

RE: P240417-01 Roof - HR Lot 163

Site Information:

Customer: Clayton Properties Project Name: P240417-01 Lot/Block: 163 Model: Address: 1620 SW Buckthorn St. City: Lee's Summit

Subdivision: Hawthorne Ridge State: MO

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

No.

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.6 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 25 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	165257556	A01	5/2/2024
2	165257557	A02	5/2/2024
3	165257558	A03	5/2/2024
4	165257559	A04	5/2/2024
5	165257560	B01	5/2/2024
6	165257561	C01	5/2/2024
7	165257562	C02	5/2/2024
8	165257563	C03	5/2/2024
9	165257564	C04	5/2/2024
10	165257565	C05	5/2/2024
11	165257566	C06	5/2/2024
12	165257567	C07	5/2/2024
13	165257568	C08	5/2/2024
14	165257569	C09	5/2/2024
15	165257570	CJ01	5/2/2024
16	165257571	J01	5/2/2024
17	165257572	J02	5/2/2024
18	165257573	LG01	5/2/2024
19	165257574	PB1	5/2/2024
20	165257575	PB2	5/2/2024

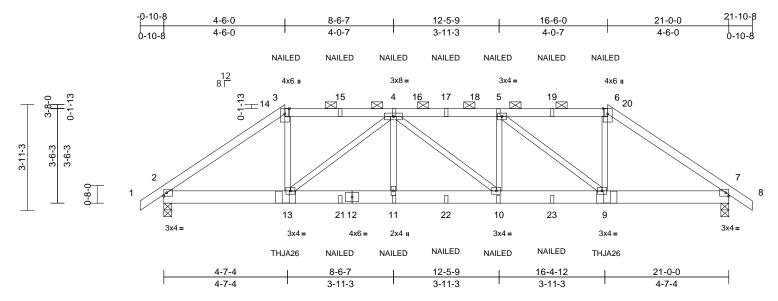
Seal#	Truss Name	Date
165257576	V01	5/2/2024
165257577	V02	5/2/2024
165257578	V03	5/2/2024
165257579	V04	5/2/2024
l65257580	V05	5/2/2024

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision based on the parameters provided by . Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2025.

Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Sevier, Scott

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 163	
P240417-01	A01	Hip Girder	1	2	Job Reference (optional)	165257556

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Apr 30 10:13:22 ID:b9dePyA7oPj7n2spiefnYhzkXH5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

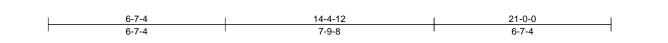
Scale = 1:42.8

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.37 0.32 0.17		in 0.05 -0.08 0.02	(loc) 10-11 10-11 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 191 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0.131"x3" Top chord oc. Bottom ch	2x4 SP No.2 2x6 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, exc 2-0-0 oc purlins, exc 2-0-0 oc purlins (6-00 Rigid ceiling directly bracing. (size) 2=0-3-8, 7 Max Horiz 2=98 (LC Max Uplift 2=-536 (L Max Grav 2=1596 (L (lb) - Maximum Com Tension 1-2=0/21, 2-3=-2349 4-5=-2598/1040, 5-6 6-7=-2350/863, 7-8= 2-13=-704/1817, 11- 10-11=-1010/2603, 5 7-9=-631/1818 3-13=-296/980 5 to be connected toget) nails as follows: is connected as follows:	athing directly applied -0 max.): 3-6. applied or 10-0-0 oc /=0-3-8 11) C 12), 7=-536 (LC 13 C 1), 7=1596 (LC 13 C 1), 7=1596 (LC 11) pression/Maximum //858, 3-4=-1852/750 i=-1852/743, -0/21 13=-1010/2603, 3-10=-990/2598, i=-1009/452, 4-11=0/ //249, 5-9=-1001/446 ther with 10d s: 2x4 - 1 row at 0-9-0	3; 4; d or 5; 6; 7; 7; 8; 9; 251, 1; 1	 Unbalanced i this design. Wind: ASCE Vasd=91mpl Ke=1.00; Cat exterior zone Interior (1) 4- Interior (1) 11 21-10-8 zone vertical left ai forces & MW DOL=1.60 pl Provide adec This truss ha chord live loa This truss ha chord live loa This truss ha chord live loa This truss ha chord and an All bearings a capacity of 43 Provide mech bearing plate joint 2 and 55 This truss is 6 International R802.10.2 ar Graphical pu or the orienta bottom chord Use Simpsor Hand Hip) or 	roof live loads hav 7-16; Vult=115mp 7; TCDL=6.0psf; B 11; Exp C; Enclos and C-C Exterior 1-8 to 4-6-0, Exterior 1-8 to 16-6-0, Exterior 1-8 to	oh (3-sec CDL=6. sed; MW (2E) -0 rior(2R) Exterior(: di right e C-C for r shown;) or event i or a 10. with any for a liv s where Il fit betw S SPF No h (by oth anding f 7. dance w sections dard AN does no along the 26 (THJ 6 from t	cond gust) Opsf; h=35ft; (FRS (envelop 10-8 to 4-1-8, 4-6-0 to 11-6 2E) 16-6-0 to exposed ; end nembers and Lumber water ponding 0 psf bottom other live loa te load of 20.0 a rectangle veen the botto to 2 crushing ers) of truss t is R502.11.1 a SI/TPI 1. ot depict the s a top and/or A26 on 2 ply, he left end to	oe) -14, g. ds. Opsf om size Left	́Р U	late Incre niform Lo Vert: 1- oncentra Vert: 3= 11=-24 15=-79	ease=1 aads (II 3=-70, -79 (F) (F), 10 (F), 17 (F), 23	e (balanced): Lum .15 b/ft) 3-6=-70, 6-8=-70 ads (lb)	hber Increase=1.15, , 2-7=-20 254 (F), 4=-79 (F), F), 9=-254 (F), (F), 21=-24 (F), MISSOL M.
Web conn 2) All loads a except if n CASE(S) provided t	at 0-9-0 cc. ected as follows: 2x3 - ire considered equally loted as front (F) or bar section. Ply to ply conr o distribute only loads lerwise indicated.	AD 14 15	 Use Simpsor Right Hand H end to conne Fill all nail ho 		26 (THJ at 16-5-1 nt face o is in cor	A26 on 2 ply, 10 from the le f bottom chor ntact with lum	ft d. ber.		د		PE-20010	1 ENGINE	

May 2,2024

Page: 1

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 163	
P240417-01	A02	Hip	1	1	Job Reference (optional)	165257557

4x4 🛛

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Apr 30 10:13:23 Page: 1 ID:xNyy1URwdAV?QQY2_F2xRKzkXGI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 21-10-β 6-6-0 14-6-0 21-0-0 6-6-0 8-0-0 6-6-0 0-10-8 0-10-8 MT18HS 6x12 = MT18HS 5x8 II 12 8 Г 15 5 4 14 0-1-13 \bowtie \bowtie \sim 3x4 🍫 3x4 💊 16 13 3 6 4-10-3 4-10-3 3x4 👟 3x4 Xa 7 2 12 0-8-0 ¢ Ŕ 10 9 11

1.5x4 🛚

3x4 =

3x4 =

178

4x4 🛛

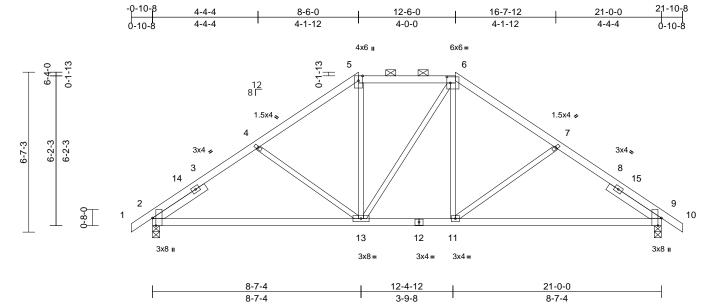
May 2,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Scale = 1:43

5-3-3

Plate Offsets (X, Y): [4:0-7-0,Edge]


DOL=1.60

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.96 0.53 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.15 0.03	(loc) 9-11 9-11 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT18HS MT20 Weight: 96 lb	GRIP 197/144 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design (2) Wind: ASC Vasd=91m Ke=1.00; (2) exterior zo Interior (1) Interior (1)	2x4 SP No.2 *Except 1.5E 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2	athing directly applie athing directly applie pept 20 max.): 4-5. applied or 10-0-0 oc 4-9 7=0-3-8 C 10) C 12), 7=-125 (LC 1: _C 1), 7=-125 (LC 1: _C 1), 7=-1006 (LC 1) pression/Maximum 7/212, 4-5=-975/245, =0/16 I=-131/975, 7-9=-57/ 17/118, 5-9=0/307 been considered for (3-second gust) :DL=6.0psf; h=35ft; d; MWFRS (envelop 2E) -0-10-8 to 4-1-8, or(2R) 6-6-0 to 13-6- tterior(2R) 14-6-0 to	3 4 5 6 6 7 8 9 3) 1 1 3) L 971 8 971 8 971	 Provide adeq All plates are All plates are This truss ha chord live load * This truss ha chord live load * This truss ha chord and are All bearings capacity of 5 Provide mechanism bearing plate joint 2 and 1 This truss is International R802.10.2 a Graphical put 	quate drainage to e MT20 plates un is been designed ad nonconcurrent has been designed n chord in all are by 2-00-00 wide v y other members are assumed to b 65 psi. hanical connectio e capable of withs 25 lb uplift at join designed in acco Residential Code nd referenced sta rlin representatio dition of the purlin d.	less other for a 10. t with any ed for a liva as where will fit betw s. be SP No. be SP No. be SP No. be SP No. con (by oth standing 1 t 7. ordance w e sections andard AD n does no	wise indicate 0 psf bottom other live load e load of 20. a rectangle veen the bott 2 crushing ers) of truss 25 lb uplift a ith the 2018 is R502.11.1 a ISI/TPI 1. bt depict the	ed. ads. Opsf om to t					MISSOLA T M. HER BER
21-6-14, Ir left and rig exposed;C	nterior (1) 21-6-14 to 2 ght exposed ; end verti C-C for members and f shown; Lumber DOL=	1-10-8 zone; cantile cal left and right orces & MWFRS for	/er								Ŵ	OF PE-2001	ENGIT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 163	
P240417-01	A03	Hip	1	1	Job Reference (optional)	165257558

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Apr 30 10:13:23 ID:fJZk7uYBGFlbdyJzaMEHrRzkXGb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:47.5

Plate Offsets (X, Y): [2:0-3-13,Edge], [6:0-1-12,0-3-0], [9:0-3-13,Edge]

	, , , , , , , , , , , , , , , , , , ,	j, [0.0-1-12,0-0-0], [a	9.0-5-15,L	Lugej									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.27 0.67 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.31 0.03	(loc) 9-11 9-11 9	l/defl >999 >802 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 102 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 2 No.2 2-6-14 Structural wood she 5-3-3 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 2=0-3-8, § Max Horiz 2=-173 (LC Max Uplift 2=-143 (L Max Grav 2=1006 (L (lb) - Maximum Corr	athing directly applie pept -0 max.): 5-6. applied or 10-0-0 oc 9=0-3-8 C 11) C 12), 9=-143 (LC 1: -C 1), 9=1006 (LC 1)	5 6 ed or 7 c 8 3) 9	 chord live loa * This truss I on the bottor 3-06-00 tall t chord and ar chord and ar All bearings capacity of 5 Provide mec bearing plate joint 2 and 1 This truss is International R802.10.2 a Graphical put 	hanical connection capable of withs 43 lb uplift at joint designed in accou- Residential Code nd referenced sta Irlin representation ation of the purlin d.	with any d for a liv as where vill fit betv e SP No n (by oth tanding f 9. rdance w e sections ndard At n does n	other live load e load of 20. a rectangle veen the bott 2 crushing ers) of truss 43 lb uplift a ith the 2018 i R502.11.1 a SI/TPI 1. bt depict the	Opsf rom to t					
TOP CHORD BOT CHORD WEBS	Tension 1-2=0/16, 2-4=-1295 5-6=-826/225, 6-7=- 7-9=-1294/229, 9-10 2-13=-185/991, 11-1 4-13=-254/200, 5-13 6-13=-108/110, 6-11	5/252, 4-5=-1064/218 1064/214, 0=0/16 3=-4/826, 9-11=-112 3=-24/287,	8, 2/991		Stanuaru								The second
this design 2) Wind: ASC Vasd=91m Ke=1.00; (exterior zc Interior (1) Exterior(21 21-10-8 zc vertical lef forces & M DOL=1.60	ed roof live loads have	been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-10-8 to 4-2-11. ior(2E) 8-6-0 to 12-6 nterior (1) 19-6-14 to right exposed; end C for members and hown; Lumber	r pe) 5-0, 5									CRATE OF M SCOT SEVI OF PE-2001	

May 2,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 163	
P240417-01	A04	Hip Girder	1	3	Job Reference (optional)	165257559

Loading

TCDI

BCLL

BCDL

WEBS

BRACING

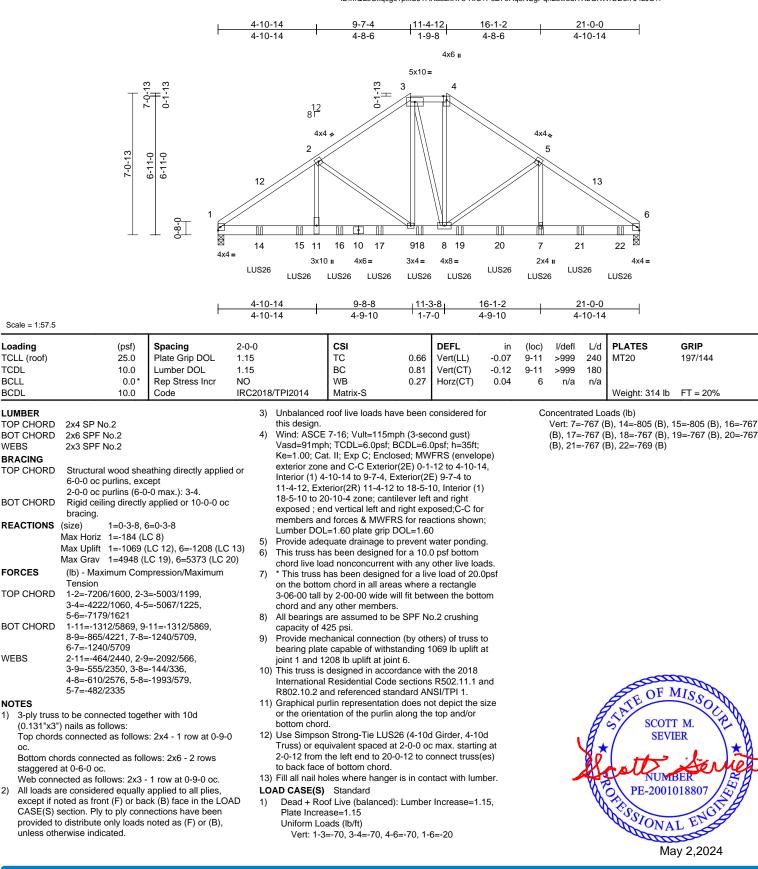
FORCES

WEBS

NOTES

oc.

1)

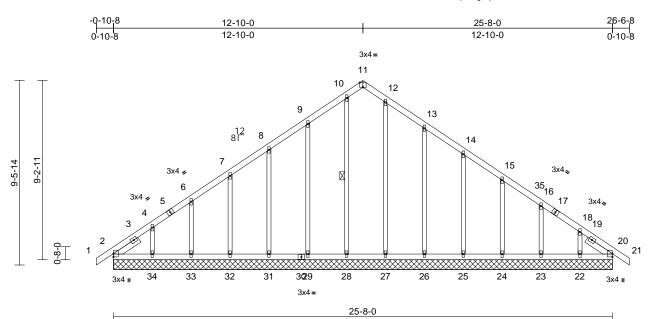

2)

LUMBER

TCLL (roof)

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Apr 30 10:13:23 ID:nfQL9Uxqcgc1pixCJTAKa3zkX73-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 163	
P240417-01	B01	Common Supported Gable	1	1	Job Reference (optional)	165257560

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Apr 30 10:13:23 ID:bzCw6On6o49uPtGdBr3k7RzkXGI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

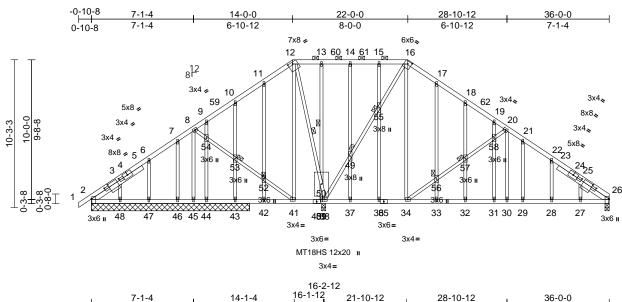
Scale = 1:59.3

Plate Offsets (X, Y): [11:0-2-0,Edge]

	(X, 1). [11.0 2 0,Edge	.] 			-							
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.11	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
TCDL (1001)	10.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	n/a	-	n/a	999 999	10120	244/190
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	20	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI20	1	0.20	11012(01)	0.01	20	n/a	Π/α	Weight: 138 lb	FT = 20%
LUMBER			TOP CHO	RD 1-2=0/16, 2-4=-3	16/190, 4	-6=-211/148,		7) Thi	is truss ł	has bee	en designed for a	10.0 psf bottom
TOP CHORD	2x4 SP No.2			6-7=-148/125, 7-	8=-131/9	9, 8-9=-116/10)9,	cho	ord live l	oad no	nconcurrent with	any other live loads.
BOT CHORD				9-10=-108/160, <i>1</i>								a live load of 20.0psf
OTHERS	2x3 SPF No.2			11-12=-101/144,	12-13=-1	00/143,					ord in all areas wh	
SLIDER	Left 2x4 SP No.2 7	1-6-4, Right 2x4 SP I	No.2	13-14=-71/65, 14		,	,					between the bottom
	1-6-5			16-18=-182/90, 1		,	:0/16				er members.	
BRACING			BOT CHO								ssumed to be SP	No.2 crushing
TOP CHORD		athing directly applie	d or	32-33=-113/248,					bacity of			(athena) of twice to
	6-0-0 oc purlins.			29-31=-113/248, 27-28=-113/248,								others) of truss to
BOT CHORD	0 0 ,	applied or 10-0-0 oc	:	25-26=-113/248,		,						ft at joint 33, 80 lb
	bracing.	40.00		23-24=-113/248,		,						31, 98 lb uplift at joint
WEBS	1 Row at midpt	10-28		20-22=-113/248		,						lift at joint 25, 79 lb
REACTIONS		, 20=25-8-0, 22=25-8		4-34=-167/156, 6	6-33=-148	/98,		upl	ift at joir	nt 24, 7	6 lb uplift at joint	23, 125 lb uplift at
		0, 24=25-8-0, 25=25- 0, 27=25-8-0, 28=25-		7-32=-149/104, 8							uplift at joint 20.	
		0, 21=25-8-0, 28=25 0, 31=25-8-0, 32=25	,	9-29=-152/122, 1							ned in accordance	
		0, 34=25-8-0	00,	12-27=-123/0, 13		,						tions R502.11.1 and
	Max Horiz 2=255 (LC	,		14-25=-148/99, 1							ferenced standar	d ANSI/TPI 1.
	Max Uplift 2=-55 (LC			16-23=-152/105,	18-22=-1	44/144		LOAD	CASE(S	5) Sta	ndard	
		(LC 13), 23=-76 (LC	13), NOTES									
	24=-79 (L	C 13), 25=-75 (LC 1	5), '	anced roof live loads h	ave been	considered for	r					
		(LC 13), 29=-98 (LC			anh (2 aa							
		.C 12), 32=-80 (LC 1	<u>~</u>),	ASCE 7-16; Vult=115r 91mph; TCDL=6.0psf;								
		.C 12), 34=-137 (LC	1 <u>2)</u> K- A	0; Cat. II; Exp C; Encl							Sol	Jan
	Max Grav 2=215 (LC		-),	r zone and C-C Corne			(0)				B OF I	MISSO
		_C 20), 23=192 (LC 2 _C 20), 25=188 (LC 2	,	or(2N) 4-0-0 to 12-10-0			,			4	TATE OF I	N OC
		LC 20), 25=168 (LC 2 LC 20), 27=163 (LC 2	<u>10</u> ,	, Exterior(2N) 18-0-0 to						B	SCOT	TM XPN
		LC 22), 29=192 (LC ⁻	(9) left an	d right exposed ; end v						B	SEV	
		LC 19), 32=190 (LC	(9), expos	ed;C-C for members a						R		
		LC 19), 34=213 (LC ·	(9) reaction	ns shown; Lumber DC	0L=1.60 p	ate grip				25	44	0
FORCES				DL=1.60 russ designed for wind loads in the plane of the truss						X	all?	- server
	Tension								-	83	NUM	
				or studs exposed to wind (normal to the face), indard Industry Gable End Details as applicable,						N.	NUM PE-2001	018807
				isult qualified building designer as per ANSI/TPI 1.						Ø	1 der	12A
				ates are 1.5x4 MT20 unless otherwise indicated.							CSSIONA	NO'A
				requires continuous bo							ONA	LEL
				Gable studs spaced at 2-0-0 oc.							WANNA	The

Gable studs spaced at 2-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


6)

May 2,2024

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 163	
P240417-01	C01	Piggyback Base Structural Gable	1	1	Job Reference (optional)	165257561

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Apr 30 10:13:23 ID:ZPE42GuJG2XQkNP0lKB?1ezkXCH-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

					21 10 12	20 10 12	00 0 0	
		7-1-4	7-0-0	2-0-8	5-8-0	7-0-0	7-1-4	1
Scale = 1:80.1				0-	1-0			
	[2:0-3-13,Edge], [2:	1-1-14,0-1-8], [2:2-4-4,0-1	1-8], [3:1-5-14,0-2-8], [1:	2:0-4-0,0-	1-9], [16:0-3-0,0-2-3]], [25:1-5-12,0-2-8], [26:0-	-3-13,Edge], [26:1-1-12,0-	1-8],
Plate Offsets (X, Y):	[26:2-4-1,0-1-8]							

CSI

ТС

DEFL

0.45 Vert(LL)

Loading	
TCLL (roof)	
TCDL	
BCLL	

(psf)

25.0

Spacing

Plate Grip DOL

2-0-0

1.15

TCDL	1(0.0	Lumber DOL	1.15		BC	0.59	Vert(CT)	-0.13	32-33	>999	180	MT18HS	197/144
BCLL	().0 *	Rep Stress Incr	YES		WB	0.44	Horz(CT)	0.02	26	n/a	n/a		
BCDL	10	0.0	Code	IRC2018/TPI2014		Matrix-S							Weight: 252 lb	FT = 20%
	No.2 4-2-10 Structural woo 5-5-9 oc purlin 2-0-0 oc purlin Rigid ceiling di bracing. 1 Row at midp 1 Brace at Jt(s 52, 53, 55, 56, (size) 2=1' 39=(45=' Max Horiz 2=2' Max Uplift 2=-8 38=: 43=: 45=: 43=: 43=: 43=: 43=: 43=: 43=: 43=: 43=: 43=: 43=: 43=: 43=: 43=: 43=: 43=: 43=: 43=: 43=: 45:	d shea s, exc s (10- rectly t): 49, 57 1-0-0, 57 (LC 375 (LC 375 (LC 32 (LC 11-0-(C, 11-0-(C	0-0 max.): 12-16. applied or 6-0-0 oc 12-38, 13-50 26=0-3-8, 38=0-3-8, 43=11-0-0, 44=11-0 , 46=11-0-0, 47=11-1	BOT CHORD -0, -0, WEBS -5), -2), -),), 9),	$\begin{array}{c} 66\\ 99\\ 11\\ 11\\ 11\\ 22\\ 24\\ 44\\ 43\\ 33\\ 33\\ 22\\ 28\\ 51\\ 13\\ 41\\ 15\\ 21\\ 11\\ 11\\ 96\\ 13\\ 11\\ 31\\ 13\\ 11\\ 11\\ 96\\ 13\\ 11\\ 11\\ 11\\ 11\\ 96\\ 11\\ 31\\ 11\\ 11\\ 11\\ 11\\ 11\\ 11\\ 11\\ 11$	-2=0/16, 2-3=-2: -7=-124/210, 7-i -10=-56/161, 10 1-12=-67/193, 1 3-14=-38/181, 1 5-16=-38/181, 1 7-18=-387/209, 9-20=-476/130, 12-29-937/252, 12-2937/252, 12-2937/252, 12-2937/252, 12-2937/252, 12-29-37/25, 12-29-937/25, 12-29-937/25, 12-23-25, 12-27, 12-27, 12	8=-91/175 -11=-62/1 2-13=-37/ 4-15=-38, 6-17=-35; 18-19=-4; 20-21=-81 22-25=-91 	5, 8-9=-80/147, 56, (181, (181, 3/261, 20/149, 57/284, 57/189, 8/179, 48/179, 48/179, 48/179, 48/179, 48/179, 48/179, 55/249, , 34-36=0/312 (780, (778, 53-54=-35/88, 9, 12-41=-46/(2)) 27/00, (780, (778, 53-54=-35/88, 9, 12-41=-46/(2)) 27/316, (63, 99/93, 5, 39/140, , 7-46=-126/72) (113, 1, 17-56=-57/(2)) (85, 32-57=-62)	, 102, 2, 67, /68,	 this 2) Wi Va Ke ext 19: to : leff ext pto : leff ext pto : and a	balanced s design. nd: ASCE sd=91mp =1.00; Cc erior zon erior (1) 4 0-0, Inte 27-0-0, Inte 27-0, Inte	E 7-16 h; TC tat. II; E e and tat. the-0-0 tr the-0-0 t	; Vult=115mph (3 DL=6.0psf; BCDL Exp C; Enclosed; C-C Exterior(2E) o 14-0-0, Exterior (1) 27-0-0 to 36-0 sed; end vertical nembers and forc Lumber DOL=1.6 or wind loads in th coposed to wind (n ustry Gable End E d building designed drainage to previo 0 plates unless of 4 MT20 unless of ed at 2-0-0 oc.	=6.0psf; h=35ft; MWFRS (envelope) -0-10-8 to 4-0-0, (2R) 14-0-0 to , Exterior(2R) 22-0-0)-0 zone; cantilever left and right ses & MWFRS for 0 plate grip ne plane of the truss ormal to the face), betails as applicable, er as per ANSI/TPI 1. ent water ponding. therwise indicated. therwise indicated.

May 2,2024

PLATES

l/defl

>999

in (loc)

0.09 27-28

I/d

240 MT20

GRIP

244/190

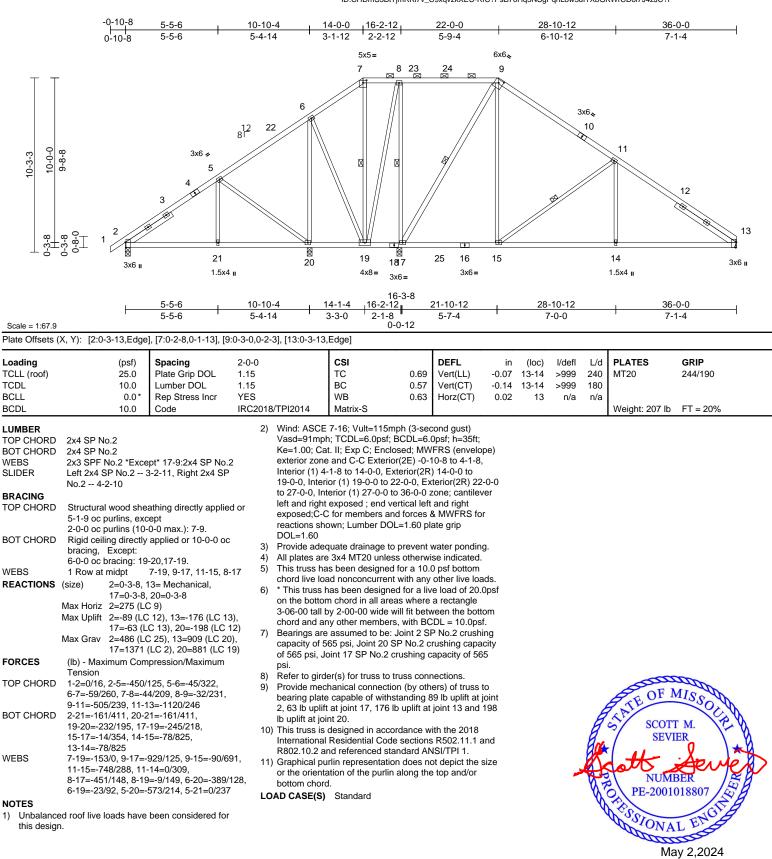
Continued on page 2

WARNING⁻ Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, and DSE-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 163	
P240417-01	C01	Piggyback Base Structural Gable	1	1	Job Reference (optional)	165257561

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 82 lb uplift at joint 2, 10 lb uplift at joint 45, 195 lb uplift at joint 38, 165 lb uplift at joint 26, 462 lb uplift at joint 39, 150 lb uplift at joint 43, 10 lb uplift at joint 44, 49 lb uplift at joint 46, 96 lb uplift at joint 47 and 89 lb uplift at joint 48.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

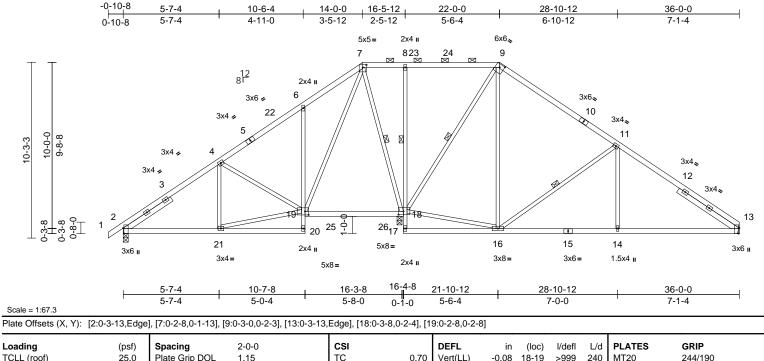
LOAD CASE(S) Standard


Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Apr 30 10:13:23 ID:ZPE42GuJG2XQkNP0IKB?1ezkXCH-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 163	
P240417-01	C02	Piggyback Base	2	1	Job Reference (optional)	165257562

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Apr 30 10:13:24 ID:CHDmS3BtTjmRKi7v_C9xqvzkXEU-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/ITP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 163	
P240417-01	C03	Piggyback Base	8	1	Job Reference (optional)	165257563

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries. Inc. Tue Apr 30 10:13:24 ID:wv5pEcMn41RuwMuWX0N86szkXBg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LUMBER			2) Wind: ASCE	7-16; Vult=115	5mph (3-sec	cond gust)							
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 199 lb	FT = 20%	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.87	Horz(CT)	0.02	13	n/a	n/a			
TCDL	10.0	Lumber DOL	1.15	BC	0.55	Vert(CT)	-0.14	13-14	>999	180			
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.70	Vert(LL)	-0.08	18-19	>999	240	MT20	244/190	
Loading	(psi)	opacing	2-0-0	0.01				(100)	1/uen	L/u		UNI	

LUMBER							
TOP CHORD	2x4 SP No.2						
BOT CHORD	2x4 SP No.2 *Except* 20-6,8-17:2x3 SPF No.2						
WEBS	2x3 SPF No.2						
SLIDER	Left 2x4 SP No.2 3-3-13, Right 2x4 SP						
	No.2 4-2-10						
BRACING							
TOP CHORD	Structural wood sheathing directly applied or						
	5-3-5 oc purlins, except						
	2-0-0 oc purlins (10-0-0 max.): 7-9.						
BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc						
	bracing. Except:						
1 Row at midpt							
WEBS	1 Row at midpt 7-18, 9-18, 11-16						
	(size) 2=0-3-8, 13= Mechanical, 18=0-3-8						
	Max Horiz 2=275 (LC 9)						
	Max Holiz 2=273 (LC 9) Max Uplift 2=-140 (LC 12), 13=-194 (LC 13), 18=-157 (LC 12)						
	Max Uplift 2=-140 (LC 12), 13=-194 (LC 13),						
	Max Uplift 2=-140 (LC 12), 13=-194 (LC 13), 18=-157 (LC 12) Max Grav 2=684 (LC 19), 13=851 (LC 20),						
	Max Uplift 2=-140 (LC 12), 13=-194 (LC 13), 18=-157 (LC 12) Max Grav 2=684 (LC 19), 13=851 (LC 20), 18=2023 (LC 2) (lb) - Maximum Compression/Maximum Tension						
	Max Uplift 2=-140 (LC 12), 13=-194 (LC 13), 18=-157 (LC 12) Max Grav 2=684 (LC 19), 13=851 (LC 20), 18=2023 (LC 2) (lb) - Maximum Compression/Maximum Tension 1-2=0/16, 2-4=-748/160, 4-6=-389/184,						
FORCES	Max Uplift 2=-140 (LC 12), 13=-194 (LC 13), 18=-157 (LC 12) Max Grav 2=684 (LC 19), 13=851 (LC 20), 18=2023 (LC 2) (lb) - Maximum Compression/Maximum Tension 1-2=0/16, 2-4=-748/160, 4-6=-389/184, 6-7=-370/314, 7-8=0/385, 8-9=0/386,						
FORCES TOP CHORD	Max Uplift 2=-140 (LC 12), 13=-194 (LC 13), 18=-157 (LC 12) Max Grav 2=684 (LC 19), 13=851 (LC 20), 18=2023 (LC 2) (lb) - Maximum Compression/Maximum Tension 1-2=0/16, 2-4=-748/160, 4-6=-389/184, 6-7=-370/314, 7-8=0/385, 8-9=0/386, 9-11=-441/272, 11-13=-1023/278						
FORCES	$ \begin{array}{llllllllllllllllllllllllllllllllllll$						
FORCES TOP CHORD	$ \begin{array}{llllllllllllllllllllllllllllllllllll$						
FORCES TOP CHORD	Max Uplift 2=-140 (LC 12), 13=-194 (LC 13), 18=-157 (LC 12) Max Grav 2=684 (LC 19), 13=851 (LC 20), 18=2023 (LC 2) (lb) - Maximum Compression/Maximum Tension 1-2=0/16, 2-4=-748/160, 4-6=-389/184, 6-7=-370/314, 7-8=0/385, 8-9=0/386, 9-11=-441/272, 11-13=-1023/278 2-21=-202/703, 20-21=-42/5, 19-20=0/79, 6-19=-327/218, 18-19=-188/211, 17-18=0/88, 8-18=-369/174, 16-17=-64/0,						
FORCES TOP CHORD BOT CHORD	Max Uplift 2=-140 (LC 12), 13=-194 (LC 13), 18=-157 (LC 12) Max Grav 2=684 (LC 19), 13=851 (LC 20), 18=2023 (LC 2) (lb) - Maximum Compression/Maximum Tension 1-2=0/16, 2-4=-748/160, 4-6=-389/184, 6-7=-370/314, 7-8=0/385, 8-9=0/386, 9-11=-441/272, 11-13=-1023/278 2-21=-202/703, 20-21=-42/5, 19-20=0/79, 6-19=-327/218, 18-19=-188/211, 17-18=0/88, 8-18=-369/174, 16-17=-64/0, 14-16=-104/746, 13-14=-104/746						
FORCES TOP CHORD	Max Uplift 2=-140 (LC 12), 13=-194 (LC 13), 18=-157 (LC 12) Max Grav 2=684 (LC 19), 13=851 (LC 20), 18=2023 (LC 2) (lb) - Maximum Compression/Maximum Tension 1-2=0/16, 2-4=-748/160, 4-6=-389/184, 6-7=-370/314, 7-8=0/385, 8-9=0/386, 9-11=-441/272, 11-13=-1023/278 2-21=-202/703, 20-21=-42/5, 19-20=0/79, 6-19=-327/218, 18-19=-188/211, 17-18=0/88, 8-18=-369/174, 16-17=-64/0, 14-16=-104/746, 13-14=-104/746 4-21=0/174, 19-21=-187/735, 4-19=-434/173,						
FORCES TOP CHORD BOT CHORD	$ \begin{array}{llllllllllllllllllllllllllllllllllll$						
FORCES TOP CHORD BOT CHORD	Max Uplift 2=-140 (LC 12), 13=-194 (LC 13), 18=-157 (LC 12) Max Grav 2=684 (LC 19), 13=851 (LC 20), 18=2023 (LC 2) (lb) - Maximum Compression/Maximum Tension 1-2=0/16, 2-4=-748/160, 4-6=-389/184, 6-7=-370/314, 7-8=0/385, 8-9=0/386, 9-11=-441/272, 11-13=-1023/278 2-21=-202/703, 20-21=-42/5, 19-20=0/79, 6-19=-327/218, 18-19=-188/211, 17-18=0/88, 8-18=-369/174, 16-17=-64/0, 14-16=-104/746, 13-14=-104/746 4-21=0/174, 19-21=-187/735, 4-19=-434/173,						

2)	Wind: ASCE 7-16; Vult=115mph (3-second gust)
	Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft;
	Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope)
	exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8,
	Interior (1) 4-1-8 to 14-0-0, Exterior(2R) 14-0-0 to
	19-0-0, Interior (1) 19-0-0 to 22-0-0, Exterior(2R) 22-0-0
	to 27-0-0, Interior (1) 27-0-0 to 36-0-0 zone; cantilever
	left and right exposed ; end vertical left and right
	exposed;C-C for members and forces & MWFRS for
	reactions shown; Lumber DOL=1.60 plate grip
	DOL=1.60

- Provide adequate drainage to prevent water ponding. 3) 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) Bearings are assumed to be: Joint 2 SP No.2 crushing capacity of 565 psi, Joint 18 SP No.2 crushing capacity
- of 565 psi. Refer to girder(s) for truss to truss connections. 7)
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 140 lb uplift at joint 2, 157 lb uplift at joint 18 and 194 lb uplift at joint 13
- This truss is designed in accordance with the 2018 9) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

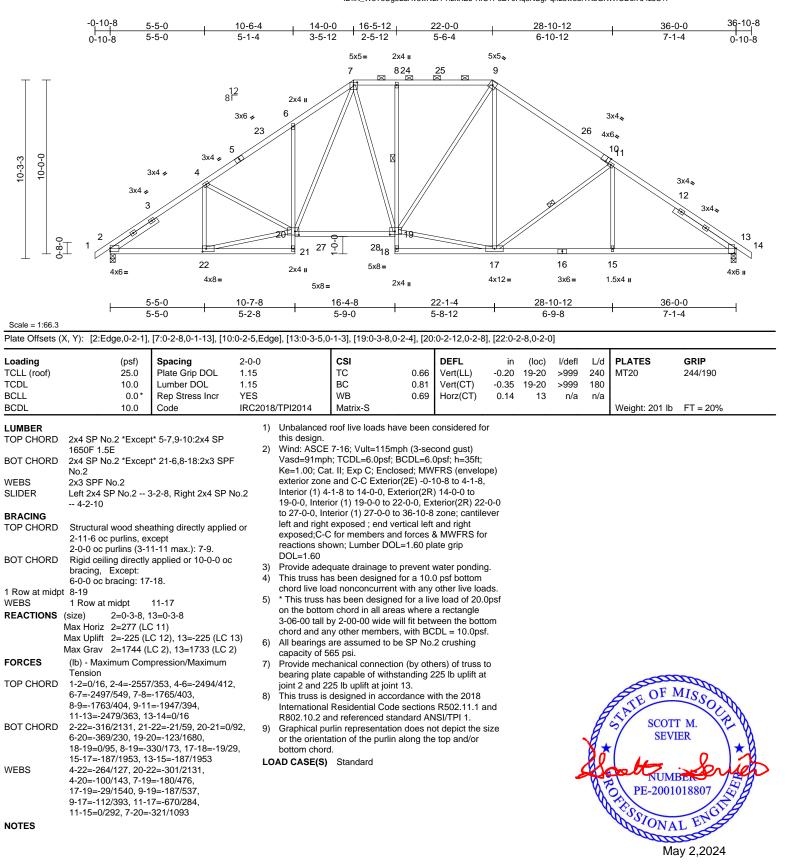
Page: 1

May 2,2024

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

NOTES 1)

Unbalanced roof live loads have been considered for this design.

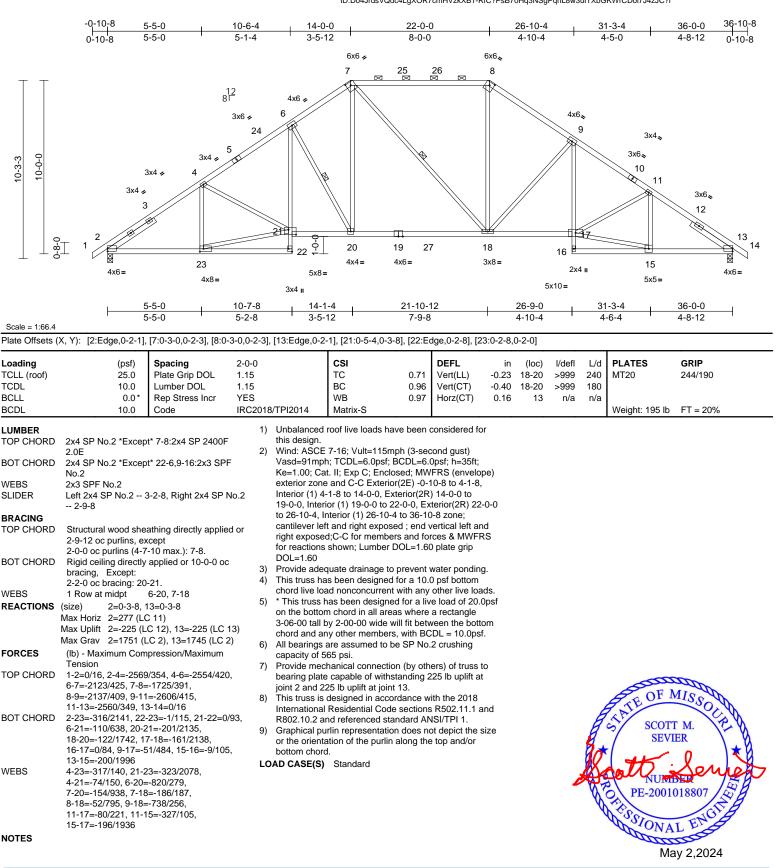

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 163	
P240417-01	C04	Piggyback Base	4	1	Job Reference (optional)	165257564

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Apr 30 10:13:24 ID:IK_W3TeCg5LdAv8wNLIYYizkXBJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

16023 Swingley Ridge Rd. Chesterfield MO 63017

314.434.1200 / MiTek-US.com


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

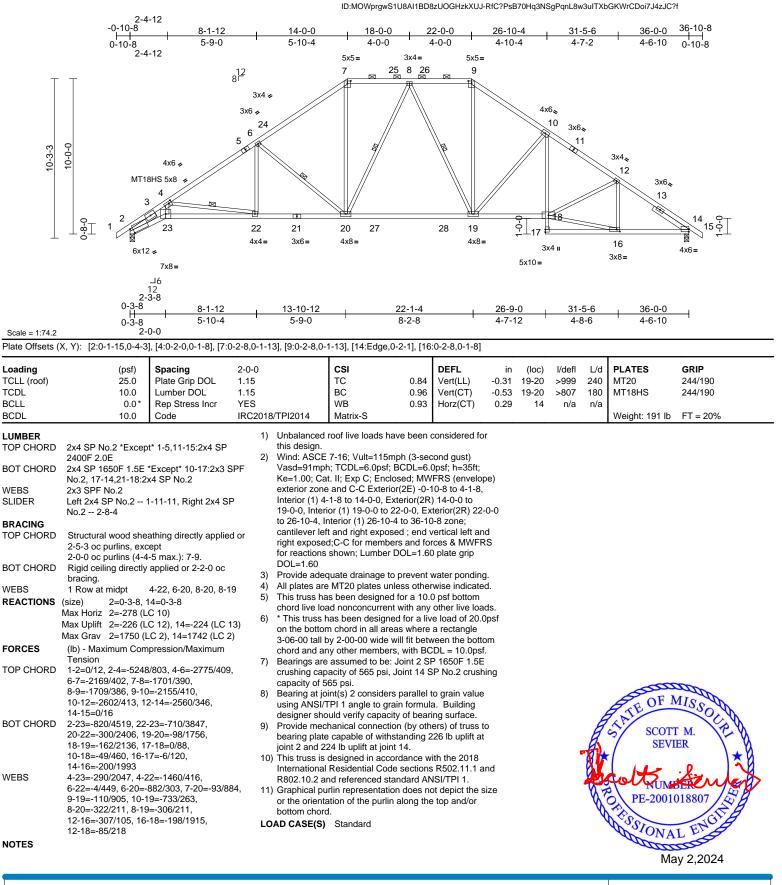
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 163	
P240417-01	C05	Piggyback Base	1	1	Job Reference (optional)	165257565

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Apr 30 10:13:24 ID:Do4JrdsVQdc4LgXOR7cmHVzkXB1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

16023 Swingley Ridge Rd. Chesterfield MO 63017

314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters more property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 163	
P240417-01	C06	Piggyback Base	6	1	Job Reference (optional)	165257566

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Apr 30 10:13:24

Page: 1

16023 Swingley Ridge Rd. Chesterfield MO 63017

314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

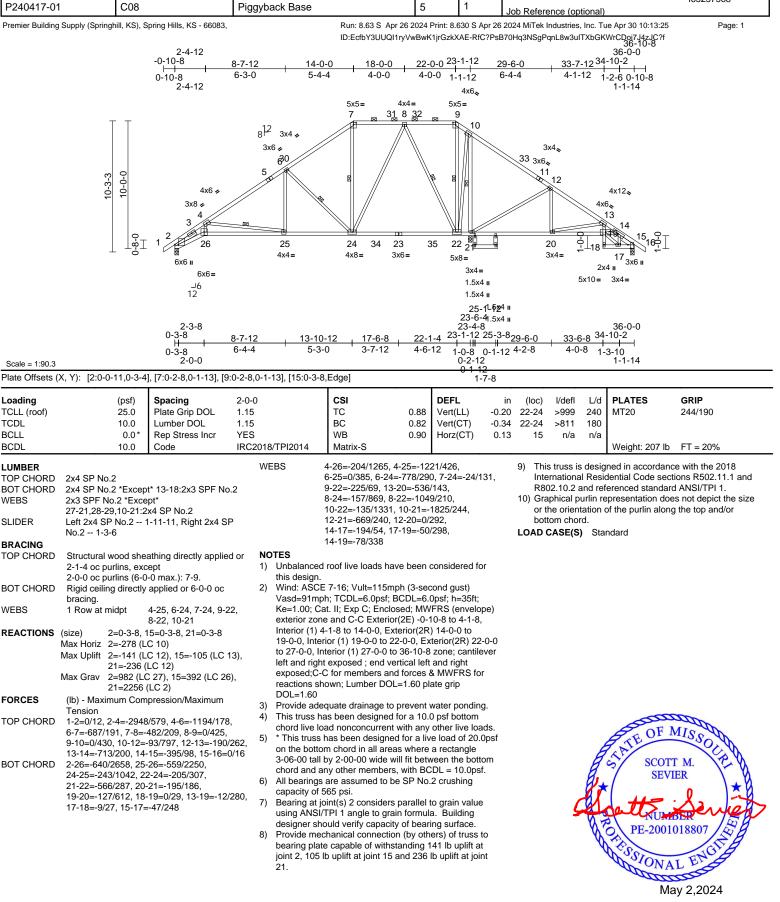
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 163	
P240417-01	C07	Piggyback Base	2	1	Job Reference (optional)	165257567

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Apr 30 10:13:25 ID:EcfbY3UUQI1ryVwBwK1jrGzkXAE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

	2-4 -0-10-8	I-12					<u>-</u>	-5-12					36-10-8
	0-10-8	<u>8-1-12</u> 5-9-0		<u>14-0-0</u> 5-10-4	<u>18-0</u> 4-0-		200	·5-12	<u>29-6-8</u> 6-0-12		+	<u>36-0-0</u> 6-5-8	0-10-8
	2-2	I-12	10		5x5= 7	4x4= 25 8 26	5x 9	10					
Т	- т		8 ¹²			25 8 26 承		2x4 I					
			3x4 ≠								D 4		
			^{3x6} <i>≱</i> 24			//		$\ \ $		27 _{3x6}	3x4		
	0		5 6			// ``				11			
10-3-3	10-0-0	4x6 🖌	T		× //			×			12		
1		3x8 4		\\\\								3x4	
		3 4			$ \ / $							13 3x4	*
				[4]				18				- Internet	14 ♀⊤
		23	22	21	20 28		29 🕂 19	17					
	- <u>⊌</u> 6x6	1	3x4=	3x6=	4x8=		6x6	6 =			16		⊠ 3x6 ∎
		6x6=					5x8	8=			3x4=		
		6 12						2x4 II					
	2- 0- <u>3</u> -8	-3-8		12 10 12		22-1-4		23-4-8 -1-12	29-6-8	,		26.0.0	
	0-3-8	<u>8-1-12</u> 5-10-4		<u>13-10-12</u> 5-9-0		8-2-8	1-	-0-8	6-2-0)	-	<u>36-0-0</u> 6-5-8	—
Scale = 1:74.6		0-0	4.0.0.40 5	da al 140-0 0	10.0.0.41.140			0-2-12					
ate Offsets (.	(X, Y): [2:0-3-3,0-1-11], [7:0-2-8,0-1-13], [1]	4:0-3-13,E	agej, [18:0-3-	12,0-2-4], [19: 	J-2-8,0-3-0J							
oading CLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.83	DEFL Vert(LL)	in -0.20	(loc) 19-20	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
CDL	10.0	Lumber DOL	1.15		BC	0.76	Vert(CT)	-0.33	19-20	>841	180	101120	244/100
	0.0* 10.0	Rep Stress Incr Code	YES IRC2018	/TPI2014	WB Matrix-S	0.95	Horz(CT)	0.12	14	n/a	n/a	Weight: 205 lb	FT = 20%
UMBER					roof live loads	have been	considered	for					
OP CHORD			-	this design.									
BOT CHORD	2x4 SP No.2 *Excep 2x3 SPF No.2 *Exce				7-16; Vult=11 n; TCDL=6.0p:			t;					
SLIDER	Left 2x4 SP No.2 7 No.2 3-10-0				t. II; Exp C; Er and C-C Exte								
RACING	10.2 3-10-0			Interior (1) 4	1-8 to 14-0-0,	Exterior(2R) 14-0-0 to						
OP CHORD	Structural wood she 2-2-0 oc purlins, exc		ed or		or (1) 19-0-0 t erior (1) 27-0-								
	2-0-0 oc purlins (6-0	-0 max.): 7-9.			exposed ; end for members			for					
OT CHORD	Rigid ceiling directly bracing. Except:	applied or 6-0-0 oc		reactions she	own; Lumber [
Row at midp /EBS	ot 10-18 1 Row at midpt	6-20, 7-20, 9-18, 8-1	19 3)	DOL=1.60 Provide adeo	quate drainage	to prevent	water pondi	ng.					
EACTIONS	(size) 2=0-3-8, 2	14=0-3-8, 18=0-3-8	4)		s been desigr ad nonconcurr								
	Max Horiz 2=278 (LC Max Uplift 2=-142 (L		13) 5)	* This truss h	nas been desig	ned for a liv	e load of 20	0.0psf					
	. 18=-241 (LC 12)	,,		n chord in all a by 2-00-00 wid		•						
	Max Grav 2=1004 (L 18=2168		26), 6)		iy other memb are assumed t	,		osf.					
ORCES	(lb) - Maximum Com Tension	pression/Maximum	,	capacity of 5	65 psi.		•						
OP CHORD	1-2=0/12, 2-4=-3002				int(s) 2 consid PI 1 angle to			le				~	con .
	6-7=-725/210, 7-8=-	,	,		uld verify cap hanical conne			s to				TE OF	MISC
	9-10=-102/678, 10-1		3)	bearing plate	capable of w		42 lb uplift	at			A	The	12000
	12-14=-373/268, 14				vuolitt at ioint	44		JINT			A	SCOT	TM YP.V
	12-14=-373/268, 14 2-23=-615/2688, 22 20-22=-197/1162, 1	-23=-535/2277, 9-20=-98/318,		18.		14 and 241					И	× /	
	12-14=-373/268, 14 2-23=-615/2688, 22	-23=-535/2277, 9-20=-98/318, -18=0/98,	9)	18. This truss is	designed in a	cordance w	ith the 2018	3			B.	× /	TER
OT CHORD	12-14=-373/268, 14 2-23=-615/2688, 22 20-22=-197/1162, 19 18-19=-282/232, 17 10-18=-375/243, 16 14-16=-182/228	-23=-535/2277, 9-20=-98/318, -18=0/98, -17=-60/38,	-,	18. This truss is International R802.10.2 a	designed in a Residential C nd referenced	cordance worde sections	ith the 2018 R502.11.1 ISI/TPI 1.	3 and			8	× /	
OT CHORD	12-14=-373/268, 14 2-23=-615/2688, 22- 20-22=-197/1162, 19 18-19=-282/232, 17- 10-18=-375/243, 16- 14-16=-182/228 4-23=-201/1265, 4-2 6-22=0/387, 6-20=-7	-23=-535/2277, 9-20=-98/318, -18=0/98, -17=-60/38, 22=-1130/380, 799/295, 7-20=-28/15	10)	18. This truss is International R802.10.2 a Graphical pu	designed in a Residential C	cordance worde sections standard AN	ith the 2018 R502.11.1 ISI/TPI 1. ot depict the	3 and e size		4		SEV	Served
NOT CHORD	12-14=-373/268, 14 2-23=-615/2688, 22- 20-22=-197/1162, 19 18-19=-282/232, 17- 10-18=-375/243, 16- 14-16=-182/228 4-23=-201/1265, 4-2 6-22=0/387, 6-20=-7 9-19=-66/1187, 9-18	-23=-535/2277, 9-20=-98/318, -18=0/98, -17=-60/38, 22=-1130/380, 299/295, 7-20=-28/15 3=-1627/190,	10) 54,	18. This truss is International R802.10.2 a Graphical pu or the orienta bottom chore	designed in ac Residential C nd referenced rlin representa ation of the pu	cordance worde sections standard AN	ith the 2018 R502.11.1 ISI/TPI 1. ot depict the	3 and e size		4		SEV	Served
OT CHORD	12-14=-373/268, 14 2-23=-615/2688, 22- 20-22=-197/1162, 19 18-19=-282/232, 17- 10-18=-375/243, 16- 14-16=-182/228 4-23=-201/1265, 4-2 6-22=0/387, 6-20=-7	-23=-535/2277, -2-20=-98/318, -18=0/98, 17=-60/38, -2=-1130/380, -99/295, 7-20=-28/15 -1627/190, -18=-692/245,	10) 54, LO	18. This truss is International R802.10.2 a Graphical pu or the orienta	designed in ac Residential C nd referenced rlin representa ation of the pu	cordance worde sections standard AN	ith the 2018 R502.11.1 ISI/TPI 1. ot depict the	3 and e size		4		SEV NUM PE-2001	TER Server 1018807
OT CHORD	12-14=-373/268, 14- 2-23=-615/2688, 22- 20-22=-197/1162, 11 18-19=-282/232, 17- 10-18=-375/243, 16- 14-16=-182/228 4-23=-201/1265, 4-2- 6-22=0/387, 6-20=-7 9-19=-66/1187, 9-18- 16-18=-124/250, 12-	-23=-535/2277, -2-20=-98/318, -18=0/98, 17=-60/38, -2=-1130/380, -99/295, 7-20=-28/15 -1627/190, -18=-692/245,	10) 54, LO	18. This truss is International R802.10.2 a Graphical pu or the orienta bottom chore	designed in ac Residential C nd referenced rlin representa ation of the pu	cordance w ode sections standard AN tion does no	ith the 2018 R502.11.1 ISI/TPI 1. ot depict the	3 and e size		د		SEV	TER Lensen en 1018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 163	
P240417-01	C08	Piggyback Base	5	1	Job Reference (optional)	165257568

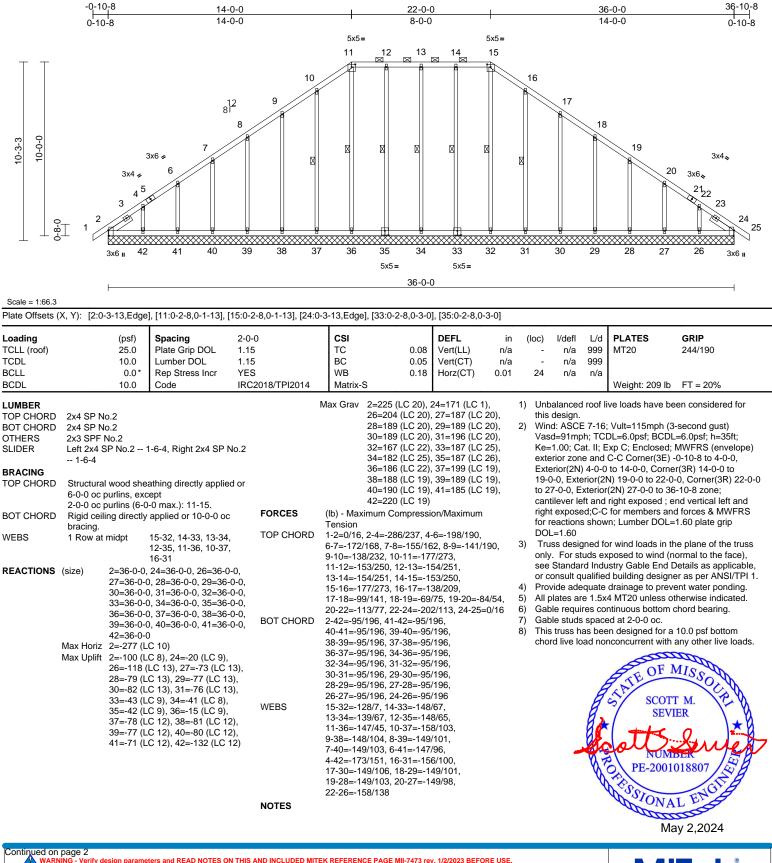

TCDL

BCLL

BCDL

WEBS

WFBS


🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 163	
P240417-01	C09	Piggyback Base Supported Gable	1	1	Job Reference (optional)	165257569

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Apr 30 10:13:25 ID:ewrAceOsPybP0GqmZjh3U?zkXV?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 163	
P240417-01	C09	Piggyback Base Supported Gable	1	1	Job Reference (optional)	165257569

 This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint 2, 20 lb uplift at joint 24, 43 lb uplift at joint 33, 41 lb uplift at joint 34, 42 lb uplift at joint 35, 15 lb uplift at joint 36, 78 lb uplift at joint 37, 81 lb uplift at joint 38, 77 lb uplift at joint 39, 80 lb uplift at joint 40, 71 lb uplift at joint 41, 132 lb uplift at joint 42, 76 lb uplift at joint 31, 82 lb uplift at joint 30, 77 lb uplift at joint 29, 79 lb uplift at joint 28, 73 lb uplift at joint 27 and 118 lb uplift at joint 26.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Apr 30 10:13:25 ID:ewrAceOsPybP0GqmZjh3U?zkXV?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

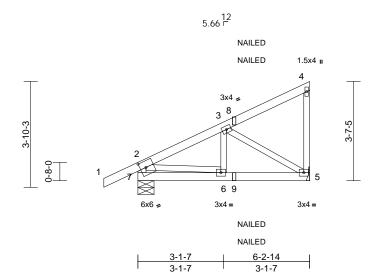
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 163	
P240417-01	CJ01	Diagonal Hip Girder	2	1	Job Reference (optional)	165257570

3-1-7

3-1-7

|-1-2-14 | 1-2-14

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,


Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Apr 30 10:13:25 ID:LawX8EJT2pjPgBnQfi3QiXzkXV6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-2-14

3-1-7

Page: 1

Scale = 1:41.9

Plate Offsets (X, Y): [7:0-2-8,0-2-12]

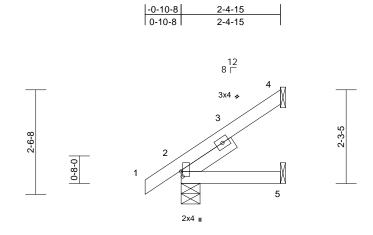
		-											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.22	Vert(LL)	0.00	6	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.12	Vert(CT)	-0.01	5-6	>999	180		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.09	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-P							Weight: 31 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce			bearing plate 7 and 94 lb t	chanical connectio e capable of withs uplift at joint 5. designed in accor	tanding 9	94 lb uplift at						
BRACING	2X3 SFF NU.2 EXCE	pt 7=2.2x4 SF 110.2	-	/	Residential Code			and					
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex	0 7 11	ed or	R802.10.2 a 3) "NAILED" in	nd referenced sta dicates Girder: 3-7	ndard AN	ISI/TPI 1.						
BOT CHORD	DT CHORD Rigid ceiling directly applied or 9-11-10 oc bracing.				 per NDS guidelines. In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). 								
REACTIONS	(size) 5= Mecha	inical, 7=0-7-0				(F) or ba	ск (В).						
	Max Horiz 7=159 (LC	C 9)		OAD CASE(S)									
	Max Uplift 5=-94 (LC	9), 7=-94 (LC 12)		 Dead + Ro Plate Increa 	of Live (balanced)	: Lumber	Increase=1.	15,					
	Max Grav 5=258 (L0	C 1), 7=378 (LC 1)		Uniform Lo									
FORCES	(lb) - Maximum Com Tension	pression/Maximum			2=-70, 2-4=-70, 5-7	7=-20							
TOP CHORD	2-7=-352/278, 1-2=0 3-4=-214/102, 4-5=-	, ,											
BOT CHORD	6-7=-353/181, 5-6=-	257/300											
WEBS	3-6=0/121, 3-5=-290)/247, 2-6=-63/329											
NOTES													
Vasd=91m Ke=1.00; C exterior zo	E 7-16; Vult=115mph hph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ne and C-C Corner (3 R) 5-10-0 to 6-1-10 zoi	DL=6.0psf; h=35ft; d; MWFRS (envelop) -1-2-14 to 5-10-0,	,									NIE OF I	MISSO
(sed ; end vertical left a	,									4	- AL	N'SON

- for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Bearings are assumed to be: Joint 7 SP No.2 crushing capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.

SCOTT M.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 163	
P240417-01	J01	Jack-Open	4	1	Job Reference (optional)	165257571


2-4-15 2-4-15

2-4-15

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Apr 30 10:13:26 ID: 2zUS610PiRhpoVypFidojTzkXVU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

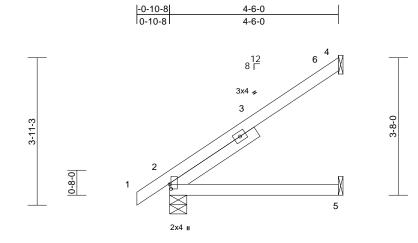
Page: 1

Scale = 1:28

Plate Offsets (X, Y): [2:0-1-8,0-0-7]

Plate Offsets (X, Y): [2:0-1-8,0-0-7] 									-	
Loading (psf) TCLL (roof) 25.0 TCDL 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.12	DEFL Vert(LL) Vert(CT)	in 0.00 0.00	(loc) 2-5 2-5	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190
BCLL 0.0* BCDL 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-P	0.00	Horz(CT)	0.00	4	n/a	n/a	Weight: 12 lb	FT = 20%
BOT CHORD 2-4-15 oc purlins. Rigid ceilirug direct bracing. REACTIONS (size) 2=0-5-8. Max Horiz 2=92 (LU Max Uplift 2=-16 (L Max Grav 2=178 (I	eathing directly applie ly applied or 10-0-0 oc 4= Mechanical, 5= ical	d or bearing p 4 and 16 7) This truss Internatio R802.10. LOAD CASE	hechanical connecti late capable of with lb uplift at joint 2. s is designed in acc nal Residential Coc 2 and referenced st (S) Standard	istanding 6 ordance w le sections	67 lb́ uplift at jo ith the 2018 ₅ R502.11.1 at	pint					
(LC 3) FORCES (lb) - Maximum Co Tension TOP CHORD 1-2=0/16, 2-4=-78/ BOT CHORD 2-5=0/0	mpression/Maximum 47										
NOTES 1) Wind: ASCE 7-16; Vult=115mp Vasd=91mph; TCDL=6.0psf; B Ke=1.00; Cat. II; Exp C; Enclos exterior zone and C-C Exterior	CDL=6.0psf; h=35ft; ed; MWFRS (envelop									01111	and
 exterior 20ne and C-C Exterior and right exposed; end vertica exposed; C-C for members and reactions shown; Lumber DOL: DOL=1.60 2) This truss has been designed f chord live load nonconcurrent v 3) * This truss has been designed on the bottom chord in all area: 3-06-00 tall by 2-00-00 wide wi chord and any other members. 4) Bearings are assumed to be: , capacity of 565 psi. 5) Refer to girder(s) for truss to truss 	I left and right forces & MWFRS for =1.60 plate grip or a 10.0 psf bottom with any other live load for a live load of 20.0 s where a rectangle II fit between the botto Joint 2 SP No.2 crush	is. psf m							t	PE-2001	

May 2,2024

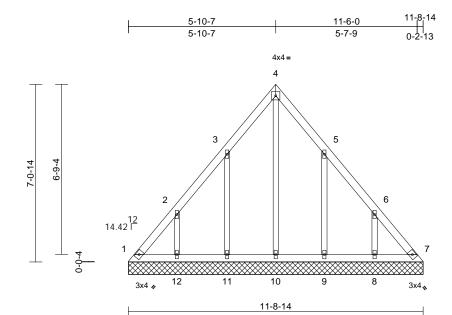

A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 163	
P240417-01	J02	Jack-Open	7	1	Job Reference (optional)	165257572

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Apr 30 10:13:26 ID:TY9bk33l?M3NfzhOwrBVL5zkXVR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

4-6-0	Ĺ

Scale = 1:30.7 Plate Offsets (X_Y): [2:0-1-8 0-0-7]


Plate Offsets ((X, Y): [2:0-1-8,0-0-7]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.42 0.24 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.05 -0.01	(loc) 2-5 2-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 Left 2x4 SP No.2 2 Structural wood shee 4-6-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 4 Mechanic Max Horiz 2=153 (LC Max Uplift 2=-15 (LC Max Grav 2=267 (LC (LC 3) (lb) - Maximum Com	athing directly applie applied or 10-0-0 oc 4= Mechanical, 5= al C 12) C 12, 4=-121 (LC 12) C 1), 4=163 (LC 19),	d or LOAD CASE	nechanical connectio late capable of withs d 15 lb uplift at joint 2 s is designed in acco nal Residential Code 2 and referenced sta (S) Standard	tanding 1 2. rdance w e sections	21 lb uplift at ith the 2018 R502.11.1 a						
Vasd=91n Ke=1.00; (exterior zc Interior (1) exposed; members Lumber D 2) This truss chord live 3) * This truss on the bot 3-06-00 ta chord and 4) Bearings a capacity o	2-5=0/0 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 4-1-8 to 4-5-4 zone; c end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO load nonconcurrent wi s has been designed for load nonconcurrent wi s has been designed for load nonconcurrent wi shas been designed for all by 2-00-00 wide will any other members. are assumed to be: , Jo	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-10-8 to 4-1-8, antilever left and rigl ght exposed;C-C for for reactions shown; vL=1.60 r a 10.0 psf bottom th any other live load or a live load of 20.0] where a rectangle fit between the botto boint 2 SP No.2 crushi	nt Is. psf								SCOT SEV NUM PE-2001	BER 018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 163	
P240417-01	LG01	Lay-In Gable	1	1	Job Reference (optional)	165257573

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Apr 30 10:13:26 ID:LJP6aQ6o2aap8a_99hFRWxzkXVN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:45.9

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	018/TPI2014	CSI TC BC WB Matrix-S	0.08 0.04 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 58 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc p Rigid ceili bracing.	0.2 wood she ourlins. ng directly 1=11-8-14 9=11-8-14 11=11-8-1	athing directly applie applied or 10-0-0 oc 4, 7=11-8-14, 8=11-8 4, 10=11-8-14, 4, 12=11-8-14		Vasd=91mpi Ke=1.00; Ca exterior zone Interior (1) 5 10-10-10, In left and right exposed;C-C reactions sh DOL=1.60 3) Truss desig only. For stu	7-16; Vult=1155 h; TCDL=6.0psf t. TI; Exp C; Enc e and C-C Exteri -3-12 to 5-10-10 terior (1) 10-10- exposed ; end v for members a own; Lumber DC ned for wind loa uds exposed to v d Industry Gable	; BCDL=6. losed; MW ior(2E) 0-3 0, Exterior(: 10 to 11-5- vertical left nd forces of DL=1.60 pl ds in the p wind (norm	Opsf; h=35ft; FRS (envelop -12 to 5-3-12 2R) 5-10-10 t 9 zone; cantil and right & MWFRS for ate grip lane of the tru al to the face	lever					
	Max Uplift	1=-82 (LC 8=-168 (L 11=-167 (1=190 (LC 8=220 (LC	: 10), 7=-57 (LC 11), C 13), 9=-165 (LC 13 LC 12), 12=-168 (LC C 12), 7=174 (LC 13) C 20), 9=225 (LC 20) LC 22), 11=226 (LC 1	3), ; 12) ,	 All plates are Gable requir Gable studs This truss ha chord live los * This truss l 	es continuous b spaced at 0-0-0 as been designe ad nonconcurrer nas been design	nless other ottom chor oc. d for a 10. nt with any red for a liv	vise indicated d bearing. 0 psf bottom other live loa e load of 20.0	d. ds.					
FORCES	(lb) - Maxi Tension		pression/Maximum		3-06-00 tall I	m chord in all ar by 2-00-00 wide by other membe	will fit betw		om					
TOP CHORD			150/105, 3-4=-135/12 125/71, 6-7=-243/17		9) All bearings	are assumed to		2 crushing						
BOT CHORD	1-12=-129 10-11=-13 8-9=-130/	9/187, 11-1 30/188, 9-1 188, 7-8=-	2=-130/188, 0=-130/188,		1, 57 lb uplif	hanical connect capable of with t at joint 7, 168 l	nstanding 8 b uplift at je	82 lb uplift at j pint 12, 167 ll	oint D				TATE OF I	MISSO
NOTES			221/191, 6-8=-218/18	85	joint 8.	11, 165 lb uplift		·	int at			A	S/ SCOI	I IVI. VY W
		oads have	been considered for			Residential Coo nd referenced si	de sections	s R502.11.1 a	nd		Ş	Å *	SEVI	· Conno

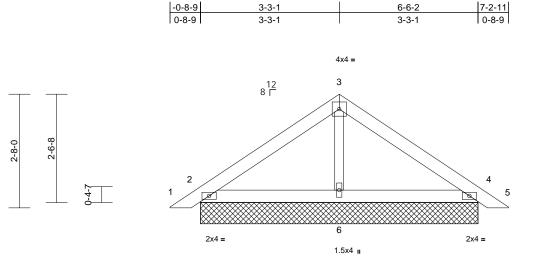
LOAD CASE(S) Standard

NUMBER PE-2001018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 163	
P240417-01	PB1	Piggyback	2	1	Job Reference (optional)	165257574


Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Apr 30 10:13:26 ID:ISwQuRemZjlLuFdTsap96TzWn6k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-6-2

6-6-2

7-2-11

3-3-1

Sca	le =	1.27	

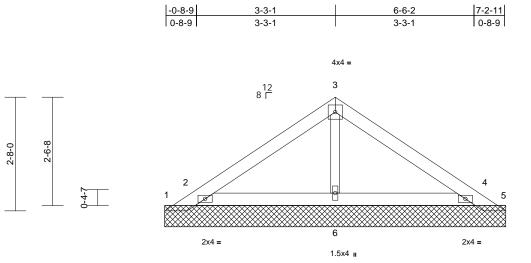
Ocale = 1.27											-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.22 0.11 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 197/144 FT = 20%
BOT CHORD 2x4 OTHERS 2x3 BRACING TOP CHORD Stru 6-0- BOT CHORD Rigi brac REACTIONS (size) Max I Max (FORCES (b) Ten TOP CHORD 1-2= BOT CHORD 2-6=	0 oc purlins. d ceiling directly ing. 2=6-6-2, 4 -doriz 2=-69 (LC Jplift 2=-55 (LC Grav 2=200 (LC (LC 1) - Maximum Corr sion	≥ 12), 4=-64 (LC 13) C 1), 4=200 (LC 1), 6= npression/Maximum 75, 3-4=-100/76,	on the botto 3-06-00 tall chord and a 8) All bearings 1 or 9) Provide mer bearing plat 2 and 64 lb 10) This truss is Internationa R802.10.2 a 11) See Standa Detail for Co	chanical connection (e capable of withstar uplift at joint 4. designed in accorda I Residential Code se ind referenced stand rd Industry Piggybac onnection to base tru ified building designed	where fit betw SP No. (by oth nding 5 ance w ections ard AN k Trus ss as a	a rectangle veen the botto 2 crushing ers) of truss to 5 lb uplift at jo ith the 2018 is R502.11.1 a ISI/TPI 1. s Connection	o pint nd					

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 163	
P240417-01	PB2	Piggyback	28	1	Job Reference (optional)	165257575

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Apr 30 10:13:26 ID:DfUo5nfOK1tCWOCfQIKOfgzWn6j-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

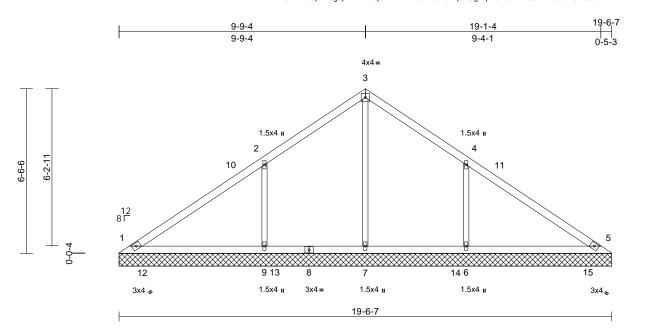
6-6-2

Scale = 1:27

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.19		n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.11	Vert(TL)	n/a	-	n/a	999	-	
BCLL		0.0*	Rep Stress Incr	YES		WB	0.03	Horiz(TL)	0.00	4	n/a	n/a		
BCDL		10.0	Code	IRC20	8/TPI2014	Matrix-P							Weight: 25 lb	FT = 20%
LUMBER				5) Gable studs	spaced at 2-0)-0 oc.							
TOP CHORD	2x4 SP N	o.2		6		as been desig		0 psf bottom						
BOT CHORD	2x4 SP N	o.2			chord live lo	ad nonconcur	rent with any	other live loa	ids.					
OTHERS	2x3 SPF I	No.2		7) * This truss I	has been desi	gned for a liv	e load of 20.	0psf					
BRACING					on the botto	m chord in all	areas where	a rectangle						
TOP CHORD	Structural	wood she	athing directly applie	ed or		by 2-00-00 wid		veen the bott	om					
	6-0-0 oc p		0 , 11			ny other mem								
BOT CHORD	Rigid ceili	ing directly	applied or 10-0-0 o	с 8		are assumed	to be SP No.	2 crushing						
	bracing.			0	capacity of 5		ation (hu ath							
REACTIONS	(size)		2=8-0-0, 4=8-0-0,	9	·	hanical conne e capable of w		,						
		5=8-0-0, 6	6=8-0-0			b uplift at joint								
	Max Horiz	1=-69 (LC	8)		196 lb uplift		. 5, 215 ib upi	int at joint 2 a	inu					
	Max Uplift		C 19), 2=-213 (LC 1		0) This truss is	,	ccordance w	ith the 2018						
			C 13), 5=-166 (LC 2	20)		Residential C			and					
	Max Grav		C 12), 2=404 (LC 19			nd referenced								
			20), 5=123 (LC 13	^{3),} 1	1) See Standar	d Industry Pig	gyback Trus	s Connection						
		6=223 (LC	,		Detail for Co	nnection to ba	ase truss as a	applicable, or						
FORCES	· · /	imum Com	pression/Maximum		consult qual	ified building c	designer.							
	Tension	450 0 0		_ L	OAD CASE(S)	Standard								
TOP CHORD	4-5=-92/9	,	111/70, 3-4=-110/70	σ,										
BOT CHORD		5 1, 4-6=-19/	/51											
WEBS	3-6=-142/	,	01											
NOTES	00.12													
	ed roof live l	oads have	been considered fo	r									an	ADD
this design													OF J	MISSO
0		lt-115mph	(3-second quist)									6	HAV	-050 1

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

SCOTT M.


SEVIER

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 163	
P240417-01	V01	Valley	1	1	Job Reference (optional)	165257576

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Apr 30 10:13:26 ID:6ru7F9CpA2ag5pbhdMPJqdzkXVF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:45.7

Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC 0. BC 0.	43 Ve	PEFL fert(LL) fert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCLL	0.0*	Rep Stress Incr	YES	WB 0.	15 Ho	loriz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 73 lb	FT = 20%
	6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=19-6-7, 7=19-6-7, Max Horiz 1=-174 (L Max Uplift 1=-21 (LC 9=-229 (L Max Grav 1=234 (LC 6=653 (LC 9=654 (LC (lb) - Maximum Com Tension 1-2=-169/146, 2-3=-	C 8) C 13), 6=-229 (LC 13) C 12) C 20), 5=216 (LC 1), C 20), 7=331 (LC 22) C 19)	 only. For stisee Standar or consult quarter or consult quarter of a study of a study of a study of the study of t	hanical connection (by e capable of withstandir ift at joint 9 and 229 lb designed in accordanc Residential Code sect nd referenced standarc	ormal to etails a r as pe hord bo 10.0 ps any oth a live lo ere a re between BCDL No.2 cr others) og 21 lk uplift at e with t ons R5	to the face), as applicab er ANSI/TP bearing. sf bottom er live load boad of 20.0 ectangle en the bottoo . = 10.0psf. crushing c) of truss to b uplift at jo t joint 6. the 2018 502.11.1 ar	le, I 1. Is. osf m					
BOT CHORD	4-5=-130/102 1-9=-56/124, 7-9=-5 5-6=-56/124	6/124, 6-7=-56/124,										
WEBS	3-7=-160/0, 2-9=-42	2/281, 4-6=-422/281										
this design 2) Wind: ASC	ed roof live loads have E 7-16; Vult=115mph ph; TCDL=6.0psf; BC	(3-second gust)								A	STATE OF M	MISSOUR

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior (1) 5-5-12 to 9-9-10, Exterior(2R) 9-9-10 to 14-9-10, Interior (1) 14-9-10 to 19-1-7 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

E

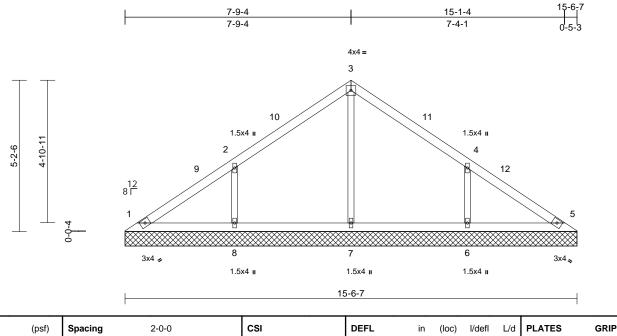
May 2,2024

SEVIER

JIME

PE-2001018807

SSIONAL


Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 163				
P240417-01	V02	Valley	1	1	Job Reference (optional)	165257577			

Scale = 1:39.6

Loading

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Apr 30 10:13:26 ID:6ru7F9CpA2ag5pbhdMPJqdzkXVF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading		(pst)	Spacing	2-0-0		CSI		DEFL	ın	(IOC)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.23	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.11	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.11	Horiz(TL)	0.00	5	n/a	n/a		
BCDL		10.0	Code	IRC20	18/TPI2014	Matrix-S							Weight: 56 lb	FT = 20%
LUMBER				3) Truss desig	gned for wind lo	ads in the p	lane of the tr	uss					
TOP CHORD	2x4 SP N	lo.2				uds exposed to								
BOT CHORD	2x4 SP N	lo.2				rd Industry Gab								
OTHERS	2x3 SPF	No.2				ualified building			PI 1.					
BRACING				4		res continuous		d bearing.						
TOP CHORD	Structura	I wood shea	athing directly applied	dor 5		spaced at 4-0-								
	6-0-0 oc	purlins.		6	,	as been design								
BOT CHORD	Rigid ceil bracing.	ling directly	applied or 10-0-0 oc	7		ad nonconcurre has been desig								
REACTIONS	(size)	1=15-6-7,	5=15-6-7, 6=15-6-7,			m chord in all a			~ m					
		7=15-6-7,	8=15-6-7			by 2-00-00 wide iny other memb		veen the bott	om					
	Max Horiz	1=-136 (L	C 8)	ç		are assumed to		2 crushing						
	Max Uplift	1=-17 (LC	: 13), 6=-175 (LC 13)	, · ·	capacity of			2 crushing						
		8=-175 (L		c		chanical connec	ction (by oth	ers) of truss	to					
	Max Grav		C 20), 5=139 (LC 1),		,	e capable of wi		,						
		6=408 (LC 8=408 (LC	C 20), 7=270 (LC 1), C 19)		1, 175 lb up	lift at joint 8 and	d 175 lb upli	ft at joint 6.						
FORCES	(lb) - Max	kimum Com	pression/Maximum	1		designed in ac Residential Co			and					
	Tension					and referenced			anu					
TOP CHORD	1-2=-142	/100, 2-3=-	149/124, 3-4=-140/11	12,			Stanuaru Ai	0/1111.						
	4-5=-107	/56		L	OAD CASE(S	Stanuaru								
BOT CHORD	1-8=-38/8	38, 7-8=-38/	/88, 6-7=-38/88,											
	5-6=-38/8	38												
WEBS	3-7=-193	/5, 2-8=-32	1/218, 4-6=-321/218											
NOTES													SIL	all
1) Unbalance this design		loads have	been considered for										E OF J	MISSO
			(C) I ()									1	7 ~	

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior (1) 5-5-12 to 7-9-10, Exterior(2R) 7-9-10 to 12-9-10, Interior (1) 12-9-10 to 15-1-7 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Mitek 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

Job	Truss	Truss Type Qty Ply Roof - HR Lot 163				
P240417-01	V03	Valley	1	1	Job Reference (optional)	165257578

5-9-4

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

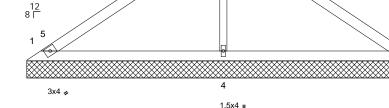
3-10-6

3-6.

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Apr 30 10:13:26 ID:6ru7F9CpA2ag5pbhdMPJqdzkXVF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-1-4

Page: 1


11-6-7

6

3x4 🔊

3

5-9-4 5-4-1 d-5-3 4x6 = 2

11-6-7

<u> </u>		
Scale	=	1:33.8

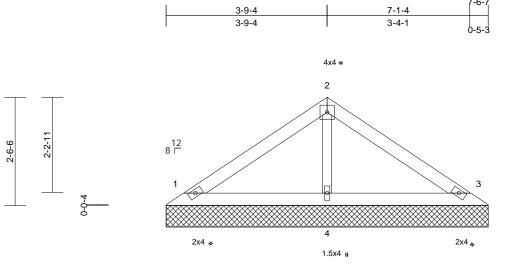
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.48 0.28	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCLL	0.0*	Rep Stress Incr	YES		WB	0.10	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC20)18/TPI2014	Matrix-S							Weight: 39 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	Max Horiz 1=-99 (LC Max Uplift 1=-54 (LC 4=-29 (LC Max Grav 1=246 (LC (LC 1)	applied or 10-0-0 or 3=11-6-7, 4=11-6-7 10) 12), 3=-66 (LC 13) 12) 21), 3=246 (LC 1), 4	ed or c , 4=465	 chord live loa * This truss H on the bottor 3-06-00 tall the chord and ar All bearings capacity of 5 Provide meco- bearing plate 1, 66 lb upliff This truss is International 	hanical connect capable of wit t at joint 3 and 2 designed in ac Residential Co nd referenced s	ent with any ned for a liv reas where a will fit betw ers. b be SP No. tion (by oth hstanding 5 29 lb uplift a cordance w ode sections	other live loa e load of 20. a rectangle veen the bott 2 crushing ers) of truss i4 lb uplift at i, joint 4. ith the 2018 i R502.11.1 a	Opsf om to joint					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD BOT CHORD WEBS	1-2=-186/93, 2-3=-1 1-4=-20/87, 3-4=-20 2-4=-303/124												

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior (1) 5-5-12 to 5-9-10, Exterior(2R) 5-9-10 to 10-9-10, Interior (1) 10-9-10 to 11-1-7 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type Qty Ply Roof - HR Lot 163		Roof - HR Lot 163		
P240417-01	V04	Valley	1	1	Job Reference (optional)	165257579

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries. Inc. Tue Apr 30 10:13:26 ID:6ru7F9CpA2ag5pbhdMPJqdzkXVF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-6-7

Scale = 1:27

Scale = 1.27												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	BC	0.24 0.11 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins. Rigid ceiling directly bracing.	2 12), 3=-50 (LC 13)	d or 9) Provide me bearing plat 1 and 50 lb 10) This truss is Internationa R802.10.2 a LOAD CASE(S)	chanical connection (t e capable of withstan- uplift at joint 3. e designed in accordar I Residential Code se and referenced standa	vhere it betv P No. by oth ding 4 nce w ections	a rectangle veen the botto 2 crushing ers) of truss to 2 lb uplift at jo ith the 2018 5 R502.11.1 at	om o o oint					
this design 2) Wind: ASC Vasd=91m Ke=1.00; 0	(lb) - Maximum Com Tension 1-2=-105/64, 2-3=-1 1-4=-13/50, 3-4=-13 2-4=-178/96 ed roof live loads have b DE 7-16; Vult=115mph ph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ne and C-C Exterior(2	00/64 /50 been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (enveloped)									5-F OF J	MISSO

and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.

4)

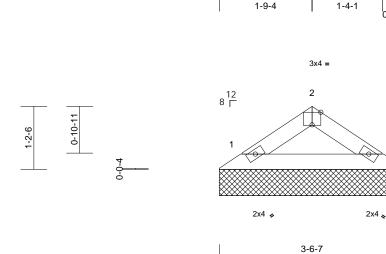
Gable studs spaced at 4-0-0 oc. 5)

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

May 2,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 163	
P240417-01	V05	Valley	1	1	Job Reference (optional)	165257580


Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Tue Apr 30 10:13:26 ID:6ru7F9CpA2ag5pbhdMPJqdzkXVF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-1-4

3

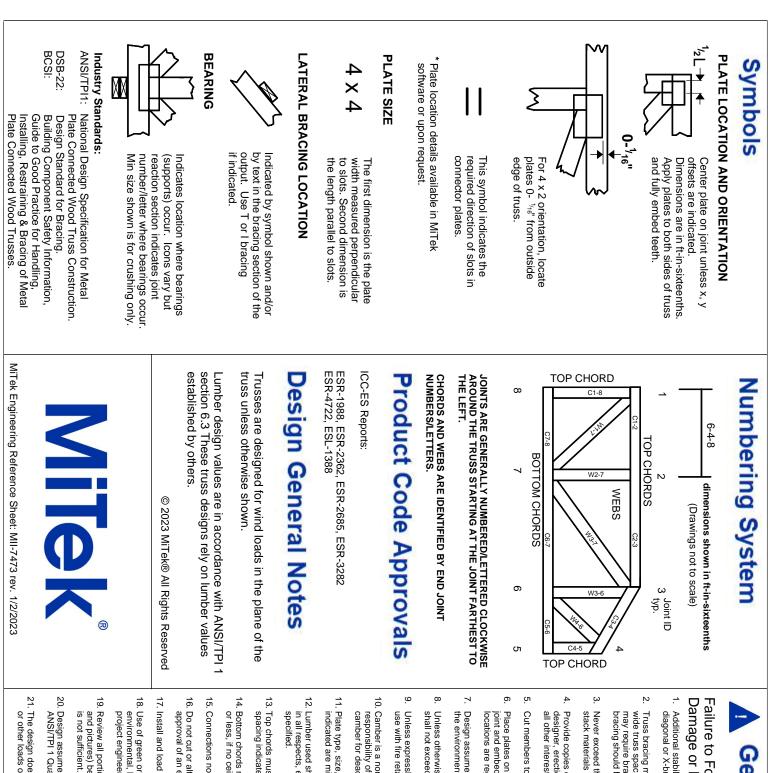
1-9-4

Page: 1

Scale = 1:21.9

Plate Offsets (X, Y): [2:0-2-0,Edge]

	x, i). [2.0 2 0,Euge]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁷	18/TPI2014	CSI TC BC WB Matrix-P	0.04 0.08 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 Structural wood she 3-7-3 oc purlins. Rigid ceiling directly bracing. (size) 1=3-6-7, 3 Max Horiz 1=25 (LC Max Uplift 1=-17 (LC Max Grav 1=119 (LC (lb) - Maximum Com Tension 1-2=-104/71, 2-3=-11 1-3=-26/69	applied or 10-0-0 or 3=3-6-7 11) 212), 3=-17 (LC 13) C 1), 3=-19 (LC 1) ppression/Maximum	c 9 1	 on the botto 3-06-00 tall chord and a All bearings capacity of \$ Provide mea bearing plat 1 and 17 lb This truss is Internationa 	chanical conne e capable of w uplift at joint 3. designed in a I Residential C und referenced	areas where de will fit betw bers. to be SP No. ection (by oth vithstanding 1 ccordance w Code sections	a rectangle veen the both 2 crushing ers) of truss 7 lb uplift at ith the 2018 5 R502.11.1 a	tom to joint					
this design 2) Wind: ASC Vasd=91m	ed roof live loads have CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat II: Exp.C: Explore	(3-second gust) DL=6.0psf; h=35ft;											


- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip
- DOL=1.60
 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.
 Cable atuda appaad at 4.0.0 app.
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor1 bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.