

MiTek, Inc.

314.434.1200

16023 Swingley Ridge Rd. Chesterfield, MO 63017

RE: P240417-01 Roof - HR Lot 163

Site Information:

Customer: Clayton Properties Project Name: P240417-01 Lot/Block: 163 Model: Address: 1620 SW Buckthorn St. City: Lee's Summit

Subdivision: Hawthorne Ridge State: MO

Seal#

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

25

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.6 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 25 individual, dated Truss Design Drawings and 0 Additional Drawings.

No	Seal#	Truss Name	Date
1	165257556		5/2/2024
2	165257557		5/2/2024
2	165257558	Δ02 Δ03	5/2/2024
1	165257550		5/2/2024
т 5	165257560	R01	5/2/2024
6	165257561	C01	5/2/2024
7	165257562	C02	5/2/2024
0	165257562	C02	5/2/2024
0	105257564	C04	5/2/2024
9 10	105257565	C04	5/2/2024
10	100207000	C05	5/2/2024
11	105257505	007	5/2/2024
12	165257567	007	5/2/2024
13	165257568	C08	5/2/2024
14	165257569	C09	5/2/2024
15	165257570	CJ01	5/2/2024
16	165257571	J01	5/2/2024
17	165257572	J02	5/2/2024
18	165257573	LG01	5/2/2024
19	165257574	PB1	5/2/2024
20	165257575	PB2	5/2/2024

No.	Seal#	Truss Name	Date
21	165257576	V01	5/2/2024
22	165257577	V02	5/2/2024
23	165257578	V03	5/2/2024
24	165257579	V04	5/2/2024
25	165257580	V05	5/2/2024

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision based on the parameters provided by .

Truss Design Engineer's Name: Sevier, Scott My license renewal date for the state of Missouri is December 31, 2025.

Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Sevier, Scott

												RELE	ASE FOR	CONSTRUCT	ION
Job	Truss		Truss Ty	/pe			Qty	Ply	Ro	of - HR Lot	163	AS N		R PLAN REVI	EW S
P240417-01	A01		Hip Gir	der			1	2		h Reference	ontiona	ali LE	E'S SUMI	5257556 MIT, MISSOUR	1
Premier Building	Supply (Springhill, KS), S	Spring Hills, KS - 66083,	<u> </u>		Run: 8.6 ID:b9del	3 S Apr 26 2 PyA7oPj7n2s	2024 Prin piefnYhz	:: 8.630 S kXH5-RfC	Apr 26 202 ?PsB70Hq3	4 MiTek Indu: 3NSgPqnL8w	stries, Inc. 3uITXbGK	Tue Apr 3(1):13 WrCDoi7J42JC9	706	6/202	24
	-0- 0-	10-8 4-6-0 10-8 4-6-0	1		8-6-7 4-0-7		<u>12-</u> 3-1	5-9 1-3		<u>16-6-0</u> 4-0-7)	<u> 2</u> 4	<u>1-0-0</u> -6-0	21-10	-8 - 8
			1	NAILED	NAILED	NAILED	NAIL	.ED	NAILED	NAILED	NA	ILED			
		1 <u>2</u> 8 Г		4x6 II		3x8 =			3x4 =			4x6 II			
3-11-3	3-6-3	2		3			6 1	7 18	5			⁶ 20			8
	r L	⊠ 3x4 =		13	21 12	11	2	2	10	23		9		⊠ 3x4 =	7
			т	3x4 =	4x6 =	NAILED	NAIL	.ED	3x4 =	NAILED	, TF	JA26			
		4-7-4	<u> </u> 		<u>8-6-7</u> 3-11-3		<u>12-</u> 3-1	5-9 1-3		<u>16-4-12</u> 3-11-3	2	<u>21</u> 4	-0-0 -7-4	———————————————————————————————————————	
Scale = 1:42.8 Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	;/TPI2014	CSI TC BC WB Matrix-S	C C C	D.37 Vo 0.32 Vo 0.17 Ho	EFL ert(LL) ert(CT) orz(CT)	in 0.05 -0.08 0.02	(loc) l/d 10-11 >9 10-11 >9 7	defl L/ 999 24 999 18 999 18 n/a n/a	d PLATES MT20 a Weight: 191	GR 197 I Ib FT	IP 7/144 = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x6 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-C Rigid ceiling directly bracing. (size) 2=0-3-8.	eathing directly applied cept -0 max.): 3-6. r applied or 10-0-0 oc 7=0-3-8	3) 4) I or	Unbalance this design Wind: ASC Vasd=91m Ke=1.00; exterior zc Interior (1) Interior (1) 21-10-8 zc vertical lef forces & N	ed roof live los n. CE 7-16; Vult= nph; TCDL=6 Cat. II; Exp C one and C-C I) 4-1-8 to 4-6-) 11-6-14 to 1- one; cantileve ft and right ex //WFRS for re	ads have b =115mph (3 0psf; BCD) ; Enclosed; Exterior(2E 0, Exterior(6-6-0, Exterior(6-6-0, Exterior(6-6-0, Exterior) actions sho	een con 3-second L=6.0ps MWFR) -0-10-8 (2R) 4-6 rior(2E) ght expo for men own; Lur	sidered f d gust) f; h=35ft; S (envelo to 4-1-8 0 to 4-1-8 0 to 11-0 16-6-0 to bsed ; en bbers ano	or 5ppe) 3, 6-14, 5 d d	1) Dead Plate Unifor Ver Conce Ver 11= 15= 22=	+ Roof L Increases m Loads t: 1-3=-7 entrated I t: 3=-79 t: 3=-79 (F), =-24 (F), =-24 (F),	ive (balanced): =1.15 (lb/ft) 0, 3-6=-70, 6-8: Loads (lb) (F), 6=-79 (F), 1 10=-24 (F), 5=- 17=-79 (F), 19= 23=-24 (F)	Lumber I =-70, 2-7= 3=-254 (79 (F), 9= :-79 (F), 2	ncrease=1.1: 20 F), 4=-79 (F) 254 (F), 21=-24 (F),	5, ,

Max Uplift 2=-536 (LC 12), 7=-536 (LC 13) Max Grav 2=1596 (LC 1), 7=1596 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/21, 2-3=-2349/858, 3-4=-1852/750, 4-5=-2598/1040, 5-6=-1852/743, 6-7=-2350/863, 7-8=0/21 2-13=-704/1817, 11-13=-1010/2603, BOT CHORD 10-11=-1010/2603, 9-10=-990/2598, 7-9=-631/1818 WEBS 3-13=-296/980, 4-13=-1009/452, 4-11=0/251, 4-10=-28/27, 5-10=0/249, 5-9=-1001/446, 6-9=-296/980

Max Horiz 2=98 (LC 11)

NOTES

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Web connected as follows: 2x3 - 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, 2) except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

DOL=1.60 plate grip DOL=1.60 5) Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf

7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

All bearings are assumed to be SPF No.2 crushing 8) capacity of 425 psi.

Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 536 lb uplift at joint 2 and 536 lb uplift at joint 7.

- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Use Simpson Strong-Tie THJA26 (THJA26 on 2 ply, Left Hand Hip) or equivalent at 4-6-6 from the left end to connect truss(es) to front face of bottom chord.
- 13) Use Simpson Strong-Tie THJA26 (THJA26 on 2 ply, Right Hand Hip) or equivalent at 16-5-10 from the left end to connect truss(es) to front face of bottom chord.
- 14) Fill all nail holes where hanger is in contact with lumber.
- 15) "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails per NDS guidelines.

LOAD CASE(S) Standard

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

												RELEASE		CTION
Job	Truss		Truss Ty	/pe		Qty	<i>'</i>	Ply	Roof - H	R Lot 163	3		D FOR PLAN RE	VIEW
P240417-01	A02		Hip			1		1	Job Ref	erence (or	otional	LEE'S	165257557 SUMMIT, MISSO	JRI
Premier Building Supply (Sprir	nghill, KS), S	Spring Hills, KS - 66083,	. <u>.</u>		Run: 8.63 S	Apr 26 2024 I	Print: 8.63	30 S Apr 26	6 2024 MiTe	k Industries	s, Inc. T	ie Apr 3 1) 1223	16/29	24
					ID:xNyy1URv	vdAV?QQY2_	F2xRKzk	XGI-RfC?F	PsB70Hq3N	SgPqnL8w	3ulTXb	KWrCDoi7J4zJC?f		
	-0-	10-8	6-6-0		1	1	4-6-0			1		21-0-0	21-1	0-β
	0-1	10-8	6-6-0		1		8-0-0					6-6-0	0-10)-8
					MT18HS 6x12	-				MT18HS 5	5x8 II			
0 0			1 <u>2</u> 8 Г	<u>က</u> 4	14				15	5				
0-1-			3×4 4					⊲						
			13		\square	<				\parallel	\searrow	16 ^{3x4} ⊗		
			3									6		
		3x4 🕫					Ð					X	3x4 👟	
ώ 4 4								\searrow					\sim	
	:	2							\searrow					,
-8-0	112					T I				┢				178
					11	10				9			X	\triangleleft
		4x4 II			1.5x4 I	3x4 =				3x4 =			4x4 II	
			6-7-4			1	4-4-12					21-0-0		
Scale = 1:43		·	6-7-4		ļ		7-9-8			'		6-7-4	1	
Plate Offsets (X, Y): [4:0-	7-0,Edge]													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL		in (loc	;) l/defl	L/d	PLATES	GRIP	
TCLL (roof) TCDI	25.0 10.0	Plate Grip DOL	1.15 1.15		TC BC	0.96 0.53	Vert(Ll	_) -0. T) -0	.07 9-1 15 9-1	1 >999 1 >999	240 180	MT18HS MT20	197/144 244/190	
BCLL	0.0*	Rep Stress Incr	YES		WB	0.10	Horz(C	CT) 0.	.03	7 n/a	n/a		ET 0000	
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 96 lb	FT = 20%	
TOP CHORD 2x4 SP No	o.2 *Excep	ot* 4-5:2x4 SP 1650F	3)	All plates are	quate drainage MT20 plates ι	to prevent v inless other	vater po wise ind	nding. licated.						
1.5E BOT CHORD 2x4 SP No	b.2		5)	This truss ha chord live loa	s been designe ad nonconcurre	ed for a 10.0 Int with any) psf bot other liv	tom e loads.						
WEBS 2x3 SPF 1 SLIDER Left 2x4 S	No.2 P No.2 '	3-11-1 Right 2v4 SP	6)	* This truss h on the bottor	has been design n chord in all a	ned for a liv	e load o a rectan	f 20.0psf ale						
No.2 3-	11-1	5-11-1, Right 2x4 61		3-06-00 tall t	by 2-00-00 wide	e will fit betw	een the	bottom						
BRACING TOP CHORD Structural	wood she	athing directly applie	d or 7)	All bearings	are assumed to	be SP No.	2 crushi	ng						
5-1-1 oc p 2-0-0 oc p	ourlins, exc ourlins (2-2	cept 2-0 max.): 4-5.	8)	capacity of 5 Provide med	65 psi. hanical connec	tion (by oth	ers) of tr	uss to						
BOT CHORD Rigid ceili	ng directly	applied or 10-0-0 oc		bearing plate joint 2 and 12	capable of wit 25 lb uplift at jo	hstanding 1 int 7.	25 lb up	lift at						
WEBS 1 Row at	midpt	4-9	9)	This truss is	designed in ac Residential Co	cordance wi	th the 2 R502 1	018 1 1 and						
REACTIONS (size) Max Horiz	2=0-3-8, 7 2=-136 (L	7=0-3-8 .C 10)	10	R802.10.2 a	nd referenced s	standard AN	ISI/TPI 1	l.						
Max Uplift Max Grav	2=-125 (L 2=1006 (I	C 12), 7=-125 (LC 1)	3)	or the orienta	ation of the purl	in along the	top and	d/or						
FORCES (Ib) - Maxi	mum Corr	pression/Maximum	LC	AD CASE(S)	1. Standard									
TOP CHORD 1-2=0/16,	2-4=-1287	7/212, 4-5=-975/245,												
5-7=-1287 BOT CHORD 2-11=-133	7/211, 7-8= 3/971, 9-11	⊧0/16 I=-131/975, 7-9=-57/	971											
WEBS 4-11=0/30	07, 4-9=-11	7/118, 5-9=0/307										OF	ALSON	
1) Unbalanced roof live le	oads have	been considered for									F	ATE	120°00	
this design. 2) Wind: ASCE 7-16; Vul	t=115mph	(3-second gust)									A	SCOT	TM.	\$
Vasd=91mph; TCDL=	6.0psf; BC	DL=6.0psf; h=35ft;	e)								4	SEVI		N.
exterior zone and C-C	Exterior(2	E) -0-10-8 to 4-1-8,	-,								44	att.	Jorne	A
Interior (1) 4-1-8 to 6-6 Interior (1) 13-6-14 to	-0, ⊏xteric 14-6-0, Ex	terior(2R) 14-6-0 to	14,							•	h	PE-2001	BER 18807	B
21-6-14, Interior (1) 21 left and right exposed	; end verti	1-10-8 zone; cantiles cal left and right	/er								Ø	THE LOUI		1
exposed;C-C for mem	bers and f ber DOI =	orces & MWFRS for										SIONA	LENO	
DOL=1.60		Piero Bilb										and	T	

May 2,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Naitek 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITEk-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPH Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

									RELEASE FOR CONSTRU	CTION
Job	Truss		Truss Type		Qty	Ply	Roof - HR	Lot 163	AS NOTED FOR PLAN RE DEVELOPMENT_SERVIO	EVIEW CES
P240417-01	1 A04		Hip Girder		1	3	Job Refere	nce (optional	I65257559 LEE'S SUMMIT, MISSO	URI
Premier Building	Supply (Springhill, KS), S	Spring Hills, KS - 66083,		Run: 8.63 S Apr 26	2024 Print	: 8.630 S Apr 2	6 2024 MiTek li	ndustries, Inc. T	le Apr 3 0 624 06/2 9	24
					ACO TARGO	20075-11011 3	oronqonogr qi	LOWSUITADOIN	10001134230:1	
		H	4-10-14 4-10-14	<u>9-7-4</u> 4-8-6	11-4-12 1-9-8	+ 16-1 4-8	-2 -6	<u>21-0-0</u> 4-10-14		
					4	lx6 ∎				
		.			5x10=					
			10			4				
			12 81		TT T					
			4x 2	4 %			4x4;	•		
	0-13	11-0	2		$\parallel \parallel \mid$, 		
	ř,	ە ە	12					13		
		1			\parallel					
					₽ ^Ш F			0.0		
		U ⊠ 4x4:	14 15 11	16 10 17	918 8	3 19 2	20 7	21	22	
			3x1 LUS26	0 u 4x6=	3x4= 4x	x8= LUS26	2x4 S26	LUS26	4x4 =	
								-		
		H	4-10-14	<u>9-8-8</u> 4-9-10	11-3-8	<u>16-1</u> 4-9-	<u>-2</u> 10	<u>21-0-0</u> 4-10-14		
Scale = 1:57.5				1					1	
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	TC	0.66 Ve	E FL ert(LL) -(in (loc)).07 9-11	l/defl L/d >999 240	PLATES GRIP MT20 197/144	
TCDL BCLL	10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 NO	BC WB	0.81 Ve 0.27 Ho	ert(CT) -(orz(CT) ().12 9-11).04 6	>999 180 n/a n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S					Weight: 314 lb FT = 20%	
LUMBER TOP CHORD	2x4 SP No.2		 Unbalanced this design. 	roof live loads have	been cons	sidered for	Co	ncentrated Lo Vert: 7=-767 (ads (lb) B), 14=-805 (B), 15=-805 (B), 16:	=-767
BOT CHORD WEBS	2x6 SPF No.2 2x3 SPF No.2		4) Wind: ASCI Vasd=91mr	E 7-16; Vult=115mph h; TCDL=6.0psf; BCI	(3-second DL=6.0psf	l gust) f; h=35ft;		(B), 17=-767 ((B), 21=-767 (B), 18=-767 (B), 19=-767 (B), 20 B), 22=-769 (B)	=-767
BRACING		- de la constitución de la constitución	Ke=1.00; C	at. II; Exp C; Enclose e and C-C Exterior(2)	d; MWFRS E) 0-1-12	S (envelope) to 4-10-14.		()/ - (
TOP CHORD	6-0-0 oc purlins, exc	cept	Interior (1) 4 11-4-12. Ex	I-10-14 to 9-7-4, Extention (2R) 11-4-12 to	rior(2E) 9 18-5-10. I	-7-4 to nterior (1)				
BOT CHORD	Rigid ceiling directly	-0 max.): 3-4. applied or 10-0-0 oc	18-5-10 to 2 exposed : e	0-10-4 zone; cantilev	er left and	d right				
REACTIONS	(size) 1=0-3-8, 6	6=0-3-8	members a Lumber DO	nd forces & MWFRS	for reactio	ns shown;				
	Max Horiz 1=-184 (Le Max Uplift 1=-1069 (I	C 8) LC 12), 6=-1208 (LC	5) Provide ade 13) 6) This truss b	quate drainage to pre	event wate	er ponding.				
FORCES	Max Grav 1=4948 (L (lb) - Maximum Com	-C 19), 6=5373 (LC 2) pression/Maximum	C) chord live lo	ad nonconcurrent wit	th any othe	er live loads.	:			
TOP CHORD	Tension 1-2=-7206/1600, 2-3	8=-5003/1199.	on the botto	m chord in all areas v	where a re	ectangle				
	3-4=-4222/1060, 4-5 5-6=-7179/1621	5=-5067/1225,	chord and a	ny other members.	PF No 2 (
BOT CHORD	1-11=-1312/5869, 9- 8-9=-865/4221 7-8=	-11=-1312/5869, 1240/5709	capacity of	425 psi.	by others)					
WEBS	6-7=-1240/5709 2-11464/2440 2-9		bearing plat	e capable of withstan	iding 1069	b uplift at				
WEBO	3-9=-555/2350, 3-8= 4-8610/2576, 5-8-		10) This truss is	designed in accorda	nce with t	he 2018			aller a	
	5-7=-482/2335	1000/010,	R802.10.2 a	and referenced stand	ard ANSI/	TPI 1.			E OF MISS	
NOTES 1) 3-ply truss	to be connected toget	ther with 10d	11) Graphical p or the orien	ation of the purlin alo	oes not de	epict the size and/or		A	AND SCOTT N	2
(0.131"x3" Top chord	 nails as follows: s connected as follows 	s: 2x4 - 1 row at 0-9-0	12) Use Simpso	d. In Strong-Tie LUS26	(4-10d Gir	rder, 4-10d		A	Sevier	YA .
oc. Bottom ch	ords connected as follo	ows: 2x6 - 2 rows	I russ) or eo 2-0-12 from	the left end to 20-0-1	0-0 oc ma 2 to conn	ax. starting at ect truss(es)		80	the last	
staggered Web conn	at 0-6-0 oc. ected as follows: 2x3 -	1 row at 0-9-0 oc.	to back face 13) Fill all nail h	e or bottom chord. oles where hanger is	in contact	t with lumber			NUMBER	A
 All loads a except if n 	re considered equally oted as front (F) or bac	applied to all plies, ck (B) face in the LOA	LOAD CASE(S D 1) Dead + Ro	Standard	umber Inc	rease=1.15,		Ø	PE-2001018807	4
CASE(S) s provided to	section. Ply to ply conn o distribute only loads	nections have been noted as (F) or (B),	Plate Incre Uniform Lo	ase=1.15 bads (lb/ft)		- ,		Y	STONAL ENGILE	£
unless oth	erwise indicated.	· · · · · · · · · · · · · · · · · · ·	Vert: 1-	3=-70, 3-4=-70, 4-6=-	70, 1-6=-2	20			Contractor	
									May 2,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Plate Offsets (X, Y): [11:0-2-0.Edge]

	7, 1). [11.0-2-	o,∟ugej												
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.11 0.05 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 20	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 138 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.: Left 2x4 SP No.: 1-6-5 Structural wc 6-0-0 oc purl Rigid ceiling bracing. 1 Row at mic	2 No.2 1 bod shea ins. directly	-6-4, Right 2x4 SP N athing directly applie applied or 10-0-0 oc 10-28	T No.2 E d or	OP CHORD	1-2=0/16, 2-4=-316 6-7=-148/125, 7-8= 9-10=-108/160, 10 11-12=-101/144, 1 13-14=-71/65, 14-1 16-18=-182/90, 18 2-34=-113/248, 33 32-33=-113/248, 2 29-31=-113/248, 2 27-28=-113/248, 2 25-26=-113/248, 2 23-24=-113/248, 2	5/190, 4: -131/99 -11=-92, 2-13=-11 5=-86/3 -20=-28 -34=-11 1-32=-1 3-29=-1 3-27=-1 4-25=-1 2-23=-1	6=-211/148, , 8-9=-116/10 (129, 00/143, 19, 15-16=-11 0/134, 20-21= 3/248, 13/248, 13/248, 13/248, 13/248, 13/248, 13/248,	09, 7/64, ⊧0/16	7) Th chi 8) * T on 3-(chi 9) All cal 10) Pro be 2, up	is truss h bord live lo his truss the botto 06-00 tall bord and a bearings bacity of bovide me aring plat 137 lb up lift at join	as bee bad not has be om cho by 2-0 any oth are as 565 ps chanic te capa blift at ju	en designed for a neoncurrent with een designed for rd in all areas wh 0-00 wide will favour er members. ssumed to be SP i. al connection (by able of withstandii oint 34, 70 lb uplif 5 lb uplift at joint 3	10.0 psf bottom any other live loads. a live load of 20.0psf ere a rectangle between the bottom No.2 crushing others) of truss to ng 55 lb uplift at joint t at joint 33, 80 lb 31, 98 lb uplift at joint
REACTIONS	(size) 2= 23 26 29 33 Max Horiz 2= Max Uplift 2= 22	25-8-0, =25-8-0 =25-8-0 =25-8-0 =25-8-0 255 (LC =-55 (LC =-125 (L	20=25-8-0, 22=25-8 , 24=25-8-0, 25=25- , 27=25-8-0, 28=25- , 31=25-8-0, 32=25- , 34=25-8-0 : 11) 8), 20=-16 (LC 9), -C 13), 23=-76 (LC 12) -C 13), 23=-76 (LC 12)	-0, V 8-0, 8-0, 8-0, 13), N	VEBS IOTES) Unbalanced	20-22113/248 4-34=-167/156, 6-3 7-32=-149/104, 8-3 9-29=-152/122, 10 12-27=-123/0, 13-2 14-25=-148/99, 15 16-23=-152/105, 1 roof live loads hav	3=-148, 1=-149, 28=-13; 6=-157, 24=-14; 3-22=-1; e been (/98, /99, 5/22, /125, 8/103, 44/144 considered fo	r	29 up joii 11) Th Int R8 LOAD	, 101 lb u lift at join nt 22 and is truss is ernationa 02.10.2 a CASE(S	Iplift at t 24, 70 I 16 lb s desig al Resid and ref) Sta	joint 26, 75 lb up 6 lb uplift at joint 2 uplift at joint 20. ned in accordanc dential Code sect erenced standarc ndard	ift at joint 25, 79 lb 23, 125 lb uplift at e with the 2018 ions R502.11.1 and J ANSI/TPI 1.
	24 26 31 33 Max Grav 2= 22 24 26 28 31 33	==79 (L(==-101 (L ==-75 (L(==183 (L) ==188 (L) ==188 (L) ==197 (L) ==175 (L) ==189 (L) ==186 (L)	C 13), 23=-798 (LC 1 C 12), 32=-80 (LC 1 C 12), 34=-137 (LC 2 C 12), 34=-137 (LC 2 C 20), 23=192 (LC 2 C 20), 25=188 (LC 2 C 20), 25=188 (LC 2 C 20), 27=163 (LC 1 C 22), 29=192 (LC 1 C 19), 32=190 (LC 1 C 19), 34=213 (LC 1	5), 12), 2), 2), 2), 20), 20), 10), 19), 19), 19), 19)	 this design. Wind: ASCE Vasd=91mp Ke=1.00; Cz exterior zone Exterior(2N) 18-0-0, Exte left and right exposed;C-0 reactions sh 	7-16; Vult=115mp h; TCDL=6.0psf; B tt. II; Exp C; Enclos e and C-C Corner(; 4-0-0 to 12-10-0, C rior(2N) 18-0-0 to 2 exposed ; end ver C for members and own; Lumber DOL	h (3-sec CDL=6.0 ed; MW BE) -0-10 Corner(3 26-6-8 zo tical left forces & =1.60 pl	cond gust) Dpsf; h=35ft; FRS (envelog 0-8 to 4-0-0, R) 12-10-0 to one; cantileve and right & MWFRS for ate grip	be) Der				STATE OF M	MISSOLIR F M. ER
FORCES	(Ib) - Maximu Tension	ım Com	pression/Maximum	3 4 5	 DOL=1.60 Truss desig only. For stu see Standar or consult qu All plates are Gable requir 	ned for wind loads uds exposed to win d Industry Gable E Jalified building des a 1.5x4 MT20 unles es continuous bott	in the p d (norm nd Deta signer as s other om chor	lane of the tru al to the face) ils as applicat s per ANSI/TF wise indicated d bearing.	uss), ble, Pl 1. d.		•	PT-SA	NUMI PE-20010	JISSO7

Gable studs spaced at 2-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

6)

May 2,2024

TCDL BCLL		10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES		BC WB	0.59 0.44	Vert(CT) Horz(CT)	-0.13 0.02	32-33 26	>999 n/a	180 n/a	MT18HS	197/144	
BCDL		10.0	Code	IRC20	18/TPI2014	Matrix-S							Weight: 252 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS	2x4 SP N 2x4 SP N 2x3 SPF I 2x3 SPF I Left 2x4 S No.2 4- Structural 5-5-9 oc p 2-0-0 oc p Rigid ceil bracing. 1 Row at 1 Brace a 52, 53, 55 (size)	0.2 0.2 No.2 No.2 SP No.2 4 2-10 I wood she purlins, exc purlins (10- ing directly midpt at Jt(s): 49, 5, 56, 57 2=11-0-0, 39=0-3-8, 45=11-0-(48=11-0-(4-2-10, Right 2x4 SP athing directly applie pept -0-0 max.): 12-16. applied or 6-0-0 oc 12-38, 13-50 26=0-3-8, 38=0-3-8, 43=11-0-0, 44=11-0 0, 46=11-0-0, 47=11-0	d or E -0, 0-0,	TOP CHORD	$\begin{array}{c} 1\text{-}2\text{=}0/16, 2\text{-}3\text{=}-23\\ 6\text{-}7\text{=}-124/210, 7\text{-}8\\ 9\text{-}10\text{=}-56/161, 10\text{-}\\ 11\text{-}12\text{=}-67/193, 12\\ 13\text{-}14\text{=}-38/181, 14\\ 15\text{-}16\text{=}-38/181, 14\\ 17\text{-}18\text{=}-387/209, 2\\ 19\text{-}20\text{=}-476/130, 2\\ 21\text{-}22\text{=}-937/255, 2\\ 25\text{-}26\text{=}-1080/162\\ 2\text{-}48\text{=}-145/176, 4\\ 46\text{-}47\text{=}-148/179, 4\\ 46\text{-}47\text{=}-148/179, 4\\ 42\text{-}43\text{=}-148/179, 4\\ 42\text{-}43\text{=}-148/179, 4\\ 39\text{-}41\text{=}-155/249, 2\\ 37\text{-}38\text{=}03/12, 36\text{-}3\\ 31\text{-}32\text{-}62/780, 32\\ 31\text{-}32\text{-}62/780, 32\\ 29\text{-}30\text{=}-62/780, 26\\ 27\text{-}28\text{=}-62/780, 26\\ 27\text{-}28\text{=}-62/780, 26\\ \end{array}$	7/258, 3 =-91/175 2-13=-37, 11=-62/1 2-13=-37, 1-15=-38, 3-17=-35, 8-19=-4; 0-21=-8 2-25=-9 7-48=-14, 12-25=-9 7-48=-14, 12-25=-9 7-48=-14, 13-44=-1, 13-44=		,	NOTE 1) U th th V: K K K K K K K K K K K K K	S hbalance is design ind: ASC asd=91m ≥=1.00; C tterior (1) 0-0-0, Interior (1) 0-0-	E 7-16 ph; TC at. II; E re and 4-0-0 t prior (1) nterior t expo C for r hown; I gned fo tuds ea rrd Indu qualifie equate re MT2	live loads have b i; Vult=115mph (DL=6.0psf; BCD Exp C; Enclosed C-C Exterior(2E o 14-0-0, Exteric) 19-0-0 to 22-0- (1) 27-0-0 to 36- osed; end vertice members and for Lumber DOL=1. or wind loads in f xposed to wind (ustry Gable End d building desigr e drainage to pre- 20 plates unless	een considered 3-second gust) L=6.0psf; h=35 ; MWFRS (enve) -0-10-8 to 4-0 r(2R) 14-0-0 to 0, Exterior(2R) 0-0 zone; canti al left and right rces & MWFRS 60 plate grip the plane of the normal to the fa Details as appli- her as per ANSI vent water ponc otherwise indic	I for ift; elope) I-0, 22-0-0 ilever i for ⇒ truss ace), iicable, I/TPI 1. ding. cated.
FORCES	Max Horiz Max Uplift Max Grav (Ib) - Max Tension	2=275 (LC 2=-82 (LC 38=-195 (43=-150 (45=-10 (L 47=-96 (L 2=141 (LC 38=1657 43=373 (L 45=133 (L 47=209 (L timum Com	C 11) C 8), 26=-165 (LC 13) LC 9), 39=-462 (LC 2 LC 12), 44=-10 (LC 2 C 9), 46=-49 (LC 12) C 12), 48=-89 (LC 12) C 20), 26=821 (LC 12) (LC 1), 39=214 (LC 25) C 19), 44=54 (LC 25) C 25), 46=156 (LC 1 LC 19), 48=194 (LC 1) pression/Maximum	, (25), (2), (2), (2), (2), (2), (2), (2), (3), (3), (3), (3), (3), (3), (3), (3	VEBS	8-45=-95/13, 8-54 52-53=-25/87, 41- 12-50=-271/23, 5(38-51=-311/27, 38 49-55=-836/149, ' 16-34=-189/578, 2 56-57=-646/284, 8 20-58=-668/295, 2 14-49=-114/57, 3 13-50=-215/94, 38 11-52=-80/75, 42- 10-53=-216/131, 4 9-54=-93/56, 44-5 6-47=-169/120, 3 15-55=-69/48, 36- 33-56=-39/58, 18- 19-58=0/67, 31-58 22-28=-93/92, 25-	=-30/88, 52=-36/8) -51=-46 3-49=-87/ 6-55=-7! 44-56=-6 57-58=-6: (0-30=-1: -49=-90) -51=-17! 52=-58/6 13-53=-2: 4=-80/52 4=-80/52 4=-80/52 57=-103, 3=-35/47, 27=0/91	53-5435/88 53-5435/88 2/103, 0/156, 95/145, 56/290, 22/274, 27/316, /63, 9/93, 15, 39/140, 2,7-46=-126/7. 113, 1,17-56=-57/ 85, 32-57=-62 ,21-29=-17/38	, 102, 2, 67, 2/68, 1,	6) A 7) G	l plates a	s space	4 MT20 unless c ed at 2-0-0 oc.	MISSOLUT MISSOLUT T.M. IER 1018807	ted.

May 2,2024

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality** Criteria, and DSE-22 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
leb	Truce		011/	DIV	Boof UB Lot 162	AS NOTED FOR PLAN REVIEW
300	TTUSS	Truss Type	Qly	Fiy	R001 - HR L01 163	DEVELOPMENT SERVICES
P240417-01	C01	Piggyback Base Structural Gable	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springh	ill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Apr 26 2	024 Print: 8.0	630 S Apr 26	2024 MiTek Industries, Inc. T	

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 82 lb uplift at joint 2, 10 lb uplift at joint 45, 195 lb uplift at joint 38, 165 lb uplift at joint 26, 462 lb uplift at joint 39, 150 lb uplift at joint 43, 10 lb uplift at joint 44, 49 lb uplift at joint 46, 96 Ib uplift at joint 47 and 89 lb uplift at joint 48.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

ID:ZPE42GuJG2XQkNP0IKB?1ezkXCH-RfC?PsB70Hq3NSgPqnL8w3uITXbeKWrCDbwJ920?

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

														- [RELEA	ASE FOR CON	ISTRUCTION
Job		Truss		Т	russ Ty	ре		Q	ty	Ply	Ro	of - HR L	ot 163		AS NO DEV)TED FOR PL /ELOPMENT (AN REVIEW
P240417-01	I	C02		F	Piggyba	ick Base		2		1	Jot	b Refere	nce (opi	tional	LEE	16525 E'S SUMMIT, I	7562 VISSOURI
Premier Building	Supply (Springh	nill, KS), S	Spring Hills, KS	- 66083,			Run: 8.63 S	Apr 26 2024	Print: 8.6	630 S Apr 2	26 2024	4 MiTek In	dustries,	Inc. Tu	e Apr 3 1 12	106/2	2024
							ID:CHDmS	BtTjmRKi7v_	C9xqvzk	XEU-RfC?I	PsB70	Hq3NSgP	qnL8w3u	ITXbG	WrCDolf 425C	Pf 0 07 2	
	-0-′	10-8	5-5-6		10-10-	4 1	4-0-0 16-2	2-12	22-0-0	00	-	28-	10-12			36-0-0	———————————————————————————————————————
	0-1	10-8	0-0-0		J-4-14	+ 3	-1-12 2-2	-12	5-9-4	F	X6.	0-1	0-12			7-1-4	
							7	8 2 <u>3</u>	24	N -7	9						
ΤT																	
						6						\nearrow	3	x6 💊			
				a a	1 <u>2</u> 22	2		//					\searrow	10			
, o	ŵ		3x(6 4				//		/			×	\sim	11		
10-3- 0.3-	က် တ			5					9/								
,			4		<								.//			12	
			3		\mathscr{N}		$\mathbb{N} \parallel / /$		/			/	₽∕) (B)	
																- A	13
±3°, ±		/f		8			<u> </u>								8		
C	-	3x6 II		21 1.5x4 u		20	19 4x8=	187	25	16 1 3x6=	5				14 1.5x4 u		3x6 II
								3x6=									
		—	5-5-6		10-10-	4 1	4-1-4 16-2	2-12	21-10-	12		28-	10-12			36-0-0	
Scale = 1:67.9			0-0-0		5-4-14	+	3-3-0 2-	0-0-12	5-7-4			7-	0-0			7-1-4	
Plate Offsets (X, Y): [2:0-3-	13,Edge], [7:0-2-8,0-1 I	1-13], [9:0-3	3-0,0-2-3	3], [13:0-3-13	Edge]										
Loading		(psf)	Spacing	2· 1	-0-0		CSI	0.69	DEFL	-	in D OZ	(loc)	l/defl ⊳ooo	L/d	PLATES	GRIP	1
TCDL		10.0	Lumber DC	DL 1	.15		BC	0.03	Vert(CT) -(0.14	13-14	>999	180	WIT20	244/190	'
BCLL BCDL		0.0* 10.0	Rep Stress Code	Incr Y	′ES RC2018/	/TPI2014	WB Matrix-S	0.63	Horz(CT) (0.02	13	n/a	n/a	Weight: 207	lb FT = 20	%
LUMBER					2)	Wind: ASCE	7-16; Vult=11	5mph (3-se	cond gu	ist)							
TOP CHORD	2x4 SP No.2	2				Vasd=91mpl Ke=1.00; Ca	n; TCDL=6.0p t. II: Exp C: E	sf; BCDL=6 hclosed: MV	.0psf; h= /FRS (e	=35ft; envelope)							
WEBS	2x3 SPF No.	.2 *Exce	ept* 17-9:2x4	SP No.2		exterior zone	and C-C Ext	erior(2E) -0-	10-8 to	4-1-8,							
SLIDER	No.2 4-2-1	10.2 3	5-2-11, Right	284 36		19-0-0, Inter	or (1) 19-0-0	to 22-0-0, E	xterior(2	R) 22-0-0)						
BRACING TOP CHORD	Structural w	ood shea	athing directly	y applied or	r	left and right	exposed ; en	d vertical lef	t and rig	iht							
	5-1-9 oc pur 2-0-0 oc pur	lins, exc	ept 0-0 max) [.] 7-	9		exposed;C-C reactions she	own; Lumber	and forces	& MWF late grip	RS for							
BOT CHORD	Rigid ceiling	directly	applied or 10)-0-0 oc	3)	DOL=1.60 Provide adeo	quate drainag	e to prevent	water p	onding.							
	6-0-0 oc bra	icing: 19	-20,17-19.		4) 5)	All plates are	3x4 MT20 ur	less otherw	ise india	cated.							
REACTIONS	1 Row at mi (size) 2=	apt =0-3-8, 1	7-19, 9-17, 1 13= Mechanic	1-15, 8-17 cal,	6)	chord live loa	ad nonconcuri	ent with any	other li	ve loads.	£						
	17 Max Horiz 2	7=0-3-8, =275 (LC	20=0-3-8 2 9)		0)	on the bottor	n chord in all	areas where	a recta	ngle	1						
	Max Uplift 2=	=-89 (LC	(12), 13=-17	6 (LC 13),		chord and ar	by 2-00-00 wid	e will fit bet bers, with B	ween th CDL = 1	e bottom 0.0psf.							
	Max Grav 2	=486 (LC	C 25), 13=909	9 (LC 20),	7)	Bearings are capacity of 5	assumed to l 65 psi, Joint 2	be: Joint 2 S 0 SP No.2 0	P No.2 crushing	crushing capacity							
FORCES	17 (Ib) - Maxim	1=13/1 (um Com	(LC 2), 20=88 pression/Ma	kimum		of 565 psi, Jopsi.	oint 17 SP No	.2 crushing	capacity	of 565							
TOP CHORD	Tension 1-2=0/16. 2-	·5=-450/*	125. 5-6=-45/	322.	8)	Refer to gird	er(s) for truss	to truss con		S.						m	
	6-7=-59/260 9-11=-505/2	, 7-8=-44 39, 11-1	4/209, 8-9=-3 3=-1120/246	32/231,	9)	bearing plate	e capable of w	ithstanding	89 lb up	lift at join	t				FE OF	MISS	D
BOT CHORD	2-21=-161/4	11, 20-2	21=-161/411,			Ib uplift at joi	nt 20.	יה ווס טות מי	i joint 13	3 and 198	i			B	AN SCC	NTT M	(a)
	15-17=-14/3	54, 14-1	5=-78/825,	,	10)	This truss is International	designed in a Residential C	ccordance v ode section	vith the 2 s R502.	2018 11.1 and				Bre	SE SE	VIER	N.N
WEBS	13-14=-78/8 7-19=-153/0	25), 9-17=-9	929/125, 9-1	5=-90/691,	11)	R802.10.2 a Graphical pu	nd referenced	standard Al ation does n	NSI/TPI ot depic	1. t the size	•				the	An	
	11-15=-748/ 8-17=-451/1	′288, 11- 48, 8-19	-14=0/309,)=-9/149, 6-2(0=-389/128	3,	or the orienta	ation of the pu	rlin along th	e top ar	nd/or			-		NU	MBER	TER
NOTES	6-19=-23/92	, 5-20=-	573/214, 5-2	1=0/237	LO	AD CASE(S)	Standard							N	PE-20	01018807	IZA
1) Unbalance	ed roof live loa	ds have	been conside	ered for										V	1283	ENC	N B
this design	1.														ALL I	AL	7
															I	May 2,202	24

MiTek[®] 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

														RELEASE	E FOR CONS	STRUCTION
Job		Truss		Tru	uss Typ	be		Qty	Ply	Ro	of - HR	Lot 163		AS NOTI DEVEL	ED FOR PLA OPMENT S	AN REVIEW
P240417-01		C03		Pig	ggyba	ck Base		3	1	Jol	b Refere	nce (op	tional	LEE'S	165257 SUMMIT, M	563 ISSOURI
Premier Building	Supply (Spring	nill, KS), S	pring Hills, KS -	66083,		Run: 8.6 ID:wv5pl	3 S Apr 26 202 EcMn41RuwMu	24 Print: 8 WX0N86	.630 S Apr szkXBg-Rf0	26 202 2?PsB7	4 MiTek lı 70Hq3NSg	ndustries, gPqnL8w;	Inc. Tu 3ulTXt	ie Apr 3 1) 1324 GKWrCD97 J 2JC?	06/2	2024
	-0-1	10-8	574	1	064	14.0.0.1	6 5 12	22.0			20	10 12		26	:00	
	0-1	0-8	5-7-4	4	4-11-0	3-5-12	2-5-12	5-6	-4	+	6-	10-12		7	-1-4	
						5x5 -	= 2x4 II			6x6、						
ТТ						7 /开	823 823	24 ⊠		9 A						
				12 81		2x4 II					\searrow					
				3)	x6 🖋	6						× 3	8x6			
				3x4 ≉			\\	,				\sim	× I	3x4		
	þ		0.1					\$	/					11		
10-	0	34	3X4 🖌	4											3x4	
		0,	3				$\ \ _{2}$	//				\checkmark	·		12 3x4	
			Æ				\mathbb{W}									•
<u></u>	[∞] [∞] ² 1 ²				_		26 ₁₇ •									13
⊥ °,-,°	3° [⊥] [∕	2v6		21		20	5x8=			16		15		14		3x6 II
		570 1		3x4=		5x8=	2x4 II		:	3x8=		3x6=		1.5x4 ॥		
		I	5-7-4	, 1	10-7-8	16-3-8	16-4-8	21-10	-12	1	28-	-10-12		36	6-0-0	
Scale = 1:67.3			5-7-4	1	5-0-4	5-8-0	0-1-0	5-6-	4	1	7	'-0-0		7	-1-4	
Plate Offsets (2	X, Y): [2:0-3-	13,Edge]	, [7:0-2-8,0-1-	13], [9:0-3-0	0,0-2-3], [13:0-3-13,Edge], [18:	0-3-8,0-2-4],	[19:0-2-	8,0-2-8]							
Loading		(psf)	Spacing	2-0	-0	CSI		DEF	L	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof) TCDL		25.0 10.0	Plate Grip D Lumber DOL	OL 1.19 . 1.19	5 5	TC BC	0.7 0.5	0 Vert 5 Vert	(LL) - (CT) -	0.08 0.14	18-19 13-14	>999 >999	240 180	MT20	244/190	
BCLL		0.0* 10.0	Rep Stress I	ncr YES	S 2018/	WB TPI2014 Matrix-S	0.8	7 Horz	(CT)	0.02	13	n/a	n/a	Weight [,] 199 lb	FT - 20%	6
		10.0	0000		2)	Wind: ASCE 7-16: Vult	-115mph (3-9	econd a	ust)					Wolght. 100 lb	11 - 207	<u> </u>
TOP CHORD	2x4 SP No.2	2) *Eveen	* 00 0 0 47.0		_)	Vasd=91mph; TCDL=6.	0psf; BCDL=	6.0psf; h	=35ft;							
BUICHORD	2x4 SP N0.2 No.2	z Excep	[20-6,8-17:2)	(3 SPF		exterior zone and C-C E	Enclosed, N Exterior(2E) -	0-10-8 to	4-1-8,							
WEBS SLIDER	2x3 SPF No Left 2x4 SP	.2 No.2 3	8-3-13, Right 2	x4 SP		19-0-0, Interior (1) 19-0	-0, Exterior(2) -0 to 22-0-0,	Exterior	-0 to 2R) 22-0-	0						
BRACING	No.2 4-2-	10				to 27-0-0, Interior (1) 27 left and right exposed ;	-0-0 to 36-0- end vertical l	0 zone; c eft and ri	cantilever ght							
TOP CHORD	Structural w	ood shea	athing directly	applied or		exposed;C-C for memb reactions shown; Lumb	ers and force er DOL=1.60	s & MWI plate gri	FRS for p							
	2-0-0 oc pu	rlins (10-	0-0 max.): 7-9		3)	DOL=1.60 Provide adequate drain	ade to preve	t water i	oondina.							
BOLCHORD	bracing. Ex	cept:	applied or 6-0	-0 oc	4)	This truss has been des	signed for a 1	0.0 psf b	ottom							
1 Row at midpt WEBS	t 8-18 1 Row at mi	dpt	7-18, 9-18, 11	-16	5)	* This truss has been de	esigned for a	live load	of 20.0ps	sf						
REACTIONS	(size) 2 Max Horiz 2	=0-3-8, 1 -275 (I C	3= Mechanica	al, 18=0-3-8		3-06-00 tall by 2-00-00	wide will fit b	re a recta etween ti	angle he bottom							
	Max Uplift 2	=-140 (LC	C 12), 13=-194	4 (LC 13),	6)	chord and any other me Bearings are assumed	mbers, with to be: Joint 2	BCDL = ⁻ SP No.2	10.0psf. crushing							
	Max Grav 2	8=-157 (I =684 (LC	C 12) C 19), 13=851	(LC 20),		capacity of 565 psi, Joir of 565 psi.	nt 18 SP No.2	crushin	g capacity	/						
FORCES	1 (Ib) - Maxim	8=2023 (um Com	LC 2) pression/Maxi	mum	7) 8)	Refer to girder(s) for tru Provide mechanical cor	ss to truss co	onnection	NS. Etruss to							
TOP CHORD	Tension 1-2=0/16_2-	4=-748/1	160 4-6=-389/	184	0)	bearing plate capable o	f withstanding	g 140 lb	uplift at						an	
	6-7=-370/31	4, 7-8=0	/385, 8-9=0/38	36,	0)	13. This terres is desire addit								SE OF I	MISSO	D
BOT CHORD	2-21=-202/7	03, 20-2	1=-42/5, 19-20)=0/79,	9)	International Residentia	l Code section	with the ons R502	2018 1.11.1 and				B	SCOT	тм	N.
	8-18=-369/1	74, 16-1	9=-188/211, 1 7=-64/0,	7-18=0/88,	10)	R802.10.2 and reference Graphical purlin represe	ed standard entation does	ANSI/TP not depi	I 1. ct the size	Э			8	SEV	IER .	1-18
WEBS	14-16=-104/ 4-21=0/174,	/746, 13- _19-21=-	14=-104/746 187/735, 4-19	=-434/173,		or the orientation of the bottom chord.	purlin along	the top a	nd/or				8*		0	1*8
	7-18=-878/1 9-16=-112/6	84, 16-1 32, 11-1	8=0/284, 9-18 6=-754/287,	=-935/132,	LOA	AD CASE(S) Standard							82	Scottom	in	eag
NOTES	11-14=0/308	8, 7-19=-	308/961										Ø	PE-2001	018807	EB -
1) Unbalance	ed roof live loa	ds have	been consider	ed for									Y	essi-	ENG	A A
this design	1.													CONA	L L'	7
														Ma	ay 2,202	4
																· · · · · · · · · · · · · · · · · · ·

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

										RELEA	SE FOR CON	ISTRUCTION
Job	Truss		Truss Type		Qty	Ply		Roof - HR	Lot 163	AS NO	TED FOR PL	AN REVIEW
P240417-01	C04		Piggyback Bas	e	4	1		Job Refere	nce (option:	LEE	16525 SUMMIT, I	7564 MISSOURI
Premier Building St	upply (Springhill, KS),	Spring Hills, KS - 66083,		Run: 8.63 S A	pr 26 2024 I	Print: 8.630 S	Apr 26 2	2024 MiTek li	ndustries, Inc.	Tue Apr 3 1 22	/06/2	2024
				ID:IK_W3TeCg	SLOAVSWINL	IYYIZKXBJ-R	IC (PSB)	runqansgro	INF8M3011 XDC	WICDOI/54256?		
	-0-10-8	5-5-0	5-1-4	<u>14-0-0 16-5-12</u> 3-5-12 2-5-12	2	<u>2-0-0</u> 5-6-4		28-1	0-12	- 3	6-0-0 '-1-4	36-10-8
	0-10-8		014	5x5= 2	2x4 u	504	5x5、	0 10	712	,	1 4	0-10-8
				7	824	25 ब ष	9					
ΤT		1	<u>2</u>	A								
		0	3x6 2 6					\mathcal{N}		3x4		
			23						26	4x6		
e o		3x4 ø								191		
10-0-		3x4 • 4									3×4	
	3x4 🖌	•									12	
	;	3		´ \\					*/		3x4	*
	2		20		19						- A	13
			21	27 <u>9</u> 28 ₁₈	•				10	45		
	4x6=	22 4x8=	2x4 I	5x8=	ov∕l		17 4x12=		16 3x6=	15 1.5x4 ॥		4x6 II
		5-5-0	10-7-8	5x8= 4	. 2	2-1-4		28-1	0-12	. 3	6-0-0	
Seele - 1:66.2		5-5-0	5-2-8	5-9-0	5	-8-12		6-9	9-8	-	'-1-4	
Plate Offsets (X,	Y): [2:Edge,0-2-1]], [7:0-2-8,0-1-13], [10	:0-2-5,Edge], [13:0-	-3-5,0-1-3], [19:0-3-8,0)-2-4], [20:	0-2-12,0-2-	8], [22:	0-2-8,0-2-0]			,
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	i	n (loc)	l/defl L/	PLATES	GRIP	
TCLL (roof) TCDI	25.0 10.0	Plate Grip DOL	1.15 1.15	TC BC	0.66 0.81	Vert(LL) Vert(CT)	-0.2 -0.3	0 19-20 5 19-20	>999 24) MT20	244/190)
BCLL	0.0*	Rep Stress Incr	YES	WB	0.69	Horz(CT)	0.1	4 13	n/a n/	A Woight: 201	IN ET 20	0/
	10.0	Code	1) Unhala	nced roof live loads ba		onsidered f	for			Weight. 201	10 FT = 20	78
TOP CHORD 2	2x4 SP No.2 *Exce	pt* 5-7,9-10:2x4 SP	this des	sign.	anh (2 coc	ond quet)						
BOT CHORD	2x4 SP No.2 *Exce	pt* 21-6,8-18:2x3 SPF	Vasd=9	01mph; TCDL=6.0psf;	BCDL=6.0)psf; h=35ft;	;					
WEBS 2	NO.2 2x3 SPF No.2		exterior	zone and C-C Exterio	osed; iviv or(2E) -0-1	0-8 to 4-1-8	ope) 3,					
SLIDER L	_eft 2x4 SP No.2 - 4-2-10	3-2-8, Right 2x4 SP N	lo.2 Interior 19-0-0,	(1) 4-1-8 to 14-0-0, E Interior (1) 19-0-0 to 2	xterior(2R) 22-0-0, Ex	14-0-0 to terior(2R) 22	2-0-0					
BRACING TOP CHORD	Structural wood she	eathing directly applie	d or left and	-0, Interior (1) 27-0-0 t right exposed ; end v	o 36-10-8 ertical left	zone; cantil and right	lever					
:	2-11-6 oc purlins, e 2-0-0 oc purlins (3-	except 11-11 max.): 7-9.	expose reaction	d;C-C for members ar าร shown; Lumber DO	nd forces & L=1.60 pla	& MWFRS fo ate grip	or					
BOT CHORD	Rigid ceiling directly	y applied or 10-0-0 oc	DOL=1 3) Provide	.60 adequate drainage to	prevent v	vater pondir	ng.					
1 Row at midnt	6-0-0 oc bracing: 17 8-19	7-18.	 This tru chord li 	ss has been designed ve load nonconcurren	l for a 10.0 t with any) psf bottom other live lo) ads.					
WEBS	1 Row at midpt	11-17	5) * This t on the l	russ has been designe pottom chord in all are	ed for a liv as where	e load of 20 a rectangle	.0psf					
REACTIONS (S	ax Horiz $2=0-3-8$, $2=277$ (L	13=0-3-8 .C 11)	3-06-00 chord a) tall by 2-00-00 wide v and any other member	will fit betw s. with BC	veen the bot	ttom sf.					
M	ax Uplift 2=-225 (l ax Grav 2=1744 (LC 12), 13=-225 (LC ² (LC 2), 13=1733 (LC 2	(3) 6) All bear	rings are assumed to I	be SP No.	2 crushing						
FORCES	(lb) - Maximum Cor Tension	mpression/Maximum	7) Provide	mechanical connection	on (by oth	ers) of truss	to at					
TOP CHORD	1-2=0/16, 2-4=-255 5-7=-2497/549 7-8	7/353, 4-6=-2494/412	, joint 2 a	and 225 lb uplift at join	it 13.	th the 2019				OF	MISS	D.
8	3-9=-1763/404, 9-1	1=-1947/394, 12 14-0/16	Interna	tional Residential Cod	e sections	R502.11.1	and		3	ATE		P.S
BOT CHORD	2-22=-316/2131, 21	I-22=-21/59, 20-21=0/	92, 9) Graphic	cal purlin representation	andard AN	of depict the	size		Å	SCC SCC	TT M.	12-8
	b-20=-369/230, 19- 18-19=0/95, 8-19=-	20=-123/1680, 330/173, 17-18=-19/2	9, or the of bottom	rientation of the purlir chord.	along the	top and/or			X	★ SE		*
WEBS 4	15-17=-187/1953, 1 4-22=-264/127, 20-	13-15=-187/1953 22=-301/2131,	LOAD CAS	E(S) Standard						oett	- Contraction	rien
	4-20=-100/143, 7-1 17-19=-29/1540, 9-	9=-180/476, 19=-187/537,							8	PE-200)1018807	IEB
9	9-17=-112/393, 11- 11-15=0/292, 7-20=	17=-670/284, =-321/1093								Str.		S A
NOTES										DON	AL EF	7

May 2,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

													RELEA	SE FOR CONS	TRUCTION
Job		Truss			Truss T	уре	Qt	/ Ply	F	Roof - HR	Lot 163		AS NO DEVI	TED FOR PLAI	N REVIEW
P240417-01		C05			Piggyb	ack Base	1	1		Job Refere	ence (opt	ional	LEE'	1652575 S SUMMIT, MIS	65 SSOURI
Premier Building	Supply (Springhi	ill, KS), S	pring Hills, K	(S - 66083	,	Run: 8. ID:Do4	63 S Apr 26 2024	Print: 8.630 S	Apr 26 20	024 MiTek lı 70Ha3NSal	ndustries, Papl 8w3i	Inc. Tu		06/2	024
	0 10 9	_									4.1201100				26 10 8
	0-10-8	<u>5</u>	-5-0 -5-0		<u>10-6-4</u> 5-1-4	3-5-12	<u> </u>)		<u>26-10-4</u> 4-10-4		<u>31</u> 4	-3-4	<u>36-0-0</u> 4-8-12	0-10-8
						6x6 🍃			6x6👟						
тт						7	25 ⊠ ⊠	26 ¤ ¤	8						
Scale = 1:66.4	1 2 4xt	3 3x4 ¢ 3 6= 5 5 5 ;(0-2-1],	-5-0 -5-0 [7:0-3-0,0-	3x4 = 4 23 4x8= - - 2-3], [8:0	12 3x6 = 24 5 5 10 -7-8 5-2-8 -3-0,0-2-3]	4x6 # 6 21 22 ÷ 20 4x4= 3x4 # 14-1-4 	19 27 4x6= 21-10- 7-9-8 5-4,0-3-8], [22:E	2 Ige,0-2-8], [18 3x8= +	5 26-9-0 4-10-4 3,0-2-0]	4x6, 9 16 2x4 x10=	31 4	3x4 3x6 10 11 15 5x5= -3-4 -6-4	3x6. 12 36-0-0 4-8-12	13 14 4x6=
Loading		(psf) 25.0	Spacing Plate Gri	n DOI	2-0-0 1 15	CSI	0.71	DEFL	ir -0.23	n (loc) 3 18-20	l/defl ⊳999	L/d 240	PLATES	GRIP 244/190	
TCDL		10.0	Lumber [1.15	BC	0.96	Vert(CT)	-0.40) 18-20	>999	180	11120	210,100	
BCDL		10.0	Code	55 11101	IRC201	B/TPI2014 Matrix-S	0.97		0.10		11/a	n/a	Weight: 195 I	p FT = 20%	
	0:4 0D N= 0	*=	* 7 0.0.4	00 0 4000	1)	Unbalanced roof live lo	ads have been	considered	or						
TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 2.0E 2x4 SP No.2 No.2 2x3 SPF No. Left 2x4 SP N 2-9-8 Structural wc 2-9-12 oc purl Rigid ceiling bracing, Ex 2-2-0 oc purl Rigid ceiling bracing, Ex 2-0 oc purl Rigid ceiling Rigid ce	*Except *Except 2 No.2 3 ood shea rlins, exx ins (4-7- directly cept: cing: 20- directly cept: co-3-8, 1 -2277 (LC -225 (LC -2	* 7-8:2x4 : * 22-6,9-1 -2-8, Righ -2-8, Righ -2-8, Righ -10 max.): applied or -21. 6-20, 7-18 3=0-3-8 : 11) C 12), 13= C 2), 13=1 pression/k /354, 4-6= -1725/391 =-2606/41 3-14=0/16 23=-1/115 1=-201/21 *-18=-161/ 1/484, 15- 3=-323/20 -820/279, =-186/187 -738/256, 5=-327/10	SP 2400F 6:2x3 SP t 2x4 SP ctly applie 7-8. 10-0-0 or -2255 (LC 7745 (LC 7745 (LC 4aximum -2554/421 5, 2138, 16=-9/10 78, 5, 5,	= 2) F No.2 ed or C 3) 4) 5) 13) 2) 6) 7) 0, 7) 8) 9) 5, LC	this design. Wind: ASCE 7-16; Vul Vasd=91mph; TCDL= Ke=1.00; Cat. II; Exp C exterior zone and C-C Interior (1) 4-1-8 to 14- 19-0-0, Interior (1) 19- to 26-10-4, Interior (1) cantilever left and righr right exposed; C-C for 1 for reactions shown; Li DOL=1.60 Provide adequate drai This truss has been de chord live load noncon * This truss is been de chord live load noncon * This truss is been de chord and any other m All bearings are assur capacity of 565 psi. Provide mechanical coc bearing plate capable joint 2 and 225 lb uplift This truss is designed International Residenti R802.10.2 and referen Graphical purlin repres or the orientation of the bottom chord.	=115mph (3-sec .0psf; BCDL=6. ;; Enclosed; MW Exterior(2E) -0- 0-0, Exterior(2R) -0 to 22-0-0, Ex 26-10-4 to 36-10 exposed; end v members and fo umber DOL=1.60 mage to prevent ' signed for a 10. current with any lesigned for a liv all areas where wide will fit betv embers, with BC end to be SP No. nnection (by oth of withstanding 2 at joint 13. in accordance w al Code sections ced standard AN entation does no e purlin along the d	ond gust) psf; h=35ft FRS (envel 0-8 to 4-1-6 14-0-0 to terior(2R) 2 -8 zone; ertical left a ces & MWF plate grip vater pondii psf bottom other live lc e load of 2C a rectangle veen the boi DL = 10.0p 2 crushing ers) of truss 25 lb uplift a th the 2018 R502.11.1 ISI/TPI 1. t depict the top and/or	2-0-0 ind iRS ads. .0psf tom sf. and size		ل		STATE OF STATE OF SCO SE NUR PE-200	MISSOLUTI M. VIER 1018807	
NOTES													M	lay 2,2024	ļ

D23 BEFORE USE. promonent, not into the overall permanent bracing ng the le from Truss Plate Institute (www.tpinst.org) nents.com) MITEK-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

									RELEASE	FOR CONSTRUCTION
Job	Truss		Truss Type	(Qty Ply	/ R	oof - HR Lot 16	3	AS NOTE DEVEL	D FOR PLAN REVIEW OPMENT SERVICES
P240417-01	C06		Piggyback Base	e	5 1	Jo	ob Reference (a	ptional	LEE'S	I65257566 SUMMIT, MISSOURI
Premier Building	Supply (Springhill, KS), S	Spring Hills, KS - 66083,		Run: 8.63 S Apr 26 202	4 Print: 8.630 S	S Apr 26 202	24 MiTek Industrie	s, Inc. T	ie Apr 3 1) 1324)6/2024
	2-4	1-12		ID.INO WPIGWS TO AT IS	Dozoogrizkad	03-1109731		wount	GRWICD01/3420C?	26.10.9
	-0-10-8 	<u>8-1-12</u> 5-9-0	<u> </u>	<u> </u>	<u>22-0-0</u> 4-0-0	<u>26-10</u> 4-10)-4 3 ⁻ -4 4	1-5-6 -7-2	<u> </u>	0-10-8
	2-4	1-12		5x5= 3x4=	5x!	5=				
T	T		12 8 [⊤] 3x4 ≠			,				
			3x6 🖌				4x6			
			6 ²⁴		\mathbb{N}		10 3x	6 ≈ 11		
-3-3	0-0-0	4×6	THE	\$	(A)				3x4	
10	₩T1	4x0 # 8HS 5x8 #							12 3x6.	
		3 4							13	
	Q_ 1 ²				<u> </u>	4	9 18			14 45 PT
\perp		23	22 21 4x4= 3x6=	20 27 4x8=	28 19 4x	9 (8=	♀⊥17 —		16	
	6x12	2 ≈ 7x8=					3x4 II 5x10=		3x8=	4x6=
	2- 0-3-8	-3-8 8-1-12	13-10-12	22-1-4		26-9	-0 . 31	-5-6	36-0-0	
0	0-3-8	5-10-4	5-9-0	8-2-8	4	4-7-	12 4	-8-6	4-6-10	
Plate Offsets (2	X, Y): [2:0-1-15,0-4-3	3], [4:0-2-0,0-1-8], [7:0)-2-8,0-1-13], [9:0-2-8,0-	1-13], [14:Edge,0-2-1], [1	6:0-2-8,0-1-8	8]				
Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc) l/defl	L/d	PLATES	GRIP
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC 0.84 BC 0.96	4 Vert(LL) 6 Vert(CT)	-0.31 -0.53	19-20 >999 19-20 >807	240 180	MT20 MT18HS	244/190 244/190
BCLL	0.0*	Rep Stress Incr	YES	WB 0.93	B Horz(CT)	0.29	14 n/a	n/a	Weight: 101 lb	ET - 20%
	10.0	Code	1) Unbalanced	roof live loads have been		for			weight: 191 lb	F1 = 20%
TOP CHORD	2x4 SP No.2 *Excep	ot* 1-5,11-15:2x4 SP	this design.	7 16: Vult 115mpb (2 o		101				
BOT CHORD	2400F 2.0E 2x4 SP 1650F 1.5E	*Except* 10-17:2x3 \$	SPF Vasd=91mpt	r; TCDL=6.0psf; BCDL=0	6.0psf; h=35f	it;				
WEBS	No.2, 17-14,21-18:2 2x3 SPF No.2	x4 SP No.2	Ke=1.00; Ca exterior zone	and C-C Exterior(2E) -(WFRS (enve)-10-8 to 4-1-	lope) ·8,				
SLIDER	Left 2x4 SP No.2 No.2 2-8-4	1-11-11, Right 2x4 S	Interior (1) 4- 19-0-0, Interi	·1-8 to 14-0-0, Exterior(2 or (1) 19-0-0 to 22-0-0, E	R) 14-0-0 to Exterior(2R) 2	22-0-0				
BRACING	Structural wood she	athing directly applie	to 26-10-4, lr cantilever lef	nterior (1) 26-10-4 to 36- t and right exposed ; end	10-8 zone; d vertical left a	and				
	2-5-3 oc purlins, exc 2-0-0 oc purlins (4-4	cept 1-5 max): 7-9	right exposed for reactions	d;C-C for members and f shown; Lumber DOL=1.	forces & MWI 60 plate grip	FRS				
BOT CHORD	Rigid ceiling directly	applied or 2-2-0 oc	DOL=1.60 3) Provide adeo	quate drainage to preven	it water pondi	ing.				
WEBS	1 Row at midpt	4-22, 6-20, 8-20, 8-1	 9 4) All plates are 5) This truss has 	MT20 plates unless oth s been designed for a 10	erwise indica	ated. n				
REACTIONS	(size) 2=0-3-8, Max Horiz 2=-278 (L	14=0-3-8 .C 10)	chord live loa	ad nonconcurrent with an	ny other live lo	oads. 0 Onsf				
	Max Uplift 2=-226 (L Max Grav 2=1750 (I	.C 12), 14=-224 (LC ⁻ LC 2), 14=1742 (LC 2	(13) on the bottor	n chord in all areas when	e a rectangle	ettom				
FORCES	(lb) - Maximum Com Tension	npression/Maximum	chord and ar	by other members, with E	BCDL = 10.0p	osf.				
TOP CHORD	1-2=0/12, 2-4=-5248	8/803, 4-6=-2775/409 1701/390	, crushing cap	acity of 565 psi, Joint 14	SP No.2 cru	ishing				
	8-9=-1709/386, 9-10)=-2155/410, 2 14- 2560/246	8) Bearing at jo	int(s) 2 considers paralle	l to grain valu	ue			OF	ALL ALL
	10-12=-2602/413, 1	2-14=-2360/346,	designer sho	PI 1 angle to grain form uld verify capacity of bea	ula. Building aring surface.	•		4	TE	115SOL
BOT CHORD	2-23=-820/4519, 22 20-22=-300/2406, 1	-23=-710/3847, 9-20=-98/1756,	 Provide mec bearing plate 	hanical connection (by o capable of withstanding	thers) of trus: 1 226 lb uplift	s to at		A	SCOTT	M. TEN
	18-19=-162/2136, 1 10-18=-49/460, 16-1	7-18=0/88, 17=-6/120,	joint 2 and 22 10) This truss is	24 lb uplift at joint 14. designed in accordance	with the 2018	8		-		
WEBS	14-16=-200/1993 4-23=-290/2047, 4-2	22=-1460/416,	International R802.10.2 a	Residential Code sectiond referenced standard	ns R502.11.1 ANSI/TPI 1.	l and			colts.	Strand Sta
	6-22=-4/449, 6-20=- 9-19=-110/905, 10-1	882/303, 7-20=-93/8	34, 11) Graphical pu	rlin representation does	not depict the	e size r		A	PE-2001	018807
	8-20=-322/211, 8-19 12-16=-307/105, 16	9=-306/211, -18=-198/1915,	bottom chore	I. Standard				Ŷ	ATS	GITA
NOTES	12-18=-85/218		LOAD CASE(S)						ONA	LET
									un	

May 2,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

										RELEAS	E FOR CONSTRUCTION
Job	Trus	S	Truss Type		Qt	y Ply	R	oof - HR L	ot 163.	AS NOT	ED FOR PLAN REVIEW
P240417-01	C07		Piggyback E	Base	2	1	Jc	ob Referei	nce (option	LEE'S	I65257567 SUMMIT, MISSOURI
Premier Building	Supply (Springhill, KS)	, Spring Hills, KS - 66083,	•	Run: 8.63	S Apr 26 2024	Print: 8.630 S Ap	26 202	24 MiTek In	dustries, Inc.	Tue Apr 3 1 122	06/2024
	2	2-4-12		ID:EcfbY3	UUQI1ryVwBwK	1jrGzkXAE-RfC?	PsB70	Hq3NSgPqi	1L8w3ulTXb	GI WrCDoi794z98?f	
	-0-10-8	8-1-12	1 5	<u>4-0-0 18-</u> -10-4 4-(<u>-0-0 2</u>	<u>2-0-0</u> 23-5-1	12	29-6-8		<u>36-0-0</u> 6-5-8	36-10-8
	0-10-8	-4-12		5x5=	4x4=	5x10	2	0012		000	0-10-8
-	- -		8 ¹²	7	25 8 26	9	2x4 I				
			3x4 ≠				10				
			3x6 🖌					\sim	3x4	,	
			_ 6 ²⁴					2	7 3x6		
3-3	0-0-		5	× /	//		a		11	!	
-10-	0	4x6 #								3x4	
		3×8 ≠								13 3x4	、
	0	3					10	_			
		23	22	21 20 28	3	29 9 19 ₁₇					
	- O P B 6×	(6 🍬	3x4=	3x6= 4x8=		6x6=			16 2×4-		⊠ 3x6 ⊪
		6x6=				5x8=			384=		
		_16 12				2	2x4 II				
	0-3-	2-3-8 8 <u>8-1-12</u>	13	-10-12	22-1-4	-23 23-1-1	4-8 2	29-6-8		36-0-0	1
Scale – 1:74 6	0-3-6	8 5-10-4 2-0-0	1 5	5-9-0	8-2-8	1-0-8	-12	6-2-0	I	6-5-8	I
Plate Offsets (X, Y): [2:0-3-3,0-1-1	11], [7:0-2-8,0-1-13], [1	4:0-3-13,Edge],	[18:0-3-12,0-2-4], [19	9:0-2-8,0-3-0]						
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl L/	d PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15 1.15	TC	0.83	Vert(LL)	-0.20	19-20	>999 24	0 MT20	244/190
BCLL	0.0*	Rep Stress Incr	YES	WB	0.95	Horz(CT)	0.12	13-20	n/a n/	a	
BCDL	10.0	Code	IRC2018/TPI2	2014 Matrix-S						Weight: 205 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2		1) Unb this	alanced roof live loac design.	ls have been o	considered for					
BOT CHORD	2x4 SP No.2 *Exce	ept* 10-17:2x3 SPF No	.2 2) Win Vas	d: ASCE 7-16; Vult=1 d=91mph: TCDL=6.0	15mph (3-sec psf: BCDL=6.0	cond gust) Døsf: h=35ft:					
SLIDER	Left 2x4 SP No.2 -	- 1-11-11, Right 2x4 S	- - Ke=	1.00; Cat. II; Exp C; E	Enclosed; MW	FRS (envelope	e)				
BRACING	NO.2 3-10-0		Inte	rior (1) 4-1-8 to 14-0-0	0, Exterior(2R) 14-0-0 to	0				
TOP CHORD	Structural wood sh 2-2-0 oc purlins, e	neathing directly applie xcept	d or 19-0 to 2	7-0-0, Interior (1) 19-0-0	0-0 to 36-10-8	zone; cantileve	er				
BOT CHORD	2-0-0 oc purlins (6 Rigid ceiling direct	-0-0 max.): 7-9.	left a	and right exposed ; ei osed;C-C for member	nd vertical left	and right & MWFRS for					
1 Row at midn	bracing. Except:	.,	read DOI	rtions shown; Lumber ₋=1.60	DOL=1.60 pl	ate grip					
WEBS	1 Row at midpt	6-20, 7-20, 9-18, 8-1	9 3) Prov 4) This	vide adequate drainag	ge to prevent voned for a 10.0	water ponding.					
REACTIONS	(size) 2=0-3-8 Max Horiz 2=278 (, 14=0-3-8, 18=0-3-8 LC 11)	choi	d live load nonconcu	rrent with any	other live load	S.				
	Max Uplift 2=-142 18=-241	(LC 12), 14=-163 (LC ⁻ I (LC 12)	13), 0) 11	he bottom chord in all	l areas where	a rectangle	-				
	Max Grav 2=1004	(LC 19), 14=466 (LC 2	:6), choi	d and any other men	nbers, with BC	DL = 10.0psf.	n				
FORCES	(lb) - Maximum Co	mpression/Maximum	6) All b capa	earings are assumed acity of 565 psi.	to be SP No.	2 crushing					
TOP CHORD	Tension 1-2=0/12, 2-4=-30	02/553, 4-6=-1271/209	, 7) Bea	ring at joint(s) 2 cons a ANSI/TPI 1 angle to	iders parallel 1 o grain formula	o grain value a. Building					~
	6-7=-725/210, 7-8: 9-10=-102/678, 10	=-510/231, 8-9=-36/32 -12=-95/761.	5, desi	gner should verify ca	pacity of bear	ng surface.				OF	MISCH
	12-14=-373/268, 1	4-15=0/16	bea	ring plate capable of	withstanding 1	42 lb uplift at				ANTE	-350 C
	20-22=-197/1162,	19-20=-98/318,	joint 18.	2, 163 ib uplift at joir	n 14 and 241	id uplift at joint			E	SCOT	TM. TR
	18-19=-282/232, 1 10-18=-375/243, 1	7-18=0/98, 6-17=-60/38,	9) This Inte	truss is designed in a rnational Residential	accordance w Code sections	ith the 2018 R502.11.1 an	d		B	★	
WEBS	14-16=-182/228 4-23=-201/1265.4	-22=-1130/380.	R80	2.10.2 and reference	d standard AN	ISI/TPI 1.	'e		J.	att.	Service
	6-22=0/387, 6-20= 9-19=-66/1187	-799/295, 7-20=-28/15	4, or th	ne orientation of the p	urlin along the	top and/or			V	PE 2001	DER 018807
	16-18=-124/250, 1	2-18=-692/245,	bott LOAD C	ASE(S) Standard						11-2001	
NOTES	12-16=0/288, 8-20	=-160/840, 8-19=-988/	214							SIONA	L ENUS
-										Con	and a

May 2,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Mitek 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434, 1200 / Mitek-US.com

									RELEASE	FOR CONSTRUCTION	_
Job	Truss		Truss Type		Qty	Ply	Roof - HR Lo	ot 163	AS NOTE DEVEL	D FOR PLAN REVIEW	
P240417-0 ⁻	1 C08		Piggyback Base		5	1	Job Referen	ce (optional	LEE'S	SUMMIT, MISSOURI	
Premier Building	g Supply (Springhill, KS), S	pring Hills, KS - 66083,		Run: 8.63 S Apr 26 ID:EcfbY3UUQI1ry\	2024 Print: 8. /wBwK1jrGzk/	630 S Apr 26 (AE-RfC?PsB	2024 MiTek Inc 370Hq3NSqPqn	dustries, Inc. T L8w3uITXbGł	ie Apr 3(1);12:25 WrCDoj794z39:1	06/2024	
		2-4-12 -0-10-8				-1-12 0		oo 7 40 34	36-10-8 36-0-0 -10-2		
		0-10-8	6-3-0 5-4-	4 4-0-0	4-0-0 1-	1-12 6	9-6-0 6-4-4	4-1-12 1	-2-6 0-10-8		
		2-4-12		5x5= 4x4	1= 5×	4x6 _€ 5=			1-1-14		
	тт		10	7 <u>31</u> 8	32 (8 8 1	9 N 10					
			8 ⁻² 3x4 - 3x6 -		\mathbb{N}		3x4	*			
	m Q		6 ³⁰ 5				33 3x6 11	•			
	10-0-	4x6 🛩	The A			×		2	4x12		
		3x8 \$	_					4x	6 . 13		
	e de la companya de l	1 2 26	25	24 34 23	35 2		20	0	14 15 ₁₆ 9⊤		
	T T.S.T.	6x6 II	4x4=	4x8= 3x6=	= 5×	² 21ªª :8=	3x4	′ <u>+</u> ⊥18 [€] 4=	17 3x6 II		
		6x6= ⊣6				3x4= 1.5x4 I		5x10=	3x4=		
		12				1.5x4 ။ 25-1∿∳ፇ⁄	4 u				
		2-3-8			00	23-6-41.5x4 23-4-8	4 u	0.4	36-0-0		
		0-3-8 H	8-7-12 13-10- 6-4-4 5-3-	12 17-6-8 0 3-7-12	22-1-4 23 4-6-12 1	-1-12 25-3 -0-8 0-1-1	⁻⁸ 29-6-0 12 4-2-8	<u>33-6-8</u> 34 4-0-8 1-	-10-2 		
Scale = 1:90.3	(X X)· [2:0-0-11 0-3-4]	2-0-0	0-2-8 0-1-13] [15:0-3-8	Edgel		0-2-12			1-1-14		_
	(nsf)	Snacing	2-0-0		DEFI	1-7-0	in (loc)	l/defl L/d		GRIP	-
TCLL (roof)	(p3) 25.0	Plate Grip DOL	1.15	TC	0.88 Vert(- LL) -0.2	20 22-24	>999 240	MT20	244/190	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.90 Horz	(CT) -0.3	13 15	n/a n/a			
	10.0	Code	WEBS	4-26204/1265 4-2'	51221/426		9) This t	truss is desig	weight: 207 lb	FI = 20%	-
TOP CHORD	2x4 SP No.2	+* 13-18-2v3 SDF No	2	3-25=0/385, 6-24=-77 9-22=-225/69 13-20:	78/290, 7-24 =-536/143	, =-24/131,	Intern R802	ational Resi	dential Code sect	ions R502.11.1 and ANSI/TPL1	
WEBS	2x3 SPF No.2 *Exce 27-21 28-29 10-21-2	pt* v4 SP No 2	.2	3-24=-157/869, 8-22= 10-22=-135/1331, 10	=-1049/210, -21=-1825/2	44.	10) Grapi	hical purlin re	epresentation doe	s not depict the size	
SLIDER	Left 2x4 SP No.2 1 No 2 1-3-6	-11-11, Right 2x4 SF	5	12-21=-669/240, 12-2 14-17=-194/54, 17-1	20=0/292, 9=-50/298,	,	bottom chord. LOAD CASE(S) Standard				
	Structural wood shee	athing directly applied		14-19=-78/338							
	2-1-4 oc purlins, exc 2-0-0 oc purlins (6-0	ept	1) Unbalanced	roof live loads have t	been conside	ered for					
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc	2) Wind: ASCE Vasd=91mp	7-16; Vult=115mph (n: TCDI =6 0psf: BCI	(3-second gu	ust) =35ft					
WEBS	1 Row at midpt	4-25, 6-24, 7-24, 9-2 8-22 10-21	2, Ke=1.00; Ca exterior zone	t. II; Exp C; Enclosed and C-C Exterior(2)	t; MWFRS (6 E) -0-10-8 to	envelope) 4-1-8.					
REACTIONS	(size) 2=0-3-8, 1	5=0-3-8, 21=0-3-8	Interior (1) 4 19-0-0, Inter	1-8 to 14-0-0, Exterio or (1) 19-0-0 to 22-0	or(2R) 14-0- -0, Exterior(2	0 to 2R) 22-0-0					
	Max Uplift 2=-141 (Lo	C 12), 15=-105 (LC 1	3), to 27-0-0, In left and right	erior (1) 27-0-0 to 36 exposed ; end vertic	-10-8 zone; al left and rig	cantilever ght					
	Max Grav 2=982 (LC 21=2256 (C 27), 15=392 (LC 26), exposed;C-0 reactions sh	; for members and fo own; Lumber DOL=1	rces & MWF .60 plate grip	RS for					
FORCES	(lb) - Maximum Com	pression/Maximum	DOL=1.60 3) Provide ade	quate drainage to pre	event water p	onding.					
TOP CHORD	1-2=0/12, 2-4=-2948 6-7=-687/191 7-84	/579, 4-6=-1194/178 482/209 8-9=0/425	4) This truss ha	s been designed for ad nonconcurrent wit	a 10.0 psf b h any other l	ottom ive loads.			OF M	ALL SIN	
	9-10=0/430, 10-12=- 13-14=-713/200, 14-	93/797, 12-13=-190/ 15=-395/98, 15-16=0	262, 5) * This truss I 0/16 on the bottor	as been designed fo n chord in all areas v	or a live load where a recta	of 20.0psf ingle		A	ATE	830°C	
BOT CHORD	2-26=-640/2658, 25- 24-25=-243/1042, 22	26=-559/2250, 2-24=-205/307,	3-06-00 tall I chord and a	y 2-00-00 wide will fi y other members, w	it between th ith BCDL = 1	e bottom 0.0psf.		B	SCOTT	ER TA	
	21-22=-566/287, 20- 19-20=-127/612, 18-	21=-195/186, 19=0/29, 13-19=-12/	280, Z) All bearings capacity of 5	are assumed to be S 65 psi.	rallel to arrain	ing		Ar		2 *	
	17-18=-9/27, 15-17=	-47/248	/) Bearing at jo using ANSI/	PI 1 angle to grain fr	ormula. Buil	ding		<u> </u>	gall Run	Server	,
			8) Provide med	hanical connection (t	bearing sur by others) of	truss to		Ø	OF PE-2001	018807	
			joint 2, 105	o uplift at joint 15 and	ang 141 lb t 1 236 lb uplif	at joint		X	SSIONA	LENG	
			۷۱.						Aller Aller	2 2024	
									Ma	iy ∠,∠∪∠4	

MiTek[®] 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

													RELE	ASE FOR COM	NSTRUCTION
Job		Truss			Truss Type		Qty	Ply	R	loof - HR	Lot 163		AS N DE	OTED FOR PL	AN REVIEW
P240417-01	1	C09			Piggyback Bas	e Supported Gab	e 1	1	Jo	ob Refere	ence (op	tional	LE	16525 E'S SUMMIT, I	7569 MISSOURI
Premier Building	g Supply (Sprin	ghill, KS), S	Spring Hills, KS	- 66083,		Run: 8.63 S	Apr 26 2024 Prin	it: 8.630 S Ap	or 26 20	24 MiTek I	ndustries,	, Inc. T	ie Apr 3(1)(3)	206/2	2024
						ID.ewiAceOs	rybrooqnizjilot		5:1307	Unquivogr	- qriiLow3u		WICD01-0429C		
	-0-10	-8		14-0-	-0		22-0-0		-			36	6-0-0		36-10-8
	0-10-	8		14-0-	-0	5.5	8-0-0		EVE			14	1-0-0		0-10-8
						5x5= 11 _1	2 _ 13 _	14	5x5= 15						
ТТ										16					
					- /										
				12 81	9						17				
					8							18			
0-3-3		3	3x6 🛩	7			⊠		3				19		3x4👟
		3x4 🍫	6							×				20 3x6	
		4 ⁵	T I											21/22	
	2	3													23
															25
	3	3x6 u 42	41	40	39 38	37 36 3	5 34	33 3	32	31	30	29	28 2	27 26	3x6 II
						D	s= 36-0-0	= cxc							
Scale = 1:66.3	I														
Plate Offsets (X, Y): [2:0-3	3-13,Edge], [11:0-2-8,0)-1-13], [1	5:0-2-8,0-1-13], [2	4:0-3-13,Edge], [33	0-2-8,0-3-0], [3	35:0-2-8,0-3	3-0]						
Loading		(psf)	Spacing		2-0-0	CSI		EFL	in r/s	(loc)	l/defl	L/d	PLATES	GRIP	`
TCDL (1001)		25.0 10.0	Lumber D	DOL DL	1.15	BC	0.08 V 0.05 V	ert(CT)	n/a n/a	-	n/a n/a	999	IMT20	244/190	J
BCLL BCDL		0.0* 10.0	Rep Stress Code	s Incr	YES IRC2018/TPI2014	WB Matrix-S	0.18 H	orz(CT)	0.01	24	n/a	n/a	Weight: 209	lb FT = 20	0%
LUMBER						Max Grav 2=22	5 (LC 20), 24=	=171 (LC 1)),	1) Unt	balanced	d roof li	ive loads have	e been consid	dered for
TOP CHORD BOT CHORD	2x4 SP No 2x4 SP No	0.2 0.2				26=2 28=1	204 (LC 20), 27 89 (LC 20), 29	/=187 (LC 2)=189 (LC 2	20), 20),	this 2) Win	design. nd: ASCE	E 7-16;	; Vult=115mpl	h (3-second g	gust)
OTHERS SLIDER	2x3 SPF N Left 2x4 SI	lo.2 P No.2 1	1-6-4, Right :	2x4 SP No	0.2	30=1 32=1	89 (LC 20), 31 67 (LC 22), 33	=196 (LC 2 3=187 (LC 2	20), 25),	Vas Ke=	sd=91mp =1.00; Ca	oh; TCI at. II; E	DL=6.0psf; B0 Exp C; Enclos	CDL=6.0psf; I ed; MWFRS	h=35ft; (envelope)
BRACING	1-6-4					34=1 36=1	82 (LC 25), 35 86 (LC 22), 37	5=187 (LC 2 '=199 (LC 1	26), 19),	exte Exte	erior zon erior(2N)	e and) 4-0-0	C-C Corner(3 to 14-0-0, Cc	E) -0-10-8 to prner(3R) 14-	4-0-0, 0-0 to
TOP CHORD	Structural	wood she	athing direct	ly applied	or	38=1 40=1	88 (LC 19), 39 90 (LC 19), 41	=189 (LC [·] =185 (LC [·]	19), 19),	19-0 to 2	0-0, Exte 7-0-0, E	erior(21 xterior	N) 19-0-0 to 2 (2N) 27-0-0 to	2-0-0, Corne 0 36-10-8 zor	r(3R) 22-0-0 ne;
	6-0-0 oc p 2-0-0 oc p	urlins, exc urlins (6-0	ept -0 max.): 11	-15.	FORCES	(lb) Maximum	20 (LC 19)	Maximum	- //	can righ	tilever le	eft and	right exposed	d; end vertica	al left and MWFRS
BOI CHORD	Rigid ceilir bracing.	ng directly	applied or 1	0-0-0 oc	TOD CHOD					for I	reactions	s show	n; Lumber D	DL=1.60 plate	e grip
WEBS	1 Row at r	nidpt	15-32, 14-3 12-35, 11-3	3, 13-34, 6, 10-37,	TOP CHOR	6-7=-172/168, ²	7-8=-155/162,	-198/190, 8-9=-141/1	90,	3) Tru	uss desig	gned fo	or wind loads i	in the plane of	of the truss
REACTIONS	(size)	2=36-0-0,	16-31 24=36-0-0,	26=36-0-0),	9-10=-138/232 11-12=-153/25	10-11=-177/2), 12-13=-154/	73, 251,		see	Standa	rd Indu	istry Gable Er	nd Details as	applicable,
	· · ·	27=36-0-0 30=36-0-0), 28=36-0-0), 31=36-0-0	, 29=36-0- , 32=36-0-	-0, -0.	13-14=-154/25 15-16=-177/27	1, 14-15=-153/ 3, 16-17=-138/	250, 209,		4) Pro	vide ade	equate	drainage to p	revent water	ponding.
		33=36-0-0 36=36-0-0), 34=36-0-0), 37=36-0-0	, 35=36-0- 38=36-0-	-0, -0	17-18=-99/141 20-22=-113/77	18-19=-69/75 22-24=-202/1	, 19-20=-84 13, 24-25=	4/54, 0/16	5) All p 6) Gab	plates ar ple requi	re 1.5x	4 MT20 unles ntinuous botto	s otherwise i om chord bea	ndicated. Iring.
		39=36-0-0 42=36-0-0	0, 40=36-0-0	, 41=36-0·	_{0,} BOT CHOR	D 2-42=-95/196, 40-41=-95/196	41-42=-95/196 39-40=-95/19	, 6,		 7) Gat 8) This 	ole studs s truss h	s space as bee	ed at 2-0-0 oc en designed fo	or a 10.0 psf I	bottom
	Max Horiz	2=-277 (L	C 10)			38-39=-95/196 36-37=-95/196	37-38=-95/19 34-36=-95/19	6, 6,		cho	ord live lo	bad noi	nconcurrent w	vith any other	live loads.
	Max Oplin	2=-100 (L 26=-118 (LC 8), 24=-20	-73 (LC 9),	3),	32-34=-95/196 30-31=-95/196	31-32=-95/19 29-30=-95/19	6, 6					A 01	F MISC	D
		28=-79 (L 30=-82 (L	C 13), 29=-7 C 13), 31=-7	7 (LC 13) 6 (LC 13)	,	28-29=-95/196	27-28=-95/19	6, 6				6	ALC		NS
		33=-43 (L 35=-42 (L	C 9), 34=-41 C 9), 36=-15	(LC 8), 5 (LC 9),	WEBS	15-32=-128/7,	14-33=-148/67	, ,				A	S/ SC	OTT M. EVIER	1.5 8
		37=-78 (L 39=-77 (L	C 12), 38=-8 C 12), 40=-8	81 (LC 12) 80 (LC 12)	,	11-36=-147/45	10-37=-158/1	3, 03,				Ø		c 0	*8
		41=-71 (L	C 12), 42=-1	32 (LC 12	2)	9-38=-148/104 7-40=-149/103	8-39=-149/10 6-41=-147/96	I, ,			-		foll	MIDER	yes
						4-42=-173/151 17-30=-149/10	16-31=-156/1 6, 18-29=-149/	00, 101,				N.	PE-20	01018807	1EA
						19-28=-149/10 22-26=-158/13	3, 20-27=-149/ 3	98,				Y	Sister of	EN	S A
					NOTES								and the	VAL DI	7
														May 2,20	24

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTeke® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, reaction and bracing of trusses and truss systems, see **ANSI/TP1 Quility Criteria**, and **DSB-22** available form Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
loh	Trues	Truss Type	Otv	DIV	Roof HR Lot 162	AS NOTED FOR PLAN REVIEW
566	11035	Tuss Type	Quy	i iy	KOOI - HIK LOL 103	DEVELOPMENT SERVICES
P240417-01	C09	Piggyback Base Supported Gable	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springh	ill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Apr 26 2	024 Print: 8.	630 S Apr 26	2024 MiTek Industries, Inc. T	

* This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint 2, 20 lb uplift at joint 24, 43 lb uplift at joint 33, 41 lb uplift at joint 34, 42 lb uplift at joint 35, 15 lb uplift at joint 36, 78 lb uplift at joint 37, 81 lb uplift at joint 38, 77 lb uplift at joint 39, 80 lb uplift at joint 40, 71 lb uplift at joint 41, 132 lb uplift at joint 42, 76 lb uplift at joint 31, 82 lb uplift at joint 30, 77 lb uplift at joint 29, 79 lb uplift at joint 28, 73 lb uplift at joint 27 and 118 lb uplift at joint 26.

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

ID:ewrAceOsPybP0GqmZjh3U?zkXV?-RfC?PsB70Hq3NSgPqnL8w3uITXbC

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 163	
P240417-01	CJ01	Diagonal Hip Girder	2	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
	-					

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. The Apr 3 162 06/2 22 ID:LawX8EJT2pjPgBnQfl3QiXzkXV6-RfC?PsB70Hq3NSgPqnL8w3uITXbGK VrCDoi7.4301 06/2 22

Scale = 1:41.9

Plate Offsets (X, Y): [7:0-2-8,0-2-12]

					1								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.22	Vert(LL)	0.00	6	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.12	Vert(CT)	-0.01	5-6	>999	180		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.09	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-P							Weight: 31 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce Structural wood she: 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	pt* 7-2:2x4 SP No.2 athing directly applie cept end verticals. applied or 9-11-10 o	6; 2. 7; ed or 8; oc 9;	Provide mec bearing plate 7 and 94 lb (This truss is International R802.10.2 a "NAILED" in per NDS gui In the LOAD of the truss a	chanical connecti e capable of with uplift at joint 5. designed in acco Residential Coo nd referenced st dicates Girder: 3 delines. CASE(S) sectio are noted as from	ion (by oth istanding 9 ordance wi de sections candard AN I-10d (0.14 on, loads ap ot (E) or bac	ers) of truss 4 lb uplift at th the 2018 R502.11.1 a (SI/TPI 1. 8" x 3") toe- oplied to the ck (B)	to joint and nails face					
REACTIONS	(size) 5= Mecha Max Horiz 7=159 (LC Max Uplift 5=-94 (LC Max Grav 5=258 (LC	nical, 7=0-7-0 C 9) S 9), 7=-94 (LC 12) C 1), 7=378 (LC 1)	L: 1)	OAD CASE(S) Dead + Ro Plate Increa Uniform Lo	Standard of Live (balanced ase=1.15 ads (lb/ft)	d): Lumber	Increase=1.	.15,					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		Vert: 1-2	=-70, 2-4=-70, 5	-7=-20							
TOP CHORD	2-7=-352/278, 1-2=0 3-4=-214/102, 4-5=-	0/41, 2-3=-353/123, 90/117											
BOT CHORD	6-7=-353/181, 5-6=-2	257/300											
WEBS	3-6=0/121, 3-5=-290	/247, 2-6=-63/329											
NOTES													
1) Wind: AS Vasd=91r Ke=1.00; exterior zo Exterior(2 right expo	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner (3) 2R) 5-10-0 to 6-1-10 zor osed ; end vertical left a	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop) -1-2-14 to 5-10-0, he; cantilever left an nd right exposed;C-	be) d C								Å	ATE OF I	MISSOL

- for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom 2)
- chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 7 SP No.2 crushing 4) capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.

Chesterfield MO 63017 314.434.1200 / MiTek-US.com

SCOTT M.

SEVIER

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 163	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
P240417-01	J01	Jack-Open	4	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MITek Industries, Inc. The Apr 3 06/2024 ID:2zUS610PiRhpoVypFidojTzkXVU-RfC?PsB70Hq3NSgPqnL8w3uITXbGK vrCDoi7

2-4-15

Scale = 1:28

Plate Offsets (X, Y): [2:0-1-8,0-0-7]

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.12	Vert(LL)	0.00	2-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	0.00	2-5	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDI	10.0	Code	IRC2018/TPI201	Matrix-P		(01)					Weight [.] 12 lb	FT = 20%
	10.0	0000		Manxi				-			Wolght. 12 lb	11-2070
LUMBER			6) Provide	mechanical connectio	n (by oth	ers) of truss t	0					
TOP CHORD	2x4 SP No.2		bearing	plate capable of withs	tanding 6	7 lb uplift at j	oint					
BOT CHORD	2x4 SP No.2		4 and 1	6 lb uplift at joint 2.								
SLIDER	Left 2x4 SP No.2	1-5-9	This tru	ss is designed in accor	rdance w	ith the 2018						
BRACING	International Residential Code sections R502.11.1 and											
TOP CHORD	CHORD Structural wood sheathing directly applied or R802.10.2 and referenced standard ANSI/TPI 1.											
	2-4-15 oc purlins.	5	LOAD CAS	E(S) Standard								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc										
	bracing.											
REACTIONS	(size) 2=0-5-8, 4	4= Mechanical, 5=										
	Mechanic	al										
	Max Horiz 2=92 (LC	12)										
	Max Uplift 2=-16 (LC	C 12), 4=-67 (LC 12)										
	Max Grav 2=178 (L0	C 1), 4=80 (LC 19), 5	=47									
	(LC 3)											
FORCES	(lb) - Maximum Com	npression/Maximum										
	Tension	_										
TOP CHORD	1-2=0/16, 2-4=-78/4	7										
BOT CHORD	2-5=0/0											
NOTES												
1) Wind: ASC	CE 7-16; Vult=115mph	n (3-second gust)										
Vasd=91n	nph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;										
Ke=1.00;	Cat. II; Exp C; Enclose	ed; MWFRS (envelop	e)									The
exterior zo	one and C-C Exterior(2	2E) zone; cantilever le	əft								OFA	ALC D
and right e	exposed ; end vertical	left and right									ARE	115S
exposed;C	C-C for members and f	orces & MWFRS for								A		1.5
reactions	shown; Lumber DOL=	1.60 plate grip								A	SCOT	TM. TRA
DOL=1.60)									B	SEVI	FR VV
2) This truss	has been designed fo	r a 10.0 psf bottom								84		
chord live	load nonconcurrent w	ith any other live load	ls.							20		0
3) " I NIS trus	is has been designed t	for a live load of 20.0	psr							WK.	I TT.	: Doullo
	Iom chord in all areas	fit botwoon the botto	~						-		NUM	
3-00-00 ta	any other members	in between the Dotto	111							N	PE-2001	018807
 A) Bearings (any other members.	oint 2 SP No 2 cruchi	ing							N	The second second	12A
canacity o	are assumed to be., J	UNIT 2 OF NULZ CIUSIN	ing							Y	C'So.	G'H
5) Refer to a	irder(s) for truss to tru	iss connections									UN ONA	LEFA
o, itelei lo g											Qui	Tara

May 2,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
loh	Truce		011	DIV	Boof HB Lot 162	AS NOTED FOR PLAN REVIEW
300	Truss	Truss Type	Quy	гіу	R001 - HR L01 103	DEVELOPMENTSERVICES
P240417-01	J02	Jack-Open	7	1	Job Reference (optional)	LEE'S SUMMIT, MISSOURI
		-	-			

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Scale = 1:30.7

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. The Apr 3 11 328 06/2 9 24 ID:TY9bk33I?M3NfzhOwrBVL5zkXVR-RfC?PsB70Hq3NSgPqnL8w3uITXbG WrCDoi 94292 ft

	4-6-0	
0-1-8 0-0-7]		

Plate Offsets (X, Y): [2:0-1-8,	0-0-7]												
Loading TCLL (roof) TCDL BCLL BCDL	(2 1 1	psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.42 0.24 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.05 -0.01	(loc) 2-5 2-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP N Structural woo 4-6-0 oc purlin Rigid ceiling of bracing. (size) 2=(Me Max Horiz 2= Max Uplift 2=-	lo.2 2 od shea ns. directly a D-5-8, 4 chanica 153 (LC 15 (LC	-8-10 applied or 10-0-0 oc = Mechanical, 5= al 12) 12), 4=-121 (LC 12)	6 7 d or L	 Provide mec bearing plate joint 4 and 12 This truss is International R802.10.2 at OAD CASE(S) 	hanical connection e capable of withst 5 lb uplift at joint 2 designed in accor Residential Code nd referenced star Standard	n (by oth anding 1 dance wi sections ndard AN	ers) of truss t 21 lb uplift at ith the 2018 i R502.11.1 a ISI/TPI 1.	ind					
FORCES TOP CHORD BOT CHORD	Max Grav 2=2 (LC (lb) - Maximur Tension 1-2=0/16, 2-4 2-5=0/0	267 (LC 2 3) m Comp =-131/8	: 1), 4=163 (LC 19), pression/Maximum :0	5=89										
 NoTES Wind: ASC Vasd=91n Ke=1.00; (exterior zc Interior (z) exposed; members Lumber D This truss chord live * This truss on the bot 3-06-00 ta chord and Bearings a capacity o Refer to g 	CE 7-16; Vult=11 nph; TCDL=6.0p Cat. II; Exp C; E one and C-C Ext 4 -1-8 to 4-5-4 z end vertical left and forces & MN OL=1.60 plate g has been desig load nonconcur s has been desig tom chord in all II by 2-00-00 wir any other mem are assumed to f 565 psi. irder(s) for truss	15mph osf; BCI nclosed terior(2E zone; cz and rig WFRS f yrip DOI ned for rent wit igned for areas v de will f bers. be: , Jo	(3-second gust) DL=6.0psf; h=35ft; 4; MWFRS (envelope 2) -0-10-8 to 4-1-8, antilever left and righ th exposed;C-C for or reactions shown; _=1.60 a 10.0 psf bottom h any other live load or a live load of 20.0p where a rectangle it between the botton int 2 SP No.2 crushi as connections.	e) ht ls. osf m									STATE OF I SCOT SEV. NUM PE-2001	MISSOLA I M. ER BER 018807

May 2,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

								RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - H	R Lot 163	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
P240417-01	LG01	Lay-In Gable		1	1	Job Refe	erence (optional	165257573 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,		Run: 8.63 S Apr 26 2 ID:LJP6aQ6o2aap8a	2024 Print: _99hFRW:	8.630 S Apr kzkXVN-RfC3	26 2024 MiTe PsB70Hq3NS	k Industries, Inc. T SgPqnL8w3uITXbC	1e Apr 3062006/2024 KWrCD0942007i
			<u>5-10-7</u> 5-10-7		<u>1'</u> 5	<u>1-6-0</u> -7-9	11-8-14	
				4x4 =				
				4				
	T							

11-8-14

Scale = 1:45.9

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.08 0.04 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 58 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1-11-8-1	athing directly applied applied or 10-0-0 oc	2) I or 14	Wind: ASCE Vasd=91mpi Ke=1.00; Ca exterior zone Interior (1) 5 10-10-10, In left and right exposed;C-C reactions sh DOL=1.60	F-16; Vult=115mp h; TCDL=6.0psf; E tt. II; Exp C; Enclo- e and C-C Exterior -3-12 to 5-10-10, I terior (1) 10-10-10 e exposed ; end ve C for members and own; Lumber DOL	oh (3-sec SCDL=6. sed; MW (2E) 0-3 Exterior(2 to 11-5- rtical left d forces 2 =1.60 pl	cond gust) Opsf; h=35ft; IFRS (envelo -12 to 5-3-12 2R) 5-10-10 t 9 zone; canti and right & MWFRS fo ate grip	pe) o lever r					
REACTIONS	(size) 1=11-8-1 9=11-8-1 Max Horiz 1=197 (LC Max Uplift 1=-82 (LC 8=-168 (L 11=-167 (Max Grav 1=190 (LC 8=220 (LC 10=142 (L 12=219 (L)	4, /=11-8-14, 8=11-8- 4, 10=11-8-14, 14, 12=11-8-14 C 9) C 10), 7=-57 (LC 11), C 13), 9=-165 (LC 13) LC 12), 12=-168 (LC C 12), 7=174 (LC 13), C 20), 9=225 (LC 20), C C 22), 11=226 (LC 15 LC 21)	14, 3)), 4) 12) 6) 7) 9), 8)	Truss desig only. For stu see Standard or consult qu All plates ard Gable requir Gable studs This truss ha chord live loo * This truss h	ned for wind loads uds exposed to wind d Industry Gable E ualified building de e 1.5x4 MT20 unle res continuous bot spaced at 0-0-0 o as been designed ad nonconcurrent has been designed	in the p nd (norm and Deta signer a ss other tom chor c. for a 10.1 with any d for a liv	lane of the tru al to the face ils as applica s per ANSI/T wise indicate d bearing. 0 psf bottom other live loa e load of 20.	uss), ble, PI 1. d. ds. Dpsf					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		on the botton 3-06-00 tall I	m chord in all area by 2-00-00 wide w	s where ill fit betv	a rectangle veen the bott	om					
TOP CHORD	1-2=-264/171, 2-3=- 4-5=-135/119, 5-6=-	150/105, 3-4=-135/12 125/71, 6-7=-243/171	9)	All bearings	are assumed to be	e SP No.	2 crushing						
BOT CHORD	1-12=-129/187, 11-1 10-11=-130/188, 9-1 8-9=-130/188, 7-8=-	2=-130/188, 0=-130/188, 129/187	10) Provide mec bearing plate 1, 57 lb unlif	chanical connection chanical connection capable of withst t at joint 7, 168 lb	n (by oth anding 8 uplift at i	ers) of truss 32 lb uplift at j pint 12, 167 l	to oint				SE OF	MISSO
WEBS	2-12=-218/185, 3-11 4-10=-114/77, 5-9=-	=-221/192, 221/191, 6-8=-218/18	5	uplift at joint joint 8.	11, 165 lb uplift at	joint 9 a	ind 168 lb up	lift at			A	ST SCOT	т м.
NOTES 1) Unbalance	ed roof live loads have	been considered for	11) This truss is International	designed in accor Residential Code	dance w sections	ith the 2018 8 R502.11.1 a	ind			Pr-	SEV	

R802.10.2 and referenced standard ANSI/TPI 1.

 \vdash

 Unbalanced roof live loads have b this design.

> WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

LOAD CASE(S) Standard

E

May 2,2024

NUMBER PE-2001018807

SSIONAL

oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
CLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.22	Vert(LL)	n/a	-	n/a	999	MT20	197/144	
CDL	10.0	Lumber DOL	1.15		BC	0.11	Vert(CT)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.03	Horz(CT)	0.00	4	n/a	n/a			
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-P							Weight: 25 lb	FT = 20%	
UMBER OP CHORD IOT CHORD THERS IRACING OP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=6-6-2, 4 Max Horiz 2=-69 (LC Max Uplift 2=-55 (LC Max Grav 2=200 (LC (LC 1)	athing directly applie applied or 10-0-0 oc =6-6-2, 6=6-6-2 10) 12), 4=-64 (LC 13) 5 1), 4=200 (LC 1), 6	7) d or 9) : 10 :=251	* This truss h on the bottor 3-06-00 tall b chord and ar All bearings a capacity of 5 Provide mec bearing plate 2 and 64 lb u) This truss is International R802.10.2 ar) See Standar Detail for Co	as been designe n chord in all area y 2-00-00 wide w yo other members are assumed to b 65 psi. nanical connectio capable of withs plift at joint 4. designed in accoo Residential Code do referenced sta d Industry Piggyb nnection to base	d for a liv as where vill fit betw s. be SP No be SP No be SP No be set of tradance wid be sections undard AN beack Truss truss as a	e load of 20.0 a rectangle reen the botto 2 crushing ers) of truss t 5 lb uplift at j th the 2018 R502.11.1 a SI/TPI 1. c Connection pplicable, or	Dpsf om to ioint						
	(LC 1)			consult quali	fied building desig	gner.								
ORCES	(lb) - Maximum Com Tension	pression/Maximum	LC	AD CASE(S)	Standard									
OP CHORD	1-2=0/16, 2-3=-106/7 4-5=0/16	75, 3-4=-100/76,												
BOT CHORD	2-6=-13/53, 4-6=-13/	53												
VEBS	3-6=-170/93													
OTES														
) Unbalance this design	ed roof live loads have	been considered for												
) Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)											~	

2 Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.
- 4) 5)
- Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

											RELEASE FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	/ Ply	R	loof - HR	Lot 163		AS NOTED FOR PLAN REVIEW
P240417-01	PB2		Piggyback		28	1	J	ob Refere	ence (opt	ional	LEE'S SUMMIT, MISSOURI
Premier Building Supply	r (Springhill, KS), S	pring Hills, KS - 66083,		Run: 8.63 S Apr ID:DfUo5nfOK1t0	26 2024 I CWOCfQI	Print: 8.630 S KOfgzWn6j-F	Apr 26 20 RfC?PsB70)24 MiTek I)Hq3NSgPo	ndustries, qnL8w3ul7	Inc. T. TXbGł	Ne Apr 3 062 06/2024
			-0-8 0-8-	-9 3-3- 9 3-3-	- <u>1</u> -1			<u>6-6-2</u> 3-3-1			7-2-11 0-8-9
						4x4	=				
	2-8-0	2-6-8	1 1	8 F	2	3					4 5
				2x4 =		б 1.5х4	4 u			2x4	=
Scale = 1:27						6-6-2					
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.19 0.11 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES GRIP MT20 197/144 Weight: 25 lb FT = 20%

LUMBER		
TOP CHORD	2x4 SP N	o.2
BOT CHORD	2x4 SP N	o.2
OTHERS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structural 6-0-0 oc p	wood sheathing directly applied or ourlins.
BOT CHORD	Rigid ceili bracing.	ng directly applied or 10-0-0 oc
REACTIONS	(size)	1=8-0-0, 2=8-0-0, 4=8-0-0, 5=8-0-0, 6=8-0-0
	Max Horiz	1=-69 (LC 8)
	Max Uplift	1=-195 (LC 19), 2=-213 (LC 12),
		4=-196 (LC 13), 5=-166 (LC 20)
	Max Grav	1=149 (LC 12), 2=404 (LC 19),
		4=385 (LC 20), 5=123 (LC 13),
		6=223 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-113/	159, 2-3=-111/70, 3-4=-110/70,
	4-5=-92/9	9
BOT CHORD	2-6=-19/5	1, 4-6=-19/51

WEBS NOTES

Unbalanced roof live loads have been considered for 1) this design.

3-6=-142/60

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00: Cat. II: Exp C: Enclosed: MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

This truss has been designed for a 10.0 psf bottom 6)

chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 8) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 195 lb uplift at joint 1, 166 lb uplift at joint 5, 213 lb uplift at joint 2 and 196 lb uplift at joint 4.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

May 2,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with with the contractions. This design is based only door plantaters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

														RELEAS	
Job		Truss		Truss Ty	уре			Qty	Ply		Roof - HF	Lot 163		AS NOT DEVE	ED FOR PLAN REVIEW
P240417-01	1	V01		Valley				1	1		Job Refei	ence (or	otional	LEE'S	SUMMIT, MISSOURI
Premier Building	g Supply (Springl	nill, KS), S	Spring Hills, KS - 66083	,		Run: 8. ID:6ru7	63 S Apr F9CpA2a	26 2024 F g5pbhdMF	Print: 8.630 S PJqdzkXVF-R	Apr 26 fC?PsE	2024 MiTek 370Hq3NSgl	Industries PqnL8w3u	s, Inc. T ITXbGI	ie Apr 3(1)12:26 WrCDoi/94232.f	06/2024
														19.	-6-7
					<u>9-9-4</u> 9-9-4						<u>19</u> 9-	<u>-1-4</u> 4-1			
								4x	:4 =						
								3							
	T						,								
						1 5 4 1					1 Ev4				
					2	1.5x4					4	"			
	-6-6	1			10	ł					- A	11			
	9 9			/											
			1 <u>2</u>											\searrow	
			1												5
	=	-0-0	-						 XXXXXXX	****				\rightarrow	8
			12		*****	9 13	8	7			14 6		*****	15	×.
			3x4 🍫		1	1.5x4 I	3x4 =	1.5	5x4 n		1.5x4	II		3x4	*
Scale = 1:45.7								19-6	6-7						-1
Loading		(psf)	Spacing	2-0-0		CSI			DEFL	:	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) TCDL		25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC		0.43 0.26	Vert(LL) Vert(TL)	n n	n/a - n/a -	n/a n/a	999 999	MT20	244/190
BCLL BCDL		0.0* 10.0	Rep Stress Incr Code	YES IRC2018	3/TPI2014	WB Matrix-S	5	0.15	Horiz(TL)	0.0	00 5	n/a	n/a	Weight: 73 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASS Vasd=91n Ke=1.00; (exterior zc Interior (1) 14-9-10, Ir left and rig exposed; C reactions s DOL=1.60	2x4 SP No.2 2x4 SP No.2 2x3 SPF No Structural w 6-0-0 oc pur Rigid ceiling bracing. (size) 1 7 Max Horiz 1 Max Uplift 1 9 Max Grav 1 6 9 (lb) - Maxim Tension 1-2=-169/14 4-5=-130/10 1-9=-56/124 5-6=-56/124 3-7=-160/0, ed roof live loa 5. CE 7-16; Vult= ph; TCDL=6. Cat. II; Exp C; one and C-C E 9 (5-5-12 to 9-9) terior (1) 14-5 cher exposed ; c C-C for member shown; Lumber)	2 2 2 2 2 2 2 2 2 2 3 3 4 4 2 -2 -2 -2 -2 -2 -2 -2 -2 -2	athing directly appli applied or 10-0-0 or 9=19-6-7, 6=19-6-7 9=19-6-7 C 8) C 12) C 20), 5=229 (LC 11 C 20), 5=216 (LC 11) C 20), 7=331 (LC 22 C 19) pression/Maximum 154/156, 3-4=-141/ 6/124, 6-7=-56/124 2/281, 4-6=-422/28 been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelo E) 0-5-12 to 5-5-12 erior(2R) 9-9-10 to 9-1-7 zone; cantilev cal left and right orces & MWFRS fo 1.60 plate grip	3) ed or 6) c 7) 7, 8) , 9) (), 10) 135, LO 1 1 r	Truss design only. For stu- see Standard or consult qu Gable requirin Gable studs This truss ha chord live loa* * This truss h on the bottor 3-06-00 tall b chord and ar All bearings a capacity of 5 Provide mec bearing plate 1, 229 lb upli) This truss is International R802.10.2 ar DAD CASE(S)	ned for wii ds exposs d Industry ialfied bui es continu spaced at s been de ad noncom nas been de ad noncom nas been de af noncom nas been de ac continu y 2-00-00 ny other m are assum i65 psi. hanical cc a capable if tat joint i designed Residenti nd referen Standar	nd loads ed to win Gable E loug botto aus botto aus botto aus botto aus aus ourrent v designed auf areas o wide wil eembers, ned to be onnection of withsta 9 and 222 in accord al Code s ceed stan d	in the pla d (norma nd Detail signer as or a 10.0 vith any of for a live s where a ll fit betw with BCI SP No.2 (by othe anding 2 9 lb uplift dance wi sections dard AN	ane of the t al to the fac ls as applic per ANSI/ d bearing. psf bottom other live lo e load of 20 a rectangle een the boi DL = 10.0ps 2 crushing ers) of truss 1 lb uplift at at joint 6. th the 2018 R502.11.1 SI/TPI 1.	russ e), able, FPI 1.				STATE OF STATE OF SEV DE 2001	MISSOLUE T.M. TER 1018807
														М	ay 2,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

														RELEAS	E FOR CONSTRUCT	ION
Job	Truss Truss Type Qty Ply									F	Roof - HR	Lot 163		AS NOT DEVE	ED FOR PLAN REVI	EW S
P240417-01	1	V02			Valley			1	1		lob Refere	ence (op	tional	LEE'S	SUMMIT, MISSOUR	a
Premier Building	g Supply (Springhi	ll, KS), S	pring Hills, KS - 6	6083,			Run: 8.63 S A ID:6ru7F9CpA	pr 26 2024 P 2ag5pbhdMP	int: 8.630 S / JqdzkXVF-Rf	Apr 26 20 C?PsB7	024 MiTek 0Hq3NSgP	Industries 9qnL8w3u	, Inc. T ITXbGI	ie Apr 3(1)/13:26 WrCDoi/ 94232?f	06/202	<u>24</u>
														15.6.7		
						<u>7-9</u> 7-9	<u>}-4</u> }-4				<u>15-1</u> 7-4	-4 -1		0-5-3		
														0-0-5		
								4	1x4 = 3							
	\top	\top						, 								
						1 5	10 5x4 #			$\langle \rangle$	11	1514 1				
	မု	0-11				2					\searrow	4				
	5-2	4-1				9						B.	12			
				12 8 Г	/								$\langle \rangle$			
				1										5		
			-0-0-		>	₩ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>			<u>+</u> ********		 XXXXXX	₩ ∞∞∞∞				
			0	3)	«4 ø	8	<u></u>		**************************************	~~~~~		<u> </u>	<u> </u>	3x4		
					ŗ	1.5	5x4 I	1	.5x4 II			1.5x4 I		X		
				<u> </u>				15-	6-7							
Scale = 1:39.6							1	· · · · ·								
Loading TCLL (roof)		(psf) 25.0	Spacing Plate Grip DC	DL	2-0-0 1.15		TC	0.23	DEFL Vert(LL)	ir n/a	1 (loc) 1 -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190	
TCDL BCLL		10.0 0.0*	Lumber DOL Rep Stress Ir	ncr	1.15 YES		BC WB	0.11 0.11	Vert(TL) Horiz(TL)	n/a 0.00	1 -) 5	n/a n/a	999 n/a			
BCDL		10.0	Code		IRC2018/	TPI2014	Matrix-S							Weight: 56 lb	FT = 20%	
FORCES TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wo 6-0-0 oc purli Rigid ceiling bracing. (size) 1= Max Horiz 1= Max Uplift 1= 8= Max Grav 1= 6= 8= (lb) - Maximu Tension 1-2=-142/100 4-5=-107/56 1-8=-38/88 3-7=-193/5, 2	2 od shea ns. directly 15-6-7, -136 (LC -175 (LC -175 (LC 146 (LC 408 (LC 408 (LC m Comp), 2-3=-1 2-8=-38/ 2-8=-321 s have	athing directly a applied or 10-0 5=15-6-7, 6=1 8=15-6-7 C 8) 13), 6=-175 (L C 12) 2 0), 5=139 (L 2 20), 7=270 (L 2 19) pression/Maxir 149/124, 3-4=- '88, 6-7=-38/88 1/218, 4-6=-32' been considered	applied)-0 oc 5-6-7, .C 13), C 1), C 1), num 140/11: 3, 1/218 ed for	4) 5) 6) 7) 8) 9) 10) 2, LOA	only. For str see Standar or consult qu Gable requir Gable studs This truss ha chord live loa * This truss l on the bottoo on the bottoo 3-06-00 tall l chord and ar All bearings capacity of 5 Provide mec bearing plate 1, 175 lb upl This truss is International R802.10.2 a	lids exposed to w d Industry Gable Jalified building c es continuous be spaced at 4-0-0 as been designed ad nonconcurren has been designed m chord in all are by 2-00-00 wide ny other member are assumed to j65 psi. shanical connecti e capable of with lift at joint 8 and designed in acco In Residential Coc nd referenced st Standard	vind (norma End Detail: lesigner as ottom chord oc. d for a 10.0 it with any c ed for a live eas where a eas where a son (by othe standing 17 175 lb uplift ordance wit le sections andard ANS	to the face s as applica per ANSI/T bearing. psf bottom ther live loa load of 20. rectangle even the bott crushing rs) of truss lb uplift at at joint 6. h the 2018 R502.11.1 a SI/TPI 1.	ads. Opsf om to joint				STE OF	MISSO	
2) Wind: ASC Vasd=91n Ke=1.00; (exterior zc Interior (1) 12-9-10, Ir left and rig exposed;C reactions s DOL=1.60	CE 7-16; Vult=1 nph; TCDL=6.0 Cat. II; Exp C; E one and C-C Ex) 5-5-12 to 7-9-' nterior (1) 12-9- nt exposed ; er C-C for member shown; Lumber)	15mph bsf; BCI Enclosed terior(21 10, Exte 10 to 15 nd vertic s and fc DOL=1	(3-second gus DL=6.0psf; h=3 d; MWFRS (en E) 0-5-12 to 5- rior(2R) 7-9-10 5-1-7 zone; car cal left and righ prces & MWFR .60 plate grip	t) 35ft; velope 5-12,) to ntilever t S for)									SCOT SEV SEV NUM PE-2001	T M. IER 018807 AL ENGLASS ay 2,2024	
				TES ON				MII 7472 rov	1/2/2022 REE							

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information
available from the Structural Building Component Association (www.sbsccomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.48	Vert(LL)	n/a	-	n/a	999	MT20	244/190
CDL	10.0	Lumber DOL	1.15		BC	0.28	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.10	Horiz(TL)	0.00	3	n/a	n/a		
SCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 39 lb	FT = 20%
UMBER OP CHORD OT CHORD OTHERS BRACING	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2	ed for a 10.0 ent with any ned for a liv reas where e will fit betw) psf bottom other live loa e load of 20.0 a rectangle veen the botto	ads. Opsf com									
OP CHORD	Structural wood she 6-0-0 oc purlins. Rigid ceiling directly	athing directly applied or 10-0-0 o	ed or 8) c a)	All bearings capacity of 5	are assumed to 65 psi.	be SP No.	2 crushing	to					

bracing.	o p i i	9)	Provide mechanical connection (by others) of truss to
(size)	1=11-6-7, 3=11-6-7, 4=11-6-7		bearing plate capable of withstanding 54 lb uplift at joint 1 66 lb uplift at joint 3 and 29 lb uplift at joint 4
Max Horiz	1=-99 (LC 10)	10)	This truss is designed in accordance with the 2018
Max Uplift	1=-54 (LC 12), 3=-66 (LC 13),		International Residential Code sections R502.11.1 and
Max Grav	4=-29 (LC 12) 1=246 (I C 1) $3=246$ (I C 1) $4=465$		R802.10.2 and referenced standard ANSI/TPI 1.
	,,,	10	AD CASE(S) Standard

LOAD CASE(S) Standard

1-2=-186/93, 2-3=-183/88 BOT CHORD 1-4=-20/87, 3-4=-20/87 2-4=-303/124 WEBS NOTES

Tension

REACTIONS (size)

FORCES

TOP CHORD

L

1) Unbalanced roof live loads have been considered for this design.

(LC 1)

(Ib) - Maximum Compression/Maximum

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior (1) 5-5-12 to 5-9-10, Exterior(2R) 5-9-10 to 10-9-10, Interior (1) 10-9-10 to 11-1-7 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with with the contractions. This design is based only door plantaters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com) 16023 Swingley Ridge Rd.

Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Scale = 1:27													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.24	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	3	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 25 lb	FT = 20%	
UMBER 7) * This truss has been designed for a live load of 20.0psf													

TOP CHORD	2x4 SP N	0.2						
BOT CHORD	2x4 SP N	0.2						
OTHERS	2x3 SPF I	2x3 SPF No.2						
BRACING								
TOP CHORD	Structural wood sheathing directly applied							
	6-0-0 oc p	ourlins.						
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc							
	bracing.							
REACTIONS	(size)	1=7-6-7, 3=7-6-7, 4=7-6-7						
	Max Horiz	1=62 (LC 11)						
	Max Uplift	1=-42 (LC 12), 3=-50 (LC 13)						
	Max Grav	1=168 (LC 1), 3=168 (LC 1), 4=261						

(LC 1) FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-105/64, 2-3=-100/64 BOT CHORD 1-4=-13/50, 3-4=-13/50

WEBS 2-4=-178/96

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)

5)

- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.

- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 crushing 8)
- capacity of 565 psi.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 42 lb uplift at joint 1 and 50 lb uplift at joint 3.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- LOAD CASE(S) Standard

May 2,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with with the contractions. This design is based only door plantaters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Otv	Plv	Roof - HR Lot 163		AS NOTED FOR PLAN REVIEW
000	11055		Quy	i iy			DEVELOPMENT SERVICES 165257580
P240417-01	V05	Valley	1	1	Job Reference	(optional)	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Spring	e Apr 3 062 06/2924						
					2.6	- 7	
			1-9-4		3-1-4	<u>-</u>	
			1-9-4		1-4-1		

0-5-3

Scale = 1:21.9

Plate Offsets (X_Y): [2:0-2-0 Edge]

Plate Olisets (X, Y): [2:0-2-0,Edge]														
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁷	18/TPI2014	CSI TC BC WB Matrix-P	0.04 0.08 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES	2x4 SP No.2 2x4 SP No.2 Structural wood shea 3-7-3 oc purlins. Rigid ceiling directly bracing. (size) 1=3-6-7, 3 Max Horiz 1=25 (LC Max Uplift 1=-17 (LC Max Grav 1=119 (LC (lb) - Maximum Com Tension 1-2=-104/71, 2-3=-10 1-3=-26/69	athing directly applie applied or 10-0-0 oc 3=3-6-7 11) 12), 3=-17 (LC 13) C 1), 3=119 (LC 1) pression/Maximum 04/71	7 d or 8 9 1 L	 * This truss h on the bottor 3-06-00 tall b chord and ar capacity of 5 Provide mec bearing plate 1 and 17 lb u This truss is International R802.10.2 ar OAD CASE(S) 	nas been design n chord in all are by 2-00-00 wide ny other member are assumed to 65 psi. hanical connecti e capable of with uplift at joint 3. designed in accor Residential Coo nd referenced st Standard	ed for a liv as where will fit betv s. be SP No. on (by oth standing 1 ordance w le sections andard AN	e load of 20.1 a rectangle veen the bott 2 crushing ers) of truss I 7 lb uplift at j ith the 2018 R502.11.1 <i>a</i> ISI/TPI 1.	Opsf om to joint						
this design	n noor live loads have	been considered for												

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.

4)

Gable studs spaced at 4-0-0 oc. 5)

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.