

RE: B240108 Lot 164 HT

Site Information:

Customer: Summit Homes Project Name: B240108 Lot/Block: 164 Model: Cl Address: 1624 SW Buckthorn St City: Lee's Summit State: MC

B240108 Model: Charleston - Tuscan Subdivision: Hawthorn Ridge State: MO

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf Design Program: MiTek 20/20 8.7 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 40 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. Seal# Truss Name Date No. Seal# Truss Name Date	/2024
1 I64208175 A1 3/14/2024 21 I64208195 D3 3/14	
2 I64208176 A2 3/14/2024 22 I64208196 G1 3/14	/2024
3 I64208177 A3 3/14/2024 23 I64208197 G2 3/14	/2024
4 I64208178 A4 3/14/2024 24 I64208198 J1 3/14	/2024
5 I64208179 A5 3/14/2024 25 I64208199 J2 3/14	/2024
6 I64208180 A6 3/14/2024 26 I64208200 J3 3/14	/2024
7 I64208181 A7 3/14/2024 27 I64208201 J4 3/14	/2024
8 I64208182 B1 3/14/2024 28 I64208202 J5 3/14	/2024
9 I64208183 B2 3/14/2024 29 I64208203 J6 3/14	/2024
10 I64208184 C1 3/14/2024 30 I64208204 J7 3/14	/2024
11 I64208185 C2 3/14/2024 31 I64208205 J8 3/14	/2024
12 I64208186 C3 3/14/2024 32 I64208206 J9 3/14	/2024
13 I64208187 C4 3/14/2024 33 I64208207 J10 3/14	/2024
14 I64208188 C5 3/14/2024 34 I64208208 J11 3/14	/2024
15 I64208189 C6 3/14/2024 35 I64208209 LAY1 3/14	/2024
16 I64208190 C7 3/14/2024 36 I64208210 V1 3/14	/2024
17 I64208191 C8 3/14/2024 37 I64208211 V2 3/14	/2024
18 I64208192 C9 3/14/2024 38 I64208212 V3 3/14	/2024
19 I64208193 D1 3/14/2024 39 I64208213 V4 3/14	/2024
20 I64208194 D2 3/14/2024 40 I64208214 V5 3/14	/2024

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Sevier, Scott

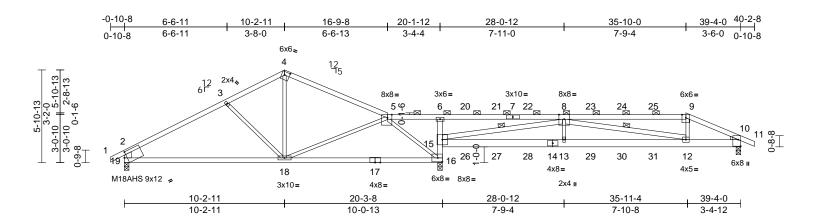
My license renewal date for the state of Missouri is December 31, 2025. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Sevier, Scott

Less True True <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>RELEASE</th><th>FOR CONSTRUCTION</th><th></th></th<>											RELEASE	FOR CONSTRUCTION	
Bit Model Image of special Supported Stable Image of the special Support of Stable Image of the special Stable Stabl	Job		Truss		Truss Type		Qty	Ply	Lot 164 H	Т			٦
Parent unter y more provide a provid	B240108		A1		Roof Specia	Supported Gable	1	1	Job Refer	ence (ontiona	1 5510		
 ¹/₁ = 10 = 11 ¹/₁ = 10 ¹/₁ = 10	Wheeler Lumber,	Waverly, KS -	66871,			Run: 8.73 S Feb 2	22 2024 Pi	int: 8.730 S Fe	b 22 2024 MiTek	Industries, Inc.	Ved Mar 1309333	7/2024	_
Lossing G 10-2-11 0-0-13 Image: Second Sec						ID:QQEFJPNzKftn	ll7r7BGyZ	5lzbfWd-RfC?I	PsB70Hq3NSgPq	nL8w3ulTXbGł	(VrCDoi7J42JS?i	5172021	
Image: space spac									20-	-3-8		1	
Luments Construction			0-10	-8	10-2-1	11	I		10-	0-13		I	
Image: 100 -							6x6 <i>≈</i>						
Leading TCLL (cord) (pst) 25.0 (cord) Spacing Plate Gip DOL 2-0- (cord) CSI TC DEFL TC in (loc) I/deft I/deft I/d DCLL 0.01 Plate Gip DOL 1.15 BC 0.07 Vert(CT) n/a n/a geg BCLL 0.01 Rep Stress Incr YES 0.07 Wett(CT) n/a n/a n/a geg DOP CHORD 2x4 SPF No.2 NOTES 0.01 3 n/a n/a <td>_</td> <td>8-0-</td> <td>1</td> <td>2</td> <td></td> <td>5 21 20</td> <td>7</td> <td>8</td> <td>9</td> <td></td> <td></td> <td>1-8-8</td> <td></td>	_	8-0-	1	2		5 21 20	7	8	9			1-8-8	
TCLL (mod) 25.0 Piase Grip DOL 1.15 TC 0.07 VertLL n/a - n/a 993 MT20 197/144 BCLL 0.00 Res Stress Incr YES No WB 0.07 VertLL n/a 993 MT20 197/144 BCLL 10.0 Code IRC2018/TFI2014 Mark: R No No 13 n/a n/a 993 Meight: 86 lb FT = 10% LUMBER 10.0 Code IRC2018/TFI2014 Mark: R No 993 Meight: 86 lb FT = 10% BCL 24/5 PF No.2 Structural wood sheathing directly applied or 100-0 co Inhaliance and or 01 like loads have been considered for this design. 11.14-18/28 1420-38, 14-20-38, 15-20-38, 12-20-	Plate Offsets (X	(, Y): [7:Edg	je,0-3-8],	[18:0-1-11,0-1-8], [24	1:0-3-8,Edge]								-
VA THE A	TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS	2x4 SPF Nc 2x4 SPF Nc 2x4 SPF Nc 2x4 SPF Nc Structural w 6-0-0 oc pu Rigid ceiling bracing. (size) 1 1 2 Max Horiz 2 Max Uplift 1 1 2 Max Grav 1 1 1 2 Max Grav 1 1 2 (lb) - Maxim Tension 2-24=-153/5 3-4=-65/85, 6-7=-42/155 9-10=-34/77 12-13=-60/2 23-24=-18/2 16-17=-18/2	25.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr Code athing directly applied cept end verticals. applied or 10-0-0 oc 3, 14=20-3-8, 15=20-3 3, 17=20-3-8, 19=20-3 3, 21=20-3-8, 22=20-3 3, 21=20-3-8, 22=20-3 3, 24=20-3-8, 24=20-3 3, 24=20-3, 24=20-3, 24=20-3 3, 24=20-3, 24=20, 24=20-3, 24=20-3, 24=20-3, 24=20-3, 24=20-3, 24=20-	1.15 1.15 YES IRC2018/TPI2 WEBS NOTES 1) Unba this of 1) Unba this of 1) Unba this of 1) Unba this of 2) Winc Vasc I; ES 3-8, 3) Trus 3-8, 3) Trus 3-8, 3) Trus 3-8, 3) Trus 3-8, 3) Trus 5) Gabl 6) Trus brac 7) Gabl 8) This chore 10) All bi 11) Prov bear 23, 4 uplifft 8, 12) This 8, Inter 8, Inter 10) In	TC BC WB Matrix-R 7-19=-128/0, 6-20=- 4-22=-141/71, 3-23- 9-16=-139/73, 10-19 alanced roof live loads have design. A SCE 7-16; Vult=115mpf I=91mph; TCDL=6.0psf; BC it ASCE 7-16; WUFRS (er lever left and right exposed exposed; Lumber DOL=1.6 its designed for wind loads in For studs exposed to wind Standard Industry Gable En mosult qualified building desi lates are 2x4 MT20 unless of e requires continuous botto s to be fully sheathed from d ed against lateral movement e studs spaced at 2-0-0 oc. truss has been designed for d live load nonconcurrent w s truss has been designed for d live load nonconcurrent w s truss has been designed for d live load nonconcurrent w s truss has been designed for d live load nonconcurrent w s truss has been designed for d live load nonconcurrent w the bottom chord in all areas -00 tall by 2-00-00 wide will d and any other members. earings are assumed to be a lide mechanical connection ing plate capable of withstan 6 lb uplift at joint 13, 56 lb u at joint 15 and 64 lb uplift at joint 13, 56 lb uplift at joint 17, 50 lb u at joint 15 and 64 lb uplift at joint 10, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2	0.07 0.04 0.07 0.04 0.07 151/80, =-137/10 5=-139/6 been cc 0 (3-seco DL=6.0p nvelope) ; end ve 0 plate g m the plat d Details gen ras otherwise m chord on face t (i.e. dia r a 10.0 ith any o for a live where a fit betwe SPF No (by other nding 56 uplift at jc tt joint 14 ance witt ections F	Vert(LL) Vert(CT) Horz(CT) 5-21=-138/8(3, 8-17=-151 9, 11-14=-14 nsidered for nd gust) sf; h=25ft; C exterior zonc trical left and rip DOL=1.6 ne of the trus to the face), as applicab oer ANSI/TP a indicated. bearing. or securely gonal web). osf bottom ther live load load of 20.0 fr rectangle en the bottor 2. s) of truss to Ib uplift at jo int 20, 57 lb ib uplift at jo int 16, 44 lb the 2018 82502.11.1 ar	n/a - n/a - 0.00 13), /72, 8/83 at. e; 0 ss e, 1. ss f n int int	n/a 999 n/a 999	Weight: 86 lb Weight: 86 lb Struct OF M Scott SEVI	197/144 FT = 10% MISSOLUTION F.M. ER MER 18807	~

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


									RELEASE	FOR CONSTRUCTION	
Job	Truss		Truss Type		Qty	Ply	Lot 164 HT				
B240108	A2		Roof Special		1	1	lah Datawasa	(1 5 5 10 1	OPMENT SERVICES 164208176 SUMMIT, MISSOURI	
Wheeler Lumber, Wav				Run: 8.73 S Feb 22 2	2024 Print:	3.730 S Feb 22	Job Reference 2 2024 MiTek Indus	tries. Inc. V			
				ID:yy9SXF9gZ7cK8N	ITg7UdLM\	zbfWv-RfC?P	sB70Hq3NSgPqnL8	3w3ulTXb0	KWrCD077J4250?f	J1/2024	
	-0-1	0-8 6	-4-5	10-2-11		15-1-10		20)-3-8		
	-0-1 0-10	0-8 6	-4-5	3-10-6		4-10-15		5-	1-14		
					4x5 👟						
					4						
\top				~	- 		<u>12</u> 15				
			12 2	(4)			3x6 👟				
			12 ² 6 3				5				
m			×				- And				
5-10-13								\geq	3×	<4 II	
ъ-		/						\square		6	
		2								~	
	<u>∞</u> 1	J J								- 8- 8- 8-	
						•				7	
		⊠ M18AHS 9x12 🍃			9	8			区 3x10		
				:	3x10 =	3x4 =					
			10-1-7				20-3-8				
Scale = 1:45.2			10-1-7		,		10-2-1		·		
Plate Offsets (X, Y): [4:0-0-0,Edge], [10:0-2-1,0-4-1]											
Loading	(psf)	Spacing	2-0-0	CSI	DEI		in (loc) l/de			GRIP	
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15		.88 Ver .82 Ver	:(LL) -0. :(CT) -0.				197/144 142/136	
BCLL	0.0*	Rep Stress Incr	YES	WB 0	.95 Hor	z(CT) 0.		/a n/a		ET _ 10%	
BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.04 7-9 >999 240 Weight: 70 lb FT = 10% LUMBER 7) Provide mechanical connection (by others) of truss to 7) Provide mechanical connection (by others) of truss to											
TOP CHORD 2x4	SPF No.2		bearing plat	e capable of withstand			t				
	SPF No.2 SPF No.2 *Exce	pt* 7-6:2x4 SPF No.2		lb uplift at joint 7. designed in accordan	ce with the	e 2018					
10- BRACING	2:2x6 SP 2400F 2	2.0E		I Residential Code sec and referenced standar							
TOP CHORD Str		athing directly applied	or LOAD CASE(S)	Standard							
		cept end verticals. applied or 10-0-0 oc									
bra REACTIONS (size	cing.) 7=0-3-8, 1	10=0-3-8									
Max	Horiz 10=90 (LC	C 8)									
		C 9), 10=-136 (LC 8) C 1), 10=976 (LC 1)									
. ,	- Maximum Com	pression/Maximum									
TOP CHORD 1-2	=0/35, 2-3=-1280)/181, 3-4=-1001/137,									
2-1	0=-877/188	180/31, 6-7=-199/65,									
	0=-164/1031, 7-9 =-297/203, 4-9=-3	9=-137/953 37/464, 5-9=-206/181	,								
5-7 NOTES	=-1034/169										
1) Unbalanced roo	of live loads have	been considered for							OF N	AISSO	
this design. 2) Wind: ASCE 7-	16; Vult=115mph	(3-second gust)						4	TE	AN OSCILLAR	
		DL=6.0psf; h=25ft; Ca velope) exterior zone						A	SCOTI		
cantilever left a	nd right exposed	; end vertical left and 0 plate grip DOL=1.60						Ø.	SEVI	ER X	
3) All plates are M	T20 plates unless	s otherwise indicated.						BE	#	land	
	nonconcurrent wi	th any other live loads							PE-2001		
		or a live load of 20.0p where a rectangle	sf					Ø	1 th	188	
	2-00-00 wide will	fit between the botton	n						SSIONA	LENUS	
6) All bearings are		SPF No.2 .							ALCC .	50	
									March	14,2024	
			THIS AND INCLUDED MITE						В.Л:		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information
available from the Structural Building Component Association (www.sbsccomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

							RELEASE FOR CONSTRUCTION
	Job	Truss	Truss Type	Qty	Plv	Lot 164 HT	AS NOTED FOR PLAN REVIEW
	000	11033		Guy	i iy	201104111	DEVELOPMENT SERVICES 164208177
	B240108	A3	Roof Special Girder	1	1	Job Reference (optional	
Wheeler Lumber, Waverly, KS - 66871, Run: 8.73 S Feb 22 2024 Print: 8.73						2 2024 MiTek Industries, Inc. V	

ID:bNB?4gsYmF7Wpwn6MWCFXxzbfYa-RfC?PsB70Hq3NSgPqnL8w3uITXIGKWrCber75426C4

Scale = 1:73.5

3cale = 1.73.5														
Plate Offsets ((X, Y): [4:0-3-12,0-2-8	3], [5:0-3-5,Edge], [10	:Edge,0-1	-14], [19:0-2-1,	.0-4-1]									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.92 0.91 0.99	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	0.03	· · ·	l/defl >999 >544 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18AHS Weight: 149 lb	GRIP 197/144 142/136 FT = 10%	
	1.8E 2x4 SPF No.2 *Exce No.2 2x3 SPF No.2 *Exce No.2, 19-2:2x6 SP 2 Right: 2x3 SPF No.2 Structural wood she 3-9-12 oc purlins, e 2-0-0 oc purlins (4-6 Rigid ceiling directly bracing. 1 Row at midpt	- sept* 15-14,14-10:2x6 sept* 15-8,12-8:2x4 SI 2400F 2.0E 2 sathing directly applie except end verticals, a -8 max.): 5-9. applied or 9-3-9 oc 8-15, 8-12 , 16=0-3-8, 19=0-3-8 LC 8) (LC 9), 16=-370 (LC - (LC 27)	0F SPF 3) 4) 5) d or 6) and 7) 8) 9),	Vasd=91mph II; Exp C; En cantilever lef right exposed Provide aded All plates are This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Bearings are 16 SPF No.2 Provide mec bearing plate 19, 370 lb up This truss is	7-16; Vult=115m n; TCDL=6.0psf; closed; MWFRS t and right exposed d; Lumber DOL= quate drainage to w MT20 plates un as been designed ad nonconcurren has been designed ad nonconcurren as been designed ad nonconcurren to chord in all are by 2-00-00 wide v y 2-00-00 wide v to ther member assumed to be: c, Joint 10 SPF N hanical connective c capable of withsta blift at joint 16 and designed in accoording Residential Cool	BCDL=6. (envelope ed; end v 1.60 plate prevent i less other for a 10. t with any ad for a liv as where will fit betw s. Joint 19 S do.2. on (by oth standing 1 d 244 lb u ordance w	Opsf; h=25ft; a) exterior zo vertical left ar grip DOL=1 water pondin rwise indicate 0 psf bottom other live load of 20. a rectangle veen the bott SPF No.2, Jo ers) of truss 149 lb uplift at plift at joint 1 ith the 2018	ne; nd .60 g. ads. 0psf com bint to t joint 0.	of t LOAD (1) De Pl Ui	he truss CASE(S ead + Ro ate Incre- hiform Lo Vert: 1- 16-19=- oncentra Vert: 8= 20=-30 24=-30	are no bof Live case=1 cads (I 2=-70, -20, 10 ted Lo 30 (F (F), 21 (F), 25	oted as front (F) o ndard e (balanced): Lun .15 b/ft) 2-4=-70, 4-5=-70 -15=-20 ads (Ib)	nber Increase=1.1 -, 5-9=-70, 9-11=- 39 (F), 9=-71 (F (F), 23=-30 (F), (F), 27=-17 (F),	15, -70,
FORCES	4-5=-900/159, 5-6=- 8-9=-1817/417, 9-10 2-19=-822/201	npression/Maximum 4/203, 3-4=-886/162, 25/303, 6-8=0/256, 0=-2108/429, 10-11=	1.	R802.10.2 a O) Graphical pu or the orienta bottom choro I) Hanger(s) or provided suff down and 54	nd referenced sta rlin representatio ation of the purlin d. other connection ficient to support I b up at 21-9-4,	andard AN on does no along the n device(s concentra 80 lb dov	NSI/TPI 1. bt depict the set top and/or b) shall be ated load(s) 8 wn and 54 lb	size 30 lb up at			B	STATE OF M	MISSOLUP	k
BOT CHORD WEBS NOTES 1) Unbalance this design	15-16=-1295/313, 6 13-15=-607/2860, 1: 10-12=-343/1842 3-18=-307/202, 4-18 5-16=-1096/200, 8-1 8-13=0/377, 8-12=-1 ed roof live loads have	-15=-485/212, 2-13=-607/2860, 3=-46/393, 5-18=0/30 15=-3148/671, 1069/270, 9-12=0/51	3	and 54 lb up 29-9-4, 80 lb down and 54 lb up at 35-1 21-9-4, 23 lb lb down at 2 31-9-4, and 2 35-9-4 on bo	down and 54 lb at 27-9-4, 80 lb down and 54 lb lb up at 33-9-4, 0-0 on top chorc down at 23-9-4 7-9-4, 23 lb dow 23 lb down at 33 ttom chord. The levice(s) is the re	down and up at 31- and 191 I, and 23 I, 23 lb dov n at 29-9 -9-4, and design/se	d 54 lb up at 9-4, and 80 l lb down and lb down at wn at 25-9-4 -4, 23 lb dow 56 lb down a election of su	b 125 , 23 m at at		-		PE-2001	ER 018807	

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

March 14,2024

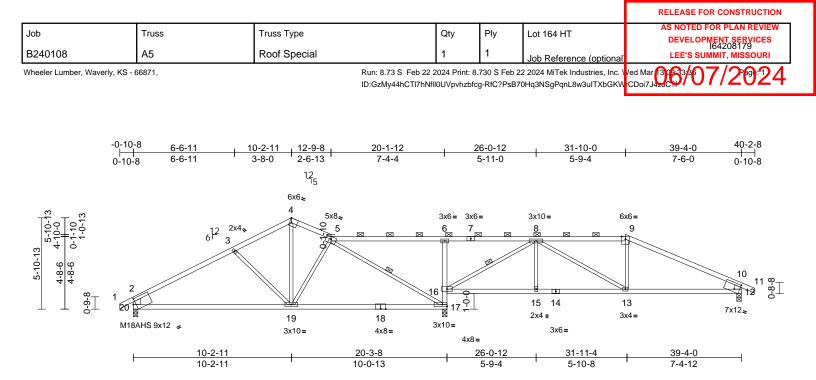
Job							
	Truss	Truss Type	Qty	Ply	Lot 164 HT		R PLAN REVIEW NT SERVICES 4208178
B240108	A4	Roof Special	Roof Special 1 1 Job Reference (optional)				
Wheeler Lumber, Waverly	ν, KS - 66871,				22 2024 MiTek Industries, Inc. V 2sB70Hq3NSgPqnL8w3uITXbG		/2024
	-0-10-8 6-6-11	10-2-11 14-9-8 20-1-1	2 .	27-0-12	, 33-10-0	39-4-0	40-2-8
	0-10-8 6-6-11	3-8-0 4-6-13 5-4-4		6-11-0	6-9-4	5-6-0	0-10-8
$\begin{array}{c c} & 5 - 10 - 13 \\ \hline & 5 - 10 - 13 \\ \hline & 3 - 10 - 6 & 0 - 1 - 10 \\ \hline & 3 - 10 - 6 & 0 - 1 - 10 \\ \hline & 0 - 9 - 8 \\ \hline & 0 - 9 - 8 \\ \hline & 1 - 10 - 13 \\ \hline \end{array}$	6 ¹² 3 1 2 M18AHS 9x12 =	19 18 3x10= 4x8=	2x4 II 6 16 16 17 3x10=	3x6=	3x10= 8 ⊠ ⊠ ⊓ 14 2x4 ⊪	6x6= 9 13 3x4=	10 11 ↔ 12 ↔ 6x8 ⊪
	<u> </u>	20-3-8 10-0-13		<u>27-0-12</u> 6-9-4	33-11-4 6-10-8	<u> </u>	

Scale = 1:74.5

LUMBER

Plate Offsets (X, Y): [4:0-4-4,0-3-0], [12:Edge,0-5-8], [20:0-2-1,0-4-1]												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.79	Vert(LL)	-0.21	17-19	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.83	Vert(CT)	-0.45	17-19	>533	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	YES	WB	0.90	Horz(CT)	0.03	17	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.09	13-14	>999	240	Weight: 133 lb	FT = 10%

TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x3 SPF No.2 *Except* 20-2,12-10:2x6 SP
	2400F 2.0E
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 3-8-13 oc purlins, except end verticals, and 2-0-0 oc purlins (4-5-0 max.): 5-9.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
WEBS	1 Row at midpt 5-17, 8-16
REACTIONS	(size) 12=0-3-8, 17=0-3-8, 20=0-3-8
	Max Horiz 20=102 (LC 8)
	Max Uplift 12=-175 (LC 9), 17=-291 (LC 9),
	20=-136 (LC 8)
	Max Grav 12=870 (LC 22), 17=1882 (LC 1), 20=909 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/35, 2-3=-1151/179, 3-4=-866/133,
	4-5=-847/138, 5-6=0/277, 6-8=-6/369,
	8-9=-1120/260, 9-10=-1306/248, 10-11=0/30,
	2-20=-813/189, 10-12=-784/199
BOT CHORD	19-20=-173/918, 17-19=-70/678,
	16-17=-1150/259, 6-16=-467/187,
	14-16=-203/1300, 13-14=-203/1300,
	12-13=-162/1123
WEBS	3-19=-310/205, 4-19=-44/415, 5-19=-17/137,
	5-17=-1153/148, 8-16=-1744/308,
	8-14=0/295, 8-13=-195/71, 9-13=0/261
NOTES	


1) Unbalanced roof live loads have been considered for this design.

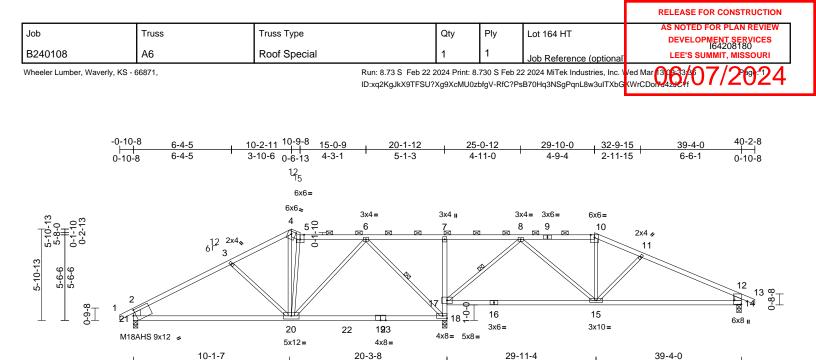
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated.
- 4) 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SPF No.2 .
- Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 136 lb uplift at joint 20, 291 lb uplift at joint 17 and 175 lb uplift at joint 12.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Scale = 1:74.5

late Offsets ()	X, Y): [4:Edge,0-3-8],	[5:0-4-0,0-2-0], [12:0)-3-15,0-4	-14], [20:0-2-1	0-4-1]								
oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.81	Vert(LL)	-0.21	17-19	>999	360	MT20	197/144
CDL	10.0	Lumber DOL	1.15		BC	0.83	Vert(CT)		17-19	>531	240	M18AHS	142/136
CLL	0.0*	Rep Stress Incr	YES		WB	0.78	Horz(CT)	0.03	17	n/a	n/a		
CDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.05	17-19	>999	240	Weight: 136 lb	FT = 10%
UMBER	2x4 SPF No.2		2)		7-16; Vult=115 n; TCDL=6.0psf			Cat.					
OT CHORD	2x4 SPF No.2				closed; MWFRS								
VEBS	2x3 SPF No.2 *Exce	ept* 20-2,12-10:2x6 S	SP .		t and right expo								
	2400F 2.0E	•			d; Lumber DOL=								
RACING			3)		quate drainage t								
OP CHORD	Structural wood she	athing directly applie	dor 4)		MT20 plates u			ed.					
		cept end verticals, ar	nd 5)		is been designe								
	2-0-0 oc purlins (5-3		6)		ad nonconcurrer has been design								
OT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	0)		n chord in all ar			opsi					
VEBS		5-17, 8-16			y 2-00-00 wide			tom					
EACTIONS (size) 12=0-3-8, 17=0-3-8, 20=0-3-8					ny other membe								
Max Horiz 20=102 (LC 8)			7)		are assumed to								
	Max Uplift 12=-178 (,	a) ⁸⁾		hanical connect								
	20=-138 (-,,		capable of with								
	Max Grav 12=866 (L		1),	20, 285 ib up	olift at joint 17 ar	u di 817 Dr	plift at joint 1	Ζ.					
	20=904 (L	_C 1)		This trucs is	designed in acc	ordonco w	ith the 2019						
ORCES	(lb) - Maximum Com	pression/Maximum	9)		Residential Co			and					
	Tension	-			nd referenced st								
OP CHORD	1-2=0/35, 2-3=-1143	8/184, 3-4=-854/137,	1(rlin representati			size					
	4-5=-818/149, 5-6=0				ation of the purli								
)=-1202/243, 10-11=	0/30,	bottom chore	i. '	Ũ	•						
	2-20=-808/191, 10-1		L	DAD CASE(S)	Standard							O TE	and the second
OT CHORD	19-20=-177/912, 17-			. ,								THE OF A	AISSO
	16-17=-1221/286, 6- 15-16=-110/827, 13-	,									4		N.S.
	12-13=-137/1008	-15=-110/627,									A	SCOT	TM. YP.V.
VEBS	3-19=-312/207, 4-19	9=-70/485.									U	SEVI	
	5-19=-131/163, 5-17										1A		
	,	5=0/230, 8-13=-33/2	27,								80	4	· 1 . 2
	9-13=0/197	,										Call	xane
IOTES											43		
) Unbalance	ed roof live loads have	been considered for									N.	PE-2001	018807

) Unbalanced roof live loads have been considered for this design.



March 14,2024

E

SSIONAL

Scale = 1:74.5

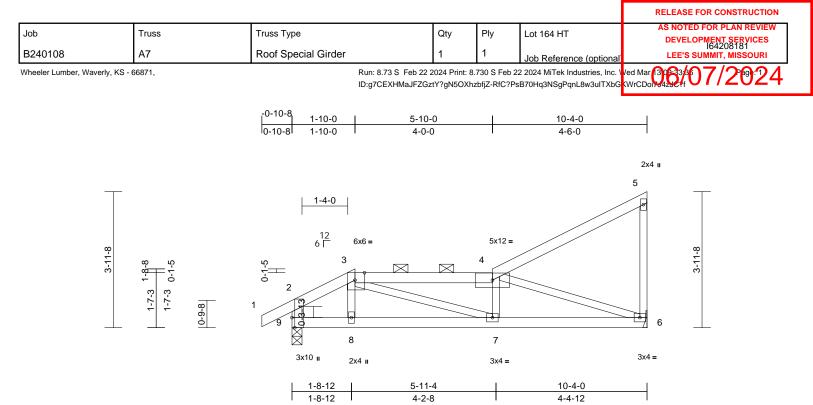
this design.

Plate Offsets (X, Y): [4:0-3-3,0-2-2],	[5:0-3-0,Edge], [14	Edge,0-5-8], [21:0-2-1,0)-4-1]								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.76	Vert(LL)	-0.27	18-20	>883	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.61	Vert(CT)	-0.47	18-20	>512	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	YES	WB	0.50	Horz(CT)	-0.03	14	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.05	18-20	>999	240	Weight: 143 lb	FT = 10%

10-2-1

9-7-12

TOP CHORD BOT CHORD		Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and
WEBS	2x3 SPF No.2 *Except* 21-2,14-12:2x6 SP 2400F 2.0E	right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding.
BRACING		4) All plates are MT20 plates unless otherwise indicated.
TOP CHORD	Structural wood sheathing directly applied or	5) This truss has been designed for a 10.0 psf bottom
	4-3-9 oc purlins, except end verticals, and	chord live load nonconcurrent with any other live loads.
	2-0-0 oc purlins (5-11-2 max.): 5-10.	This truss has been designed for a live load of 20.0psf
BOT CHORD		on the bottom chord in all areas where a rectangle
	bracing.	3-06-00 tall by 2-00-00 wide will fit between the bottom
WEBS	1 Row at midpt 6-18, 8-17	chord and any other members, with BCDL = 10.0psf.
REACTIONS	ACTIONS (size) 14=0-3-8, 18=0-3-8, 21=0-3-8 Max Horiz 21=101 (LC 8)	7) All bearings are assumed to be SPF 2100F 1.8E.
		 Provide mechanical connection (by others) of truss to bearing plate company of withstanding 142 lb uplift at joint
	Max Uplift 14=-183 (LC 9), 18=-275 (LC 9),	bearing plate capable of withstanding 142 lb uplift at joint 21, 275 lb uplift at joint 18 and 183 lb uplift at joint 14.
	21=-142 (LC 8)	
	Max Grav 14=874 (LC 24), 18=1970 (LC 2), 21=924 (LC 2)	 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and
FORCES	(lb) - Maximum Compression/Maximum	R802.10.2 and referenced standard ANSI/TPI 1.
	Tension	10) Graphical purlin representation does not depict the size
TOP CHORD		or the orientation of the purlin along the top and/or
	4-5=-830/152, 5-6=-833/151, 6-7=0/255,	bottom chord.
	7-8=0/303, 8-10=-897/231, 10-11=-1002/236,	LOAD CASE(S) Standard
	11-12=-1213/286, 12-13=0/30,	
	2-21=-800/195, 12-14=-770/228	
BOT CHORD		
	17-18=-1123/237, 7-17=-360/145, 15-17=-82/512, 14-15=-185/1038	
WEBS	3-20=-296/199, 4-20=-82/509,	
WEBS	5-20=-290/199, 4-20=-62/309, 5-20=-375/115, 6-18=-976/141, 8-15=0/520,	
	10-15=0/178, 6-20=-11/563, 8-17=-1021/217,	
	11-15=-264/167	
NOTES		
1) Unbalance	ed roof live loads have been considered for	
·		


10-1-7

OF MISS SCOTT M. SEVIER NUMBER OFFESSIONAL PE-2001018807 E March 14,2024

9-4-12

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Coolo	_	1:33.5
Scale	=	1:33.5

Plate Offsets (X, Y): [3:0-3-5,Edge], [9:0-3-8,Edge]

	., .). [0.0 0 0,_0.90],	[0.0 0 0,2090]											
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.35		in -0.03	(loc) 7-8	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.35	Vert(CT)	-0.07	7-8	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.47	Horz(CT)	0.01	6	n/a	n/a		FT 400/
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S		Wind(LL)	0.03	7-8	>999	240	Weight: 38 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD		athing directly applie cept end verticals, a	d or	bearing plate 6 and 97 lb u This truss is International R802.10.2 a Graphical pu	hanical connection e capable of withsta uplift at joint 9. designed in accord Residential Code s nd referenced stan urlin representation ation of the purlin a	anding s lance w sections dard AN does no	97 lb uplift at ith the 2018 s R502.11.1 : NSI/TPI 1. ot depict the	joint and					
	 a bo-0 dc purlins, except end ventuals, and 2-0-0 oc purlins (5-10-5 max.): 3-4. b or the orientation of the purlin along the top and/or bottom chord. c or the orientation of the purlin along the top and/or bottom chord. c or the orientation of the purlin along the top and/or bottom chord. c or the orientation of the purlin along the top and/or bottom chord. c or the orientation of the purlin along the top and/or bottom chord. c or the orientation of the purlin along the top and/or bottom chord. c or the orientation of the purlin along the top and/or bottom chord. c or the orientation of the purlin along the top and/or bottom chord. c or the orientation of the purlin along the top and/or bottom chord. c or the orientation of the purlin along the top and/or bottom chord. c or the orientation of the purlin along the top and/or bottom chord. c or the orientation of the purlin along the top and/or bottom chord. c or the orientation of the purlin along the top and/or bottom chord. c or the orientation of the purlin along the top and/or bottom chord. c or the orientation of the purlin along the top and/or bottom chord. c or the orientation of the purlin along the top and/or bottom chord. c or the orientation of the purlin along the top and/or bottom chord. c or the orientation of the purlin along the top and/or bottom chord. c or the orientation of the purlin along the top and/or bottom chord. c or the orientation of the purlin along the top and/or bottom chord. c or the orientation of such connection device(s) is the responsibility of others. c or the orientation of the purlin along the top and/or bottom chord. c or the orientation of such connection device(s) is the responsibility of others. c or the orientation of the purlin along the top and/or bottom chord. 												
FORCES	,		11) In the LOAD				face					
TOP CHORD	1-2=0/32, 2-3=-546/ 4-5=-123/52, 5-6=-12		LC 1)	AD CASE(S)				15					
BOT CHORD WEBS	8-9=-116/438, 7-8=- 3-8=-40/61, 3-7=-97, 4-6=-909/188	119/441, 6-7=-148/8	81	Plate Increa Uniform Lo	ase=1.15			,					
NOTES					ed Loads (lb)	, 1	,						
Vasd=91m II; Exp C; I cantilever right expose 2) Provide ac	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 dequate drainage to pr has been designed for	DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 event water ponding	ie; d 50	Vert: 8=5	()							STATE OF I	MISSOLIAL T.M. ER

- 2
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 . 5)
- 6) Refer to girder(s) for truss to truss connections.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

March 14,2024

E

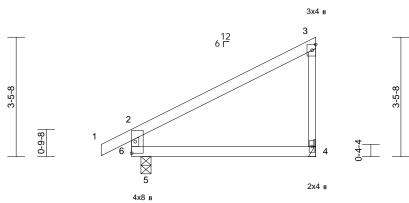
PE-200101880'

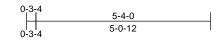
SSIONAL

0

B240108	B1	Truss Type Monopitch	Qty 7		Lot 164 HT	DEVELOPMENT SERVICES 164208182	
B240108		Job Reference (optional					

5-4-0


5-4-0


-0-10-8

0-10-8

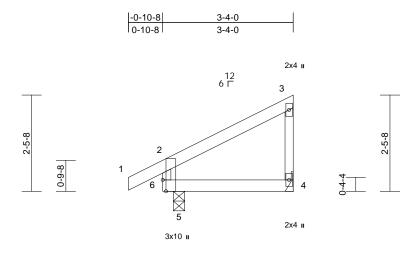
Wheeler Lumber, Waverly, KS - 66871,

Scale = 1:33.4

Scale = 1:33.4														
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.34 0.18 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.00	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R	0.00	Wind(LL)	0.01	4-5	>999	240	Weight: 17 lb	FT = 10%		
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 5-4-0 oc purlins, ex Rigid ceiling directly	cept end verticals.												
BOT CHORD	bracing.	applied of 10-0-0 0	C .											
	(size) 4= Mecha Max Horiz 5=136 (L0 Max Uplift 4=-57 (L0	C 8), 5=-52 (LC 8)												
FORCES														
TOP CHORD	Tension 1-2=0/31, 2-3=-135/	53 3-4=-157/78												
	2-6=-270/92	00, 0 1- 101/10,												
BOT CHORD	5-6=-15/104, 4-5=-4	2/36												
 Vasd=91m II; Exp C; E cantilever I right expos 2) This truss chord live I 3) * This truss on the bott 3-06-00 tal chord and 4) All bearing Forvide m bearing pla 4 and 52 lb 	CE 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 has been designed fo load nonconcurrent wi s has been designed f tom chord in all areas II by 2-00-00 wide will any other members. Is are assumed to be s rder(s) for truss to trus echanical connection q ate capable of withstar o uplift at joint 5.	DL=6.0psf; h=25ft; (hvelope) exterior zor ; end vertical left an 0 plate grip DOL=1. r a 10.0 psf bottom ith any other live loa or a live load of 20.0 where a rectangle fit between the botto SPF No.2 . ss connections. (by others) of truss t nding 57 lb uplift at ju	ne; d 60 ds. Dpsf om						ę	E.	STATE OF SCOT SEV	IER		
	is designed in accordanal Residential Code s		nd							Ŷ	ARS C.	NOT A		

11.1 and ential R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


E

NAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

							RELEASE FOR CONSTRUCTION
Job		Truss	Truss Type	Qty	Plv	Lot 164 HT	AS NOTED FOR PLAN REVIEW
300		DEVELOPMENT SERVICES 164208183					
B240108		B2	Job Reference (optional				
Wheeler Lumber,	, Waverly, KS - 6						

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Ved Mar 39 B3 AD 7/2024 ID:g9HfCUUcCQ0VtW1sCfcgyBzbfWU-RfC?PsB70Hq3NSgPqnL8w3uITXbCKWrCD0H44502f

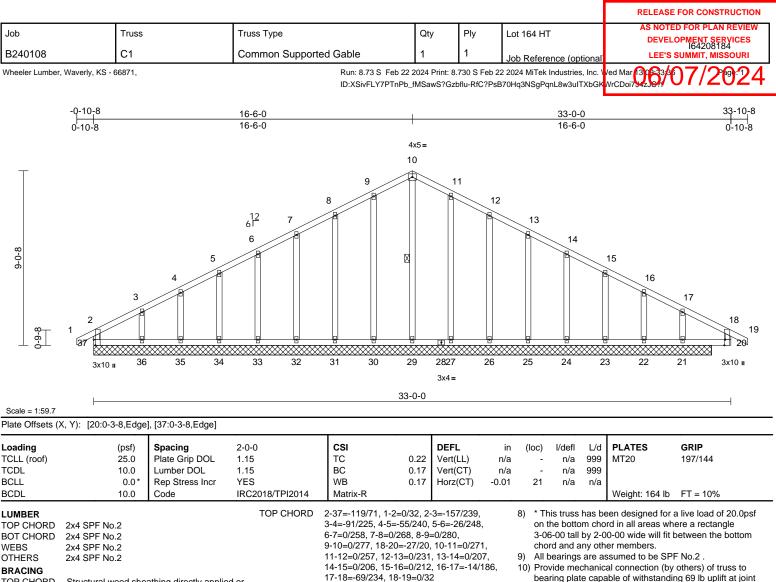

Scale = 1:29.4

Plate Offsets (X, Y): [6:0-3-8,Edge]

	(,, ,). [0:0 0 0,2490]	1													
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP			
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.11	Vert(LL)	0.00	4-5	>999	360	MT20	197/144			
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	0.00	4-5	>999	240					
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a					
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 11 lb	FT = 10%			
			LOAD CASE(S)	Standard											
TOP CHORD															
BOT CHORD WEBS															
	2x3 SPF No.2														
BRACING TOP CHORD	Structurel wood abo	othing directly oppli	od or												
TOP CHORD	3-4-0 oc purlins, except end verticals.														
	OT CHORD Rigid ceiling directly applied or 10-0-0 oc														
	bracing.														
REACTIONS	•	anical, 5=0-3-8													
	Max Horiz 5=95 (LC	,													
	Max Uplift 4=-33 (LC	,													
FORCES															
	Tension														
TOP CHORD	Tension P CHORD 1-2=0/31, 2-3=-81/28, 3-4=-92/48,														
	2-6=-196/65														
BOT CHORD	5-6=-17/72, 4-5=-31	/25													
NOTES															
	CE 7-16; Vult=115mph														
	Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and														
	osed; Lumber DOL=1.6										and	alle			
	has been designed fo		.00								TATE OF	MISC			
	load nonconcurrent w		ids.							1	750	N.O.			
	ss has been designed f									B	SCOT	M N TM			
on the bot	ttom chord in all areas	where a rectangle								R	SEV				
	all by 2-00-00 wide will	fit between the bott	om							a.	SEV				
	any other members.									6X					
	gs are assumed to be										ROU~	KONMIN			
	girder(s) for truss to trus		ha la							M.	NUM				
,	late capable of withsta									N'A	O PE-2001	018807			
	lb uplift at joint 5.	nung 55 ib upilit at j	onn							V	PE-2001	18A			
	is designed in accorda	ance with the 2018									0.500	ENO'B			
	nal Residential Code s		and								S'SIONA	LEY			
R802.10.2	2 and referenced stand	lard ANSI/TPI 1.									an	and a			
												h 14,2024			

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

36-37=-157/87, 35-36=-157/87

34-35=-157/87, 33-34=-157/87,

32-33=-157/87, 31-32=-157/87,

30-31=-157/87, 29-30=-157/87, 27-29=-157/87, 26-27=-157/87,

25-26=-157/87, 24-25=-157/87,

23-24=-157/87, 22-23=-157/87

21-22=-157/87, 20-21=-157/87

4-35=-133/65, 3-36=-189/123,

11-27=-157/72, 12-26=-135/82

13-25=-141/77, 14-24=-137/78,

10-29=-294/0, 9-30=-155/75, 8-31=-137/81,

7-32=-141/78, 6-33=-140/77, 5-34=-143/81,

15-23=-154/78, 16-22=-83/77, 17-21=-248/97

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 69 lb uplift at joint 37, 51 lb uplift at joint 30, 57 lb uplift at joint 31, 54 lb uplift at joint 32, 53 lb uplift at joint 33, 59 lb uplift at joint 34, 34 lb uplift at joint 35, 122 lb uplift at joint 36, 48 lb uplift at joint 27, 58 lb uplift at joint 26, 53 lb uplift at joint 25, 54 lb uplift at joint 24, 53 lb uplift at joint 23, 57 lb uplift at joint 22 and 73 lb uplift at joint 21.

- 11) Non Standard bearing condition. Review required.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

25=-53 (LC 9), 26=-58 (LC 9), NOTES 27=-48 (LC 9), 30=-51 (LC 8), 1) Unbalanced roof live loads have been considered for 31=-57 (LC 8), 32=-54 (LC 8), this design. 33=-53 (LC 8), 34=-59 (LC 8), Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) 35=-34 (LC 8), 36=-122 (LC 8), Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 37=-69 (LC 4) II; Exp C; Enclosed; MWFRS (envelope) exterior zone; Max Grav 21=391 (LC 1), 22=63 (LC 16), cantilever left and right exposed ; end vertical left and 23=211 (LC 1), 24=172 (LC 22), right exposed; Lumber DOL=1.60 plate grip DOL=1.60 25=183 (LC 1), 26=175 (LC 1), Truss designed for wind loads in the plane of the truss 3) 27=197 (LC 22), 29=334 (LC 18), only. For studs exposed to wind (normal to the face), 30=195 (LC 1), 31=177 (LC 21),

36=264 (LC 1), 37=132 (LC 21) FORCES (Ib) - Maximum Compression/Maximum Tension

Structural wood sheathing directly applied or

10-29

21=32-0-0, 22=32-0-0, 23=32-0-0,

24=32-0-0, 25=32-0-0, 26=32-0-0,

27=32-0-0, 29=32-0-0, 30=32-0-0,

31=32-0-0, 32=32-0-0, 33=32-0-0,

34=32-0-0, 35=32-0-0, 36=32-0-0,

23=-53 (LC 9), 24=-54 (LC 9),

32=181 (LC 1), 33=179 (LC 21),

34=186 (LC 1), 35=167 (LC 21),

10-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 6-0-0 oc

37=32-0-0

Max Uplift 21=-73 (LC 9), 22=-57 (LC 9),

Max Horiz 37=134 (LC 8)

TOP CHORD

BOT CHORD

REACTIONS (size)

WEBS

bracing

1 Row at midpt

- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 6) Gable studs spaced at 2-0-0 oc. 7)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

All plates are 2x4 MT20 unless otherwise indicated.

see Standard Industry Gable End Details as applicable,

or consult qualified building designer as per ANSI/TPI 1.

OF MISSO SCOTT M. SEVIER NUMBER ro, PE-2001018807 HESSIONAL E March 14,2024

> 16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

BOT CHORD

WEBS

4)

5)

														RELEASE FOR CONSTRUCTION
Job		Truss		Truss Typ	e		Qty	/	Ply	Lot 164 H	łΤ			AS NOTED FOR PLAN REVIEW
B240108		C2		Commor	า		7		1	loh Refe	rence (op	tional		DEVELOPMENT SERVICES 164208185 LEE'S SUMMIT, MISSOURI
Wheeler Lumber,	Waverly, KS -	66871,				Run: 8.73 S Feb 2	22 2024	Print: 8.	730 S Feb 2	- 2 2024 MiTe	k Industries	s. Inc. \	/ed Mar	<u>08/07/2024</u>
						ID:?15k3oKmBR3	kzTRy1s	cmPzzb	ofnT-RfC?Ps	B70Hq3NSg	PqnL8w3u	ITXbGI	WrCDoi	
	-	0-10-8	8-6-0	1		16-6-0	1		24-6-0		1	31-9	9-4	33-10-8 33-0-0
	(0-10-8	8-6-0	I		8-0-0	I		8-0-0			7-3	-4	1-2-12 0-10-8
							4x8=							
	Т			10		/	5							
				12 61	3x4 ≠			\searrow		3:	⁴ *			
				3	x4 =					3x4 ≈ 6				
	3 7													
	8-0-6													0-10-0
														4x8 ≈
	2													8 9
								, 						
	± 6±	47 ∦ 8x8		10	6		15 1	4		1	3			
		0.0	2	3х	6=		3x10=			:	3x10=			2x4 II
							3	5x4=						3x10 ။ 33-0-0
		H	<u> </u>			16-6-0 8-0-0	-		24-6-0 8-0-0			<u>31-9</u> 7-3		32-0-0
Scale = 1:68.8											1-0-0			
Plate Offsets (X	(, Y): [11:0-3	3-8,Edge], [13:0-2-8,0-1-8], [16 I	6:0-2-8,0-1-	8], [17:0-3-4	,0-2-4]								
Loading TCLL (roof)		(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.91	DEFL Vert(l		in (loc) 12 16-17		L/d 360	PLAT MT20	
TCDL		10.0	Lumber DOL	1.15		BC	0.65	Vert(CT) -0	.26 16-17	>999	240	101120	13//144
BCLL BCDL		0.0* 10.0	Rep Stress Incr Code	YES IRC2018/	TPI2014	WB Matrix-S	0.61	Horz(Wind		.06 12 .07 15-16		n/a 240	Weigh	ht: 125 lb FT = 10%
LUMBER						has been designed								
	2x4 SPF No 2x4 SPF No					m chord in all areas by 2-00-00 wide will								
WEBS	2x3 SPF No 11-9:2x4 SF		pt* 17-2:2x6 SPF No.	· - ,		ny other members. are assumed to be	SPF No	o.2 .						
				6)	Provide med	hanical connection e capable of withsta	(by othe	ers) of		t				
TOP CHORD	except end	verticals.		-, 	17 and 213	b uplift at joint 12. designed in accord	-							
BOT CHORD	bracing.		applied or 9-10-12 or	, ,	International	Residential Code s	ections	R502.	11.1 and					
WEBS REACTIONS (1 Row at mi size) 1	•	3-15, 7-15 17=0-3-8		D CASE(S)		aiu An	131/ TFT	1.					
	Max Horiz 1		LC 6) LC 9), 17=-204 (LC 8)										
Ν	Max Grav 1	2=1592 ((LC 1), 17=1493 (LC											
FORCES	Tension		pression/Maximum											
TOP CHORD	,		/284, 3-5=-1595/250, -2057/255, 8-9=-173/											
BOT CHORD			11/250, 9-11=-100/0 16=-276/1921,											
	13-15=-111, 11-12=-17/1		2-13=-17/169,											
WEBS		, 3-15=-7	58/265, 5-15=-56/792	2,									A	OF MIS
			6=0/1162, 8-13=-95/ ⁻	1594								4	7 ST	E OF MISSOL
NOTES												A	5/	SCOTT M.
 Unbalanced this design. 		ads have	been considered for									BA		SEVIER
2) Wind: ASCI	E 7-16; Vult=		(3-second gust) DL=6.0psf; h=25ft; Ca	ət								8 L	k.	HE La in
II; Exp C; E	nclosed; MW	VFRS (en	velope) exterior zone ; end vertical left and	;								K.	F	PE-2001018807
right expose	ed; Lumber [DOL=1.60	0 plate grip DOL=1.60									V	The last	
			a 10.0 psf bottom th any other live loads	6.									P	SIONAL ENGL
														March 14,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

									RE	ELEASE FOR CONSTRUCTION	N
Job	Truss		Truss Type		Qty	Ply	Lot 164 H	т		S NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES	V
B240108	C3		Roof Special		5	1	Job Refer	ence (optior		DEVELOPMENT SERVICES 164208186 LEE'S SUMMIT, MISSOURI	
Wheeler Lumber	r, Waverly, KS - 66871,		-	Run: 8.73 S Feb 22 ID:Z5nTbjGZwPzDG	2024 Print:	8.730 S Feb	22 2024 MiTek	Industries, In	c. Ved Mar 13	6/07/2024	4
	0.40.0				XIIIOI71F2		n on iqərəyər qi				
	-0-10-8 0-10-8	<u>8-6-0</u> 8-6-0		<u>16-6-0</u> 8-0-0		<u>21-8-4</u> 5-2-4			<u>30-1-12</u> 8-5-8	<u>32-0-0</u> 1-10-4	
					6x6=						
					5						
			12 6Γ 3x4 -	. //			Зх6 н				
			3x4 ≈			\mathbb{N}	6				
8 9-0-8 6-9-14	- -)		3 1								
0-0-8 0-0-8)									2x4 n	
0,				\ .		\				5x12=	
									×		Г
2-2-10 2-2-10	2 1 % 1 2	//						9			L
\perp \square				14	13		_ 1:	2 -		10 2x4 u	
	8x8	*	3x6=	14 3x6=	4x8=		2x4 II			6x6=	
		8-6-0		16-6-0		21-10-	0	7x12=	30-0-8	32.0.0	
Scale = 1:61.5	⊢––	8-6-0		8-0-0		5-4-0			8-2-8	<u> </u>	
	X, Y): [15:0-2-8,0-1-8	3], [16:0-3-4,0-2-4]									—
Loading	(psf)	Spacing	2-0-0	CSI	DE		in (loc)		/d PLATES		
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	BC	0.92 Ver	t(CT) -().18 10-11).43 10-11	>999 30 >889 24		197/144	
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-S		. ,).10 9).12 10-11		/a 40 Weight:	131 lb FT = 10%	
LUMBER			,	as been designed for							
TOP CHORD	1.8E	ept* 5-7:2x4 SPF 210	5) * This truss	ad nonconcurrent with has been designed fo	r a live loa	d of 20.0ps	f				
BOT CHORD WEBS		ept* 8-9:2x4 SPF No.:	2, 3-06-00 tall	m chord in all areas w by 2-00-00 wide will fi							
BRACING	16-2:2x6 SPF No.2		6) All bearings	ny other members. are assumed to be S							
TOP CHORD		eathing directly applie s, and 2-0-0 oc purlins	8) Provide med	ler(s) for truss to truss chanical connection (b	y others)	of truss to					
BOT CHORD	(6-0-0 max.): 7-8. Rigid ceiling directly	/ applied or 2-2-0 oc	9 and 204 lb	e capable of withstand uplift at joint 16.	-		nt				
WEBS	bracing. 1 Row at midpt	3-13, 7-11	Internationa	designed in accordar Residential Code se	ctions R50	2.11.1 and					
REACTIONS	(size) 9= Mecha Max Horiz 16=167 (anical, 16=0-3-8 LC 8)	10) Graphical p	nd referenced standa urlin representation do	es not de	pict the size					
	Max Uplift 9=-174 (I Max Grav 9=1422 (,, , , ,	bottom chor		ig the top	anu/or					
FORCES		npression/Maximum	LOAD CASE(S)	Standard							
TOP CHORD	1-2=0/35, 2-3=-229	9/283, 3-5=-1608/247 =-2359/272, 7-8=-84/2									
BOT CHORD	8-9=-37/14, 2-16=-1 15-16=-375/750, 13	421/250	,								
201 0110112		2=0/79, 6-11=-550/30	6,						E.	OF MISSO	
WEBS		761/264, 5-13=-42/35	3,						8 ATE	1350 C	
		0=0/295, 7-9=-2913/3	43,					E	95/	SEVIER	
NOTES									*	المع الم الم	
this desigr								à	Joott	NUMBER Viet	フ
Vasd=91m	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft; C						,	PE.	-2001018807	
cantilever	Enclosed; MWFRS (e left and right exposed	; end vertical left and	I						1223	ONAL ENGLIS	
	sed; Lumber DOL=1.6 dequate drainage to p								-	1000	
									N	March 14,2024	

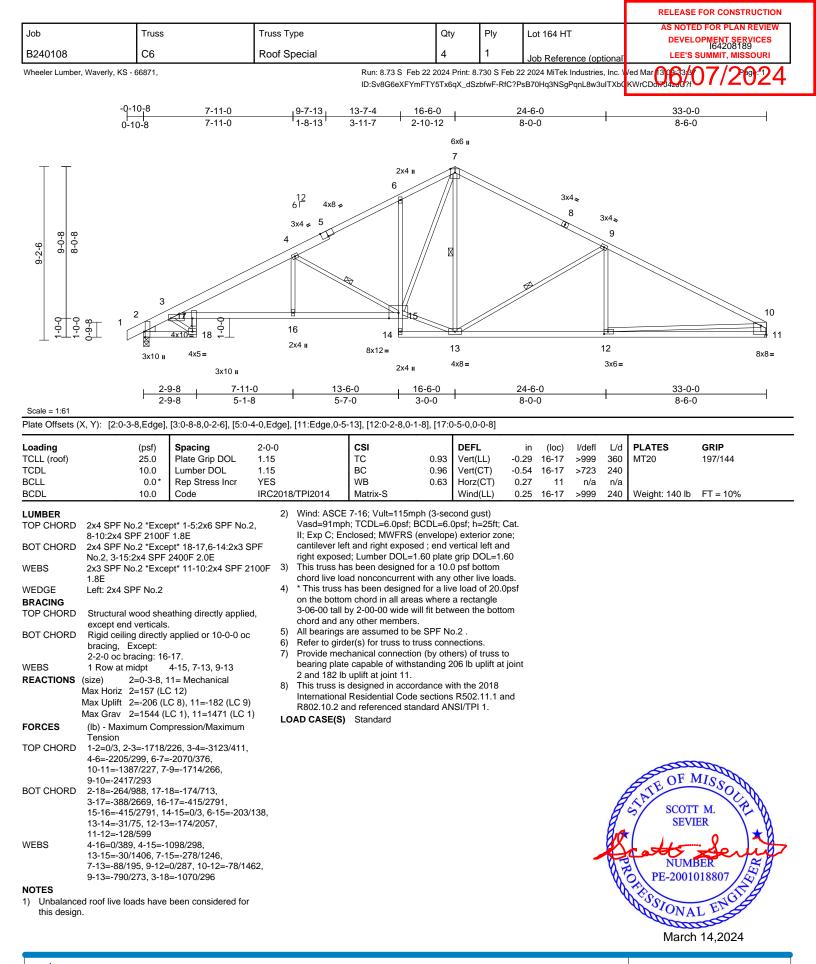
3) Provide adequate drainage to prevent water ponding.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

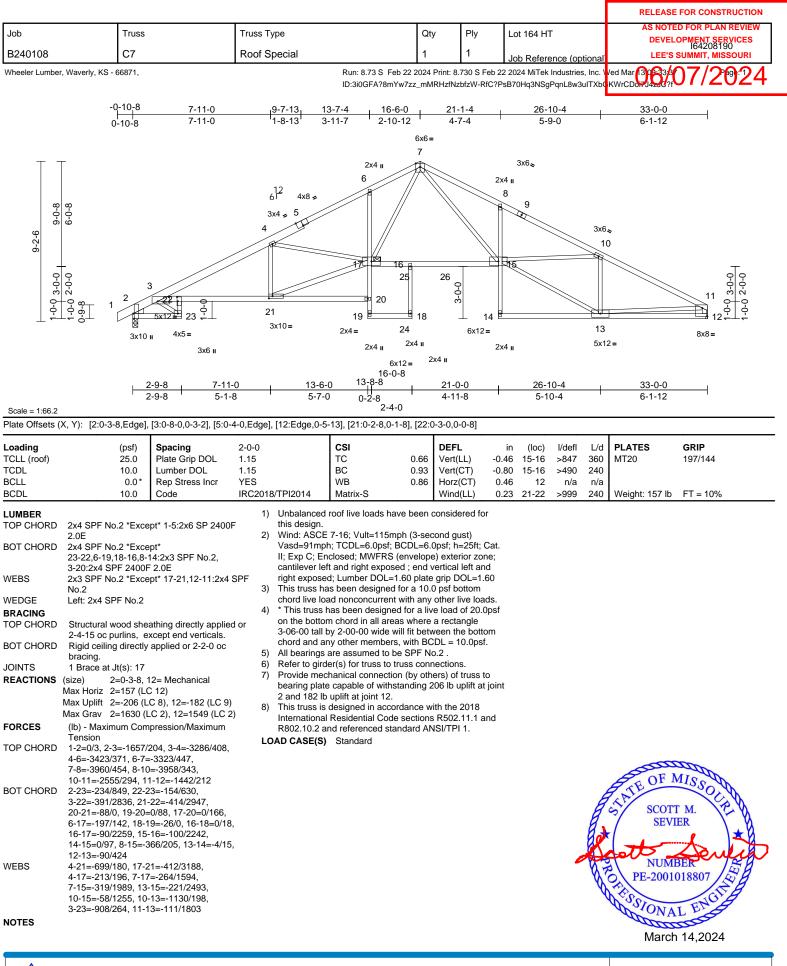
March 14,2024

Image: Second										RELEAS	E FOR CONSTRUCTION	1
Bit Product Common Common <thcommon< th=""> <thcommon< th=""> <thcommo< td=""><td>Job</td><td>Truss</td><td></td><td>Truss Type</td><td></td><td>Qty</td><td>Ply</td><td>Lot 164 HT</td><td></td><td></td><td></td><td></td></thcommo<></thcommon<></thcommon<>	Job	Truss		Truss Type		Qty	Ply	Lot 164 HT				
	B240108	C4		Common		2	1	Job Referen	ce (optional			
Image: product of the state of the stat	Wheeler Lumber, Waverly, KS	66871,		•	Run: 8.73 S Feb 22	2024 Print: 8	.730 S Feb 2	2 2024 MiTek In	dustries, Inc. \	/ed Mar 1309333	07/2024	ī
Amount of the second					ID:oUBkejLup2P?IG	iuQQQgJINzb	fq1-RfC?PsE	370Hq3NSgPqnL	8w3ulTXbGK	VrCDoi7542JC?f	017202	
Amount of the second	-0-10)-8				+						
Image: specific production of the specific productis production of the specific production of the specific	0-10	-8	0-0-0			4x8 =	0-0-0			0-0-0	0-10-8	
 And a state of the state is a state of the state is a state of the sta												
 And a state of the state is a state of the state is a state of the sta	T			.12				2				
 a star i a star i							\sim		×4 \$			
Φ Φ				3x4 ≥								
 A set of the set of	ω			3				THE STREET	7			
 	-0-6											
 							A					
 		/										
Bit a 14 13 12 11 Re aud_a 30/a 11/b 0.0 Secture 10/a 0.0 1/b 1/b 0.0 1/b 1/b 0.0 1/b 1	<u>∞</u> 1	2										
Bd.# 3d= 3d= <td>⊥ ¦5</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>10</td> <td></td>	⊥ ¦5				1				1		10	
Bits Bits <th< td=""><td></td><td>8x8 ≠</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8x8 👟</td><td></td></th<>		8x8 ≠									8x8 👟	
Bit Characterize Bit Characterize<						3x4 =						
State 1-162/9 Deskt Offsets (X, Y): [100-3-0.0-24], [11-0-2-8.0-1-8], [14-0-2-8						 						
Loading (ps) Spacing 2-0-0 CSI 0.2 TCLL (rod) 25.0 File Grp DOL 11.5 TC 0.9 Vert(CT) -0.26 -0.26 Vert(CT) -0.26 -0.26 -0.26 -0.26 -0.26							8-0-0			8-0-0		
TCLL (rodp) 2s o (100) Pite Sip DOL 1.15 (1.15) TC 0.02 (WertCT VertCT -0.12 13.14 -999 360 (Weight 14) 177.14 BCL 0.01 Rop Stress Incr YES Weight 14 WertCT -0.12 13.14 -999 360 MT20 197/144 BCL 0.01 Rop Stress Incr YES Weight 152 Weight 152 FT FT 100 0.08 13.14 -999 240 Weight 125 FT 100 100 100 100 100 100 100 100 100 100 100 100 100 100 110 100 <td>Plate Offsets (X, Y): [10:0</td> <td>)-3-0,0-2-4</td> <td>4], [11:0-2-8,0-1-8], [14 T</td> <td>4:0-2-8,0-1-8], [15:0-3-0</td> <td>),0-2-4]</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>	Plate Offsets (X, Y): [10:0)-3-0,0-2-4	4], [11:0-2-8,0-1-8], [14 T	4:0-2-8,0-1-8], [15:0-3-0),0-2-4]							_
TCDL 10.0 Lumber DOL 11.15 BC 0.68 Ver(CT) 0.26 13.14 >999 240 LUMBER DOC HORD 2x4 SPF No.2 Rep Stress Incr YES BC 0.68 Ver(CT) 0.08 13.14 >999 240 Weight: 125 lb FT = 10% LUMBER DOC HORD 2x4 SPF No.2 Stretchal Stretchal </td <td>-</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>. ,</td> <td></td> <td></td> <td></td> <td></td>	-		1					. ,				
BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Wind(L) 0.08 13.14 >999 240 Weight: 12.5 lb FT = 10% LUMBER TOP CHORD Zx4 SPF No.2 Sprenze	TCDL	10.0	Lumber DOL	1.15	BC	0.66 Vert	(CT) -0	.26 13-14 :	>999 240		101/111	
 TOP CHORD 2:44 SPF No.2 SOT CHORD 2:44 SPF No.2 SOT CHORD No.2 BRACINE TOP CHORD Structural wood sheathing directly applied or 9:10-12 oc bracing. BOT CHORD Rigid celling directly applied or 9:10-12 oc bracing. BOT CHORD Rigid celling directly applied or 9:10-12 oc bracing. BOT CHORD Rigid celling directly applied or 9:10-12 oc bracing. BOT CHORD Rigid celling directly applied or 9:10-12 oc bracing. BOT CHORD Rigid celling directly applied or 9:10-12 oc bracing. MEES 1 10:0-336, 15:=07. (LC 6). Max Grav 10:1542 (LC 1). FFORCES (b) - Maximum Compression/Maximum Tension. TOP CHORD 1:2-00:52, 2:3=2373/289, 3:5=:1686/264, 5:7=:1689/284, 7:8=:237/289, 3:5=:1686/264, 5:7=:168/284, 7:8=:237/289, 3:5=:1686/264, 5:7=:168:284, 7:1=:278/284, 7:			1 .							Weight: 125 lb	FT = 10%	
 BÖT CHORD 24, SPF No.2 Szy SPF No.2 "Except 15-2,10-8:26 SPF No.2" BRACING 24, SPF No.2 "Except 15-2,10-8:26 SPF No.2" BRACING 24, SPF No.2 "Except 15-2,10-8:26 SPF No.2" BRACING 24, SPF No.2 "Except 15-2,10-8:26 SPF No.2" Strutural wood sheathing directly applied or 9-10-12 oc bracing. WEBS 1 Row at might 7-13, 3-13 REACTONS (size) 10-0-3-8, 15-0-3-8 Max Upit 10-207 (LC 9), 15=207 (LC 8), Max Grav 10-1542 (LC 1), 15-1542 (LC	LUMBER		-						-			—
 No.2 BRACING BRACING BRACING BRACING BRACING BRACING Structural wood sheathing directly applied, except end verticals. BOT CHORD BOT CHORD Brow at might 7 -13, 3-13 REACTIONS (size) 10-0-38, 15-0-3.8 Max horiz 15-336 (LC 6), Maximum Compression/Maximum Tension TOP CHORD BOT CHORD Di -2-0075, 2-3-2373/289, 3-5=-1696/264, 5-7-5-1696/264, 7-18-2307, 2028, 8-10-1400/252, 2-11-20075, 2-14-20075, 2-14-20075, 2-14-20075, 3-13-755/264, 3-14-200206, 1-11-3-220771 WEBS 51-38-20/88, 7-13-755/264, 7-11=0/276, 3-13-26/264, 5-15-6-26/86, 7-13-20755, 2-14-201729, 8-11-9/1239 NOTES NOTES NOTES Vi Unthanced roof live loads have been considered for this design. OW Her Max GE 7-16; Vill-115mph (3-second gust) Vasd-91mph; TCDL=6.09; BCDL=6.0p; th=251; C:at., II; Exp. C. Endoset; MWR-F8 (envelope) attein and right exposed; undwer fold and nonconcurrent with any other live loads. For the load nonconcurrent with any other live loads. 												
 BRACING TOP CHORD Structural wood sheathing directly applied. except end verticals. BOT CHORD Rigid ceiling directly applied or 9-10-12 co bracing. WEBS 1 Row at might 7-13, 3-13 (size) 10-0-38, 15-0-38 Max Horiz 15-135 (LC 6) Max Grav 10-1542 (LC 1), 15=152 (LC 1) Max Grav 10-1542 (LC 1), 15=152 (LC 1) Max Grav 10-1542 (LC 1), 15=154 (LC 1) Max Grav 10-160 (LC 1) (LC 1) (LC 1) (LC 1) Max Grav 10-160 (LC 1) (LC 1) (LC 1) (LC 1) Max Grav 10-160 (LC 1) (LC 1) (LC 1) (LC 1) Max Grav 10-160 (LC 1) (LC 1) (LC 1) (LC 1) Max Grav 10-160 (LC 1) (LC 1) (LC 1) (LC 1) Max Grav 10-160 (LC 1) (LC 1) (LC 1) (LC 1) Max Grav 10-160 (LC 1) (LC 1) (LC 1) (LC 1) Max Grav 10-160 (LC 1) (LC 1) (LC 1) (LC 1) Max Grav 10-160 (LC 1) (LC 1) (LC 1) (LC 1) Max Grav 10-160 (LC 1) (LC 1) (LC 1) (LC 1) Max Grav 10-160 (LC 1) (LC 1) (LC		No.2 *Exce	ept* 15-2,10-8:2x6 SP			PF No.2 .						
 15 and 207 brught of verticals. 15 and 207 brught of vertica	BRACING		- this so dive a the second is	6) Provide me	chanical connection (b	by others) of		t				
 International Residential Generational Residential Code Sections R502.11.1 and Residential Code Sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. IDAD CASE(S) Standard ANSI/TPI 1. IDA CASE 7-169/253, 8-10140/253, 8-10140/253, 8-10140/254, 7-11-0/276, 8-13-8-755/264, 3-11-40/276, 2-14-0/1239, 8-119/1239 ID Inbalanced roof live loads have been considered for this design. I) Unbalanced roof live loads have been considered for this design. I) Wich SCC 7-16; Vult=115mph (3-second gust) Vasd-91mph; TCDL=6.0psf; BCDL=6.0psf; BCDL=6	except er	d verticals	аларана В.	15 and 207	lb uplift at joint 10.	-						
 Indua a map. Proj. 910 Indua a map. Proj. 910 IDAD CASE(S) Standard REACTIONS (size) 100-38, 15=0-3-8 Max Horiz 15=135 (LC 6) Max Uplit 10=207 (LC 9), 15=207 (LC 8) Max Grav 10=1542 (LC 1), 15=1542 (LC 1) FORCES (b)- Maximum Compression/Maximum Tension TOP CHORD 1-2=0/35, 2-3=-2373/289, 8-9=0/25, -2-15=-1460/253, 8-10=-1460/252 BOT CHORD 14-15=-344/771, 13-14=-280/2006, 11-13=-147/2006, 10-11-220/771 WEBS 5-13=-62/886, 7-13=-755/264, 7-11=0/276, -3-13=-755/264, 3-14=0/276, 2-14=0/1239, -8-11=-9/1239 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=9/1mph; TCDL=60, 60; H: 5CDL=60, 60; H: 5CDL=60, 60; H: 5CDL=60, 60; H: 5CDL=1.60 3) This truss has been designed for a 10.0 pst bottom chord live load nonconcurrent with any other live loads. 	bracing.	ng directly	applied or 9-10-12 o	Internationa	I Residential Code se	ctions R502	.11.1 and					
Max Horiz 15=-135 (LC 6) Max Uplit 10=-207 (LC 8), 15=-207 (LC 8) Max Grav 10=1542 (LC 1), 15=1542 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/35, 2-3=-2373/289, 3-5=-1696/264, 5-7=-1696/254, 7-8=-2373/289, 3-5=-1696/264 5-7=-1696/254, 7-8=-2373/289, 3-9=0/35, 2-15=-1460/253, 8-10=-1460/252 BOT CHORD 14-15=-344/771, 13-14=-280/2006, 11-13=-147/2006, 10-11=-222/771 WEBS 5-13=-62/886, 7-13=-755/264, 7-11=0/276, 3-13=-755/264, 3-14=0/276, 2-14=0/1239, 8-11==-9/1239 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=9-mph; TCDL=6.0psf; h=25f; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 logt grip DOL=1.60 3) This truss has been designed for a 10.0 p5 bottom chord live load nonconcurrent with any other live loads.							11.					
Max Grav 10=1542 (LC 1), 15=1542 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/35, 2-3=-2373/289, 3-5=-1696/264, 5-7=-1696/264, 7-8=-2373/289, 8-9=0/35, 2-15=-1400/253, 8-10=-1460/252 BOT CHORD 14-15=-344/771, 13-14=-280/2006, 11-13=-147/2006, 10-11=-222/771 WEBS 5-13=-6/286, 7-13=-755/264, 3-14=0/1239, 8-11=-9/1239 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; cumber DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.	Max Horiz	15=-135 ((LC 6)	`								
ToP CHORD 1-2=0/35, 2-3==2373/289, 3-5==1696/264, 5-7==1696/264, 7-8==2373/289, 8-9=0/35, 2-15==1460/253, 8-10==1460/252 BOT CHORD 14-15=-344/771, 13-14==280/2006, 11-13==-147/2006, 10-11==222771 WEBS 5-13==62/886, 7-13==755/264, 7-11=0/276, 3-13==755/264, 3-14=0/276, 2-14=0/1239, 8-11==9/1239 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; BCDL=6.0psf; BCDL=6.0psf; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; und vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.	Max Grav	10=1542	(LC 1), 15=1542 (LC									
 5-7=-1696/264, 7-8=-2373/289, 8-9=0/35, 2-15=-1460/253, 8-10=-1460/252 BOT CHOR D 14-15=-344/771, 13-14=-280/2006, 11-13=-147/2006, 10-11=-222/771 WEBS 5-13=-62/886, 7-13=-755/264, 7-11=0/276, 3-13=-755/264, 3-14=0/1239, 8-11=-9/1239 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; e2clit. Cat. II: Exp (2; Enclosed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 		imum Corr	npression/Maximum									
 BOT CHORD 14-15=-344/771, 13-14=-280/2006, 11-13=-147/2006, 10-11=-222/771 WEBS 5-13=-62/886, 7-13=-755/264, 7-11=0/276, 3-13=-755/264, 3-14=0/1239, 8-11=-9/1239 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 												
 11-13=-147/2006, 10-11=-222/771 WEBS 5-13=-62/886, 7-13=-755/264, 7-11=0/276, 3-13=-755/264, 3-14=0/1239, 8-11=-9/1239 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0pst; BCDL=6.0pst; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; tend vertical left and right exposed; tend vertical left and right exposed; end vertical left and right exposed; end vertical left and right exposed; tend vertical left and chord live load nonconcurrent with any other live loads. 	2-15=-140	60/253, 8-1	10=-1460/252									
 3-13=-755/264, 3-14=0/1239, 8-11=-9/1239 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 	11-13=-14	47/2006, 1	0-11=-222/771	6								
 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 	3-13=-75	5/264, 3-14								ASSO F	MIS	
 Scott M. Sevine Scott et al. Scott M. Sevine Scott et al. Scott M. Sevine Scott M. Sevine Scott M. Sevine Scott M. Sevine Scott Scott M. Sevine Scott Scott M. Sevine Scott Scott	NOTES								4	TE	AN OSCI	
 2) Wind: AŠCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BcDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; en vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 		oads have	been considered for						A	SCOT		
II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.	 Wind: ASCE 7-16; Vu 			at.					y,	SEV		
right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.	II; Exp C; Enclosed; N	IWFRS (er	nvelope) exterior zone);					X	ast	Servier	7
chord live load nonconcurrent with any other live loads.	right exposed; Lumbe	r DOL=1.6	0 plate grip DOL=1.6						K			
ACCESS 1				s.					Ý	The last	15B	
ACCESS 1										SIONA	L EN	
										aller.	50	
										iviaro		


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

									RELEAS	E FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Lot 164 HT	г	AS NOT DEVE	ED FOR PLAN REVIEW
B240108	C5		Common		2	1	Job Refere	ence (optional		LOPMENT SERVICES 164208188 SUMMIT, MISSOURI
Vheeler Lumber, Waverly,	KS - 66871,			Run: 8.73 S Fel ID:fGeYE976vql	b 22 2024 Print: 8 _zr8PFCUtOrozb1	.730 S Feb 2 su-RfC?PsB	2 2024 MiTek	Industries, Inc.	/ed Mar 1309-33	07/2024
-	0-10-8 	8-6-0		16-6-0		24-6-			33-0-0	
	0-10-8	8-6-0	I	8-0-0	1	8-0-0)	I	8-6-0	I
					4x8= 5					
Т			12 6Г 3x4 ≠							
							3x4 👟			
			3x4 =				6	3x4 👟		
ω			3 1	·				7		
9-0-8										
						A				
										8x8.
	2									8
\perp	14 V		13		12 11			10		9
	8x8 ≠		3x6=		3x10=			3x6=		
					3x6	-				
		<u>8-6-0</u> 8-6-0		<u>16-6-0</u> 8-0-0		24-6-			<u>33-0-0</u> 8-6-0	
Scale = 1:62.9 ate Offsets (X, Y): [8:	0240241		0 2 9 0 1 91 114.0 2				-			
									1	
oading CLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	TC	0.93 Vert		in (loc) 12 10-12	l/defl L/d >999 360		GRIP 197/144
CDL CLL	10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES	BC WB	0.66 Vert 0.62 Horz		26 13-14 07 9	>999 240 n/a n/a		
CDL	10.0	Code	IRC2018/TPI2014	Matrix-S	Wind		08 12-13	>999 240		FT = 10%
1.8E OT CHORD 2x4 SPI	F No.2	pt* 6-8:2x4 SPF 2100 pt* 14-2,9-8:2x6 SPF	0F on the bot 3-06-00 ta chord and 5 5) All bearing	s has been designed tom chord in all area Il by 2-00-00 wide w any other members gs are assumed to b irder(s) for truss to tr	as where a rect ill fit between t e SPF No.2 .	angle he bottom				
RACING OP CHORD Structur		athing directly applied	7) Provide m d, bearing pl	echanical connectio ate capable of withs 1 lb uplift at joint 9.	n (by others) of	truss to	t			
OT CHORD Rigid ce		applied or 9-9-6 oc	This truss	is designed in accor nal Residential Code						
/EBS 1 Row a		7-12, 3-12	R802.10.2	and referenced sta						
	z 14=142 (L	nical, 14=0-3-8 .C 8) C 9), 14=-207 (LC 8)	LOAD CASE(S) Standard						
		.C 1), 14=1543 (LC 1 pression/Maximum)							
Tensior	า	/289, 3-5=-1699/264								
5-7=-17	'02/264, 7-8= 461/253, 8-9	-2382/291,	,							
OT CHORD 13-14=-	353/770, 12-	13=-289/2009, 10=-120/565								
/EBS 5-12=-6	8/897, 7-12=	-776/273, 7-10=0/27 =0/276, 2-13=-1/124							OF	MISS
8-10=-7		-0/210, 2 10- 1/121	σ,					-	ATE	MISSOL
OTES Unbalanced roof live	e loads have	been considered for						A	SCOT	T M.
II; Exp C; Enclosed;	L=6.0psf; BC MWFRS (en	DL=6.0psf; h=25ft; C velope) exterior zone	e;					<u>J</u>	setter	*
right exposed; Lumb) This truss has been	ber DOL=1.60 designed for	; end vertical left and 0 plate grip DOL=1.6 • a 10.0 psf bottom th any other live load	0					- W	PE-200	L ENGINE
									un	h 14,2024
WARNING - Verify	design parame	ters and READ NOTES ON	THIS AND INCLUDED MIT	EK REFERENCE PAGE I	MII-7473 rev. 1/2/20	23 BEFORE U	SE.			

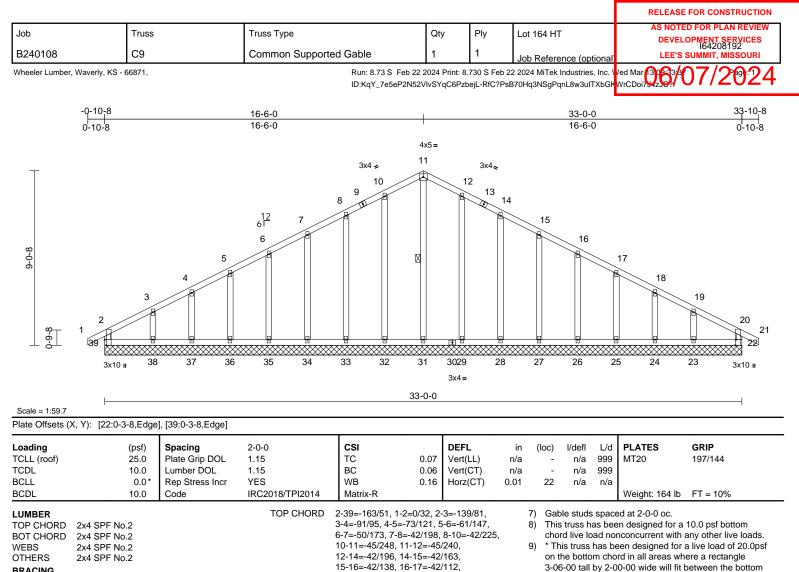
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



16023 Swingley Ridge Rd. Chesterfield MO 63017

314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

										RELEAS	FOR CONSTRUCTION	i
Job		Truss		Truss Type		Qty	Ply	Lot 164 H	Г		ED FOR PLAN REVIEW	٦
B240108		C8		Common		1	1	Job Refere	ence (optional	1 5510	OPMENT SERVICES 164208191 SUMMIT, MISSOURI	
Wheeler Lumber,	, Waverly, KS -	66871,		•	Run: 8.73 S Feb	22 2024 Print:	8.730 S Feb	22 2024 MiTek	Industries Inc.	Ved Mar 1302-333 GKWrCDorr J4-20C?	07/2024	Ē
					ID:SELSBCScXR	p2csNWIDBKG	BzbgF0-RfC	PsB/0Hq3NS(gPqnL8w3ul1Xb	GKWrCDon J4zJC?		
	-0-10-8 		5-6-14 5-6-14	10-7-10 5-0-12	<u> </u>		2-4-5 5-10-5		<u>27-5-2</u> 5-0-13	33-0-0	33-10-8 0-10-8	
	0-10-8		5-0-14	5-0-12	5-10-0	4x8 II	-10-5		5-0-15	5-0-14	0-10-8	
						5						
Т												
					3x4 ≠			3x4 👟				
				1 <u>2</u> 61	4			6				
φ			3x10 ≠						\sim	3x10 ≈		
9-0-8			3							7		
			- T				\$/					
	M18	AHS 8x1	2						//		M18AHS 8x12 =	
<u></u>	_ 1 <u>_</u>	ļ							\mathbb{N}		8 9	
-0- 8- 8-	L 45			14	16 17	13 12	18	19	11		TO NO	
				14 3x4=	10 17	4x8=	10	19	3x6=			
						3x6=						
	F		8-2-11		16-6-0		24-10-			33-0-0		
Scale = 1:62.9			8-2-11		8-3-5		8-4-1	ŧ		8-1-2		_
Plate Offsets ()	X, Y): [2:Edg	e,0-2-4]	, [8:Edge,0-2-4]							1		_
Loading TCLL (roof)		(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.45 Ver		in (loc) 0.22 11-13	l/defl L/d >999 360		GRIP 197/144	
TCDL		10.0	Lumber DOL	1.15	BC	0.88 Ver	t(CT) -	0.38 11-13	>999 240	M18AHS	142/136	
BCLL BCDL		0.0* 10.0	Rep Stress Incr Code	YES IRC2018/TI	VB PI2014 Matrix-S		. ,	D.1110D.0913-14	n/a n/a >999 240		FT = 10%	
LUMBER					his truss has been designed f							—
TOP CHORD BOT CHORD	2x4 SPF No 2x4 SPF No				nord live load nonconcurrent v This truss has been designed							
WEBS	2x3 SPF No 2100F 1.8E		ept* 15-2,10-8:2x4 S		n the bottom chord in all area -06-00 tall by 2-00-00 wide wi							
				C) A	nord and any other members, Il bearings are assumed to be		10.0psf.					
TOP CHORD	3-6-10 oc p	urlins, e	eathing directly applie except end verticals.	7) P	rovide mechanical connectior earing plate capable of withst	n (by others) o		nt				
BOT CHORD	bracing.		y applied or 10-0-0 o	γ 1: ο\ Τ	5 and 206 lb uplift at joint 10.							
WEBS REACTIONS	1 Row at mi (size) 1	•	6-13, 4-13, 3-15, 7- , 15=0-3-8	lr Ir	his truss is designed in accord ternational Residential Code	sections R50	2.11.1 and					
	Max Horiz 1		LC 12) (LC 9), 15=-206 (LC	1.04	802.10.2 and referenced star • CASE(S) Standard	idard ANSI/T	PI 1.					
	Max Grav 1	0=1612	(LC 2), 15=1612 (LC									
FORCES	Tension		npression/Maximum									
TOP CHORD	,		/178, 3-4=-2404/307 =-1761/267,									
	6-7=-2405/3 2-15=-569/1		=-755/178, 8-9=0/32 0=-570/175									
BOT CHORD			3-14=-219/1939,)-11=-203/2153									
WEBS	5-13=-107/1	1189, 6-	13=-635/238, =-183/168, 4-13=-63	5/238						OF	MISSO	
	4-14=-24/43	35, 3-14		<i>5/200</i> ,						ATE OF	00000	
	5-15-1012	/142, 7-	10=-1013/143						A	SCOT SEV		
NOTES 1) Unbalance	ed roof live loa	ads have	e been considered fo						a.			
this design 2) Wind: ASC		=115mpł	n (3-second gust)							sott.	Server	7
Vasd=91m	nph; TCDL=6.	0psf; BC	CDL=6.0psf; h=25ft; (nvelope) exterior zor						Ø.	PE-2001		
cantilever l	left and right e	exposed	l; end vertical left an	b					У	12	188	
			60 plate grip DOL=1.0 ss otherwise indicate							SSIONA	I EN	
										aller aller	14,2024	
											,	
					UDED MITEK REFERENCE PAGE N n parameters shown, and is for an inc					K A	Tok	

WARNING - Verify design parameters and KEAD NOTES ON THIS AND INCLUDED MITEX REFERENCE PAGE MIL-/4/3 rev. 1/2/20/3 BEFORE USE. Design valid for use only with MiTeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

BRACING 17-18=-46/86, 18-19=-66/60, 19-20=-104/49, TOP CHORD Structural wood sheathing directly applied or 20-21=0/32, 20-22=-163/30 6-0-0 oc purlins, except end verticals. BOT CHORD 38-39=-33/113, 37-38=-33/113, BOT CHORD Rigid ceiling directly applied or 10-0-0 oc 36-37=-33/113, 35-36=-33/113, bracing 34-35=-33/113, 33-34=-33/113, WEBS 1 Row at midpt 11-31 32-33=-33/113, 31-32=-33/113 **REACTIONS** (size) 22=33-0-0, 23=33-0-0, 24=33-0-0, 29-31=-33/113. 28-29=-33/113. 25=33-0-0, 26=33-0-0, 27=33-0-0, 27-28=-33/113, 26-27=-33/113, 28=33-0-0, 29=33-0-0, 31=33-0-0, 25-26=-33/113, 24-25=-33/113, 32=33-0-0, 33=33-0-0, 34=33-0-0, 23-24=-33/113, 22-23=-33/113 35=33-0-0, 36=33-0-0, 37=33-0-0, WEBS 11-31=-169/0, 10-32=-150/74, 8-33=-139/81, 38=33-0-0. 39=33-0-0 7-34=-140/78, 6-35=-140/77, 5-36=-141/81, Max Horiz 39=-134 (LC 9) 4-37=-137/66, 3-38=-151/120, Max Uplift 22=-17 (LC 5), 23=-103 (LC 9), 12-29=-150/73, 14-28=-139/82 24=-39 (LC 9), 25=-58 (LC 9), 15-27=-140/77, 16-26=-140/78, 26=-53 (LC 9), 27=-53 (LC 9), 17-25=-141/80, 18-24=-137/68, 28=-58 (LC 9), 29=-49 (LC 9), 19-23=-151/112 32=-50 (LC 8), 33=-57 (LC 8), NOTES 34=-54 (LC 8), 35=-53 (LC 8), 1) 36=-59 (LC 8), 37=-35 (LC 8), this design. 38=-116 (LC 8), 39=-42 (LC 9) 2) Max Grav 22=184 (LC 1), 23=199 (LC 22),

24=175 (LC 1), 25=181 (LC 22), 26=180 (LC 1), 27=180 (LC 1), 28=179 (LC 1), 29=190 (LC 22), 31=209 (LC 18), 32=190 (LC 21), 33=179 (LC 1), 34=180 (LC 1), 35=180 (LC 1), 36=181 (LC 21), 37=175 (LC 1), 38=199 (LC 21), 39=184 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension

Unbalanced roof live loads have been considered for Wind: ASCE 7-16; Vult=115mph (3-second gust)

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable
- or consult qualified building designer as per ANSI/TPI 1. All plates are 2x4 MT20 unless otherwise indicated 4) 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

OF MISS TE SCOTT M. SEVIER NUMBE OFFESSIONAL PE-2001018807 E March 14,2024

chord and any other members.

joint 23

LOAD CASE(S) Standard

10) All bearings are assumed to be SPF No.2 .

11) Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 42 lb uplift at joint

uplift at joint 33, 54 lb uplift at joint 34, 53 lb uplift at joint

uplift at joint 38, 49 lb uplift at joint 29, 58 lb uplift at joint

uplift at joint 25, 39 lb uplift at joint 24 and 103 lb uplift at

International Residential Code sections R502.11.1 and

35, 59 lb uplift at joint 36, 35 lb uplift at joint 37, 116 lb

28, 53 lb uplift at joint 27, 53 lb uplift at joint 26, 58 lb

12) This truss is designed in accordance with the 2018

R802.10.2 and referenced standard ANSI/TPI 1.

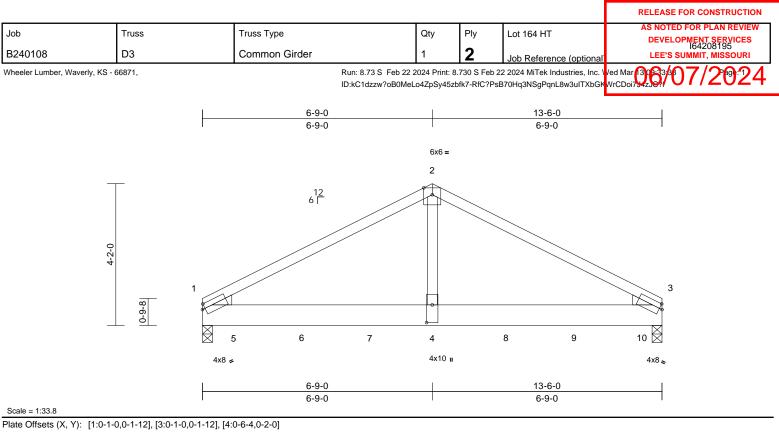
39, 17 lb uplift at joint 22, 50 lb uplift at joint 32, 57 lb

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Let Trues True Trues True True <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>RELEASE</th><th>FOR CONSTRUCTION</th><th></th></t<>														RELEASE	FOR CONSTRUCTION	
Instrume Description Description <thdescription< th=""> <thdescription< th=""> <</thdescription<></thdescription<>	Job		Truss		Truss Type		Qty		Ply	Lot 16	64 HT					
<text></text>	B240108		D1		Common Supported	d Gable	1		1	loh R	oforon	ce (ontio	nali			
<complex-block></complex-block>	Wheeler Lumber	r, Waverly, KS - 66	6871,			Run: 8.73 S Feb 22 2	2024 F	rint: 8.7	730 S Feb 2	22 2024 N	/iTek Ind	dustries. In	nc. V	/ed Mar 1309-333	7/2024	
Image: Production of the						ID:7otXiDfjwSjpOMC6	6jCX9I	PUzbglo	d-RfC?PsB	70Hq3NS	gPqnL8	w3ulTXbG	GKV	rCDoi7J4zJC9	517202-	
Long 6+0 5+0 5-0 5-0 45-7 5 13 13 12 11 5 5 5 13 13 12 11 5 5 13 13 12 11 5 5 13 13 12 11 5 13 5 13 12 11 5 10 13 12 11 5 10 13 12 11 5 10 13 12 11 5 10 13 12 11 5 10 10 10 10 10 10 10 10 10 10 10 10 12 11 10 10 10 10 10 10 10 10 10 10 10 10				-0-10-8	6-9-0		1				13-6-	0		114	-4-8	
<complex-block> Image: state state</complex-block>				0-10-8										0-	10-8	
<complex-block> Weight of the set of</complex-block>								_								
<complex-block> Image: Constraint of the second se</complex-block>																
<complex-block> Image: state sta</complex-block>		<u> </u>			10			~								
<figure> Image: state sta</figure>					6	4		$\left \right\rangle$		6						
φ φ φ φ φ et al. 100 100 100 100 100 100 100 et al. 100<																
 Image: space of the space of th												7				
Image: 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (4-2-0											R				
 Implementation of the standard base base base base base base base base													<u> </u>	8		
10 1 10 1 10 1 10 1 10 0 10 1 10 1 10 0 10 0 10 0 10 0 10 1 10 0<															9	
Line 13-60 Section - 1.33.4 13-60 Plate Offsets (X, Y): [10:03-8.Edge]. [16:0-3.8.Edge]. 13-60 Loading TCLL (root) 20:0 CSI: 0.00 Vert(L1) noi: 0:00 PLATES GRIP CLL (root) 10:0 Code Spacing 2-0-0 CSI: 0.00 Vert(L1) noi: 0:00 Vert(L2) noi: 0:00 PLATES GRIP CLL (root) 10:0 Code No::		-6-0	_	16			6		[0	
Line 13-60 Section - 1.33.4 13-60 Plate Offsets (X, Y): [10:03-8.Edge]. [16:0-3.8.Edge]. 13-60 Loading TCLL (root) 20:0 CSI: 0.00 Vert(L1) noi: 0:00 PLATES GRIP CLL (root) 10:0 Code Spacing 2-0-0 CSI: 0.00 Vert(L1) noi: 0:00 Vert(L2) noi: 0:00 PLATES GRIP CLL (root) 10:0 Code No::													***			
Scale = 133.4 Prane Offsets (X, Y): [10:0-3-8.Edge], [16:0-3.8.Edge] Loading TCD, (10) (15) Specing (10) 2.0-4 (11):5 CSI (11):5 DEFL (12) in (16):0 Viel (12) PATES (10):0 GRP (12) Loading TCD, (10) (15) Specing (10) (2-4) CSI (12) OPFL (12) in (16):0 Viel (12) (16):0 Viel (12) (16):0 Viel (12) (16):0 (16)		харание и и и и и и и и и и и и и и и и и и												3x10	II	
Place Offsets (X, Y): [10:0-3-8,Edge]. [16:0-3-8,Edge]. Loading TCLL (root) (ps) 100 Spacing Place GR(pbCL 2-0-0 Lamber DOL CSI TCL OT BC OT DC DEFL Use (L) in (no) (no) (no) (no) (no) Mater Ref BCLL 0.01 10.0 Lumber DOL 1.15 C 0.01 No n/a n/a 999 MT20 1971/44 LUMBER TOP CHORD 2x4 SPF No.2 Color Nick 24 SPF No.2 2 Vind: ASCE 7-16; Vuli=115mph (3-second gust) Vasied11mph: TCole60pt; BCOLe6.0pt; h=201; Col60pt; h=201; Col.														I.		
Loading TCLL (cod) (col) Spacing (col) 2-0-0 (col) CSI TC DEFL TC in (col) (dot) Idel tud PLATES GRIP (MT20 TCDL 10.0 25.0 Plate Grp DOL 1.15 TC 0.07 VertLL n/a - n/a 999 BCLL 10.0 Code IRC2018/TTPI2014 Matix-R Exception No 10 n/a n/a 999 LUMBER TOP CHORD 2x4 SPF No.2 BTACIN International field building designed for a logit sign DOL-16.0g5 100.0 10 n/a n/a n/a N/d		Scale = 1:33.4														_
TCLL (root) 25.0 Piate Grip DOL 1.15 TC 0.07 N/2 N/2 197/144 BCL 0.01 Lumber DDL 1.15 BC 0.04 Vert(C1) N/a - N/a 969 MT20 197/144 BCDL 10.0 Code IRC2018/TPI2014 Matrix-R N/matrix-R N/matrix-R </td <td>Plate Offsets ()</td> <td>X, Y): [10:0-3-8</td> <td>B,Edge]</td> <td>, [16:0-3-8,Edge]</td> <td></td> <td></td> <td>—т</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td>	Plate Offsets ()	X, Y): [10:0-3-8	B,Edge]	, [16:0-3-8,Edge]			— т						_			
TCDL 10.0 Lumber DOL 1.15 BC 0.04 Verificity n/a	-						.07				loc) -					
BCDL 10.0 Code IRC2018/TTPI2014 Matrix-R Weight: 50 Ib FT = 10% LUMBER TOP CHORD 2x4 SPF No.2 Immediate and the state of the state o	TCDL		10.0	Lumber DOL	1.15	BC 0	.04	Vert(C	CT)	n/a		n/a 9	99			
TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 DOT CHORD Structural wood sheathing directly applied or 6-04 oc pullins, except end verticals. BOT CHORD Structural wood sheathing directly applied or 6-04 oc pullins, except end verticals. BOT CHORD Structural wood sheathing directly applied or 13a13-60, 1413-86-0, 12-13-6-0, 13a13-60, 1413-86-0, 12-13-6-0, 15a13-60, 11-13-6-0, 12-13-6-0, 16a13-6-0 Max Horiz 16-70 (LC 6) (Max Horiz 16-70 (LC 6) (Max Uplit 10-36 (LC 2), 11-177 (LC 9), 12-260 (LC 2), 12-165 (LC 1), 14-160 (LC 22), 12-165 (LC 1), 14-160 (LC 22), 12-165 (LC 1), 16-198 (LC 1) FORCES (B) - Maximum Compression/Maximum Tension TOP CHORD 2-16-17551, 1-2-0232, 2-3-7061, 3-4-52808, 4-5-537105, 6-7-52801, 7-8-61703, 13-15-6-53706, 6-7-52801, 7-8-61703, 13-15-6-53706, 6-7-52801, 7-8-61703, 11-12-1743, 13-14-1743, 13-4-17735 BOT CHORD 15-16=17743, 14-15-1743, 13-14-17743, 12-13-1743, 14-15-1743, 13-14-17743, 12-13-1743, 14-15-1743, 13-14-17743, 12-13-1743, 14-15-1743, 13-14-1743, 13-6-12-14477, 7-11-16201 WEBS 612-14477, 7-11-16201 BOT CHORD 15-16=17743, 14-14774, 3-15=-162100, 6-7-5281, 7-8-61763							.03	1012(0	.00	10	II/a I	I/a	Weight: 50 lb	FT = 10%	_
BOT CHORD 15-16=-17/43, 14-15=-17/43, 13-14=-17/43, 12-13=-17/43, 11-12=-17/43, 10-11=-17/43 WEBS 5-13=-113/0, 4-14=-144/74, 3-15=-162/103, 6-12=-144/74, 7-11=-162/101 NOTES 1) Unbalanced roof live loads have been considered for this design. Scott M. Scott M. Scot	LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.2 BRACING cantilever left and right exposed ; end vertical left and right exposed; und vertical left and right exposed															
WEBS 5-13=-113/0, 4-14=-144/74, 3-15=-162/103, 6-12=-144/74, 7-11=-162/101 NOTES 1) Unbalanced roof live loads have been considered for this design.	BOT CHORD	6-7=-52/81, 7 8-10=-175/55 15-16=-17/43	-8=-61/ , 14-15=	53, 8-9=0/32, =-17/43, 13-14=-17/4	joint 11. 12) This truss is International 3, R802 10 2 au	designed in accordan Residential Code sec	ce wit tions	h the 2 R502.	2018 11.1 and					SCOTT	M. YZY	
NOTES 1) Unbalanced roof live loads have been considered for this design. PE-2001018807	WEBS	5-13=-113/0,	4-14=-1	44/74, 3-15=-162/10		Standard						(*			
March 14,2024	1) Unbalance															

 Mittek
 ®


 16023 Swingley Ridge Rd.
 Chesterfield, MO 63017

 314.434.1200 / MITEk-US.com

											RELEAS	E FOR CONSTRUCTION	
Job	Truss	3	Truss Type		Qty	Ply		Lot 164 H	г			ED FOR PLAN REVIEW	
B240108	D2		Common		4	1		Job Refere		tional		LOPMENT SERVICES 164208194 SUMMIT, MISSOURI	
Wheeler Lumber, Wave				Run: 8.73 S Feb 22 :	2024 Pr	int: 8.730 S	Feb 22	2024 MiTek	Industries	Inc.	/ed Mar 130933		
				ID:qRytEqZKaJqp2H	AmpEv\	Nd?zbglk-R	fC?PsE	370Hq3NSgP	qnL8w3u	ITXbG	WrCDoi 94z9C?f	01/2024	-
		-0-10-8	<u> </u>					10.0	0		14-4	-8,	
		0-10-8	6-9-0 6-9-0					13-6- 6-9-			0-10	_	
		0.000									0.10		
					4x8	5 =							
					3								
			12 6 [ħ								
							\geq						
	0	1	6-4-	A				\searrow					
	0- 7- 7- 7- 7- 7- 7- 7- 7- 7- 7- 7- 7- 7-												
	2 6-4-4												
	0-0	8	-0		•)		\neg	
			X										
		5x8 II			2x4						5x8 u		
			6-9-0 6-9-0					13-6- 6-9-					
Scale = 1:34.9			I										
Loading	(psf)	Spacing	2-0-0	CSI	1	DEFL		in (loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15			√ert(LL) √ert(CT)	-0.0		>999 >999	360 240	MT20	197/144	
BCLL	CLL 0.0* Rep Stress Incr YES WB 0.09 Horz(CT) 0.01 6 n/a n												
	10.0	Code	-		-			02 7-8	>999	240	Weight: 39 lb	FT = 10%	
	SPF No.2		International	designed in accordan Residential Code sec	tions F	R502.11.1							
	SPF No.2 SPF 2100F 1.8	3E *Except* 7-3:2x3 SF		nd referenced standar Standard	d ANS	I/TPI 1.							
No.2 BRACING	2												
TOP CHORD Strue		eathing directly applied xcept end verticals.	d or										
BOT CHORD Rigid	d ceiling direct	y applied or 10-0-0 oc											
brac REACTIONS (size)	-	8=0-3-8											
	loriz 8=-70 (L Jplift 6=-96 (L	.C 6) .C 9), 8=-96 (LC 8)											
Max G	Grav 6=666 (I	_C 1), 8=666 (LC 1)											
Tens	sion	mpression/Maximum											
4-5=	0/32, 2-8=-604	8/103, 3-4=-733/102, 4/143, 4-6=-604/143											
	-19/553, 6-7=- 0/282	19/553											
NOTES	live loads hav	e been considered for											
this design.													
	CDL=6.0psf; B	CDL=6.0psf; h=25ft; C									A DE	MISSO	
cantilever left and	II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed: !umber DOI = 1 60 plate grip DOI = 1 60												
right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chard live lead encourse trust with or lead of the lead													
	chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf												
on the bottom ch	on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom												
chord and any ot	chord and any other members. All bearings are assumed to be SPF No.2.												
6) Provide mechani	Provide mechanical connection (by others) of truss to												
	8 and 96 lb uplift at joint 6.												
											all a	h 14,2024	
											ivialC	117,2024	

MiTek[®] 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

		, [, [], [_], [
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.75 0.56 0.73	Vert(CT)	in -0.08 -0.14 0.02 0.06	(loc) 1-4 1-4 3 1-4	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 129 lb	GRIP 197/144 FT = 10%
BCDL	10.0	Code	IRC2010/1712014	iviatinx-3		WIND(LL)	0.06	1-4	>999	240	weight. 129 b	FT = 10%
	5-9-9 oc purlins.	athing directly applied applied or 10-0-0 oc 3=0-3-8 C 8), 3=-764 (LC 9) LC 1), 3=5785 (LC 1) apression/Maximum =-6689/891	 Vasd=91mi II; Exp C; E cantilever le right exposi- chord live le 5) This truss h chord live le 6) * This truss on the botto 3-06-00 tall chord and a 7) All bearings 8) Provide me bearing pla 1 and 764 I 9) This truss is Internationa R802.10.2 i 10) Hanger(s) c 	E 7-16; Vult=115mp bit; TCDL=6.0psf; E nclosed; MWFRS (fit and right expose ad; Lumber DOL=1 as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members are assumed to bchanical connection e capable of withsto o uplift at joint 3. e designed in accor I Residential Code and referenced star r other connection	CDL=6. (enveloped); end v .60 plate for a 10. with any d for a liv s where ill fit betw e SP 240 n (by oth tanding 7 rdance w sections ndard AH device(s	Opsf; $h=25ft$; a) exterior zo vertical left ar grip DOL=1 0 psf bottom other live loz re load of 20. a rectangle veen the bott DOF 2.0E. ers) of truss "35 lb uplift a ith the 2018 s R502.11.1 a s) SIJTPI 1. i) shall be	ne; nd .60 ads. Opsf om to t joint					
WEBS	2-4=-700/5953	=-721/5700		fficient to support o								
	2-4=-100/0903			lb down and 192 lb up at 0-11-0, 1443 lb down and 193 lb up at 2-11-0, 1451 lb down and 194 lb up at 4-11-0,								
 (0.131"x3" Top chord: oc. Bottom chi staggered Web conni All loads a except if n CASE(S) s provided tu unless oth 	to be connected toge) nails as follows: s connected as follows: ords connected as follows: ords connected as follows: at 0-5-0 oc. ected as follows: 2x4 - ire considered equally oted as front (F) or ba section. Ply to ply conr o distribute only loads erwise indicated.	s: 2x4 - 1 row at 0-9-(ows: 2x8 - 2 rows - 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO nections have been noted as (F) or (B),	1631 lb dov and 194 lb up at 10-1 12-11-0 on connection LOAD CASE(S 1) Dead + Ro Plate Incre AD Uniform Lu Vert: 1- Concentra Vert: 4=	n and 194 lb up at up at 8-11-0, and 1 -0, and 1456 lb do bottom chord. The device(s) is the res of Live (balanced) ase=1.15 boads (lb/ft) 2=-70, 2-3=-70, 1-3 ted Loads (lb) -1451 (B), 5=-1445	6-11-0, 1451 lb d wn and ² design/s ponsibili Lumber 3=-20 5 (B), 6=-	1451 lb dow lown and 194 191 lb up at selection of s ty of others. Increase=1.	n 4 lb such 15,				SCOTT SEVI	er ter
 Unbalance this design 	ed roof live loads have n.	been considered for	7=-145	(B), 8=-1451 (B),	9=-1451	(B), 10=-145	56 (B)			Ø	PE-2001	12A

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

March 14,2024

ONAL E

											RELEA	SE FOR CONSTRUCTION	
Job		Truss		Truss Type		Qty		Ply	Lot 164 H	т		TED FOR PLAN REVIEW	٦
B240108		G1		Common Supported	d Gable	1		1	Job Refe	ence (optiona	1.00	ELOPMENT SERVICES 164208196 'S SUMMIT, MISSOURI	
Wheeler Lumbe	r, Waverly, KS	66871,			Run: 8.73 S Feb 22	2024 F	rint: 8.7	730 S Feb 2	2 2024 MiTel	Industries. Inc.	Ved Mar 13023	M7/2024	
					ID:7otXiDfjwSjpOMC	C6jCX9I	PUzbglo	d-RfC?PsB7	′0Hq3NSgPq	nL8w3uITXbGK	V rCDoi7J4zJC9	01/2024	7
			-0-10-8 ₁	5-1	1-0	I			11-1	0-0	112-	8-8	
			0-10-8	5-1					5-1		0-1		
							x5 =						
				1	2	5	5						
				1 6			\mathbf{k}						
					4			\sim	6				
	0			3	P								
	3-9-0			3						7			
			2	P							8		
		ထု	1									9	
		0-9-8	16			[******			1		
			Зх	10 u 15	14	1	3		12	11	3x10 ш		
			1			11-1	0-0				I		
Scale = 1:31.6													_
Plate Offsets ((X, Y): [10:0)-3-8,Edge], [16:0-3-8,Edge]	-									_
Loading TCLL (roof)		(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.07	DEFL Vert(L		in (loc) n/a -	l/defl L/e n/a 99		GRIP 197/144	
TCDL		10.0	Lumber DOL	1.15	BC	0.02	Vert(C	CT)	n/a -	n/a 99	Э	10//111	
BCLL BCDL		0.0* 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-R	0.03	Horz(CI) 0	.00 10	n/a n/a	Weight: 43 lb	FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	2x4 SPF I 2x4 SPF I 2x4 SPF I Structural 6-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 2-16=-133 3-4=-26/6 6-7=-25/6 8-10=-133 15-16=-22 12-13=-21 5-13=-13 6-12=-156 ed roof live I	No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	C 7) C 9), 11=-62 (LC 9), C 9), 14=-56 (LC 8), C 8), 16=-29 (LC 4), LC 22), 11=160 (LC 1), LC 22), 13=171 (LC 1), LC 21), 15=160 (LC 1), LC 21), 15=160 (LC 1), LC 21), 15=160 (LC 1), C 21), 15=160, (LC 1), C 21, 15=160, (LC 1), C 21, 15=160, (LC 1), C 21, 15=160, (LC 1), C 22, 13=171, (LC 1), C 21, 14=171, (LC 1), (LC 1), (LC 1)	Vasd=91mpł II; Exp C; En cantilever lef right exposed 3) Truss design only. For stu see Standarc 5) Gable require 6) Truss to be f braced again 7) Gable studs 8) This truss ha chord live loa 9) * This truss ha chord live loa 9) * This truss ha chord live loa 9) * This truss ha chord live loa 10) All bearings a 11) Provide mect bearing plate 16, 23 lb upli uplift at joint joint 11. 12) This truss is International R802.10.2 ar 0, LOAD CASE(S)	7-16; Vult=115mph (h; TCDL=6.0psf; BCE closed; MWFRS (env t and right exposed ; d; Lumber DOL=1.60 ed for wind loads in ds exposed to wind (l Industry Gable End alified building desig 2x4 MT20 unless of se continuous bottom ully sheathed from or st lateral movement spaced at 2-0-0 oc. s been designed for an onconcurrent with as been designed for an onconcurrent with as been designed for an chord in all areas w by 2-00-00 wide will fi y other members. are assumed to be Si hanical connection (to capable of withstand f at joint 10, 56 lb up 15, 56 lb uplift at join designed in accordar Residential Code se hd referenced standa Standard	DL=6.0 velope; end va plate ethe the plate norma Detail ner as herwiss a chorccre to a	psf; h= e exteri- ertical I grip DC ane of t l to the s as a a pper AN e indice l bearing e or see agonal psf bo there li i e load c rest s) of t l b upl boint 14 d d 62 ll h the 22 R502.	=25ft; Cat. ior zone; left and OL=1.60 the truss e face), pplicable, NSI/TPI 1. arated. ng. curely I web). ottom ve loads. of 20.0psf ngle e bottom truss to lift at joint I, 65 lb b uplift at 2018 11.1 and			SCO SE	MISSOUR TT M. VIER	
-											Mar	AL ENGLAS	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

March 14,2024

	, , , , , , , , , , , , , , , , , , , ,		,.	-1	1		-					1	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.81	Vert(LL)	-0.06	2-6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.41	Vert(CT)	-0.10	2-6	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.60	Horz(CT)	0.01	4	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	0.04	2-6	>999	240	Weight: 115 lb	FT = 10%
LUMBER) Wind: ASCE	7-16; Vult=115r	nph (3-seo	cond gust)						
TOP CHORD	2x4 SPF No.2			Vasd=91mp	h; TCDL=6.0psf;	BCDL=6.	0psf; h=25ft;	Cat.					
BOT CHORD	2x8 SP 2400F 2.0E			II; Exp C; Er	nclosed; MWFRS	(envelope	e) exterior zo	ne;					
WEBS	2x4 SPF No.2				ft and right expos								
BRACING					d; Lumber DOL=			.60					
TOP CHORD	Structural wood she	athing directly applie	dor ⁴		as been designed								
	4-8-4 oc purlins.				ad nonconcurren								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc			has been design			Opst					
	bracing.				m chord in all are								
REACTIONS	(size) 2=0-3-8, 4	4=0-3-8			by 2-00-00 wide ny other member		veen the bott	lom					
	Max Horiz 2=60 (LC	12)			are assumed to								
	Max Uplift 2=-552 (L	C 8), 4=-552 (LC 9)			chanical connecti			to					
	Max Grav 2=4095 (L	_C 1), 4=4095 (LC 1)			e capable of with								
FORCES	(lb) - Maximum Com	pression/Maximum			uplift at joint 4.	standing c		John					
	Tension				designed in acc	ordance w	ith the 2018						
TOP CHORD	1-2=0/8, 2-3=-5455/	722, 3-4=-5455/721,			Residential Coc			and					
	4-5=0/8			R802.10.2 a	nd referenced st	andard AN	ISI/TPI 1.						
BOT CHORD	2-6=-573/4657, 4-6=	-573/4657		0) Hanger(s) or	r other connectio	n device(s) shall be						
WEBS	3-6=-578/4885			provided suf	ficient to support	concentra	ated load(s) 1	1402					
NOTES					186 lb up at 1-1								
1) 2-ply truss	to be connected toge	ther with 10d			1-0, 1402 lb dow								
(0.131"x3') nails as follows:				down and 186 lb								
Top chord	s connected as follows	s: 2x4 - 1 row at 0-9-0)		36 lb up at 9-11-								Th
OC.					tion of such con	nection de	vice(s) is the	•				OF I	MIG D
Bottom ch	ords connected as foll	ows: 2x8 - 2 rows		responsibility								ALEUTI	ISS W
	at 0-7-0 oc.			OAD CASE(S)							A	TATE OF I	N.S
	ected as follows: 2x4 -			/	of Live (balanced	d): Lumber	Increase=1.	.15,			A	SCOT	TM. CN
	re considered equally			Plate Incre							K	SEV	
	oted as front (F) or ba		٩D	Uniform Lo	()						84		
	section. Ply to ply conr				8=-70, 3-5=-70, 2	-4=-20					NX N	1 at a	
	o distribute only loads	noted as (F) or (B),			ted Loads (lb)							100	KONMIN

Vert: 6=-1402 (B), 7=-1402 (B), 8=-1402 (B),

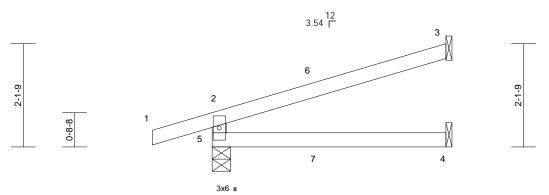
9=-1402 (B), 10=-1402 (B)

- provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for 3) this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

March 14,2024

F


NUM

SSIONAL

PE-200101880

						RELEASE FOR CONSTRUCTION	
Job	Truss	Truss Type	Qty	Ply	Lot 164 HT	AS NOTED FOR PLAN REVIEW	
D040400	14	Diagonal Llin Cirdar		1		DEVELOPMENT SERVICES 164208198	
B240108	JI	Diagonal Hip Girder		I	Job Reference (optional		
Wheeler Lumber, Waverly	Wheeler Lumber, Waverly, KS - 66871, Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. V						
		ID:bhr3gYKi	fpNFrZGVAFZk7Kbzł	ogVy-RfC?P	sB70Hq3NSgPqnL8w3ulTXbGk	WrCDoi794z30?	

4-9-14

Scale =	1.23.8

Scale = 1:23.8													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.35	Vert(LL)	-0.02	4-5	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.21	Vert(CT)	-0.05	4-5	>999	240			
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.01	3	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.02	4-5	>999	240	Weight: 13 lb	FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	4-9-14 oc purlins, e Rigid ceiling directly bracing.	applied or 10-0-0 oc anical, 4= Mechanical 4) 2 8), 5=-92 (LC 4)	d or b Concentration c Concentration d or d o	of Live (balanced): ase=1.15	oncentra d 65 lb 3 lb dow ip at 2- such cc s. loads a F) or ba Lumber	Ated load(s) 6 down and 21 n and 5 lb up -0 on bottom nonection dev oplied to the ck (B).	lb o at n vice face						

Vert: 7=9 (F=5, B=5)

FORCES

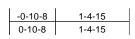
Tension TOP CHORD 2-5=-280/130, 1-2=0/27, 2-3=-70/30 BOT CHORD 4-5=0/0

NOTES

Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

(lb) - Maximum Compression/Maximum

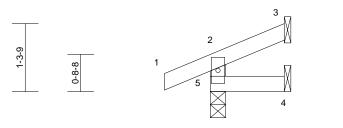
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf
- 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 4)
- 5) Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to 6)
- bearing plate capable of withstanding 92 lb uplift at joint 5 and 64 lb uplift at joint 3. This truss is designed in accordance with the 2018 7)
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	DIV	Lot 164 HT	AS NOTED FOR PLAN REVIEW
500	11035	Truss Type	Qiy	i iy		DEVELOPMENT SERVICES 164208199
B240108	J2	Jack-Open	2	1	Job Reference (optional	
Wheeler Lumber, Waverly						

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Ved Mar (3033407/20224) ID:yN6W9RB7ehkY7QatY2WJr3zbgW8-RfC?PsB70Hq3NSgPqnL8w3ulTXbeKWrCDor J&c?



1-3-9

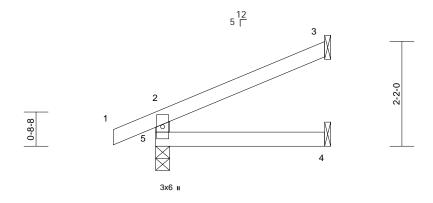
MiTel

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

3x6 🛛

1-4-15

Scolo - 1.22


Scale = 1:22										
Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.0 BC 0.0 WB 0.0 Matrix-R 0.0	2 Vert(CT)	in 0.00 0.00 0.00 0.00	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 5 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING TOP CHORD Structural wood she 1-4-15 oc purlins, e BOT CHORD Rigid ceiling directly bracing.	xcept end verticals. applied or 10-0-0 oc anical, 4= Mechanica 5) 2 8), 5=-37 (LC 4)	LOAD CASE(S)								
 FORCES (Ib) - Maximum Com Tension TOP CHORD 2-5=-137/46, 1-2=0/. BOT CHORD 4-5=0/0 NOTES 1) Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BC II; Exp C; Enclosed; MWFRS (er cantilever left and right exposed right exposed; Lumber DOL=1.6 2) This truss has been designed for chord live load nonconcurrent wi 3) * This truss has been designed for chord live load nonconcurrent wi 3) * This truss has been designed for chord live load nonconcurrent wi 3) * This truss has been designed for chord live load nonconcurrent wi 3) * This truss has been designed for chord live load nonconcurrent wi 3) * This truss has been designed for chord and any other members. 4) All bearings are assumed to be 5) Refer to girder(s) for truss to tru 6) Provide mechanical connection (bearing plate capable of withstar 5 and 18 lb uplift at joint 3. 7) This truss is designed in accorda International Residential Code si R802.10.2 and referenced stand 	27, 2-3=-25/5 (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto SPF No.2 . ss connections. (by others) of truss to ading 37 lb uplift at jo ance with the 2018 ections R502.11.1 ar	ie; d 50 ds. psf m D					c 		STATE OF J STATE OF J SCOT SEV NUM PE-2001	T M. IER BER 018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

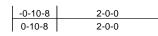
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 164 HT	AS NOTED FOR PLAN REVIEW
B240108	J3	Jack-Open	8	1	Job Reference (optional)	DEVELOPMENT SERVICES 164208200 LEE'S SUMMIT, MISSOURI
Wheeler Lumber Weyerly KS	66971	Burn: 8,72, 6, Epb 22.2	2024 Drint: 0		2 2024 MiTak Industrian Inc. \	

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Ved Mar (306340)7/2024 ID:ILwPC9FGSDMrDBTqLb6UY7zbgW3-RfC?PsB70Hq3NSgPqnL8w3uITXt GKWrCDer (3077/2024

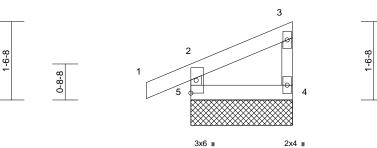
					3	-6-0		-				
Scale = 1:23.9				1								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.15	Vert(LL)	-0.01	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	-0.01	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	4-5	>999	240	Weight: 10 lb	FT = 10%

LUMBER			LOAD CASE(S)	Standard
TOP CHORD				
BOT CHORD				
WEBS	2x4 SPF I	No.2		
BRACING				
TOP CHORD		I wood sheathing directly applied or		
		purlins, except end verticals.		
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc		
REACTIONS	(size)	3= Mechanical, 4= Mechanical, 5=0-3-8		
	Max Horiz	5=64 (LC 8)		
	Max Uplift	3=-53 (LC 8), 5=-34 (LC 8)		
	Max Grav	3=100 (LC 1), 4=61 (LC 3), 5=231 (LC 1)		
FORCES	(lb) - Max Tension	imum Compression/Maximum		
TOP CHORD	2-5=-202/	/65, 1-2=0/27, 2-3=-55/30		
BOT CHORD				
NOTES				
1) Wind: ASC	CE 7-16; Vu	It=115mph (3-second gust)		
Vasd=91m	nph; TCDL=	6.0psf; BCDL=6.0psf; h=25ft; Cat.		
		IWFRS (envelope) exterior zone;		
		nt exposed ; end vertical left and		
		r DOL=1.60 plate grip DOL=1.60		
		esigned for a 10.0 psf bottom ncurrent with any other live loads.		
		designed for a live load of 20.0psf		
,		n all areas where a rectangle		
		0 wide will fit between the bottom		
	any other n			
4) All bearing	is are assur	med to be SPF No.2 .		
		truss to truss connections.		
		onnection (by others) of truss to		
		of withstanding 34 lb uplift at joint		
	o uplift at jo			
,	0	I in accordance with the 2018		
		tial Code sections R502.11.1 and nced standard ANSI/TPI 1.		

2-2-0



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent college with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 164 HT	AS NOTED FOR PLAN REVIEW
300	Truss	Truss Type	Qly	FIY		DEVELOPMENT SERVICES 164208201
B240108	J4	Jack-Closed Supported Gable	2	1	Job Reference (optional)	LEE'S SUMMIT, MISSOURI
-						

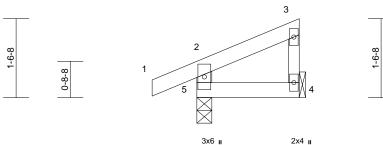
Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Ved Mar (3063407/2024) ID:d7aunsAdnNW8QnhajB_?1szbgTZ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGtWrCDoi/942907

2-0-0

Scale = 1:22.7

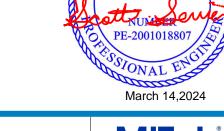
Scale = 1:22.7											
Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.06 0.02 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 7 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 BRACING TOP CHORD Structural wood sh 2-0-0 oc purlins, e BOT CHORD Rigid ceiling directl bracing. REACTIONS (size) 4=2-0-0, Max Horiz 5=58 (LC Max Uplift 4=-19 (L Max Grav 4=62 (LC FORCES (lb) - Maximum Con Tension	eathing directly applie xcept end verticals. ly applied or 10-0-0 or 5=2-0-0 C 5), 5=-40 (LC 4) C 1), 5=168 (LC 1) mpression/Maximum 0/26, 2-3=-43/9, 3-4=- lh (3-second gust) CDL=6.0psf; h=25ft; (envelope) exterior zor	9) Provide m bearing pl 5 and 19 I 10) This truss Internation R802.10.2 LOAD CASE(c	echanical connecti ate capable of with b uplift at joint 4. is designed in acco al Residential Cod and referenced sta	standing 4 ordance w le sections	0 lb uplift at jo ith the 2018 s R502.11.1 at	pint				Weight: 7 lb	FT = 10%
 right exposed; Lumber DOL=1. Truss designed for wind loads only. For studs exposed to win see Standard Industry Gable EI or consult qualified building des Gable requires continuous bott Truss to be fully sheathed from braced against lateral movement Gable studs spaced at 2-0-0 oc This truss has been designed for chord live load nonconcurrent v * This truss has been designed on the bottom chord in all areas 3-06-00 tall by 2-00-00 wide will chord and any other members. All bearings are assumed to be 	60 plate grip DOL=1.6 in the plane of the tru d (normal to the face) nd Details as applicat signer as per ANSI/TF om chord bearing. one face or securely nt (i.e. diagonal web). c. or a 10.0 psf bottom with any other live load for a live load of 20.0 s where a rectangle II fit between the bottom	60 Jss), ble, PI 1. ds. Jpsf						J.		att	TER X

March 14,2024



						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 164 HT	AS NOTED FOR PLAN REVIEW
500	11035	Truss Type	Qty	i iy	LUC 104111	DEVELOPMENT SERVICES 164208202
B240108	J5	Jack-Closed	5	1	Job Reference (optional)	
			00/07/0001			

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Ved Mar (3063407/2024) ID:sa6l674cfwWHSY42FWq7iAzbgTh-RfC?PsB70Hq3NSgPqnL8w3ulTXbGi WrCDoi 94284

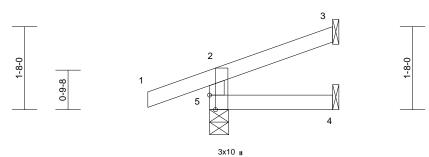


2-0-0

Scale = 1:22.5

Scale = 1:22.5											
Loading (ps TCLL (roof) 25 TCDL 10 BCLL 0 BCDL 10	0 Plate Grip DOL 0 Lumber DOL 0* Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.07 0.02 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 0.00 0.00	(loc) 4-5 4-5 4 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 7 lb	GRIP 197/144 FT = 10%
BRACING TOP CHORD Structural wood 2-0-0 oc purins BOT CHORD Rigid ceiling dir bracing. REACTIONS (size) 4= M Max Horiz 5=59 Max Uplift 4=-11 Max Grav 4=58 FORCES (lb) - Maximum TOP CHORD 2-5=-151/53, 1- BOT CHORD 4-5=-18/13	Except* 3-4:2x3 SPF No sheathing directly appli except end verticals. actly applied or 10-0-0 c echanical, 5=0-3-8 (LC 5) (LC 5), 5=-43 (LC 4) (LC 1), 5=171 (LC 1) Compression/Maximum 2=0/27, 2-3=-43/9, 3-4=	ied or									
 NOTES 1) Wind: ASCE 7-16; Vult=115 Vasd=91mph; TCDL=6.0psi II; Exp C; Enclosed; MWFR cantilever left and right exporight exposed; Lumber DOL 2) This truss has been designe chord live load nonconcurre 3) * This truss has been design on the bottom chord in all at 3-06-00 tall by 2-00-00 wide chord and any other membed All bearings are assumed to 5) Refer to girder(s) for truss t 6) Provide mechanical connect bearing plate capable of witt 5 and 19 lb uplift at joint 4. 7) This truss is designed in acc International Residential CO R802.10.2 and referenced st LOAD CASE(S) Standard 	; BCDL=6.0psf; h=25ft; S (envelope) exterior zo sed; end vertical left ar =1.60 plate grip DOL=1. d for a 10.0 psf bottom nt with any other live load ed for a live load of 20. eas where a rectangle will fit between the bott rs. be SPF No.2. o truss connections. ion (by others) of truss isstanding 43 lb uplift at pordance with the 2018 de sections R502.11.1 at	ne; nd .60 ads. 0psf om to								STATE OF SCOT SEV SEV OF PE-2001	Somer 018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 164 HT	
B240108	J6	Diagonal Hip Girder	1	1	Job Reference (optional	DEVELOPMENT SERVICES 164208203 LEE'S SUMMIT, MISSOURI
Wheeler Lumber Weverly KS	66971	Bury 8 72 S. Eab 22	0024 Drint: 0			

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Ved Mar 3973307/2024 ID:qQuSZdRIh8Na8fhvHyOEBVzbgVp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDore42wCf

2-5-10

Scale = 1:23.1		I	
Plate Offsets (X, Y): [5:0-3-8,Edge]			

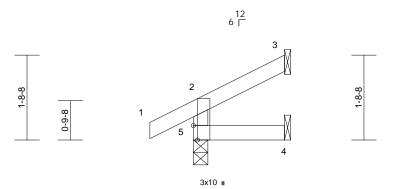
	(, .). [_							
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.14	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 8 lb	FT = 10%
LUMBER			This truss	is designed in acc	ordance w	ith the 2018						
TOP CHORD	2x4 SPF No.2			al Residential Co			and					
BOT CHORD			R802.10.2	and referenced st	tandard AN	ISI/TPI 1.						
WEBS	2x4 SPF No.2		LOAD CASE(Standard 								
BRACING												
TOP CHORD	Structural wood she	athing directly appli	ed or									
	2-5-10 oc purlins, e	xcept end verticals.										
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	C									
	bracing.											
REACTIONS	()	anical, 4= Mechanic	al,									
	5=0-4-9 Max Horiz 5=50 (LC 4)											
	Max Uplift 3=-32 (LC	,										
	Max Grav 3=55 (LC	,, , ,	228									
	(LC 1)	1), 4=40 (20 0), 0=	220									
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	2-5=-200/97, 1-2=0/	32, 2-3=-35/13										
BOT CHORD	4-5=0/0											
NOTES												
	CE 7-16; Vult=115mph											
	nph; TCDL=6.0psf; BC											
	II; Exp C; Enclosed; MWFRS (envelope) exterior zone;							000	all			
cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60								S OF	MISCH			
	has been designed fo		.60								A TE	-050.0
	load nonconcurrent w		lds							A	STATE OF	New York
	s has been designed f									H	SCO1	TM. YOY
	tom chord in all areas									81	SEV	
3-06-00 ta	all by 2-00-00 wide will	fit between the bott	om							8		

- chord and any other members. 4) All bearings are assumed to be SPF No.2 .
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 6)
- bearing plate capable of withstanding 79 lb uplift at joint 5 and 32 lb uplift at joint 3.

March 14,2024

NUMBE

PE-2001018807


OFFESSIONAL ET

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 164 HT	AS NOTED FOR PLAN REVIEW
300	11055	Truss Type	QLY	гіу		DEVELOPMENT SERVICES 164208204
B240108	J7	Jack-Open	1	1	Job Reference (optional)	
-						

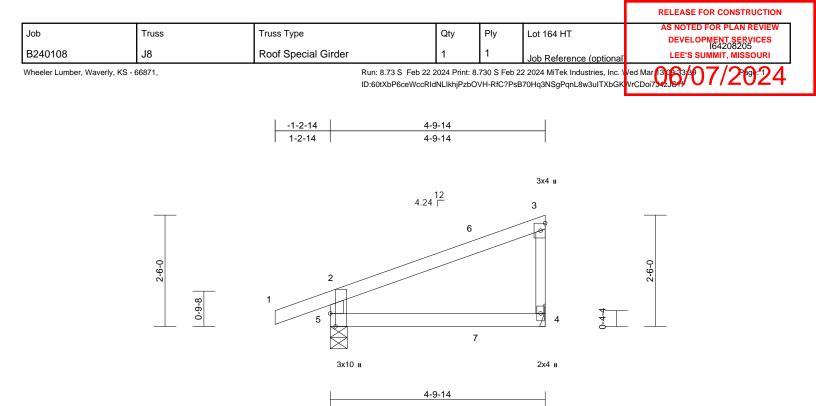
Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Ved Mar 3963407/2024 ID:yfeyjFOodvt8f1N826KI1fzbgVt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrd

1-10-0

Scale = 1:23.2	Scale = 1:23.2												
Plate Offsets (X, Y):	[5:0-3-8,Edge]												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl		F		
TCLL (roof)	25.0	Plate Grip DOI	1 15	TC	0.07	Vert(LL)	0.00	4-5	>999	360	i r		

	()							()				
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 6 lb	FT = 10%
LUMBER			7) This truss i	s designed in ac	cordance w	ith the 2018						
TOP CHORD	2x4 SPF No.2			al Residential Co			and					
BOT CHORD	2x4 SPF No.2		R802.10.2	and referenced	standard AN	ISI/TPI 1.						
WEBS	2x4 SPF No.2											
BRACING				-								
TOP CHORD	Structural wood she	athing directly appli	ed or									
	1-10-0 oc purlins, e	-10-0 oc purlins, except end verticals.										
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	C									
	bracing.											
REACTIONS	· /	anical, 4= Mechanic	al,									
	5=0-3-8											
	Max Horiz 5=44 (LC	,										
	Max Uplift 3=-30 (LC											
	Max Grav 3=41 (LC (LC 1)	1), 4=30 (LC 3), 5=	169									
FORCES	(lb) - Maximum Con Tension	npression/Maximum										
TOP CHORD	2-5=-148/41, 1-2=0/	/32, 2-3=-36/13										
BOT CHORD	4-5=0/0											
NOTES												

- NOTES
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf
- 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 .
- Refer to girder(s) for truss to truss connections. 5)
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 23 lb uplift at joint 5 and 30 lb uplift at joint 3.



PLATES

GRIP

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Scale = 1:25.9

Plate Offsets (X, Y): [5:0-3-8,Edge]

	(, .). [
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO		CSI TC BC WB	0.29 0.18 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.00	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144
BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD REACTIONS FORCES TOP CHORD	 2x4 SPF No.2 2x3 SPF No.2 *Exce Structural wood she 4-9-14 oc purlins, e Rigid ceiling directly bracing. (size) 4= Mecha Max Horiz 5=104 (LC Max Grav 4=191 (LC (lb) - Maximum Com Tension 1-2=0/32, 2-3=-117/ 2-5=-280/130 	athing directly applie xcept end verticals. applied or 10-0-0 or anical, 5=0-4-9 C 5) C 8), 5=-96 (LC 4) C 1), 5=317 (LC 1) appression/Maximum	8) 2 ed or c 9)	provided suf down and 4 up at 3-3-3 3-3-3, and 5 chord. The (s) is the rese In the LOAD of the truss : OAD CASE(S) Dead + Ro Plate Incre Uniform Lo Vert: 1-2 Concentrat	of Live (balanced ase=1.15	t concentra and 71 lb d d 5 lb dow o up at 3-3 of such co iers. on, loads ap it (F) or ba d): Lumber	ted load(s) 7 down and 44 n and 0 lb up 3-3 on botton nnection dev oplied to the ck (B).	l Ib o at n vice face	4-5	>999	240	Weight: 15 lb	FT = 10%
Vasd=91r II; Exp C; cantilever right expo 2) This truss chord live 3) * This trus on the bo 3-06-00 ta	4-5=-28/37 GCE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er r left and right exposed osed; Lumber DOL=1.6 s has been designed fo load nonconcurrent wi ss has been designed f totom chord in all areas all by 2-00-00 wide will d any other members	DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an 0 plate grip DOL=1. r a 10.0 psf bottom ith any other live loa ior a live load of 20.0 where a rectangle	ne; id 60 ds. Dpsf									STATE OF	MISSOUR T M. IER

- chord and any other members.
- 4) All bearings are assumed to be SPF No.2 .
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 44 lb uplift at joint 4 and 96 lb uplift at joint 5.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

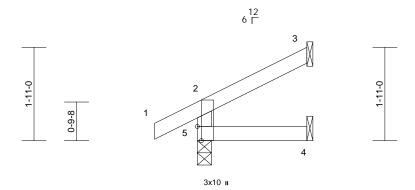
March 14,2024

E

NUMBER

PE-200101880

SSIONAL


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

* AG23 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

B210100	00	edok open	-	-	Job Reference (optional	
B240108	J9	Jack-Open	2	1		LEFTE CUMMIT, MICCOURT
Job	TIUSS	Truss Type	Qly	Fiy	LOI 164 H1	DEVELOPMENT SERVICES I64208206
lah	Truss	Truco Turo	Qty	Plv	Lot 164 HT	AS NOTED FOR PLAN REVIEW
						RELEASE FOR CONSTRUCTION

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Ved Mar (3983407/26):24 ID:rETkG32lgpoKIU4im9pBmFzbgV0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKwrCDoi7942.01

2-2-15

Scale = 1	1:23.6
-----------	--------

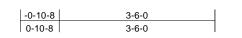
Plate Offsets (X, Y): [5:0-3-8,Edge]

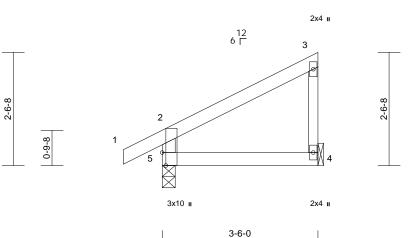
				-								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL BCLL	10.0 0.0*	Lumber DOL	1.15 YES	BC WB	0.03	Vert(CT)	0.00	4-5	>999	240		
BCLL BCDL	10.0	Rep Stress Incr Code	IRC2018/TPI2014	Matrix-R	0.00	Horz(CT) Wind(LL)	0.00 0.00	3 4-5	n/a >999	n/a	Weight: 7 lb	FT = 10%
BCDL	10.0	Code	1602010/1712014	WIGUIX-IN		WIND(LL)	0.00	4-5	>999	240	weight. 7 ib	FT = 1076
LUMBER				s designed in acco								
TOP CHORD	2x4 SPF No.2			al Residential Code			nd					
BOT CHORD	2x4 SPF No.2			and referenced sta	andard AN	ISI/TPI 1.						
WEBS	2x4 SPF No.2		LOAD CASE(S) Standard								
BRACING												
TOP CHORD	Structural wood she		ed or									
BOT CHORD	2-2-15 oc purlins, e Rigid ceiling directly		•									
BOT CHORD	bracing.	applied of 10-0-0 of	0									
REACTIONS	0	anical, 4= Mechanica	al.									
	5=0-3-8		,									
	Max Horiz 5=52 (LC	8)										
	Max Uplift 3=-37 (LC	C 8), 5=-23 (LC 8)										
	Max Grav 3=55 (LC	1), 4=37 (LC 3), 5=7	181									
	(LC 1)											
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	2-5=-159/45, 1-2=0/	/32, 2-3=-43/18										
BOT CHORD	4-5=0/0											
NOTES												
	CE 7-16; Vult=115mph											
	nph; TCDL=6.0psf; BC											
	II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and											
											OF I	MISSIM
	cantilever left and right exposed ; end vertical left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60 Phis truss has been designed for a 10.0 psf bottom abcrd live load percent with a put of bottom											
) This truss has been designed for a 10.0 psf bottom									No. V		

chord live load nonconcurrent with any other live loads.
* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- 4) All bearings are assumed to be SPF No.2 .
- 5) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 23 lb uplift at joint 5 and 37 lb uplift at joint 3.




March 14,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 164 HT	AS NOTED FOR PLAN REVIEW
						DEVELOPMENT SERVICES 164208207
B240108	J10	Jack-Closed	2	1	Job Reference (optional	
Wheeler Lumber, Wave	erly, KS - 66871,	Rur	n: 8.73 S Feb 22 2024 Print: 8	3.730 S Feb 2	2 2024 MiTek Industries, Inc. \	
		ID:c	EuvpAk_opX1eV5jFiL5imzbg	VQ-RfC?PsB	70Hq3NSgPqnL8w3uITXbGK	

|--|

Plate Offsets (X, Y): [5:0-3-8,Edge]

	. [0.0 0 0,Edge]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.12 0.08 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 -0.01 0.00 0.00	(loc) 4-5 4-5 4 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 12 lb	GRIP 197/144 FT = 10%
BOT CHORD 2x4 WEBS 2x4 BRACING TOP CHORD Stru 3-6- BOT CHORD Rigi brac REACTIONS (size) Max I	uctural wood she -0 oc purlins, ex id ceiling directly cing.) 4= Mecha Horiz 5=99 (LC Uplift 4=-38 (LC	C 8), 5=-40 (LC 8)	ed or	Standard								
FORCES (lb) Ten TOP CHORD 2-5= 3-4=	Tension CHORD 2-5=-202/67, 1-2=0/32, 2-3=-89/34, 3-4=-97/50											
 II; Exp C; Enclose cantilever left ar right exposed; L 2) This truss has be chord live load r 3) * This truss has on the bottom cl 3-06-00 tall by 2 chord and any of 4) All bearings are 5) Refer to girder(s 6) Provide mechan bearing plate cas 5 and 38 lb uplif 7) This truss is des International Re 	CDL=6.0psf; BC sed; MWFRS (en dright exposed Lumber DOL=1.6 oeen designed fo nonconcurrent w been designed f hord in all areas 2-00-00 wide will other members. assumed to be s) for truss to tru nical connection apable of withsta ft at joint 4. signed in accorda signed in accorda	SDL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an i0 plate grip DOL=1.0 r a 10.0 psf bottom ith any other live load for a live load of 20.0 where a rectangle fit between the botto SPF No.2 . iss connections. (by others) of truss to nding 40 lb uplift at jo	ne; d 60 ds. opsf om o						-	E.	STATE OF I SCOT SEVI PE-2001	I ENGL

March 14,2024

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Lot 164 HT	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 164208208
B240108	J11	Jack-Clos	ed	1	1	Job Reference (optional	
Wheeler Lumber, Waverly, K	S - 66871,					2 2024 MiTek Industries, Inc. \ 70Hq3NSgPqnL8w3uITXbGK\	
				3-6-0			
					2x4	4 u	
				12 6 [2		
		2-6-8	4			89 69 7	

	3-6-0	
Scale = 1:23.1		
Plate Offsets (X, Y): [4:0-3-8,Edge]		

2x4 🛛

3x10 "

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.15	Vert(LL)	0.00	3-4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	-0.01	3-4	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	3-4	>999	240	Weight: 11 lb	FT = 10%

- LUMBER
- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 2x4 SPF No.2 *Except* 2-3:2x3 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 3-6-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc BOT CHORD bracing. REACTIONS (size) 3= Mechanical, 4=0-3-8 Max Horiz 4=89 (LC 5) Max Uplift 3=-40 (LC 8), 4=-15 (LC 8)
- Max Grav 3=146 (LC 1), 4=146 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-4=-121/41, 1-2=-87/35, 2-3=-106/52 3-4=-30/26

BOT CHORD

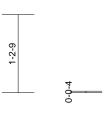
- NOTES
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 .
- Refer to girder(s) for truss to truss connections. 5)
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 15 lb uplift at joint 4 and 40 lb uplift at joint 3.
- This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

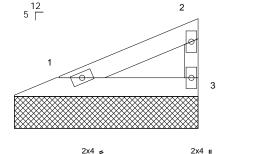
LOAD CASE(S) Standard

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

									RELEASE FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Lot 164 HT		AS NOTED FOR PLAN REVIEW
B240108	LAY1		Lay-In Gable 1 1			Job Reference	re (ontional)	DEVELOPMENT SERVICES 164208209 LEE'S SUMMIT, MISSOURI	
Wheeler Lumber,	, Waverly, KS - 66871,			Run: 8.73 S Feb 22	2024 Print: 8	3.730 S Feb 2	2 2024 MiTek Inc	lustries, Inc. \	
				ID:CQYYmfSzIIcA1V	/8xessbYlzbf	H1-RfC?PsB7	70Hq3NSgPqnL8	w3ulTXbGKV	
		6-0-15				24-11-9			
	6-0-15 18-10-10								
			^{6x6} ∕⁄ 4 5	6 7	8	9	10	11	3x4= 12 13
6-7-4	₹ 13 ¹² 1 3x4 ¢	3 2 2 2 2 5 24			8	9		2 15	
	3,4 1/						Зх	4 🌶	
	L			3-10-7					24-11-9
Scale = 1:49.2	I		18	3-10-7			I		6-1-3
Plate Offsets (>	X, Y): [4:0-2-9,Edge]								
Loading	(psf)	Spacing	2-0-0	CSI TC C			. ,	/defl L/d	PLATES GRIP MT20 197/144
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	BC 0	0.08 Vert 0.05 Vert	(TL) ı	n/a - n/a -	n/a 999 n/a 999	197/144
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB 0 Matrix-S).10 Hori	z(TL) 0.	.00 13	n/a n/a	Weight: 125 lb FT = 10%
I	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins, exi 2-0-0 oc purlins (6-C Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 13 (size) 1=24-8-0 15=24-8- 21=24-8-	1-25=-37/17, 24-25=- 22-23=-37/18, 21-22= 19-20=-37/18, 18-19= 16-17=-37/18, 15-16= 13-14=-68/39 2-25=-158/145, 3-24= 4-23=-117/49, 5-22=- 7-20=-140/58, 8-19=- 10-17=-143/59, 11-15 12-14=-190/76 roof live loads have b 5 7-16; Vult=115mph (; h; TCDL=6.0psf; BCD roof live loads have b 5 7-16; Vult=115mph (; h; TCDL=6.0psf; BCD roof live loads have b 5 7-16; Vult=115mph (; h; TCDL=6.0psf; BCD roof live loads have b 5 7-16; Vult=115mph (; h; TCDL=6.0psf; BCD uds exposed to wind (i d Industry Gable End ualified building design quate drainage to preve e 2x4 MT20 unless ott spaced at 0-0-0 oc. as been designed for a ad nonconcurrent with has been designed for m chord in all areas w by 2-00-00 wide will fit ny other members.	-37/18, 20 -37/18, 17 -59/38, 14 -184/172, 145/62, 6-2 140/58, 9-1 =-125/52, een consic 3-second g L=6.0psf; h elope) exte end vertical plate grip I the plane co normal to t Details as her as per / vent water herwise ind a 10.0 psf h a any other r a live load here a rect between t	21=-37/18, 18=-37/18, 15=-62/46, 21=-140/58, 8=-140/58, 8=-140/58, 8=-140/58, 1=-25ft; Cat. erior zone; I left and DOL=1.60 To the truss he face), applicable, ANSI/TPI 1. ponding. licated. bottom live loads. of 02.0psf angle	bearin 1, 43 at join 38 b u joint 2 Ib upli at join 11) Non S 12) This tr Intern R802. 13) Graph or the botton LOAD CA	ng plate capa b uplift at joi t 25, 147 lb uplift at joint 0, 34 lb uplift at joint 17, t 14. tandard bea russ is desig ational Resid 10.2 and ref nical purlin re	al connection (by others) of truss to able of withstanding 42 lb uplift at joint int 13, 8 lb uplift at joint 16, 127 lb uplift uplift at joint 24, 26 lb uplift at joint 23, 22, 34 lb uplift at joint 21, 34 lb uplift at fat joint 19, 33 lb uplift at joint 18, 39 , 35 lb uplift at joint 15 and 46 lb uplift aring condition. Review required. med in accordance with the 2018 dential Code sections R502.11.1 and ferenced standard ANSI/TPI 1. epresentation does not depict the size of the purlin along the top and/or ndard		
FORCES	(lb) - Maximum Con Tension		9) All bearings	are assumed to be SF	PF No.2 .			Jan Star	all server
TOP CHORD	CHORD 1-2=-285/118, 2-3=-164/78, 3-4=-74/35, 4-5=-20/37, 5-6=-18/37, 6-7=-18/37, 7-8=-18/37, 8-9=-18/37, 9-10=-18/37, 10-11=-18/37, 11-12=-18/37, 12-13=-18/37						NONAL ENS		

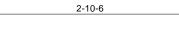
March 14,2024


Antitek Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITEk-US.com


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 164 HT	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 164208210
B240108	V1	Valley	1	1	Job Reference (optional	
Wheeler Lumber, Waverly, KS -	Ved Mar (30833307/2024					

2-10-6


1-2-9

2x4 II

2x4 🛛

Scale = 1.10												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 6 lb	FT = 10%

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) This truss is designed in accordance with the 2018

LOAD CASE(S) Standard

or

LUMBER	
TOP CHORD	

Scolo - 1.19

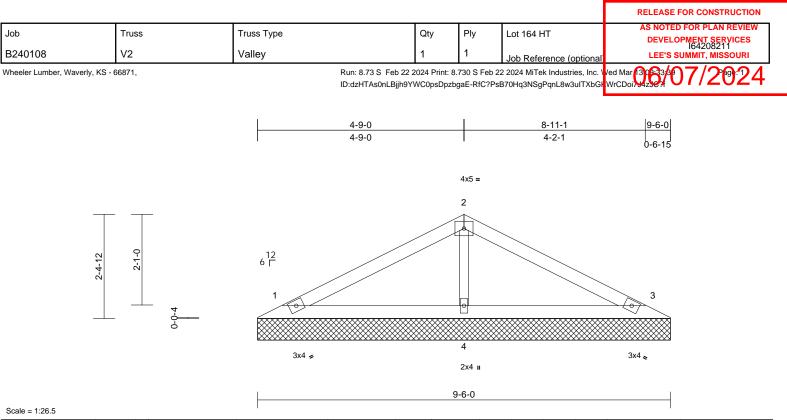
BOT CHORD	2x4 SPF I	No.2
WEBS	2x3 SPF I	No.2
BRACING		
TOP CHORD		wood sheathing directly applied
	2-11-0 oc	purlins, except end verticals.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=2-10-6, 3=2-10-6
	Max Horiz	1=38 (LC 5)
	Max Uplift	1=-13 (LC 8), 3=-21 (LC 8)
	Max Grav	1=93 (LC 1), 3=93 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	

2x4 SPF No.2

TOP CHORD	1-2=-34/22, 2-3=-72/33
BOT CHORD	1-3=-12/9

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3) Gable studs spaced at 2-0-0 oc. 4)
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members.


All bearings are assumed to be SPF No.2 . 7)

Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 13 lb uplift at joint 1 and 21 lb uplift at joint 3.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

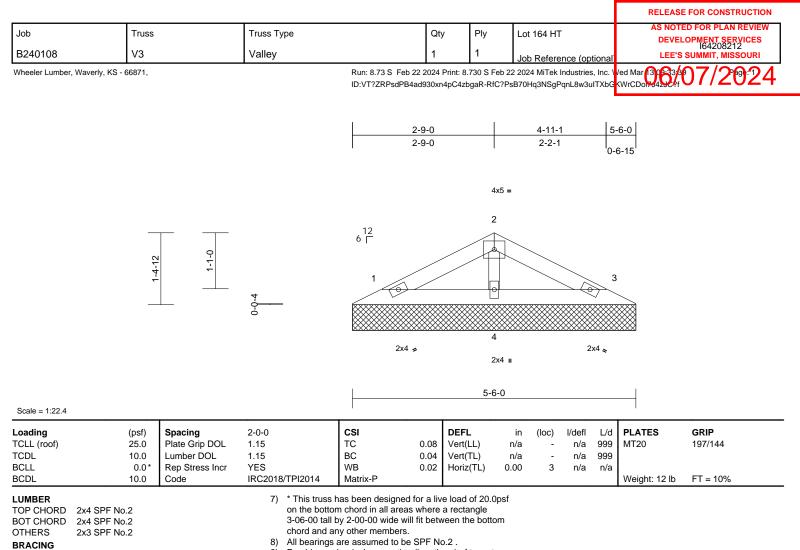
(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.24 0.15 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 197/144 FT = 10%
 2x4 SPF No.2 2x3 SPF No.2 Structural wood sheat 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=9-6-0, 3 Max Horiz 1=-37 (LC Max Uplift 1=-36 (LC (LC 8) Max Grav 1=177 (LC 	applied or 10-0-0 or 3=9-6-0, 4=9-6-0 3 9) 5 8), 3=-43 (LC 9), 4: C 21), 3=177 (LC 22	8) ed or 9) C 10 =-22 L0	on the botton 3-06-00 tall b chord and an All bearings a Provide med bearing plate 1, 43 lb uplift D) This truss is of International R802.10.2 ar	n chord in all ar y 2-00-00 wide y other membe are assumed to nanical connec capable of witt at joint 3 and 2 designed in acc Residential Co nd referenced s	eas where will fit betw rs. be SPF No tion (by othe standing 3 2 lb uplift a cordance wi de sections	a rectangle veen the botto o.2. ers) of truss t 6 lb uplift at j t joint 4. th the 2018 R502.11.1 a	om to oint					
Tension 1-2=-108/54, 2-3=-10	08/39											
	25.0 10.0 0.0* 10.0 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 0 Structural wood she 6-0-0 cc purlins. 0 Rigid ceiling directly bracing. 3 (size) 1=9-6-0, 3 Max Horiz 1=-37 (LC Max Uplift 1=-36 (LC (LC 8) Max Grav 1=177 (LC 4=397 (LC (Ib) - Maximum Com Tension 0 1-2=-108/54, 2-3=-1 1 -4=-2/45, 3-4=-2/45	25.0 10.0	25.0 Plate Grip DOL 1.15 10.0 Lumber DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC201 7) 2 2x4 SPF No.2 2 x3 SPF No.2 2 x3 SPF No.2 8) 9 Structural wood sheathing directly applied or 6-0-0 cc purlins. 9 Rigid ceiling directly applied or 10-0-0 cc bracing. 10 Structural wood sheathing directly applied or 6-0-0 cc purlins. 10 Rigid ceiling directly applied or 10-0-0 cc bracing. 11 Structural wood sheathing directly applied or 6-0-0 cc purlins. 10 Rigid ceiling directly applied or 10-0-0 cc bracing. 11 Structural wood sheathing directly applied or 6-0-0 cc purlins. 10 Rigid ceiling directly applied or 10-0-0 cc bracing. 11 Structural wood sheathing directly applied or 10-0-0 cc bracing. 10 Max Horiz 1=-37 (LC 9) Max Uplift 1=-36 (LC 8), 3=-43 (LC 9), 4=-22 (LC 8) Max Grav 1=177 (LC 21), 3=177 (LC 22), 4=397 (LC 1) (lb) - Maximum Compression/Maximum Tension 1 -2=-108/54, 2-3=-108/39 1 -4=-2/45, 3-4=-2/45	25.0 Plate Grip DOL 1.15 10.0 Lumber DOL 1.15 0.0* Rep Stress Incr YES 10.0 Code IRC2018/TPI2014 0.2x4 SPF No.2 Code IRC2018/TPI2014 0.2x4 SPF No.2 7) * This truss h on the bottom 3-06-00 tall b 0.2x4 SPF No.2 3-06-00 tall b 9) Provide mech 0.3 Structural wood sheathing directly applied or 6-0-0 oc purlins. 6-0.1 Bearing a 9) Provide mech 0.3 Structural wood sheathing directly applied or 6-0-0 oc purlins. 1.9-6-0, 3=9-6-0, 4=9-6-0 9) Provide mech 0.3 Kize) 1=9-6-0, 3=9-6-0, 4=9-6-0 1.4 31 b uplift 10) This truss is International R802.10.2 ar 10 Max Horiz 1=-37 (LC 9) 1.4-377 (LC 21), 3=177 (LC 22), 4=337 (LC 1) LOAD CASE(S) 10 Max Grav 1=177 (LC 21), 3=177 (LC 22), 4=337 (LC 1) LOAD CASE(S) 10 T-2=-108/54, 2-3=-108/39 1-4=-2/45, 3-4=-2/45 1-4=-2/45	25.0 Plate Grip DOL 1.15 10.0 10.0 1.15 10.0 10.0 1.15 1.43 1.15 1.15 1.43 1.04D CASE(S) Standard 1.12=-108/54, 2-3=-108/39 1.14=-2/45, 3-4=-2/45	25.0Plate Grip DOL1.15TC0.2410.0Lumber DOL1.15BC0.150.0*Rep Stress IncrYESWB0.0510.0CodeIRC2018/TPI2014Matrix-S02x4 SPF No.2All backing directly applied or7) * This truss has been designed for a live on the bottom chord in all areas where02x4 SPF No.2	 25.0 Plate Grip DOL 1.15 TC 0.24 Vert(LL) 10.0 Lumber DOL 1.15 BC 0.15 Vert(TL) 0.0* Rep Stress Incr YES WB 0.05 Matrix-S 2x4 SPF No.2 Code IRC2018/TPI2014 7) * This truss has been designed for a live load of 20.0 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the botto chord and any other members. 8) All bearings are assumed to be SPF No.2. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 4. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 ar R802.10.2 and referenced standard ANSI/TPI 1. AMA Grav 1=177 (LC 21), 3=177 (LC 22), 4=337 (LC 1) (b) - Maximum Compression/Maximum Tension 1-2=-108/54, 2-3=-108/39 1-4=-2/45, 3-4=-2/45 	 25.0 Plate Grip DOL 1.15 TC 0.24 Vert(LL) n/a Vert(TL) n/a BC 0.0* Vert(TL) n/a Horiz(TL) 0.00 0.0* Rep Stress Incr YES WB 0.05 Matrix-S 0.0* Code IRC2018/TPI2014 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 8) Structural wood sheathing directly applied or 6-0-0 cc purlins. 9) Frovide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 4. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) Max Grav 1=177 (LC 21), 3=177 (LC 22), 4=397 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-2=-108/54, 2-3=-108/39 1-4=-2/45, 3-4=-2/45 	 25.0 Plate Grip DOL 1.15 TC 0.24 Vert(LL) n/a - Vert(TL) - Vert(TL) n/a - Vert(TL) - Vert(TL) n/a - Vert(TL) - Vert(T) -	25.0 Plate Grip DOL 1.15 TC 0.24 Vert(LL) n/a n/a 10.0 Lumber DOL 1.15 BC 0.15 Vert(TL) n/a n/a 0.0* Rep Stress Incr YES WB 0.05 Horiz(TL) 0.00 3 n/a 0.0* Code IRC2018/TPI2014 Matrix-S WB 0.05 Horiz(TL) 0.00 3 n/a 0.2 x4 SPF No.2 Code IRC2018/TPI2014 Matrix-S 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 0 Structural wood sheathing directly applied or 10-0-0 oc bracing. 7) * This truss is designed in accordance with the 2018 9) 10 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 6 (LC 8) Max Grav 1=177 (LC 21), 3=177 (LC 22), 4=397 (LC 1) (LOAD CASE(S) Standard 10 Naximum Compression/Maximum Tension 0 1-2=-108/54, 2-3=-108/39 Standard	25.0 Plate Grip DOL 1.15 TC 0.24 Vert(LL) n/a - n/a 999 10.0 Lumber DOL 1.15 BC 0.15 Vert(TL) n/a - n/a 999 0.0* Rep Stress Incr YES WB 0.05 Horiz(TL) 0.00 3 n/a n/a 999 0.0* Code IRC2018/TPI2014 Matrix-S Vert(TL) n/a - n/a 999 0.0 2x4 SPF No.2 Code IRC2018/TPI2014 Matrix-S N* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 all by 2-00-00 wide will fit between the bottom chord and any other members. N N I bearings are assumed to be SPF No.2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 4. No the addition the addition to the addition the additin the addition the addition the addition the	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.


5) Gable studs spaced at 4-0-0 oc.6) This truss has been designed for

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

TOP CHORD Structural wood sheathing directly applied or 5-7-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 1=5-6-0, 3=5-6-0, 4=5-6-0 Max Horiz 1=19 (LC 8) Max Uplift 1=-23 (LC 8), 3=-27 (LC 9), 4=-2 (LC 8) 1=102 (LC 1), 3=102 (LC 1), 4=186 Max Grav

(LC 1) FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-49/27, 2-3=-49/19 BOT CHORD 1-4=-1/22, 3-4=-1/22 2-4=-132/35 WEBS

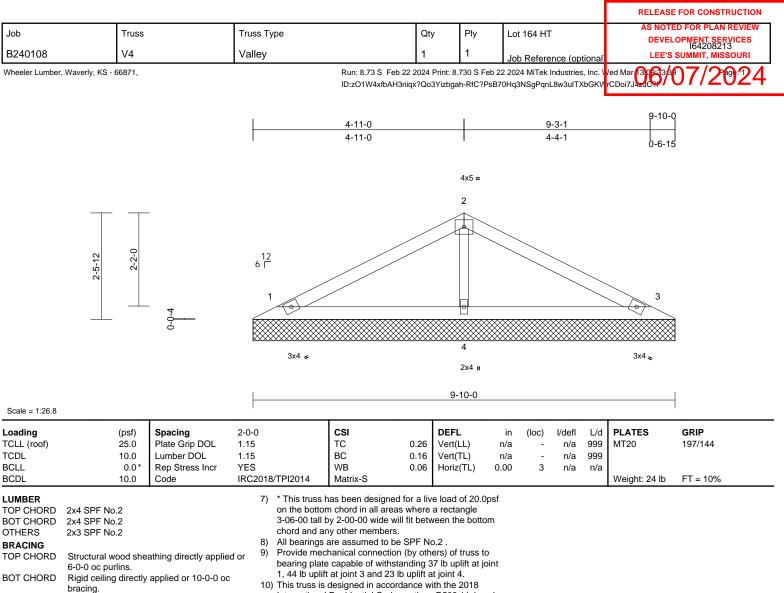
NOTES

1) Unbalanced roof live loads have been considered for this design

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.

Gable studs spaced at 2-0-0 oc. 5)

6)


This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- All bearings are assumed to be SPF No.2 . Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 23 lb uplift at joint 1, 27 lb uplift at joint 3 and 2 lb uplift at joint 4. 10) This truss is designed in accordance with the 2018
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

OF MISS SCOTT M. SEVIER NUMBER 6 PE-2001018807 SSIONAL E March 14,2024

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

REACTIONS (size) 1=9-10-0, 3=9-10-0, 4=9-10-0 Max Horiz 1=-38 (LC 13) Max Uplift 1=-37 (LC 8), 3=-44 (LC 9), 4=-23 (LC 8)

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-112/56, 2-3=-112/40 BOT CHORD 1-4=-2/46, 3-4=-2/46 WEBS 2-4=-282/74

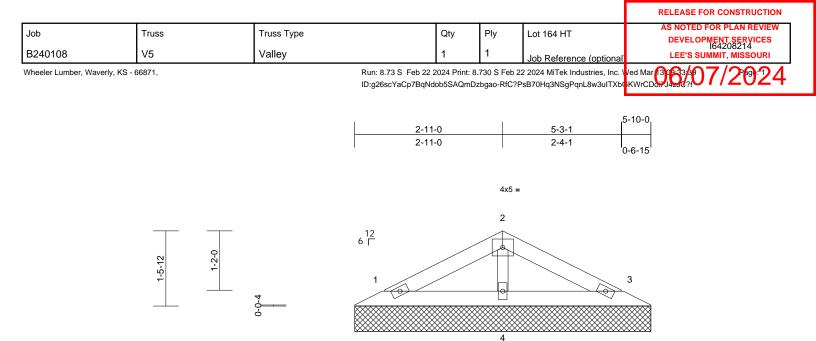
NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing.
 Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom


chord live load nonconcurrent with any other live loads.

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) Additional and the second seco

2x4 🥫

LUMBER 2x4 SPF No.2 TOP CHORD 2x4 SPF No.2 BOT CHORD 2x3 SPF No.2 OTHERS BRACING TOP CHORD Structural wood sheathing directly applied or 5-11-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 1=5-10-0, 3=5-10-0, 4=5-10-0 1=-21 (LC 13) Max Horiz 1=-25 (LC 8), 3=-29 (LC 9), 4=-3 Max Uplift (LC 8) 1=109 (LC 1), 3=109 (LC 1), 4=200 Max Grav (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension

(psf)

25.0

10.0

10.0

0.0*

Spacing

Code

Plate Grip DOL

Rep Stress Incr

Lumber DOL

TOP CHORD 1-2=-53/29, 2-3=-53/21 BOT CHORD 1-4=-1/23, 3-4=-1/23 2-4=-142/37 WEBS

NOTES

Scale = 1:22.7 Loading

TCLL (roof)

TCDI

BCLL

BCDL

1) Unbalanced roof live loads have been considered for this design

Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.

Gable studs spaced at 2-0-0 oc. 5)

This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

All bearings are assumed to be SPF No.2 . 8)

CSI

TC

BC

WB

Matrix-P

Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 25 lb uplift at joint 1, 29 lb uplift at joint 3 and 3 lb uplift at joint 4.

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

2-0-0

1.15

1 15

YES

IRC2018/TPI2014

2x4 👟

L/d

PLATES

Weight: 13 lb

MT20

GRIP

197/144

FT = 10%

l/defl

n/a 999

n/a 999

n/a n/a

2x4 II

in

n/a

n/a

0.00

(loc)

3

5-10-0

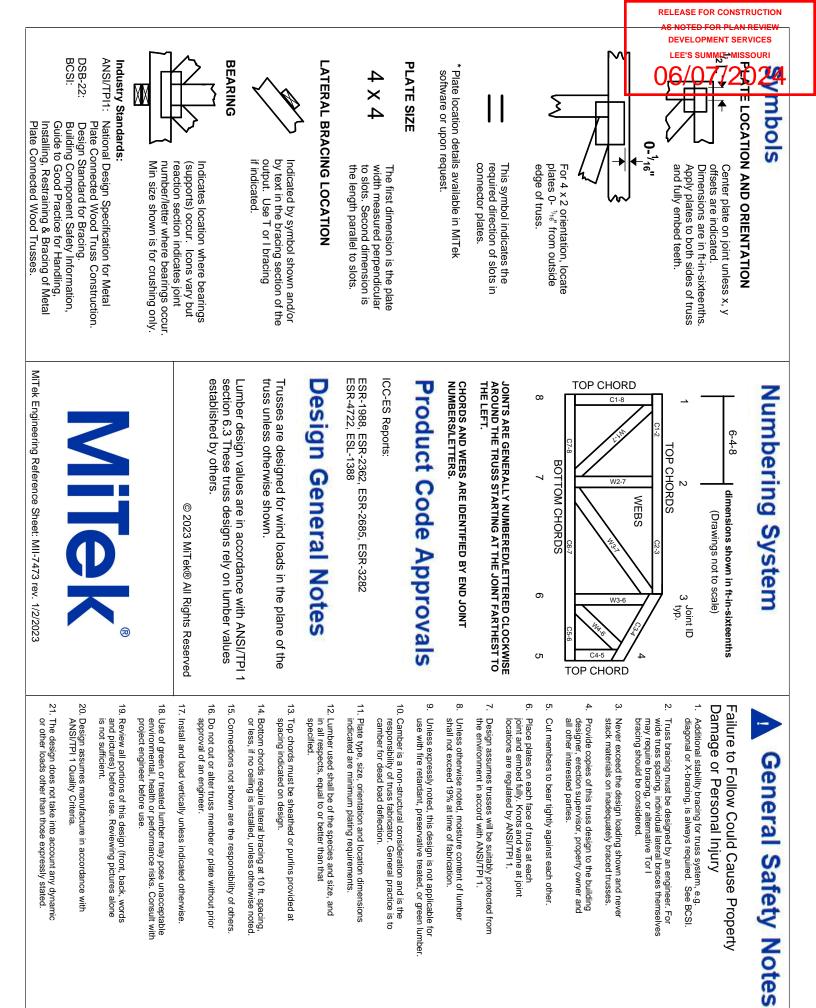
DEFL

Vert(LL)

Vert(TL)

Horiz(TL)

0.09


0.05

0.03

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

March 14,2024

