 SP No.2 2x4 SP No.2 5 and 44 lb uplift at joint 3. 2x3 SPF No.2 7) This truss is designed in accordance with the 2018 Interpreting Page Applied Page Appl											

2-4-15

BRACING TOP CHORD Structural wood sheathing directly applied or 2-4-15 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 3= Mechanical, 4= Mechanical, 5=0-3-8 Max Horiz 5=53 (LC 9) Max Uplift 3=-44 (LC 12), 5=-31 (LC 8)

3=64 (LC 1), 4=43 (LC 3), 5=185 Max Grav (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD 2-5=-162/135, 1-2=0/26, 2-3=-43/24 BOT CHORD 4-5=0/0

NOTES

Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone: cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.

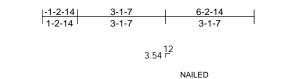
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Bearings are assumed to be: , Joint 5 SP No.2 crushing capacity of 565 psi.

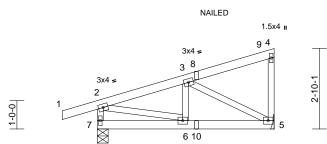
5) Refer to girder(s) for truss to truss connections. International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)




Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 161	
P240463-01	CJ01	Diagonal Hip Girder	2	1	Job Reference (optional)	164148486

2-10-1

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 08:14:32 ID:LawX8EJT2pjPgBnQfl3QiXzkXV6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

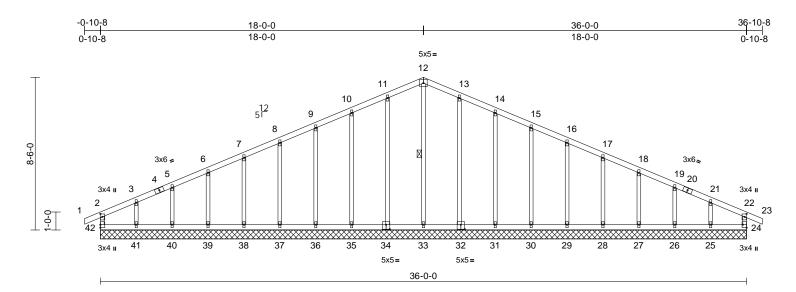
1.5x4 **I**

Scale = 1:40.7

Scale = 1:40.7											
Loading (psf) TCLL (roof) 25.0 TCDL 10.0 3CLL 0.0* 3CDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.22 0.13 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	GRIP 197/144 FT = 20%
6-0-0 oc purlins, ex Rigid ceiling directly bracing. REACTIONS (size) 5= Mech Max Horiz 7=122 (L Max Grav 5=262 (L Max Grav 5=262 (L FORCES (lb) - Maximum Cor Tension	y applied or 10-0-0 oc anical, 7=0-4-9 C 9) C 12), 7=-118 (LC 8) C 1), 7=376 (LC 1) npression/Maximum 0/27, 2-3=-318/195, 7/111 -297/275	8) 9)	bearing plat 7 and 66 lb This truss is Internationa R802.10.2 a "NAILED" in per NDS gu In the LOAE of the truss DAD CASE(S) Dead + Ro Plate Incre Uniform Lo Vert: 1-2 Concentra	CASE(S) sector are noted as from Standard pof Live (balance ase=1.15	thstanding 1 coordance w ode sections standard AN 3-10d (0.14 tion, loads ap ont (F) or ba ed): Lumber 5-7=-20	18 lb uplift a th the 2018 R502.11.1 a (SI/TPI 1. 8" x 3") toe- oplied to the ck (B).	t joint and nails face				

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) -1-2-14 to 5-10-0, Exterior(2R) 5-10-0 to 6-1-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 7 SP No.2 crushing 4) capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 161	
P240463-01	C09	Common Supported Gable	1	1	Job Reference (optional)	164148487

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 08:14:32 ID:ewrAceOsPybP0GqmZjh3U?zkXV?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:64.2

		1			1	-							-
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.12	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.07	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.20	Horz(CT)	0.01	24	n/a	n/a		
BCDL	10.0	Code	IRC20)18/TPI2014	Matrix-R							Weight: 176 lb	FT = 20%
LUMBER TOP CHORD 2x4 SP N BOT CHORD 2x4 SP N WEBS 2x3 SPF OTHERS 2x3 SPF BRACING TOP CHORD Structura 6-0-0 oc BOT CHORD Rigid cei bracing. WEBS 1 Row at REACTIONS (size) Max Horiz Max Uplift	lo.2 No.2 No.2 No.2 Il wood sheat purlins, exc ing directly rmidpt 24=36-0-0 30=36-0-0 30=36-0-0 30=36-0-0 39=36-0-0 42=36-0-0 42=36-0-0 42=36-0-0 42=36-0-0 42=36-0-0 42=36-0-0 42=36-0-0 42=36-0-0 42=36-0-0 42=36-0-0 42=36-0-0 42=36-0-0 42=36-0-0 42=36-0-0 42=36-0-0 42=36-0-0 39=36-0-0 42=36-0-0 42=36-0-0 39=36-0-0 42=36-0-0 42=36-0-0 39=36-0-0 42=36-0-0 42=36-0-0 39=36-0-0 42=36-0-0 42=36-0-0 42=36-0-0 39=36-0-0 42=36-00 42=36-00	athing directly applie cept end verticals. applied or 10-0-0 or 12-33 0, 25=36-0-0, 26=36 0, 28=36-0-0, 29=36 0, 31=36-0-0, 32=36 0, 34=36-0-0, 35=36 0, 40=36-0-0, 38=36 0, 40=36-0-0, 41=36 0 1C 12), 25=-105 (LC C 13), 27=-57 (LC 1 C 13), 27=-57 (LC 1 C 13), 31=-60 (LC 1 C 13), 31=-60 (LC 1 C 12), 38=-53 (LC 1 C 12), 42=-56 (LC C 1), 27=179 (LC 2 C 1), 27=179 (LC 2 C 1), 37=180 (LC 2 C 1), 37=180 (LC 2 C 25), 35=178 (LC 2 C 1), 37=180 (LC 2 C 1), 39=179 (LC 2 C 1), 39=179 (LC 2 C 1), 39=179 (LC 2 C 1), 39=179 (LC 2 C 1), 41=169 (LC 2	ed or -0-0, -0-0, -0-0, -0-0, -0-0, -0-0, 13), 3), 3), 2), 2), 2), 2), 2), 2), 2), 5), 5),	FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalancer this design. 2) Wind: ASC Vasd=91m Ke=1.00; C exterior zor Exterior(2N 23-0-0, Ext left and rigf exposed;C	(ib) - Maximum Co Tension 2-42=-143/104, 1- 3-5=-74/96, 5-6=- 7-8=-66/183, 8-9= 10-11=-112/316, 7 12-13=-128/355, 12 16-17=-66/183, 11 18-19=-37/98, 19- 22-23=0/26, 22-24 41-42=-34/89, 40- 38-39=-34/89, 33- 30-31=-34/90, 29- 27-28=-34/90, 26- 24-25=-34/90 12-33=-185/27, 17 10-35=-139/95, 9- 7-38=-140/90, 6-33 3-41=-127/147, 11 14-31=-139/95, 12 16-29=-140/89, 11 18-27=-139/90, 15 21-25=-127/148 d roof live loads har	2=0/26, 2 53/120, 6 -53/120, 6 -81/227, 11-12=-11 3-14=-11 -16=-81/ -7-18=-51/ 21=-56/7 4=-143/10 41=-34/8 38=-34/8 30=-34/9 27=-34/9 1-34=-150 30=-34/9 27=-34/9 1-34=-150 30=-34/9 27=-34/9 1-34=-150 30=-34/9 27=-34/9 1-34=-150 30=-34/9 27=-34/9 1-34=-150 30=-34/9 27=-34/9 1-34=-150 30=-34/9 27=-34/9 1-34=-150 30=-34/9 30=-34	2-3=-112/85, -7=-51/142, 9-10=-96/270 28/355, 12/316, 227, 140, 227, 140, 227, 140, 9, 39-40=-34/ 9, 31-33=-34/ 9, 31-33=-34/ 9, 31-33=-34/ 0, 28-29=-34/ 0, 28-29=-34/ 0, 28-29=-34/ 0, 28-29=-34/ 0, 25-26=-34/ 0, 25-26=-34/ 0, 5-40=-143/ 0/77, 3/112, considered for ond gust) 0/psf; h=35ft; FRS (envelop 0-8 to 4-0-0, 1) 18-0-0 to zone; cantilew and right & MWFRS for	, 61, 89, 90, 90, 90, 90, 90, 112, 112,	on se or 4) All 5) Ga 6) Tr bra 7) Ga 8) Th ch 8) Th ch 3-1 3-1 10) All	ly. For s e Standa consult c plates a able requ uss to be aced aga able stude is truss h ord live k This truss the bott 06-00 tall ord and a	tuds e) rd Indu jualifiei re 1.5x ires co fully si inst lata s space and no has be om cho by 2-C sare a: 565 ps	pr wind loads in the construction of the second terms of the provided the second terms of the provided terms of the second terms of the provided terms of the second terms of the terms of the second terms of the provided terms of the second terms of the terms of the second terms of the second terms of the terms of the second terms of the second terms of the terms of the second terms of the second terms of the terms of the second terms of the second terms of the terms of the second terms of the second terms of the second terms of the terms of terms of	the plane of the trus ormal to the face), betails as applicable ar as per ANSI/TPI therwise indicated. chord bearing. e face or securely e. diagonal web). 10.0 psf bottom any other live loads a live load of 20.0p ere a rectangle between the bottom No.2 crushing

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. ARXING - Verify design parameters and READ ROTES ON THIS AND INCLUED MITER REFERENCE PAGE MIL-7473 rev. 17/2/2023 BEFORE USE. Design valid for use only with MITeR® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty Ply		Roof - HR Lot 161	
P240463-01	C09	Common Supported Gable	1	1	Job Reference (optional)	164148487

- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 56 lb uplift at joint 42, 38 lb uplift at joint 24, 49 lb uplift at joint 34, 60 lb uplift at joint 35, 53 lb uplift at joint 36, 55 lb uplift at joint 37, 54 lb uplift at joint 38, 58 lb uplift at joint 39, 40 lb uplift at joint 40, 117 lb uplift at joint 41, 48 lb uplift at joint 32, 60 lb uplift at joint 31, 53 lb uplift at joint 30, 55 lb uplift at joint 29, 54 lb uplift at joint 28, 57 lb uplift at joint 27, 42 lb uplift at joint 26 and 105 lb uplift at joint 25
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 08:14:32 ID:ewrAceOsPybP0GqmZjh3U?zkXV?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 161	
P240463-01	C08	Roof Special	5	1	Job Reference (optional)	164148488

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 08:14:31

Page: 1 ID:QowS74R2pZ_dxeTN2QyFYwzkX9?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 36-0-0 34-10-0 36-10-8 0-11-12 0-10-8 1-2-0 -0-10-8 3-4-12 0-10-8 3-4-12 8-8-7 12-9-7 18-0-0 23-2-9 27-3-10 33-10-4 5-3-11 4-0-15 5-2-9 5-2-9 4-1-1 6-6-10 5x5= 7 3x4 🚽 4x4 👟 ₅12 6 8 3x6 🚅 3x6. 5 9 4x4 ≠ 4x6≈ 10 8-6-0 4x8. 7x8 🚽 3 ²⁵ 26 8x10= 4x6**≈** 11 12 13 NAS 14 0-0-1 ę Ģ 23 22 21 20 19 15 4x4 =4x8 =4x4 =16 MT18HS 10x18 = 3x4 II 4x6= 3x4 II MT18HS 6x12 = 5x8= ___4 12 36-0-0 -3-8<u>3-3-8</u> 34-10-0 11-3-3 18-0-0 24-8-14 33-8-8 0-3-8 3-0-0 7-11-11 6-8-13 6-8-14 8-11-10 1-1-8 1-2-0 Scale = 1:69.8 Plate Offsets (X, Y): [11:0-4-0,Edge], [24:0-1-4,0-3-0] Loading 2-0-0 CSI DEFL L/d PLATES GRIP (psf) Spacing in (loc) l/defl TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.71 Vert(LL) -0.31 18-19 >999 240 MT20 244/190 TCDL 10.0 Lumber DOL 1.15 BC 0.86 Vert(CT) -0.71 18-19 >602 180 MT18HS 197/144 BCLL Rep Stress Incr WB Horz(CT) 0.0 YES 0.75 0.47 15 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Weight: 170 lb FT = 20% LUMBER WEBS 3-23=-18/857, 7-21=-186/1305, 9) This truss is designed in accordance with the 2018 2x4 SP No.2 *Except* 1-5,9-14:2x4 SP 3-24=-4540/747, 13-16=-173/1270, International Residential Code sections R502.11.1 and TOP CHORD 12-16=-1826/238, 16-18=-118/1190, 2400F 2.0E R802.10.2 and referenced standard ANSI/TPI 1. 2x4 SP 1650F 1.5E *Except* 11-17,17-15:2x4 BOT CHORD 12-18=-493/3076, 4-22=-579/246, LOAD CASE(S) Standard 4-23=-341/1120, 6-22=-99/658, SP No.2 6-21=-865/275, 8-21=-867/261, WEBS 2x3 SPF No.2 *Except* 8-19=-96/697, 10-19=-602/249, 24-2,24-3,15-13,18-12:2x4 SP No.2 10-18=-377/1736 BRACING NOTES TOP CHORD Structural wood sheathing directly applied or 2-6-9 oc purlins, except end verticals, 1) Unbalanced roof live loads have been considered for BOT CHORD Rigid ceiling directly applied or 10-0-0 oc this design. bracing, Except: 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) 7-8-11 oc bracing: 23-24 Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) 9-9-11 oc bracing: 22-23. WEBS exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, 1 Row at midpt 3-24, 6-21, 8-21 **REACTIONS** (size) 15=0-3-8, 24=0-3-8 Interior (1) 4-1-8 to 18-0-0, Exterior(2R) 18-0-0 to 23-2-9. Interior (1) 23-2-9 to 36-10-8 zone: cantilever left Max Horiz 24=-120 (LC 17) and right exposed ; end vertical left and right Max Uplift 15=-275 (LC 13), 24=-275 (LC 12) exposed;C-C for members and forces & MWFRS for Max Grav 15=1678 (LC 1), 24=1678 (LC 1) reactions shown; Lumber DOL=1.60 plate grip FORCES (Ib) - Maximum Compression/Maximum DOL=1.60 Tension

TOP CHORD 1-2=0/27 2-3=-563/133 3-4=-4517/886 4-6=-3122/518, 6-7=-2247/446, 7-8=-2245/454, 8-10=-3147/520 10-11=-5205/899, 11-12=-4627/723, 12-13=-1380/214, 13-14=0/27, 2-24=-490/151, 13-15=-1559/296 BOT CHORD 23-24=-865/4441, 22-23=-530/3187 21-22=-347/2632, 19-21=-285/2634, 18-19=-414/3216, 17-18=-17/140,

- 11-18=-311/214, 16-17=-82/358, 7) 15-16=-26/170
- All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. Bearings are assumed to be: Joint 24 SP 1650F 1.5E 6) crushing capacity of 565 psi, Joint 15 SP No.2 crushing capacity of 565 psi.
 - Bearing at joint(s) 24 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
 - 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 275 lb uplift at joint 24 and 275 lb uplift at joint 15.

OF MISS SCOTT M. SEVIER NUMBER PE-2001018807 O SIONAL E March 12,2024

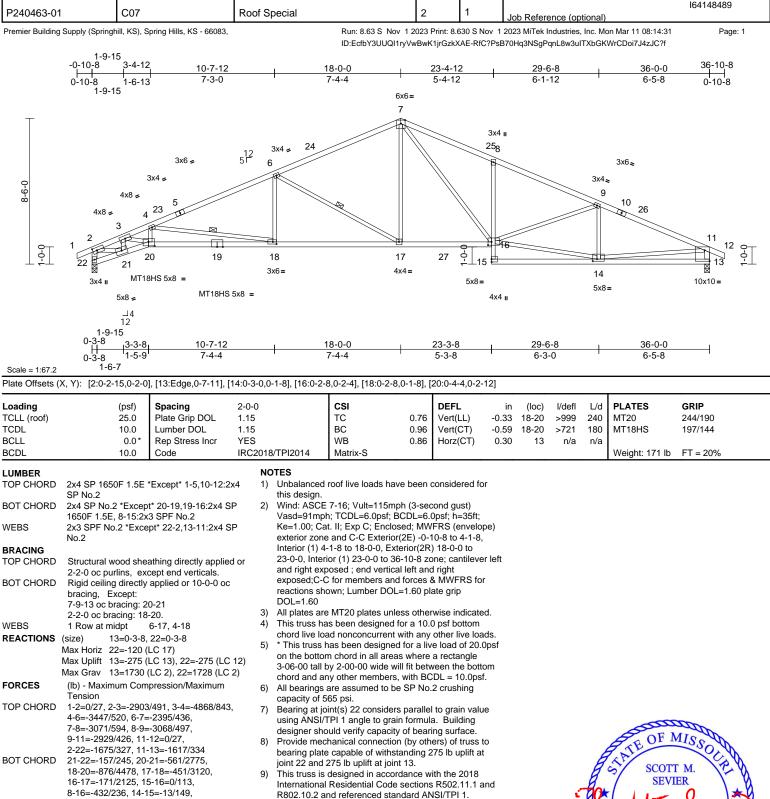
> LEE'S' SUMMIT'S MISSOURI 06/07/2024 4:05:06

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

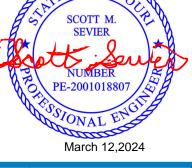
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 161	
P240463-01	C07	Roof Special	2	1	Job Reference (optional)	l64148489

13-14=-122/430

4-18=-1374/430


4-20=-1/456, 7-16=-338/1095

14-16=-310/2517, 9-16=-26/206,


9-14=-529/167, 2-21=-392/2466, 11-14=-225/2220, 3-20=-355/1995,

3-21=-1223/188, 7-17=-90/843, 6-17=-1141/345, 6-18=0/491,

WEBS

LOAD CASE(S) Standard

LEE'S'SUMMIT'SMISSOURI 06/07/2024 4:05:06

CTION

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 161	
P240463-01	C06	Roof Special	6	1	Job Reference (optional)	l64148490

4x8 🚅

3

22

5x8 🚅 _]4 12 1-9-15 0-3-8

3-3-8

1-5-9

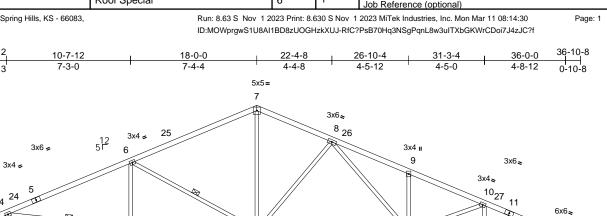
4

21

MT18HS 5x8 =

10-7-12

7-4-4


4x8 🚅

23

XX

3x4 II

1-9-15 -0-10-8 3-4-12 -10-8 1-6-13 1-9-15

28

26-9-0

8-9-0

17

3х4 **п**

31-3-4

4-6-4

15

4x12=

36-0-0

4-8-12

5x10=

-16

29

	0-5-0
	0-3-8
Scale = 1:67.2	1-6-7

Plate Offsets (X, Y):	[2:0-2-15,0-2-0]], [12:0-2-9,0-3-0], [14:Edge,0-1-8], [15:0-4-8,0-1-8], [17:0-3	-4,0-3-4], [2	0:0-2-8,0-1-8	3], [21:0-4	4-4,0-2-1	12]			
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.76	Vert(LL)	-0.46	17-18	>939	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.98	Vert(CT)	-0.82	17-18	>525	180	MT18HS	197/144

19

4x6=

18-0-0

7-4-4

20

3x6=

	10.0		1.10	50	0.00	von(01)	0.02	11 10	2020	100		101/111	
CLL	0.0*	Rep Stress Incr	YES	WB	0.91	Horz(CT)	0.32	14	n/a	n/a			
DL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 168 lb	FT = 20%	
													_

18

5x8=

LUMBER	
--------	--

8-6-0

1-0-0

I CLL (1001)	25.0	Plate Grip DOL	1.15				ven(LL)	-0.46			240	W1120	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.98	Vert(CT)	-0.82	17-18	>525	180	MT18HS	197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.91	Horz(CT)	0.32	14	n/a	n/a		
BCDL	10.0	Code	IRC201	18/TPI2014	Matrix-S							Weight: 168 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	1.5E 2x4 SP No.2 *Excep 1650F 1.5E, 9-16:2x 2x3 SPF No.2 *Excer No.2 Structural wood she 2-2-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 14=0-3-8, Max Horiz 23=-120 (Max Uplift 14=-275 (Max Grav 14=-1733 (lb) - Maximum Com Tension 1-2=0/27, 2-3=-2894 4-6=-3430/522, 6-7= 7-8=-2353/449, 8-9= 9-10=-3561/528, 100 12-13=0/27, 2-23=-1 12-14=-1638/324 22-23=-157/244, 21 20-21=-875/24473, 11 7-18=-276/2600, 11 9-17=-320/168, 15-1	athing directly applied cept end verticals. applied or 2-2-0 oc 4-20, 6-18 23=0-3-8 LC 17) LC 13), 23=-275 (LC (LC 2), 23=1724 (LC pression/Maximum 4/491, 3-4=-4864/841 2399/430, 3589/595, -12=-2799/412, 1670/327, -22=-561/2768, 8-20=-453/3104, 6-17=0/85, 6-17=0/85, 6-42/76, 14-15=-70 (385/426, 6-20=0/470) 8=-171/1461, '=-216/1043, =-392/2458, 0-15=-824/176,	2; ;P d or ;12) ; , , , , , , , , , , , , , , , , , ,	 this design. Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4-23-0-0, Interiariand right exp exposed;C-C reactions shot DOL=1.60 All plates are This truss hat chord live loa * This truss hat chord live loa * This truss from the bottor 3-06-00 tall be ccapacity of 5 Bearing at jo using ANSI/7 designer shot Provide mect bearing plate jo This truss is International 	int(s) 23 conside IPI 1 angle to gr puld verify capac hanical connecti a capable of with 275 lb uplift at jo designed in acc Residential Coo nd referenced st	nph (3-sec BCDL=6. losed; MW or(2E) -0- xterior(2R 36-10-8 zc cal left and not forces c DL=1.60 pl neless other d for a 10. tt with any ed for a liv ass where will fit betw rs, with BC be SP No. ers paralle ain formul ity of bear ion (by oth standing 2 int 14. ordance w de sections	cond gust) Opsf; h=35ft; FRS (envelo 10-8 to 4-1-8) 18-0-0 to one; cantileved d right & MWFRS fo ate grip rwise indicate 0 psf bottom other live loa re load of 20. a rectangle veen the bott DL = 10.0ps 2 crushing I to grain valu a. Building ing surface. ers) of truss 275 lb uplift a ith the 2018 s R502.11.1 a	ope) , er left or ed. ads. Opsf com if. ue to t			B	SEVI SEVI OF PE-20010 PE-20010	ER JAN AN DI 8807 ES L ENGINE

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

March 12,2024

12 13 1-0-0

14

髾

₿

3x4=

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 161	
P240463-01	C05	Roof Special	1	1	Job Reference (optional)	164148491

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 08:14:30 ID:Do4JrdsVQdc4LgXOR7cmHVzkXB1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-10-8 36-10-8 5-5-0 10-6-4 18-0-0 22-4-8 26-10-4 31-3-4 36-0-0 0-10-8 0-10-8 5-5-0 5-1-4 7-5-12 4-4-8 4-5-12 4-5-0 4-8-12 5x5= 6 3x6 **≈** ⁷ 25 4x6 -12 51 3x4 🛛 5 8 3x6 🔊 8-6-0 3x4 🚽 3x4 . 3x6 = 4 ⁹ 26 23 3 10 6x6 -6x6 **≈** 2 11 12 0-0-÷ 17 27 28 18 20 15 13 Ă ĕ 5x8= 21 14 5x10= 3x4= 5x10= 3x4= 7x8= 4x12= 3x4 ı 3x4 II MT18HS 3x10 = 5-5-0 10-7-8 18-0-0 26-9-0 31-3-4 36-0-0 5-5-0 4-8-12 5-2-8 7-4-8 8-9-0 4-6-4 Scale = 1:64.2 Plate Offsets (X, Y): [2:0-2-12,0-2-8], [11:0-2-9,0-3-0], [13:Edge,0-1-8], [14:0-4-8,0-1-8], [16:0-3-4,0-3-4], [19:0-7-0,0-3-12], [20:Edge,0-2-8] 2-0-0 Loading CSI DEFL l/defl L/d PLATES GRIP (psf) Spacing in (loc) TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.72 Vert(LL) -0.45 16-17 >946 240 MT20 244/190 TCDL 10.0 Lumber DOL 1.15 BC 0.88 Vert(CT) -0.80 16-17 >534 180 MT18HS 244/190 BCLL Rep Stress Incr WB Horz(CT) 0.0 YES 0.91 0.21 13 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Weight: 174 lb FT = 20% LUMBER 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; TOP CHORD 2x4 SP 1650F 1.5E *Except* 1-3,10-12:2x4 Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) SP No.2 exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, BOT CHORD 2x4 SP No 2 *Except* 20-5 8-15:2x3 SPE Interior (1) 4-1-8 to 18-0-0, Exterior(2R) 18-0-0 to No.2, 19-18, 18-16:2x4 SP 1650F 1.5E 23-0-0, Interior (1) 23-0-0 to 36-10-8 zone; cantilever left WEBS 2x3 SPF No.2 *Except* 22-2,13-11:2x4 SP and right exposed ; end vertical left and right No.2 exposed;C-C for members and forces & MWFRS for BRACING reactions shown; Lumber DOL=1.60 plate grip TOP CHORD Structural wood sheathing directly applied or

All plates are MT20 plates unless otherwise indicated.

chord live load nonconcurrent with any other live loads.

3-06-00 tall by 2-00-00 wide will fit between the bottom

chord and any other members, with BCDL = 10.0psf.

Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 275 lb uplift at

This truss is designed in accordance with the 2018

R802.10.2 and referenced standard ANSI/TPI 1.

International Residential Code sections R502.11.1 and

* This truss has been designed for a live load of 20.0psf

This truss has been designed for a 10.0 psf bottom

on the bottom chord in all areas where a rectangle

All bearings are assumed to be SP No.2 crushing

3-0-15 oc purlins, except end verticals, Rigid ceiling directly applied or 10-0-0 oc BOT CHORD bracing, Except: 6-0-0 oc bracing: 14-15. WEBS 1 Row at midpt 5-17 REACTIONS (size) 13=0-3-8, 22=0-3-8 Max Horiz 22=121 (LC 16) Max Uplift 13=-275 (LC 13), 22=-275 (LC 12) Max Grav 13=1733 (LC 2), 22=1724 (LC 2) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/27. 2-4=-2843/414. 4-5=-3464/544. 5-6=-2393/426. 6-7=-2348/447. 7-8=-3594/596, 8-9=-3564/529, 9-11=-2799/412, 11-12=0/27 2-22=-1622/328, 11-13=-1638/324 BOT CHORD 21-22=-214/403, 20-21=-40/167, 19-20=0/97, 5-19=-33/589, 17-19=-472/3177, 16-17=-274/2596, 15-16=0/85, 8-16=-322/169, 14-15=-39/64, 13-14=-70/299 WEBS 4-21=-746/201, 19-21=-408/2455, 4-19=-78/633, 5-17=-1192/374, 6-17=-161/1436, 7-17=-767/282, 7-16=-218/1055, 9-16=-56/767, 2-21=-236/2221, 11-14=-265/2259,

9-14=-826/177, 14-16=-292/2570

1) Unbalanced roof live loads have been considered for

NOTES

this design.

PE-2001018807 March 12,2024

> DEVELORMENT SERVICES LEE'S SUMMIT'S MISSOURI 06/07/2024 4:05:06

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbsccomponents.com)

DOL=1.60

capacity of 565 psi.

LOAD CASE(S) Standard

joint 22 and 275 lb uplift at joint 13.

3)

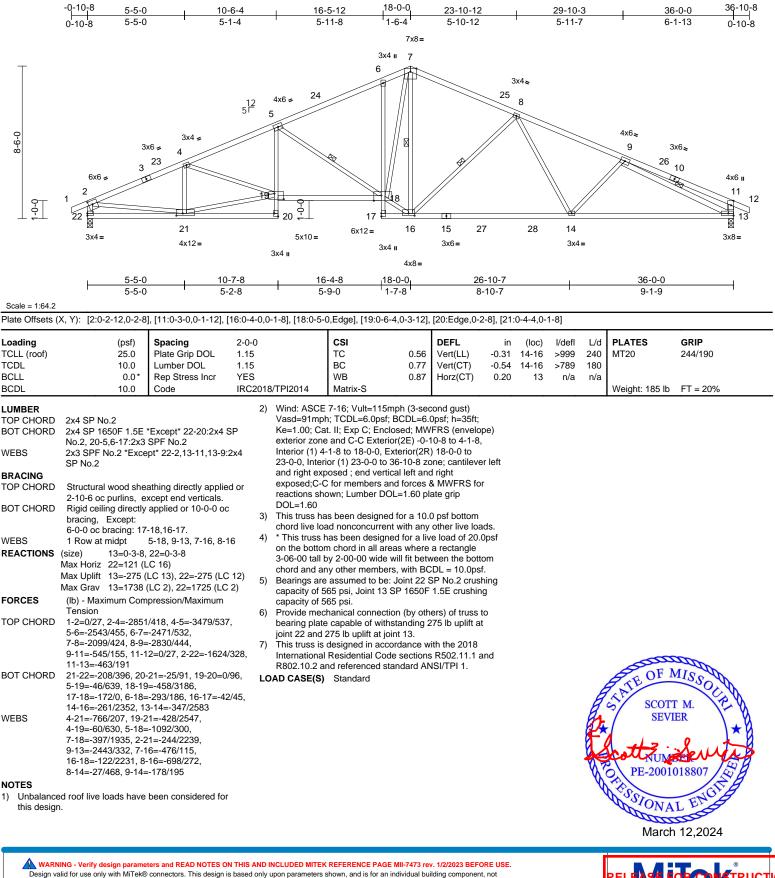
4)

5)

6)

7)

8)


Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 161	
P240463-01	C04	Roof Special	4	1	Job Reference (optional)	164148492

1)

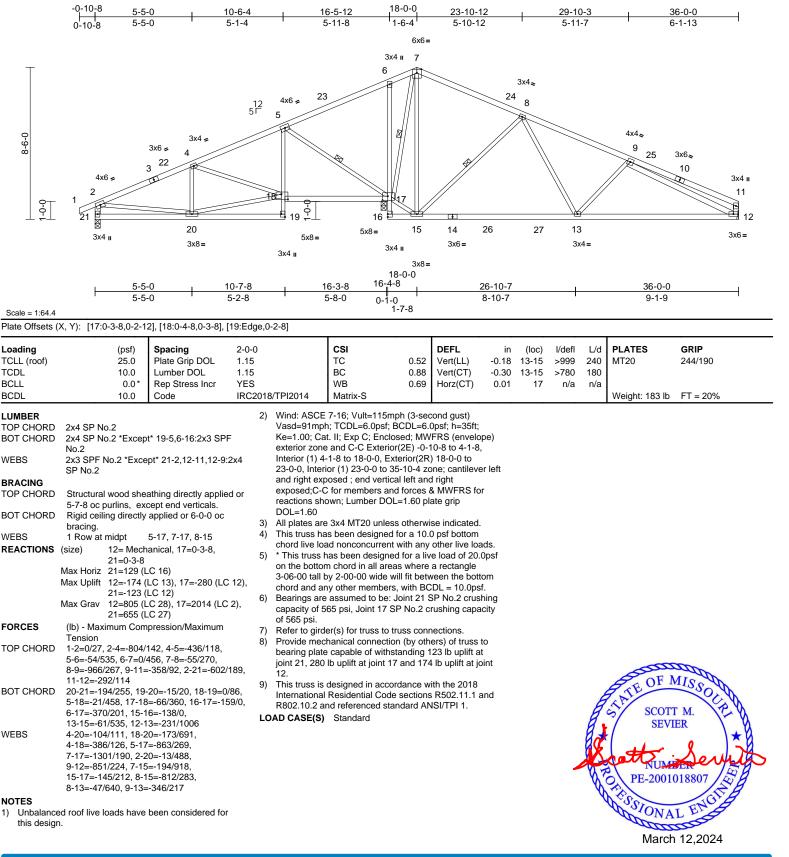
Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Mon.Mar.11.08:14:29 ID:IK_W3TeCg5LdAv8wNLIYYizkXBJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

ELOPMENT SERV LEE'S' SUMMIT'S MISSOURI 06/07/2024 4:05:06

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 161	
P240463-01	C03	Roof Special	8	1	Job Reference (optional)	164148493


Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 08:14:29 ID:wv5pEcMn41RuwMuWX0N86szkXBg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

r 11 08:14:29 Page: 1 CDoi7J4zJC?f

VELOPMENSERVICES

LEE'S'SUMWIT,SMISSOURI 06/07/2024 4:05:06

DE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPH Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 161	
P240463-01	C02	Roof Special	2	1	Job Reference (optional)	l64148494

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 08:14:28 ID:CHDmS3BtTjmRKi7v_C9xqvzkXEU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

ONAL E

March 12,2024

DEVELORMENT: SERVICES LEE'S'SUMMIT'SMISSOURI 06/07/2024 4:05:06

TION IEW

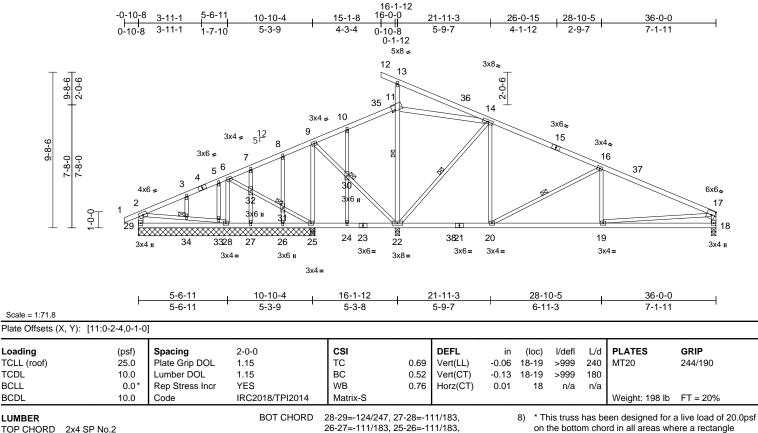
5-6-11 0-7-10 16-0-0 4-11-1 10-10-4 15-1-8 21-11-3 26-0-15 28-10-5 36-0-0 0-10-8 5-3-9 4-11-1 4-3-4 5-11-3 4-1-12 2-9-7 7-1-11 4x6 🚅 3x8≈ 7 8 9-8-6 2-0-6 9-0-2 24 6 23 9 3x6 👟 12 51 5 10 9-8-6 3x6 🚅 11 7-8-0 7-8-0 4 3 25 22 72 4x6 🚅 6x6 👟 12 2 0-0-I 13 T T T T ₿ Ø 20 18 2616 15 14 19 4x8= 3x6 =3x6 =16-3-8 || 0-1-12 5-6-11 10-10-4 16-1-12 21-11-3 28-10-5 36-0-0 5-6-11 5-3-8 5-7-11 6-11-3 5-3-9 7-1-11 Scale = 1:65.8 Plate Offsets (X, Y): [6:0-0-12,0-3-0]

		-			1								
Loading	(psf)	Spacing	2-0-0		CSI	0.70	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.70 0.52	Vert(LL) Vert(CT)		13-14 13-14	>999 >999	240 180	MT20	244/190
BCLL	10.0		YES		WB	0.52	• • •		13-14				
BCLL BCDL				9/TDI2014		0.76	Horz(CT)	0.01	13	n/a	n/a	Waight 195 lb	ET - 200/
BUDL	10.0	Code	IKC201	8/TPI2014	Matrix-S	-						Weight: 185 lb	FT = 20%
LUMBER			2		7-16; Vult=115m								
TOP CHORD	2x4 SP No.2				h; TCDL=6.0psf;								
BOT CHORD	2x4 SP No.2				t. II; Exp C; Enclo								
WEBS	2x3 SPF No.2 *Ex				and C-C Exterio			,					
	8-17,9-6,21-2,13-	2:2x4 SP No.2			-1-8 to 16-1-12, E								
BRACING					ior (1) 20-1-8 to 3			er left					
TOP CHORD		neathing directly applie	ed or		bosed ; end vertic C for members an			-					
	4-7-7 oc purlins,	except end verticals.			own; Lumber DO			1					
	Except:			DOL=1.60	own, Lumber DO	L=1.60 pi	ale grip						
	6-0-0 oc bracing:		3		e 3x4 MT20 unles	s otherwi	se indicated						
BOT CHORD		tly applied or 6-0-0 oc	4		as been designed								
	bracing.	o 17 11 15	-		ad nonconcurrent			ads					
WEBS	1 Row at midpt	9-17, 11-15	5		nas been designe								
REACTIONS		chanical, 17=0-3-8,			m chord in all area			opo.					
		8, 21=0-3-8			by 2-00-00 wide v			tom					
	Max Horiz 21=-10	· · · ·		chord and ar	y other members	s, with BC	DL = 10.0ps	f.					
		4 (LC 13), 17=-329 (LC			assumed to be:								
) (LC 12), 21=-95 (LC		capacity of 5	i65 psi, Joint 19 S	SP No.2 c	rushing capa	city					
	19=650	(LC 28), 17=1774 (LC (LC 25), 21=446 (LC		of 565 psi, J psi.	oint 17 SP No.2 c	rushing c	apacity of 56	65					
FORCES	(lb) - Maximum Co Tension	mpression/Maximum	7		er(s) for truss to t								
TOP CHORD	1-2=0/27, 2-4=-38	0/130 1-5-0/121	8		hanical connection								
		615/215, 6-8=-237/21	1		e capable of withs							000	ADD
		12/64, 9-11=-353/134,			b uplift at joint 21	, 144 lb u	plint at joint 1	3				ATE OF I	MIC D
	11-12=-1045/217,		9		plift at joint 19. designed in acco	rdanco w	ith the 2019					BIE	J. oson
	12-13=-651/181	,	9		Residential Code			and			6	AN I	NON
BOT CHORD	20-21=-169/235,	9-20=-111/293,			nd referenced sta			anu			B	SCOT	IM. YZY
	17-19=-332/195,	5-17=0/219,		OAD CASE(S)							4	SEV	ER \ Y
	14-15=-139/900,	3-14=-78/275	L	UAD CASE(S)	Sianuaru						80th	1 -1	
WEBS	6-9=0/508, 2-20=-	97/106, 12-14=-62/62	9,										U. Mit
	5-19=-274/134, 5-										RX	jour .	Senn
		20=0/228, 9-17=-1082								-	N-	NUM	
	9-15=-38/602, 11-	15=-750/242, 11-14=0)/258								N.	PE-2001	018807
NOTES											Ŷ	1 The	158
1) Unbalance	ed roof live loads ha	e been considered fo	r									N. 9.6.	NOB

Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 161	
P240463-01	C01	Roof Special	1	1	Job Reference (optional)	164148495


TCDL

BCLL

BCDL

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 08:14:28 ID:ZPE42GuJG2XQkNP0IKB?1ezkXCH-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

TOP CHORD	2x4 SP N	0.2	BC	T CHORD	28-29=-124/247, 27-28=-111/183, 26-27=-111/183, 25-26=-111/183,	8)
BOT CHORD	2x4 SP N	0.2			24-25=-255/227, 22-24=-255/227,	
WEBS	2x3 SPF	No.2 *Except*			20-22=0/248, 19-20=-114/917,	
	29-2,18-1	7,13-22,14-11:2x4 SP No.2			18-19=-77/277	9)
OTHERS	2x3 SPF		WE	EBS	11-22=-534/211, 11-13=-217/223,	
BRACING					6-28=-184/120, 9-25=-103/154,	10
TOP CHORD	Structura	I wood sheathing directly applied or			9-30=-276/66, 22-30=-285/70, 6-32=-191/57,	
		purlins, except end verticals.			31-32=-188/56, 25-31=-192/57,	
BOT CHORD		ing directly applied or 6-0-0 oc			14-20=-36/597, 16-19=0/255, 17-19=-37/644,	
201 0110112	bracing.				2-34=-253/136, 33-34=-256/138,	
WEBS	1 Row at	midpt 13-22, 16-20, 14-22			28-33=-272/147, 16-20=-743/244,	11
JOINTS		at Jt(s): 30,			14-22=-1079/272, 10-30=-107/94,	
301113	31, 34	at otto). 00,			24-30=-94/87, 8-31=-91/61, 26-31=-87/59,	
DEADTIONO					7-32=-49/24, 27-32=-56/27, 5-33=-56/30,	LC
REACTIONS	(size)	18=0-3-8, 22=0-3-8, 25=11-0-0,			3-34=-32/18, 11-14=0/481	
		26=11-0-0, 27=11-0-0, 28=11-0-0,	NC	DTES		
		29=11-0-0	1)		ed roof live loads have been considered for	
		29=-175 (LC 13)	1)	this design		
	Max Uplift	18=-131 (LC 13), 22=-297 (LC 13),	2)	0	CE 7-16; Vult=115mph (3-second gust)	
		25=-120 (LC 12), 26=-1 (LC 12),	2)			
		27=-41 (LC 12), 28=-73 (LC 12),			hph; TCDL=6.0psf; BCDL=6.0psf; h=35ft;	
		29=-57 (LC 8)			Cat. II; Exp C; Enclosed; MWFRS (envelope)	
	Max Grav	18=747 (LC 28), 22=1763 (LC 2),			ne and C-C Exterior(2E) -0-10-8 to 4-1-8,	
		25=330 (LC 25), 26=70 (LC 27),			4-1-8 to 16-0-0, Exterior(2R) 15-1-8 to	
		27=65 (LC 1), 28=373 (LC 25),			erior (1) 20-1-8 to 35-10-4 zone; cantilever left	
		29=271 (LC 25)			exposed ; end vertical left and right	
FORCES	(lb) - May	timum Compression/Maximum			C-C for members and forces & MWFRS for	
. 51.010	Tension				shown; Lumber DOL=1.60 plate grip	
TOP CHORD		, 2-3=-42/121, 3-5=-22/163,		DOL=1.60		
I OF CHORD		55, 6-7=0/274, 7-8=0/292,	3)	Truss des	igned for wind loads in the plane of the truss	
			,	only. For s	studs exposed to wind (normal to the face),	
		8, 9-10=0/492, 10-11=0/516,		see Standa	ard Industry Gable End Details as applicable,	
		7/0, 13-14=-113/28,			qualified building designer as per ANSI/TPI 1.	
		66/105, 16-17=-1064/190,	4)		are 1.5x4 MT20 unless otherwise indicated.	
	2-29=-22	1/140, 17-18=-656/168	5)		e fully sheathed from one face or securely	
			5)		ainst lateral movement (i.e. diagonal web).	
			6)	0	dirist lateral movement (i.e. diagonal web).	

- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads.

3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 0) Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 131 lb uplift at joint 18, 57 lb uplift at joint 29, 297 lb uplift at joint 22, 73 Ib uplift at joint 28, 120 lb uplift at joint 25, 1 lb uplift at joint 26 and 41 lb uplift at joint 27.

1) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

OAD CASE(S) Standard

DEVELOPMEN SERVICES LEE'S'SUMMIT'SMISSOURI 06/07/2024 4:05:06

ΤΙΟΝ

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 161	
P240463-01	B01	Roof Special Supported Gable	1	1	Job Reference (optional)	164148496

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 08:14:27 ID:bzCw6On6o49uPtGdBr3k7RzkXGI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-10-8 0-10-8 5-8-0 0-10-8 26-6-8 0-10-8 4-9-8 19-6-12 25-8-0 4-9-8 13-10-12 6-1-4 3x4 II 12 51 6 78 9 10 11 9-8-6 6-4-1 6-4-1 12 13 9-8-6 3x4 👟 14 ¹⁵16 5 36 Ð 37₁₇ 5 4 3x4 **I** 3 5x5 🛛 18 3-4-5 3-4-5 2 19 20 0-0-35 21 34 33 32 31 309 28 27 26 25 24 23 22 3x4 **I** 3x4= 3x4= 3x4= 5-10-10 25-8-0 5-10-10 19-9-6

Scale = 1:63.2

Plate Offsets (X, Y): [2:0-2-0,0-1-4], [19:0-2-8,0-1-12], [21:Edge,0-1-8]

		1	- 3- / 1								1	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.40	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.36	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.21	Horz(CT)	0.02	21	n/a	n/a		FT 000/
BCDL	10.0	Code	IRC2018/TPI	2014 Matrix-R							Weight: 135 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x4 SP No.2 2x3 SPF No.2 *Exc 2x3 SPF No.2	ept* 19-21:2x4 SP No		HORD 2-35=-150/75, 1 3-4=-197/93, 4- 5-7=-85/193, 6- 8-9=-106/99, 9- 11-12=-259/86, 13-14=-346/116 16-17=-435/147	5=-197/133 7=-26/0, 7- 10=-163/90 12-13=-30 5, 14-16=-3	8, 5-32=-136/ 8=-77/86, 0, 10-11=-217 3/101, 89/131,	,	bra 7) Ga 8) Th ch 9) * T	aced aga able stud: is truss h ord live lo This truss	iinst lat s spac nas bee oad no s has b	teral movement (i ed at 2-0-0 oc. en designed for a inconcurrent with	any other live loads. a live load of 20.0psf
TOP CHORD	6-0-0 oc purlins, e: Except: 6-0-0 oc bracing: 5	-7	BOT C	18-19=-580/197	7, 19-20=0/ 8, 33-34=-1 8, 31-32=-1	27, 19-21=-3 82/533, 86/546,	11/89	3-0 ch 10) All	06-00 tall ord and a	l by 2-0 any oth s are a	00-00 wide will fit ner members. ssumed to be SP	between the bottom
BOT CHORD	Rigid ceiling directl bracing.	y applied or 10-0-0 oc		27-28=-186/546								others) of truss to
WEBS JOINTS	1 Row at midpt 1 Brace at Jt(s): 5	8-32		25-26=-186/546 23-24=-186/546 21-22=-186/546	, 22-23=-1			be 35	aring pla , 154 lb ι	ite capa uplift at	able of withstandi t joint 32, 215 lb u	ing 52 lb uplift at joint iplift at joint 34, 60 lb 31, 61 lb uplift at joint
REACTIONS	24=25-8- 27=25-8- 31=25-8-	ize) 21=25-8-0, 22=25-8-0, 23=25-8-0, 24=25-8-0, 25=25-8-0, 26=25-8-0, 27=25-8-0, 28=25-8-0, 29=25-8-0, 31=25-8-0, 32=25-8-0, 33=25-8-0, 34=25-8-0, 35=25-8-0		3-34=-131/172, 9-31=-133/138, 11-28=-140/88, 13-26=-140/89, 16-24=-139/96,	10-29=-14 12-27=-14 14-25=-14	2/116, 0/89, 0/88,	78/86,	up 24 12) Th	lift at join , 17 lb up is truss i	nt 26, 5 olift at j s desig	2 lb uplift at joint joint 23 and 262 ll gned in accordance	ft at joint 27, 55 lb 25, 64 lb uplift at joint b uplift at joint 22. ce with the 2018 tions R502.11.1 and
	Max Horiz 35=-308			18-22=-140/300		,					ferenced standar	
	24=-64 (26=-55 (28=-54 (31=-27 ((LC 13), 23=-17 (LC LC 13), 25=-52 (LC 1: LC 13), 27=-54 (LC 1: LC 13), 29=-61 (LC 1: LC 13), 32=-154 (LC LC 8), 34=-215 (LC 1: LC 10)	3), 1) Uni 3), 1) Uni 3), this 3), 2) Wir 12), 2) Wir 2), Vas 2), Kes	palanced roof live loads h design. nd: ASCE 7-16; Vult=115 sd=91mph; TCDL=6.0psl =1.00; Cat. II; Exp C; End	mph (3-se ; BCDL=6. closed; MW	cond gust) Opsf; h=35ft; 'FRS (envelo				E.	1251	MISSOL
FORCES	23=188 (25=180 (27=180 (29=182 (32=214 (34=173 ((lb) - Maximum Cor	(LC 8), 22=141 (LC 1) (LC 26), 24=178 (LC 2 (LC 26), 26=180 (LC 2 (LC 1), 28=180 (LC 2 (LC 1), 33=180 (LC 2 (LC 1), 33=168 (LC 1) (LC 25), 35=195 (LC 2 npression/Maximum	,'), Ext 26), Ext 36), rigt 26), for 26), Lur 21) 3) Tri 0nl see	erior zone and C-C Corn, erior(2N) 4-0-0 to 5-9-4, erior(2N) 10-0-0 to 26-6- it exposed; end vertical members and forces & M nber DOL=1.60 plate grip uss designed for wind loa y. For studs exposed to Standard Industry Gabl	Corner(3E) 8 zone; cai left and rig 1WFRS for 0 DOL=1.6 ads in the p wind (norm e End Deta	4-9-8 to 10- ntilever left ar nt exposed;C reactions sho lane of the tro al to the face ils as applica	nd -C own; uss e), ible,		-		SECT SEVI PULL PE-2001	018807
	Tension 4			consult qualified building plates are 1.5x4 MT20 up	designer a	s per ANSI/T	PI 1.				SIONA	L ENG

- 5) Gable requires continuous bottom chord bearing.

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and KEAD KO LES ON THIS AND INCLUDED MILEK REFERENCE PAGE MIL-7473 rev. 17/2/2023 BEFORE USE. Design valid for use only with MITeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

ΤΙΟΝ IEW DEVELOPMENT SERVICES LEE'S'SUMMIT,SMISSOURI 06/07/2024 4:05:06

Course

March 12,2024

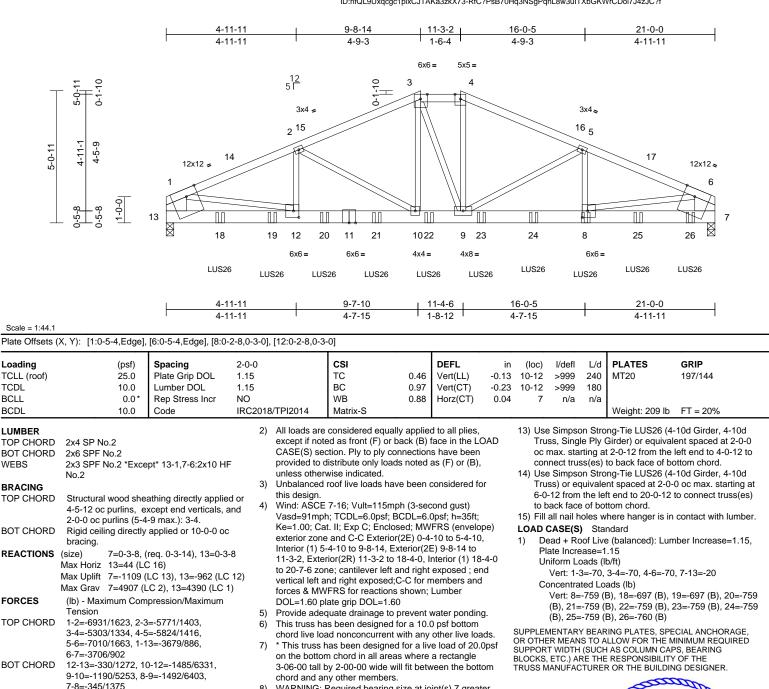
Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 161	
P240463-01	B01	Roof Special Supported Gable	1	1	Job Reference (optional)	164148496
Premier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Nov 1 2	023 Print: 8.6	630 S Nov 1	2023 MiTek Industries, Inc. Mon Mar 11 08:14:27	Page: 2

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 08:14:27 ID:bzCw6On6o49uPtGdBr3k7RzkXGI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 161	
P240463-01	A04	Hip Girder	1	2	Job Reference (optional)	164148497

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 08:14:27 ID:nfQL9Uxqcgc1pixCJTAKa3zkX73-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WEBS 2-12=-184/916, 2-10=-1244/350, 3-10=-420/1841, 3-9=-96/281, 4-9=-457/1962, 5-9=-1269/378 5-8=-214/954, 1-12=-1172/5131, 6-8=-1169/5099

NOTES

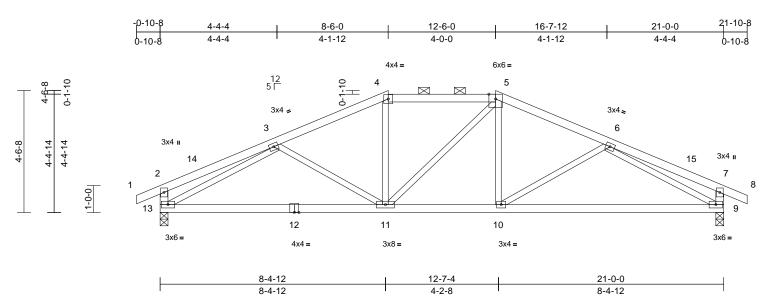
TCDL

BCLL

BCDL

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x10 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Web connected as follows: 2x3 - 1 row at 0-9-0 oc.

- WARNING: Required bearing size at joint(s) 7 greater than input bearing size.
- All bearings are assumed to be SPF No.2 crushing 9) capacity of 425 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 962 lb uplift at joint 13 and 1109 lb uplift at joint 7.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- OF MISSO TE SCOTT M. SEVIER 2.OFF PE-2001018807 SSIONAL E March 12,2024



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 161	
P240463-01	A03	Нір	1	1	Job Reference (optional)	164148498

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 08:14:26 ID:fJZk7uYBGFlbdyJzaMEHrRzkXGb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:42.9

00010 - 1.42.0						-						-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2013	3/TPI2014	CSI TC BC WB Matrix-S	0.27 0.66 0.69	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.28 0.04	(loc) 9-10 9-10 9	l/defl >999 >886 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 95 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	P CHORD 2x4 SP No.2 T CHORD 2x4 SP No.2 BS 2x3 SPF No.2 *Except* 13-2,9-7:2x4 SP No.2 ACING P CHORD Structural wood sheathing directly applied or 4-9-10 oc purlins, except end verticals, and 2-0-0 oc purlins (5-2-8 max.): 4-5. T CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. ACTIONS (size) 9=0-3-8, 13=0-3-8 Max Horiz 13=-45 (LC 13) Max Uplift 9=-153 (LC 13), 13=-153 (LC 12) Max Grav 9=1003 (LC 1), 13=1003 (LC 1) RCES (lb) - Maximum Compression/Maximum Tension		5) No.2 ed or and 6) c 7) (8) 12) 1) 9)	chord live lo. * This truss is on the bottoo 3-06-00 tall ic chord and ai All bearings capacity of 2 Provide mec bearing plate joint 13 and This truss is International R802.10.2 a Graphical put	as been designed ad nonconcurrent has been designer in chord in all area by 2-00-00 wide w hy other members are assumed to b 165 psi. thanical connectio e capable of withs 153 lb uplift at joir designed in accor Residential Code nd referenced sta urlin representation ation of the purlin	with any d for a liv as where vill fit betv s. e SP No. n (by oth tanding 1 nt 9. rdance w e sections ndard AN n does no	other live loa e load of 20.0 a rectangle veen the botti 2 crushing ers) of truss t 53 lb uplift at ith the 2018 s R502.11.1 a uSI/TPI 1. ot depict the s	Opsf om to t					
TOP CHORD	1-2=0/27, 2-3=-304/ 4-5=-1136/306, 5-6=	-1287/300, 6-7=-30	4/73,	bottom chore DAD CASE(S)									
BOT CHORD	11-13=-287/1224, 10 9-10=-238/1224	0-11=-144/1136,											
WEBS	3-11=-130/168, 4-11 5-10=-7/233, 6-10=- 3-13=-1166/300, 6-9	130/168,	124,										
 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0.10-8 to 4-2-5, Interior (1) 4-2 5 to 8-6.0 Exterior(2E) 8-6.0 to 12-6.0 			pe)									STATE OF I	MISSOLA T M. ER

- Interior (1) 4-2-5 to 8-6-0, Exterior(2E) 8-6-0 to 12-6-0, Exterior(2R) 12-6-0 to 19-6-14, Interior (1) 19-6-14 to 21-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.

ΤΙΟΝ DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI

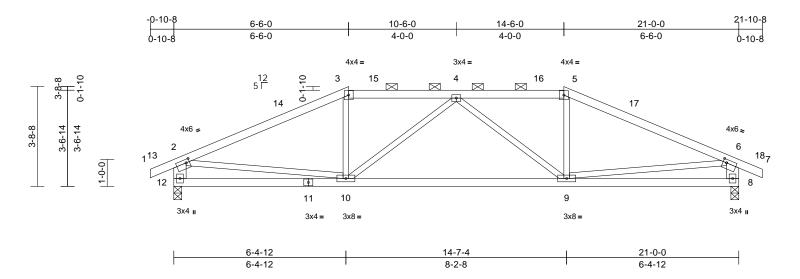
06/07/2024 4:05:06

'IEW

March 12,2024

E

NUMBER


PE-200101880'

SSIONAL

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 161	
P240463-01	A02	Нір	1	1	Job Reference (optional)	164148499

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 11 08:14:26 ID:xNyy1URwdAV?QQY2_F2xRKzkXGI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

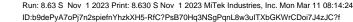
Scale = 1:42.8

Plate Offsets (X, Y): [2:0-1-8,0-1-8], [6:0-1-8,0-1-8]

reactions shown; Lumber DOL=1.60 plate grip

DOL=1.60

Flate Offsets (A, T). [2.0-1-0,0-1-0],	[0.0-1-0,0-1-0]										-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI	12014	CSI TC BC WB Matrix-S	0.66 0.61 0.30	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.23 0.03	(loc) 9-10 9-10 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 92 lb	GRIP 197/144 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce No.2 Structural wood she: 4-1-14 oc purlins, e 2-0-0 oc purlins (5-1 Rigid ceiling directly bracing. (size) 8=0-3-8, 1 Max Horiz 12=-28 (L Max Uplift 8=-161 (L Max Grav 8=1002 (I (lb) - Maximum Com Tension 1-2=0/30, 2-3=-1437 4-5=-1238/317, 5-6 2-12=-948/289, 6-8= 10-12=-195/388, 9-1 8-9=-151/388 3-10=0/277, 5-9=0/2 6-9=-55/867, 4-10=-	4) Thi cha cha s 5) * Th on 3-0 cha cha cha cha cha cha cha cha cha cha	is truss has ord live loa- his truss his the bottom b6-00 tall b ord and any bearings a bacity of 56 aving plate at 12 and 1 is truss is c ernational 1 o2.10.2 an aphical pur	nanical connection capable of withsta 61 lb uplift at joint designed in accord Residential Code s d referenced stand lin representation tion of the purlin al	or a 10.0 rith any for a liv where fit betv SP No. (by oth nding 1 8. ance w sections dard AN does no	D psf bottom other live loa e load of 20.1 a rectangle veen the bott 2 crushing ers) of truss i 61 lb uplift al ith the 2018 is R502.11.1 a ISJ/TPI 1. ot depict the s	ads. Opsf om to t				STE OF I	MISSO	
this design 2) Wind: ASC Vasd=91m Ke=1.00; (exterior zo Interior (1) Interior (1) 21-6-14, Ir Ieft and rig		4,									SCOT SEV SEV NUM PE-2001	T M. IER · BER 018807	


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com) March 12,2024

E

ONAL

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 161	
P240463-01	A01	Hip Girder	1	2	Job Reference (optional)	164148500

Page: 1

OF MISS

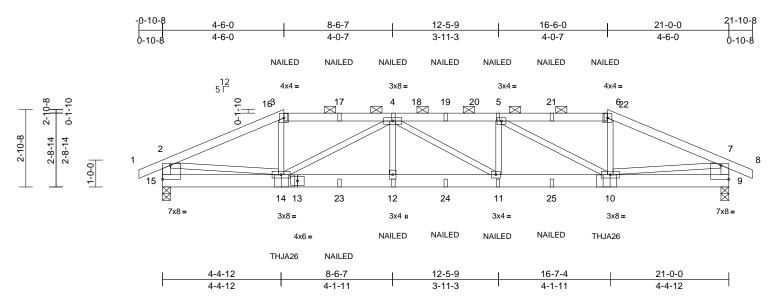
SCOTT M.

SEVIER

NUMBER

PE-2001018807

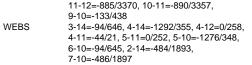
E


DEVELORMENT: SERVICES LEE'S'SUMMIT'SMISSOURI 06/07/2024 4:05:06

τιοι

March 12,2024

SIONAL

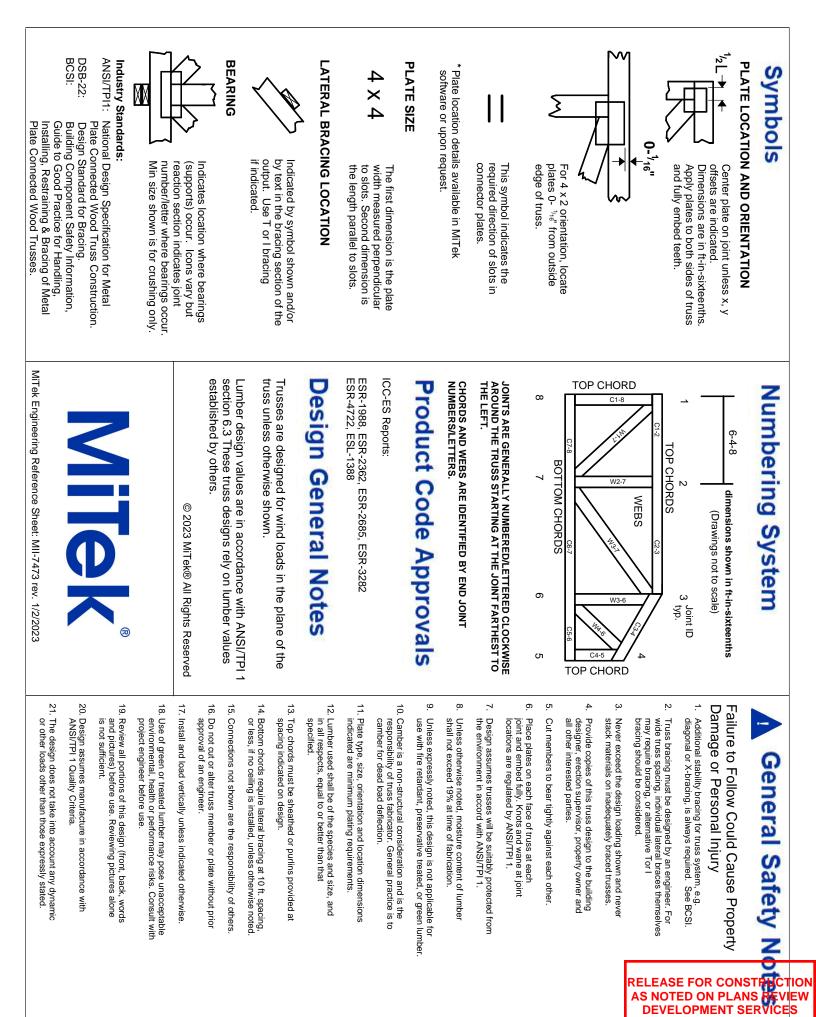

C

Scale = 1:42.7

Plate Offsets (X, Y): [9:Edge,0-6-4], [15:Edge,0-6-4]

						-							-			
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.23	DEFL Vert(LL)	in -0.07	()	l/defl >999	L/d 240	PLATES MT20	GRIP 197/144			
TCDL	10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 NO		BC WB	0.37	Vert(CT) Horz(CT)	-0.13 0.02	11-12 9	>999 n/a	180 n/a					
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S	-						Weight: 196 lb	FT = 20%			
BCDL 10.0 Code IRC LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SPF No.2 BOT CHORD 2x6 SPF No.2 *Except* 15-2,9-7:2x4 SP No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins, (6-0-0 max.): 3-6. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 9=0-3-8, 15=0-3-8 Max Uplift 9=-404 (LC 9), 15=-404 (LC 8) Max Grav 9=1577 (LC 1), 15=1577 (LC 1)			ed or 3 nd 4 c	 All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 4-6-0, Exterior(2R) 4-6-0 to 11-6-14, Interior (1) 11-6-14 to 16-6-0, Exterior(2E) 16-6-0 to 21-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber 				 13) Use Simpson Strong-Tie THJA26 (THJA26 on 2 ply, Right Hand Hip) or equivalent at 16-5-10 from the left end to connect truss(es) to front face of bottom chord. 14) Fill all nail holes where hanger is in contact with lumber 15) "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails per NDS guidelines. LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-2=-70, 2-3=-70, 3-6=-70, 6-7=-70, 7-8=-70, 9-15=-20 Concentrated Loads (lb) Vert: 3=-68 (F), 6=-68 (F), 14=-263 (F), 4=-68 (F), 12=-30 (F), 11=-30 (F), 5=-68 (F), 10=-263 (F), 								
FORCES	(lb) - Maximum Corr Tension				late grip DOL=1.	,	Lumber					=-68 (F), 21=-68 =-30 (F)	(F), 23=-30 (F),			
TOP CHORD	4-5=-3357/976, 5-6=	7/716, 3-4=-2286/684 =-2288/685, =0/27, 2-15=-1480/48	6) This truss ha	quate drainage to as been designeo ad nonconcurren	d for a 10.0) psf bottom			200	(.), 20					
	7-9=-1481/482			* This truss has been designed for a live load of 20.0psf												

14-15=-161/439, 12-14=-885/3370,


NOTES

BOT CHORD

- 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0
 - oc. Bottom chords connected as follows: 2x6 - 2 rows
 - staggered at 0-9-0 oc.
 - Web connected as follows: 2x3 1 row at 0-9-0 oc.

- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 404 lb uplift at joint 15 and 404 lb uplift at joint 9.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Use Simpson Strong-Tie THJA26 (THJA26 on 2 ply, Left Hand Hip) or equivalent at 4-6-6 from the left end to connect truss(es) to front face of bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

ASE FOR CONST **OTED ON PLANS** VELOPMENT SER LEE'S SUMMIT, MISSOURI 06/07/2024 4:05:06